高考文数题型秘籍【24】平面向量的概念及其线性运算原卷版
第1节 平面向量的概念及线性运算--2025年高考数学复习讲义及练习解析
第一节平面向量的概念及线性运算课标解读考向预测1.理解平面向量的意义、几何表示及向量相等的含义.2.掌握向量的加法、减法运算,并理解其几何意义及向量共线的含义.3.了解向量线性运算的性质及其几何意义.预计2025年高考对本节内容的考查会以线性运算、共线向量定理为主,主要以选择题、填空题的形式出现,难度属中、低档.必备知识——强基础1.向量的有关概念名称定义表示向量在平面中,既有大小又有方向的量用a ,b ,c ,…或AB →,BC →,…表示向量的模向量a 的大小,也就是表示向量a 的有向线段AB →的长度(或称模)|a |或|AB →|零向量长度为0的向量用0表示单位向量长度等于1个单位的向量用e 表示,|e |=1平行向量方向相同或相反的非零向量(或称共线向量)a ∥b 相等向量长度相等且方向相同的向量a =b相反向量长度相等,方向相反的向量向量a 的相反向量是-a说明:零向量的方向是不确定的、任意的.规定:零向量与任一向量平行.2.向量的线性运算向量运算法则(或几何意义)运算律加法交换律:a +b =01b +a ;结合律:(a +b)+c =02a+(b +c )减法a -b =03a +(-b )数乘|λa |=|λ||a |,当λ>0时,λa 的方向与a 的方向04相同;当λ<0时,λa 的方向与a 的方向05相反;当λ=0时,λa =060λ(μa )=07(λμ)a ;(λ+μ)a =08λa +μa ;λ(a +b )=09λa +λb3.向量共线定理向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使得b =λa .提醒:当a ≠0时,定理中的实数λ才唯一.1.一般地,首尾顺次相接的多个向量的和等于从第一个向量的起点指向最后一个向量的终点的向量,即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n =A 1A n →.特别地,一个封闭图形,首尾连接而成的向量和为零向量.2.若F 为线段AB 的中点,O 为平面内任意一点,则OF →=12OA →+OB →).3.若A ,B ,C 是平面内不共线的三点,则PA →+PB →+PC →=0⇔P 为△ABC 的重心,AP →=13(AB→+AC →).4.若OA →=λOB →+μOC →(λ,μ为常数),则A ,B ,C 三点共线的充要条件是λ+μ=1.5.对于任意两个向量a ,b ,都有||a |-|b ||≤|a ±b |≤|a |+|b |.1.概念辨析(正确的打“√”,错误的打“×”)(1)|a |与|b |是否相等,与a ,b 的方向无关.()(2)若向量a 与b 同向,且|a |>|b |,则a >b .()(3)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.()(4)起点不同,但方向相同且模相等的向量是相等向量.()答案(1)√(2)×(3)×(4)√2.小题热身(1)如图,D ,E ,F 分别是△ABC 各边的中点,则下列结论错误的是()A .EF →=CD →B .AB →与DE →共线C .BD →与CD →是相反向量D .AE →=12|AC →|答案D解析AE →=12AC →,故D 错误.故选D.(2)(人教B 必修第二册6.2.1例3改编)设向量a ,b 不共线,向量λa +b 与a +2b 共线,则实数λ=________.答案12解析∵λa +b 与a +2b 共线,∴存在实数μ使得λa +b =μ(a +2b )=μ,=2μ,=12,=12.(3)(人教A 必修第二册6.2例6改编)已知▱ABCD 的对角线AC 和BD 交于点O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________.(用a ,b 表示)答案b -a -a -b解析如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b .(4)(人教A 必修第二册习题6.2T10改编)若a ,b 满足|a |=3,|b |=5,则|a +b |的最大值为________,最小值为________.答案82解析|a +b |≤|a |+|b |=3+5=8,当且仅当a ,b 同向时取等号,所以|a +b |max =8.又|a +b |≥||a |-|b ||=|3-5|=2,当且仅当a ,b 反向时取等号,所以|a +b |min =2.考点探究——提素养考点一平面向量的有关概念例1(多选)下列命题中的真命题是()A .若|a |=|b |,则a =bB .若A ,B ,C ,D 是不共线的四点,则“AB →=DC →”是“四边形ABCD 为平行四边形”的充要条件C .若a =b ,b =c ,则a =cD .a =b 的充要条件是|a |=|b |且a ∥b 答案BC解析A 是假命题,两个向量的长度相等,但它们的方向不一定相同;B 是真命题,∵AB →=DC →,∴|AB →|=|DC →|且AB →∥DC →,又A ,B ,C ,D 是不共线的四点,∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则|AB →|=|DC →|,AB →∥DC →且AB →,DC →方向相同,因此AB →=DC →;C 是真命题,∵a =b ,∴a ,b 的长度相等且方向相同,又b =c ,∴b ,c 的长度相等且方向相同,∴a ,c 的长度相等且方向相同,故a =c ;D 是假命题,当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.故选BC.【通性通法】平面向量有关概念的四个关注点关注点一非零向量的平行具有传递性关注点二共线向量即为平行向量,它们均与起点无关关注点三向量可以平移,平移后的向量与原向量是相等向量关注点四a|a |是与a 同方向的单位向量【巩固迁移】1.(多选)下列命题正确的是()A .零向量是唯一没有方向的向量B .零向量的长度等于0C .若a ,b 都为非零向量,则使a |a |+b|b |=0成立的条件是a 与b 反向共线D .若a ∥b ,b ∥c ,则a ∥c 答案BC解析零向量是有方向的,其方向是任意的,故A 错误;由零向量的定义知,零向量的长度为0,故B 正确;因为a |a |与b |b |都是单位向量,所以只有当a |a |与b|b |是相反向量,即a 与b 反向共线时才成立,故C 正确;若b =0,则不共线的a ,c 也有a ∥0,c ∥0,故D 错误.考点二平面向量的线性运算(多考向探究)考向1平面向量加、减运算的几何意义例2设P 为▱ABCD 对角线的交点,O 为平面ABCD 内的任意一点,则OA →+OB →+OC →+OD →=()A .OP →B .2OP →C .3OP →D .4OP→答案D解析由题意知,P 为AC ,BD 的中点,所以在△OAC 中,OP →=12(OA →+OC →),即OA →+OC →=2OP →,在△OBD 中,OP →=12(OB →+OD →),即OB →+OD →=2OP →,所以OA →+OB →+OC →+OD →=4OP →.故选D.【通性通法】1.平面向量的线性运算技巧(1)不含图形的情况:可直接运用相应运算法则求解.(2)含图形的情况:将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示出来.2.三种运算法则的要点(1)加法的三角形法则要求“首尾连”,平行四边形法则要求“共起点”.(2)减法的三角形法则要求“共起点,连终点,指被减”.(3)数乘运算的结果仍是一个向量,运算过程可类比实数运算.【巩固迁移】2.(2024·山东青岛二中月考)若|AB →|=|AC →|=|AB →-AC →|=2,则|AB →+AC →|=________.答案23解析因为|AB →|=|AC →|=|AB →-AC →|=2,所以△ABC 是边长为2的正三角形,所以|AB →+AC →|为△ABC 的边BC 上的高的2倍,所以|AB →+AC →|=23.考向2平面向量的线性运算例3(2022·新高考Ⅰ卷)在△ABC 中,点D 在边AB 上,BD =2DA ,记CA →=m ,CD →=n ,则CB →=()A .3m -2nB .-2m +3nC .3m +2nD .2m +3n答案B解析CD →=23CA →+13CB →,即CB →=-2CA →+3CD →=-2m +3n .故选B.【通性通法】平面向量的线性运算的求解策略【巩固迁移】3.(2023·江苏南通二模)在平行四边形ABCD 中,BE →=12BC →,AF →=13AE →.若AB →=mDF →+nAE →,则m +n =()A .12B .34C .56D .43答案D解析由题意可得AB →=AE →+EB →=AE →+12DA →=AE →+12(DF →+FA →)=AE→+12(DF →-13AE →)=12DF →+56AE →,所以m =12,n =56,所以m +n =43.故选D.考点三向量共线定理的应用(多考向探究)考向1判定向量共线、三点共线例4设两个非零向量a 与b 不共线.若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线.证明∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),∴BD →=BC →+CD →=2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB →,∴AB →,BD →共线,又它们有公共点B ,∴A ,B ,D 三点共线.【通性通法】共线向量定理的三个应用【巩固迁移】4.已知P 是△ABC 所在平面内的一点,若CB →=λPA →+PB →,其中λ∈R ,则点P 一定在()A .△ABC 的内部B .AC 边所在直线上C .AB 边所在直线上D .BC 边所在直线上答案B解析由CB →=λPA →+PB →,得CB →-PB →=λPA →,CP →=λPA →,则CP →,PA →为共线向量,又CP →,PA →有一个公共点P ,所以C ,P ,A 三点共线,即点P 在AC 边所在直线上.故选B.考向2利用向量共线定理求参数例5若a ,b 是两个不共线的向量,已知MN →=a -2b ,PN →=2a +k b ,PQ →=3a -b ,若M ,N ,Q 三点共线,则k =()A .-1B .1C .32D .2答案B解析由题意知,NQ →=PQ →-PN →=a -(k +1)b ,因为M ,N ,Q 三点共线,所以存在实数λ,使得MN →=λNQ →,即a -2b =λ[a -(k +1)b ],解得λ=1,k =1.【通性通法】一般通过构造三角形,利用向量运算的三角形法则进行加法或减法运算,然后通过建立方程(组)即可求得相关参数的值.【巩固迁移】5.如图,在△ABC 中,AD →=λDC →,E 是BD 上一点,若AE →=1116→+14AC →,则实数λ的值为()A .3B .4C .5D .6答案B解析由AD →=λDC →,得AC →=λ+1λAD →,因为AE →=1116AB →+14AC →,所以AE →=1116AB →+14·λ+1λAD →,因为E ,B ,D 三点共线,所以1116+λ+14λ=1,解得λ=4.故选B.课时作业一、单项选择题1.若a ,b 为非零向量,则“a |a |=b|b |”是“a ,b 共线”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件答案B解析a |a |,b |b |分别表示与a ,b 同方向的单位向量,a |a |=b|b |,则有a ,b 共线,而a ,b 共线,则a |a |,b |b |是相等向量或相反向量,所以“a |a |=b|b |”是“a ,b 共线”的充分不必要条件.故选B.2.设a =(AB →+CD →)+(BC →+DA →),b 是一个非零向量,则下列结论不正确的是()A .a ∥bB .a +b =aC .a +b =bD .|a +b |=|a |+|b |答案B解析由题意得,a =(AB →+CD →)+(BC →+DA →)=AC →+CA →=0,且b 是一个非零向量,所以a ∥b成立,所以A 正确;因为a +b =b ,所以B 不正确,C 正确;因为|a +b |=|b |,|a |+|b |=|b |,所以|a +b |=|a |+|b |,所以D 正确.故选B.3.已知AB →=a +5b ,BC →=-3a +6b ,CD →=4a -b ,则()A .A ,B ,D 三点共线B .A ,B ,C 三点共线C .B ,C ,D 三点共线D .A ,C ,D 三点共线答案A解析由题意得BD →=BC →+CD →=a +5b =AB →,又BD →,AB →有公共点B ,所以A ,B ,D 三点共线.故选A.4.(2024·安徽铜陵三模)在平行四边形ABCD 中,M 是CD 边上的中点,则2AM →=()A .AC →-2AB →B .AC →+2AB →C .2AC →-AB →D .2AC →+AB→答案C解析因为M 是平行四边形ABCD 的CD 边上的中点,所以CM →=-12AB →,所以AM →=AC →+CM→=AC →-12AB →,所以2AM →=2AC →-AB →.故选C.5.已知向量a 和b 不共线,向量AB →=a +m b ,BC →=5a +3b ,CD →=-3a +3b ,若A ,B ,D 三点共线,则m =()A .3B .2C .1D .-2答案A解析因为A ,B ,D 三点共线,所以存在实数λ,使得BD →=λAB →,BD →=BC →+CD →=2a +6b ,所以2a +6b =λa +mλb ,=λ,=mλ,解得m =3.故选A.6.矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2=()A .58B .14C .1D .516答案A解析DE →=AE →-AD →=14AC →-AD →=14(AB →+AD →)-AD →=14AB →-34AD →,∴λ=14,μ=-34.∴λ2+μ2=116+916=58.故选A.7.正方形ABCD 中,E 在CD 上且有CE →=2ED →,AE 与对角线BD 交于F ,则AF →=()A .13AB →+23AD→B .34AB →+14AD→C .14AB →+34AD→D .13AD →+AB→答案C解析如图,∵在正方形ABCD 中,E 在CD 上且有CE →=2ED →,AE 与对角线BD 交于F ,∴DE =13AB ,且DE ∥AB ,∴△DEF ∽△BAF ,可得EF AF =13,可得AF =34AE ,∴AF →=34AE →=34(AD→+DE →)+13AB =14AB →+34AD →.故选C.8.(2023·滁州模拟)已知P 为△ABC 所在平面内一点,AB →+PB →+PC →=0,|AB →|=|PB →|=|PC →|=2,则△ABC 的面积为()A .3B .23C .33D .43答案B解析设BC 的中点为D ,AC 的中点为M ,连接PD ,MD ,BM ,如图所示,则有PB →+PC →=2PD →.由AB →+PB →+PC →=0,得AB →=-2PD →,又D 为BC 的中点,M 为AC 的中点,所以AB →=-2DM →,则PD →=DM →,则P ,D ,M 三点共线且D 为PM 的中点,又D 为BC 的中点,所以四边形CPBM 为平行四边形.又|AB →|=|PB →|=|PC →|=2,所以|MC →|=|BP →|=2,则|AC →|=4,且|BM →|=|PC →|=2,所以△AMB 为等边三角形,∠BAC =60°,则S △ABC =12×2×4×32=2 3.故选B.二、多项选择题9.下列式子中,结果为零向量的是()A .AB →+BC →+CA →B .AB →+MB →+BO →+OM →C .OA →+OB →+BO →+CO →D .AB →-AC →+BD →-CD →答案AD解析利用向量运算,易知A ,D 中的式子结果为零向量.故选AD.10.点P 是△ABC 所在平面内一点,且满足|PB →-PC →|-|PB →+PC →-2PA →|=0,则△ABC 不可能是()A .钝角三角形B .直角三角形C .等腰三角形D .等边三角形答案AD解析因为点P 是△ABC 所在平面内一点,且|PB →-PC →|-|PB →+PC →-2PA →|=0,所以|CB →|-|(PB→-PA →)+(PC →-PA →)|=0,即|CB →|=|AB →+AC →|,所以|AB →-AC →|=|AC →+AB →|,等式两边平方并化简得AC →·AB →=0,所以AC →⊥AB →,∠BAC =90°,则△ABC 一定是直角三角形,也有可能是等腰直角三角形,不可能是钝角三角形和等边三角形.故选AD.11.(2023·安徽合肥期末)在△ABC 中,D ,E ,F 分别是边BC ,CA ,AB 的中点,点G 为△ABC 的重心,则下列结论中正确的是()A .AB →-BC →=CA →B .AG →=13(AB →+AC →)C .AF →+BD →+CE →=0D .GA →+GB →+GC →=0答案BCD解析如图,对于A ,AB →-BC →=AB →+CB →=2EB →≠CA →,故A 错误;对于B ,点G 为△ABC 的重心,则AG →=23→=23×12(AB →+AC →)=13(AB →+AC →),故B 正确;对于C ,AF →+BD →+CE →=12(AB →+BC →+CA →)=0,故C 正确;对于D ,GA →=-2GD →=-2×12(GB →+GC →),故GA →+GB →+GC →=0,故D 正确.故选BCD.三、填空题12.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.答案12解析∵向量a ,b 不平行,∴a +2b ≠0,又向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,=μ,=2μ,解得λ=μ=12.13.已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC →=a ,CA →=b ,给出下列命题:①AD →=12a -b ;②BE →=a +12b ;③CF →=-12a +12b ;④AD →+BE →+CF →=0.其中正确的命题是________.答案②③④解析BC →=a ,CA →=b ,AD →=12AB →+12AC →=12(AC →+CB →)+12AC →=12CB →+AC →=-12a -b ,故①错误;BE →=BC →+12CA →=a +12b ,故②正确;CF →=12(CB →+CA →)=12(-a +b )=-12a +12b ,故③正确;AD→+BE →+CF →=-b -12a +a +12b +12b -12a =0,故④正确.14.(2024·丽江模拟)在△ABC 中,点D 在线段AC 上,且满足|AD →|=13|AC →|,点Q 为线段BD上任意一点,若实数x ,y 满足AQ →=xAB →+yAC →,则1x +1y 的最小值为________.答案4+23解析由题意知,点D 满足AD →=13AC →,故AQ →=xAB →+yAC →=xAB →+3yAD →,由Q ,B ,D 三点共线,可得x +3y =1,x >0,y >0,则1x +1y=x +3y )=4+3y x +x y ≥4+23,当且仅当3yx =x y ,即x =3-12,y =3-36时等号成立.所以1x +1y 的最小值为4+2 3.15.如图,在平行四边形ABCD 中,AB →=2AE →,AF →=FD →,点G 为CE 与BF 的交点,则AG →=()A .25AB →+15AC→B .15AB →+25AC→C .15AB →+415AC→D .310AB →+25AC→答案A解析由AB →=2AE →,AF →=FD →,知E ,F 分别为AB ,AD 的中点.如图,设AC 与BF 的交点为P ,易得△APF ∽△CPB ,所以AP CP =AF CB =AF AD =12,所以AP →=13AC →.因为E 是AB 的中点,所以AE →=12AB →.由P ,G ,B 三点共线知,存在m ∈R ,满足AG →=mAP →+(1-m )AB →=13mAC →+(1-m )AB →.由C ,G ,E 三点共线知,存在n ∈R ,满足AG →=nAE →+(1-n )AC →=12nAB →+(1-n )AC →,所以13mAC →+(1-m )AB →=12nAB →+(1-n )AC →.又因为AC →,AB →为不共线的非零向量,所以m =12n ,=1-n ,=35,=45,所以AG →=25AB →+15AC →.16.(多选)(2024·武汉模拟)瑞士数学家欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:三角形的外心、垂心和重心都在同一直线上,而且外心和重心间的距离是垂心和重心间的距离之半.这个定理就是著名的欧拉线定理.设△ABC 中,点O ,H ,G 分别是其外心、垂心、重心,BC 边的中点为D ,则下列结论中正确的是()A .GH →=2OG →B .OD ∥AHC .AH →=3OD →D .OA →=OB →=OC→答案AB解析由题意作图,如图所示,易知BC 的中点D 与A ,G 共线.对于A ,由题意,得AG →=2GD →,OD ⊥BC ,AH ⊥BC ,所以OD ∥AH ,所以GH →=2OG →,所以A ,B 正确;对于C ,由题意,知AG =2GD ,又GH =2OG ,∠AGH =∠DGO ,所以△AGH ∽△DGO ,所以AH →=2OD →,所以C 错误;对于D ,向量OA →,OB →,OC →的模相等,方向不同,所以D 错误.故选AB.17.如图,已知正六边形ABCDEF ,M ,N 分别是对角线AC ,CE 上的点,使得AM AC =CNCE=r ,则B ,M ,N 三点共线时,r 的值为________.答案33解析连接AD ,交EC 于点G ,设正六边形的边长为a ,由正六边形的性质知,AD ⊥CE ,AD ∥CB ,G 为EC 的中点,且AG =32a ,则CA →=CG →+GA →=12CE →+32CB →,又AM AC =CNCE =r (r >0),则CA →=CM →1-r ,CE →=CN →r ,故CM →1-r =CN →2r +32CB →,即CM →=1-r 2r CN →+3(1-r )2CB →,若B ,M ,N三点共线,则1-r 2r +3(1-r )2=1,解得r =33或r =-33(舍去).18.经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m >0,n >0,则m +n 的最小值为________.答案43解析设OA →=a ,OB →=b .由题意知OG →=23×12(OA →+OB →)=13(a +b ),PQ →=OQ →-OP →=n b -m a ,PG→=OG →-OP →+13b ,由P ,G ,Q 三点共线,得存在实数λ,使得PQ →=λPG →,即n b -m a =+13λb ,m ==13λ,消去λ,得1n +1m =3.于是m +nm +n )+n m +≥13×(2+2)=43,当且仅当m =n =23时,m +n 取得最小值,为43.。
高中 平面向量的概念及其线性运算 知识点+例题
辅导讲义――平面向量的概念及其线性运算加法求两个向量和的运算(1)交换律:a +b =b +a . (2)结合律: (a +b )+c =a +(b +c ). 减法求a 与b 的相反向量-b 的 和的运算叫做a 与b 的差三角形法则a -b =a +(-b )数乘求实数λ与向量a 的积的运算(1)|λa |=|λ||a |; (2)当λ>0时,λa 的方向与a 的方向相同; 当λ<0时,λa 的方向与a 的方向相反; 当λ=0时,λa =0λ(μa )=(λμ)a ; (λ+μ)a =λa +μa ; λ(a +b )=λa +λb[例1] 若OB OA OC =-23,则AB AC ____=.31[巩固] 在矩形ABCD 中,O 是对角线的交点,若15e BC =,23e DC =,则.________=OC )35(2121e e +[例2] 如图,D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,则._______=-DB AFBE[巩固1] 设M 是△ABC 的重心,记a BC =,b CA =,c AB =,且0=++c b a ,则._______=AM)(31b c -[巩固2] 已知空间四边形ABCD ,M 、G 分别是BC 、CD 的中点,连接AM 、AG 、CD ,则._______)(21=++BC BD AB AG[例3] 如图,向量a AB =,,b AC =,c CD =,则向量,BD 可以表示为_____________. c a b +-精典例题透析[巩固] 如图,在△ABC 中,已知DC BC 3=,则)(=AD CA .AC AB 3132+ B .AC AB 3132- C .AC AB 3231+D .AC AB 3231-[例4] 在△ABC 中,O 为外心,P 是平面内点,且满足OP OC OB OA =++,则P 是△ABC 的_________.(填外心,内心,重心或垂心) 垂心[巩固] 已知点P 是△ABC 内一点,且BP BC BA 6=+,则._______=∆∆ACP ABP S S 41[例5]已知向量)4,3(=a ,若5=a λ,则实数λ的值为________. 1±[巩固1] 已知a 与b 满足:3=a ,2=b ,4=+b a ,则.________=-b a 10[巩固2] 设a 与b 都是非零向量,下列四个条件中,一定能使0=+bb aa 成立的是_________.AA .b a 31-= B .b a // C .b a 2= D .b a ⊥共线向量定理:向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa . 知识模块3平面向量的共线定理 精典例题透析③正确.∵a =b ,∴a ,b 的长度相等且方向相同;又b =c , ∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c .④不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故“|a |=|b |且a ∥b ”不是“a =b ”的充要条件,而是必要不充分条件.综上所述,正确命题的序号是②③.思维升华 (1)相等向量具有传递性,非零向量的平行也具有传递性. (2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈. (4)非零向量a 与a |a |的关系:a|a |是a 方向上的单位向量.[巩固]下列命题中,正确的是________.(填序号) ①有向线段就是向量,向量就是有向线段;②向量a 与向量b 平行,则a 与b 的方向相同或相反; ③向量AB →与CD →向量共线,则A 、B 、C 、D 四点共线; ④如果a ∥b ,b ∥c ,那么a ∥c ;⑤两个向量不能比较大小,但它们的模能比较大小. 答案 ⑤解析 ①不正确,向量可以用有向线段表示,但向量不是有向线段,有向线段也不是向量;②不正确,若a 与b 中有一个为零向量,零向量的方向是不确定的,故两向量方向不一定相同或相反; ③不正确,共线向量所在的直线可以重合,也可以平行; ④不正确,如果b =0,则a 与c 不一定平行;⑤正确,向量既有大小,又有方向,不能比较大小;向量的模均为实数,可以比较大小.题型二:平面向量的线性运算[例](1)如图,正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个三等分点,那么EF →等于( )A.12AB →-13AD →B.14AB →+12AD →C.13AB →+12DA → D.12AB →-23AD → (2)在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →等于( )A.23b +13cB.53c -23bC.23b -13c D.13b +23c 答案 (1)D (2)A[巩固](1)如图,在正六边形ABCDEF 中,EF CD BA ++等于( )A .0 B. BE C. ADD. CF(2)(2013·江苏)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________. 答案 (1)D (2)12题型三 共线定理的应用[例]设两个非零向量a 与b 不共线,(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A 、B 、D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线. (1)证明 ∵=a +b ,=2a +8b ,=3(a -b ), ∴=+=2a +8b +3(a -b ) =2a +8b +3a -3b =5(a +b )=5. ∴、共线,又∵它们有公共点B , ∴A 、B 、D 三点共线. (2)解 ∵k a +b 和a +k b 共线, ∴存在实数λ,使k a +b =λ(a +k b ), 即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b . ∵a 、b 是两个不共线的非零向量, ∴k -λ=λk -1=0,∴k 2-1=0.∴k =±1.[巩固]如图,在△ABC 中,点D 是BC 边上靠近B 的三等分点,则AD 等于( ) A.23AB -13AC B.13AB +23AC C.23AB +13AC D.13AB -23AC (2)已知平面上不共线的四点O ,A ,B ,C ,若OA -4OB +3OC =0,则BCAB等于( )A .3B .4C .5D .6 答案 (1)C (2)A解析 (1)由平面向量的三角形法则,得=+.①如果非零向量a 与b 的方向相同或相反,那么a +b 的方向必与a ,b 之一方向相同; ②三角形ABC 中,必有AB +BC +CA =0;③若AB →+BC →+CA →=0,则A ,B ,C 为三角形的三个顶点; ④若a ,b 均为非零向量,则|a +b |与|a |+|b |一定相等. 其中假命题的序号为________. 答案 ①③④解析 ①若a 与b 长度相等,方向相反,则a +b =0;③A ,B ,C 三点可能在一条直线上;④|a |+|b |≥|a +b |. 6.设O 是△ABC 内部一点,且OA +OB =-2OC ,则△AOB 与△AOC 的面积之比为________. 答案 12解析 设D 为AC 的中点,连接OD , 则+=2. 又+=-2,所以=-,即O 为BD 的中点,从而容易得△AOB 与△AOC 的面积之比为12.7.在△ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =13CA +λCB ,则λ=________.答案 23解析 由图知=+,① =+,② 且+2=0.①+②×2得:3=+2, ∴=13+23,∴λ=23.8.已知向量a =2e 1-3e 2,b =2e 1+3e 2,其中e 1、e 2不共线,向量c =2e 1-9e 2.问是否存在这样的实数λ、μ,使向量d =λa +μb 与c 共线?解 ∵d =λ(2e 1-3e 2)+μ(2e 1+3e 2) =(2λ+2μ)e 1+(-3λ+3μ)e 2,要使d 与c 共线,则应有实数k ,使d =k c , 即(2λ+2μ)e 1+(-3λ+3μ)e 2=2k e 1-9k e 2,即⎩⎪⎨⎪⎧2λ+2μ=2k ,-3λ+3μ=-9k ,得λ=-2μ. 故存在这样的实数λ、μ,只要λ=-2μ,就能使d 与c 共线.9.如图所示,在△ABC 中,D 、F 分别是BC 、AC 的中点,AE =23AD ,AB =a ,AC =b .(1)用a 、b 表示向量AD ,AE ,AF ,BE ,BF ; (2)求证:B ,E ,F 三点共线.(1)解 延长AD 到G ,使=12,连接BG ,CG ,得到▱ABGC , 所以=a +b , =12=12(a +b ), =23=13(a +b ), =12=12b , =-=13(a +b )-a =13(b -2a ).=-=12b -a =12(b -2a ).(2)证明 由(1)可知=23,又因为,有公共点B ,所以B ,E ,F 三点共线.1.如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB =a ,AC =b ,则AD 等于( )A .a -12bB.12a -b C .a +12bD.12a +b 答案 D解析 连接CD ,由点C ,D 是半圆弧的三等分点, 得CD ∥AB 且=12=12a ,所以=+=b +12a .2.设G 为△ABC 的重心,且sin A ·GA →+sin B ·GB →+sin C ·GC →=0,则B 的大小为( ) A .45° B .60° C .30° D .15°答案 B解析 ∵G 是△ABC 的重心,∴++=0,=-(+),将其代入sin A ·+sin B ·+sin C ·=0,得(sin B -sin A )+(sin C -sin A )=0. 又,不共线,∴sin B -sin A =0,sin C -sin A =0, 则sin B =sin A =sin C . 根据正弦定理知b =a =c ,∴三角形ABC 是等边三角形,则角B =60°.故选B.3.如图所示,在△ABC 中,点O 是BC 的中点.过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为________.能力提升训练。
高三数学一轮专题复习----平面向量的概念与线性运算(有详细答案)
⾼三数学⼀轮专题复习----平⾯向量的概念与线性运算(有详细答案)平⾯向量的概念与线性运算1. (必修4P 63练习第1题改编)如图在平⾏四边形ABCD 中,E 为DC 边的中点,且AB →=a ,AD →=b ,则BE →=________.答案:b -12a解析:BE →=BA →+AD →+12DC →=-a +b +12a =b -12a.2. (必修4P 65例4改编)在△ABC 中,AB →=c ,AC →=b .若点D 满⾜BD →=2DC →,则AD →=________.(⽤b 、c 表⽰)答案:23b +13c解析:因为BD →=2DC →,所以AD →-AB →=2(AC →-AD →),即3AD →=AB →+2AC →=c +2b ,故AD →=23b +13c . 3. (必修4P 63练习第6题改编)设四边形ABCD 中,有12DC →=AB →且|AD →|=||BC →,则这个四边形是________.答案:等腰梯形解析:AB →=12DC →AB →∥DC →,且|AB →|=12|DC →|,∴ ABCD 为梯形.⼜|AD →|=|BC →|,∴四边形ABCD 的形状为等腰梯形.4. (必修4P 66练习第2题改编)设a 、b 是两个不共线向量,AB →=2a +p b ,BC →=a +b ,CD →=a -2b .若A 、B 、D 三点共线,则实数p =________.答案:-1解析:∵ BD →=BC →+CD →=2a -b ,⼜A 、B 、D 三点共线,∴存在实数λ,使AB →=λBD →.即?2=2λ,p =-λ,∴ p =-1.1. 向量的有关概念(1) 向量:既有⼤⼩⼜有⽅向的量叫做向量,向量AB →的⼤⼩叫做向量的长度(或模),记作|AB →|.(2) 零向量:长度为0的向量叫做零向量,其⽅向是任意的. (3) 单位向量:长度等于1个单位长度的向量叫做单位向量.(4) 平⾏向量:⽅向相同或相反的⾮零向量叫做平⾏向量.平⾏向量⼜称为共线向量,任⼀组平⾏向量都可以移到同⼀直线上.规定:0与任⼀向量平⾏.(5) 相等向量:长度相等且⽅向相同的向量叫做相等向量.(6) 相反向量:与向量a 长度相等且⽅向相反的向量叫做a 的相反向量.规定零向量的相反向量仍是零向量.2. 向量加法与减法运算 (1) 向量的加法①定义:求两个向量和的运算,叫做向量的加法.②法则:三⾓形法则;平⾏四边形法则.③运算律:a +b =b +a ;(a +b )+c =a +(b +c ). (2) 向量的减法①定义:求两个向量差的运算,叫做向量的减法.②法则:三⾓形法则.3. 向量的数乘运算及其⼏何意义(1) 实数λ与向量a 的积是⼀个向量,记作λa ,它的长度与⽅向规定如下:① |λa |=|λ||a|;②当λ>0时,λa 与a 的⽅向相同;当λ<0时,λa 与a 的⽅向相反;当λ=0时,λa =0.(2) 运算律:设λ、µ∈R ,则:①λ(µa )=(λµ)a ;② (λ+µ)a =λa +µa ;③λ(a +b )=λa +λb .4. 向量共线定理向量b 与a (a ≠0)共线的充要条件是有且只有⼀个实数λ,使得b =λa .[备课札记]题型1 平⾯向量的基本概念例1 给出下列六个命题:①两个向量相等,则它们的起点相同,终点相同;②若|a |=|b |,则a =b ;③若AB →=DC →,则A 、B 、C 、D 四点构成平⾏四边形;④在ABCD 中,⼀定有AB →=DC →;⑤若m =n ,n =p ,则m =p ;⑥若a ∥b ,b ∥c ,则a ∥c .其中错误的命题有________.(填序号) 答案:①②③⑥解析:两向量起点相同,终点相同,则两向量相等;但两相等向量,不⼀定有相同的起点和终点,故①不正确;|a |=|b |,由于a 与b ⽅向不确定,所以a 、b 不⼀定相等,故②不正确;AB →=DC →,可能有A 、B 、C 、D 在⼀条直线上的情况,所以③不正确;零向量与任⼀向量平⾏,故a ∥b ,b ∥c 时,若b =0,则a 与c 不⼀定平⾏,故⑥不正确.备选变式(教师专享)设a 0为单位向量,①若a 为平⾯内的某个向量,则a =|a |·a 0;②若a 与a 0平⾏,则a =|a |·a 0;③若a 与a 0平⾏且|a |=1,则a =a 0.上述命题中,假命题个数是________.答案:3解析:向量是既有⼤⼩⼜有⽅向的量,a 与|a |a 0模相同,但⽅向不⼀定相同,故①是假命题;若a 与a 0平⾏,则a 与a 0⽅向有两种情况:⼀是同向,⼆是反向,反向时a =-|a |a 0,故②、③也是假命题,填3.题型2 向量的线性表⽰例2 平⾏四边形OADB 的对⾓线交点为C ,BM →=13BC →,CN →=13CD →,OA →=a ,OB →=b ,⽤a 、b 表⽰OM →、ON →、MN →.解:BA →=a -b ,BM →=16BA →=16a -16b ,OM →=OB →+BM →=16a +56b .OD →=a +b ,ON →=OC →+CN →=12OD →+16OD →=23OD →=23a +23b .MN →=ON →-OM →=12a -16b .变式训练在△ABC 中,E 、F 分别为AC 、AB 的中点,BE 与CF 相交于G 点,设AB →=a ,AC →=b ,试⽤a ,b 表⽰AG →.解:AG →=AB →+BG →=AB →+λBE →=AB →+λ2(BA →+BC →)=1-λ2AB →+λ2(AC →-AB →)=(1-λ)AB →+λ2AC →=(1-λ)a +λ2b . ⼜AG →=AC →+CG →=AC →+mCF →=AC →+m 2(CA →+CB →)=(1-m)AC →+m 2AB →=m2a +(1-m)b ,∴ 1-λ=m2,1-m =λ2,解得λ=m =23,∴ AG →=13a +13b .题型3 共线向量例3 设两个⾮零向量a 与b 不共线.(1) 若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A 、B 、D 三点共线; (2) 试确定实数k ,使k a +b 和a +k b 共线.(1) 证明:∵ AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),∴ BD →=BC →+CD →=2a +8b +3(a -b )=5(a +b )=5AB →. ∴ AB →,BD →共线.⼜它们有公共点B ,∴ A 、B 、D 三点共线. (2) 解:∵ k a +b 与a +k b 共线,∴存在实数λ,使k a +b =λ(a +k b ),即(k -λ)a =(λk -1)b .⼜a 、b 是两不共线的⾮零向量,∴ k -λ=λk -1=0. ∴ k 2-1=0.∴ k =±1. 备选变式(教师专享)已知a 、b 是不共线的向量,AB →=λa +b ,AC →=a +µb (λ、µ∈R ),当A 、B 、C 三点共线时λ、µ满⾜的条件为________.答案:λµ=1解析:由AB →=λa +b ,AC →=a +µb (λ、µ∈R )及A 、B 、C 三点共线得AB →=tAC →,所以λa+b =t(a +µb )=t a +tµb ,即可得?λ=t ,1=tµ,所以λµ=1.题型4 向量共线的应⽤例4 如图所⽰,设O 是△ABC 内部⼀点,且OA →+OC →=-2OB →,则△AOB 与△AOC 的⾯积之⽐为________.答案:12解析:如图所⽰,设M 是AC 的中点,则 OA →+OC →=2OM →. ⼜OA →+OC →=-2OB →,∴ OM →=-OB →,即O 是BM 的中点,∴ S △AOB =S △AOM =12S △AOC ,即S △AOB S △AOC =12. 备选变式(教师专享)如图,△ABC 中,在AC 上取⼀点N ,使AN =13AC ;在AB 上取⼀点M ,使得AM =13AB ;在BN 的延长线上取点P ,使得NP =12BN ;在CM 的延长线上取点Q ,使得MQ →=λCM →时,AP →=QA →,试确定λ的值.解:∵AP →=NP →-NA →=12(BN →-CN →)=12(BN →+CN →)=12BC →, QA →=MA →-MQ →=12BM →+λMC →,⼜∵AP →=QA →,∴12BM →+λMC →=12BC →,即λMC →=12MC →,∴λ=12.1. 如图,在四边形ABCD 中,AC 和BD 相交于点O ,设AD →=a ,AB →=b ,若AB →=2DC →,则AO →=________.(⽤向量a 和b 表⽰)答案:23a +13b解析:因为AC →=AD →+DC →=AD →+12AB →=a +12b ,⼜AB →=2DC →,所以AO →=23AC →=23a +12b =23a +13b . 2. (2013·四川)如图,在平⾏四边形ABCD 中,对⾓线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________.答案:2解析:AB →+AD →=AC →=2AO →,则λ=2.3. (2013·江苏)设D 、E 分别是△ABC 的边AB 、BC 上的点,AD =12AB ,BE =23DC ,若DE →=λ1AB →+λ2AC →(λ1、λ2为实数),则λ1+λ2=________.答案:12解析:DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →=λ1AB →+λ2AC →,故λ1=-16,λ2=23,则λ1+λ2=12.4. 已知点P 在△ABC 所在的平⾯内,若2PA →+3PB →+4PC →=3AB →,则△PAB 与△PBC 的⾯积的⽐值为__________.答案:45解析:由2PA →+3PB →+4PC →=3AB →,得2PA →+4PC →=3AB →+3BP →,∴ 2PA →+4PC →=3AP →,即4PC →=5AP →.∴ |AP →||PC →|=45,S △PAB S △PBC =|AP →||PC →|=45.1. 在平⾏四边形ABCD 中,对⾓线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________.答案:2解析:因为四边形ABCD 为平⾏四边形,对⾓线AC 与BD 交于点O ,所以AB →+AD →=AC →,⼜O 为AC 的中点,所以AC →=2AO →,所以AB →+AD →=2AO →,因为AB →+AD →=λAO →,所以λ=2.2. 已知平⾯内O ,A ,B ,C 四点,其中A ,B ,C 三点共线,且OC →=xOA →+yOB →,则x +y =________.答案:1解析:∵ A ,B ,C 三点共线,∴ AC →=λAB →,即OC →-OA →=λOB →-λOA →,∴ OC →=(1-λ)OA →+λOB →,即x =1-λ,y =λ,∴ x +y =1.3. 设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC ,若DE →=λ1AB→+λ2AC →(λ1,λ2为实数),则λ1+λ2=________.答案:12解析:易知DE =12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,所以λ1+λ2=12.4. 已知点G 是△ABO 的重⼼,M 是AB 边的中点. (1) 求GA →+GB →+GO →;(2) 若PQ 过△ABO 的重⼼G ,且OA →=a ,OB →=b ,OP →=m a ,OQ →=n b ,求证:1m +1n =3.(1) 解:因为GA →+GB →=2GM →,⼜2GM →=-GO →,所以GA →+GB →+GO →=-GO →+GO →=0. (2) 证明:因为OM →=12(a +b ),且G 是△ABO 的重⼼,所以OG →=23OM →=13(a +b ).由P 、G 、Q 三点共线,得PG →∥GQ →,所以有且只有⼀个实数λ,使PG →=λGQ →.⼜PG →=OG →-OP →=13(a+b )-m a =13-m a +13b ,GQ →=OQ →-OG →=n b -13(a +b )=-13a +n -13b ,所以13-m a +13b =λ-13a +n -13b . ⼜a 、b 不共线,所以?13-m =-13λ,13=λn -13,消去λ,整理得3mn =m +n ,故1m +1n=3.1. 解决与平⾯向量的概念有关的命题真假的判定问题,其关键在于透彻理解平⾯向量的概念,还应注意零向量的特殊性,以及两个向量相等必须满⾜:①模相等;②⽅向相同.2. 在进⾏向量线性运算时要尽可能转化到平⾏四边形或三⾓形中,运⽤平⾏四边形法则、三⾓形法则,利⽤三⾓形中位线,相似三⾓形对应边成⽐例得平⾯⼏何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.3. 平⾏向量定理的条件和结论是充要条件关系,既可以证明向量共线,也可以由向量共线求参数.利⽤两向量共线证明三点共线要强调有⼀个公共点.。
第1讲 平面向量的概念及线性运算4种题型(解析版)
第1讲 平面向量的概念及线性运算4种题型【考点分析】考点一:向量的基本概念①定义:既有大小又有方向的量叫做向量.②向量的模:向量AB 的大小,也就是向量AB 的长度,叫做向量的模,记作||AB . ③零向量:长度为0的向量,其方向是任意的. ④单位向量:长度等于1个单位的向量.⑤平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行. ⑥相等向量:长度相等且方向相同的向量. ⑦相反向量:长度相等且方向相反的向量. 考点二:向量的线性运算和向量共线定理 ①向量的线性运算考点三:向量共线定理①如果λ=a b 且0≠b ,则a b ∥;反之a b ∥且0≠b ,则一定存在唯一一个实数λ,使λ=a b . 推论:①三点A ,B ,C 共线⇔AB ,AC 共线(功能:证明三点共线);①向量PA ,PB ,PC 中三个向量的终点A ,B ,C 共线⇔存在实数λ,μ使得PA PB PC λμ=+,且1.λμ+=①BD DC λ=,111AD AC AC λλλ=+++. 【题型目录】题型一: 平面向量的概念 题型二: 平面向量的加法、减法 题型三: 平面向量的线性运算与共线定理 题型四: 由平面向量的性质判断图形的形状 【典型例题】题型一: 平面向量的概念【例1】给出下列说法:①零向量是没有方向的;①零向量的长度为0;①零向量的方向是任意的;①单位向量的模都相等.其中正确的有( ) A .1个 B .2个C .3个D .4个【答案】C【分析】根据零向量及单位向量的概念即可求解. 【详解】解:对①:零向量的方向是任意的,故①错误; 对①:零向量的长度为0,故①正确; 对①:零向量的方向是任意的,故①正确; 对①:单位向量的模都等于1,故①正确. 故选:C.【例2】下列命题中正确的是( )A .两个有共同起点且相等的向量,其终点必相同B .两个有公共终点的向量,一定是共线向量C .两个有共同起点且共线的向量,其终点必相同D .若AB 与CD 是共线向量,则点A ,B ,C ,D 必在同一条直线上 【答案】A【分析】根据向量相等与共线的概念即可解决.【详解】两个相等的向量方向相同且长度相等,因此起点相同时终点必相同,故A 正确; 两个有公共终点的向量,可能方向不同,也可能模长不同,故B 错误;两个有共同起点且共线的向量可能方向不同,也可能模长不同,终点未必相同,故C 错误;AB 与CD 是共线向量,也可能是AB 平行于CD ,故D 错误.故选:A【例3】有下列结论:①表示两个相等向量的有向线段,若它们的起点相同,则终点也相同; ①若a b ≠,则a ,b 不是共线向量;①若AB DC =,则四边形ABCD 是平行四边形; ①若m n =,n k =,则m k =;①有向线段就是向量,向量就是有向线段. 其中,错误的个数是( ) A .2 B .3C .4D .5,若a b ≠也有可能a ,b 长度不等,但方向相同或相反,即共线,AB DC =,则AB ,DC 不一定相等,所以四边形,若m n =,n k =,则m k =,①正确;,有向线段不是向量,向量可以用有向线段表示,综上,错误的是①①①,共3个. 【例4】设0a 为单位向量,①若a 为平面内的某个向量,则a =|a |0a ;②若a 与0a 平行,则a =|a |0a ;③若a 与0a 平行且|a |=1,则a =0a .上述命题中,假命题的个数是A .0B .1C .2D .3 【答案】D【详解】单位向量的模为1,方向可以是不同方向,所以①错 ;若a 与0a 平行,则两个向量可以同向,也可以反向,方向不一定相同,所以①错;①错因此选D 【例5】下列命题中,正确的个数是( )①单位向量都相等;①模相等的两个平行向量是相等向量; ①若,a b 满足||||a b >,且a 与b 同向,则a b >①若两个向量相等,则它们的起点和终点分别重合; ①若,a b b c ∥∥,则a c ∥ A .0个 B .1个C .2个D .3个【答案】A【分析】根据平面向量的基本概念,对选项中的命题进行分析、判断正误即可. 【详解】单位向量的大小相等,但方向不一定相同,故①错误; 模相等的两个平行向量是相等向量或相反向量,故①错误; 向量有方向,不能比较大小,故①错误;向量是可以自由平移的矢量,当两个向量相等时,它们的起点与终点不一定相同,故①错误; 当0b =时,可满足,a b b c ∥∥,但a 与c 不一定平行,故①错误; 综上,正确的个数是0, 故选:A .【例6】下面关于向量的说法正确的是( ) A .单位向量:模为1的向量B .零向量:模为0的向量,零向量没有方向C .平行(共线)向量:方向相同或相反的向量D .相等向量:模相等,方向相同的向量 【答案】ACD【分析】根据平面向量的基本定义逐个辨析即可.【详解】根据向量的定义可得,模为1的向量为单位向量,模为0的向量为零向量,零向量的方向是任意的,方向相同或相反的向量为共线向量,模相等,方向相同的向量为相等向量,ABCD 均正确, 故选:ACD .【例7】下列叙述中错误的是( ) A .若a b =,则32a b > B .若a b ∥,则a 与b 的方向相同或相反 C .若a b ∥,b c ∥,则a c ∥ D .对任一非零向量a ,||aa 是一个单位向量 【答案】ABC【分析】对于A ,根据向量的概念判断,对于BCD ,举例判断.【详解】因为是既有大小又有方向的量,所以向量不能比较大小,故A 错误;由于零向量与任意向量共线,且零向量的方向是任意的,故,若b 为零向量,则a 与c 可能不是共线向量,故,对任一非零向量a ,||aa 表示与a ABC 【题型专练】1.下列命题正确的是( )A .向量AB 与BA 是相等向量 B .共线的单位向量是相等向量C .零向量与任一向量共线D .两平行向量所在直线平行 【答案】C【详解】A 选项方向不同,所以错 ;B 选项共线向量是方向相同或者相反,所以错;C 选项,规定零向量的方向是任意的,所以C 对;D 选项向量共线可以在一条直线上,直线平行不能共线,所以D 错 2.下列命题中正确的个数是( )①若向量AB 与CD 是共线向量,则A 、B 、C 、D 必在同一直线上; ①若向量a 与向量b 平行,则a ,b 方向相同或相反;①若非零向量AB 与CD 是共线向量,则它们的夹角是0°或180°; ①若a b =,则a ,b 是相等向量或相反向量. A .0 B .1C .2D .3,根据模长的定义,可知方向不确定,可得答案.【详解】①错误,平行向量又叫共线向量,向量AB 与CD 是共线向量,则AB 与CD 平行或共线;错误,a 与b 至少有一个为零向量时,结论不成立;由向量的夹角可知正确; 错误,由a b =,只能说明a ,b 的长度相等,确定不了方向.3.给出下列命题:①共线向量一定在同一条直线上;①若A ,B ,C ,D 是不共线的四点,则AB DC =是四边形ABCD 为平行四边形的充要条件;①a b =的充要条件是||a b |=|且//a b .其中正确命题的序号是_______.【答案】①【详解】①不正确,共线向量不一定在同一条直线上,也可能在两条平行直线上; ①正确 ①AB DC =,①||||AB DC =且//AB DC , 又A ,B ,C ,D 是不共线的四点, ①四边形ABCD 为平行四边形.反之,若四边形ABCD 为平行四边形,则//AB DC 且||||AB DC =,①AB DC =;①不正确,当//a b 且方向相反时,||||a b =,但不能得到a b =,故||||a b =且//a b 不是a b =的充要条件,而是必要不充分条件. 故答案为:①4.把所有单位向量的起点平移到一点O ,则其终点构成的图形是_____________. 【答案】以O 为圆心的单位圆设终点为A ,则1AO =,则终点构成的图形是以O 为圆心的单位圆. 故答案为:以O 为圆心的单位圆. 5.下列说法中正确的是( ) A .若12,e e 为单位向量,则12e e = B .若a 与b 共线,则a b =或a b =-C .若0a =,则0a =D .a a是与非零向量a 共线的单位向量中,向量12,e e 的方向不一定相同,所以中,向量a 与b 的长度不一定相等,所以0a =,根据零向量的定义,可得0a =,所以C 1a a a a =⋅,可得a a与向量a 同向,a a的模等于a a是与非零向量a 共线的单位向量,所以故选:CD.6.下列说法中正确的是( )A .力是既有大小,又有方向的量,所以是向量B .若向量//AB CD ,则//AB CDC .在四边形ABCD 中,若向量//AB CD ,则该四边形为平行四边形 D .速度、加速度与位移的合成与分解,实质上就是向量的加减法运算 【答案】AD【分析】根据向量的定义,共线向量的定义,逐项判定,即可求解.【详解】对于A 中,根据向量的定义,力是既有大小,又有方向的量,所以是向量,所以A 正确; 对于B 中,向量//AB CD ,则//AB CD 或AB 与CD 共线,所以B 错误;对于C 中,在四边形ABCD 中,若向量//AB CD 、则只有一组对边平行,不一定是平行四边形,所以C 错误;对于D 中,根据向量的运算法则,可得速度、加速度与位移的合成与分解,实质上就是向量的加减法运算,所以D 正确. 故选:AD.7.下列结论中正确的是( ) A .若a b =,则a b = B .若,a b b c ==,则a c =C .若A ,B ,C ,D 是不共线的四点,则“AB DC =”是“四边形ABCD 为平行四边形”的充要条件 D .“a b =”的充要条件是“a b =且a b ∥” 是不共线的四点,则当AB DC =时,,故且,AB DC 同向,故AB DC =,故C ,当a b 且方向相反时,即使a b =,也不能得到a b =,故D 错误;8.下列结论中正确的是( ) A .a 与b 是否相等与a ,b 的方向无关 B .零向量相等,零向量的相反向量是零向量 C .若a ,b 都是单位向量,则a b = D .向量AB 与BA 相等【答案】AB【分析】由向量的模、零向量、单位向量、相等向量的定义判断各选项.【详解】对于C ,单位向量的模相等,但方向不一定相同,故两个单位向量不一定相等;对于D ,向量AB 与BA 互为相反向量,由向量模的定义,零向量的定义AB 正确. 故选:AB .题型二: 平面向量的加法、减法【例1】AO OB OC CA BO ++++等于( )A .AB B .0C .BCD .AC【答案】B【分析】根据平面向量加法的运算律计算可得; 【详解】解:AO OB OC CA BO ++++ ()()AO OC CA BO OB =++++000=+=故选:B【例2】化简下列各式: (1)AO OB CA CB ++-; (2)MN MD NQ DQ -+-.【答案】(1)0;(2)0【分析】(1)由向量的加法法则与减法法则求解即可; (2)由向量的加法法则与减法法则求解即可;(1)()()AO OB CA CB AO OB CA CB ++-=++-0AB BA =+=;(2)()()MN MD NQ DQ MN MD NQ QD -+-=-++0DN ND =+= 【例3】正方形ABCD 的边长为1,则AB AD +为( ) A.1 BC .3D .根据向量加法的平行四边形法则,AB AD AC +=, 212AB A AD C +==,故选:B.【例4】在ABC 中,M 是BC 的中点,则AB AC +等于( ) A .12AM B .AM C .2AM D .MA【答案】C【分析】根据向量的加法法则计算.【详解】如图,作平行四边形ABEC ,因为M 是BC 的中点,所以M 也是AE 的中点,则2AB AC AE AM +==. 故选:C.【例5】如图为正八边形ABCDEFGH ,其中O 为正八边形的中心,则OC HG FH ++=( )A .OB B .ODC .OFD .OH【答案】A【分析】根据平面向量的概念及加法的运算法则,准确运算,即可求解.【详解】由平面向量的运算法则,可得OC HG FH OC FG OC CB OB ++=+=+=. 故选:A.【例6】设M 是平行四边形ABCD 的对角线的交点,O 为平面上任意一点,则OA OB OC OD +++=( ) A .4OM B .3OM C .2OM D .OM【分析】分别在OAC 和OBD 【详解】解:在OAC 所以1()2OM OA OC =+,即2OA OC OM +=.在OBD 中,因为M 是平行四边形ABCD 的对角线的交点,所以1()2OM OB OD =+,即2OB OD OM +=. 所以4OA OB OC OD OM +++=. 故选:A .【例7】若74AB AC ==,,则BC 的取值范围是( )A .[3,7]B .()37,C .[]311, D .(311), 【分析】根据向量的减法的几何意义,确定向量,AC AB 共线时取得最值,即可求得答案74AB AC ==,,且||BC AC AB -=,当,AC AB 同向时,BC 取得最小值,|||||||4||BC AC AB AC AB ===---当,AC AB 反向时,BC 取得最大值,|||||||||4BC AC AB AC AB -+===+当,AC AB 不共线时,BC 取得最小值,3||||||||||1||||1AC AB BC AC AB =<-<+=,BC 的取值范围是[]311,, 故选:C【例8】已知ABC 为正三角形,则下列各式中成立的是___________.(填序号)AC AB =-①AB CA BC AB -=-;①AB CA CA BC -=-;①CA BC AB AC -=-. AB AC CB BC -==,故①分别为,,AB BC AC 的中点,32AB , 23AB CA AB AC AE AB -=+==, 23BC AB BC BA BF BA -=+==,所以AB CA BC AB -=-,故①成立;对于①,23CA BC CA CB CD AB -=+==, 所以AB CA CA BC -=-,故①正确;①,AB AC CB AB CA BC -==≠-,故①不成立故答案为:①①①.【题型专练】1.32AB BC AC +-=( ) A .AB AC + B .AB AC - C .AB D .BA【答案】A【分析】根据向量的运算法则,准确化简,即可求解.【详解】由向量的运算法则,可得3222AB BC AC AB BC AB AC +-=++- 2AC CB AB AC =+=+.故选:A.2.下列能化简为PQ 的是( ) A .QC QP CQ -+ B .()AB PA BQ ++C .()()AB PC BA QC ++- D .PA AB BQ +-【答案】ABC【分析】根据向量运算对选项进行分析,从而确定正确答案. 【详解】A 选项,QC QP CQ PC CQ PQ -+=+=,A 选项正确. B 选项,()AB PA BQ AB AQ BQ PA PA PQ ++=+=+=+,B 选项正确.C 选项,()()AB PC BA QC AB BA PC QC CQ CP PQ ++-=++-=-=,C 选项正确. D 选项,()PA AB BQ PB BQ BP BQ BP BQ PQ +-=-=--=-+≠,D 选项错误. 故选:ABC3. 在四边形ABCD 中,若CA CB CD =+,则( ) A .四边形ABCD 是矩形 B .四边形ABCD 是菱形 C .四边形ABCD 是正方形 D .四边形ABCD 是平行四边形【答案】D【分析】根据平面向量加法的运算法则及向量相等的充要条件判断即可;【详解】解:CA CB CD =+,CA CB BA =+,∴CB BA CB CD +=+∴BA CD =,//AB DC ∴且AB DC =,∴四边形ABCD 是平行四边形.故选:D .4. 在平面四边形ABCD 中,E ,F 分别为AD ,BC 的中点,则下列向量与AB DC +不相等的是( ) A .2EF B .AC DB + C .EB EC + D .FA FD +所以11,22AE ED AD BF FC BC ====, 因为EF EA AB BF =++,EF ED DC CF =++ 2EF ED DC CF EA AB BF AB DC =+++++=+, A 正确,因为,DC DA AC AB AD DB =+=+,所以DC AB DA AC AD DB AC DB +=+++=+,所以B 正确,因为,DC DE EC AB AE EB =+=+,所以DC AB DE EC AE EB EC EB +=+++=+,所以因为()FA FD FB BA FC CD BA CD AB DC +=+++=+=-+, D 错误, 故选:D5.在四边形ABCD 中,给出下列四个结论,其中一定正确的是( ) A .AB BC CA +=B .AB AD BD -=C.AB AD AC+=D.BC CD BD+=【答案】D【分析】由向量加法的三角形法则可判断AD,由向量减法的运算法则可判断B,由向量加法的平行四边形法则可判断C.【详解】根据三角形法则可得AB BC AC+=,所以A错误;根据向量减法的运算法则可得AB AD DB-=,所以B错误;四边形ABCD不一定是平行四边形,所以不一定有AB AD AC+=,C错误;根据三角形法则可得BC CD BD+=正确,所以D正确.故选:D.6.在四边形ABCD中,AB DC=,若AD AB BC BA-=-,则四边形ABCD是()A.菱形B.矩形C.正方形D.不确定【分析】由AB DC=,可得四边形为平行四边形,又BD AC=,从而即可求解【详解】解:在四边形ABCD因为AB DC=,所以四边形AD AB BC BA-=-,即BD AC=,所以平行四边形ABCD为矩形,故选:B.7.在ABC中,D,E,F分别是边BC,CA,AB的中点,点G为ABC的重心,则下列结论中正确的是()A.AB BC CA-=B.1()3AG AB AC=+C.0AF BD CE++=D.0GA GB GC++=【答案】BCD【分析】由向量的线性运算结合三角形的重心的性质求解即可.【详解】解:如图:,2AB BC AB CB EB AC-=+=≠,即选项为ABC的重心,则2211()()3323AG AD AB AC AB AC==⨯+=+,即选项,1()02AF BD CE AB BC CA++=++=,即选项C正确;,122()2GA GD GB GC=-=-⨯+,即0GA GB GC++=,即选项D正确,8.如图,E,F,G,H分别是梯形ABCD的边AB,BC,CD,DA的中点,化简下列各式:(1)DG EA CB++;(2)EG CG DA EB+++.【答案】(1)GE;(2)0.【分析】(1)(2)根据图形中相关线段的位置关系,结合向量加法的几何意义化简目标式.(1)DG EA CB GC BE CB GB BE GE+++++===;(2)EG CG DA EB EG GD DA AE ED DE==+=++++++.题型三:平面向量的线性运算与共线定理【例1】[多选题]下列命题是真命题的是().A.若A,B,C,D在一条直线上,则AB与CD是共线向量B.若A,B,C,D不在一条直线上,则AB与CD不是共线向量C.若向量AB与CD是共线向量,则A,B,C,D四点必在一条直线上D.若向量AB与AC是共线向量,则A,B,C三点必在一条直线上【答案】AD【分析】向量平行与共线是同一个概念,对四个命题依次判断即可.【详解】A 项为真命题,A,B,C,D在一条直线上,则向量AB,CD的方向相同或相反,因此AB与CD是共线向量;B 项为假命题,A ,B ,C ,D 不在一条直线上,则AB ,CD 的方向不确定,不能判断AB 与CD 是否共线;C 项为假命题,因为AB ,CD 两个向量所在的直线可能没有公共点, 所以A ,B ,C ,D 四点不一定在一条直线上;D 项为真命题,因为AB ,AC 两个向量所在的直线有公共点A , 且AB 与AC 是共线向量,所以A ,B ,C 三点共线. 故选:AD .【例2】已知向量a ,b ,且2AB a b =+,56BC a b =-+,72CD a b =-,则一定共线的三点是( ) A .A ,B ,D B .A ,B ,CC .B ,C ,DD .A ,C ,D【分析】由已知,分别表示出选项对应的向量,然后利用平面向量共线定理进行判断即可完成求解【详解】因为2AB a b =+,BC 56a b =-+,72CD a b =-,,2AB a b =+,(56)(72)24B a b D B D b C a C b a ++-+==-+=,若A ,B 则AB BD λ=,即2(24)a b a b λ+=+,解得12λ=,故该选项正确; 选项B ,2AB a b =+,BC 56a b =-+,若A ,B ,C 三点共线,则AB BC λ=,即2(56)a b a b λ+=-+,解得不存在,故该选项错误;选项C ,BC 56a b =-+,72CD a b =-,若B ,三点共线,则BC BD λ=,即56(72)a b a b λ-+=-,不存在,故该选项错误;,(2)(56)48a b a A b AB BC a b C ++=+=+-=-+,72CD a b =-,若A ,C ,D 三点共线,则AC CD λ=,48(72)a b a b λ+=-,解得λ不存在,故该选项错误; 故选:A.【例3】下列说法正确的是( )A .a 与b 是非零向量,则a 与b 同向是a b =的必要不充分条件B .,,A BC 是互不重合的三点,若AB 与BC 共线,则,,A B C 三点在同一条直线上 C .a 与b 是非零向量,若a 与b 同向,则a 与b -反向D .设,λμ为实数,若a b λμ=,则a 与b 共线 【答案】ABC选项:根据向量共线的性质,可知A 、选项:a 与b 同向,则a 与b -反向,显然正确; 选项:如果0λμ==,则无法得知a 与b 共线.【详解】a 与b 同向,但a 不一定与b 相等,∴a b ≠,若a b =,则a 与b 同向, a =b ,∴a 与b 同向是a b =的必要不充分条件,A 正确.AB 与BC 共线,则有AB =BC λ,故一定有,,A B C 三点在同一条直线上,B 正确.a 与b 同向,则a 与b -反向,C 正确.0λμ==时,a 与b 不一定共线,D 错误.故选:ABC【例4】“AB CD ∥”是“A ,B ,C ,D 四点共线”的________条件. 【答案】必要不充分【分析】根据向量平行的定义结合充分性、必要性的定义判断即可. 【详解】当AB CD ∥时,直线AB 与CD 的位置关系有可能是平行或共线, 当二者平行时A ,B ,C ,D 四个点分别位于两条平行线上而不是四点共线, 则“AB CD ∥”无法推出“A ,B ,C ,D 四点共线”;当A ,B ,C ,D 四点共线时,直线AB 与CD 的位置关系为重合,此时,AB CD ∥, 则“A ,B ,C ,D 四点共线”可以推出“AB CD ∥”,因此“AB CD ∥”是“A ,B ,C ,D 四点共线”的必要不充分条件. 故答案为:必要不充分.【例5】设向量,a b 不平行,向量λ+a b 与2+a b 平行,则实数λ= ___. 【答案】21 【解析】因向量λ+a b 与2+a b 平行,所以()b a b a b a μμμλ22+=+=+,所以⎩⎨⎧==μμλ21,解得⎪⎩⎪⎨⎧==2121μλ 【例6】已知P 是①ABC 所在平面内的一点,若CB PB PA λ-=,其中λ①R ,则点P 一定在( ) A .AC 边所在的直线上 B .BC 边所在的直线上 C .AB 边所在的直线上D .①ABC 的内部【答案】A【分析】根据向量的线性运算整理可得,再结合向量共线分析即可. 【详解】①CB PB PA λ-=,PB PC CB =+①()CB PC CB PA λ-+=,则PC -=λPA ,则CP PA λ= ①CP PA ∥①P 点在AC 边所在直线上. 故选:A .【例7】在①ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144+AB ACD .1344+AB AC【答案】A【解析】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++ 1113124444BA BA AC BA AC =++=+① 所以3144EB AB AC =-①故选A.【例8】在ABC 中,AD 为BC 边上的中线,E 为AD 的中点,且EB AB AC λμ=+,则λ=________,μ=_________.【答案】3414-【解析】如下图所示:D 为BC 的中点,则()()111222AD AB BD AB BC AB AC AB AB AC =+=+=+-=+,E 为AD 的中点,所以,()1124AE AD AB AC ==+,因此,()131444EB AB AE AB AB AC AB AC =-=-+=-,即34λ=,14μ=-. 故答案为:34;14-.【例9】在ABC 中,4AC AD =,P 为BD 上一点,若13AP AB AC λ=+,则实数λ的值( ) A .18B .316C .16D .38【答案】C 【解析】4AC AD =,14AD AC ∴=,则14BD AD AB AC AB =-=-, 1233BP AP AB AB AC AB AC AB λλ⎛⎫=-=+-=- ⎪⎝⎭,由于P 为BD 上一点,则//BP BD ,设BP k BD =,则21344kAC AB k AC AB AC k AB λ⎛⎫-=-=- ⎪⎝⎭, 所以423k k λ⎧=⎪⎪⎨⎪=⎪⎩,解得16λ=.【例10】在ABC ∆中,点P 满足3BP PC =,过点P 的直线与AB 、AC 所在的直线分别交于点M 、N ,若AM AB λ=,()0,0AN AC μλμ=>>,则λμ+的最小值为( )A.12+ B1 C .32D .52【答案】B【解析】如下图所示:3BP PC =,即()3AP AB AC AP -=-,1344AP AB AC∴=+, AM AB λ=,()0,0AN AC μλμ=>>,1AB AM λ∴=,1AC ANμ=, 1344AP AM ANλμ∴=+,M 、P 、N 三点共线,则13144λμ+=. ()133********λμλμλμλμμλ⎛⎫∴+=++=++≥=+ ⎪⎝⎭,当且仅当μ=时,等号成立,因此,λμ+1+,故选:B. 【例11】已知M 为ABC 的边AB 的中点,N 为ABC 内一点,且13AN AM BC =+,则AMN BCNS S =△△( ) A .16B .13C .12D .23【答案】B【解析】因为13AN AM BC =+,所以13MN BC =, 所以MN ①BC ,又因为 M 为边AB 的中点,所以点A 到MN 的距离等于点N 到BC 的距离, 所以13AMN BCN MN S S BC==△△,【题型专练】1.已知()1221123,,2AB e e CB e e CD e e =+=-=+,则下列结论中成立的是( )A .A ,B ,C 三点共线B .A ,B ,D 三点共线C .A ,D ,C 三点共线D .D ,B ,C 三点共线 【答案】C【分析】根据平面向量的线性运算可得2AC CD =,从而可求解.【详解】解:()()1221123422AC AB CB e e e e e e CD -=-=+-=+=,所以A ,D ,C 三点共线.故选:C.2.已知向量a ,b 是两个不共线的向量,且35OA a b =+,47OB a b =+,OC a mb =+,若A ,B ,C 三点共线,则m =( )A .1B .1-C .2D .2- 【答案】A【解析】法一:b a b a b a OB AO AB 27453+=++--=+=,()b m a b m a b a OC BO BC 7374-+-=++--=+=,因A ,B ,C 三点共线,所以AB 与BC 共线,所以()[]()b m a b m a b a 73732-+-=-+-=+λλλ,所以()⎩⎨⎧-=-=7231m λλ,解得⎪⎩⎪⎨⎧=-=131m λ 法二:由,,A B C 三点共线,得(1)(4)(72)OC xOA x OB x a x b =+-=-+-,故41,72,x x m -=⎧⎨-=⎩解得1m =. 3.设12e e ,是两个不共线的向量,若向量12m e ke =-+(k ∈R )与向量212n e e =-共线,则 A .0k =B .1k =C .2k =D .12k = 【答案】D【解析】因为向量12=-+m e ke (k ∈R )与向量212=-n e e 共线,所以存在实数λ,使得λ=m n , 所以有2211(2)λ-+=-e ke e e ,因此12k λλ=⎧⎨-=-⎩,解得12k =. 4.在ABC △中,D 是AB 边上的中点,则CB =( )A .2CD CA +B .2CD CA -C .2CD CA - D .2CD CA +【答案】C【解析】:CA CD AC CD CD AC CD AD CD DB CD CB -=+=++=+=+=225.在ABC 中,点P 为AC 中点,点D 在BC 上,且3BD DC =,则DP =( )A .1144AB AC + B .1144AB AC -- C .1144AB AC - D .1144AB AC-+ 【答案】B【解析】①点P 为AC 中点,①12AP AC =,①3BD DC =,()3AD AB AC AD ∴-=-, ①1344AD AB AC =+,①113244DP AP AD AC AB AC =-=--=1144AB AC --,故选:B. 6.设,,D E F 分别为ABC 的三边BC,CA,AB 的中点,则EB FC +=( ) A .ADB .12ADC .12BCD .BC 【答案】A【解析】111()()()222EB FC BA BC CA CB AB AC AD +=-+-+=+=,故选:A7.设D 为①ABC 所在平面内的一点,若3,AD BD CD CA CB λμ==+,则μλ=_____. 【答案】3-【解析】如图所示:3CD CA AD CA BD =+=+,CA =+3(CD CB -),即有CD =﹣1322CA CB +, 因为CD CA CB λμ=+,所以λ=﹣12,μ=32,则μλ=﹣3,故答案为:﹣3. 8.如图,在ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM =,AC nAN =,则m n +=( )A .1B .32C .2D .3【答案】C 【解析】连接AO ,由O 为BC 中点可得,1()222m n AO AB AC AM AN =+=+, M 、O 、N 三点共线,122m n ∴+=,2m n ∴+=.故选:C.9.在ABC 中,2AB =,4BC =,60ABC ∠=︒,AD 为BC 边上的高,O 为AD 的中点,若AO AB BC λμ=+,则λμ+=( )A .13B .23C .38 D .58【答案】D【解析】AD 是BC 边上的高,∴90ADB ∠=︒,在ADB △中,1cos 22BD BD ABD AB ∠===,解得1BD =,4BC =,∴14BD BC =, ∴14AD AB BD AB BC =+=+,O 为AD 中点, ∴1111122428AO AD AB BC AB BC ⎛⎫==+=+ ⎪⎝⎭,AO AB BC λμ=+, ∴1128AB BC AB BC λμ+=+,∴12λ=,18μ=, ∴115288λμ+=+=. 10.已知O 是ABC 所在平面内一点,D 为BC 边中点,且20OA OB OC ++=,那么( ) A .AO OD = B .2AO OD = C .3AO OD = D .4?AO OD【答案】A【解析】D 为BC 边中点,①2OB OC OD +=,①20OA OB OC ++=,①0OA OD =+,即AO OD =.11.设,,D E F 分别是ABC 的三边BC,CA,AB 上的点,且2,2,2DC BD CE EA AF FB ===,则AD BE CF ++与BC ( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直 首先根据平面向量基本定理表示2133AD AB BD AB AC =+=+,2133BE BA BC =+,2133CF CB CA =+,【详解】()11213333AD AB BD AB BC AB AC AB AB AC =+=+=+-=+ 同理:2133BE BA BC =+,2133CF CB CA =+, 所以212121333333AD BE CF AB AC BA BC CB CA ⎛⎫⎛⎫⎛⎫++=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭13CB , 所以AD BE CF ++与BC 反向平行.故选:A【点睛】本题主要考查向量共线定理和平面向量基本定理,重点考查向量的表示,属于基础题型题型四:由平面向量的性质判断图形的形状【例1】若O 是ABC ∆所在平面内一点,且满足2OB OC OB OC OA -=+-,则ABC ∆的形状为____【答案】直角三角形=OC OA OC +=+=-+,+= 所以ABC ∆的形状为直角三角形【例2】若113e ,5e AB CD ===,则四边形ABCD 是( )A .平行四边形B .菱形C .等腰梯形D .不等腰的梯形 ,结合AD BC =,即可判断四边形【详解】解:因为113e ,5e AB CD ==,所以35AB CD =-,所以//AB CD AB CD ≠,AD BC =,所以四边形ABCD 为等腰梯形.故选:C.【题型专练】1.在四边形ABCD 中,对角线AC 与BD 交于点O ,若2323OA OC OD OB +=+,则四边形ABCD 一定是( )A .矩形B .梯形C .平行四边形D .菱形 【答案】B【分析】由2323OA OC OD OB +=+化简可得23DA CB =,结合向量共线定理判断四边形ABCD 的形状.【详解】① 2323OA OC OD OB +=+,① 2()3()OA OD OB OC -=-,① 23DA CB =,① 四边形ABCD 一定是梯形. 故选:B.2.四边形ABCD 中,2AB a b =+,4BC a b =--,53CD a b =--,若a 、b 不共线,则四边形ABCD 为( )A .平行四边形B .矩形C .梯形D .菱形 【分析】由向量知识可知//AD BC ,AD BC ≠可得答案【详解】由已知得,2453822AD AB BC CD a b a b a b a b BC =++=+----=--= , 故//AD BC ,由AD BC ≠,所以四边形ABCD 是梯形.故选:C.3.在四边形ABCD 中,若CA CB CD =+,则( )A .四边形ABCD 是矩形B .四边形ABCD 是菱形C .四边形ABCD 是正方形D .四边形ABCD 是平行四边形 【答案】D 【分析】根据平面向量加法的运算法则及向量相等的充要条件判断即可;【详解】解:CA CB CD =+,CA CB BA =+,∴CB BA CB CD +=+ ∴BA CD =,//AB DC ∴且AB DC =,∴四边形ABCD 是平行四边形. 故选:D .4.下列有关四边形ABCD 的形状判断正确的是( )A .若AD BC =,则四边形ABCD 为平行四边形B .若13AD BC =,则四边形ABCD 为梯形 C .若AB DC =,且AB AD =,则四边形ABCD 为菱形D .若AB DC =,且AC BD ⊥,则四边形ABCD 为正方形 【分析】由向量平行与相等的关系确定四边形的边的关系得结论.【详解】AD BC =,则AD 13AD BC =,则//AD BC 若AB DC =,四边形ABCD AB AD =,即AB 若AB DC =,四边形ABCD 是平行四边形,AC BD ⊥,即AC 故选:ABC .。
高考数学(文)一轮课件【第24讲】平面向量的概念及其线性运算
平面向量的概念及其线性运算
—— 链接教材 ——
→ +MB → )+(BO → +BC → )+OM → 化简 1.[教材改编] 向量式(AB 后等于________.
→ [答案] AC
→ +BO → +OM → +MB → +BC → =AC →. [解析] 原式=AB
返回目录
第24讲
→ =a,AC →= 4.[教材改编] M 是 BC 边上的中点,AB → =________. b,则AM
1 [答案] 2(a+b) → +BM → =AM →, [解析] ∵AB
1 → → → → → → → → → AC+CM=AM,∴AM=2(AB+BM+AC+CM).又CM →, =-BM 1 → → 1 → ∴AM= (AB+AC)= (a+b). 2 2
返回目录
第24讲
双 向 固 基 础
平面向量的概念及其线性运算
3.[教材改编] a 表示向东走 1 km,b 表示向南走 1 km, 则 a+b 表示向________方向走________ km.
[答案] 东南
2
[解析] 向东南方向走 2 km.
返回目录
第24讲
双 向 固 基 础
平面向量的概念及其线性运算
零向 量
或
0 长度为________ 的向量
0 用________ 表示
返回目录
第24讲
双 向 固 基 础
平面向量的概念及其线性运算
名称 单位向量 平行向量
定义
表示
1 长度等于________ 个单位的向量
1 用e表示,|e|=________
a∥b
相同 或相反的非零向量 方向________ 长度 相等且方向________ 相同 的 ________
高考文科平面向量知识点
高考文科平面向量知识点高考是对学生多年来所学知识的综合考察,而数学是文科生必考的一门科目。
在数学中,平面向量是一个重要的知识点,也是考试中常常涉及的内容。
下面,将介绍高考文科平面向量的知识点,帮助考生更好地理解和掌握这一部分内容。
一、向量的概念和运算向量是表示有大小和方向的量,常用箭头表示。
在平面上,向量通常用一个有序数对表示,如AB向量可以表示为a = (x, y)。
向量的长度是指从起点到终点的距离,记作|a|。
向量的加法和减法可以通过对应坐标的加减实现,如a + b = (x₁ + x₂, y₁ + y₂)。
二、向量的数量积向量的数量积也称点积,是指两个向量间的乘积结果,记作a·b。
计算公式为:a·b = |a| |b| cosθ。
其中,θ表示两个向量之间的夹角。
数量积的结果为一个实数,具有求模、交换律以及分配律等性质。
三、向量的向量积向量的向量积也称叉积,是指两个向量间的乘积结果,记作a × b。
计算公式为:a × b = |a| |b| sinθ n。
其中,θ表示两个向量之间的夹角,n表示垂直于两个向量所在平面的单位法向量。
向量积的结果为一个向量,其方向遵循右手法则,模长为|a| |b| sinθ。
四、向量的共线与线性运算在平面向量中,如果存在一个实数k,使得a = kb,那么向量a与向量b就是共线的。
共线的向量也叫线性相关向量。
线性运算是指对多个向量进行加法、减法和数量乘法的运算。
线性相关的向量之间可以进行代入消元等操作,进而解出线性方程组。
五、向量的应用平面向量广泛应用于各个学科和职业领域,如物理学、力学、工程、计算机图形学等。
在解决实际问题时,我们可以利用向量进行几何推理、计算机模拟、数据分析等。
例如,在解决运动问题时,可以将速度、加速度等物理量抽象为向量,简化计算过程。
六、习题和应用题为了更好地理解和掌握平面向量的知识,考生可以进行大量的习题和应用题的训练。
高考文数题型秘籍【24】平面向量的概念及其线性运算(解析版)
专题二十四平面向量的概念及其线性运算【高频考点解读】1.了解向量的实际背景、2.理解平面向量的概念、理解两个向量相等的含义、3.理解向量的几何表示、4.掌握向量加法、减法的运算、并理解其几何意义、5.掌握向量数乘的运算及其几何意义、理解两个向量共线的含义、6.了解向量线性运算的性质及其几何意义、【热点题型】题型一向量的有关概念例1、设a0为单位向量、①若a为平面内的某个向量、则a=|a|a0;②若a与a0平行、则a=|a|a0;③若a与a0平行且|a|=1、则a=a0.上述命题中、假命题的个数是()A、0B、1C、2D、3【提分秘籍】1、向量与有向线段向量常用有向线段表示、它们是两个不同概念、有向线段由起点、终点方向唯一确定、而向量是由大小和方向来确定的、2、零向量和单位向量是两个特殊的向量、它们的模确定、但方向不确定、在解题时注意它们的特殊性、如若a∥b、b∥c则a∥c是假命题、因为当b为零向量时、b与c为任意向量、两者不一定平行、3、共线向量也叫平行向量、两向量所在的直线可以共线也可以平行、4、相等向量一定是平行向量、【举一反三】下列说法中正确的是()A、只有方向相同或相反的向量是平行向量B、零向量的长度为零C 、长度相等的两个向量是相等向量D 、共线向量是在一条直线上的向量【热点题型】题型二 向量的线性运算例2、D 是△ABC 的边BA 上的中点、则向量CD →等于( ) A 、-BC →+12BA →B 、-BC →-12BA →C.BC →-12BA →D.BC →+12BA →【提分秘籍】1、两个向量的和仍是一个向量、2、利用三角形法则进行加法运算时、两向量要首尾相连、和向量由第一个向量的起点指向第二个向量的终点(可结合物理中位移的合成来认识);利用平行四边形法则进行加法运算时、两向量要有相同的起点(可结合物理中力的合成来认识、)3、当两个向量共线时、三角形法则仍适用、而平行四边形法则不适用、4、利用三角形法则进行减法运算时、两个向量要有相同的起点、然后连接两向量的终点、并指向被减向量即为差向量、5、实数和向量可以求积、但不能求和或求差、6、λ=0或a =0⇔λa =0. 【举一反三】在▱ABCD 中、A B →=a 、A D →=b 、A N →=3N C →、M 为BC 的中点、则M N →=________.(用a 、b 表示)【热点题型】题型三 共线向量定理例3、设两个非零向量a 与b 不共线、(1)若AB →=a +b 、BC →=2a +8b 、CD →=3(a -b )、求证:A 、B 、D 三点共线; (2)试确定实数k 、使ka +b 和a +kb 共线、【提分秘籍】1、一般地、解决向量a 、b 共线问题、可用两个不共线向量(如e 1、e 2)表示向量a 、b 、设b =λa (a ≠0)、化成关于e 1、e 2的方程λ)e 1+φ(λ)e 2=0、由于e 1、e 2不共线、则⎩⎪⎨⎪⎧λ=0φλ=0、解方程组即可、2、注意充要条件中a ≠0、否则λ可能不存在、也可能有无数个、3、向量共线的充要条件中要注意当两向量共线时、通常只有非零向量才能表示与之共线的其他向量、要注意待定系数法和方程思想的运用、4、证明三点共线问题、可用向量共线来解决、但应注意向量共线与三点共线的区别与联系、当两向量共线且有公共点时、才能得出三点共线、【举一反三】设a 、b 是两个非零向量、则下列选项正确的是( ) A 、若|a -b |=|a |-|b |、则a ⊥b B 、若a ⊥b 、则|a -b |=|a |+|b | C 、若|a -b |=|a |-|b |、则a 、b 共线 D 、若a 、b 平行、则|a +b |=|a |+|b |【热点题型】题型四 向量为背景的新定义问题例4、设A 1、A 2、A 3、A 4是平面直角坐标系中两两不同的四点、若A 1A 3→=λA 1A 2→(λ∈R)、A 1A 4→=μA 1A 2→(μ∈R)、且1λ+1μ=2、则称A 3、A 4调和分割A 1、A 2.已知平面上的点C 、D 调和分割点A 、B 、则下面说法正确的是( )A 、C 可能是线段AB 的中点 B 、D 可能是线段AB 的中点C 、C 、D 可能同时在线段AB 上D 、C 、D 不可能同时在线段AB 的延长线上【提分秘籍】向量具有几何和代数的双重特征、因此它具有很强的延伸性、在各种考题中常常会出现以向量为背景的新定义问题、此类问题一般结合向量知识给出一些新定义、新信息、然后让考生利用这些新定义、新信息以及所学的知识来解题、本题以共线向量为背景、结合不等式、通过创新情境、考查化归与转化思想、在整个解题过程中所给的定义是解题的重要依据和方法、【举一反三】对任意两个非零的平面向量α和β、定义α∘β=α·ββ·β.若两个非零的平面向量a 、b 满足a与b 的夹角θ∈⎝⎛⎭⎫π4,π2、且a ∘b 和b ∘a 都在集合⎩⎨⎧⎭⎬⎫n 2|n ∈Z 中、则a ∘b =( ) A.52 B.32 C 、1 D.12【高考风向标】1、(2014·福建卷)设M 为平行四边形ABCD 对角线的交点、O 为平行四边形ABCD 所在平面内任意一点、则OA →+OB →+OC →+OD →等于( )A.OM → B 、2OM → C 、3OM → D 、4OM →2、(2014·江西卷)已知单位向量e 1、e 2的夹角为α、且cos α=13.若向量a =3e 1-2e 2、则|a |=________、3、(2014·辽宁卷)设a 、b 、c 是非零向量、已知命题p :若a ·b =0、b ·c =0、则=0;命题q :若a ∥b 、b ∥c 、则a ∥c .则下列命题中真命题是( )A 、p ∨qB 、p ∧qC 、(綈p )∧(綈q )D 、p ∨(綈q )4、(2014·全国新课标卷Ⅰ] 设D 、E 、F 分别为△ABC 的三边BC 、CA 、AB 的中点、则EB →+FC →=( )A.AD →B.12AD →C.12BC → D.BC →5、(2014·四川卷)平面向量a =(1、2)、 b =(4、2)、c =m a +b (m ∈R )、且c 与a 的夹角等于c 与b 的夹角、则m =________、6、(2013·江苏卷)设D 、E 分别是△ABC 的边AB 、BC 上的点、AD =12AB 、BE =23BC.若DE →=λ1AB →+λ2AC →(λ1、λ2为实数)、则λ1+λ2的值为________、7、(2013·四川卷)在△ABC 中、角A 、B 、C 的对边分别为a 、b 、c 、且cos(A -B)cos B -sin(A -B)sin(A +C)=-35.(1)求sin A 的值;(2)若a =4 2、b =5、求向量BA →在BC →方向上的投影、8、(2013·四川卷)如图1-6、在平行四边形ABCD 中、对角线AC 与BD 交于点O 、AB →+AD →=λAO →、则λ=________.图1-6【答案】2 【解析】根据向量运算法则、AB →+AD →=AC →=2AO →、故λ=2.9、(2013·重庆卷)在OA 为边、OB 为对角线的矩形中、OA →=(-3、1)、OB →=(-2、k)、则实数k =________、【随堂巩固】1.如图所示、已知AB →=2BC →、OA →=a 、OB →=b 、OC →=c 、则下列等式中成立的是( )A 、c =32b -12aB 、c =2b -aC 、c =2a -bD 、c =32a -12b2、在△ABC 中、已知D 是AB 边上一点、若AD →=2DB →、CD →=13CA →+λCB →、则λ=( )A 、-13B 、-23 C.13 D.233.如图、正方形ABCD 中、点E 、F 分别是DC 、BC 的中点、那么EF →=( )A.12AB →+12AD → B 、-12AB →-12AD →C 、-12AB →+12AD →D. 12AB →-12AD →4、已知平面内有一点P 及一个△ABC 、若P A →+PB →+PC →=AB →、则( ) A 、点P 在△ABC 外部 B 、点P 在线段AB 上 C 、点P 在线段BC 上D 、点P 在线段AC 上5、已知OA →=a 、OB →=b 、OC →=c 、OD →=d 、且四边形ABCD 为平行四边形、则( ) A 、a -b +c -d =0 B 、a -b +c +d =0 C 、a +b -c -d =0D 、a +b +c +d =0答案:A6、在△ABC 中、N 为边AC 上一点、且AN →=13NC →、P 是BN 上一点、若AP →=mAB →+211AC →、则实数m 的值为( )A.911B.511C.411D.3117、已知在△ABC 中、D 是AB 边上的一点、CD →=λ(CA →|CA →|+CB→|CB →|)、|CA →|=2、|CB →|=1、若CA→=b 、CB →=a 、则用a 、b 表示CD →为( )A.23a +13bB.13a +23bC.13a +13bD.23a +23b8、O 是锐角三角形ABC 的外心、由O 向边BC 、CA 、AB 引垂线、垂足分别是D 、E 、F 给出下列命题:①OA →+OB →+OC →=0; ②OD →+OE →+OF →=0;③|OD →|∶|OE →|∶|OF →|=cos A ∶cos B ∶cos C ; ④∃λ∈R 、使得AD →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|sin B +AC →|AC →|sin C .以上命题正确的个数是( ) A 、1 B 、2 C 、3D 、49、下列四个命题:①若|a |=0、则a 为零向量;②若|a |=|b |、则a =b 或a =-b ;③若a ∥b 、则|a |=|b |;④若a =0、则-a =0.其中正确个数有________个、10、设a 、b 是两个不共线的非零向量、若8a +kb 与ka +2b 共线、则实数k =________.11、已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m 使得AB →+AC →=mAM →成立、则m =________.12、已知P 为△ABC 内一点、且3AP →+4BP →+5CP →=0.延长AP 交BC 于点D 、若AB →=a 、AC →=b 、用a 、b 表示向量AP →、AD →.13.设点O 在△ABC 内部、且有4OA →+OB →+OC →=0、求△ABC 的面积与△OBC 的面积之比、14、已知a 、b 不共线、OA →=a 、OB →=b 、OC →=c 、OD →=d 、OE →=e 、设t ∈R 、如果3a =c,2b =d 、e =t (a +b )、是否存在实数t 使C 、D 、E 三点在一条直线上?若存在、求出实数t 的值、若不存在、请说明理由、15.如图所示、△ABC 中、点M 是BC 的中点、点N 在边AC 上、且AN =2NC 、AM 与BN 相交于点P 、求AP ∶PM 的值、。
高考数学文科经典复习24平面向量的概念及其线性运算完美
零向量 长度为 0 的向量
用 0 表示
课前双基巩固
(续表)
单位向量 长度等于 1 个单位的向量 用 e 表示,|e|= 1
平行向量 方向 相同 或相反的非零向量
a∥b
长度 相等且方向 相同 的向
相等向量
a=b
量
相反向量 长度 相等且方向 相反 的向量 向量 a 的相反向量是 -a 说明:零向量的方向是 不确定的、任意的 .规定:零向量与任一向量 平行 .
课前双基巩固
对点演练
题组一 常识题
1.[教材改编] 化简
(������������ -������������ )+(������������ -������������ )+������������ =
.
[答案] ������������ [解析] 原式 =(������������ +������������ )+(������������ +������������ )+������������ =������������ +������������ +������������ +������������ +������������ = ������������ .
第24讲 T 4
平面向量的概念 及其线性运算
课前双基巩固│课堂考点探究│教师备用例题
使用建议
1.编写意图 本单元内容是高中数学中的工具性知识,在近几年高考试卷中主要出现在两个方 面:一是考查平面向量知识的基础题,多以选择题、填空题的形式出现,难度不大; 二是考查复数的概念与运算,一般设在第1题或第2题,难度很小. 因此,编写时主要立足于基本概念及运算,如用向量知识解决有关长度、夹角、垂 直等问题.复数概念、几何意义及运算等不再涉及难题.
第二章平面向量及其应用(讲义+典型例题)(原卷版)
第二章平面向量及其应用(讲义+典型例题)一.平面向量的有关概念名称定义备注向量既有大小又有方向的量;向量的大小叫做向量的长度(或称模)平面向量是自由向量零向量长度为0的向量;其方向是任意的记作0单位向量长度等于1个单位的向量非零向量a的单位向量为±a|a|平行向量方向相同或相反的非零向量0与任一向量平行或共线共线向量方向相同或相反的非零向量又叫做共线向量相等向量长度相等且方向相同的向量两向量只有相等或不等,不能比较大小相反向量长度相等且方向相反的向量0的相反向量为0例1:(1).如图,在矩形ABCD中,可以用同一条有向线段表示的向量是()A.DA和BC B.DC和ABC.DC和BC D.DC和DA(2).如图,O是正六边形ABCDEF的中心,且OA a=,OB b=,OC c=.在以A,B,C,D,E,F,O这七个点中任意两点为起点和终点的向量中,问:(1)与a相等的向量有哪些?(2)b的相反向量有哪些?(3)与c共线的向量有哪些?.举一反三1.下列说法正确的是()A .若a b =,则a b =±B .零向量的长度是0C .长度相等的向量叫相等向量D .共线向量是在同一条直线上的向量2.(多选)如图,在四边形ABCD 中,若AB DC =,则图中相等的向量是( )A .AD 与BCB .OB 与ODC .AC 与BDD .AO 与OC3.如图,在矩形ABCD 中,AD =2AB =2,M ,N 分别为AD 和BC 的中点,以A ,B ,C ,D ,M ,N 为起点和终点作向量,回答下列问题:(1)在模为1的向量中,相等的向量有多少对? (2)2二.平面向量的线性运算 向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:a +b =b +a . (2)结合律:(a +b )+c =a +(b +c ).减法求a 与b 的相反向量-b 的和的运算叫做a 与b 的差三角形法则a -b =a +(-b )数乘求实数λ与向量a 的积的运算(1)|λa |=|λ||a |;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0λ(μa )=(λμ)a ; (λ+μ)a =λa +μa ; λ(a +b )=λa +λb例2:①.如图,已知平行四边形ABCD 的对角线AC 和BD 相交于O ,且OA a = ,OB b = ,则BC 可以表示为( )A .a b +B .a b -C .b a -D .a b --②.如图,已知下列各组向量a ,b ,求作a b +.③.在ABC 中,已知AB b =,AC c =,求作: (1)2b ; (2)()2b c -;(3)32b c -.④.化简: (1)AB BC DC +-;(2)AB BC DC DE EA +-++; (3)()OA O BC B --. 举一反三1.5()3(2)a b a b ---= ___________.2.如图,已知M ,N 分别是四边形ABCD 的边AB ,CD 的中点,求证:()12MN AD BC =+.3.如图所示,O 是平行四边形ABCD 的对角线AC ,BD 的交点,设AB =a ,DA =b ,OC =c .证明:b c a +-=OA .4.(1)设O 是正五边形ABCDE 的中心,求OA OB OC OD OE ++++; (2)设O 是正n 边形12n A A A 的中心,求12n OA OA OA +++.5.如图,已知a ,b 为两个非零向量.(1)求作向量a b +及a b -;(2)向量a ,b 成什么位置关系时,a b a b +=-?(不要求证明)三.共线向量定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa .例3(1)如图,OA ,OB 不共线,且()AP t AB t =∈R ,用OA ,OB 表示OP .(2)已知任意两个非零向量a ,b ,若23OA a b =+,22OB a b =+,25OC a b =+,你能判断A ,B ,C 三点之间的位置关系吗?为什么? 举一反三1.在ABC 中,已知D 是AB 边上的一点,若13CD CA CB λ=+,则λ等于( )A .13B .23C .12D .342.设1e 与2e 是不共线的非零向量,若12ke e +与12e ke +共线且方向相反,则k 的值是( ) A .1- B .1C .±1D .任意不为零的实数3.已知1e 与2e 不共线,12AB e e =+,1228BC e e =+,()123CD e e =-.求证:A ,B ,D 三点共线.四.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底.例4(1).等腰直角三角形ABC 中,90A ︒=,,AB AC D =是斜边BC 上一点,且3BD DC =,则AD =( )A .3544AC AB +B .3144AC AB +C .5144AC AB +D .3144AC AB -(2)(多选).在ABC 中,边BC 上的中线与边AC 上的中线的交点为E ,若CE AB AC λμ=+,则2λμ+=______.举一反三1.在平面四边形ABCD 中,已知ABC 的面积是ACD △的面积的2倍.若存在正实数,x y 使得1141AC AB AD x y ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭成立,则2x y +的最小值为( )A .1B .2C .3D .42.(多选)如图,在等腰梯形ABCD 中,222AB AD CD BC ===,E 是BC 的中点,连接AE ,BD 相交于点F ,连接CF ,则下列说法正确的是( )A .3142AE AB AD →→→=+ B .3255AF AB AD →→→=+ C .1255BF AB AD →→→=-+D .13105CF AB AD →→→=-五.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 6.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ∥b ⇔x 1y 2-x 2y 1=0.例5(1)已知向量(1,4)a =-,(2,3)b =,则2a b -的坐标为( ) A .(-3,-10) B .(-3,-2) C .(-3,2)D .(3,-10)(2).已知向量1(1,)2a =-,(2,)b m =-,若a 与b 共线,则||b =( )A .3B .5C .6D .22(3).已知向量a ,b 满足()1,2a λ=+,()1,b λ=,//a b ,则实数λ的值为______. 举一反三1.已知向量()3,4a =-,2AB a =,点A 的坐标为()3,4-,则点B 的坐标为______. 2.若(1,1),(1,2)a b ==-,则与a b +同方向的单位向量是_______. 3.已知点A (1,2),B (4,5),O (0,0)及OP mOA AB =+. (1)当m 为何值时,P 在x 轴上?P 在y 轴上?P 在第四象限?(2)四边形OABP 能否成为平行四边形?若能,求出相应的m 的值;若不能,说明为什么.六.平面向量的数量积1,概念:已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积),记作a ·b =|a ||b |cos θ.规定:零向量与任一向量的数量积为__0__.两个非零向量a 与b 垂直的充要条件是 a·b =0,两个非零向量a 与b 平行的充要条件是 a·b =±|a||b|.2.平面向量数量积的几何意义数量积a·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 3.平面向量数量积的重要性质(1)e·a =a·e =|a |cos θ; (2)非零向量a ,b ,a ⊥b ⇔a·b =0; (3)当a 与b 同向时,a·b =|a||b|;当a 与b 反向时,a·b =-|a||b|,a·a =|a |2,|a |=a·a ; (4)cos θ=a·b |a||b|; (5)|a·b |__≤__|a||b|.4.平面向量数量积满足的运算律(1)a·b =b·a (交换律); (2)(λa )·b =λ(a·b )=a ·(λb )(λ为实数); (3)(a +b )·c =a·c +b·c . 5.平面向量数量积有关性质的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2,由此得到(1)若a =(x ,y ),则|a |2=x 2+y 2或|a |=x 2+y 2.(2)设A (x 1,y 1),B (x 2,y 2),则A 、B 两点间的距离|AB |=|AB →|=(x 2-x 1)2+(y 2-y 1)2. (3)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.例6:(1).如图,在平行四边形ABCD 中,已知8AB =,5AD =,3CP PD =,2AP BP ⋅=,则AB AD ⋅的值是( )A .18B .22C .18-D .22-(2).已知,a b 是非零向量,且,a b 不共线,3,4a b ==,若向量a kb +与a kb -互相垂直,则实数k 的值为( ) A .2± B .12±C .43±D .34±3.已知平面向量a ,b 满足()1,2a =,10b =,522a b ⋅=,则cos a b ⋅=______.举一反三1.设两向量12,e e 满足12122,1,,e e e e ==的夹角为60︒,12122,2=+=+a e e b e e ,则a 在b 上的投影为( ) A 53B 521C 57D 522.(多选)已知在△ABC 中,2AB =,2AB AM =,2CM CN =,若0AN BC ⋅=,则( )A .23AB AC AN += B .()2AB ACCM -C .AB AC ⊥D .45ACM ∠=︒3.已知向量()3,2a =-,()1,0b =,向量()()2a b a b λ+⊥-,则向量()()a b a kb λ-+时实数k的值为______.4.已知向量()2,3a =,()3,1b =,若()a ab λ⊥+,则λ的值为___________.七.向量在平面几何中的应用 用向量解决常见平面几何问题的技巧: 问题类型 所用知识 公式表示线平行、点共线等问题共线向量定理a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=0, 其中a =(x 1,y 1),b =(x 2,y 2) 垂直问题 数量积的运算性质a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0,a =(x 1,y 1),b =(x 2,y 2),其中a ,b 为非零向量夹角问题 数量积的定义 cos θ=a ·b|a |·|b |(θ为向量a ,b 的夹角)长度问题 数量积的定义|a |=a 2=x 2+y 2,其中a =(x ,y )例7:①.已知2a =,4b =,a 与b 的夹角为60︒.(1)计算()a ab ⋅+的值;(2)若()0a a kb ⋅-=,求实数k 的值.②.已知非零向量a ,b 满足2a b =,且()a b b -⊥. (1)求a 与b 的夹角;(2)若14a b +=,求b .③.已知2a =,3b =,在下列情况下,求()2()a b a b +-的值: (1)//a b ;(2)a b ⊥;(3)a 与b 的夹角为120°.举一反三1.已知向量(5,12)a =-,(3,4)b =-.(1)求a 与b 夹角θ的余弦值;(2)若向量a tb +与a b -垂直,求实数t 的值. 2.在平行四边形ABCD 中,AC 为一条对角线.若()2,4AB =,()1,3AC =.(1)求cos DAB ∠的值;(2)求BD AD ⋅的值.3.已知向量2,1(),1,),3,1(b m a b n b a a k -==+=-=-. (1)若mn ,求k 的值;(2)当=2k 时,求m 与n 夹角的余弦值.八、正弦定理和余弦定理解三角形正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 R C cB b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b cC C ++===A +B +A B .2)化边为角:C B A c b a sin :sin :sin ::=;;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a =3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2=== 4)化角为边: ;sin sin b a B A =;sin sin c b C B =;sin sin c aC A = 5)化角为边: RcC R b B R a A 2sin ,2sin ,2sin ===二.三角形面积1.B ac A bcC ab S ABC sin 21sin 21sin 21===∆三.余弦定理1.余弦定理:三角形中任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的2倍,即A bc c b a cos 2222-+= B ac c a b cos 2222-+=C ab b a c cos 2222-+=2.变形:bc a c b A 2cos 222-+=ac b c a B 2cos 222-+=ab c b a C 2cos 222-+= 注意整体代入,如:21cos 222=⇒=-+B ac b c a利用余弦定理判断三角形形状:设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若,,所以为锐角②若为直角A a b c ⇔=+222 ③若, 所以为钝角,则是钝角三角形三角形中常见的结论三角形三角关系:A+B+C=180°;C=180°—(A+B);三角形三边关系:两边之和大于第三边:,,; 两边之差小于第三边:,,; 在同一个三角形中大边对大角:B A b a B A sin sin >⇔>⇔>4) 三角形内的诱导公式:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-)2sin()2cos()22cos()22sin()22tan(2tan C C C C C B A =--=-=+πππ7) 三角形的五心:垂心——三角形的三边上的高相交于一点重心——三角形三条中线的相交于一点外心——三角形三边垂直平分线相交于一点内心——三角形三内角的平分线相交于一点旁心——三角形的一条内角平分线与其他两个角的外角平分线交于一点例9:1.在ABC 中,角,,A B C 分别对应边,,a b c ,已知2a =,3b =.角60B =,求角C .2.已知:如图,在梯形ABCD 中,//AD BC ,2AB AD ==,60A ∠=︒,5BC =,求CD 的长3.△ABC 中,a =7,c =3,且sin sin C B =35. (1)求b ;(2)求∠A .4.已知b ,a ,c 是ABC 中B ,A ,C 的对边,且B ,A ,C 成等差数列. (1)求A ;(2)若2b =,6c =,求ABC 的面积.5.已知b ,a ,c 是ABC 中B ,A ,C 的对边,且B ,A ,C 成等差数列. (1)求A ;(2)若2b =,6c =,求ABC 的面积.举一反三1.若ABC 的面积为22,1,6b c ==,且A ∠为锐角. (1) 求cos A 的值;(2) 求sin 2sin A C的值. 2.在ABC ∆中,32b =,6cos 3A =,2B A π=+. (Ⅰ)求a 的值;(Ⅱ)求cos 2C 的值.3.在ABC 中,a 、b 、c 分别是角A.B.C 的对边,且()2cos cos a c B b C -=. (1)求角B 的大小;(2)若7b =,8a c +=,求ABC 的面积.4.在ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且22(2)(2)a b c b c b c =-+-. (Ⅰ)求角A 的大小;(Ⅱ)若2cos b c A =,试判断ABC 的形状5.在ABC 中,角,,A B C 的对边分别为,,a b c ,且满足1cos 2a b c B +=⋅. (1)求角C ;(2)若2,3a b ==,求ABC 外接圆的半径.6.在ABC中,已知12 tan5A .(1)若ABC外接圆的直径长为132,求BC的值;(2)若ABC为锐角三角形,其面积为6,求BC的取值范围.。
高考数学专题复习五-5.1平面向量的概念及线性运算、平面向量基本定理及坐标表示-模拟练习题(附答案)
专题五 平面向量5.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示基础篇考点一 平面向量的概念及线性运算1.(2022吉林第三次调研,5)已知向量a =(4,3),则与向量a 垂直的单位向量的坐标为 ( ) A.(45,35) B.(35,−45)C.(−45,−35)或(45,35) D.(35,−45)或(−35,45) 答案 D2.(2022新高考Ⅰ,3,5分)在△ABC 中,点D 在边AB 上,BD =2DA.记CA ⃗⃗⃗⃗⃗ =m ,CD ⃗⃗⃗⃗⃗ =n ,则CB ⃗⃗⃗⃗⃗ =( ) A.3m -2n B.-2m +3n C.3m +2n D.2m +3n 答案 B3.(2022四川绵阳二模,6)已知平面向量a ,b 不共线,AB ⃗⃗⃗⃗⃗ =4a +6b ,BC ⃗⃗⃗⃗⃗ =-a +3b ,CD ⃗⃗⃗⃗⃗ =a +3b ,则( )A.A ,B ,D 三点共线B.A ,B ,C 三点共线C.B ,C ,D 三点共线D.A ,C ,D 三点共线 答案 D4.(2022江西宜春4月联考,7)如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且AE ⃗⃗⃗⃗⃗ =38AC ⃗⃗⃗⃗⃗ ,则BE ⃗⃗⃗⃗⃗ =( )A.58AB ⃗⃗⃗⃗⃗ −38AD ⃗⃗⃗⃗⃗ B.38AB ⃗⃗⃗⃗⃗ −58AD ⃗⃗⃗⃗⃗ C.-58AB ⃗⃗⃗⃗⃗ +38AD ⃗⃗⃗⃗⃗ D.58AB ⃗⃗⃗⃗⃗ +38AD ⃗⃗⃗⃗⃗ 答案 C5.(2023届江西宜春月考,7)已知S △ABC =3,点M 是△ABC 内一点且MA ⃗⃗⃗⃗⃗⃗ +2MB ⃗⃗⃗⃗⃗⃗ =CM ⃗⃗⃗⃗⃗⃗ ,则△MBC 的面积为( )A.14B.13C.34D.12答案 C6.(2023届哈尔滨三中月考二,5)在△ABC 中,点D 是线段BC 上任意一点,且满足AD ⃗⃗⃗⃗⃗ =3AP ⃗⃗⃗⃗⃗ ,若存在实数m 和n ,使得BP ⃗⃗⃗⃗⃗ =mAB ⃗⃗⃗⃗⃗ +nAC ⃗⃗⃗⃗⃗ ,则m +n = ( )A.23 B.13 C.-23 D.−13 答案 C7.(2022贵州适应性考试,14)在平行四边形ABCD 中,AE ⃗⃗⃗⃗⃗ =2ED ⃗⃗⃗⃗⃗ .若CE ⃗⃗⃗⃗⃗ =λBA ⃗⃗⃗⃗⃗ +μBC ⃗⃗⃗⃗⃗ ,则λ+μ= . 答案 23考点二 平面向量基本定理及坐标表示考向一 平面向量基本定理1.(2022江西重点中学联考二,5)设e 1,e 2是两个不共线的平面向量,若a =3e 1-2e 2,b =e 1+ke 2,且a 与b 共线,则实数k 的值为( ) A.-12 B.12 C.−23 D.23 答案 C2.(2022甘肃顶级名校第二次联考,14)如图,在△ABC 中,AN ⃗⃗⃗⃗⃗⃗ =13NC ⃗⃗⃗⃗⃗ ,BP ⃗⃗⃗⃗⃗ =13BN ⃗⃗⃗⃗⃗⃗ ,若AP ⃗⃗⃗⃗⃗ =xAB⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ ,则x +4y 的值为 .答案 13.(2022东北三省三校联考(二),14)在正六边形ABCDEF 中,点G 为线段DF (含端点)上的动点,若CG ⃗⃗⃗⃗⃗ =λCB ⃗⃗⃗⃗⃗ +μCD ⃗⃗⃗⃗⃗ (λ,μ∈R ),则λ+μ的取值范围是 . 答案 [1,4]考向二 平面向量的坐标运算1.(2022黑龙江齐齐哈尔第一中学一模,3)已知向量a =(3,-2),b =(m ,1),若a ⊥b ,则a -3b = ( )A.(0,5)B.(5,1)C.(1,-5)D.(152,−5) 答案 C2.(2023届四川内江六中9月联考,1)已知向量a =(1,2),b =(1,1),若c =a +kb ,且b ⊥c ,则实数k =( )A.32B.−53C.53D.−32答案 D3.(2021云南统一检测一,7)已知向量a =(32,1),b =(−12,4),则 ( )A.a ∥(a -b )B.a ⊥(a -b )C.(a -b )∥(a +b )D.(a -b )⊥(a +b ) 答案 B4.(2018课标Ⅲ,13,5分)已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ= . 答案 125.(2022合肥二模,13)已知向量AB ⃗⃗⃗⃗⃗ =(-1,2),BC ⃗⃗⃗⃗⃗ =(2t ,t +5),若A ,B ,C 三点共线,则t = . 答案 -16.(2021全国甲,14,5分)已知向量a =(3,1),b =(1,0),c =a +kb.若a ⊥c ,则k = . 答案 -1037.(2022河南中原名校4月联考,13)已知向量a =(-1,1),b =(-2,4),若a ∥c ,a ⊥(b +c ),则|c |= . 答案 3√28.(2023届河南安阳调研测试,13)设向量a =(m ,1),b =(1,2),且|a -b |2=|a |2-|b |2,则实数m = . 答案 39.(2019上海,9,5分)过曲线y 2=4x 的焦点F 并垂直于x 轴的直线分别与曲线y 2=4x 交于A 、B ,A 在B 上方,M 为抛物线上一点,OM ⃗⃗⃗⃗⃗⃗ =λOA ⃗⃗⃗⃗⃗ +(λ-2)OB ⃗⃗⃗⃗⃗ ,则λ= . 答案 310.(2022湘豫名校4月联考,13)已知向量a =(-1,3),b =(2x ,-x ),其中x ∈R ,则|a -b |的最小值为 . 答案 √5综合篇考法一 平面向量的线性运算1.(2021贵州安顺模拟,5)如图,在正六边形ABCDEF 中,M 为DE 的中点,设AC ⃗⃗⃗⃗⃗ =a ,AF ⃗⃗⃗⃗⃗ =b ,则AM ⃗⃗⃗⃗⃗⃗ =( )A.54a -34b B.-34a +54b C.54a +34b D.34a +54b 答案 D2.(2022届江苏南通如皋调研,7)如图,已知OA =2,OB =2,OC =1,∠AOB =60°,∠BOC =90°,若OB ⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ +yOC ⃗⃗⃗⃗⃗ ,则x y= ( )A.√3B.12 C.√33D.23答案 C3.(2021皖江名校4月联考,10)在△ABC 中,AC ⊥AB ,AB =2,AC =1,点P ,M 是△ABC 所在平面内一点,AP ⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗ |+2AC⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗ |,且满足|PM ⃗⃗⃗⃗⃗⃗ |=1,若AM ⃗⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAC ⃗⃗⃗⃗⃗ ,则2λ+μ的最小值是 ( )A.3+√2B.5C.1D.3−√2 答案 D4.(2023届河南名校诊断测试一,10)已知△ABC 中,BO ⃗⃗⃗⃗⃗ =2OC ⃗⃗⃗⃗⃗ ,过点O 的直线分别交射线AB ,AC 于不同的两点M ,N ,则△AMN 与△ABC 的面积之比的最小值为 ( )A.2√23B.49C.89 D.2答案 C5.(2022山西大同重点中学4月联考,14)在△ABC 中,若AD 是∠BAC 的平分线,且D 在边BC 上,则有ABAC =BDDC ,称之为三角形的内角平分线定理.已知在△ABC 中,AC =4,BC =6,AB =8,P 是△ABC 的内心,且AP ⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ ,则xy = . 答案8816.(2022昆明五华模拟,15)如图,在矩形ABCD 中,AB =4,AD =3,以CD 为直径的半圆上有一点P ,若AP⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗ ,则λ+μ的最大值为 .答案 737.(2017江苏,12,5分)如图,在同一个平面内,向量OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ 的模分别为1,1,√2,OA ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为α,且tan α=7,OB ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为45°.若OC ⃗⃗⃗⃗⃗ =mOA ⃗⃗⃗⃗⃗ +nOB ⃗⃗⃗⃗⃗ (m ,n ∈R ),则m +n = .答案 3考法二 向量共线问题1.(2021山西孝义二模,6)已知AB ⃗⃗⃗⃗⃗ =(-1,cos α),BC ⃗⃗⃗⃗⃗ =(2,0),CD ⃗⃗⃗⃗⃗ =(2,2sin α),若A ,B ,D 三点共线,则tan α=( )A.-2B.-12 C.12 D.2 答案 A2.(2022安徽蚌埠三模,11)如图,在梯形ABCD 中,AB ∥DC 且AB =2DC ,点E 为线段BC 的靠近点C 的一个四等分点,点F 为线段AD 的中点,AE 与BF 交于点O ,且AO ⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +yBC ⃗⃗⃗⃗⃗ ,则x +y 的值为( )A.1B.57C.1417D.56答案 C3.(2022江西九大名校3月联考,9)在△ABC 中,点D 在线段AC 上,且满足|AD |=13|AC |,点Q 为线段BD 上任意一点,若实数x ,y 满足AQ ⃗⃗⃗⃗⃗ =xAB⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ ,则1x+1y的最小值为 ( )A.4B.4√3C.8D.4+2√3 答案 D4.(2021江西上饶2月联考,10)在三角形ABC 中,E 、F 分别为AC 、AB 上的点,BE 与CF 交于点Q ,且AE ⃗⃗⃗⃗⃗ =2EC ⃗⃗⃗⃗⃗ ,AF ⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,延长AQ 交BC 于点D ,AQ ⃗⃗⃗⃗⃗ =λQD ⃗⃗⃗⃗⃗⃗ ,则λ的值为 ( ) A.3 B.4 C.5 D.6 答案 C5.(2022豫北名校联盟4月联考,14)如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外一点D ,若OC ⃗⃗⃗⃗⃗ =mOA⃗⃗⃗⃗⃗ +nOB ⃗⃗⃗⃗⃗ ,则m +n 的取值范围为 .答案 (-1,0)。
2023年高考数学真题分训练 平面向量的概念、线性运算、平面向量基本定理(含答案含解析)
专题 15 平面向量的概念、线性运算、平面向量根本定理年 份 题号考 点考 查 内 容2023卷 1 文6平面向量的概念与线性运算主要考查平面向量的线性运算卷 1 理 7平面向量根本定理及其应用 主要考查平面向量的线性运算及平面向量根本定理卷 2 理 13平面向量的概念与线性运算主要考查平面向量共线的充要条件2023卷1文 2平面向量的坐标运算及向量 共线的充要条件主要考查平面向量的坐标与点坐标的关系、平面向量坐 标运算2023卷 2 文 13 平面向量的坐标运算及向量 共线的充要条件主要考查平面向量坐标的线性运算及向量共线的充要 条件卷1理 6 文 7平面向量根本定理及其应用主要考查平面向量的线性运算及平面向量根本定理2023卷 3理 13 文 13 平面向量的坐标运算及向量 共线的充要条件主要考查平面向量的线性运算及向量共线的充要条件2023 卷 2文 3平面向量的坐标运算及向量 共线的充要条件主要考查平面向量坐标运算及模公式考点 47 平面向量的概念与线性运算1.(2023 新课标 I ,文 6)设 D , E , F 分别为∆ABC 的三边 BC , CA , AB 的中点,则 EB + FC =33A. BCB .(答案)C 1 AD2C . ADD . 1 BC2(解析) EB + FC =1 (CB + AB ) + 1 (BC + AC ) = 1( AB + AC ) = AD ,应选 C . 2 2 22.(2023 福建)在以下向量组中,可以把向量a =(3,2) 表示出来的是A .e 1 =(0,0),e 2 = (1,2) C .e 1 =(3,5),e 2 =(6,10) (答案)BB .e 1 =(-1,2),e 2 =(5,-2) D .e 1 =(2,-3),e 2 =(-2,3) (解析)对于 A ,C ,D ,都有e 1 ∥ e 2 ,所以只有 B 成立.考点 48 平面向量根本定理及其应用1.(2023 江苏 13)在∆ABC 中, AB = 4 , AC = 3 , ∠BAC = 90︒, D 在边 BC 上,延长 AD 到 P ,使得3AP = 9 ,假设 PA = mPB + (2- m )PC ( m 为常数),则CD 的长度是 .18 (答案)53 (解析)由向量系数m + ( - m ) = 为常数,结合等和线性质可知 2 2 PA PD= 2 ,1故 PD =2PA = 6 , AD = PA - PD = 3 = AC ,故∠C = ∠CDA ,故∠CAD =π- 2C .3AC 3 CD AD在∆ABC 中, cos C = = ;在∆ADC 中,由正弦定理得 = ,BC 5 sin ∠CAD sin Csin(π- 2C ) sin 2C 3 18即CD = ⋅ AD = ⋅ AD = 2 cos C ⋅ AD = 2 ⨯ ⨯ 3 = .sin C sin C5 52.(2023•新课标Ⅰ,理 6 文 7)在∆ABC 中, AD 为 BC 边上的中线, E 为 AD 的中点,则 EB = ()A . 3 - 1B . 13C . 31D . 13AB AC4 4(答案)AAB - AC4 4AB + AC4 4AB + AC4 42EB AB AE AB AD =11AB AC (解析)在∆ABC 中, AD 为 BC 边上的中线, E 为 AD 的中点,∴ = - = - 12AB - ⨯ 2 2( AB + AC ) = 3 - 1,应选 A . 4 43.(2023 新课标Ⅰ,理 7)设 D 为ABC 所在平面内一点 BC = 3CD ,则( )(A) AD = - 1 AB + 4AC (B) AD = 1 AB - 4AC3 3 3 3(C) AD =4 1AB + AC (D) AD =4 1AB - AC 3 33 3(答案)A1114 (解析)由题知 AD = AC + CD = AC + BC = AC + 3 3 ( AC - AB ) = = - AB + 3 3AC ,应选 A . 4.(2023 广东)设a 是已知的平面向量且a ≠ 0 ,关于向量a 的分解,有如下四个命题:①给定向量b ,总存在向量 c ,使 a = b + c ; ②给定向量b 和c ,总存在实数λ和μ,使a = λb + μc ;③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使a = λb + μc ;④给定正数λ和μ,总存在单位向量b 和单位向量c ,使a = λb + μc ;上述命题中的向量b , c 和a 在同一平面内且两两不共线,则真命题的个数是 A .1B .2C .3D .4(答案)B(解析)利用向量加法的三角形法则,易的①是对的;利用平面向量的根本定理,易的②是对的;以a 的终点作长度为μ的圆,这个圆必须和向量λb 有交点,这个不肯定能满足,③是错的;利用向量加法的三 角形法则,结合三角形两边的和大于第三边,即必须 λb + μc =λ+μ≥ a ,所以④是假命题.综上,此题选 B .5.(2023 江苏)如图,在同一个平面内,向量OA , OB , OC 的模分别为 1,1, , OA 与OC 的夹角为α , 且 tan α= 7 , OB 与 OC 的夹角为 45. 假设 OC = m OA + n OB ( m , n ∈ R ) , 则m + n =.(答案)3(解析)由tan α= 7 可得sin α=7 2, cos α=2,由OC = m OA + n OB 得1010⎧ 2 ⎧⎪OC ⋅OA = mOA + nOB ⋅OA ⎪ 2 cos α= m + n c os(α+ 45 ) ⎨ 2 ,即⎨ ,两式相加得,2 cos 45 = m cos(α+ 45 ) + n ⎩OC ⋅OB = mOB ⋅OA + nOB⎩ 2(cos α+ cos 45 ) = (m + n )(1+ cos(α+ 45 )) ,所以2 ⨯2+ 2 ⨯2m + n = 2 cos α+ 2 cos 45 = 10 2 = 3 ,所以 m + n = 3 . 1+ cos(α+ 45)2 2 7 2 2 1+ ⨯ - ⨯ 10 2 10 2λ6.(2023 北京)向量 a ,b ,c 在正方形网格中的位置如下图,假设c = λa + μb (λ,μ∈R ),则 μ=.(答案)41 (解析) 如图建立坐标系,则 a = (-1,1) ,b = (6, 2) ,c = (-1, 3) .由c = λa + μb ,可得λ= -2,μ= -,2λ∴ μ= 47.(2023 北京)在△ABC 中,点 M , N 满足 AM = 2MC , BN = NC ,假设 MN = x AB + y AC ,则 x =2AB c / /(2a a | a b | ; y = .1(答案) 2 1 - 61 1 11 1 1 (解析)由 MN = MC + CN = AC + CB = AC + ( AB - AC ) = AB - AC = x AB + y AC .所3 2 3 2 2 61 1 以 x = , y = - .2 6考点 49 平面向量的坐标运算及平面向量共线的充要条件1.(2023•新课标Ⅱ,文 3)已知向量 a = (2, 3) , b = (3, 2) ,则| a - b |= ( )A . (答案)AB.2 C . 5 D .50(解析) a = (2, 3) ,b = (3, 2) ,∴- b = (2 ,3) - (3 ,2) = (-1 ,1) ,∴ -= ,应选 A .2.(2023 辽宁)已知点 A (1, 3) , B (4, -1) ,则与向量 AB 同方向的单位向量为⎛ 34 ⎫⎛ 43 ⎫⎛ - 3 4 ⎫⎛ 4 3 ⎫A . ,- ⎪B . ,- ⎪C . , ⎪D . - , ⎪⎝ 55 ⎭ (答案)A⎝ 55 ⎭ ⎝ 5 5 ⎭⎝ 5 5 ⎭(解析) AB = (3, -4) ,所以| AB |= 5 ,这样同方向的单位向量是 1 = (3 , - 4) . 5 5 53.(2011 广东)已知向量a =(1,2), b =(1,0), c =(3,4).假设λ为实数, (a + λb )∥c ,则λ=A.14(答案)BB.12C .1D .2(解析)a + λb = (1+ λ, 2) ,由(a + λb ) ∥ c ,得6 - 4(1+ λ) = 0 ,解得λ= 124.( 2023•新课标Ⅲ,理 13)已知向量 a = (1, 2) , b = (2, -2) , c = (1,λ) .假设+ b ) ,则λ= .(答案) 12(解析) 向量 a = (1, 2) , b = (2, -2) ,∴+ b = (4, 2) , c = (1,λ) ,+ b ) , 2a∴ 1 = λ,解得λ= 1.c / /(2a4 2 25.(2023 新课标,文 13) 已知向量 a =(m ,4),b =(3,−2),且 a ∥b ,则 m = .(答案) -6225⎨⎩1(解析) 向量 a , b 不平行,向量λa + b 与 a + 2b 平行, a + b = t (a + 2b ) = ta + 2tb ,(解析)因为 a ∥b ,所以-2m - 4 ⨯ 3 = 0 ,解得 m = -6 .6.(2023•新课标Ⅱ,理 13)设向量 a , b 不平行,向量λ + b 与+ 2b 平行,则实数λ= .(答案) 12 a a∴λ∴ ⎧λ= t ⎩1 = 2t,解得实数λ= 1 .27.(2023 江苏)已知向量a = (2,1) , b = (1, -2) ,假设 m a + n b = (9, -8) ( m , n ∈R),则 m - n的值为 .(答案)-3(解析)由题意得: 2m + n = 9, m - 2n = -8 ⇒ m = 2, n = 5, m - n = -3.8.(2023 北京)已知向量a 、b 满足 a = 1 , b = (2,1) ,且λa + b = 0 (λ∈ R ),则 λ = (答案) ⎧cos θ= - 2(解析)∵| a |= 1,∴可令 a = (cos θ, s in θ) ,∵ λa + b = 0 ,∴⎧λcos θ+ 2 = 0,即⎪λ,解⎨λsin θ+1 = 0⎨⎪sin θ= - 1 ⎩ λ得λ2 = 5 得| λ|=.9.(2023 陕西) 设0 <θ< π,向量a = (sin 2θ,cos θ) , b (cos θ,1),假设a ∥b ,则2tan θ= .1(答案)2(解析)∵ a ∥b ,∴ sin 2θ= cos2θ,∴ 2 sin θcos θ= cos 2θ,∵θ∈π(0, ) 2,∴tan θ= . 25。
2024年新高考版数学专题1_6.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示
零向量和共线向量不能作基底.
2.平面向量的坐标运算
已知a=(x1,y1),b=(x2,y2).
则a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),a∥b⇔x1y2-x2y1=0.
3.向量的坐标表示
若A(x1,y1),B(x2,y2),则
AB
=(x2-x1,y2-y1).
1 2
( BD
- BA )= BA +
1 4
BC
-
1 2
BA =
1 2
BA +
1 4
BC
,∴D
错误.故选AC.
答案 AC
考法二 向量共线问题的求解方法
1.两非零向量共线是指存在实数λ,使两向量可以相互表示,在应用时注意
待定系数法和方程思想的应用.
2.证明三点共线问题,可用向量共线来解决,但应注意向量共线和三点共
λ(μa)=(λμ)a; (λ+μ)a=λa+μa; λ(a+b)=λa+λb
2.共线向量定理 向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使b=λa.
考点二 平面向量基本定理及坐标运算
1.平面向量基本定理
如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向 量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.我们把{e1、e2}叫做表示这个平 面内所有向量的一个基底.
答案 6
高考 数学
专题六 平面向量
6.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示
基础篇
考点一 平面向量的概念及线性运算 1.向量的线性运算
高考总复习数学文科第四篇 平面向量第1讲 平面向量的概念及其线性运算
高考总复习数学文科第四篇平面向量第1讲平面向量的概念及其线性运算[最新考纲]1.了解向量的实际背景.2.理解平面向量的概念,理解两个向量相等的含义.3.理解向量的几何表示.4.掌握向量加法、减法的运算,并理解其几何意义.5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.6.了解向量线性运算的性质及其几何意义.知识梳理1.向量的有关概念三角形法则平行四边形法则(1)的相反向三角形法则(1)|λa|=|λ||a|;向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa.辨析感悟1.对共线向量的理解(1)若向量a,b共线,则向量a,b的方向相同.(×)(2)若a∥b,b∥c,则a∥c.(×)(3)(2013·郑州调研改编)设a与b是两个不共线向量,且向量a+λb与2a-b共线,则λ=-12.(√)2.对向量线性运算的应用(4)AB →+BC →+CD →=AD →.(√)(5)(教材习题改编)在△ABC 中,D 是BC 的中点,则AD →=12(AC →+AB →).(√) [感悟·提升]1.一个区别 两个向量共线与两条线段共线不同,前者的起点可以不同,而后者必须在同一直线上.同样,两个平行向量与两条平行直线也是不同的,因为两个平行向量可以移到同一直线上.2.两个防范 一是两个向量共线,则它们的方向相同或相反;如(1);二是注重零向量的特殊性,如(2).考点一 平面向量的有关概念【例1】 给出下列命题:①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB→=DC →是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a |=|b |且a ∥b .其中真命题的序号是________.解析 ①不正确.两个向量的长度相等,但它们的方向不一定相同. ②正确.∵AB→=DC →,∴|AB→|=|DC →|且AB →∥DC →, 又∵A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则AB →∥DC →且|AB →|=|DC →|,因此,AB →=DC→. ③正确.∵a =b ,∴a ,b 的长度相等且方向相同; 又b =c ,∴b ,c 的长度相等且方向相同,∴a ,c 的长度相等且方向相同,故a =c .④不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.综上所述,正确命题的序号是②③.答案 ②③规律方法 对于向量的概念应注意以下几条:(1)向量的两个特征:有大小和方向,向量既可以用有向线段和字母表示,也可以用坐标表示;(2)相等向量不仅模相等,而且方向要相同,所以相等向量一定是平行向量,而平行向量则未必是相等向量;(3)向量与数量不同,数量可以比较大小,向量则不能,但向量的模是非负实数,故可以比较大小.【训练1】 设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是( ).A .0B .1C .2D .3解析 向量是既有大小又有方向的量,a 与|a |a 0的模相等,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.答案 D考点二 平面向量的线性运算【例2】 (1) (2013·四川卷)如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB→+AD →=λ AO →,则λ=________.(2)(2013·泉州模拟)已知P ,A ,B ,C 是平面内四点,且P A →+PB →+PC →=AC →,那么一定有( ).A .PB→=2CP → B .CP →=2PB → C .AP→=2PB → D .PB→=2AP → 解析 (1)∵AB→+AD →=AC →=2AO →,∴λ=2.(2)∵P A →+PB →+PC →=AC →=PC →-P A →, ∴PB →=-2P A →=2AP →. 答案 (1)2 (2)D规律方法 (1)进行向量运算时,要尽可能地将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量,三角形的中位线及相似三角形对应边成比例等性质,把未知向量用已知向量表示出来.(2)向量的线性运算类似于代数多项式的运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在线性运算中同样适用.【训练2】 如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则( ). A .AD→+BE →+CF →=0 B.BD→-CF →+DF →=0 C .AD→+CE →-CF →=0 D.BD→-BE →-FC →=0 解析 由题意知:AD→=FE →,BE →=DF →,CF →=ED →,而FE →+ED →+DF →=0,∴AD →+BE →+CF →=0.答案 A考点三 向量共线定理及其应用【例3】 (2013·郑州一中月考)设两个非零向量a 与b 不共线.(1)若AB→=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.审题路线 (1)由向量的加法,得BD →=BC →+CD →⇒用a ,b 表示BD →⇒得到BD →与AB →的关系式⇒由向量共线定理,得BD →与AB →共线⇒再看是否有公共点⇒得到证明的结论.(2)假设存在实数k ⇒利用向量共线定理⇒列出方程⇒根据a ,b 是两个不共线的向量⇒得出方程组⇒解得k 值.(1)证明 ∵AB→=a +b ,BC →=2a +8b ,CD →=3(a -b ).∴BD→=BC →+CD →=2a +8b +3(a -b )=5(a +b )=5AB →. ∴AB→,BD →共线,又它们有公共点B , ∴A ,B ,D 三点共线.(2)解 假设k a +b 与a +k b 共线, 则存在实数λ,使k a +b =λ(a +k b ), 即(k -λ)a =(λk -1)b .又a ,b 是两不共线的非零向量, ∴k -λ=λk -1=0.∴k 2-1=0.∴k =±1.规律方法 (1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立,若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.【训练3】 (2014·西安模拟)已知向量a ,b 不共线,且c =λa +b ,d =a +(2λ-1)b ,若c 与d 同向,则实数λ的值为________.解析 由于c 与d 同向,所以c =k d (k >0), 于是λa +b =k [a +(2λ-1)b ], 整理得λa +b =k a +(2λk -k )b .由于a ,b 不共线,所以有⎩⎪⎨⎪⎧λ=k ,2λk -k =1,整理得2λ2-λ-1=0,所以λ=1或λ=-12.又因为k >0,所以λ>0,故λ=1. 答案 11.向量的加、减法运算,要在所表达的图形上多思考,多联系相关的几何图形,比如平行四边形、菱形、三角形等,可多记忆一些有关的结论.2.对于向量共线定理及其等价定理,关键要理解为位置(共线或不共线)与向量等式之间所建立的对应关系.要证明三点共线或直线平行都是先探索有关的向量满足向量等式b =λa ,再结合条件或图形有无公共点证明几何位置.方法优化3——准确把握平面向量的概念和运算【典例】 (2012·浙江卷)设a ,b 是两个非零向量.( ). A .若|a +b |=|a |-|b |,则a ⊥b B .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得b =λaD .若存在实数λ,使得b =λa ,则|a +b |=|a |-|b |[一般解法] (排除法)选项A ,若b =-a ,则等式|a +b |=|a |-|b |成立,显然a ⊥b 不成立;选项B ,若a ⊥b 且|a |=|b |,则|a |-|b |=0,显然,|a +b |=2|a |≠0,故|a +b |=|a |-|b |不成立;选项D ,若b =a ,则|a |-|b |=0,显然,|a +b |=2|a |≠0,故|a +b |=|a |-|b |不成立.综上,A ,B ,D 都不正确,故选C.[优美解法] (数量积法)把等式|a +b |=|a |-|b |两边平方,得(a +b )2=(|a |-|b |)2,即2a ·b =-2|a |·|b |, 而a ·b =|a ||b |cos 〈a ,b 〉,所以cos 〈a ,b 〉=-1.又因为〈a ,b 〉∈[0,π],所以〈a ,b 〉=π,即a ,b 为方向相反的共线向量.故C 正确.[反思感悟] 部分学生做错的主要原因是:题中的条件“|a +b |=|a |-|b |”在处理过程中误认为“|a +b |=|a -b |”,从而得到“a ⊥b ”这个错误的结论.【自主体验】在△OAB 中,OA →=a ,OB →=b ,OD 是AB 边上的高,若AD →=λAB →,则实数λ=( ).A .a ·(a -b )|a -b |B .a ·(b -a )|a -b | C .a ·(a -b )|a -b |2D .a ·(b -a )|a -b |2解析 由AD→=λAB →,∴|AD →|=λ|AB →|.又∵|AD →|=|a |cos A =|a |·a ·(a -b )|a ||b -a |=a ·(a -b )|b -a |,|AB →|=|b -a |,∴λ=a ·(a -b )|b -a |2=a ·(a -b )|a -b |2.故选C.基础巩固题组 (建议用时:40分钟)一、选择题1.若O ,E ,F 是不共线的任意三点,则以下各式中成立的是( ). A .EF→=OF →+OE → B .EF→=OF →-OE → C .EF→=-OF →+OE → D .EF→=-OF →-OE → 解析 由图可知EF→=OF →-OE →.答案 B2. (2014·汕头二模)如图,在正六边形ABCDEF 中,BA →+CD →+EF →等于( ).A .0B .BE →C .AD→ D .CF→ 解析 因为ABCDEF 是正六边形,故BA →+CD →+EF →=DE →+CD →+EF →=CE →+EF→=CF →. 答案 D3.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的( ). A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析 若a +b =0,则a =-b ,所以a ∥b .若a ∥b ,则a =λb ,a +b =0不一定成立,故前者是后者的充分不必要条件.4.(2013·大连联考)已知OA →=a ,OB →=b ,OC →=c ,OD →=d ,且四边形ABCD为平行四边形,则( ).A .a -b +c -d =0B .a -b -c +d =0C .a +b -c -d =0D .a +b +c +d =0解析 依题意得,AB→=DC →,故AB →+CD →=0,即OB →-OA →+OD →-OC →=0,即有OA→-OB →+OC →-OD →=0,则a -b +c -d =0. 答案 A5.(2014·兰州质检)若点M 是△ABC 所在平面内的一点,且满足5AM →=AB →+3AC→,则△ABM 与△ABC 的面积比为( ). A .15 B .25 C .35 D .45解析设AB 的中点为D ,由5AM →=AB →+3AC →,得3AM →-3AC →=2AD →-2AM →,即3CM →=2MD→.如图所示,故C ,M ,D 三点共线,且MD →=35CD →,也就是△ABM 与△ABC 对于边AB 的两高之比为3∶5,则△ABM 与△ABC 的面积比为35,选C.答案 C 二、填空题6.(2014·湖州月考)给出下列命题: ①向量AB→的长度与向量BA →的长度相等; ②向量a 与b 平行,则a 与b 的方向相同或相反; ③两个有共同起点而且相等的向量,其终点必相同;④两个有公共终点的向量,一定是共线向量;⑤向量AB→与向量CD →是共线向量,则点A ,B ,C ,D 必在同一条直线上.其中不正确命题的序号是________. 解析 ①中,∵向量AB→与BA →为相反向量,∴它们的长度相等,此命题正确.②中若a 或b 为零向量,则满足a 与b 平行,但a 与b 的方向不一定相同或相反,∴此命题错误.③由相等向量的定义知,若两向量为相等向量,且起点相同,则其终点也必定相同,∴该命题正确.④由共线向量知,若两个向量仅有相同的终点,则不一定共线,∴该命题错误.⑤∵共线向量是方向相同或相反的向量,∴若AB →与CD →是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,∴该命题错误.答案 ②④⑤7.在▱ABCD 中,AB →=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,则MN →=________.(用a ,b 表示)解析 由AN→=3NC →,得4AN →=3 AC →=3(a +b ),AM →=a +12b ,所以MN →=34(a+b )-⎝ ⎛⎭⎪⎫a +12b =-14a +14b .答案 -14a +14b8.(2014·泰安模拟)设a ,b 是两个不共线向量,AB →=2a +p b ,BC →=a +b ,CD →=a -2b ,若A ,B ,D 三点共线,则实数p 的值为________.解析 ∵BD→=BC →+CD →=2a -b ,又A ,B ,D 三点共线,∴存在实数λ,使AB →=λBD →.即⎩⎪⎨⎪⎧2=2λ,p =-λ,∴p =-1.答案 -1 三、解答题9.若a ,b 是两个不共线的非零向量,a 与b 起点相同,则当t 为何值时,a ,t b ,13(a +b )三向量的终点在同一条直线上?解 设OA→=a ,OB →=t b ,OC →=13(a +b ),∴AC→=OC →-OA →=-23a +13b ,AB →=OB →-OA →=t b -a . 要使A ,B ,C 三点共线,只需AC →=λAB →.即-23a +13b =λ(t b -a )=λt b -λa . 又∵a 与b 为不共线的非零向量, ∴有⎩⎪⎨⎪⎧ -23=-λ,13=λt⇒⎩⎪⎨⎪⎧λ=23,t =12.∴当t =12时,三向量终点在同一直线上.10.如图,在平行四边形OADB 中,设OA→=a ,OB →=b ,BM →=13BC →,CN →=13CD→.试用a ,b 表示OM →,ON →及MN →.解 由题意知,在平行四边形OADB 中,BM→=13BC →=16BA →=16(OA →-OB →)=16(a -b )=16a -16b , 则OM→=OB →+BM →=b +16a -16b =16a +56b . ON→=23OD →=23(OA →+OB →)=23(a +b )=23a +23b ,MN →=ON →-OM →=23(a +b )-16a -56b =12a -16b .能力提升题组 (建议用时:25分钟)一、选择题1.(2013·济南一模)已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足OP →=13⎝ ⎛ 12OA →+12OB →+)2OC→,则点P 一定为三角形ABC 的( ).A .AB 边中线的中点B .AB 边中线的三等分点(非重心)C .重心D .AB 边的中点解析 设AB 的中点为M ,则12OA →+12OB →=OM →,∴OP→=13(OM →+2OC →)=13OM →+23OC →,即3OP →=OM →+2OC →,也就是MP →=2PC →,∴P ,M ,C 三点共线,且P 是CM 上靠近C 点的一个三等分点.答案 B2.在△ABC 中,点O 在线段BC 的延长线上,且与点C 不重合,若AO →=xAB→+(1-x )AC →,则实数x 的取值范围是( ). A .(-∞,0) B .(0,+∞) C .(-1,0)D .(0,1)解析 设BO →=λ BC →(λ>1),则AO →=AB →+BO →=AB →+λ BC →=(1-λ)AB →+λ AC →,又AO →=x AB →+(1-x )AC →,所以x AB →+(1-x )AC →=(1-λ)AB →+λ AC →.所以λ=1-x >1,得x <0.答案 A 二、填空题3.若点O 是△ABC 所在平面内的一点,且满足|OB→-OC →|=|OB →+OC →-2OA →|,则△ABC 的形状为________.解析 OB→+OC →-2OA →=OB →-OA →+OC →-OA →=AB →+AC →,OB→-OC →=CB →=AB →-AC →,∴|AB →+AC →|=|AB →-AC →|. 故A ,B ,C 为矩形的三个顶点,△ABC 为直角三角形. 答案 直角三角形 三、解答题4.在△ABC 中,E ,F 分别为AC ,AB 的中点,BE 与CF 相交于G 点,设AB →=a ,AC→=b ,试用a ,b 表示AG →.解 AG→=AB →+BG →=AB →+λBE → =AB →+λ2(BA →+BC →)=⎝ ⎛⎭⎪⎫1-λ2AB →+λ2(AC →-AB →)=(1-λ)AB→+λ2AC →=(1-λ)a +λ2b .又AG→=AC →+CG →=AC →+m CF →=AC →+m 2(CA →+CB →)=(1-m )AC→+m 2AB →=m 2a +(1-m )b ,∴⎩⎪⎨⎪⎧1-λ=m2,1-m =λ2,解得λ=m =23,∴AG→=13a +13b .。
2024版高考数学总复习:平面向量的概念与线性运算课件
乘
λa=__
0
运算律
λ(μa)=(λμ)a;
λa+μa
(λ+μ)a=______;
λa+λb
λ(a+b)=________
3.向量共线定理
向量a(a≠0) 与b 共线的充要条件是:存在唯一一个实数λ, 使 得
b=λa
______.
4.常用结论
1
(1)设P为线段AB的中点,O为平面内任一点,则= (
3
4.已知□ABCD的对角线AC和BD相交于点O,且=a,=b,
则=________,=___________.(用a,b表示)
b-a
-a-b
解析:如图, == − =b-a, =
− =- − =-a-b.
1
2
3
4
5
5.设向量a,b不平行,向量λa+b与a+2b平行,则实数λ=_____.
是λ+μ=1.
(5)(a+b)2+(a-b)2=2(|a|2+|b|2).
二、基本技能·思想·活动经验
1.判断下列说法的正误,对的画“√”,错的画“×”.
(1)向量不能比较大小,但向量的模可以比较大小.
( √ )
(2)若a∥b,b∥c,则a∥c.
( × )
(3)若向量与向量是共线向量,则A,B,C,D四点在一条直线
2
(2)若G是△ABC的重心,D是BC边的中点,则
① + + =0.
1
②= ( + ).
3
1
1
③= ( + )= (
2
6
+ ).
+ ).
(3)在四边形ABCD中,若E为AD的中点,F为BC的中点,则 +
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【高频考点解读】
1.了解向量的实际背景.
2.理解平面向量的概念,理解两个向量相等的含义.
3.理解向量的几何表示.
4.掌握向量加法、减法的运算,并理解其几何意义.
5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.
6.了解向量线性运算的性质及其几何意义.
【热点题型】
题型一 向量的有关概念
例1、设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是( )
A .0
B .1
C .2
D .3
【举一反三】
下列说法中正确的是( )
A .只有方向相同或相反的向量是平行向量
B .零向量的长度为零
C .长度相等的两个向量是相等向量
D .共线向量是在一条直线上的向量
【热点题型】
题型二 向量的线性运算
例2、D 是△ABC 的边BA 上的中点,则向量CD →等于( )
A .-BC →+12BA →
B .-B
C →-12
BA →
C.BC →-12
BA → D.BC →+12
BA → 【提分秘籍】 1.两个向量的和仍是一个向量.
2.利用三角形法则进行加法运算时,两向量要首尾相连,和向量由第一个向量的起点指向第二个向量的终点(可结合物理中位移的合成来认识);利用平行四边形法则进行加法运算时,两向量要有相同的起点(可结合物理中力的合成来认识.)
3.当两个向量共线时,三角形法则仍适用,而平行四边形法则不适用.
4.利用三角形法则进行减法运算时,两个向量要有相同的起点,然后连接两向量的终点,并指向被减向量即为差向量.
5.实数和向量可以求积,但不能求和或求差.
6.λ=0或a =0⇔λa =0.
【举一反三】
在▱ABCD 中,A B →=a ,A D →=b ,A N →=3N C →,M 为BC 的中点,则M N →=________.(用a ,b 表示)
题型三 共线向量定理
例3、设两个非零向量a 与b 不共线.
(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A ,B ,D 三点共线;
(2)试确定实数k ,使ka +b 和a +kb 共线.
【提分秘籍】
1.一般地,解决向量a ,b 共线问题,可用两个不共线向量(如e 1,e 2)表示向量a ,b ,设b =λa (a ≠0),化成关于e 1,e 2的方程λ)e 1+φ(λ)e 2=0,由于e 1,e 2不共线,则⎩⎪⎨⎪⎧ λ=0φλ=0,解方程组即可.
2.注意充要条件中a ≠0,否则λ可能不存在,也可能有无数个.
3.向量共线的充要条件中要注意当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,要注意待定系数法和方程思想的运用.
4.证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.
【举一反三】
设a ,b 是两个非零向量,则下列选项正确的是( )
A .若|a -b |=|a |-|b |,则a ⊥b
B .若a ⊥b ,则|a -b |=|a |+|b |
C .若|a -b |=|a |-|b |,则a ,b 共线。