江西省南昌市2014-2015学年八年级上学期期末终结性测试数学试卷及答案
江西省南昌市2014-2015学年八年级上学期期末终结性测试数学试卷及答案
江西省南昌市2014-2015学年八年级上学期期末终结性测试数学试卷及答案2014-2015学年度第一学期南昌市期末终结性测试卷八年级(初二)数学参考答案及评分意见一、本大题共8题,每小题3分,共24分1.D2.A3.A4.C5.B6.C7.C8.A二、本大题共8空,每空2分,共16分9.10.a(x-3)²。
11.x=1.-1/2每个图形2分三、本大题共2题,每小题5分,共10分13.解:原式 = [(2m+n)(2m-n)] / 224m-n] / 4 + 2 / (24+n)m-8mn) / 1622分+4分+5分)14.解:1)任意一个分式除以前面一个分式,商都等于 - 2)第7个分式为:-x^15 / y^72分+5分)四、本大题共4题,每小题6分,共24分15.解:分三种情况:① x + (x-1) / 2 + (x^2+3x+1) / 22 = x^2+4x / 2x(x+4) (1分+2分+3分)② 2(x+x-1) / 2 + (x-x) / 22 = x-1x+1)(x-1) (4分)③ (x^2+3x+1) / 22 + (x^2-x) / 22 = (x+1)^2 / 22x+1)^2 / 22 (5分+6分)16.解:原式 = [(x^2-x)/(x-2)] / [(x-1)^2/(x-1)]x^2-4x+4) / (x-2)(x-1)^2x-2)^-1 (6分)17.解:(1)当h=1000米时,d=8.2)因为 d1=8×(1000/2)=4000,d2=1000,所以他看到的水平线的距离是原来的2倍。
18.解:(1)S△ACD=S△ABC—S△ABD=7-1/2×4×2=3.2)如图,过点D作DF⊥AC于F,因为AD是△ABC中∠BAC的角平分线,DE⊥AB,所以DE=DF=2,解得AC=3.19.解:设大巴车的速度是x千米/时,根据题意得到方程:/(1.2x+12)=x/12,解得:x=24.经检验可得,x=24是原分式方程的解,所以大巴车的速度是24千米/时。
2014-2015学年度第一学期初二数学期末试卷及答案
2014~2015 学年度第一学期期末考试
八年级数学 2015.2
说明:本卷满分 110 分,考试用时 100 分钟,解答结果除特殊要求外均取精确值,可使 用计算器. 一、选择题: (本大题共 10 小题,每题 3 分,共 30 分) 1. 2 的算术平方根是„„„„„„„„„„„„„„„„„„„„„„„„„„ ( ) A. 2 B.2 C.± 2 D.±2 2. 下面有 4 个汽车商标图案, 其中是轴对称图形的是„„„„„„„„„„„„ ( )
A B
y
A
C
O C
D
F
E
E B
O
x
B
D
C A
D
(第 3 题)
(第 4 题)
(第 7 题)
(第 8 题)
5.已知点(-2,y1),(3,y2)都在直线 y=-x+b 上,则 y1 与 y2 的大小关系是„„( ) A.y1<y2 B.y1=y2 C.y1>y2 D.无法确定 6.如图,直线 l 是一条河,P,Q 是两个村庄.计划在 l 上的某处修建一个水泵站 M, 向 P,Q 两地供水.现有如下四种铺设方案(图中实线表示铺设的管道) ,则所需管道最 短的是„„( )
y A
4
D
B
7 - 2
O
图③
M
C 9
x
初二数学期终试卷 2015.2
第 6 页 共 8 页
2014-2015 学年第一学期八年级数学期末试卷答案及评分标准
(考试时间 100 分钟,共 110 分) 一.选择题: (本大题共 10 小题,每题 3 分,共 30 分) 1.A 2.B 3.B 4.A 5.C 6.D 7.B 8.C 9.D 10.D
2014--2015学年八年级上册期末考试数学试题及答案
期末考试参考答案及评分标准八年级数学二.解答题(计75分)16.(6分)解:原式=4(x2+2x+1)-(4x2-25)………………3分=4 x2+8x+4-4x2+25………………5分=8x+29;………………6分17. (6分)解:(1)如图………………3分(2)A′(1,3 ),B′(2,1),C′(-2 ,-2 );………………6分18. (7分)解:原式=[m+3(m-3) (m+3)+m-3(m-3) (m+3)]×(m-3)22m………………3分=2m(m-3) (m+3)×(m-3)22m………………5分= m-3m+3.………………6分当m= 12时,原式=(12-3)÷(12+3)=-52×27= -57.………………7分19.(7分)解:x(x+2)-3=(x-1)(x+2). ………………3分x2+2x-3= x2+x-2. ………………4分x=1. ………………5分检验:当x=1时,(x-1)(x+2)=0,所以x=1不是原分式方程的解. (6)所以,原分式方程无解. ………………7分20.(8分)(1)证明:∵C 是线段AB 的中点, ∴AC =BC ,……………1分 ∵CD 平分∠ACE ,∴∠ACD=∠DCE ,……………2分 ∵CE 平分∠BCD , ∴∠BCE=∠DCE ,∴∠ACD=∠BCE ,……………3分在△ACD 和△BCE 中,AC =BC ,∠ACD =∠BCE , DC =EC ,∴△ACD ≌△BCE (SAS ),……………5分(2)∵∠ACD =∠BCE =∠DCE ,且∠ACD +∠BCE +∠DCE =180°, ∴∠BCE =60°,……………6分 ∵△ACD ≌△BCE ,∴∠E =∠D =50°,……………7分∠E =180°-(∠E +∠BCE )= 180°-(50°+60°)=70°.……………8分 21.(8分)(1)2a -b ;………………2分(2)由图21-2可知,小正方形的面积=大正方形的面积-4个小长方形的面积, ∵大正方形的边长=2a +b =7,∴大正方形的面积=(2a +b )2=49, 又∵4个小长方形的面积之和=大长方形的面积=4a ×2b =8ab =8×3=24, ∴小正方形的面积=(2a -b )2==49-24=25;………………5分 (3)(2a +b )2-(2a -b )2=8ab . ………………8分 22.(10分)(第22题图1) (第22题图2) (第22题图C【方法I】证明(1)如图∵长方形ABCD,∴AB=DC=DE,∠BAD=∠BCD=∠BED=90°,……………1分在△ABF和△DEF中,∠BAD=∠BED=90°∠AFB=∠EFD,AB=DE,∴△ABF≌△EDF(AAS),……………2分∴BF=DF. ……………3分(2)∵△ABF≌△EDF,∴F A=FE,……………4分∴∠F AE=∠FEA,……………5分又∵∠AFE=∠BFD,且2∠AEF+∠AFE =2∠FBD+∠BFD =180°,∴∠AEF=∠FBD,∴AE∥BD,……………6分(3)∵长方形ABCD,∴AD=BC=BE,AB=CD=DE,BD=DB,∴△ABD≌△EDB(SSS),……………7分∴∠ABD=∠EDB,∴GB=GD,……………8分在△AFG和△EFG中,∠GAF=∠GEF=90°,F A=FE,FG=FG,∴△AFG≌△EFG(HL),……………9分∴∠AGF=∠EGF,∴GH垂直平分BD. ……………10分【方法II】证明(1)∵△BCD≌△BED,∴∠DBC=∠EBD……………1分又∵长方形ABCD,∴AD∥BC,∴∠ADB=∠DBC,……………2分∴∠EBD=∠ADB,∴FB=FD. ……………3分(2)∵长方形ABCD,∴AD=BC=BE,……………4分又∵FB=FD,∴F A=FE,∴∠F AE=∠FEA,……………5分又∵∠AFE=∠BFD,且2∠AEF+∠AFE =2∠FBD+∠BFD =180°,∴∠AEF=∠FBD,∴AE∥BD,……………6分(3)∵长方形ABCD ,∴AD =BC =BE ,AB =CD =DE ,BD =DB , ∴△ABD ≌△EDB ,……………8分 ∴∠ABD =∠EDB ,∴GB =GD , ……………9分 又∵FB =FD ,∴GF 是BD 的垂直平分线,即GH 垂直平分BD . ……………10分 23.(11分)证明(1)如图, ∵AB =AC ,∴∠ACB =∠ABC ,……………1分 ∵∠BAC =45°,∴∠ACB =∠ABC = 12 (180°-∠BAC )=12 (180°-45°)=67.5°.……………2分第(2)小题评分建议:本小题共9分,可以按以下两个模块评分(9分=6分+3分):模块1(6分): 通过证明Rt △BDC ≌Rt △ADF ,得到BC =AF ,可评 6分; 模块2(3分): 通过证明等腰直角三角形HEB ,得到HE =12 BC ,可评 3分.(2)连结HB ,∵AB =AC ,AE 平分∠BAC , ∴AE ⊥BC ,BE =CE , ∴∠CAE +∠C =90°, ∵BD ⊥AC ,∴∠CBD +∠C =90°,∴∠CAE =∠CBD ,……………4分∵BD ⊥AC ,D 为垂足, ∴∠DAB +∠DBA =90°, ∵∠DAB =45°, ∴∠DBA =45°,∴∠DBA =∠DAB ,∴DA =DB ,……………6分 在Rt △BDC 和Rt △ADF 中, ∵∠ADF =∠BDC =90°, DA =DB ,∠DAF =∠DBC =67.5°-45°=22.5°, ∴Rt △BDC ≌Rt △ADF (ASA), ∴BC =AF ,……………8分∵DA =DB ,点G 为AB 的中点, ∴DG 垂直平分AB , ∵点H 在DG 上,A∴HA =HB ,……………9分∴∠HAB =∠HBA = 12 ∠BAC=22.5°,∴∠BHE =∠HAB +∠HBA =45°, ∴∠HBE =∠ABC -∠ABH =67.5°-22.5°=45°, ∴∠BHE =∠HBE ,∴HE =BE = 12 BC ,……………10分∵AF =BC ,∴HE = 12 AF . ……………11分24.(12分)解:(1)依题意得,my (1+20%)= m +20 (1-10%)y .……………3分解得, m =250.∴m +20=270……………4分 答:2013年的总产量270吨.(2)依题意得,270 a -30=250a (1+14%);① ……………7分(1-10%)y a -30= y a -12 . ② ……………10分解①得 a=570.检验:当a=570时,a (a -30)≠0,所以a=570是原分式方程的解,且有实际意义. 答:该农场2012年有职工570人; ……………11分将a=570代入②式得,(1-10%)y 540 = y 570 -12.解得,y =5700.答:2012年的种植面积为5700亩. ……………12分。
___2014-2015学年八年级上学期期末考试数学试卷及答案
___2014-2015学年八年级上学期期末考试数学试卷及答案1.点P(3,1)所在的象限是第一象限。
2.大于2且小于3的数是2.3.不能由图1滑雪人经过旋转或平移得到的是第四个滑雪人。
4.这组数据中的众数和中位数分别是22个和21个。
5.洗衣机内水量y(升)与从注水开始所经历的时间x (分)之间的函数关系对应的图象大致为选项B。
6.a的值为-2或4.7.结论a。
ab。
b不一定正确。
8.a的值为-1.9.一次函数y=ax+(239/77)的解析式为y=(-9/7)x+(3/7)。
10.线段AC扫过的面积为16.11.关于x的一次函数y=min{2x。
x+1}可以表示为y=2x-2(x≤1)或y=x+1(x>1)。
21.1) 点B1的坐标为 (-1.-2)。
向右平移3个单位,即横坐标加3,向下平移4个单位,即纵坐标减4,得到点B1的坐标。
这次平移的距离为向右平移3个单位,向下平移4个单位。
2) 如图所示,将△ABC绕点O顺时针旋转90°后得到△A2B2C2,其中点O为坐标原点。
根据坐标轴上点的旋转公式,可得点A2的坐标为 (-4.2),点B2的坐标为 (-2.-4),点C2的坐标为 (0.-1)。
22.1) 设男装一天的租金为x元,女装一天的租金为y元,则根据题意可列出如下方程组:5x + 8y = 5106x + 10y = 630解方程组可得,x = 60,y = 45.因此男装一天的租金为60元,女装一天的租金为45元。
2) 原计划租用男装6套,女装17套,租金为6×60 +17×45 = 1020元。
现在租用男装6套,女装14套,歌手服装3套,租金为6×60 + 14×45 + 3×1.2×45 = 1023元。
因此在演出当天租用服装实际需支付租金1023元。
23.1) 由于BE是△ABC的高,所以△ABE与△ACB相似。
2014-2015年八年级上学期数学期末试题及答案
1.下面有4个汽车标志图案,其中不是轴对称图形的是A B C D2.要使分式15-x 有意义,则x 的取值范围是 A 、x ≠1B 、x >1C 、x <1D 、x ≠1- 3.下列运算正确的是A 、2+=a a aB 、632÷=a a aC 、222()+=+a b a bD 、6223)(b a ab = 4.将多项式x 3-xy 2分解因式,结果正确的是A 、•x (x 2-y 2)B 、2)(y x x -C 、x (x +y )2D 、x (x +y )(y x -)5.已知6=m x ,3=n x ,则n m x -2的值为A 、9B 、43C 、12D 、346.下列运算中正确的是A 、236x x x =B 、1-=++-y x yxC 、ba ba ba b ab a -+=-++22222 D 、yxy x =++117.下列各式中,相等关系一定成立的是A 、22)()(x y y x -=-B 、6)6)(6(2-=-+x x xC 、222)(y x y x +=+D 、)6)(2()2()2(6--=-+-x x x x x 8.若16)3(22+-+x m x 是完全平方式,则m 的值等于A 、1或5B 、5C 、7D 、7或1- 9.如图,AC ∥BD ,AD 与BC 相交于O ,∠A =45°,∠B =30°,那么∠AOB 等于A 、75°B 、60°C 、45°D 、30°10.如图,OP 平分∠AOB ,P A ⊥OA ,PB ⊥OB ,垂足分别为A ,B 。
下列结论中不一定成立的是 A 、P A =PBB 、PO 平分∠AOBC 、OA =OBD 、AB 垂直平分OP11.已知∠AOB =45°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O ,P 2三点构成的三角形是A 、直角三角形B 、等腰三角形C 、等边三角形D 、等腰直角三角形12.在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证 A 、2222)(b ab a b a ++=+B 、2222)(b ab a b a +-=-C 、))((22b a b a b a -+=-D 、222))(2(b ab a b a b a -+=-+Ⅱ(主观卷)96分二、填空题(每小题3分,共18分) 13.计算:21a a-=_________。
2014-2015年江西省八年级(上)期末数学试卷及答案
2014-2015学年江西省八年级(上)期末数学试卷一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)下列图形中,不是轴对称图形的是()A.B.C.D.2.(3分)在下列的计算中,正确的是()A.2x+3y=5xy B.(a+2)(a﹣2)=a2+4C.a2•ab=a3b D.(x﹣3)2=x2+6x+93.(3分)如果分式的值为0,则x的值是()A.1B.0C.﹣1D.±14.(3分)已知x2+kxy+64y2是一个完全平方式,则k的值是()A.8B.±8C.16D.±165.(3分)下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.1,2,6B.2,2,4C.1,2,3D.2,3,4 6.(3分)如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm二、填空题(本大题共8小题,每小题3分,共24分)7.(3分)分解因式:ax2﹣ay2=.8.(3分)若关于x的方程=+1无解,则a的值是.9.(3分)已知点A(x,y)关于x轴对称的点坐标是(x,﹣8),关于y轴对称的点坐标是(4,y),那么点A的坐标是.10.(3分)一个等腰三角形的两条边长分别为4cm和3cm,那么它的周长为cm.11.(3分)如图,AF=DC,BC∥EF,只需补充一个条件,就得△ABC≌△DEF.12.(3分)如图,映在镜子里的这个英文单词是.13.(3分)杭州到北京的铁路长1487千米.火车的原平均速度为x千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为.14.(3分)在△ADB和△ADC中,下列条件:①BD=DC,AB=AC;②∠B=∠C,∠BAD=∠CAD;③∠B=∠C,BD=DC;④∠ADB=∠ADC,BD=DC.能得出△ADB ≌△ADC的序号是.三、计算题(本大题共2大题,第15题每小题10分,第16题6分,共16分)15.(10分)(1)计算:(﹣1)2015﹣|﹣2|+(3.14﹣π)0+(2)因式分解:(x+2)(x+4)+x2﹣4.16.(6分)如图,求作一点P,使PA=PD,并且点P到∠BAC两边的距离相等(不写作法,但保留作图痕迹)四、解答题(本大题共3小题,每题8分,共24分)17.(8分)先化简,再求值:,其中x=2014.18.(8分)解方程:﹣=.19.(8分)如图,在△ABC中,∠C=2∠B,D是BC上的一点,且AD⊥AB,点E 是BD的中点,连接AE.(1)求证:∠AEC=∠C;(2)求证:BD=2AC.五、(本大题共2题,每题9分,共18分.)20.(9分)已知:如图,△ABC和△BDE都是等边三角形.(1)求证:AD=CE;(2)当AC⊥CE时,判断并证明AB与BE的数量关系.21.(9分)某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵20元,购买羽毛球拍的费用比购买乒乓球拍的2000元要多,多出的部分能购买25副乒乓球拍.(1)若每副乒乓球拍的价格为x元,请你用含x的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用;(2)若购买的两种球拍数一样,求x.六、(本大题共2题,每题10分,共20分.)22.(10分)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)请问:(1)该同学因式分解的结果是否彻底?(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.(2)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.23.(10分)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN 于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.2014-2015学年江西省八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)下列图形中,不是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.2.(3分)在下列的计算中,正确的是()A.2x+3y=5xy B.(a+2)(a﹣2)=a2+4C.a2•ab=a3b D.(x﹣3)2=x2+6x+9【解答】解:A、2x与3y不是同类项不能合并,B、应为(a+2)(a﹣2)=a2﹣4,故本选项错误;C、a2•ab=a3b,正确;D、应为(x﹣3)2=x2﹣6x+9,故本选项错误.故选:C.3.(3分)如果分式的值为0,则x的值是()A.1B.0C.﹣1D.±1【解答】解:由分式的值为零的条件得x2﹣1=0,2x+2≠0,由x2﹣1=0,得x=±1,由2x+2≠0,得x≠﹣1,综上,得x=1.故选:A.4.(3分)已知x2+kxy+64y2是一个完全平方式,则k的值是()A.8B.±8C.16D.±16【解答】解:根据题意,原式是一个完全平方式,∵64y2=(±8y)2,∴原式可化成=(x±8y)2,展开可得x2±16xy+64y2,∴kxy=±16xy,∴k=±16.故选:D.5.(3分)下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.1,2,6B.2,2,4C.1,2,3D.2,3,4【解答】解:A、1+2<6,不能组成三角形,故此选项错误;B、2+2=4,不能组成三角形,故此选项错误;C、1+2=3,不能组成三角形,故此选项错误;D、2+3>4,能组成三角形,故此选项正确;故选:D.6.(3分)如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm【解答】解:∵AB的垂直平分AB,∴AE=BE,BD=AD,∵AE=3cm,△ADC的周长为9cm,∴△ABC的周长是9+2×3=15cm,故选:C.二、填空题(本大题共8小题,每小题3分,共24分)7.(3分)分解因式:ax2﹣ay2=a(x+y)(x﹣y).【解答】解:ax2﹣ay2,=a(x2﹣y2),=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).8.(3分)若关于x的方程=+1无解,则a的值是2或1.【解答】解:x﹣2=0,解得:x=2.方程去分母,得:ax=4+x﹣2,即(a﹣1)x=2当a﹣1≠0时,把x=2代入方程得:2a=4+2﹣2,解得:a=2.当a﹣1=0,即a=1时,原方程无解.故答案是:2或1.9.(3分)已知点A(x,y)关于x轴对称的点坐标是(x,﹣8),关于y轴对称的点坐标是(4,y),那么点A的坐标是(﹣4,8).【解答】解:∵点A(x,y)关于x轴对称的点坐标是(x,﹣8),∴y=8,∵关于y轴对称的点坐标是(4,y),∴x=﹣4,∴点A的坐标是:(﹣4,8 ).故答案为:(﹣4,8).10.(3分)一个等腰三角形的两条边长分别为4cm和3cm,那么它的周长为10或11cm.【解答】解:①3cm是腰长时,三角形的三边分别为3cm、3cm、4cm,能组成三角形,周长=3+3+4=10(cm),②3cm是底边长时,三角形的三边分别为3cm、4cm、4cm,能组成三角形,周长=3+4+4=11(cm),综上所述,这个等腰三角形的周长是10或11cm.故答案为:10或11.11.(3分)如图,AF=DC,BC∥EF,只需补充一个条件BC=EF,就得△ABC ≌△DEF.【解答】解:补充条件BC=EF,∵AF=DC,∴AF+FC=CD+FC,即AC=DF,∵BC∥EF,∴∠EFC=∠BCF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).故答案为:BC=EF.12.(3分)如图,映在镜子里的这个英文单词是HAPPY.【解答】解:根据镜面对称的性质,题中所显示的图片与HAPPY成轴对称,所以映在镜子里的这个英文单词为HAPPY.13.(3分)杭州到北京的铁路长1487千米.火车的原平均速度为x千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为﹣=3.【解答】解:根据题意得:﹣=3;故答案为:﹣=3.14.(3分)在△ADB和△ADC中,下列条件:①BD=DC,AB=AC;②∠B=∠C,∠BAD=∠CAD;③∠B=∠C,BD=DC;④∠ADB=∠ADC,BD=DC.能得出△ADB ≌△ADC的序号是①②④.【解答】解:①在△ADB和△ADC中,AD=AD,若添加条件BD=DC,AB=AC,根据全等三角形的判定定理SSS可以证得△ADB≌△ADC;故本选项正确;②在△ADB和△ADC中,AD=AD,若添加条件∠B=∠C,∠BAD=∠CAD,根据全等三角形的判定定理AAS可以证得△ADB≌△ADC;故本选项正确;③在△ADB和△ADC中,AD=AD,若添加条件∠B=∠C,BD=DC,由SSA不可以证得△ADB≌△ADC;故本选项错误;④在△ADB和△ADC中,AD=AD,若添加条件∠ADB=∠ADC,BD=DC,根据全等三角形的判定定理SAS可以证得△ADB≌△ADC;故本选项正确;综上所述,符合题意的序号是①②④;故答案是:①②④.三、计算题(本大题共2大题,第15题每小题10分,第16题6分,共16分)15.(10分)(1)计算:(﹣1)2015﹣|﹣2|+(3.14﹣π)0+(2)因式分解:(x+2)(x+4)+x2﹣4.【解答】解:(1)原式=﹣1﹣2+1+9=7;(2)原因=(x+2)(x+4)+(x﹣2)(x+2)=2(x+1)(x+2).16.(6分)如图,求作一点P,使PA=PD,并且点P到∠BAC两边的距离相等(不写作法,但保留作图痕迹)【解答】解:如图所示:P点即为所求.四、解答题(本大题共3小题,每题8分,共24分)17.(8分)先化简,再求值:,其中x=2014.【解答】解:原式=÷=•=﹣x﹣1,当x=2014时,原式=﹣2014﹣1=﹣2015.18.(8分)解方程:﹣=.【解答】解:去分母得:x﹣1+2x+2=4,移项合并得:3x=3,解得:x=1,经检验x=1是增根,分式方程无解.19.(8分)如图,在△ABC中,∠C=2∠B,D是BC上的一点,且AD⊥AB,点E 是BD的中点,连接AE.(1)求证:∠AEC=∠C;(2)求证:BD=2AC.【解答】(1)证明:∵AD⊥AB,∴△ABD为直角三角形,又∵点E是BD的中点,∴AE=BD,又∵BE=BD,∴AE=BE,∴∠B=∠BAE,又∵∠AEC=∠B+∠BAE,∴∠AEC=∠B+∠B=2∠B,又∵∠C=2∠B,∴∠AEC=∠C.(2)证明:∵∠AEC=∠C,∴AE=AC,又∵AE=BD,∴BD=2AE,∴BD=2AC.五、(本大题共2题,每题9分,共18分.)20.(9分)已知:如图,△ABC和△BDE都是等边三角形.(1)求证:AD=CE;(2)当AC⊥CE时,判断并证明AB与BE的数量关系.【解答】证明:(1)∵△ABC和△BDE都是等边三角形,∴AB=CB,BD=BE,∠ABD=∠CBE=60°,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴AD=CE;(2)AB=2BE,证明:∵△ABC,△BED是等边三角形,∴∠ACB=∠DBE=60°,AB=BC,∵AC⊥CE,∴∠BCE=30°,∴∠BEC=90°,∴BC=2BE,∴AB=2BE.21.(9分)某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵20元,购买羽毛球拍的费用比购买乒乓球拍的2000元要多,多出的部分能购买25副乒乓球拍.(1)若每副乒乓球拍的价格为x元,请你用含x的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用;(2)若购买的两种球拍数一样,求x.【解答】解:(1)若每副乒乓球拍的价格为x元,则购买羽毛球拍花费:2000+25x,则购买这批乒乓球拍和羽毛球拍的总费用为:2000+2000+25x=4000+25x;(2)若购买的两种球拍数一样,根据题意得:=,解得:x1=40,x2=﹣40,经检验;x1=40,x2=﹣40都是原方程的解,但x2=﹣40不合题意,舍去,则x=40.六、(本大题共2题,每题10分,共20分.)22.(10分)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)请问:(1)该同学因式分解的结果是否彻底?不彻底(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.(2)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.【解答】解:(1)∵(x2﹣4x+4)2=(x﹣2)4,∴该同学因式分解的结果不彻底.(2)设x2﹣2x=y原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2﹣2x+1)2=(x﹣1)4.故答案为:不彻底.23.(10分)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN 于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.【解答】(1)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(2)证明:在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CE﹣CD=AD﹣BE;(3)DE=BE﹣AD.易证得△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CD﹣CE=BE﹣AD.。
2014-2015年人教版八年级数学上册期末试卷及答案解析
2014-2015年人教版八年级数学上册期末测试题带详细讲解一.选择题(共12小题,满分36分,每小题3分)1.(3分)(2012•宜昌)在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.2.(3分)(2011•绵阳)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根3.(3分)如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.A B=AC B.∠BAE=∠CAD C.B E=DC D.A D=DE4.(3分)(2012•凉山州)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°5.(3分)(2012•益阳)下列计算正确的是()A.2a+3b=5ab B.(x+2)2=x2+4 C.(ab3)2=ab6D.(﹣1)0=1 6.(3分)(2012•柳州)如图,给出了正方形ABCD的面积的四个表达式,其中错误的是()A.(x+a)(x+a)B.x2+a2+2ax C.(x﹣a)(x﹣a)D.(x+a)a+(x+a)x7.(3分)(2012•济宁)下列式子变形是因式分解的是()D.x2﹣5x+6=(x+2)(x+3)A.x2﹣5x+6=x(x﹣5)+6 B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+68.(3分)(2012•宜昌)若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠09.(3分)(2012•安徽)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x10.(3分)(2011•鸡西)下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A.①②③B.①③⑤C.②③④D.②④⑤11.(3分)(2012•本溪)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.12.(3分)(2011•西藏)如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A.A B=AC B.D B=DC C.∠ADB=∠ADC D.∠B=∠C二.填空题(共5小题,满分20分,每小题4分)13.(4分)(2012•潍坊)分解因式:x3﹣4x2﹣12x=_________.14.(4分)(2012•攀枝花)若分式方程:有增根,则k=_________.15.(4分)(2011•昭通)如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是_________.(只需填一个即可)16.(4分)(2012•白银)如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=_________度.17.(4分)(2012•佛山)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为_________.三.解答题(共7小题,满分64分)18.(6分)先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.19.(6分)(2009•漳州)给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.20.(8分)(2012•咸宁)解方程:.21.(10分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.22.(10分)(2012•武汉)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.23.(12分)(2012•百色)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?24.(12分)(2012•凉山州)在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC 边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值:_________.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.(3分)(2012•宜昌)在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.考点:轴对称图形.分析:据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解答:解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.点评:本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)(2011•绵阳)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根考点:三角形的稳定性.专题:存在型.分析:根据三角形的稳定性进行解答即可.解答:解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,故这种做法根据的是三角形的稳定性.故选B.点评:本题考查的是三角形的稳定性在实际生活中的应用,比较简单.3.(3分)如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.A B=AC B.∠BAE=∠CAD C.B E=DC D.A D=DE考点:全等三角形的性质.分析:根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.解答:解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.点评:本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.4.(3分)(2012•凉山州)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°考点:等边三角形的性质;多边形内角与外角.专题:探究型.分析:本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.解答:解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选C.点评:本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题5.(3分)(2012•益阳)下列计算正确的是()A.2a+3b=5ab B.(x+2)2=x2+4 C.(ab3)2=ab6D.(﹣1)0=1考点:完全平方公式;合并同类项;幂的乘方与积的乘方;零指数幂.分析:A、不是同类项,不能合并;B、按完全平方公式展开错误,掉了两数积的两倍;C、按积的乘方运算展开错误;D、任何不为0的数的0次幂都等于1.解答:解:A、不是同类项,不能合并.故错误;B、(x+2)2=x2+4x+4.故错误;C、(ab3)2=a2b6.故错误;D、(﹣1)0=1.故正确.故选D.点评:此题考查了整式的有关运算公式和性质,属基础题.6.(3分)(2012•柳州)如图,给出了正方形ABCD的面积的四个表达式,其中错误的是()A.(x+a)(x+a)B.x2+a2+2ax C.(x﹣a)(x﹣a)D.(x+a)a+(x+a)x考点:整式的混合运算.分析:根据正方形的面积公式,以及分割法,可求正方形的面积,进而可排除错误的表达式.解答:解:根据图可知,S正方形=(x+a)2=x2+2ax+a2,故选C.点评:本题考查了整式的混合运算、正方形面积,解题的关键是注意完全平方公式的掌握.7.(3分)(2012•济宁)下列式子变形是因式分解的是()D.x2﹣5x+6=(x+2)(x+3)A.x2﹣5x+6=x(x﹣5)+6 B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+6考点:因式分解的意义.分析:根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断.解答:解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;B、x2﹣5x+6=(x﹣2)(x﹣3)是整式积的形式,故是分解因式,故本选项正确;C、(x﹣2)(x﹣3)=x2﹣5x+6是整式的乘法,故不是分解因式,故本选项错误;D、x2﹣5x+6=(x﹣2)(x﹣3),故本选项错误.故选B.点评:本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.8.(3分)(2012•宜昌)若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠0考点:分式有意义的条件.专题:计算题.分析:根据分式有意义的条件进行解答.解答:解:∵分式有意义,∴a+1≠0,∴a≠﹣1.故选C.点评:本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;9.(3分)(2012•安徽)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x考点:分式的加减法.分析:将分母化为同分母,通分,再将分子因式分解,约分.解答:解:=﹣===x,故选D.点评:本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.10.(3分)(2011•鸡西)下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A.①②③B.①③⑤C.②③④D.②④⑤考点:负整数指数幂;有理数的混合运算;合并同类项;同底数幂的乘法;零指数幂.专题:计算题.分析:分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可.解答:解:①当a=0时不成立,故本小题错误;②符合同底数幂的乘法法则,故本小题正确;③2﹣2=,根据负整数指数幂的定义a﹣p=(a≠0,p为正整数),故本小题错误;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0符合有理数混合运算的法则,故本小题正确;⑤x2+x2=2x2,符合合并同类项的法则,本小题正确.故选D.点评:本题考查的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则,熟知以上知识是解答此题的关键.11.(3分)(2012•本溪)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.考点:由实际问题抽象出分式方程.分析:根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.解答:解:设乘公交车平均每小时走x千米,根据题意可列方程为:=+,故选:D.点评:此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转化为列代数式的问题.12.(3分)(2011•西藏)如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A.A B=AC B.D B=DC C.∠ADB=∠ADC D.∠B=∠C考点:全等三角形的判定.分析:先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证,排除错误的选项.本题中C、AB=AC与∠1=∠2、AD=AD组成了SSA是不能由此判定三角形全等的.解答:解:A、∵AB=AC,∴,∴△ABD≌△ACD(SAS);故此选项正确;B、当DB=DC时,AD=AD,∠1=∠2,此时两边对应相等,但不是夹角对应相等,故此选项错误;C、∵∠ADB=∠ADC,∴,∴△ABD≌△ACD(ASA);故此选项正确;D、∵∠B=∠C,∴,∴△ABD≌△ACD(AAS);故此选项正确.故选:B.点评:本题考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,但SSA无法证明三角形全等.二.填空题(共5小题,满分20分,每小题4分)13.(4分)(2012•潍坊)分解因式:x3﹣4x2﹣12x=x(x+2)(x﹣6).考点:因式分解-十字相乘法等;因式分解-提公因式法.分析:首先提取公因式x,然后利用十字相乘法求解即可求得答案,注意分解要彻底.解答:解:x3﹣4x2﹣12x=x(x2﹣4x﹣12)=x(x+2)(x﹣6).故答案为:x(x+2)(x﹣6).点评:此题考查了提公因式法、十字相乘法分解因式的知识.此题比较简单,注意因式分解的步骤:先提公因式,再利用其它方法分解,注意分解要彻底.14.(4分)(2012•攀枝花)若分式方程:有增根,则k=1或2.考点:分式方程的增根.专题:计算题.分析:把k当作已知数求出x=,根据分式方程有增根得出x﹣2=0,2﹣x=0,求出x=2,得出方程=2,求出k的值即可.解答:解:∵,去分母得:2(x﹣2)+1﹣kx=﹣1,整理得:(2﹣k)x=2,当2﹣k=0时,此方程无解,∵分式方程有增根,∴x﹣2=0,2﹣x=0,解得:x=2,把x=2代入(2﹣k)x=2得:k=1.故答案为:1或2.点评:本题考查了对分式方程的增根的理解和运用,把分式方程变成整式方程后,求出整式方程的解,若代入分式方程的分母恰好等于0,则此数是分式方程的增根,即不是分式方程的根,题目比较典型,是一道比较好的题目.15.(4分)(2011•昭通)如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是∠A=∠F或AC∥EF或BC=DE(答案不唯一).(只需填一个即可)考点:全等三角形的判定.专题:开放型.分析:要判定△ABC≌△FDE,已知AC=FE,AD=BF,则AB=CF,具备了两组边对应相等,故添加∠A=∠F,利用SAS可证全等.(也可添加其它条件).解答:解:增加一个条件:∠A=∠F,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等(答案不唯一).故答案为:∠A=∠F或AC∥EF或BC=DE(答案不唯一).点评:本题考查了全等三角形的判定;判定方法有ASA、AAS、SAS、SSS等,在选择时要结合其它已知在图形上的位置进行选取.16.(4分)(2012•白银)如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=50度.考点:三角形的外角性质;等腰三角形的性质.分析:根据等角对等边的性质可得∠A=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:∵AC=BC,∴∠A=∠B,∵∠A+∠B=∠ACE,∴∠A=∠ACE=×100°=50°.故答案为:50.点评:本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,等边对等角的性质,是基础题,熟记性质并准确识图是解题的关键.17.(4分)(2012•佛山)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为2m+4.考点:平方差公式的几何背景.分析:根据拼成的矩形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.解答:解:设拼成的矩形的另一边长为x,则4x=(m+4)2﹣m2=(m+4+m)(m+4﹣m),解得x=2m+4.故答案为:2m+4.点评:本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.三.解答题(共7小题,满分64分)18.(6分)先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.考点:整式的加减—化简求值.分析:首先根据整式的加减运算法则将原式化简,然后把给定的值代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.解答:解:原式=15a2b﹣5ab2﹣3ab2﹣15a2b=﹣8ab2,当a=,b=﹣时,原式=﹣8××=﹣.点评:熟练地进行整式的加减运算,并能运用加减运算进行整式的化简求值.19.(6分)(2009•漳州)给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.考点:提公因式法与公式法的综合运用;整式的加减.专题:开放型.分析:本题考查整式的加法运算,找出同类项,然后只要合并同类项就可以了.解答:解:情况一:x2+2x﹣1+x2+4x+1=x2+6x=x(x+6).情况二:x2+2x﹣1+x2﹣2x=x2﹣1=(x+1)(x﹣1).情况三:x2+4x+1+x2﹣2x=x2+2x+1=(x+1)2.点评:本题考查了提公因式法,公式法分解因式,整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.熟记公式结构是分解因式的关键.平方差公式:a2﹣b2=(a+b)(a﹣b);完全平方公式:a2±2ab+b2=(a±b)2.20.(8分)(2012•咸宁)解方程:.考点:解分式方程.分析:观察可得最简公分母是(x+2)(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:原方程即:.(1分)方程两边同时乘以(x+2)(x﹣2),得x(x+2)﹣(x+2)(x﹣2)=8.(4分)化简,得2x+4=8.解得:x=2.(7分)检验:x=2时,(x+2)(x﹣2)=0,即x=2不是原分式方程的解,则原分式方程无解.(8分)点评:此题考查了分式方程的求解方法.此题比较简单,注意转化思想的应用,注意解分式方程一定要验根.21.(10分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.考点:等腰直角三角形;全等三角形的性质;全等三角形的判定.分析:(1)要证AD=CE,只需证明△ABD≌△CBE,由于△ABC和△DBE均为等腰直角三角形,所以易证得结论.(2)延长AD,根据(1)的结论,易证∠AFC=∠ABC=90°,所以AD⊥CE.解答:解:(1)∵△ABC和△DBE均为等腰直角三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=90°,∴∠ABC﹣∠DBC=∠DBE﹣∠DBC,即∠ABD=∠CBE,∴△ABD≌△CBE,∴AD=CE.(2)垂直.延长AD分别交BC和CE于G和F,∵△ABD≌△CBE,∴∠BAD=∠BCE,∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,又∵∠BGA=∠CGF,∴∠AFC=∠ABC=90°,∴AD⊥CE.点评:利用等腰三角形的性质,可以证得线段和角相等,为证明全等和相似奠定基础,从而进行进一步的证明.22.(10分)(2012•武汉)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.考点:全等三角形的判定与性质.专题:证明题.分析:求出∠DCE=∠ACB,根据SAS证△DCE≌△ACB,根据全等三角形的性质即可推出答案.解答:证明:∵∠DCA=∠ECB,∴∠DCA+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,∵在△DCE和△ACB中,∴△DCE≌△ACB,∴DE=AB.点评:本题考查了全等三角形的性质和判定的应用,主要考查学生能否运用全等三角形的性质和判定进行推理,题目比较典型,难度适中.23.(12分)(2012•百色)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?考点:分式方程的应用.专题:应用题.分析:(1)设这项工程的规定时间是x天,根据甲、乙队先合做15天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可.(2)先计算甲、乙合作需要的时间,然后计算费用即可.解答:解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=18(天),则该工程施工费用是:18×(6500+3500)=180000(元).答:该工程的费用为180000元.点评:本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.24.(12分)(2012•凉山州)在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值:8.考点:轴对称-最短路线问题.分析:(1)根据提供材料DE不变,只要求出DP+PE的最小值即可,作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求;(2)利用中位线性质以及勾股定理得出D′E的值,即可得出答案.解答:解:(1)作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求;(2)∵点D、E分别是AB、AC边的中点,∴DE为△ABC中位线,∵BC=6,BC边上的高为4,∴DE=3,DD′=4,∴D′E===5,∴△PDE周长的最小值为:DE+D′E=3+5=8,故答案为:8.点评:此题主要考查了利用轴对称求最短路径以及三角形中位线的知识,根据已知得出要求△PDE周长的最小值,求出DP+PE的最小值即可是解题关键.2013八年级上学期期末数学试卷及答案二一、选择题(每小题3分,共24分)1. 的值等于()A.4 B.-4 C.±4 D.±22.下列四个点中,在正比例函数的图象上的点是()A.(2,5) B.(5,2) C.(2,-5) D.(5,―2)3.估算的值是()A.在5与6之间B.在6与7之间 C.在7与8之间 D.在8与9之间4.下列算式中错误的是()A. B.C.D.5. 下列说法中正确的是()A.带根号的数是无理数 B.无理数不能在数轴上表示出来C.无理数是无限小数 D.无限小数是无理数6.如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m处,旗杆折断之前的高度是()A.5m B. 12m C.13m D.18m7. 已知一个两位数,十位上的数字x比个位上的数字y大1,若颠倒个位与十位数字的位置,得到新数比原数小9,求这个两位数列出的方程组正确的是()座位号(考号末两位)A. B.C.D.8. 点A(3,y1,),B(-2,y2)都在直线上,则y1与y2的大小关系是()A.y1>y2 B.y2>y1 C.y1=y2 D.不能确定二、填空题(每小题3分,共24分)9. 计算:.10.若点A在第二象限,且A点到x轴的距离为3,到y轴的距离为4,则点A的坐标为.11.写出一个解是的二元一次方程组.12.矩形两条对角线的夹角是60°,若矩形较短的边长为4cm,则对角线长.13.一个正多边形的每一个外角都是36°,则这个多边形的边数是.14.等腰梯形ABCD中,AD=2,BC=4,高DF=2,则腰CD长是.15.已知函数的图象不经过第三象限则 0, 0.16.如图,已知A地在B地正南方3千米处,甲、乙两人同时分别从A、B两地向正北方向匀速直行,他们与A地的距离S(千米)与所行时间t(小时)之间的函数关系图象如右图所示的AC和BD给出,当他们行走3小时后,他们之间的距离为千米.三、解答题(每小题5分,共15分)17.(1)计算(2)化简(3)解方程组四、解答题(每小题6分,共12分)18.如图:在每个小正方形的边长为1个单位长度的方格纸中,有一个△ABC和点O,△ABC的各顶点和O点均与小正方形的顶点重合.(1)在方格纸中,将△ABC向下平移5个单位长度得△A1B1C1,请画出△A1B1C1.(2)在方格纸中,将△ABC绕点O顺时针旋转180°得到△A2B2C2,请画出△A2B2C2.19.某校教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行了调查统计,并绘制了下表零花钱数额/元 5 10 15 20学生人数10 15 20 5(1)求出这50名学生每人一周内的零花钱数额的平均数、众数和中位数(2)你认为(1)中的哪个数据代表这50名学生每人一周零花钱数额的一般水平较为合适?简要说明理由.五、解答题(20题6分,21题7分,共13分)20.已知点A(2,2),B(-4,2),C(-2,-1),D(4,-1).在如图所示的平面直角坐标系中描出点A、B、C、D,然后依次连结A、B、C、D得到四边形ABCD,试判断四边形ABCD的形状,并说明理由.21.阅读下列材料:如图(1)在四边形ABCD中,若AB=AD,BC=CD,则把这样的四边形称之为“筝形”解答问题:如图(2)将正方形ABCD绕着点B逆时针旋转一定角度后,得到正方形GBEF,边AD与EF相交于点H.请你判断四边形ABEH是否是“筝形”,说明你的理由.六、(每小题10分,共20分)22.如图所示,已知矩形ABCD中,AD=8c m,AB=6cm,对角线AC的垂直平分线交AD于E,交BC于F.(1)试判断四边形AFCE是怎样的四边形?(2)求出四边形AFCE的周长.23.某景点的门票价格规定如下表购票人数1—50人51—100人100人以上每人门票价12元10元8元某校八年(1)(2)两班共102人去游览该景点,其中(1)班不足50人,(2)班多于50人,如果两班都以班为单位分别购票,则一共付款1118元(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?七、(12分)24. 我国是世界上严重缺水的国家之一,为了增强居民的节水意识,某自来水公司对居民用水采取以户为单位分段计费办法收费;即每月用水10吨以内(包括10吨)的用户,每吨水收费a元,每月用水超过10吨的部分,按每吨b元(b>a)收费,设一户居民月用水x(吨),应收水费y(元),y与x之间的函数关系如图所示.(1)分段写出y与x的函数关系式.(2)某户居民上月用水8吨,应收水费多少元?(3)已知居民甲上月比居民乙多用水4吨,两家一共交水费46元,求他们上月分别用水多少吨?八年级数学参考答案四、18略(1)3分(2)3分19(1)平均数是12元(2分)众数是15元(1分)中位数是12.5元(1分)(2)用众数代表这50名学生一周零花钱数额的一般水平较为合适,因为15元出现次数最多,所以能代表一周零花钱的一般水平(2分)五、20画出图形(3分)说明是平行四边形(3分)21可以判断ABEH是筝形,证△HAB≌△HEB(7分)六、22(1)菱形(5分)(2)周长是25cm(5分)23(1)设一班学生x名,二班学生y名根据题意(5分)解得(2分)答(1分)(2)两班合并一起购团体票1118-102×8=302 (2分)∴可节省302元故两家用水均超过10吨(1分)设甲、乙两户上月用水分别为m、n吨则(3分)解得(2分)∴甲用水16吨,乙用水12吨。
2014---2015年八年级数学期末试卷及答案
2014—2015学年上期期末学业水平测试八年级数学试题卷注意: 本试卷分试题卷和答题卡两部分, 考试时间90分钟, 满分100分, 学生应先阅读答题卡上的文字信息, 然后在答题卡上用蓝色笔或者黑色笔作答, 在试题卷上作答无效, 交卷时只交答题卡。
题号 一 二 三 总分分数一、选择题(每小题3分, 共24分)1. 的算术平方 根是( C ) 2、A. 4 B. 2C. D.在﹣2, 0, 3,A . ﹣2B . 0C . 3D .这四个数中, 最大的数是( C )3.如图, 直线a ∥b, AC ⊥AB, AC 交直线b 于点C, ∠1=60°, 则∠2的度数是( D )A . 50°B . 45°C . 35°D . 30°4.一次函数y=﹣2x+1的图象不经过下列哪个象限( C )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5、若方程mA . 4,2B . 2,4C . ﹣4, ﹣2D . ﹣2, ﹣4阅卷人 得分………试…………题……………卷………………不…………………装………………订…………位: 度), 下列说法错误的是( C )7、下列四组线段A . 4, 5, 6B . 1.5, 2, 2.5C . 2, 3, 4D . 1, , 3中, 可以构成直角三角形的是( B )8、图象中所反映的过程是: 张强从家跑步去体育场, 在那里锻炼了一阵后, 又去早餐店吃早餐, 然后散步走回家.其中x 表示时间, y 表示张强离家的距离. 根据图象提供的信息, 以下四个说法错误的是( C )A . 体育场离张强家2.5千米B . 张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时选择题(每小题3分, 共21分)9、计算: 1 。
10、命题“相等的角是对顶角”是假命题(填“真”或“假”)。
若+(b+2)2=0, 则点M(a, b)关于y轴的对称点的坐标为(﹣3, ﹣2)。
南昌市八年级(上)期末数学试卷含答案
八年级(上)期末数学试卷一、选择题(本大题共8小题,共24.0分)1.下列运算正确的是A. B. C. D.2.分式的值为0,则x的值是A. B. C. D.3.在平面直角坐标系中,点关于y轴对称的点B的坐标为A. B. C. D.4.如图,已知,则不一定能使 ≌ 的条件是A.B.C.D.5.把多项式分解因式,结果正确的是A. B. C. D.6.已知,P为内一定点,OM上有一点A,ON上有一点B,当的周长取最小值时,的度数是A. B. C. D.7.化简的结果是A. B. C. D.8.如图,中,CD是AB边上的高,的平分线AF交CD于E,则必为A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰直角三角形二、填空题(本大题共6小题,共18.0分)9.若式子有意义,则x的取值范围是______.10.把一块直尺与一块三角板如图放置,若,则的度数是______.11.若,,则______.12.若的展开式中只含有这一项,则a的值是______.13.如图,在中,,当时,则的度数是______.14.在平面直角坐标系中,点、、,当与全等时,则点D的坐标可以是______.三、解答题(本大题共8小题,共58.0分)15.计算:.分解因式:.16.求值:,其中.解方程:.17.已知,,,.求证:;;求的值.18.将图1中的矩形ABCD沿对角线AC剪开,再把沿着AD方向平移,得到图2中的.在图2中,除与全等外,请写出其他2组全等三角形;______;______;请选择中的一组全等三角形加以证明.19.在一个含有多个字母的式子中,若任意交换两个字母的位置,式子的值不变,则这样的式子就叫做对称式.例如:,abc等都是对称式.在下列式子中,属于对称式的序号是______;.若,当,,求对称式的值.20.某商场第1次用600元购进2B铅笔若干支,第2次用800元又购进该款铅笔,但这次每支的进价是第1次进价的八折,且购进数量比第1次多了100支.求第1次每支2B铅笔的进价;若要求这两次购进的2B铅笔按同一价格全部销售完毕后获利不低于600元,问每支2B铅笔的售价至少是多少元?21.如图,AD是的角平分线,点F、E分别在边AC、AB上,连接DE、DF,且.求证:;当时,求证:.22.如图,在等边中,线段AM为BC边上的中线.动点D在直线AM上时,以CD为一边在CD的下方作等边,连结BE.填空:______度;若点D在线段AM上时,求证: ≌ ;当动点D在直线AM上时,设直线BE与直线AM的交点为O,试判断是否为定值?并说明理由.答案和解析1.【答案】C【解析】解:A、,选项A不符合题意;B、,选项B不符合题意;C、,选项C符合题意;D、,选项D不符合题意.故选:C.根据幂的乘方和积的乘方的运算方法,合并同类项的方法,以及同底数幂的乘法的运算方法,逐项判断即可.此题主要考查了幂的乘方和积的乘方的运算方法,合并同类项的方法,以及同底数幂的乘法的运算方法,要熟练掌握.2.【答案】A【解析】解:由式的值为0,得,且.解得.故选:A.分式的值为0的条件是:分子为0;分母不为两个条件需同时具备,缺一不可.据此可以解答本题.此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.3.【答案】B【解析】解:点关于y轴对称的点B的坐标为,故选:B.根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.4.【答案】D【解析】解:A、添加可利用AAS定理判定 ≌ ,故此选项不合题意;B、添加可利用ASA定理判定 ≌ ,故此选项不合题意;C、添加可利用SAS定理判定 ≌ ,故此选项不合题意;D、添加不能判定 ≌ ,故此选项符合题意;故选:D.根据全等三角形的判定定理SSS、SAS、ASA、AAS、HL分别进行分析即可.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.【答案】A【解析】解:原式,故选:A.原式提取公因式即可.此题考查了因式分解提公因式法,熟练掌握提取公因式的方法是解本题的关键.6.【答案】B【解析】解:分别作点P关于OM、ON的对称点、,连接、、连接,分别交OM、ON于点A、B,连接PA、PB,此时周长的最小值等于.由轴对称性质可得,,,,,,又,,.故选:B.设点P关于OM、ON对称点分别为、,当点A、B在上时,周长为,此时周长最小.根据轴对称的性质,可求出的度数.本题主要考查了轴对称--最短路线问题,找点A与B的位置是关键,需灵活运用轴对称性解题.7.【答案】B【解析】解:.故选B.本题考查的是分式的除法运算,做除法运算时要转化为乘法的运算,注意先把分子、分母能因式分解的先分解,然后约分.分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.8.【答案】B【解析】解:如图,是的平分线,,,CD是AB边上的高,,,,对顶角相等,,,是等腰三角形.故选B.根据角平分线的定义求出,再根据等角的余角相等求出,根据对顶角相等可得,然后求出,再利用等角对等边可得,从而得解.本题考查了等腰三角形的判定,角平分线的定义,直角三角形两锐角互余的性质,等角的余角相等的性质,利用阿拉伯数字加弧线表示角更形象.9.【答案】【解析】解:式子有意义,的取值范围是:,解得:.故答案为:.直接利用分式有意义即分母不为零,进而得出答案.此题主要考查了分式有意义的条件,正确把握定义是解题关键.10.【答案】【解析】解:,,,直尺的两边互相平行,.故答案为.根据直角三角形两锐角互余求出,再根据邻补角定义求出,然后根据两直线平行,同位角相等解答即可.本题考查了平行线的性质,直角三角形两锐角互余的性质,邻补角的定义,准确识图是解题的关键.11.【答案】6【解析】解:,,.故答案为:6.首先提取公因式a,进而将已知代入求出即可.此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.12.【答案】2【解析】解:的展开式中只含有这一项,中,,故答案为:2.首先利用单项式乘以多项式整理得出进而根据展开式中只含有这一项得出,求出即可.此题主要考查了单项式乘以多项式以及解一元一次方程,能正确进行去括号合并同类项是解题关键.13.【答案】【解析】解:,,,,,,故答案为.由在中,,,根据等腰三角形的性质,即可求得的度数,接着求得的度数,然后根据三角形内角和定理可得的度数.此题考查了等腰三角形的性质,三角形外角的性质以及三角形内角和定理.此题难度不大,注意掌握数形结合思想的应用.14.【答案】或或【解析】解:与全等,如图所示:点D坐标分别为:或或.故答案为:或或.根据三角形全等的判定分三种情况解答即可.此题考查三角形全等的判定,关键是根据三角形的全等判定解答.15.【答案】解:原式;原式.【解析】先根据幂的乘方和积的乘方、单项式乘以单项式的运算法则计算,再合并同类项即可;先利用完全平方公式去括号合并同类项,进而利用完全平方公式分解因式即可.此题主要考查了整式的运算和完全平方公式分解因式.解决此类题目的关键是运用幂的乘方和积的乘方、单项式乘以单项式的运算法则去括号,及熟练运用合并同类项的法则.能够正确应用完全平方公式.16.【答案】解:原式,当时,原式.方程两边同乘,得,解得,检验:当时,,是原方程的解.【解析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得;根据解分式方程的步骤依次计算可得.本题主要考查分式的混合运算与解分式方程,解题的关键是掌握分式的混合运算顺序和运算法则,注意解分式方程需要检验.17.【答案】解:证:,即..,.即..由知,.则有:,.【解析】根据同底数幂的乘法法则据此即可证得;;由的结论解答即可.本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算性质是解答本题的关键.18.【答案】 ≌ ≌【解析】解:由图可得, ≌ ; ≌ ;故答案为: ≌ ; ≌ ;选 ≌ ,证明如下:由平移性质,得,由矩形性质,得,,≌ .依据图形即可得到2组全等三角形: ≌ ; ≌ ;依据平移的性质以及矩形的性质,即可得到判定全等三角形的条件.本题主要考查了全等三角形的判定以及矩形的性质的运用,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具,在判定三角形全等时,关键是选择恰当的判定条件.19.【答案】【解析】解:属于对称式的是,故答案为:;由等式,,,.根据对称式的概念求解可得;先根据等式得出,,再由计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.20.【答案】解:设第1次每支2B铅笔的进价为x元,则第2次的进价为元,依题意,得,解得:.经检验,是原方程的解,且适合题意.答:第1次每支2B铅笔的进价为4元.支,支设每支2B铅笔的售价为y元,依题意,得:,解得:.答:每支2B铅笔的售价至少是5元.【解析】设第1次每支2B铅笔的进价为x元,则第2次的进价为元,根据数量总价单价结合第二次比第一次多购进100支,即可得出关于x的分式方程,解之经检验后即可得出结论;根据数量总价单价可求出第一次购进2B铅笔的数量,用其加100可求出第二次购进数量,设每支2B铅笔的售价为y元,根据利润单价数量进价结合总利润不低于600元,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:找准等量关系,正确列出分式方程;根据各数量之间的关系,正确列出一元一次不等式.21.【答案】证明:过点D作于M,于N,如图1所示:,,,又平分,,又,,,在和中,≌;在AB上截取,连接DG.如图2所示,平分,,在和中.,≌ .,又,,又,,又.【解析】由角平分线的性质得,角角边证明 ≌ ,由全等三角形的性质求得;由边角边证 ≌ ,其性质得,,因,得,由等腰三角形等边对等角和三角形的外角定理得,等量代换得.本题综合考查了角平线的定义及性质,全等三角形的判定与性质,等腰三角形的性质和三角形的外角定理等相关知识点,重点掌握全等三角形的判定与性质,角平分线的性质,难点是作辅助线构建全等三角形和等腰三角形.22.【答案】与都是等边三角形,,.在和中,≌ ;是定值,,理由如下:当点D在线段AM上时,如图1,由可知 ≌ ,则,又,是等边三角形,线段AM为BC边上的中线平分,即.当点D在线段AM的延长线上时,如图2,与都是等边三角形,,在和中≌,同理可得:,.当点D在线段MA的延长线上时,与都是等边三角形,,在和中≌同理可得:,,.综上,当动点D在直线AM上时,是定值,.【解析】解:是等边三角形,.线段AM为BC边上的中线,.故答案为:30;见答案见答案【分析】根据等边三角形的性质可以直接得出结论;根据等边三角形的性质就可以得出,,,由等式的性质就可以,根据SAS就可以得出 ≌ ;分情况讨论:当点D在线段AM上时,如图1,由可知 ≌ ,就可以求出结论;当点D在线段AM的延长线上时,如图2,可以得出 ≌ 而有而得出结论;当点D在线段MA的延长线上时,如图3,通过得出 ≌ 同样可以得出结论.本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.。
2014-2015学年八年级(上)期末数学试卷
2014-2015学年八年级(上)期末数学试卷参考答案与试题解析一、选择题:(本题共10小题,每题3分,共30分)1.(3分)在直角坐标系中,下列各点位于第三象限的是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)考点:点的坐标.分析:根据点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得答案.解答:解:A、点在第一象限,故A错误;B、点在第二象限,故B错误;C、点在第三象限,故C正确;D、点在第四象限,故D错误;故选:C.点评:本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(3分)下列各个图形中,哪一个图形中AD是△ABC中BC边上的高()A.B.C.D.考点:三角形的角平分线、中线和高.分析:三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段即为该边上的高线.解答:解:过点A作直线BC的垂线段,即画BC边上的高AD,所以画法正确的是D.故选D.点评:考查了三角形的高的概念,能够正确作三角形一边上的高.3.(3分)下图中的轴对称图形有()A.(1),(2)B.(1),(4)C.(2),(3)D.(3),(4)考点:轴对称图形.数学是一种别具匠心的艺术。
——哈尔莫斯分析:根据轴对称图形的概念求解,看图形是不是关于直线对称.解答:解:(1)是轴对称图形;(2)、(3)是中心对称图形;(4)是轴对称图形.故选B.点评:掌握好轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.4.(3分)在△ACB中,如果∠C=∠A﹣∠B,那么此三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.不能确定考点:三角形内角和定理.分析:根据三角形的内角和等于180°列方程求出∠A=90°,然后判断即可.解答:解:由三角形的内角和定理得,∠A+∠B+∠C=180°,∵∠C=∠A﹣∠B,∴∠B+∠C=∠A,∴∠A+∠A=180°,解得∠A=90°,所以,此三角形是直角三角形.故选A.点评:本题考查了三角形的内角和定理,熟记定理并列方程求出∠A=90°是解题的关键.5.(3分)正比例函数y=kx的图象经过点(1,﹣3),那么它一定经过的点是()A.(3,﹣1)B.(,﹣1)C.(﹣3,1)D.(,﹣1)考点:一次函数图象上点的坐标特征.专题:计算题.分析:先把(1,﹣3)代入y=kx求出k得到一次函数解析式为y=﹣3x,在分别计算出自变量为3、、﹣3、﹣所对应的函数值,然后根据一次函数图象上点的坐标特征进行判断.解答:解:把(1,﹣3)代入y=kx得k=﹣3,所以一次函数解析式为y=﹣3x,当x=3时,y=﹣3x=﹣9;当x=时,y=﹣3x=﹣1;当x=﹣3时,y=﹣3x=9;当x=﹣时,y=﹣3x=1,所以点(,﹣1)在一次函数y=﹣3x的图象上.故选B.点评:本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.数学是一种别具匠心的艺术。
2014-2015第一学期期末八年级答案
2014-2015学年度第一学期期末学业水平检测八年级数学参考答案及评分标准一、选择题:(本题满分24分,共有8道小题,每小题3分)二、填空题:(本题满分24分,共有8道小题,每小题3分)9. 7 10. 10 11. 12. 34° 13. 14. 15. 84 16.三、解答下列各题:(本题满分72分,共有8道小题)17.解方程组(本小题满分10分,共有两道小题,每小题5分)(1) (2) 18.(本小题满分6分)解:(1)建立直角坐标系正确; ………3分(2)A (-2,5),B (-2,1),D (2,5)………6分19.(本小题满分8分)解:设滑道AC 的长为x m ,则AB 的长为x m ,AE 的长为(x -1 )m .………1分在Rt △ACE 中, ∵∠AEC =90°∴AE 2+EC 2= AC 2(勾股定理) ………4分 ∵CE =3∴(x -1)2+32=x 2解得,x =5 ………7分 答:滑道AC 的长是5 m . ………8分20.(本小题满分8分)本题给出两种评分标准(每步的理由不写或不正确酌情扣1-3分):评分标准(一)证明:(1)平行的线有:AB ∥CD ,EC ∥BF . ………2分 ∵∠EGD +∠BHA =180°(已知)∴EC ∥BF (同旁内角互补,两直线平行) ………4分(2)∵EC ∥BF (已证)∴∠AEG =∠B (两直线平行,同位角相等)………5分 又∵∠B =∠C (已知) ∴∠AEG =∠C (等量代换)∴AB ∥CD (内错角相等,两直线平行) ………7分73310⎩⎨⎧==42y x 2521±=x ⎩⎨⎧==23n m ABCFDEGH∴∠A =∠D (两直线平行,内错角相等) ………8分评分标准(二)证明:(1)平行的线有:AB ∥CD ,EC ∥BF . ………2分 ∵∠EGD +∠BHA =180°(已知)∴EC ∥BF (同旁内角互补,两直线平行) ………4分∴∠AEG =∠B (两直线平行,同位角相等) 又∵∠B =∠C (已知) ∴∠AEG =∠C (等量代换)∴AB ∥CD (内错角相等,两直线平行) ………6分 (2)∵AB ∥CD (已证)∴∠A =∠D (两直线平行,内错角相等) ………8分 21.(本小题满分8分)解:设小明8:00时看到的两位数的十位数字为x ,个位数字为y .根据题意,得…………4分解方程组,得 …………7分所以,小明8:00时看到的两位数为:10×1+5=15答:小明在8:00时看到的里程碑上的数是15. …………8分22.(本小题满分10分)…………4分 (2)小颖的成绩为:(分) 小亮的成绩为:(分) 所以,小亮的成绩高. …………8分(3)建议合理. …………10分23.(本小题满分10分)解:(1)l 1对应的一次函数表达式为:y =0.2x +4.5(用待定系数法求解,步骤略).…………3分l 2对应的一次函数表达式为:y =0.5x (用待定系数法求解,步骤略).…………5分 (2)解方程组 ,得 …………7分()()⎪⎩⎪⎨⎧+-+=+-+=+y x x y x y y x y x 10105.1101006⎩⎨⎧==51y x ()()7.7988851010101088080905801070807090≈+++++++⨯+++⨯+⨯+++()()1.808885101010108509070590101006010080≈+++++++⨯+++⨯+⨯+++⎨⎧=+=x y x y 5.05.42.0⎨⎧==5.715y x所以,快艇B 出发15 min 后,追上可疑船只A . …………8分(3)在l 1,l 2对应的两个一次函数表达式中,一次项系数的实际意义分别是可疑船只A 和快艇B 的速度. …………10分 24.(本小题满分12分)解:探究三:如图③,设点A (t ,3t )(t>0)在直线y =3x 上,则点B (-3t ,t )一定在直线y = x 上.过点A 、B 分别作x 轴的垂线,垂足分别为C ,D . ∵OC =t ,AC =3t ,OD =3t ,BD =t∴OC=BD ,AC=OD 又∵∠ACO =∠ODB =90° ∴△AOC ≌△ODB ∴∠AOC =∠OBD又∵∠BOD +∠OBD =90° ∴∠BOD +∠AOC =90° ∵∠DOC =180°∴∠AOB =90° 所以,在同一直角坐标系内,直线y =3x 与y = x 是互相垂直. …………5分解决问题: (或 或 )…………8分拓广应用:(1) (或 等)(答案不唯一)…………10分(2)垂直,垂足为(0,-7) …………12分31-31-x y 10-=110+-=x y 121-=⋅k k 211k k -=121k k -=。
新人教版2014-2015年八年级上学期期末考试数学试题及答案
新人教版2014—2015年八年级上学期期末考试数学试卷时间120分钟 满分120分 2015、1、16一.选择题(每小题3分,共30分)1.下列运算正确的是( )A .()333a b a b +=+ B .326236a a a ⋅=C .()4312xx -= D .()()32n nn x x x -÷-=-2. 下列分解因式正确的是( )A .()()422xy x y -=-+B .()36332x y x y -+=-C .()()2221x x x x --=+-D .()22211x x x -+-=--3. 如(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为( ) A 、–3 B 、3 C 、0D 、14.要使分式)2)(1(2-+-x x x 有意义,x 的取值应该满足( )A .1-≠xB . 2≠xC . 1-≠x 或 2≠xD .1-≠x 且 2≠x5.若x,y 均为整数,且124128x y +⋅=,则x y +的值为( )A .4B .5C .4或5D .无法确定 6.(-2)2015 +(-2)2016所得的结果等于( )A .22015B . -22015C . -2 2016D .27.如图,AD AE 、分别是ABC ∆的高和角平分线,且o B 36=∠,oC 76=∠,则DA E ∠ 的度数为( )A.o40 B.o20 C.o18 D.o388.如图,下列各组条件中,不能得到△ABC ≌△BAD 的是( )A.AD BC =,BAD ABC ∠=∠ B.AD BC =,BD AC = C.BD AC =,DBA CAB ∠=∠ D.AD BC =,DBA CAB ∠=∠9.如图,在ABC ∆中,oC 90=∠,BC AC =,AD 平分CAB ∠,交BC 于点D ,第8题A C D 第7题E D C BA 第9题AB DE ⊥于点E ,且cm AB 6=,则DEB ∆的周长为( )A.cm 4 B.cm 6 C.cm 10 D.不能确定10. 如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p ,q 分别是点M 到直线l 1,l 2的距离,则称(p ,q )为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有( )个.A .8B .4C .2D .1二.填空题(每小题3分,共24分.)11.分解因式:2161a -= .12.某种感冒病毒的直径是0. 00000012米,用科学记数法表示为 米.13.若m 为正实数,且13m m -=,221mm +=__________________________ . 14.已知点A ,B 在数轴上,它们所对应的数分别是-2,731x x --,且点A 、B 到原点的距离相等,则x 的值为________________________ . 15. 若关于x 的分式方程01212=----+xx x a x a 无解, 则a=__________ . 16.有两个正方形A ,B ,现将B 放在A 的内部得图甲,将A ,B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和14,则正方形A ,B 的面积之和为 .17. 求1+2+22+23+…+22012的值,可令S =1+2+22+23+…+22012,则2S =2+22+23+24+…+22013,因此2S -S =22013-1.仿照以上推理,计算出1+5+52+53+…+52014的值为 .18.若方程组111222a x b yc a x b y c +=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则方程组1112222323ax b y c a x b yc +=⎧⎨+=⎩的解是 .三.解答题(66分)19.计算题(本小题满分8分)(1)101231)2-⎛⎫⨯+-+ ⎪⎝⎭(2)2(31)(3)(3)2(1)m m m m m -++---20.解方程或方程组:(本小题满分4+4+5=13分) (1)3211x y x y -=-⎧⎨-=⎩; (2)21233x x x -=--- ;21(6分)(1)化简:x x xx x 12122-÷+-;(2)如果x 是整数,且满足不等式组⎩⎨⎧-≥-≤+6)1(2,32x x ,求(1)中式子的值.22.(6分)若15))(3(2-+=+-nx x m x x ,求5822+-n m n 的值.23.(本小题满分9分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民居民“一户一表”生活用水阶梯式计费价格表的部分信息:(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费) 已知小王家2013年4月用水15吨,交水费45元,5月份用水25吨,交水费91元. (1)求a ,b 的值;(2)如果小王家6月份上交水费150元 ,则小王家这个月用水多少吨?24.(本题共12分,其中(1),(2)题每小题2分,(3),(4)题每小题4分) 先阅读下面的材料,然后回答问题:方程x +x 1=2+21的解为x 1=2,x 2=21; 方程x +x 1=3+31 的解为x 1=3,x 2=31;方程x +x 1=4+41 的解为x 1=4,x 2=41; …(1)观察上述方程的解,猜想关于x 的方程x +x 1=5+51的解是 ; (2)根据上面的规律,猜想关于x 的方程x +x 1=a +a1的解是 ;(3)猜想关于x 的方程x -x 1=211的解,并验证你的结论(4)在解方程:y +12++y y =310时,可将方程变形转化为(2)的形式求解,按上面的规律写出你的变形求解过程.EC FBA第25题25. 8分) 在ABC ∆中,CB AB =,o ABC 90=∠,F 为AB 延长线上一点,点E 在BC 上,且CF AE =. (1)求证:ABE Rt ∆≌CBF Rt ∆; (2)若oCAE 30=∠,求ACF ∠的度数.八年级数学答案一、选择题(每小题3分,共30分): DCBDA DD CA B 二、填空题:(每小题3分,共24分)11.(41)(41)a a +- 12.1.2×10-7 13. 11 14.-1或79 15.1、0、2116.15 17. 18.⎩⎨⎧==33y x 三、解答题:(66分)19.(8分) (1)原式=-2 (2)原式=2m 2+3m-1120.(4+4+5=13分) (1)34x y =-⎧⎨=-⎩; (2)x=3 经检验,无解(3)原式=........ ..代入得81.............. 21.(6分)65 21.(6分)-123.(9分) (1)a=2.2, b=4.2 (2)3524. (12分)(1)(2分)51,521==x x (2)(2分)ax a x 1,21== (3)(2+2=4分)21,221-==x x 验证:分别把21,221-==x x 代入方程,左边=右边。
【解析版】江西省南昌市2014-2015学年八年级上期末数学试卷
,③
,④
,…
(1)求①,②,③,④的值; (2)仿照①,②,③,④,写出第⑤个二次根式; (3)仿照①,②,③,⑤,⑤,写出第 n 个二次根式,并化简.
21.(12 分)有一款新车在公路上进行性能测试,一共测试了 5 次,每次的路程都是
10km,据图情况如表:
பைடு நூலகம்
①
②
③
④
⑤
速度(单位:km/h)
x
x+1
江西省南昌市 2014-2015 学年八年级上学期期末数学试 卷
参考答案与试题解析
一、选择题(共 8 小题,每小题 3 分,满分 24 分)
1.(3 分)有长度分别为 1,3,5 和 7 的 4 条线段,选择其中 3 条首尾连接构成三角形,
则可以构成不同的三角形的个数是()
A.4
B.3
C.2
D.1
考点: 三角形三边关系.
A.1 个
B.2 个
C.3 个
D.4 个
3.(3 分)下列运算中,结果是 a5 的是()
A.a3•a2
B.a7﹣ a2
C.(a2)3
D.(﹣ a)5
4.(3 分)如图,在边长为(a+2)的正方形中央剪去一边长为 a 的小正方形,则阴影部分 的面积为()
A.4
B.4a
C.4a+4
D.2a+4
5.(3 分)下列式子从左到右变形中,是因式分解的为()
6.(3 分)化简
的结果是()
A.m
B.
C.﹣ m
D.﹣
考点: 分式的乘除法. 专题: 计算题. 分析: 原式利用除法法则变形,约分即可得到结果.
解答: 解:原式=﹣ • =﹣ m.
2014-2015学年八年级(上)期末数学水平测试题(二)及答案
2014-2015学年八年级(上)期末数学水平测试题(二)考试范围:八上全册;考试时间:120分钟;注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、选择题(每题3分,共30分)1.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1 B.1,2,2 C.1,2,3 D.1,2,42.下列各组数中,以它们为边长的线段不能构成直角三角形的是( )A.1,2B.1,2C.5,12,13D.13.已知a<b,则下列不等式一定成立的是()A.a+3>b+3 B.2a>2b C.﹣a<﹣b D.a﹣b<04.如图1是一局围棋比赛的几手棋.为记录棋谱方便,横线用数字表示,纵线用字母表示,B,2),白棋②的位置可记为(D,1),则白棋⑨的位置应记为()A.(C,5)B.(C,4) C.(4,C) D.(5,C)5.一次函数y=kx+b(k≠0)的图像如图所示,则下列结论正确的是()A.k=2 B.k=3 C.b=2 D.b=36.如图,△ABC的面积为1cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()A.0.4 cm2 B.0.5 cm2 C.0.6 cm2 D.0.7 cm27.如图,南北向的公路上有一点A,东西向的公路上有一点B,若要在南北向的公路上.......确定点P,使得△P AB是等腰三角形,则这样的点P最多能确定()个.A.2 B.3 C.4 D.58.已知关于x,y的方程组343x y ax y a+=-⎧⎨-=⎩,其中-3≤a≤1,给出下列结论:①当a=1时,方程组的解也是方程x+y=4-a的解;②当a=-2时,x、y的值互为相反数;③若x<1,则1≤y≤4;④51xy=⎧⎨=-⎩是方程组的解,其中正确的结论有A.1个B.2个C.3个D.4个9.如图,在6个边长为1的小正方形及其部分对角线构成的图形中,如图从A点到B点只能沿图中的线段走,那么从A点到B点的最短距离的走法共有()A.1种B.2种C.3种D.4种10.如图坐标平面上有一正五边形ABCDE,C、D两点坐标分别为(1,0)、(2,0).若在没有滑动的情况下,将此正五边形沿着x轴向右滚动,则滚动过程中,下列会经过点(75,0)的点是()A.点A B.点B C.点C D.点D第II 卷(非选择题)二、填空题(每题3分,共24分)11.已知两边相等的三角形一边等于5cm ,另一边等于11cm ,则周长是________. 12.若三角形的两边长分别为3、4,且周长为整数,这样的三角形共有 个. 13.“直角三角形的两个锐角互余”的逆命题是 . 14.不等式-3≤5-2x <3的正整数解是_________________. 15.按如下程序进行运算:并规定:程序运行到“结果是否大于65”为一次运算,且运算进行4次才停止,则可输入的整数x 的个数是 .16.如图,已知A 1(1,0),A 2(1,-1),A 3(-1,-1),A 4(-1,1),A 5(2,1),…,则点A 2010的坐标是______.17.如图,圆柱形容器高为18cm ,底面周长为24cm ,在杯内壁离杯底4cm 的点B 处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm 与蜂蜜相对的点A 处,则蚂蚁从外币A 处到达内壁B 处的最短距离为 .0)0)0))18.已知点A 、B 分别在一次函数y =x ,y =8x ,的图像上,其横坐标分别为a 、b (a >0,b >O ).若直线AB 为一次函数y =kx +m ,的图像,则当ab是整数时,满足条件的整数k 的值共有 个. 评卷人 得分三、解答题(7小题,共66分)19.(6分)解不等式4x -≥13x-,并把它的解集在数轴上表示出来.20.(821.(10分)△ABC中,∠C=90°,AC=3,BC=4,在BC边上找一点P,使得点P到点C 的距离与点P到边AB的距离相等,求BP的长.ACB22.(10分)如图,四边形ABCD的三边(AB、BC、CD)和BD的长度都为5厘米,动点P从A出发(A→B→D)到D,速度为2厘米/秒,动点Q从点D出发(D→C→B→A)到A,速度为2.8厘米/秒。
2014—2015学年第一学期期末考试八年级数学试卷(含答案)1
111---a a a 11-+a a 1--a a ()⎪⎭⎫ ⎝⎛•-b a ab 24382013—2014学年第一学期期末考试八年级数学试卷(时间:90分钟 卷面分100分)一、选择题(每小题3分,共24分)1、下列运算正确的是( )A 、a+a=a 2B 、(3a ) 2=6a 2C 、(a+1) 2=a 2+1D 、a ·a=a 22、某三角形其中两边长分别为5cm 和8cm ,则此三角形的第三边长可能是( )A 、2cmB 、5cmC 、13cmD 、15cm3、观察下列中国传统工艺品的花纹,其中轴对称图形是( )4、计算 的结果为( ) A 、 B 、 C 、 -1 D 、1-a5、如图,某人将一块五边形玻璃打碎成四块,现要到玻璃店配一块完全一样的玻璃,那么最省事的方法是( )A 、带①去B 、带①②去C 、带①②③去D 、带①②③④去6、如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是横板AB 的中点,AB 可以绕着点O 上下转动,当A 端落地时,∠OAC=20°,横板上下可转动的最大角度(即∠A ′OA )是( )A 、80°B 、60°C 、40°D 、20°7、的边长为a 的正方形中挖去一个边长为b 的小正方形(a 〉b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A 、(a+b) 2=a 2+2ab+b 2B 、(a —b) 2=a 2—2ab+b 2C 、a 2-b 2=(a+b )(a —b )D 、(a+2b)(a-b )=a 2+ab-2b 28、如图,已知△AB C ≌△CDA ,下列结论:(1)AB=CD ,BC=DA ;(2)∠BAC=∠DCA ,∠ACB=∠CAD;(3)A B ∥CD ,BC ∥DA.其中正确的结论有( )个A 、0B 、1C 、2D 、3二、填空题(每小题3分,共24分)9、计算: =53-x 22322=--+x x x 2112211112+-÷⎪⎭⎫ ⎝⎛-++a a a a a 10、当x 时,分式 有意义11、分解因式:x 3-9x=12、点P (-3,a )和点Q (b ,-2)关于Y 轴对称,则a+b=13、如图,点P 在∠AOB 人平分线上,若使△AOP ≌△BOP ,则需添加的一个条件是 (只写一个即可,不添加辅助线)14、已知:在Rt △AB C 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若BC=32cm ,且BD :DC=9:7,则D 到AB 边的距离为15、如图,△AB C 中,∠C=90°,∠A=30°,AB 的垂直平分线交AC 于D ,交AB 于E,CD=2,则AC=16、如图所示,△AB C 中,点A 的坐标为(0,1),点C 的坐标为(4,3),若要使使△AB C 和△AB D 全等,则点D 的坐标为三、解答题(共52分)17、(6分)解方程:18、(7分)先化简再求值:(a 2b —2ab 2-b 2)÷b —(a+b )(a —b ),其中a=-3,b=19、(7分)先化简: ,再先一个你认为合适的数作为a 的值代入求值。
2014-2015学年度八年级上册数学期末试卷
2014~2015学年度素质教育评估试卷 第一学期期末八年级数学一.选择题(每小题3分,共计30分)1、数—2,0.3,722,2,—∏中,无理数的个数是( ) A 、2个; B 、3个 C 、4个; D 、5个2、计算6x 5÷3x 2·2x 3的正确结果是 ( ) A 、1; B 、x C 、4x 6; D 、x 43、一次函数 12+-=x y 的图象经过点 ( ) A .(2,-3) B.(1,0) C.(-2,3) D.(0,-1)4、下列从左到右的变形中是因式分解的有 ( ) ①1))((122--+=--y x y x y x ②)1(23+=+x x x x ③2222)(y xy x y x +-=- ④)3)(3(922y x y x y x -+=- A .1个 B .2 个 C .3个 D .4个5、三角形内有一点到三角形三顶点的距离相等,则这点一定是三角形的( )A 、三条中线的交点;B 、三边垂直平分线的交点;C 、三条高的交战;D 、三条角平分线的交点;6、一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度n(厘米)与燃烧时间t(时)的函数关系的图象是( )ADB C7、如图,C F B E ,,,四点在一条直线上,,,D A CF EB ∠=∠=再添一个条件仍不能证明⊿ABC≌⊿DEF的是( )A .AB=DEB ..DF ∥AC C .∠E=∠ABCD .AB ∥DE8、下列图案中,是轴对称图形的是 ( )9.一次函数y=mx-n 的图象如图所示,则下面结论正确的是( )A .m<0,n<0B .m<0,n>0C .m>0,n>0D .m>0,n<010.如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有() A :1个 B :2个 C :3个 D :4个二、填空题(每小题3分,共计30分)11、16的算术平方根是 .12、点A (-3,4)关于原点Y 轴对称的点的坐标为 。
2014-2015学年八年级上期末数学试卷及答案
一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1. 如果二次根式2x -有意义,那么x 的取值范围是A. 2x ≠B. 0x ≥C. 2x >D. 2x ≥ 2. 剪纸是中华传统文化中的一块瑰宝,下列剪纸图案中不是..轴对称图形的是3. 9的平方根是A .3B .±3C .3±D .81 4. 下列事件中,属于不确定事件的是 A .晴天的早晨,太阳从东方升起 B .一般情况下,水烧到50°C 沸腾C .用长度分别是2cm ,3cm ,6cm 的细木条首尾相连组成一个三角形D .科学实验中,前100次实验都失败,第101次实验会成功 5. 如果将分式2xx y+中的字母x 与y 的值分别扩大为原来的10倍,那么这个分式的值 A .不改变 B .扩大为原来的20倍 C .扩大为原来的10倍 D .缩小为原来的1106. 如果将一副三角板按如图方式叠放,那么∠1等于A .120°B .105°C .60°D .45°7. 计算32a b(-)的结果是 A. 332a b - B. 336a b - C. 338a b- D. 338a b8. 如图,在△ABC 中,∠ACB =90°, CD ⊥AB 于点D ,如果∠DCB =30°,160°45°CCB =2,那么AB 的长为A. 23B. 25C. 3D. 4 9.下列计算正确的是 A.325+= B. 1233-= C.326⨯= D.842= 10. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是 A.102B. 104C.105D. 5二、填空题(本题共18分,每小题3分) 11. 如果分式14x x --的值为0,那么x 的值是_________. 12. 计算:2(3)-=_________. 13. 在-1,0,2,π,13这五个数中任取一个数,取到无理数的可能性是_________. 14. 如图,ABC △中,90C ∠=,BD 平分ABC ∠交AC 于点D ,如果CD =6cm ,那么点D 到AB 的距离为_________cm. 15. 如图,△ABC 是边长为2的等边三角形,BD 是AC 边上的中线,延长BC 至点E ,使CE =CD ,联结DE ,则DE 的长是 .16. 下面是一个按某种规律排列的数表:第1行 1第2行 2 3 2 第3行567 22 3ABCD AC BEABCD第4行1011231314154……那么第5行中的第2个数是,第n(1n>,且n是整数)行的第2个数是 .(用含n的代数式表示)三、解答题(本题共20分,每题5分)17. 计算:381232-+-.18. 计算:2121.224a a aa a--+÷--19. 解方程:11322x x x-+=--.20. 已知:如图,点B,E,C,F在同一条直线上,AB∥DE,AB=DE,BE=CF.求证:AC=DF.A D四、解答题(本题共11分,第21题5分,第22题6分) 21. 已知30x y -=,求22(+)+2x yx y x xy y -+的值.22. 列方程解应用题:学校要建立两个计算机教室,为此要购买相同数量的A 型计算机和B 型计算机.已知一台A 型计算机的售价比一台B 型计算机的售价便宜400元,如果购买A 型计算机需要22.4万元,购买B 型计算机需要24万元.那么一台A 型计算机的售价和一台B 型计算机的售价分别是多少元?五、解答题(本题共21分,每小题7分)23. 已知:如图,△AOB 的顶点O 在直线l 上,且AO =AB .(1)画出△AOB 关于直线l 成轴对称的图形△COD ,且使点A 的对称点为点C ;(2)在(1)的条件下, AC 与BD 的位置关系是 ;(3)在(1)、(2)的条件下,联结AD ,如果∠ABD =2∠ADB ,求∠AOC 的度数.24. 我们知道,假分数可以化为整数与真分数的和的形式.例如:32=112+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像11x x +-,22x x -,…这样的分式是假分式;像42x - ,221x x +,…这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:112122111111x x x x x x x x +-==+=+-----(-)+;22442(2)4422222x x x )x x x x x x -++-+===++----(. (1)将分式12x x -+化为整式与真分式的和的形式; (2)如果分式2211x x --的值为整数,求x 的整数值.25. 请阅读下列材料:问题:如图1,△ABC 中,∠ACB =90°,AC =BC ,MN 是过点A 的直线,DB ⊥MN 于点D ,联结CD .求证:BD + AD =2CD .BAOl小明的思考过程如下:要证BD+ AD =2CD,需要将BD,AD转化到同一条直线上,可以在MN上截取AE=BD,并联结EC,可证△ACE和△BCD全等,得到CE=CD,且∠ACE=∠BCD,由此推出△CDE为等腰直角三角形,可知DE =2CD,于是结论得证.小聪的思考过程如下:要证BD+ AD =2CD,需要构造以CD为腰的等腰直角三角形,可以过点C作CE⊥CD交MN于点E,可证△ACE和△BCD全等,得到CE=CD,且AE=BD,由此推出△CDE为等腰直角三角形,可知DE =2CD,于是结论得证.请你参考小明或小聪的思考过程解决下面的问题:(1) 将图1中的直线MN绕点A旋转到图2和图3的两种位置时,其它条件不变,猜想BD,AD,CD之间的数量关系,并选择其中一个图形加以证明;(2) 在直线MN绕点A旋转的过程中,当∠BCD=30°,BD =2时,CD=__________.MDNBCA图2BCNMDA图3AC BNDM E图1初二数学评分标准及参考答案一、选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 答案DCBDABCDBA二、填空题(本题共18分,每小题3分)题号 11 12 1314 1516答案13256332()212n -+三、解答题(本题共20分,每小题5分) 17.解:原式=22323-+- …… 3分 =433-. …… 5分 18.解:原式=21(1)22(2)a a a a --÷-- …… 2分=212(2)2(1)a a a a --⨯-- ……3分=21a -. ……5分19.解:11322x x x -+=-- ……1分13(2)1x x +-=- ……2分1361x x +-=- ……3分24x =2x =. ……4分经检验,2x = 是原方程的增根,所以,原方程无解. ……5分 20.证明:∵AB ∥DE ,∴∠B =∠DEC . ……1分∵BE = CF ,∴BE +EC = CF +EC ,即BC = EF . ……2分在△ABC 和△DEF 中,,AB DE B DEC BC EF ===⎧⎪⎨⎪⎩∠∠ ……3分 ∴△ABC ≌△DEF (SAS ). ……4分 ∴AC = DF .(全等三角形对应边相等)…5分 四、解答题(本题共11分,第21题5分,第22题6分)21.解:原式=()()2x yx y x y -⋅++ ……1分=x yx y-+. ……2分 ∵30x y -=,∴=3x y . ……3分∴原式=33y yy y-+. ……4分=12. ……5分22.解:设一台A 型计算机的售价是x 元,则一台B 型计算机的售价是(x +400)元.根据题意列方程,得 ……1分224000240000400x x =+ ……3分 解这个方程,得5600x = ……4分经检验,5600x =是所列方程的解,并且符合实际问题的意义. ……5分当5600x =时,+4006000x =.答:一台A 型计算机的售价是5600元,一台B 型计算机的售价是6000元. ……6分五、解答题(本题共21分,每小题7分) 23.(1)如图1.……1分 (2)平行. ……2分 (3)解:如图2,由(1)可知,△AOB 与△COD 关于直线l 对称, ∴△AOB ≌△COD .……3分∴AO =CO ,AB = CD ,OB = OD ,∠ABO =∠CDO . 图1 图2 ∴∠OBD =∠ODB . ……4分∴∠ABO+∠OBD =∠CDO+∠ODB ,即∠ABD =∠CDB . ∵∠ABD =2∠ADB ,∴∠CDB =2∠ADB .∴∠CDA =∠ADB .……5分由(2)可知,AC ∥BD ,∴∠CAD =∠ADB .∴∠CAD =∠CDA ,∴CA = CD .……6分 ∵AO = AB ,∴AO = OC = AC ,即△AOC 为等边三角形. ∴∠AOC = 60°. ……7分 24.解:(1)12x x -+()232x x +-=+ ……1分2232x x x +=+-+ ……2分312x+=-. ……3分(2)2211x x --22211x x -+=- ()()21111x x x +-+=-()1211x x =++-. ……5分 ∵分式的值为整数,且x 为整数, ∴11x -=±,∴x =2或0.……7分25.解:(1)如图2,BD -AD =2CD . ……1分ABCDOllO DCB A如图3,AD -BD =2CD . ……2分证明图2:( 法一)在直线MN 上截取AE =BD ,联结CE .设AC 与BD 相交于点F ,∵BD ⊥MN ,∴∠ADB =90°,∴∠CAE+∠AFD =90°.∵∠ACB =90°,∴∠1+∠BFC =90°. ∵∠AFD =∠BFC ,∴∠CAE =∠1.∵AC =BC ,∴△ACE ≌△BCD (SAS ). ……3分 ∴CE =CD ,∠ACE =∠BCD .∴∠ACE -∠ACD =∠BCD -∠ACD ,即∠2=∠ACB =90°.在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分 ∵DE = AE -AD = BD -AD ,∴BD -AD =2CD . ……5分 ( 法二)过点C 作CE ⊥CD 交MN 于点E ,则∠2=90°. ∵∠ACB =90°,∴∠2+∠ACD =∠ACB+∠ACD , 即∠ACE =∠BCD .设AC 与BD 相交于点F ,∵DB ⊥MN ,∴∠ADB =90°. ∴∠CAE+∠AFD =90°,∠1+∠BFC =90°. ∵∠AFD =∠BFC ,∴∠CAE =∠1.∵AC =BC ,∴△ACE ≌△BCD (ASA ). ……3分 ∴CE =CD ,AE =BD .在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分 ∵DE = AE -AD = BD -AD ,∴BD -AD =2CD . ……5分 证明图3:( 法一)在直线MN 上截取AE =BD ,联结CE . 设AD 与BC 相交于点F ,∵∠ACB =90°,∴∠2+∠AFC =90°. ∵BD ⊥MN ,∴∠ADB =90°,∠3+∠BFD =90°. ∵∠AFC =∠BFD ,∴∠2=∠3.∵AC =BC ,∴△ACE ≌△BCD (SAS ). ……3分 ∴CE =CD ,∠1=∠4.∴∠1+∠BCE =∠4+∠BCE ,即∠ECD =∠ACB =90°.在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分F12图2A C BND ME FE M DNBC A 图221E BCN M DA 图3123F 411 ∵DE = AD -AE = AD -BD ,∴AD -BD =2CD . ……5分 ( 法二)过点C 作CE ⊥CD 交MN 于点E ,则∠DCE =90°.∵∠ACB =90°,∴∠ACB -∠ECB = ∠DCE -∠ECB ,即∠1=∠4. 设AD 与BC 相交于点F ,∵DB ⊥MN ,∴∠ADB =90°. ∴∠2+∠AFC =90°,∠3+∠BFD =90°.∵∠AFC =∠BFD ,∴∠2=∠3.∵AC =BC ,∴△ACE ≌△BCD (ASA ).……3分 ∴CE =CD ,AE =BD .在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分∵DE = AD -AE = AD -BD ,∴AD -BD =2CD .……5分 (2)31± .……7分4F 321 图3A D M N C B E。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014—2015学年度第一学期南昌市期末终结性测试卷八年级(初二)数学参考答案及评分意见一、(本大题共8题,每小题3分,共24分)1.D 2. A 3.A 4.C 5.B 6.C 7. C 8. A二、(本大题共8空,每空2分,共16分)9. 10. a(x﹣3) 2,1 11. x=1,﹣1 12.6每个图形2分三、(本大题共2题,每小题5分,共10分)13.解:原式=()()222m n m n +-⎡⎤⎣⎦ …………………2分222=4m n ⎡⎤-⎣⎦…………………………4分 4224=168+m m n n - ……………………5分 14.解:(1)把任意一个分式除以前面一个分式,商都等于2x y-, 2分 (2)第7个分式为:632157x x x y y y⎛⎫-= ⎪⎝⎭. ………………5分 四、(本大题共4题,每小题6分,共24分)15.解:分三种情况: ①22211131422x x x x x x ⎛⎫⎛⎫+-+++=+⎪ ⎪⎝⎭⎝⎭························································· 1分 (4)x x =+; ····················································· 2分②222111122x x x x x ⎛⎫⎛⎫+-+-=- ⎪ ⎪⎝⎭⎝⎭···································································· 3分 (1)(1)x x =+-; ··················································· 4分③22211312122x x x x x x ⎛⎫⎛⎫+++-=++ ⎪ ⎪⎝⎭⎝⎭························································· 5分 2(1)x =+. ··························································· 6分 16.解:原式=x x x x x x x ⎛⎫---- ⎪---⎝⎭2341112 =x x x x x -+-⋅--244112=()x x --222=x -2 ······················································ 4分 取x =10 代入,原式=8.(注:x 不能取1和2) ·······················································6分17. 解:(1)当h=1000米时,d === ········································3分 (2)∵12:d d = . ············································ 6分 18. 解:(1)S △ACD = S △ABC —S △ABD =174232=-⨯⨯=. ························································ 2分 (2)如图,过点D 作DF ⊥AC 于F ,∵AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB ,∴DE =DF =2,…………………4分12×AC ×2=3, 解得AC =3.……………… 6分五、(本大题共2题,每小题7分,共14分)19.解:设大巴车的速度是x 千米/时, ············································································ 1分由题意得:424811.212x x -=, ················································································ 4分 解得:x =24,·········································································································· 6分 经检验:x =24是原分式方程的解,答:大巴车的速度是24千米/时. ······································································ 7分20. 解:(1)①3,②15,③35,④63的值; ··································································· 4分 (299=; ························································· 5分(3)第○n. ························································ 6分化简如下:()()2121n n -+……7分六、(本大题共10分)21.解:(1)110t x =,2101t x =+,3102t x =+,4103t x =+,5104t x =+; ················· 5分 (2)∵()15211101010201020224(4)4x x t t x x x x x x++⎛⎫+=+== ⎪+++⎝⎭, ()()2421110101020102022131(3)43x x t t x x x x x x ++⎛⎫+=+== ⎪++++++⎝⎭, ()()32221010(2)1020102024422x x x t x x x x x +++====+++++; ∴()()152431122t t t t t +>+> ···································································· 9分 (3)不正确.理由如下: ··················································································· 10分∵12345333310101010105010222S V x t t t t t t t t t t ++++==<==+++++++总路程平均速度总时间 ∴这5次测试的平均速度V 等于第三次测试的速度(x +2)km/h”错误. ··········· 12分。