第13课时:圆柱与圆锥复习课

合集下载

苏教版六年级数学下册第二单元《圆柱和圆锥》教学分析及教案

苏教版六年级数学下册第二单元《圆柱和圆锥》教学分析及教案

苏教版六年级数学下册第二单元《圆柱和圆锥》教学分析及教案一. 教材分析苏教版六年级数学下册第二单元《圆柱和圆锥》是本册教材中的重要内容,它让学生在已有知识的基础上,进一步认识圆柱和圆锥的特征,掌握它们的体积计算方法,并了解它们在实际生活中的应用。

本单元包括圆柱和圆锥的定义、特征、展开图、体积计算以及应用等内容。

通过本单元的学习,学生能更好地理解立体图形,提高空间想象力。

二. 学情分析六年级的学生已经具备了一定的空间想象能力和抽象思维能力,他们对平面图形的认识较为深刻,但立体图形的学习还相对较弱。

因此,在教学过程中,教师要注重引导学生从平面图形过渡到立体图形,让学生在实际操作和观察中,理解和掌握圆柱和圆锥的特征和体积计算方法。

三. 教学目标1.知识与技能:学生能够准确地描述圆柱和圆锥的特征,掌握它们的体积计算方法,并能应用于实际问题中。

2.过程与方法:学生通过观察、操作、思考、讨论等方法,培养空间想象能力和解决问题的能力。

3.情感态度与价值观:学生对数学产生浓厚的兴趣,培养合作意识,提高自我探究的能力。

四. 教学重难点1.重点:圆柱和圆锥的特征,体积计算方法的掌握。

2.难点:圆锥体积计算公式的推导,以及体积公式的应用。

五. 教学方法1.情境教学法:通过生活情境,引导学生认识和理解圆柱和圆锥。

2.启发式教学法:引导学生思考问题,自主探究,发现和总结规律。

3.合作学习法:学生分组讨论,共同解决问题,提高合作能力。

4.实践操作法:让学生动手操作,增强直观感受,培养空间想象力。

六. 教学准备1.教具:圆柱和圆锥模型、卡片、课件等。

2.学具:学生用书、练习本、铅笔、直尺等。

七. 教学过程1.导入(5分钟)教师通过情境创设,如生活中的圆柱和圆锥物品,引导学生观察和思考,激发学生的学习兴趣。

2.呈现(10分钟)教师利用课件展示圆柱和圆锥的定义、特征,让学生初步认识这两种立体图形。

3.操练(15分钟)教师引导学生进行分组讨论,探究圆柱和圆锥的展开图,让学生动手操作,增强直观感受。

苏教版小学数学六年级下学期精品课件-《圆柱和圆锥》(练习讲评3个课时)

苏教版小学数学六年级下学期精品课件-《圆柱和圆锥》(练习讲评3个课时)

圆柱转化过程
用字母V表示圆柱的体积,S表示圆柱的底面积,h 表示圆柱的高,圆柱的体积公式就可以写成 ( V=Sh )。(补充练习p12 2)
V=πr2h
4、一根木料如下图,求这根木料的体积。(单位:m) (补充习题p12 3)
V=πr2h =π×(0.2÷2)2×3 =0.03π(立方米)
答:这根木料的体积是0.03π立方米。
7、一座圆锥形的帐篷,底面周长是18.84米,高2.7米。(补充习题 p17 6)
(1)帐篷的占地面积是多少平方米?
半径:18.84÷3.14÷2 =3(米)
S底=πr2 =π×32 =9π(平方米)
答:占地面积是9π平方米。
(2)帐篷内的空间是多少立方米?
V=
1 3
Sh

1 3
×9π×2.7
圆锥形帐篷
S底=πr2
=π×(2÷2)2

=π(平方厘米)
S表=6π+π×2=8π(平方厘米)
7、一台压路机的前轮是圆柱形,轮宽2米,直径1.2米。前轮转动 一周,压路的面积是多少平方米?(补充习题第9页 第5题)
S侧=πdh =π×1.2×2 =2.4π(平方米)
答:前轮转动一周,压路的面积是2.4π平方米。
600π×1=600π(吨)
答:蓄水池最多能蓄水600π吨。
6、填空。(补充习题p16 1)
(1)一个圆柱和一个圆锥底面积相等,高也相等。圆柱的体积是15立方厘米,圆锥的 体积是( 5 )立方厘米。如果圆锥的体积是15立方厘米,圆柱的体积是( 45 ) 立方厘米。
(2)等底等高的圆锥和圆柱,它们的体积比是( 1:3 )。 注意前项和后项的顺序
二、选择。
1、等底等高的圆柱、正方体、长方体的体积相比较,( )。

人教版六年级数学下册第三单元《圆柱与圆锥》课件共10个精品课件

人教版六年级数学下册第三单元《圆柱与圆锥》课件共10个精品课件

柱的底面直径与高的比。
πd=h d :h = 1 :π
课堂总结
通过这节课的学习, 你有什么收获?
义务教育人教版六年级下册
第3单元 圆柱与圆锥 1.圆 柱
第 5 课时 圆柱的体积
复习导入
填空。 圆柱的侧面积=( 底面周长×高 ) 圆柱的表面积=( 侧面积+底面积×2 ) 长方体的体积=( 长×宽×高 ) 正方体的体积=(棱长×棱长×棱长)
底面 侧面
圆柱的底面都 是圆,并且大 小一样。
底面 圆柱的侧面是曲面。
哪个圆柱比较高?为什么?
底面 O
侧面 高
底面 O 侧面 高
底面 O
底面
圆柱两个底面之间的距离叫做高, 圆柱有无数条高。
动手操作: 如果把一张长方形的硬纸贴在木棒上,快速转
动木棒,想一想,转出来的是什么形状?
转动起来像一个圆柱。
8cm
要解决这个问题,就
是要计算什么?
10cm
杯子的容积
10cm
杯子的底面积: 杯子的容积:
8cm
3.14×(8÷2)2
50.24×10
=3.14×42
=502.4 (cm3 )
=3.14×16
=502.4 (mL)
=50.24 (cm2 )
答:因为502.4大于498,所以杯子能 装下这袋牛奶。
(长方体)
(正方体 )
( 圆柱 )
课堂总结
通过这节课的学习, 你有什么收获?
义务教育人教版六年级下册
第3单元 圆柱与圆锥 1.圆 柱
第 2 课时 圆柱的认识(2)
复习导入
圆柱由哪几部分组成? 有什么特征?
上、下底面:圆 侧面:曲面
探究新知

六年级下学期 圆柱与圆锥 详细知识点总结+重难点题型训练+详细答案 很全面

六年级下学期 圆柱与圆锥 详细知识点总结+重难点题型训练+详细答案 很全面

圆柱与圆锥【考点要求】1、认知圆柱与圆锥,掌握它们的各部分特征2、理解并掌握圆柱的侧面积和表面积的计算方法,并会正确计算3、理解并掌握圆柱与圆锥的体积的计算方法,会运用公式计算体积、容积,解决有关的简单的实际问题。

【基础知识回顾】考点一、圆柱的各部分名称,展开图一、圆柱的各部分名称,展开图1、底面、侧面、高:(1)圆柱的两个圆面叫做底面,圆柱的两个底面都是圆,并且大小一样;(2)周围的面叫做侧面,圆柱的侧面是曲面;(3)两个底面之间的距离叫做高,圆柱的高有无数条;拿一张长反省的硬纸,贴在木棒上,快速转动,转动起来的形状就是个一个圆柱。

2、圆柱的侧面展开图:圆柱的侧面展开图是一个长方形,长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。

【练习一】1、点的运动可以形成(),线的运动可以形成一个(),面的运动可以形成()。

长方形绕一条边旋转一周可以形成()2、圆柱由()个面组成,分别是()()()组成,上下底面都是(),侧面的展开是一个()。

3、圆柱的侧面展开是一个长方形,长方形的长等于圆柱的(),长方形的宽等于圆柱的()4、如右图,以长方形的长为轴,旋转一周,得到的立体图形是(),那么,得到的这个立体图形的高是()厘米,底面周长是()厘米。

3厘米6厘米5、判断(1)长方体中最多有4个面可能是正方形()(2)一个圆柱,如果底面直径和高相等,则圆柱的侧面展开是正方形()(3)如果一个物体上、下底面是面积相等的两个圆,那么这个物体一定是圆柱()。

考点二、圆柱的表面积π+2πrh=2πr(r+h)二、圆柱的表面积=2个圆的面积+1个侧面积=2r21、圆柱的侧面积=底面周长×高=πdh=2πrh因为圆柱的侧面展开是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,所以长方形的面积就是圆柱的侧面积=底面周长×高π×22、圆柱的2个底面积:S=r2π+2πrh=2πr(r+h)3、圆柱的表面积:2个底面积+1个侧面积=2r2注意:有时题目计算表面积时,并不是三个面的面积都要计算,要结合具体题目具体分析,比如,通风管就只用计算侧面积即可,无盖的水桶就只用计算侧面积和1个底面积4、圆柱的截断与拼接:(1)把一个圆柱截成两个圆柱,增加的表面积是两个底面积;(2)把两个同样粗细的圆柱拼成一个圆柱,减少的表面积是两个底面积。

六年级数学圆柱和圆锥知识点

六年级数学圆柱和圆锥知识点

六年级数学圆柱和圆锥知识点本课内容是九年制义务教育课程标准实验教材(苏教版)六年级下册第18-20页《圆柱和圆锥的认识》。

学生已经在一年级的时候初次认识了圆柱,已经会辨别;圆锥这一立体图形没有见识过,从未接触;这里给大家分享一些六年级数学圆柱和圆锥知识点,欢迎阅读!六年级数学圆柱和圆锥教案一、说教材。

《圆柱和圆锥是小学阶段几何知识的最后一部分新课内容,内容包括:面的旋转、圆柱的表面积、圆柱的体积及圆锥的体积四小节,本节复习课旨在通过回顾梳理,交流互补,使学生将零散的知识在头脑中串成线,联成片,形成完整的知识网络,加深各个图形之间的内在联系,综合运用有关知识解决实际问题。

《课程标准》中对本学段的教学要求是:认识并掌握圆柱体、圆锥体的特征,明白表面积和体积的意义,通过操作、实验、转化、类比、推理等逻辑方法得到表面积和体积的计算方法,掌握常用的体积(容积)单位,会计算一些形体的表面积和体积(容器的容积),并能应用所学知识解决简单的实际问题。

二、根据此要求以及学生的特点,我确定了如下的教学目标:1、通过复习、交流,我会说出圆柱和圆锥的特征和相关的计算公式。

2、通过练习、展示,我会运用公式正确解决有关圆柱的表面积和体积及圆锥体积的实际问题。

三、教学重点:运用所学知识解决实际问题。

四、教学难点:综合运用所学知识解决问题。

五、说教法学法。

本节课我采取“练习法”,让学生在回顾整理、交流互补、巩固练习、展示自我等一系列活动中掌握知识、发展智力、锻炼能力。

六、说教学过程“复习课”作为数学课的一种基本类型,它不同于新授课的探索发现,也有别于练习课的巩固应用,它的一个重要功能就是引导学生对所学的知识进行整理,把分散的知识综合成一个整体,使之形成一个较为完整的知识体系,提高学生对知识的掌握水平。

承载着“回顾与整理,沟通与生成”的独特功能。

本节课我设计了以下几个环节:第一环节:谈话导入,明确目标。

本学期,我们结识了小学阶段几何形体中的最后两位朋友,他们是——(圆柱和圆锥)。

部编版六年级数学下册第三单元《圆锥》(复习课件)

部编版六年级数学下册第三单元《圆锥》(复习课件)

得到的是圆锥。 (1)以6 cm长的边所在直线为轴旋转一周时, d=16 cm,h=6 cm。 (2)以8 cm长的边所在直线为轴旋转一周时, d=12 cm,h=8 cm。
8.用如图所示的扇形纸片和圆形纸片能否制作成一个圆 锥?请通过计算说明理由。
扇形圆弧的长:3.14×2×2×34=9.42(cm) 圆的周长:3.14×3=9.42(cm) 扇形圆弧的长和圆的周长相等,所以能制作成一个圆锥。
3 圆柱与圆锥
圆锥 整理复习
圆柱和圆锥的关系
当圆柱的上底面的面积等于0时,就变成了圆锥。
圆锥体积的推导
圆锥的体积等于与它等底 等高圆柱体积的三分之一。
圆锥的体积= 13× 底面积×高
Ⅴ 圆锥 =
13Ⅴ
圆柱=
1 Sh 3
填一填。
(1)一个圆柱的体积是75.36m³,与它等底等高的圆锥的体积 是(25.12)m³。
一定时间内,降落在水平地面上的水,在未经蒸发、渗漏、流失情况下, 所及的深度称为降水量(通常以毫米为单位)。测定降水量常用雨量器 和量筒。我国气象上规定按24小时的降水量为标准,降水级别如下表:
级别 降水量/mm
小雨 10以下
中雨
大雨
暴雨
大暴雨
10-24.9 25-49.9 50-99.9 100-199.9
知识点 2 运用圆锥的体积公式计算
2.计算下面各圆锥的体积。
(1) 13×36×5=60(cm3)
(2)
3.14×42×12×31=200.96(cm3)
(3)
3.14×(4÷2)2×5.4×13=22.608(cm3)
易错辨析
3.判断。(对的画“√”,错的画“×”) (1)圆柱的体积是圆锥体积的3倍。

新人教版小学数学六年级下册课件:《整理和复习》(共18张ppt)

新人教版小学数学六年级下册课件:《整理和复习》(共18张ppt)
3.正确选择。
A
B
综合应用
(3)甲乙两人分别利用一张长20厘米,宽15厘米的纸用两种不同的方法围成一个圆柱体(接头处不重叠),那么围成的圆柱( )。 A. 高一定相等 B. 侧面积一定相等 C. 侧面积和高都相等 D. 侧面积和高都不相等
综合应用
问题一
底面
底面
底面的周长
底面
底面

长方形的长=圆柱底面的周长,宽=圆柱的高。
圆柱的展开图
底面的周长
圆锥的特征
从圆锥的顶点到底面圆心的距离是圆锥的高。
底面
O
r
h

圆锥的底面是个圆, 侧面是一个扇形。
问题一
顶点
问题二
圆柱的侧面积与表面积
底面
底面

侧 面
底面
底面

底面的周长
S表面积=S侧面积+2×S底面积
综合应用
(1)做一个圆柱形烟囱要用多少铁皮,是求圆柱的( )。 A.侧面积 B.表面积 C.体积 (2)一个圆柱形水箱,底面周长是12.56分米,给这个水箱配一个盖子,应选铁皮为( )。(单位:分米) A. B. C.
——
0.5cm
4.5m
——
10dm
1m
40cm
2dm
1cm
314dm3
6280cm3
1.1775m3
2.198m3
10.048dm3
282.6dm2
3140cm2
10.676m2
综合应用
1. 计算下面各图形的体积。
8.5×4×3=102 (dm3)
( )2×3.14×5=251.2(cm3)
8 2
综合应用

圆锥的认识圆柱和圆锥PPT课件

圆锥的认识圆柱和圆锥PPT课件

和高各是多少厘米 ?
1、快乐总和宽厚的人相伴,财富总与诚信的人相伴,聪明总与高尚的人相伴,魅力总与幽默的人相伴,健康总与阔达的人相伴。 2、人生就有许多这样的奇迹,看似比登天还难的事,有时轻而易举就可以做到,其中的差别就在于非凡的信念。 3、影响我们人生的绝不仅仅是环境,其实是心态在控制个人的行动和思想。同时,心态也决定了一个人的视野和成就,甚至一生。 4、无论你觉得自己多么了不起,也永远有人比更强;无论你觉得自己多么不幸,永远有人比你更不幸。 5、也许有些路好走是条捷径,也许有些路可以让你风光无限,也许有些路安稳又有后路,可是那些路的主角,都不是我。至少我会觉得,那些路不是自己想要的。 6、在别人肆意说你的时候,问问自己,到底怕不怕,输不输的起。不必害怕,不要后退,不须犹豫,难过的时候就一个人去看看这世界。多问问自己,你是不是已经为了梦想而竭尽全力了? 7、人往往有时候为了争夺名利,有时驱车去争,有时驱马去夺,想方设法,不遗余力。压力挑战,这一切消极的东西都是我进取成功的催化剂。 8、真想干总会有办法,不想干总会有理由;面对困难,智者想尽千方百计,愚者说尽千言万语;老实人不一定可靠,但可靠的必定是老实人;时间,抓起来是黄金,抓不起来是流水。 9、成功的道路上,肯定会有失败;对于失败,我们要正确地看待和对待,不怕失败者,则必成功;怕失败者,则一无是处,会更失败。1、快乐总和宽厚的人相伴,财富总与诚信的人相伴,聪明总与高尚的人相伴,魅力总与幽默的人相伴,健康总与阔达的人相伴。 2、人生就有许多这样的奇迹,看似比登天还难的事,有时轻而易举就可以做到,其中的差别就在于非凡的信念。 3、影响我们人生的绝不仅仅是环境,其实是心态在控制个人的行动和思想。同时,心态也决定了一个人的视野和成就,甚至一生。 4、无论你觉得自己多么了不起,也永远有人比更强;无论你觉得自己多么不幸,永远有人比你更不幸。 5、也许有些路好走是条捷径,也许有些路可以让你风光无限,也许有些路安稳又有后路,可是那些路的主角,都不是我。至少我会觉得,那些路不是自己想要的。 6、在别人肆意说你的时候,问问自己,到底怕不怕,输不输的起。不必害怕,不要后退,不须犹豫,难过的时候就一个人去看看这世界。多问问自己,你是不是已经为了梦想而竭尽全力了? 7、人往往有时候为了争夺名利,有时驱车去争,有时驱马去夺,想方设法,不遗余力。压力挑战,这一切消极的东西都是我进取成功的催化剂。 8、真想干总会有办法,不想干总会有理由;面对困难,智者想尽千方百计,愚者说尽千言万语;老实人不一定可靠,但可靠的必定是老实人;时间,抓起来是黄金,抓不起来是流水。14、成长是一场和自己的比赛,不要担心别人会做得比你好,你只需要每天都做得比前一天好就可以了。 15、最终你相信什么就能成为什么。因为世界上最可怕的二个词,一个叫执着,一个叫认真,认真的人改变自己,执着的人改变命运。只要在路上,就没有到不了的地方。 16、你若坚持,定会发光,时间是所向披靡的武器,它能集腋成裘,也能聚沙成塔,将人生的不可能都变成可能。 17、人生,就要活得漂亮,走得铿锵。自己不奋斗,终归是摆设。无论你是谁,宁可做拼搏的失败者 9、成功的道路上,肯定会有失败;对于失败,我们要正确地看待和对待,不怕失败者,则必成功;怕失败者,则一无是处,会更5、别着急要结果,先问自己够不够格,付出要配得上结果,工夫到位了,结果自然就出来了。 6、你没那么多观众,别那么累。做一个简单的人,踏实而务实。不沉溺幻想,更不庸人自扰。 7、别人对你好,你要争气,图日后有能力有所报答,别人对你不好,你更要争气望有朝一日,能够扬眉吐气。 8、奋斗的路上,时间总是过得很快,目前的困难和麻烦是很多,但是只要不忘初心,脚踏实地一步一步的朝着目标前进,最后的结局交给时间来定夺。 9、运气是努力的附属品。没有经过实力的原始积累,给你运气你也抓不住。上天给予每个人的都一样,但每个人的准备却不一样。不要羡慕那些总能撞大运的人,你必须很努力,才能遇上好运气。 10、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。 12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。失败。11、学会学习的人,是非常幸福的人。——米南德 12、你们要学习思考,然后再来写作。——布瓦罗 13、在寻求真理的长河中,唯有学习,不断地学习,勤奋地学习,有创造性地学习,才能越重山跨峻岭。——华罗庚 14、许多年轻人在学习音乐时学会了爱。——莱杰 15、学习是劳动,是充满思想的劳动。——乌申斯基 16、我们一定要给自己提出这样的任务:第一,学习,第二是学习,第三还是学习。——列宁 17、学习的敌人是自己的满足,要认真学习一点东西,必须从不自满开始。对自己,“学而不厌”,对人家,“诲人不倦”,我们应取这种态度。——毛泽东 18、只要愿意学习,就一定能够学会。——列宁 19、如果学生在学校里学习的结果是使自己什么也不会创造,那他的一生永远是模仿和抄袭。——列夫· 托尔斯泰 20、对所学知识内容的兴趣可能成为学习动机。——赞科夫 21、游手好闲地学习,并不比学习游手好闲好。——约翰· 贝勒斯 22、读史使人明智,读诗使人灵秀,数学使人周密,自然哲学使人精邃,伦理学使人庄重,逻辑学使人善辩。——培根 23、我们在我们的劳动过程中学习思考,劳动的结果,我们认识了世界的奥妙,于是我们就真正来改变生活了。——高尔基 24、我们要振作精神,下苦功学习。下苦功,三个字,一个叫下,一个叫苦,一个叫功,一定要振作精神,下苦功。——毛泽东 25、我学习了一生,现在我还在学习,而将来,只要我还有精力,我还要学习下去。——别林斯基、学习外语并不难,学习外语就像交朋友一样,朋友是越交越熟的,天天见面,朋友之间就亲密无间了。——高士其 2、对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如了。——高士其 3、学和行本来是有联系着的,学了必须要想,想通了就要行,要在行的当中才能看出自己是否真正学到了手。否则读书虽多,只是成为一座死书库。——谢觉哉、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。 12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。 13、你想过普通的生活,就会遇到普通的挫折。你想过最好的生活,就一定会遇上最强的伤害。这个世界很公平,想要最好,就一定会给你最痛。

人教版数学三下第六册备课(1-4单元)

人教版数学三下第六册备课(1-4单元)

除法估算,除法的验算 例4: 用乘法验算除法 有关0的除法 例5: 有关0的除法 例6: 商的中间或末尾有0(1)(一位数除 三位数、商三位数) 例7: 商的中间或末尾有0(2)(一位数除 三位数、商三位三数)
第1课时:口算除法 教学:P13-15页,做一做,1、2、 P17页,1。 掌握一位数除整十整百数的口算方法 并能够正确的计算。
第3课:24时计时法 教学:书52页、53页例3,练习十三第 1—3题。 理解和发现普通记时法和24时记时法之 间的联系与区别,并能正确地把用这两 种记时法表示的时间进行互换。
第4课时:计算简单的经过时间 教学:练习十三第4—7题 能用一种或几种方法正确计算经过时间。
第5课时:实践活动,制作年历 教学:书P56~57 1、通过组织学生参加制作年历的实践活 动,使学生进一步巩固所学的年月日的 有关知识,加深对所学知识的理解。 2、知道年历的结构,懂得看年历,初步 掌握年历的制作方法,会用简单推算的 方法制作年历。
) )
第6课时: 一位数除三位数(商是两位数且有余数) 教学:第22页例3,练习五第1、2、4题。 通过交流优化算法,理解掌握用一位数 除三位数(商是两位数且有余数)的笔 算方法。
第7课时:一位数除三位数(商是两位数且有 余数)练习课 教学:第24页,补充练习 1、□54÷5,要使商是2位数, □里可以填 几?最大可以填几?如果要使商是三位数, □可以填几?最小填几? 2、528÷ □,要使商是2位数, □里可以填 几?最小可以填几?如果要使商是三位数, □可以填几?最大填几?
第8课时:除数是一位数除法的笔算综合 练习 教学:教科书第六册第23—24页及补充 内容 笔算练习补充 80÷5 68÷4 658÷7 364÷4 936÷2 296÷4

苏教版小学数学六年级下册第二单元《圆柱和圆锥》集体备课教案和计划

苏教版小学数学六年级下册第二单元《圆柱和圆锥》集体备课教案和计划

苏教版小学数学六年级下册第二单元《圆柱和圆锥》集体备课教案和计划一. 教材分析苏教版小学数学六年级下册第二单元《圆柱和圆锥》是本册教材中的重要内容,主要让学生掌握圆柱和圆锥的特征、计算方法以及应用。

通过本单元的学习,学生能够进一步理解立体图形的概念,提高空间想象能力,并为后续学习圆锥体积的计算打下基础。

二. 学情分析六年级的学生已经具备了一定的空间想象能力和逻辑思维能力,对立体图形有一定的了解。

但是,对于圆柱和圆锥的特征、计算方法以及应用,还需要通过本节课的学习来进一步掌握。

此外,学生可能对圆柱和圆锥的计算公式理解不够深入,需要在课堂上进行巩固和拓展。

三. 教学目标1.知识与技能:掌握圆柱和圆锥的特征,了解它们的计算方法,能够运用圆柱和圆锥的知识解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.重点:圆柱和圆锥的特征、计算方法以及应用。

2.难点:圆柱和圆锥体积的计算公式的理解和应用。

五. 教学方法采用问题驱动法、合作学习法、实践操作法等多种教学方法,引导学生主动探究、合作交流,提高学生的空间想象能力和逻辑思维能力。

六. 教学准备1.教具:圆柱和圆锥的模型、图片、幻灯片等。

2.学具:每个学生准备一个圆柱和圆锥的模型,以及计算工具。

七. 教学过程1. 导入(5分钟)教师通过展示圆柱和圆锥的图片,引导学生回顾已学的立体图形知识,为新课的学习做好铺垫。

2. 呈现(10分钟)教师通过幻灯片呈现圆柱和圆锥的特征,引导学生观察、思考,总结出圆柱和圆锥的基本特征。

3. 操练(10分钟)学生分组进行实践操作,观察和测量圆柱和圆锥的底面半径、高、体积等,进一步理解和掌握圆柱和圆锥的特征和计算方法。

4. 巩固(10分钟)教师通过一些练习题,帮助学生巩固对圆柱和圆锥的理解和计算能力。

圆柱和圆锥(全部整合)

圆柱和圆锥(全部整合)

D
5
B4 C
13.把一个棱长是2分米的正方体削
成一个最大的圆柱体,它的侧面积 是( B )平方分米。 A.6.28 B.12.56 C.18.84 D. 25.12
2
2
2
2×3.14×2
14.把一个棱长是10厘米的正方体削
成一个最大的圆柱体,它的体积是 ( C )立方厘米。 A.3140 B.392.5 C.785 D. 314
10 8
2号题
计算图形的表面积(单位:厘米 )
6
上面圆柱的侧面积
5 下面圆柱的表面积
5 10
3号题
如图,想想办法,你能否求 它的体积?( 单位:厘米)
4
2
6
[3.14×1×1×(6+4)] ÷2=15.7( 立方厘米)
4号题 用塑料绳捆扎一个圆柱形的蛋糕
盒(如下图),打结处正好是底面圆心, 打结去20厘米绳长。
18.84
A
4
B
2
12.56
C
20
D
6
3.下雨时,给打谷场上的
圆锥形谷堆盖上塑料防 雨布,所需防雨布的最小 面积是指圆锥的( C ). A. 表面积 B.体积 C. 侧面积
4.一根圆柱形木材长2米,把截成4 个相等的圆柱体. 表面积增加了 18平方分米.截后每段圆柱体积 是( 660ddmm33 ).
P
B
A
P
Q
Q
P
C

(1)以长方形的一边 为轴旋转一周,扫过的 空间是什么形状?你可 以求出它的体积吗?
(2)以三角形的一条 直角边为轴旋转一周, 扫过的空间是什么形 状?你可以求出它的 B 体积吗?
5 4

《圆柱、圆锥、圆台、球》教学设计

《圆柱、圆锥、圆台、球》教学设计

1.1 空间几何体的结构1.1.3 圆柱、圆锥、圆台、球(张伟)一、教学目标(一)核心素养通过这节课学习,了解圆柱、圆锥、球的定义,培养空间想象能力,体会立体几何的特点.(二)学习目标1.通过实例,了解圆柱、圆锥、球的定义和性质.2.会识别圆柱、圆锥的展开图.3.会处理和圆柱、圆锥、球的截面有关的简单问题.(三)学习重点1.圆柱、圆锥、球的概念.2.圆柱、圆锥、球的性质.(四)学习难点1.利用圆柱、圆锥的展开图处理最短路径问题.2.球的截面.3.棱柱、棱锥的外接球和内切球问题.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第4页至第6页,填空:圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的旋转体叫做圆柱.旋转轴叫做圆柱的轴;垂直于旋转轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面,圆柱的侧面又称为圆柱面,无论转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆锥的定义:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转而形成的面所围成的旋转体叫做圆锥.旋转轴叫做圆锥的轴;垂直于旋转轴的边旋转而成的圆面称为圆锥的底面;不垂直于旋转轴的边旋转而成的曲面叫做圆锥的侧面,圆锥的侧面又称为圆锥面,无论转到什么位置,这条边都叫做圆锥侧面的母线.圆台的定义:以直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆台.还可以看成是用平行于圆锥底面的平面截这个圆锥,截面与底面之间的部分.旋转轴叫做圆台的轴;垂直于旋转轴的边旋转而成的圆面称为圆台的底面;不垂直于旋转轴的边旋转而成的曲面叫做圆台的侧面,无论转到什么位置,这条边都叫做圆台侧面的母线.球的定义:以半圆的直径所在的直线为旋转轴,将半圆旋转一周所形成的曲面称为球面,球面所围成的旋转体称为球体,简称球.半圆的圆心称为球心,连接球面上任意一点与球心的线段称为球的半径,连接球面上两点并且过球心的线段称为球的直径.大家观察课本第2页的图,结合定义,找出其中的圆柱、圆锥、圆台、球.大家举例说明,生活中那些物体含有圆柱、圆锥、圆台、球?2.预习自测(1)圆柱的轴截面一定为()A.矩形B.正方形C.菱形D.梯形【答案】A.【知识点】圆柱的定义【解题过程】圆柱的轴截面不一定为正方形,B错;但一定为矩形【思路点拨】以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的旋转体叫做圆柱.(2)以直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做()A.圆柱B.圆锥C.圆台D.球【答案】C.【知识点】圆台的定义【解题过程】圆台的有轴、底面、侧面、母线,本题中垂直于底边的腰所在的直线是圆台的轴线,另一条腰是母线,故选C.【思路点拨】空间想象出由一平面图形得到的旋转体.(3)球的截面一定是()A.圆B.圆或三角形C.圆或矩形D.圆或椭圆【答案】A.【知识点】球的定义【解题过程】球的任一截面一定是圆,故选A.【思路点拨】空间想象出球的截面.(二)课堂设计1.知识回顾:上节课我们主要学习了棱锥和棱台.我们一起回忆一下:(1)有一面为多边形,其余各面都是有一个公共顶点的三角形,这些面围成的多面体叫做棱锥.(2)用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台.(3)底面是正多边形并且顶点在底面的射影是底面正多边形中心的棱锥叫正棱锥.(4)由正棱锥截得的棱台叫做正棱台.2.问题探究探究一认识圆柱、圆锥、圆台,球★我们可以这样认识圆柱、圆锥、圆台:静态的观点:底面为圆,侧面是曲面(圆锥的顶点可以看作退化的点圆).动态的观点:平面图形绕某条边旋转形成的面围成的旋转体.OO圆柱的表示方法:用表示它的轴的字母表示,如圆柱'圆锥的表示方法:用表示它的轴的字母表示,如圆锥SO.OO圆台的表示方法:用表示轴的字母表示,如圆台'球的表示方法:用表示球心的字母表示,如球O●活动①性质分析通过定义,我们分析一下圆柱、圆锥、圆台,球的性质.类比上节课我们对棱锥和棱台的分析,大家可以用表格的形式来比较.大家讨论完毕之后,老师总结如下:结构特征圆柱圆锥圆台球定义以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆柱以直角三角形的一条直角边为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥以直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆台以半圆的直径所在的直线为旋转轴,将半圆旋转一周所形成的曲面称为球面,球面所围成的几何体称为球体,简称球底面两底面是平行且半径相等的圆圆两底面是平行但半径不相等的圆无侧面展开图矩形扇形扇环不可展开母线平行且相等相交于顶点延长线交于一点无【设计意图】类比棱柱、棱锥、棱台,培养对知识的归纳整理能力.●活动②辨析概念请大家判断正误:(1)以直角三角形的一直角边为轴旋转所得的旋转体是圆锥.(2)圆柱、圆锥、圆台都有两个底面.(3)以直角梯形的一腰为轴旋转所得的旋转体是圆台.(4)圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆的半径.分析与解答:根据圆锥的定义,(1)正确;圆锥仅有一个底面,所以(2)不正确以直角梯形垂直于底的腰为轴,旋转所得的旋转体才是圆台,所以(3)不正确圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的母线长,所以(4)不正确大家做对了吗?【设计意图】通过概念辨析,加深对概念内涵与外延的理解,突破重点.●活动③简单的组合体问题:矿泉水塑料瓶由哪些几何体构成?灯管呢?现实生活中的物体大多是简单组合体.简单组合体的构成有两种方式:由简单几何体拼接而成;由简单几何体截去或挖去一部分而成.将下列几何体按结构特征分类填空:(1)集装箱;(2)运油车的油罐;(3)排球;(4)羽毛球;(5)魔方;(6)金字塔;(12)三棱镜;(8)滤纸卷成的漏斗;(9)量筒;(10)量杯;(11)地球;一桶方便面;(13)一个四棱锥形的建筑物被飓风挂走了一个顶,剩下的上底面与地面平行;①棱柱结构特征的有________________________;②棱锥结构特征的有________________________;③圆柱结构特征的有________________________;④圆锥结构特征的有________________________;⑤棱台结构特征的有________________________;⑥圆台结构特征的有________________________;⑦球的结构特征的有________________________;⑧简单组合体有_____________________________答案:棱柱结构:(1)、(5)、(7)棱锥结构:(6)圆柱结构:(2)、(9)圆锥结构:(8)棱台结构:(13)圆台结构:(10)、(12)球结构:(3)、(11)简单组合体:(4)请指出下列几何体是由哪些简单几何体组合而成的.观察上图,结合生活实际经验,简单组合体有几种组合形式?请你总结长方体与球体能组合成几种不同的组合体.它们之间具有怎样的关系?让学生仔细观察上图,教师适当时候再提示.图中的三个组合体分别代表了不同形式.学生可以分组讨论,教师可以制作有关模型展示.讨论结果总结:由简单几何体组合而成的几何体叫做简单组合体.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成.图(1)是一个四棱锥和一个长方体拼接成的,这是多面体与多面体的组合体.图(2)是一个圆台挖去一个圆锥构成的,这是旋转体与旋转体的组合体;图(3)是一个球和一个长方体拼接成的,这是旋转体与多面体的组合体.【设计意图】通过生活中的数学模型,对抽象的数学概念有直观的理解. 探究二 多面体和旋转体的整体比较★●活动① 理清我们学过的多面体和旋转体的关系⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧球圆台圆锥圆柱旋转体棱台棱锥棱柱多面体简单几何体【设计意图】通过复习,加深对多面体和旋转体的认识.●活动② 截面问题请想一想正方体的截面可能是什么形状的图形? 请同学积极思考,发言对于正方体的分割,可通过实物模型,实际切割实验,还可借助于多媒体手段进行切割实验.对于切割所得的平面图形可根据它的定义进行证明,从而判断出各个截面的形状. 探究:本题考查立体几何的空间想象能力,通过尝试、归纳,可以有如下各种肯定或否定性的 教师总结如下:(1)截面可以是三角形:等边三角形、等腰三角形、一般三角形.(2)截面三角形是锐角三角形,截面三角形不能是直角三角形、钝角三角形.(3)截面可以是四边形:平行四边形、矩形、菱形、正方形、梯形、等腰梯形;截面为四边形时,这个四边形至少有一组对边平行. (4)截面不能是直角梯形.(5)截面可以是五边形:截面五边形必须有两组分别平行的边,同时有两个角相等;截面五边形不可能是正五边形.(6)截面可以是六边形:截面六边形必须有分别平行的边,同时有两个角相等. (7)截面六边形可以是等角(均为120°)的六边形,即正六边形. 截面图形如图12中各图所示:【设计意图】培养立体几何的空间想象能力,培养学生联想、尝试、归纳,构造的能力.活动③巩固基础,检查反馈例1 圆台的上底面和下底面是()A.全等的圆B.不全等的圆C.全等的多边形D.相似的多边形【知识点】棱台和圆台的区别.【数学思想】【解题过程】由圆台的定义可知B正确.【思路点拨】对比定义逐一分析即可.【答案】B.同类训练圆锥的轴截面一定是()A.等腰三角形B.等边三角形C.圆D.直角三角形【知识点】圆锥的定义.【数学思想】【解题过程】圆锥的轴截面是等腰三角形,圆锥的母线为其两腰.【思路点拨】准确理解圆锥定义.【答案】A.例2 下列几个命题中,①两个面平行且相似,其余各面都是梯形的多面体是棱台;②有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;③各侧面都是正方形的四棱柱一定是正方体;④分别以矩形两条不等的边所在直线为旋转轴,将矩形旋转,所得到的两个圆柱是两个不同的圆柱.其中正确的有()个.A.1B.2 C.3 D.4【知识点】多面体和旋转体的综合问题.【数学思想】【解题过程】①中两个底面平行且相似,其余各面都是梯形,并不能保证侧棱会交于一点,①错误.②中两个底面互相平行,其余四个面都是等腰梯形,也有可能两底面根本就不相似,②错误.③中底面不一定是正方形,所以③不正确根据定义④是正确的.【思路点拨】使用定义逐一分析.【答案】A.●活动④强化提升、灵活应用例3 一个无盖的正方体盒子展开后的平面图,如下图所示,A、B、C是展开图上的三点,则在正方体盒子中∠ABC=____________.【知识点】多面体的展开图.【数学思想】构造.【解题过程】如下图所示,折成正方体,很明显点A、B、C是上底面正方形的三个顶点,则∠ABC=90°【思路点拨】发挥空间想象能力,将正方体还原.【答案】90°同类训练有一粒正方体的骰子每一个面有一个英文字母,如下图所示.从3种不同角度看同一粒骰子的情况,请问H反面的字母是___________.【知识点】柱体性质.【数学思想】【解题过程】正方体的骰子共有6个面,每个面都有一个字母,从每一个图中都看到有公共顶点的三个面,与标有S的面相邻的面共有四个,由这三个图,知这四个面分别标有字母H、E、O、p、d,因此只能是标有“p”与“d”的面是同一个面,p与d是一个字母;翻转图②,使S面调整到正前面,使p转成d,则O为正下面,所以H的反面是O.【思路点拨】空间想象,还原正方体六个面上的字母.【答案】O.3.课堂总结知识梳理(1)以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的旋转体叫做圆柱.(2)以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转而形成的面所围成的旋转体叫做圆锥.(3)以直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆台.(4)以半圆的直径所在的直线为旋转轴,将半圆旋转一周所形成的曲面称为球面,球面所围成的旋转体称为球体.重难点归纳(1)圆柱和圆锥的轴截面性质.(2)圆柱和圆锥的展开图.(三)课后作业基础型自主突破1.圆台的轴截面一定是()A.矩形B.三角形C.直角梯形D.等腰梯形【知识点】圆台的定义.【数学思想】【解题过程】由定义可知圆台的轴截面为等腰梯形.【思路点拨】准确理解圆台的定义.【答案】D.2.圆锥的底面半径为1,母线长度为2,则圆锥的高为()A .1B .2C .3D .5【知识点】圆锥的高与母线的区别.【数学思想】 【解题过程】由勾股定理,高等于31222=-.【思路点拨】分离局部图形,立体几何问题平面几何化.【答案】C .3. 球O 与棱长为1的正方体的所有面均相切,则球O 的半径为( )A .1B .2C .21D .22【知识点】简单的内切球问题.【数学思想】 【解题过程】正方体的内切球直径等于正方体的棱长,故半径为21.【思路点拨】想象出球与正方体相切的状态. 【答案】C . 4.下列叙述中正确的个数是( )①以直角三角形的一边为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转所得的旋转体是圆台;③一个圆绕其直径所在的直线旋转半周所形成的曲面围成的几何体是球;④用一个平面去截圆锥,得到一个圆锥和一个圆台.A .0B .1C .2D .3【知识点】柱体和锥体的定义. 【数学思想】【解题过程】①错误.应以直角三角形的一条直角边为轴;②错误.应以直角梯形的垂直于底边的腰为轴;③错误.应把“圆”改成“圆面”;④错误,应是平面与圆锥底面平行时.【思路点拨】紧扣定义,逐一判断.【答案】A . 5.请描述下图所示的组合体的结构特征.【知识点】识别简单的组合体.【数学思想】 【解题过程】 图(1)是由一个圆锥和一个圆台拼接而成的组合体;图(2)是由一个长方体截去一个三棱锥后剩下的部分得到的组合体;图(3)是由一个圆柱挖去一个三棱锥剩下的部分得到的组合体.【思路点拨】准确理解简单多面体的定义,对简单的多面体有直观的判断.【答案】见解题过程. 6.用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1:16,截去的圆锥的母线长是3cm ,求圆台的母线长.【知识点】圆台轴截面的性质.【数学思想】 【解题过程】设圆台的母线为,截得圆台的上、下底面半径分别为r ,4r . 根据相似三角形的性质得:l 33=rr 4,解得l =9. 所以圆台的母线长为9cm .【思路点拨】分离出圆台的轴截面,利用相似三角形求解.【答案】9cm . 能力型 师生共研 7.连接正方体的相邻各面的中心(所谓中心是指各面所在正方形的两条对角线的交点),所得的一个几何体是几面体?并画图表示该几何体.【知识点】构造多面体.【数学思想】构造 【解题过程】如上图(1),正方体ABCD —A 1B 1C 1D 1,O 1、O 2、O 3、O 4、O 5、O 6分别是各表面的中心.由点O 1、O 2、O 3、O 4、O 5、O 6组成了一个八面体,而且该八面体共有6个顶点,12条棱.该多面体的图形如图(2)所示.【思路点拨】先画出正方体,然后取各个面的中心,并依次连成线观察即可.【答案】见解题过程.8.下图为某竞赛中,获得第一名的代表队被授予的奖杯,试分析这个奖杯是由哪些简单几何体组成的?【知识点】简单的组合体.【数学思想】【解题过程】奖杯由一个球,一个四棱柱和一个四棱台组成.【思路点拨】熟悉各种简单多面体的直观图. 【答案】见解题过程.探究型 多维突破9.设圆锥母线长为2,高为1,过圆锥的两条母线作一个截面,求截面面积的最大值.【知识点】圆锥轴截面的性质.【数学思想】数形结合 【解题过程】由已知圆锥轴截面等腰三角形的顶角为 120,截面面积θsin 21⋅⋅⋅=l l S , 其中l 为圆锥的母线,θ为截面等腰三角形的顶角,且 1200<<θ故当 90=θ时面积最大,最大值为221max =⋅⋅=l l S .【思路点拨】写出截面的函数解析式,再求它的最大值.【答案】2.10.将一个半径为R 的木球削成尽可能大的正方体,求正方体的棱长.【知识点】正方体的外接球.【数学思想】构造 【解题过程】正方体的体对角线为球的直径,设正方体的棱长为x ,则R x R x x x 3322222=⇒=++.【思路点拨】想象出内接正方体的状态,再列方程求解. 【答案】R 332. 自助餐1.把直角三角形绕斜边旋转一周,所得的几何体是( )A .圆锥B .圆柱C .圆台D .由两个底面贴近的圆锥组成的组合体【知识点】旋转体.【数学思想】【解题过程】可以想象出几何体是两个“背靠背”的圆锥.【思路点拨】画出图形分析即可.【答案】D . 2.下列几何体的轴截面一定是圆面的是( )A .圆柱B .圆锥C .球D .圆台【知识点】旋转体.【数学思想】【解题过程】由球的定义可知,它的轴截面一定是圆面.【思路点拨】按照定义,逐一分析.【答案】C . 3.下列几个命题中,正确的有 (填序号).①圆锥的截面一定是三角形;②棱台的侧面一定是等腰梯形;③棱柱的上下底面一定是全等的多边形;④圆台截面可能是圆面.【知识点】多面体和旋转体的定义与性质.【数学思想】【解题过程】与圆锥底面平行的截面为圆,故①错误;棱台的侧面一定是梯形,未必等腰,故②错误;由棱柱定义可知③正确;与圆台底面平行的截面为圆,故④正确.【思路点拨】按照定义,逐一验证.【答案】③④.4.用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm,圆台的上底面半径为1 cm,则圆台的高为.【知识点】圆台轴截面.【数学思想】数形结合【解题过程】∵圆台的上底半径为1,故下底半径为4,根据相似三角形可知圆台的母线长度等于9,如下图所示,在Rt△A′HA中A′H=AA′2-AH2=92-32=62.故圆台的高为62cm.【思路点拨】分离出轴截面,用平几知识求解.【答案】6 2 cm.5.已知AB是直角梯形ABCD中与底边垂直的一腰,如下图所示.分别以AB,BC,CD,DA所在的直线为轴旋转,试说明所得几何体的结构特征.【知识点】旋转体. 【数学思想】 【解题过程】(1)以AB 边为轴旋转所得旋转体是圆台.如图①所示.(2)以BC 边为轴旋转所得旋转体是一组合体:下部为圆柱,上部为圆锥,如图②所示(3)以CD 边为轴旋转所得旋转体为一个组合体:上部为圆锥,下部为圆台,再挖去一个小圆锥.如图③所示(4)以AD 边为轴旋转得到一个组合体:一个圆柱上部挖去一个圆锥,如图④所示.① ② ③ ④【思路点拨】以直角梯形的不同边所在直线为轴旋转,所得到的几何体是不同的. 【答案】见解题过程.6.若母线长是4的圆锥的轴截面的面积是8,求该圆锥的高.【知识点】圆锥的轴截面. 【数学思想】方程思想.【解题过程】设圆锥的底面半径为r ,则圆锥的高h =42-r 2.所以由题意可知12·(2r )·h =r 42-r 2=8,∴r 2=8,∴h =22.【思路点拨】设字母表示未知量,列方程求解.【答案】22.。

市区小学校本课程活动评价方案(精选5篇)

市区小学校本课程活动评价方案(精选5篇)

市区小学校本课程活动评价方案(精选5篇)市区小学校本课程活动评价方案精选篇1一、教材内容简析:本册教材内容分为“圆柱和圆锥”、“正比例和反比例”和“总复习”三部分。

“总复习”包括4个单元。

(一)圆柱和圆锥:包括“面的旋转”“圆柱的表面积”“圆柱的体积”“圆锥的体积”4个课题。

(二)正比例和反比例:包括“变化的量”“正比例”“画一画”“反比例”“观察与探究”“图形的放缩”“比例尺”7个课题。

(三)总复习:包括“数与代数”“空间与图形”“统计与概率”“解决问题的策略”。

二、教学目的和要求:1、使学生认识圆柱和圆锥,掌握它们的特征,认识圆柱的底面、侧面和高,认识圆锥的底面和高,会求圆柱的侧面积和表面积,掌握圆柱圆锥的体积计算方法。

2、使学生理解、掌握正比例、反比例的意义,能正确判断两种量是否成正比例、反比例。

学会使用数对确定点的位置,懂得将图形按一定比例进行放大和缩小。

理解比例尺的意义,能正确计算平面图的比例尺。

提高学生利用已有知识、技能解决问题的能力,培养学生应用数学的意识和周密思考问题的良好习惯。

3、通过对生活中与体育相关问题的解决,使学生学会综合运用包括算式与方程在内的相关知识和技能解决问题,发展抽象思维能力和解决问题的能力,进一步培养学生应用数学的意识。

4、通过对生活中与科技相关问题的解决,使学生扩展数学视野,培养实事求是的科学精神和态度,进一步发展学生的思维能力,提高解决问题的能力和增强应用数学的意识。

5、使学生比较系统地牢固地掌握有关整数和小数、分数和百分数、简易方程、比和比例等基础知识;具有进行整数、小数、分数四则运算的能力,会使用学过的简便算法,合理、灵活地进行计算,进一步提高计算能力;会解简易方程;养成检查和验算的习惯。

6、使学生巩固已获得的一些计量单位大小的表象,进一步明确各种计量单位的应用范围,牢固地掌握所学的单位间的进率,能够比较熟练地进行名数的简单换算。

7、使学生牢固地掌握所学的几何形体的特征,进一步掌握一些计算公式的推导过程和相互之间的联系,能够比较熟练地计算一些几何形体的周长、面积和体积,巩固所学的简单画图、测量等技能,进一步发展学生的空间观念。

圆柱与圆锥教案(集锦7篇)

圆柱与圆锥教案(集锦7篇)

圆柱与圆锥教案(集锦7篇)篇1:圆柱与圆锥知识要点:圆柱:(1)特征:是由两个底面和一个侧面三部分组成的。

底面是两个完全相同的圆侧面是一个曲面。

(2)圆柱的侧面及其与底面之间的关系:沿高剪开的展开图是一个长方形(或正方形)这个长方形的长等于圆柱底面圆的周长,宽等于圆柱的高。

(3)圆柱的高:圆柱两个底面之间的距离叫做高,有无数条高。

(4)侧面积:圆柱的侧面积=底面周长某高,用字母表示为S侧?Ch(5)表面积:圆柱的表面积=侧面积+底面积某2(6)体积:圆柱的体积=底面积某高,用字母表示为V?Sh圆锥:(1)特征:由一个底面和一个侧面两部分组成,它的底面是一个圆,侧面是一个曲面。

(2)圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高,圆锥只有一条高。

圆锥的体积等于和它等底等高的圆柱体积的?(3)体积:?11?公式:V?V?Sh圆锥圆柱?33?13解题大智慧一、用圆柱的特征解题1、填空(1)把圆柱的侧面沿高剪开,展开图是一个长方形,圆柱的底面周长就是它的(),圆柱的高就是它的()(2)当圆柱的()和()相等时,它的侧面展开图是一个正方形。

(3)把一个底面半径是 2 cm 的圆柱的侧面展开,得到一个正方形,这个圆柱的高是()cm。

2、把一个圆柱的侧面展开后得到一个正方形,那么这个圆柱的高与底面直径的比是多少?3、一个底面周长是9.42cm,高是5cm的圆柱,沿底面直径把它切割成两个半圆柱后,切割面的面积一共是多少平方厘米?二、用圆柱的侧面积和表面积解题1、一个圆柱,底面周长是31.4dm,高是10dm,求它的侧面积?如果不是已知底面周长,而是已知底面半径或直径呢?2、一个圆柱的底面周长是94.2cm,高是25cm,求它的表面积。

3、一顶圆柱形厨师帽,高28cm,冒顶直径20cm,做这样10顶帽子需要多少面料?4、用铁皮制作1节通风管,它的长是60cm,底面圆的直径是10cm。

至少需要铁皮多少平方厘米?5、做一对无盖的圆柱形铁皮水桶,高是40cm,底面直径是30cm,至少需要铁皮多少平方厘米?6、把一张长16cm,宽6.5cm的长方形围成一个圆柱形纸筒,这个圆柱形纸筒的侧面积是多少平方厘米?7、挖一个圆柱形的蓄水池,已知它的底面直径是3m,池深2.5m。

第三单元《圆柱和圆锥》章节总复习-六年级下册数学同步重难点讲练 人教版(含解析)

第三单元《圆柱和圆锥》章节总复习-六年级下册数学同步重难点讲练  人教版(含解析)

六年级下册数学同步重难点讲练圆柱、圆锥总复习教学目标1,通过整理和复习,学生进一步认识圆柱、圆锥的特征,掌握圆柱表面积、体积,圆锥体积的计算方法。

2、综合运用所学知识,灵活地解决与圆柱、圆锥有关的数学问题。

教学重难点重点:归纳整理有关圆柱和圆锥的知识,形成知识体系。

难点:综合运用所学知识,灵活地解决与圆柱、圆锥有关的数学问。

知识点1:圆柱的特征(1)底面的特征:圆柱的底面是完全相的两个圆。

(2)侧面的特征:圆柱的侧面是一个曲面。

(3)高的特征:圆柱有无数条高。

7.圆柱的体积:2、圆柱的高:两个底面之间的距离叫做高。

3、圆柱的侧面展开图:当沿高展开时展开图是长方形;当底面周长和高相等时,沿高展开图是正方形;当不沿高展开时展开图是平行四边形。

【典例分析1】(2019春•平舆县月考)在下图中,以直线为轴旋转,可以得到圆柱体的是()A.B.C.D.【思路引导】根据各图形的特征,长方形绕一边所在的直线为轴旋转一周得到到一个圆柱;由此规范解答即可.【完整解答】由圆柱的特点可知:在下图中,以直线为轴旋转,可以得到圆柱体的是;故选:C .【变式训练1】(2019•大渡口区)15、用丝带捆扎一个圆柱形的蛋糕盒(如图),打结处正好是底面圆心,打结用去25厘米丝带,扎这个礼品盒至少需要( )的丝带.A .255cmB .260cmC .285cmD .460cm知识点2:圆柱的侧面积、表面积和体积1、圆柱的侧面积:圆柱的侧面积=底面的周长×高,用字母表示为:S 侧=Ch 。

2、圆往的表面积:圆柱的表面积=侧面积+2×底面积。

即s 表=s 侧+2s 底。

3、圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。

V=Sh【典例分析2】(2019•怀化模拟)求下面各图形的表面积.(单位:)cm(1)(2)【思路引导】根据圆柱体的表面积=底面面积2⨯+侧面积,依据公式列式规范解答即可.【完整解答】(1)23.1432 3.143210⨯⨯+⨯⨯⨯56.52188.4=+2244.92()cm =答:表面积是2244.92cm .(2)23.14(122)2 3.14125⨯÷⨯+⨯⨯226.08188.4=+2414.48()cm =答:表面积是2414.48cm .【变式训练2】(2019•漳浦县校级自主招生)如图1是三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:)cm .将它们拼成如图2的新几何体,则该新几何体的体积用π表示,应为( )A .364cm πB .360cm πC .356cm πD .340cm π知识点3:圆锥的特征1、圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。

人教版数学六年级下册第13课圆锥的体积教学设计(推荐3篇)

人教版数学六年级下册第13课圆锥的体积教学设计(推荐3篇)

人教版数学六年级下册第13课圆锥的体积教学设计(推荐3篇)人教版数学六年级下册第13课圆锥的体积教学设计【第1篇】一、教学内容《圆锥的体积》是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。

二、教材分析本课属于属于空间与图形知识的教学,是小学阶段几何知识的重难点部分。

”六年级学生在经过小学六年的学习,已经具有了一定的空间想象能力和动手能力。

三、教学目标1、通过动手操作参与实验,发现等底等高的圆柱与圆锥体积之间的关系,从而得出圆锥体积的计算公式。

2、能运用公式解答有关的实际问题。

四、教学重难点教学重点:圆锥体积的计算公式教学难点:圆锥的体积公式推导。

五、课前准备课件六、教学过程一、谈话引入今天,我们来学习圆锥的体积公式是怎样推导出来的?二、自主探索,操作实验下面,我们一起来做个小实验(1)取一个圆柱体的容器和圆锥体的容器各一个。

让学生观察一下,得出:这两个容器等底等高。

(2)往圆锥体容器中装满水,倒入圆柱体的容器中,一连倒入三次,这时候圆柱体的容器中装满水。

(3)这两个容器等底等高,通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?引导学生观察:圆柱的体积的三分之一等于圆锥的体积,而圆柱的体积等于底面积乘高,圆柱体积的三分之一用底面积乘高乘三分之一表示,因为圆柱体积的三分之一等于圆锥的体积,所以推导出圆锥的体积等于底面积乘高乘三分之一。

用字母表示:v=1/3sh三、练习填空1、圆锥的体积=(),用字母表示是()。

2、圆柱体积的与和它()的圆锥的体积相等。

3、一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是()立方分米。

学生练习,教师总结。

四、巩固练习:求下面各圆锥的体积,只列算式。

(单位:厘米)观察第一个图形告诉底面半径和高,要先求出底面积,然后根据圆锥的体积公式带入数字。

第二个图形告诉底面直径和高,要先求出底面半径,再求底面积,然后根据圆锥的体积公式带入数字。

小学数学六年级下册寒假预习课程6圆柱与圆锥单元整理复习教师版

小学数学六年级下册寒假预习课程6圆柱与圆锥单元整理复习教师版
例 6. 一个圆柱体,如果把它的高截短 2 厘米,表面积就减少 62.8 平方厘米,那么它的体积就减少( )立方厘米。 例 7. 把一块石头完全浸没在底面半径为 3.5dm 的圆柱形容器的水里,水面上升了 0.2dm(水没有溢出)。这块石 头的体积是多少?
例 8. 在一个底面半径为 4 厘米,高 10 厘米的圆柱形量杯内放入水,水面高 8 厘米,把一个小铁球放入水中,水满后还溢 出 15.7 克,求小铁球的体积是多少?(1 立方厘米的水重 1 克)
6. 一个圆锥形稻谷堆,底面周长是 18.84 米,高 1 米。如果每立方米稻谷重 0.8 吨,这堆稻谷重多少吨?
知识点讲解 3:圆柱与圆锥的表面积与体积的应用
问题(1)导入:把一块长 10 厘米,宽 15.7 厘米,高 10 厘米的长方体橡皮泥,捏成直径是 2 厘米的圆柱形橡皮泥条,橡 皮 泥条长多少厘米? 解答:根据橡皮泥前后质量没变化,只是外形变了,由长方体捏成圆柱体,所以长方体的体积等于圆柱体的体积。 V 柱=V 长=10×15.7×10=1570(立方厘米), r=d÷2=2÷2=1(厘米) 橡皮泥的长即是圆柱体的高,h=V 柱÷πr² =1570÷3.14÷1²=500(厘米) 答:橡皮泥条长 500 厘米。 ★ 小结:等积变形,即形状变了,体积不变。先算出其中一个物体的体积,再算另一个物体的部分量。
问题(3)导入:有一个圆柱形水桶,底面直径 2 分米,盛水未满,放入一个铁球,当铁球完全沉入水中之后,水面升高 3 厘米,求铁球的体积是多少?
解答:2 分米=20 厘米, r=d÷2=20÷2=10(厘米) V 铁球=V 上升=πr² h 升=3.14×10²×3=942(立方厘 米) 答:铁球的体积是 942 立方厘米。 ★ 小结:解决立体图形容积的实际问题(运用转化法和排水法): 上升(下降、溢出)水的体积=物体的体积
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆柱底面 有关条件

圆柱 侧面积
圆柱 表面积
圆柱 体积
与圆柱等 底等高 的圆锥 体体积
半径 3厘米
2 厘米
3 周长 25.12厘米 厘米
直径 4厘米 75.36 平方厘米
1、第一种情况:等底等高: 若圆柱的体积是圆锥体积的3倍,则圆锥 的体积是圆柱的( ); 圆柱的体积与圆锥体积的和是圆柱体积的 ( ),圆柱的体积与圆锥体积的和是 圆锥体积的( );圆柱的体积是圆柱 的体积与圆锥体积的和的( );圆 锥的体积是圆柱的体积与圆锥体积的和的 ( )
靠墙临时堆放着一些粮食,这些粮食的底 面半径1.2高是0.6米。这堆粮食的体积是多 少立方米?
农民伯伯用一张长1.884米, 宽1.256米的长方形席子围成 一个圆柱形粮囤,想一想你打 算怎样围并说说你为什么这样 围?
计算密闭容器的表面积和体积。 (单位:米)
思考:通过数据,从制作成本的角度考虑, 你愿意选择哪种容器,理由是 什么?
2、第二种情况:等体等底 若圆锥的高是圆柱高的3倍,那么,圆 柱的高是圆锥高的( );圆柱的高 与圆锥高的和是圆柱高的( ), 圆柱的高与圆锥高的和是圆锥高的 ( );圆柱的高是圆柱的高与圆 锥高的和的( );圆锥的高是圆 柱的高与圆锥高的和的( )。
Байду номын сангаас
3、第三种情况:等体等高 若圆锥的底面积是圆柱底面积的3倍,那么, 圆柱的底面积是圆锥底面积的( );圆 柱的底面积与圆锥底面积的和是圆柱底面 积的( ),圆柱的底面积与圆锥底面 积的和是圆锥底面积的( );圆柱的 底面积是圆柱的底面积与圆锥底面积的和 的( );圆锥的底面积是圆柱的底面 积与圆锥底面积的和的( )。
A B
r=3 h=1.6
r=4 h=0.9
如下图,一个蒙古包由一个圆 柱和一个圆锥组成。这个蒙古 包所占的空间是多少立方米?
相关文档
最新文档