最新人教版必修五高中数学2.1 数列的概念与简单表示法同步习题及答案

合集下载

高中数学(人教版必修5)配套练习:2.1 数列的概念与简单表示法

高中数学(人教版必修5)配套练习:2.1 数列的概念与简单表示法
第二章 2.1
一、选择题
1.下列有关数列的说法正确的是( )
①同一数列的任意两项均不可能相同;
②数列-1,0,1 与数列 1,0,-1 是同一个数列;
③数列中的每一项都与它的序号有关.
A.①②
B.①③
C.②③
D.③
[答案] D
[解析] ①是错误的,例如无穷个 3 构成的常数列 3,3,3,…的各项都是 3;②是错误的,
∴an=2n-1+1.
11
22
33
44
(3)a1=2=11+1,a2=5=22+1,a3=10=32+1,a4=17=42+1…,
n
∴an=n2+1.
2
4
8
16
(4)a1=1=2,a2=3,a3=2=4,a4= 5 …,
2n
∴an=n+1.
1
1
11
1
1
11
(5)a1=-3=-1 × 3,a2=8=2 × 4,a3=-15=-3 × 5,a4=24=4 × 6, 1
2n [答案] an=2n-12n+1
2 2 4 2 × 2 6 2 × 3 8 2 × 4 10 2 × 5 [解析] 3=1 × 3,15=3 × 5,35=5 × 7,63=7 × 9,99=9 × 11,…,∴an=
2n 2n-12n+1.
8.已知数列 3,7,11,15,19,…,那么 3 11是这个数列的第________项.
[答案] A [解析] 据题意,由关系式 an+1=f(an)得到的数列{an},满足 an+1>an,即该函数 y=f(x) 的图象上任一点(x,y)都满足 y>x,结合图象,只有 A 满足,故选 A. 3.若数列的前 4 项分别为 2,0,2,0,则这个数列的通项公式不能是( ) A.an=1+(-1)n+1 B.an=1-cosnπ

高中数学《 数列的概念与简单表示法》(答案)

高中数学《 数列的概念与简单表示法》(答案)

§2.1 数列的概念与简单表示法题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)相同的一组数按不同顺序排列时都表示同一个数列.( × ) (2)所有数列的第n 项都能使用公式表达.( × )(3)根据数列的前几项归纳出数列的通项公式可能不止一个.( √ ) (4)1,1,1,1,…,不能构成一个数列.( × )(5)任何一个数列不是递增数列,就是递减数列.( × )(6)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( √ ) 题组二 教材改编2.[P33A 组T4]在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2),则a 5等于( )A.32B.53C.85D.23 答案 D解析 a 2=1+(-1)2a 1=2,a 3=1+(-1)3a 2=12,a 4=1+(-1)4a 3=3,a 5=1+(-1)5a 4=23.3.[P33A 组T5]根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________.答案 5n -4 题组三 易错自纠4.已知a n =n 2+λn ,且对于任意的n ∈N *,数列{a n }是递增数列,则实数λ的取值范围是________. 答案 (-3,+∞)解析 因为{a n }是递增数列,所以对任意的n ∈N *,都有a n +1>a n ,即(n +1)2+λ(n +1)>n 2+λn ,整理,得2n +1+λ>0,即λ>-(2n +1).(*)因为n ≥1,所以-(2n +1)≤-3,要使不等式(*)恒成立,只需λ>-3. 5.数列{a n }中,a n =-n 2+11n (n ∈N *),则此数列最大项的值是________. 答案 30解析 a n =-n 2+11n =-⎝⎛⎭⎫n -1122+1214, ∵n ∈N *,∴当n =5或n =6时,a n 取最大值30. 6.已知数列{a n }的前n 项和S n =n 2+1,则a n =________.答案 ⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2,n ∈N *解析 当n =1时,a 1=S 1=2,当n ≥2时, a n =S n -S n -1=n 2+1-[(n -1)2+1]=2n -1,故a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2,n ∈N *.题型一 由数列的前几项求数列的通项公式1.数列0,23,45,67,…的一个通项公式为( )A .a n =n -1n +2(n ∈N *)B .a n =n -12n +1(n ∈N *)C .a n =2(n -1)2n -1(n ∈N *)D .a n =2n2n +1(n ∈N *)答案 C解析 注意到分子0,2,4,6都是偶数,对照选项排除即可.2.数列-11×2,12×3,-13×4,14×5,…的一个通项公式a n =________.答案 (-1)n 1n (n +1)解析 这个数列前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式为a n =(-1)n1n (n +1).思维升华 由前几项归纳数列通项的常用方法及具体策略(1)常用方法:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.(2)具体策略:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项的符号特征和绝对值特征;⑤化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;⑥对于符号交替出现的情况,可用(-1)k 或(-1)k +1,k ∈N *处理. (3)如果是选择题,可采用代入验证的方法.题型二 由a n 与S n 的关系求通项公式典例 (1)已知数列{a n }的前n 项和S n =3n 2-2n +1(n ∈N *),则其通项公式为________________.答案 a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2,n ∈N *解析 当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1] =6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2,n ∈N *.(2)若数列{a n }的前n 项和S n =23a n +13(n ∈N *),则{a n }的通项公式a n =________.答案 (-2)n -1解析 由S n =23a n +13,得当n ≥2时,S n -1=23a n -1+13,两式相减,整理得a n =-2a n -1,又当n =1时,S 1=a 1=23a 1+13,∴a 1=1,∴{a n }是首项为1,公比为-2的等比数列,故a n =(-2)n -1.思维升华 已知S n ,求a n 的步骤 (1)当n =1时,a 1=S 1. (2)当n ≥2时,a n =S n -S n -1.(3)对n =1时的情况进行检验,若适合n ≥2的通项则可以合并;若不适合则写成分段函数形式. 跟踪训练 (1)(2017·河南八校一联)在数列{a n }中,S n 是其前n 项和,且S n =2a n +1,则数列的通项公式a n =________. 答案 -2n -1解析 由题意得S n +1=2a n +1+1,S n =2a n +1, 两式相减得S n +1-S n =2a n +1-2a n , 即a n +1=2a n ,又S 1=2a 1+1=a 1,因此a 1=-1,所以数列{a n }是以a 1=-1为首项、2为公比的等比数列,所以a n =-2n -1. (2)已知数列{a n }的前n 项和S n =3n +1,则数列的通项公式a n =________.答案 ⎩⎪⎨⎪⎧4,n =1,2·3n -1,n ≥2解析 当n =1时,a 1=S 1=3+1=4,当n ≥2时,a n =S n -S n -1=3n +1-3n -1-1=2·3n -1. 显然当n =1时,不满足上式.∴a n =⎩⎪⎨⎪⎧4,n =1,2·3n -1,n ≥2.题型三 由数列的递推关系求通项公式典例 根据下列条件,确定数列{a n }的通项公式.(1)a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ; (2)a 1=1,a n +1=2n a n ; (3)a 1=1,a n +1=3a n +2. 解 (1)∵a n +1=a n +ln ⎝⎛⎭⎫1+1n , ∴a n -a n -1=ln ⎝⎛⎭⎫1+1n -1=ln n n -1(n ≥2),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=ln n n -1+ln n -1n -2+…+ln 32+ln 2+2=2+ln ⎝ ⎛⎭⎪⎫n n -1·n -1n -2·…·32·2=2+ln n (n ≥2). 又a 1=2适合上式,故a n =2+ln n (n ∈N *). (2)∵a n +1=2n a n ,∴a n a n -1=2n -1 (n ≥2),∴a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=2n -1·2n -2·…·2·1=21+2+3+…+(n -1)=(1)22n n -.又a 1=1适合上式,故a n =(1)22n n -(n ∈N *).(3)∵a n +1=3a n +2,∴a n +1+1=3(a n +1), 又a 1=1,∴a 1+1=2,故数列{a n +1}是首项为2,公比为3的等比数列, ∴a n +1=2·3n -1,故a n =2·3n -1-1(n ∈N *).引申探究 在本例(2)中,若a n =n -1n ·a n -1(n ≥2,且n ∈N *),其他条件不变,则a n =________.答案 1n解析 ∵a n =n -1n a n -1 (n ≥2),∴a n -1=n -2n -1a n -2,…,a 2=12a 1.以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .当n =1时也满足此等式,∴a n =1n.思维升华 已知数列的递推关系求通项公式的典型方法 (1)当出现a n =a n -1+m 时,构造等差数列. (2)当出现a n =xa n -1+y 时,构造等比数列. (3)当出现a n =a n -1+f (n )时,用累加法求解.(4)当出现a na n -1=f (n )时,用累乘法求解.跟踪训练 (1)已知数列{a n }满足a 1=1,a 2=4,a n +2+2a n =3a n +1(n ∈N *),则数列{a n }的通项公式a n =______________. 答案 3×2n -1-2解析 由a n +2+2a n -3a n +1=0, 得a n +2-a n +1=2(a n +1-a n ),∴数列{a n +1-a n }是以a 2-a 1=3为首项,2为公比的等比数列,∴a n +1-a n =3×2n -1, ∴当n ≥2时,a n -a n -1=3×2n -2,…,a 3-a 2=3×2,a 2-a 1=3, 将以上各式累加,得a n -a 1=3×2n -2+…+3×2+3=3(2n -1-1), ∴a n =3×2n -1-2(当n =1时,也满足).(2)在数列{a n }中,a 1=3,a n +1=a n +1n (n +1),则通项公式a n =________.答案 4-1n解析 原递推公式可化为a n +1=a n +1n -1n +1,则a 2=a 1+11-12,a 3=a 2+12-13,a 4=a 3+13-14,…,a n -1=a n -2+1n -2-1n -1,a n =a n -1+1n -1-1n ,逐项相加得a n =a 1+1-1n ,故a n =4-1n.题型四 数列的性质命题点1 数列的单调性典例 已知a n =n -1n +1,那么数列{a n }是( )A .递减数列B .递增数列C .常数列D .摆动数列 答案 B解析 a n =1-2n +1,将a n 看作关于n 的函数,n ∈N *,易知{a n }是递增数列.命题点2 数列的周期性典例 数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=_______________________________________.答案 12解析 ∵a n +1=11-a n ,∴a n +1=11-a n=11-11-a n -1=1-a n -11-a n -1-1=1-a n -1-a n -1=1-1a n -1=1-111-a n -2=1-(1-a n -2)=a n -2,n ≥3, ∴周期T =(n +1)-(n -2)=3. ∴a 8=a 3×2+2=a 2=2. 而a 2=11-a 1,∴a 1=12.命题点3 数列的最值典例 数列{a n }的通项a n =nn 2+90,则数列{a n }中的最大项是( )A .310B .19 C.119 D.1060答案 C解析 令f (x )=x +90x (x >0),运用基本不等式得f (x )≥290,当且仅当x =310时等号成立.因为a n =1n +90n ,所以1n +90n ≤1290,由于n ∈N *,不难发现当n =9或n =10时,a n =119最大.思维升华 (1)解决数列的单调性问题可用以下三种方法①用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列. ②用作商比较法,根据a n +1a n (a n >0或a n <0)与1的大小关系进行判断.③结合相应函数的图象直观判断. (2)解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. (3)数列的最值可以利用数列的单调性或求函数最值的思想求解.跟踪训练 (1)数列{a n }满足a n +1=⎩⎨⎧2a n ,0≤a n ≤12,2a n-1,12<a n<1, a 1=35,则数列的第 2 018项为________. 答案 15解析 由已知可得,a 2=2×35-1=15,a 3=2×15=25,a 4=2×25=45,a 5=2×45-1=35,∴{a n }为周期数列且T =4, ∴a 2 018=a 504×4+2=a 2=15.(2)(2017·安徽名校联考)已知数列{a n }的首项为2,且数列{a n }满足a n +1=a n -1a n +1,数列{a n }的前n 项的和为S n ,则S 2 016等于( ) A .504 B .588 C .-588 D .-504 答案 C解析 ∵a 1=2,a n +1=a n -1a n +1,∴a 2=13,a 3=-12,a 4=-3,a 5=2,…,∴数列{a n }的周期为4,且a 1+a 2+a 3+a 4=-76,∵2 016÷4=504,∴S 2 016=504×⎝⎛⎭⎫-76=-588,故选C.解决数列问题的函数思想典例 (1)数列{a n }的通项公式是a n =(n +1)·⎝⎛⎭⎫1011n,则此数列的最大项是第________项. (2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立,则实数k 的取值范围是__________. 思想方法指导 (1)可以将数列看成定义域为正整数集上的函数;(2)数列的最值可以根据单调性进行分析.解析 (1)∵a n +1-a n =(n +2)⎝⎛⎭⎫1011n +1-(n +1)⎝⎛⎭⎫1011n =⎝⎛⎭⎫1011n ×9-n11,当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n ,∴该数列中有最大项,且最大项为第9,10项. (2)由a n +1>a n 知该数列是一个递增数列, 又∵通项公式a n =n 2+kn +4, ∴(n +1)2+k (n +1)+4>n 2+kn +4, 即k >-1-2n ,又n ∈N *,∴k >-3. 答案 (1)9或10 (2)(-3,+∞)1.(2017·湖南长沙一模)已知数列的前4项为2,0,2,0,则依此归纳该数列的通项不可能是( ) A .a n =(-1)n -1+1 B .a n =⎩⎪⎨⎪⎧2,n 为奇数,0,n 为偶数C .a n =2sin n π2D .a n =cos(n -1)π+1 答案 C解析 对n =1,2,3,4进行验证,知a n =2sinn π2不合题意,故选C. 2.(2018·葫芦岛质检)数列23,-45,67,-89,…的第10项是( )A .-1617B .-1819C .-2021D .-2223答案 C解析 所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把每一部分进行分解:符号、分母、分子.很容易归纳出数列{a n }的通项公式a n =(-1)n +1·2n 2n +1,故a 10=-2021.3.(2017·黄冈质检)已知在正项数列{a n }中,a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ≥2),则a 6等于( )A .16B .4C .2 2D .45 答案 B解析 由题意得a 2n +1-a 2n =a 2n -a 2n -1=…=a 22-a 21=3,故{a 2n }是以3为公差的等差数列,即a 2n =3n -2.所以a 26=3×6-2=16.又a n >0,所以a 6=4.故选B.4.若数列{a n }满足a 1=2,a 2=3,a n =a n -1a n -2(n ≥3且n ∈N *),则a 2 018等于( )A .3B .2 C.12 D.23答案 A解析 由已知a 3=a 2a 1=32,a 4=a 3a 2=12,a 5=a 4a 3=13,a 6=a 5a 4=23,a 7=a 6a 5=2,a 8=a 7a 6=3,∴数列{a n }具有周期性,且T =6, ∴a 2 018=a 336×6+2=a 2=3.5.(2018·长春调研)设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( ) A.163 B.133 C .4 D .0 答案 D解析 ∵a n =-3⎝⎛⎭⎫n -522+34,由二次函数性质,得当n =2或3时,a n 最大,最大为0. 6.(2017·江西六校联考)已知数列{a n }满足a n =⎩⎪⎨⎪⎧(5-a )n -11,n ≤5,a n -4,n >5,且{a n }是递增数列,则实数a 的取值范围是( )A .(1,5) B.⎝⎛⎭⎫73,5 C.⎣⎡⎭⎫73,5 D .(2,5) 答案 D解析 ∵a n =⎩⎪⎨⎪⎧(5-a )n -11,n ≤5,a n -4,n >5,且{a n }是递增数列,∴⎩⎪⎨⎪⎧5-a >0,a >1,5(5-a )-11<a 2,解得2<a <5,故选D.7.若数列{a n }满足关系a n +1=1+1a n ,a 8=3421,则a 5=________.答案 85解析 借助递推关系,由a 8递推依次得到a 7=2113,a 6=138,a 5=85.8.已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n =________.答案 ⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2解析 当n ≥2时,a n =S n -S n -1=2n +1, 当n =1时,a 1=S 1=4≠2×1+1,因此a n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.9.(2018·大庆模拟)已知数列{a n }的通项公式a n =(n +2)·⎝⎛⎭⎫67n,则数列{a n }的项取最大值时,n =________. 答案 4或5解析 假设第n 项为最大项,则⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1,即⎩⎨⎧(n +2)·⎝⎛⎭⎫67n≥(n +1)·⎝⎛⎭⎫67n -1,(n +2)·⎝⎛⎭⎫67n≥(n +3)·⎝⎛⎭⎫67n +1,解得⎩⎪⎨⎪⎧n ≤5,n ≥4, 即4≤n ≤5,又n ∈N *,所以n =4或n =5,故数列{a n }中a 4与a 5均为最大项,且a 4=a 5=6574.10.(2017·太原模拟)已知数列{a n }满足a 1=1,a n -a n +1=na n a n +1(n ∈N *),则a n =__________. 答案2n 2-n +2解析 由a n -a n +1=na n a n +1,得1a n +1-1a n=n ,则由累加法得1a n -1a 1=1+2+…+(n -1)=n 2-n 2,又因为a 1=1,所以1a n =n 2-n2+1=n 2-n +22,所以a n =2n 2-n +2(n ∈N *).11.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *). (1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式. 解 (1)由S n =12a 2n +12a n (n ∈N *)可得 a 1=12a 21+12a 1,解得a 1=1, S 2=a 1+a 2=12a 22+12a 2,解得a 2=2, 同理,a 3=3,a 4=4. (2)S n =a n 2+12a 2n ,①当n ≥2时,S n -1=a n -12+12a 2n -1,②①-②得(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0,所以a n -a n -1=1, 又由(1)知a 1=1,故数列{a n }为首项为1,公差为1的等差数列, 故a n =n .12.已知数列{a n }的各项均为正数,记数列{a n }的前n 项和为S n ,数列{a 2n }的前n 项和为T n ,且3T n =S 2n +2S n ,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式. 解 (1)由3T 1=S 21+2S 1,得3a 21=a 21+2a 1,即a 21-a 1=0.因为a 1>0,所以a 1=1. (2)因为3T n =S 2n +2S n ,① 所以3T n +1=S 2n +1+2S n +1,②②-①,得3a 2n +1=S 2n +1-S 2n +2a n +1.因为a n +1>0,所以3a n +1=S n +1+S n +2,③ 所以3a n +2=S n +2+S n +1+2,④④-③,得3a n +2-3a n +1=a n +2+a n +1, 即a n +2=2a n +1, 所以当n ≥2时,a n +1a n =2.又由3T 2=S 22+2S 2,得3(1+a 22)=(1+a 2)2+2(1+a 2),即a 22-2a 2=0.因为a 2>0,所以a 2=2,所以a 2a 1=2,所以对n ∈N *,都有a n +1a n=2成立, 所以数列{a n }的通项公式为a n =2n -1,n ∈N *.13.(2017·江西师大附中、鹰潭一中联考)定义:在数列{a n }中,若满足a n +2a n +1-a n +1a n =d (n ∈N *,d 为常数),称{a n }为“等差比数列”.已知在“等差比数列”{a n }中,a 1=a 2=1,a 3=3,则a 2 015a 2 013等于( ) A .4×2 0152-1 B .4×2 0142-1 C .4×2 0132-1 D .4×2 0132 答案 C解析 由题知⎩⎨⎧⎭⎬⎫a n +1a n 是首项为1,公差为2的等差数列,则a n +1a n =2n -1,所以a n =a n a n -1×a n -1a n -2×…×a 2a 1×a 1=(2n -3)×(2n -5)× (1)所以a 2 015a 2 013=(2×2 015-3)(2×2 015-5)×…×1(2×2 013-3)(2×2 013-5)×…×1=4 027×4 025=(4 026+1)(4 026-1)=4 0262-1=4×2 0132-1.14.若数列⎩⎨⎧⎭⎬⎫n (n +4)⎝⎛⎭⎫23n 中的最大项是第k 项,则k =________.答案 4解析 设数列为{a n },则a n +1-a n =(n +1)(n +5)·⎝⎛⎭⎫23n +1-n (n +4)·⎝⎛⎭⎫23n =⎝⎛⎭⎫23n ⎣⎡⎦⎤23(n 2+6n +5)-n 2-4n =2n3n +1(10-n 2). 所以当n ≤3时,a n +1>a n ; 当n ≥4时,a n +1<a n .因此,a 1<a 2<a 3<a 4,a 4>a 5>a 6>…, 故a 4最大,所以k =4.15.在数列{a n }中,a 1=1,a 2=2,若a n +2=2a n +1-a n +2,则a n 等于( ) A.15n 2-25n +65 B .n 3-5n 2+9n -4 C .n 2-2n +2 D .2n 2-5n +4 答案 C解析 由题意得(a n +2-a n +1)-(a n +1-a n )=2,因此数列{a n +1-a n }是以1为首项,2为公差的等差数列,a n +1-a n =1+2(n -1)=2n -1,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+3+…+(2n -3)=1+(1+2n -3)(n -1)2=(n -1)2+1=n 2-2n +2,又a 1=1=12-2×1+2,因此a n =n 2-2n +2(n ∈N *),故选C.16.(2017·太原五中模拟)设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1·a n =0(n =1,2,3,…),则它的通项公式a n =________. 答案 1n(n ∈N *)解析 因为数列{a n }是首项为1的正项数列, 所以a n ·a n +1≠0,所以(n +1)a n +1a n -na na n +1+1=0.令a n +1a n=t (t >0),则(n +1)t 2+t -n =0, 分解因式,得[(n +1)t -n ](t +1)=0, 所以t =n n +1或t =-1(舍去),即a n +1a n =nn +1.方法一 (累乘法)因为a 2a 1·a 3a 2·a 4a 3·a 5a 4·…·a n a n -1=12·23·34·45·…·n -1n ,所以a n =1n (n ∈N *).方法二 (迭代法) 因为a n +1=nn +1a n,所以a n =n -1n a n -1=n -1n .n -2n -1.a n -2=n -1n .n -2n -1.n -3n -2.a n -3=...=n -1n .n -2n -1.n -3n -2.. (1)2a 1,所以a n =1n (n ∈N *).方法三 (特殊数列法)因为a n +1a n =n n +1,所以(n +1)a n +1na n=1.所以数列{na n }是以a 1为首项,1为公比的等比数列. 所以na n =1×1n -1=1. 所以a n =1n(n ∈N *).。

高中数学 必修五数列导学案 加课后作业及答案

高中数学  必修五数列导学案 加课后作业及答案

必修五数列导学案§2.1 数列的概念及简单表示(一)【学习要求】1.理解数列的概念,认识数列是反映自然规律的基本数学模型. 2.探索并掌握数列的几种简单表示法.3.能根据数列的前几项写出数列的一个通项公式.【学法指导】1.在理解数列概念时,应区分数列与集合两个不同的概念. 2.类比函数的表示方法来理解数列的几种表示方法.3.由数列的前几项,写出数列的一个通项公式是本节的难点之一,突破难点的方法:把序号标在项的旁边,观察项与序号的关系,从而写出通项公式. 【知识要点】1.按照一定顺序排列的一列数称为 ,数列中的每一个数叫做这个数列的 .数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做___项),排在第二位的数称为这个数列的第2项,……,排在第n 位的数称为这个数列的第 项. 2.数列的一般形式可以写成a 1,a 2,…,a n ,…,简记为 .3.项数有限的数列叫做 数列,项数无限的数列叫做_____数列. 4.如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的 公式.【问题探究】探究点一 数列的概念问题 先看下面的几组例子:(1)全体自然数按从小到大排成一列数:0,1,2,3,4,…; (2)正整数1,2,3,4,5的倒数排成一列数:1,12,13,14,15;(3)π精确到1,0.1,0.01,0.001,…的不足近似值排成一列数:3,3.1,3.14,3.141,…; (4)无穷多个1排成一列数:1,1,1,1,1,…;(5)当n 分别取1,2,3,4,5,…时,(-1)n 的值排成一列数:-1,1,-1,1,-1,…. 请你根据上面的例子尝试给数列下个定义.探究 数列中的项与数集中的元素进行对比,数列中的项具有怎样的性质? 探究点二 数列的几种表示方法问题 数列的一般形式是什么?回忆一下函数的表示方法,想一想除了列举法外,数列还有哪些表示方法? 探究 下面是用列举法给出的数列,请你根据题目要求补充完整. (1)数列:1,3,5,7,9,…①用公式法表示:a n = ; ②用列表法表示:(2)数列:1,12,13,14,15,…①用公式法表示:a n = . ②用列表法表示:③用图象法表示为(在下面坐标系中绘出): 探究点三 数列的通项公式问题 什么叫做数列的通项公式?谈谈你对数列通项公式的理解?探究 根据所给数列的前几项求其通项公式时,需仔细观察数列的特征,并进行联想、转化、归纳,同时要数列通项公式 -1,1,-1,1,… a n = 1,2,3,4,… a n = 1,3,5,7,… a n = 2,4,6,8,… a n = 1,2,4,8,… a n = 1,4,9,16,… a n = 1,12,13,14,… a n =【典型例题】例1 根据数列的通项公式,分别写出数列的前5项与第2 012项. (1)a n =cosn π2; (2)b n =11×2+12×3+13×4+…+1nn +1. 小结 由数列的通项公式可以求出数列的指定项,要注意n =1,2,3,….如果数列的通项公式较为复杂,应考虑运算化简后再求值.跟踪训练1 根据下面数列的通项公式,写出它的前4项.(1)a n =2n +1;(2)b n =2)1(1n-+例2 根据数列的前几项,写出下列各数列的一个通项公式: (1)1,-3,5,-7,9,…; (2)12,2,92,8,252,…;(3)9,99,999,9 999,…; (4)0,1,0,1,….小结 据所给数列的前几项求其通项公式时,需仔细观察分析,抓住其几方面的特征:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项的符号特征和绝对值特征.并对此进行联想、转化、归纳.跟踪训练2 写出下列数列的一个通项公式: (1)212,414,618,8116,…;(2)0.9,0.99,0.999,0.999 9,…; (3)-12,16,-112,120,….例3 已知数列{a n }的通项公式a n =-1nn +12n -12n +1.(1)写出它的第10项;(2)判断233是不是该数列中的项.小结 判断某数列是否为数列中的项,只需将它代入通项公式中求n 的值,若存在正整数n ,则说明该数是数列中的项,否则就不是该数列中的项. 跟踪训练3 已知数列{a n }的通项公式为a n =1n n +2(n ∈N *),那么1120是这个数列的第______项.【当堂检测】1.下列叙述正确的是 ( )A .数列1,3,5,7与7,5,3,1是相同的数列B .数列0,1,2,3,…可以表示为{n }C .数列0,1,0,1,…是常数列D .数列{nn +1}是递增数列2.观察下列数列的特点,用适当的一个数填空:1,3,5,7,___,11,…. 3.已知下列数列:(1)2 000,2 004,2 008,2 012; (2)0,12,23,…,n -1n,…;(3)1,12,14,…,12n -1,…; (4)1,-23,35,…,-1n -1·n 2n -1,…;(5)1,0,-1,…,sin n π2,…; (6)6,6,6,6,6,6.其中,有穷数列是________,无穷数列是________,递增数列是________,递减数列是________,常数列是________,摆动数列是________,周期数列是________.(将合理的序号填在横线上) 4.写出下列数列的一个通项公式: (1)a ,b ,a ,b ,…; (2)-1,85,-157,249,….【课堂小结】1.{a n }与a n 是不同的两种表示,{a n }表示数列a 1,a 2,…,a n ,…,是数列的一种简记形式.而a n 只表示数列{a n }的第n 项,a n 与{a n }是“个体”与“整体”的从属关系.2.数列的表示方法:①图象法;②列表法;③通项公式法;④递推公式法.3.由数列的前几项归纳其通项公式的关键是观察、归纳各项与对应的项数之间的联系.同时,要善于利用我们熟知的一些基本数列,通过合理的联想、转化而达到问题的解决.【课后作业】一、基础过关1.数列23,45,67,89,…的第10项是( )A .1617B .1819C .2021D .22232.数列{n 2+n }中的项不能是 ( )A .380B .342C .321D .306 3.数列1,3,6,10,…的一个通项公式是( )A .a n =n 2-n +1B .a n =n (n -1)2C .a n =n (n +1)2D .a n =n 2+14.已知数列12,23,34,45,…,那么0.94,0.96,0.98,0.99中属于该数列中某一项值的应当有( )A .1个B .2个C .3个D .4个5.在数列2,2,x,22,10,23,…中,x =______. 6.用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数a n 与所搭三角形的个数n 之间的关系式可以是 ____________.7.写出下列数列的一个通项公式:(可以不写过程) (1)3,5,9,17,33,…; (2)23,415,635,863,…;(3)1,0,-13,0,15,0,-17,0,….8.已知数列{n (n +2)}:(1)写出这个数列的第8项和第20项;(2)323是不是这个数列中的项?如果是,是第几项?二、能力提升9.数列0.3,0.33,0.333,0.333 3,…的一个通项公式a n 等于( )A .19(10n -1)B .13(10n -1)C .13(1-110n )D .310(10n -1)10.设a n =1n +1+1n +2+1n +3+…+12n (n ∈N *),那么a n +1-a n 等于( )A .12n +1B .12n +2C .12n +1+12n +2D .12n +1-12n +211.由花盆摆成以下图案,根据摆放规律,可得第5个图形中的花盆数为________.12.在数列{a n }中,a 1=2,a 17=66,通项公式a n 是n 的一次函数.(1)求{a n }的通项公式; (2)88是否是数列{a n }中的项?三、探究与拓展13.已知数列⎩⎨⎧⎭⎬⎫9n 2-9n +29n 2-1: (1)求这个数列的第10项;(2)98101是不是该数列中的项,为什么?(3)求证:数列中的各项都在区间(0,1)内;(4)在区间⎝⎛⎭⎫13,23内有无数列中的项?若有,有几项?若没有,说明理由.§2.1 数列的概念及简单表示(二)【学习要求】1.理解递推公式的含义,能根据递推公式求出数列的前几项. 2.能从函数的观点研究数列,掌握数列的一些简单性质.【学法指导】1.数列的递推公式是给出数列的另一重要形式.一般只要给出数列的首项或前几项以及数列的相邻两项或几项之间的运算关系,就可以依次求出数列的各项.2.由于数列可以看作是一类特殊的函数,因此许多函数的性质可以应用到数列中.例如,数列的单调性、数列的最值、数列的周期性都可以类比函数的性质.【知识要点】1.如果数列{a n }的第1项或前几项已知,并且数列{a n }的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个式子来表示,那么这个式子就叫做这个数列的 公式.2.数列可以看作是一个定义域为 (或它的有限子集{1,2,3,…,n })的函数,当自变量按照从小到大的顺序依次取值时,对应的一列 .3.一般地,一个数列{a n },如果从 起,每一项都大于它的前一项,那么这个数列叫做 数列.如果从第2项起,每一项都小于它的前一项,那么这个数列叫做 数列.如果数列{a n }的各项都 ,那么这个数列叫做常数列.4.已知数列{a n }满足:a 1=1,a n +1-a n =1,则a n = ,从单调性来看,数列是单调 数列.【问题探究】公元前13世纪意大利数学家斐波那契的名著《算盘全书》中,记载了一个著名的问题,某人有一对新生的兔子饲养在围墙中,如果它们每个月生一对兔子,且新生的兔子从第三个月开始也是每个月生一对兔子,问一年后围墙中共有多少对兔子?该问题在原书中作了分析:第一个月和第二个月都是最初的一对兔子,第三个月生下一对兔子,围墙内共有两对兔子,第四个月仍是最初的一对兔子生下一对兔子,共有3对兔子.到第五个月除最初的兔子新生一对兔子外,第一个月生的兔子也开始生兔子,因此共有5对兔子.继续推下去,第12个月时最终共有144对兔子.书中还提出,每个月的兔子总数可由前两个月的兔子数相加而得.据载首先是由19世纪法国数学家吕卡将级数{a n }:1,1,2,3,5,8,13,21,34,…,a n +1=a n +a n -1命名为斐波那契数列,它在数学的许多分支中有广泛应用.数列的这种表达形式,是用前面的项来表达后面的项,我们称之为数列的递推公式,数列的递推公式有什么应用呢?这一节我们就来学习数列的递推公式. 探究点一 数列的函数特性问题 数列是一种特殊的函数,与函数相比,数列的特殊性表现在哪些方面?谈谈你的认识. 探究1 数列的单调性下面给出了一些数列的图象:a n =2n -1a n =1na n =(-1)n观察上述数列项的取值的变化规律,请类比单调函数的定义,把下列单调数列的定义补充完整.一般地,一个数列{a n },如果从第2项起,每一项都大于它前面的一项,即 ,那么这个数列叫做递增数列;如果从第2项起,每一项都小于它前面的一项,即 ,那么这个数列叫做递减数列;如果数列{a n }的各项都相等,那么这个数列叫做常数列.因此,要证明数列{a n }是单调递增数列,只需证明a n +1-a n 0;要证明数列{a n }是单调递减数列,只需证明a n +1-a n 0.探究2 数列的周期性已知数列{a n }中,a 1=1,a 2=2,a n +2=a n +1-a n ,试写出a 3,a 4,a 5,a 6,a 7,a 8,你发现数列{a n }具有怎样的规律?你能否求出该数列中的第2 012项是多少?探究点二 由简单的递推公式求通项公式问题 递推公式与通项公式,都可以用来写出数列中的任意项,都是给出数列的一种方法,那么它们究竟有什么不同呢?探究1 对于任意数列{a n },等式:a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a n 都成立.试根据这一结论,求解下列问题.已知数列{a n }满足:a 1=1,a n +1-a n =2,试求通项a n .探究2 若数列{a n }中各项均不为零,则有:a 1·a 2a 1·a 3a 2·…·a na n -1=a n 成立.试根据这一结论求解下列问题.已知数列{a n }满足:a 1=1,a n a n -1=n -1n (n ≥2),试求通项a n .【典型例题】例1 在数列{a n }中,已知a 1=2,a 2=3,a n +2=3a n +1-2a n (n ≥1),写出此数列的前6项. 小结 已知数列递推公式求数列通项时,依次将项数n 的值代入即可.跟踪训练1 已知数列{a n }中,a 1=1,a 2=23,1a n -2+1a n =2a n -1(n ∈N *,n ≥3),求a 3,a 4.例2 已知数列{a n }的通项公式为a n =n 2n 2+1.求证:数列{a n }为递增数列.小结 数列是一种特殊的函数,因此可用函数单调性的方法来研究数列的单调性.跟踪训练2 已知数列{a n }的通项公式是a n =anbn +1,其中a 、b 均为正常数,那么a n 与a n +1的大小关系是 ( )A .a n >a n +1B .a n <a n +1C .a n =a n +1D .与n 的取值相关例3 已知a n =9nn +110n(n ∈N *),试问数列{a n }中有没有最大项?如果有,求出这个最大项;如果没有,说明理由.小结 数列的最大、最小项问题,可以通过研究数列的单调性加以解决,若求最大项a n ,n 的值可通过解不等式组⎩⎪⎨⎪⎧ a n ≥a n -1a n ≥a n +1来确定;若求最小项a n ,n 的值可通过解不等式组⎩⎪⎨⎪⎧a n ≤a n -1a n ≤a n +1来确定.跟踪训练3 在数列{a n }中,a n =n 3-an ,若数列{a n }为递增数列,试确定实数a 的取值范围.【当堂检测】1.已知a n +1-a n -3=0,则数列{a n }是 ( ) A .递增数列 B .递减数列 C .常数列 D .不能确定 2.数列1,3,6,10,15,…的递推公式是 ( ) A .a n +1=a n +n ,n ∈N * B .a n =a n -1+n ,n ∈N *,n ≥2 C .a n +1=a n +(n +1),n ∈N *,n ≥2 D .a n =a n -1+(n -1),n ∈N *,n ≥2 3.数列{a n }中,a n =-2n 2+29n +3,则此数列中最大项的值是( ) A .107B .108C .10818D .1094.已知数列{a n }满足a 1=2,a n +1-a n +1=0(n ∈N +),则此数列的通项a n 等于 ( ) A .n 2+1 B .n +1 C .1-n D .3-n【课堂小结】1.同数列的通项公式一样,数列的递推公式也是表示数列的常用方法之一.递推公式法与通项公式法统称为公式法.2.函数与数列的联系与区别一方面,数列是一种特殊的函数,因此在解决数列问题时,要善于利用函数的知识、函数的观点、函数的思想方法来解题,即用共性来解决特殊问题.另一方面,还要注意数列的特殊性(离散型),由于它的定义域是N *或它的有限子集{1,2,…,n },因而它的图象是一系列孤立的点,而不像我们前面所研究过的初等函数一般都是连续的曲线,因此在解决问题时,要充分利用这一特殊性,如研究单调性时,由数列的图象可知,只要这些点每个比它前面相邻的一个高(即a n >a n -1),则图象呈上升趋势,即数列递增,即{a n }递增⇔a n +1>a n 对任意的n (n ∈N *)都成立.类似地,有{a n }递减⇔a n +1<a n 对任意的n (n ∈N *)都成立.【课后作业】一、基础过关1.已知数列{a n }的首项为a 1=1,且满足a n +1=12a n +12n ,则此数列的第4项是( )A .1B .12C .34D .582.数列{a n }中,a 1=1,对所有的n ≥2,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5等于 ( ) A .259B .2516C .6116D .31153.若a 1=1,a n +1=a n3a n +1,则给出的数列{a n }的第7项是( )A .116B .117C .119D .1254.由1,3,5,…,2n -1,…构成数列{a n },数列{b n }满足b 1=2,当n ≥2时,b n =ab n -1,则b 6的值是 ( ) A .9B .17C .33D .655.已知数列{a n }满足:a 1=a 2=1,a n +2=a n +1+a n ,n ∈N *,则使a n >100的n 的最小值是________. 6.已知数列{a n }满足a 1=-1,a n +1=a n +1n (n +1),n ∈N *,则通项公式a n =________.7.根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图中有多少个点.8.已知函数f (x )=2x -2-x ,数列{a n }满足f (log 2a n )=-2n . (1)求数列{a n }的通项公式; (2)证明:数列{a n }是递减数列.二、能力提升9.已知数列{a n }满足a n +1=⎩⎨⎧2a n ⎝⎛⎭⎫0≤a n <12,2a n-1 ⎝⎛⎭⎫12≤a n<1.若a 1=67,则a 2 012的值为( )A .67B .57C .37D .1710.已知a n =n -98n -99,则这个数列的前30项中最大项和最小项分别是( )A .a 1,a 30B .a 1,a 9C .a 10,a 9D .a 10,a 3011.已知数列{a n }满足:a n ≤a n +1,a n =n 2+λn ,n ∈N *,则实数λ的最小值是________. 12.已知数列{a n }满足a 1=12,a n a n -1=a n -1-a n ,求数列{a n }的通项公式.三、探究与拓展13.设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1a n =0(n =1,2,3,…),求{a n }的通项公式.§2.2 等差数列(一)【学习要求】1.理解等差数列的意义.2.会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简单的问题. 3.掌握等差中项的概念,深化认识并能运用.【学法指导】1.要善于通过实例的观察、分析、归纳、提炼来理解等差数列的概念,同时,还应准确理解等差数列的关键词“从第2项起”,“差是一个常数”等;要善于用归纳或叠加法探求等差数列的通项公式. 2.利用a n +1-a n =d (n ∈N +)可以帮助我们判断一个数列是否为等差数列.【知识要点】1.如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做 数列,这个常数叫做等差数列的 ,公差通常用字母d 表示.2.若三个数a ,A ,b 构成等差数列,则A 叫做a 与b 的_________,并且A = . 3.若等差数列的首项为a 1,公差为d ,则其通项a n = ________.4.等差数列{a n }中,若公差d >0,则数列{a n }为 数列;若公差d <0,则数列{a n }为 数列.【问题探究】1.1682年,英国天文学家哈雷发现一颗大彗星运动的轨迹和1531年、1607年的彗星的运动轨迹惊人地相似,便大胆断定这是同一天体的三次出现,并预言它将于76年后再度回归.这就是著名的哈雷彗星,它的回归周期大约是76年.请你查找资料,列出哈雷彗星的回归时间表,并预测它在本世纪回归的时间.哈雷彗星的回归时间表(单位:年)1607,1682,1759,1835,1910,1986,2061,…. 预测它在本世纪回归的时间是2061年.2.第一届现代奥运会于1896年在希腊雅典举行,此后每4年举行一次,奥运会如因故不能举行,届数照算.这样举行奥运会的年份数构成一个数列,这个数列有什么特征呢?这个数列叫什么数列呢?这个数列从第2项起,每一项与它的前一项的差都等于同一个常数,像这样的数列叫做等差数列.等差数列有很多的应用,这一节我们就来学习等差数列及其通项公式. 探究点一 等差数列的概念问题1 我们先看下面几组数列: (1)3,4,5,6,7,…;(2)6,3,0,-3,-6,…; (3)1.1,2.2,3.3,4.4,5.5,…;(4)-1,-1,-1,-1,-1,….观察上述数列,我们发现这几组数列的共同特点是问题2 判断下列数列是否为等差数列,如果是,指出首项a 1和公差d ;如果不是,请说明理由: (1)4,7,10,13,16,…; (2)31,25,19,13,7,…; (3)0,0,0,0,0,…;(4)a ,a -b ,a -2b ,…; (5)1,2,5,8,11,….探究 如何准确把握等差数列的概念?谈谈你的理解. 探究点二 等差数列的通项公式问题 如果等差数列{a n }的首项是a 1,公差是d ,你能用两种方法求其通项吗?探究1 根据等差数列的定义:a n +1=a n +d ,可以依次得到a 1,a 2,a 3,a 4,…,然后观察规律,归纳概括出通项公式a n .探究2 由等差数列的定义知:a n -a n -1=d (n ≥2),可以采用叠加法得到通项公式a n . 探究点三 等差中项问题1 如果三个数x ,A ,y 组成等差数列,那么A 叫做x 和y 的等差中项,试用x ,y 表示A . 探究 若数列{a n }满足:a n +1=a n +a n +22,求证:{a n }是等差数列. 【典型例题】例1 已知{a n }为等差数列,分别根据下列条件写出它的通项公式. (1)a 3=5,a 7=13;(2)前三项为:a,2a -1,3-a .小结 在等差数列{a n }中,首项a 1与公差d 是两个最基本的元素;有关等差数列的问题,如果条件与结论间的联系不明显,则均可化成有关a 1、d 的关系列方程组求解,但是,要注意公式的变形及整体计算,以减少计算量.跟踪训练1 若{a n }是等差数列,a 15=8,a 60=20,求a 75.例2 已知1a ,1b ,1c 成等差数列,求证:b +c a ,a +c b ,a +b c也成等差数列.跟踪训练2 已知a ,b ,c 成等差数列,那么a 2(b +c ),b 2(c +a ),c 2(a +b )是否能构成等差数列?例3 梯子的最高一级宽33 cm ,最低一级宽110 cm ,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度.跟踪训练3 在通常情况下,从地面到10 km 高空,高度每增加1 km ,气温就下降某一个固定数值.如果1 km 高度的气温是8.5℃,5 km 高度的气温是-17.5℃,求2 km ,4 km ,8 km 高度的气温.【当堂检测】1.若数列{a n }满足3a n +1=3a n +1,则数列是( )A .公差为1的等差数列B .公差为13的等差数列C .公差为-13的等差数列 D .不是等差数列2.若a ≠b ,则等差数列a ,x 1,x 2,b 的公差是( ) A .b -aB .b -a 2C .b -a 3D .b -a 43.在等差数列{a n }中,(1)已知a 1=2,d =3,n =10,则a n =___; (2)已知a 1=3,d =2,a n =21,则n =___; (3)已知a 1=12,a 6=27,则d =___; (4)已知d =-13,a 7=8,则a 1=___.4(1)你能建立一个等差数列的模型,表示甲虫的爬行距离和时间之间的关系吗? (2)利用建立的模型计算,甲虫1 min 能爬多远?它爬行49 cm 需要多长时间?【课堂小结】1.等差数列的判定关键要看a n +1-a n (n ∈N *)是否为一个与n 无关的常数.由于a n +1-a n =a n +2-a n +1⇔2a n +1=a n +a n +2,所以也可以利用2a n +1=a n +a n +2(n ∈N *)来判定等差数列.注意数列的项中含有字母时是否需要分类讨论. 2.等差数列的通项公式及其变形a n =a 1+(n -1)d =a m +(n -m )d 的应用极其灵活,公式中的四个量a 1,a n ,n ,d 中知三可求一.充分利用等差数列的函数特性可使解题过程更为简捷. 3.数列的应用题在数列中占有很重要的地位.【课后作业】一、基础过关1.已知数列{a n }满足a 1=2,a n +1-a n +1=0,则数列的通项a n 等于( )A .n 2+1B .n +1C .1-nD .3-n 2.等差数列20,17,14,11,…中第一个负数项是( )A .第7项B .第8项C .第9项D .第10项3.若5,x ,y ,z,21成等差数列,则x +y +z 的值为( )A .26B .29C .39D .52 4.{a n }是首项a 1=1,公差d =3的等差数列,若a n =2 011,则n 等于( )A .671B .670C .669D .668 5.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是( )A .15B .30C .31D .646.已知a =13+2,b =13-2,则a 、b 的等差中项是________. 7.等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,求n 的值.8.某市出租车的计价标准为1.2元/km ,起步价为10元,即最初的4 km(不含4 km)计费10元.如果某人乘坐该市的出租车去往14 km 处的目的地,且一路畅通,等候时间为0,那么需要支付多少车费?二、能力提升9.一个首项为23,公差为整数的等差数列,第7项开始为负数,则它的公差是 ( ) A .-2B .-3C .-4D .-610.若m ≠n ,两个等差数列m 、a 1、a 2、n 与m 、b 1、b 2、b 3、n 的公差为d 1和d 2,则d 1d 2的值为________.11.一个等差数列{a n }中,a 1=1,末项a n =100(n ≥3),若公差为正整数,那么项数n 的取值有____种可能. 12.若1b +c ,1c +a ,1a +b是等差数列,求证:a 2,b 2,c 2成等差数列.三、探究与拓展13.已知等差数列{a n }:3,7,11,15,….(1)135,4m +19(m ∈N *)是{a n }中的项吗?试说明理由.(2)若a p ,a q (p ,q ∈N *)是数列{a n }中的项,则2a p +3a q 是数列{a n }中的项吗?并说明你的理由.§2.2 等差数列(二)【学习要求】1.能根据等差数列的定义推出等差数列的重要性质. 2.能运用等差数列的性质解决有关问题.【学法指导】1.灵活运用等差数列的性质,可以减少计算量,因此要熟练掌握等差数列的有关性质.2.掌握等差数列与一次函数之间的关系,就能站在较高的角度整体把握等差数列的内涵和本质.【知识要点】1.等差数列的通项公式:a n = .2.等差数列的项的对称性:有穷等差数列中,与首末两项“等距离”的两项之和等于首末两项的和,即:a 1+a n =a 2+ =…=a k + . 3.等差数列的性质(1)若{a n }是等差数列,且k +l =m +n (k 、l 、m 、n ∈N *),则 .(2)若{a n }是等差数列,且公差为d ,则{a 2n -1}和{a 2n }都是等差数列,且公差为 .(3)若{a n },{b n }分别是公差为d 1,d 2的等差数列,则数列{pa n +qb n }(p 、q 是常数)是公差为 的等差数列.【问题探究】探究点一 等差数列的常用性质问题 设等差数列{a n }的首项为a 1,公差为d ,则有下列 性质:(1)若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q . (2)若m +n =2k (m ,n ,k ∈N *),则a m +a n =2a k . 请你给出证明.探究 已知等差数列{a n }、{b n }分别是公差为d 和d ′,则由{a n }及{b n }生成的“新数列”具有以下性质,请你补充完整.①{a n }是等差数列,则a 1,a 3,a 5,…仍成等差数列(首项不一定选a 1),公差为 ;②下标成等差数列且公差为m 的项a k ,a k +m ,a k +2m ,…(k ,m ∈N +)组成公差为 的等差数列; ③数列{λa n +b }(λ,b 是常数)是公差为 的等差数列; ④数列{a n +b n }仍是等差数列,公差为 ;⑤数列{λa n +μb n }(λ,μ是常数)仍是等差数列,公差为 . 探究点二 等差数列与一次函数的联系探究 由于等差数列{a n }的通项公式a n =dn +(a 1-d ),与一次函数对比可知,公差d 本质上是相应直线的斜率.如a m ,a n 是等差数列{a n }中的任意两项,由a n =a m +(n -m )d ,可知点(n ,a n )分布以 为斜率,以 为纵截距的直线上.请你类比一次函数的单调性,研究等差数列的单调性,并完成下表.【典型例题】例1 在等差数列{a n }中,已知a 1+a 4+a 7=39,a 2+a 5+a 8=33,求a 3+a 6+a 9的值.小结 解决本类问题一般有两种方法:一是运用等差数列{a n }的性质:若m +n =p +q =2w ,则a m +a n =a p +a q =2a w (m ,n ,p ,q ,w 都是正整数);二是利用通项公式转化为数列的首项与公差的结构完成运算,属于通性通法,两种方法都运用了整体代换与方程的思想.跟踪训练1 已知等差数列{a n }中,a 1+a 4+a 7=15,a 2a 4a 6=45,求此数列的通项公式.例2 三个数成等差数列,和为6,积为-24,求这三个数.小结 利用等差数列的定义巧设未知量,从而简化计算.一般地有如下规律:当等差数列{a n }的项数n 为奇数时,可设中间一项为a ,再用公差为d 向两边分别设项:…a -2d ,a -d ,a ,a +d ,a +2d ,…;当项数为偶数项时,可设中间两项为a -d ,a +d ,再以公差为2d 向两边分别设项:…a -3d ,a -d ,a +d ,a +3d ,…,这样可减少计算量.跟踪训练2 四个数成递增等差数列,中间两数的和为2,首末两数的积为-8,求这四个数.例3 已知数列{a n },满足a 1=2,a n +1=2a na n +2.(1)数列{1a n}是否为等差数列?说明理由.(2)求a n .小结 判断一个数列是等差数列的基本方法是紧扣定义:a n +1-a n =d (d 为常数),也可以用a n +1-a n =a n -a n -1(n ≥2)进行判断.本题属于“生成数列问题”,关键是形成整体代换的思想方法,运用方程思想求通项公式. 跟踪训练3 正项数列{a n }中,a 1=1,a n +1-a n +1=a n +a n . (1)数列{a n }是否为等差数列?说明理由. (2)求a n .【当堂检测】1.等差数列{a n }中,a 4+a 5=15,a 7=12,则a 2等于( ) A .3B .-3C .32D .-322.等差数列{a n }中,已知a 3=10,a 8=-20,则公差d =____ 3.已知等差数列{a n }中,a 2+a 3+a 10+a 11=36,求a 5+a 84.已知三个数成等差数列并且数列是递增的,它们的和为18,平方和为116,求这三个数.【课堂小结】1.判断一个数列{a n }是否是等差数列,关键是看a n +1-a n 是否是一个与n 无关的常数.2.三个数成等差数列可设为:a -d ,a ,a +d 或a ,a +d ,a +2d ;四个数成等差数列可设为:a -3d ,a -d ,a +d ,a +3d 或a ,a +d ,a +2d ,a +3d .3.在等差数列{a n }中,首项a 1与公差d 是两个最基本的元素;有关等差数列的问题,如果条件与结论间的联系不明显,则均可化成有关a 1、d 的关系列方程组求解,但是,要注意公式的变形及整体计算,以减少计算量.【课后作业】一、基础过关1.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8的值等于( )A .45B .75C .180D .3002.设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是 ( ) A .1B .2C .4D .63.等差数列{a n }的公差d <0,且a 2·a 4=12,a 2+a 4=8,则数列{a n }的通项公式是 ( ) A .a n =2n -2 (n ∈N *)B .a n =2n +4 (n ∈N *)C .a n =-2n +12 (n ∈N *)D .a n =-2n +10 (n ∈N *)4.若a ,b ,c 成等差数列,则二次函数y =ax 2-2bx +c 的图象与x 轴的交点的个数为( ) A .0B .1C .2D .1或25.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13等于 ( ) A .120B .105C .90D .756.在等差数列{a n }中,已知a 1+a 2+a 3+a 4+a 5=20,那么a 3=________. 7.在等差数列{a n }中,已知a m =n ,a n =m ,求a m +n 的值.8.成等差数列的四个数之和为26,第二个数与第三个数之积为40,求这四个数.二、能力提升9.一个等差数列的首项为a 1=1,末项a n =41 (n ≥3)且公差为整数,那么项数n 的取值个数是( ) A .6B .7C .8D .不确定10.等差数列{a n }中,公差为12,且a 1+a 3+a 5+…+a 99=60,则a 2+a 4+a 6+…+a 100=______.11.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |=______.12.已知数列{a n }满足a 1=4,a n =4-4a n -1 (n ≥2),令b n =1a n -2.(1)求证:数列{b n }是等差数列; (2)求数列{a n }的通项公式.三、探究与拓展13.已知数列{a n }满足a 1=15,且当n >1,n ∈N *时,有a n -1a n =2a n -1+11-2a n ,设b n =1a n ,n ∈N *.(1)求证:数列{b n }为等差数列.(2)试问a 1a 2是否是数列{a n }中的项?如果是,是第几项; 如果不是,请说明理由.§2.3等差数列前n 项和(一)【学习要求】1.理解等差数列前n 项和公式的推导过程.2.熟练掌握等差数列的五个量a 1,d ,n ,a n ,S n 的关系,能够由其中三个求另外两个. 3.掌握等差数列前n 项和公式及性质的应用.【学法指导】1.运用等差数列的前n 项和公式的关键在于准确把握它们的结构特征,这样才能根据具体情境(已知条件和待求目标)选用恰当的公式解决问题.2.要善于从推导等差数列的前n 项和公式中,归纳总结出一般的求和方法——倒序相加法.【知识要点】1.把a 1+a 2+…+a n 叫数列{a n }的前n 项和,记做 .例如a 1+a 2+…+a 16可以记做 ;a 1+a 2+a 3+…+a n -1= (n ≥2).2.若{a n }是等差数列,则S n 可以用首项a 1和末项a n 表示为S n = ;若首项为a 1,公差为d ,则S n 可以表示为S n =3.写出下列常见等差数列的前n 项和 (1)1+2+3+…+n = . (2)1+3+5+…+(2n -1)= . (3)2+4+6+…+2n = . 4.等差数列{a n }中(1)已知d =2,n =15,a n =-10,则S n =________; (2)已知a 1=20,a n =54,S n =999,则d =________; (3)已知a 1=56,d =-16,S n =-5,则n =_______【问题探究】“数学王子”高斯是德国数学家、天文学家和物理学家,被誉为历史上伟大的数学家之一,和阿基米德、牛顿并列,同享盛名.高斯十岁那年,老师布置了一道很繁杂的计算题,要求学生把1到100的所有整数加起来,老师刚叙述完题目,高斯即刻把写着答案的小石板交了上去.老师起初并不在意这一举动,但当他发现全班唯一正确的答案属于高斯时,才大吃一惊.而更使人吃惊的是高斯的算法,他发现:第一个数加最后一个数的和是101,第二个数加倒数第二个数的和也是101,…共有50对这样的数,用101乘以50得到5 050,这种算法是教师未曾教过的方法,高斯自己就想出来了,那么这是一个什么样的方法呢?它用于解决什么类型的问题呢?这种方法叫倒序相加法,是等差数列求和的一种重要方法,这一节我们就来学习等差数列的求和方法. 探究点一 等差数列前n 项和公式的推导 问题 求和:1+2+3+…+100=?对于这个问题,著名数学家高斯十岁时就能很快求出它的结果.当时他的思路和解答方法是:S =1+2+3+…+99+100,把加数倒序写一遍:S =100+99+98+…+2+1.所以有2S =(1+100)+(2+99)+…+(99+2)+(100+1)=100×101,∴S =50×101=5 050. 请你利用“高斯的算法”求1+2+3+…+n =?探究 设等差数列{a n }的首项为a 1,公差为d ,你能利用“倒序相加法”求等差数列{a n }的前n 项和S n 吗? 探究点二 等差数列前n 项和的性质探究1 设{a n }是等差数列,公差为d ,S n 是前n 项和,易知a 1+a 2+…+a m ,a m +1+a m +2+…+a 2m ,a 2m +1+a 2m +2+…+a 3m 也成等差数列,公差为 .上述性质可以用前n 项和符号S n 表述为:若{a n }成等差数列,则S m , ,_________也成等差数列.探究2 若数列{a n }是公差为d 的等差数列,求证:数列{S nn }也是等差数列.探究3 设S n 、T n 分别为两个等差数列{a n }和{b n }的前n 项和,证明:a n b n =S 2n -1T 2n -1.【典型例题】例1 在等差数列{a n }中,已知d =2,a n =11,S n =35,求a 1和n .小结 在解决等差数列问题时,如已知a 1,a n ,n ,d ,S n 中任意三个,可求其余两个,这种问题在数学上常称为“知三求二”型.跟踪训练1 已知等差数列{a n }中,(1)a 1=32,d =-12,S n =-15,求n 及a n ;(2)a 1=1,a n =-512,S n =-1 022,求d .例2 (1)等差数列{a n }的前m 项和为30,前2m 项和为100,求数列{a n }的前3m 项的和S 3m ; (2)两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n +2n +3,求a 5b 5的值.小结 等差数列前n 项和S n 的有关性质在解题过程中,如果运用得当可以达到化繁为简、化难为易、事半功倍的效果.跟踪训练2 设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n .例3 甲、乙两物体分别从相距70 m 的两处同时相向运动,甲第1分钟走2 m ,以后每分钟比前1分钟多走1 m ,乙每分钟走5 m.(1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即返回,甲继续每分钟比前1分钟多走1 m ,乙继续每分钟走5 m ,那么开始运动几分钟后第二次相遇?小结 建立等差数列的模型时,注意相遇时甲、乙两人的路程和是两个等差数列的前n 项和.跟踪训练3 现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( )。

高考数学---数列的概念与简单表示法课后作业练习(含答案解析)

高考数学---数列的概念与简单表示法课后作业练习(含答案解析)

高考数学---数列的概念与简单表示法课后作业练习(含答案解析)建议用时:45分钟一、选择题1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式a n等于()A.(-1)n+12B.cosnπ2C.cos n+12πD.cosn+22πD[令n=1,2,3,…,逐一验证四个选项,易得D正确.]2.若S n为数列{a n}的前n项和,且S n=nn+1,则1a5等于()A.56 B.65C.130D.30D[当n≥2时,a n=S n-S n-1=nn+1-n-1n=1n(n+1),所以1a5=5×6=30.]3.记S n为数列{a n}的前n项和.“任意正整数n,均有a n>0”是“{S n}是递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A[∵“a n>0”⇒“数列{S n}是递增数列”,∴“a n>0”是“数列{S n}是递增数列”的充分条件.如数列{a n}为-1,1,3,5,7,9,…,显然数列{S n}是递增数列,但是a n 不一定大于零,还有可能小于零,∴“数列{S n}是递增数列”不能推出“a n>0”,∴“a n>0”是“数列{S n}是递增数列”的不必要条件.∴“a n>0”是“数列{S n}是递增数列”的充分不必要条件.] 4.(2019·武汉5月模拟)数列{a n}中,a n+1=2a n+1,a1=1,则a6=() A.32 B.62C.63 D.64C[数列{a n}中,a n+1=2a n+1,故a n+1+1=2(a n+1),因为a1=1,故a1+1=2≠0,故a n+1≠0,所以a n+1+1a n+1=2,所以{a n+1}为等比数列,首项为2,公比为2.所以a n+1=2n即a n=2n-1,故a6=63,故选C.]5.若数列{a n}的前n项和S n=n2-10n(n∈N*),则数列{na n}中数值最小的项是()A.第2项B.第3项C.第4项D.第5项B[∵S n=n2-10n,∴当n≥2时,a n=S n-S n-1=2n-11;当n=1时,a1=S1=-9也适合上式.∴a n=2n-11(n∈N+).记f(n)=na n=n(2n-11)=2n2-11n,此函数图像的对称轴为直线n=114,但n∈N+,∴当n=3时,f(n)取最小值.∴数列{na n}中数值最小的项是第3项.]二、填空题6.已知数列5,11,17,23,29,…,则55是它的第________项.21[数列5,11,17,23,29,…中的各项可变形为5,5+6,5+2×6,5+3×6,5+4×6,…,所以通项公式为a n=5+6(n-1)=6n-1,令6n-1=55,得n=21.]7.若数列{a n}满足a1=1,a2=3,a n+1=(2n-λ)a n(n=1,2,…),则a3等于________.15[令n=1,则3=2-λ,即λ=-1,由a n+1=(2n+1)a n,得a3=5a2=5×3=15.]8.在一个数列中,如果∀n∈N*,都有a n a n+1a n+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{a n}是等积数列,且a1=1,a2=2,公积为8,则a1+a2+a3+…+a12=________.28[∵a1a2a3=8,且a1=1,a2=2.∴a3=4,同理可求a4=1,a5=2.a6=4,∴{a n}是以3为周期的数列,∴a1+a2+a3+…+a12=(1+2+4)×4=28.]三、解答题9.(2019·洛阳模拟)已知数列{a n}满足a1=50,a n+1=a n+2n(n∈N*),(1)求{a n}的通项公式;(2)已知数列{b n}的前n项和为a n,若b m=50,求正整数m的值.[解](1)当n≥2时,a n=(a n-a n-1)+(a n-1-a n-2)+…+(a3-a2)+(a2-a1)+a1=2(n-1)+2(n-2)+…+2×2+2×1+50=2×(n-1)n2+50=n 2-n +50.又a 1=50=12-1+50,∴{a n }的通项公式为a n =n 2-n +50,n ∈N *. (2)b 1=a 1=50, 当n ≥2时,b n =a n -a n -1=n 2-n +50-[(n -1)2-(n -1)+50]=2n -2, 即b n =⎩⎪⎨⎪⎧50,n =12n -2,n ≥2.当m ≥2时,令b m =50,得2m -2=50,解得m =26. 又b 1=50,∴正整数m 的值为1或26.10.设数列{a n }的前n 项和为S n .已知a 1=a (a ≠3),a n +1=S n +3n ,n ∈N *,设b n =S n -3n ,(1)求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N *,求a 的取值范围. [解] (1)依题意,S n +1-S n =a n +1=S n +3n , 即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ), 即b n +1=2b n , 又b 1=S 1-3=a -3,所以数列{b n }的通项公式为b n =(a -3)2n -1,n ∈N *. (2)由(1)知S n =3n +(a -3)2n -1,n ∈N *,于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n-1+(a -3)2n -2,a n +1-a n =4×3n -1+(a -3)2n -2 =2n -2⎣⎢⎡⎦⎥⎤12×⎝ ⎛⎭⎪⎫32n -2+a -3,当n ≥2时,a n +1≥a n ⇒12×⎝ ⎛⎭⎪⎫32n -2+a -3≥0⇒a ≥-9,又a 2=a 1+3>a 1(a ≠3).综上,a 的取值范围是[-9,3)∪(3,+∞).1.已知数列{a n }满足:a 1=1,a n +1=a n a n +2(n ∈N *),若b n +1=(n -λ)⎝ ⎛⎭⎪⎫1a n +1,b 1=-λ,且数列{b n }是递增数列,则实数λ的取值范围是( )A .(2,+∞)B .(3,+∞)C .(-∞,2)D .(-∞,3)C [由a n +1=a n a n +2,知1a n +1=2a n +1,即1a n +1+1=2⎝ ⎛⎭⎪⎫1a n +1,所以数列⎩⎨⎧⎭⎬⎫1a n +1是首项为1a 1+1=2,公比为2的等比数列,所以1a n +1=2n ,所以b n +1=(n -λ)·2n ,因为数列{b n }是递增数列,所以b n +1-b n =(n -λ)2n -(n -1-λ)2n -1=(n +1-λ)2n-1>0对一切正整数n 恒成立,所以λ<n +1,因为n ∈N *,所以λ<2,故选C.]2.(2019·临沂三模)意大利数学家列昂那多·斐波那契以兔子繁殖为例,引入“兔子数列”: 1,1,2,3,5,8,13,21,34,55,…即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2)(n ≥3,n ∈N *),此数列在现代物理“准晶体结构”、化学等都有着广泛的应用.若此数列被2整除后的余数构成一个新数列{a n },则数列{a n }的前2 019项的和为( )A .672B .673C .1 346D .2 019C [由数列1,1,2,3,5,8,13,21,34,55,…各项除以2的余数,可得{a n }为1,1,0,1,1,0,1,1,0,1,1,0,…,所以{a n }是周期为3的周期数列,一个周期中三项和为1+1+0=2, 因为2 019=673×3,所以数列{a n }的前2 019项的和为673×2=1 346,故选C.]3.(2019·晋城三模)记数列{a n }的前n 项和为S n ,若S n =3a n +2n -3,则数列{a n }的通项公式为a n =________.a n =2-⎝ ⎛⎭⎪⎫32n[当n =1时,S 1=a 1=3a 1-1,解得a 1=12;当n ≥2时,S n =3a n +2n -3,S n -1=3a n -1+2n -5,两式相减可得,a n =3a n -3a n -1+2,故a n =32a n -1-1,设a n +λ=32(a n -1+λ),故λ=-2,即a n -2=32(a n -1-2),故a n -2a n -1-2=32.故数列{a n -2}是以-32为首项,32为公比的等比数列,故a n -2=-32·⎝ ⎛⎭⎪⎫32n -1,故a n =2-⎝ ⎛⎭⎪⎫32n .] 4.已知数列{a n }中,a 1=1,其前n 项和为S n ,且满足2S n =(n +1)a n (n ∈N *). (1)求数列{a n }的通项公式;(2)记b n =3n -λa 2n ,若数列{b n }为递增数列,求λ的取值范围. [解] (1)∵2S n =(n +1)a n , ∴2S n +1=(n +2)a n +1,∴2a n +1=(n +2)a n +1-(n +1)a n , 即na n +1=(n +1)a n ,∴a n +1n +1=a nn ,∴a n n =a n -1n -1=…=a 11=1,∴a n =n (n ∈N +). (2)由(1)知b n =3n -λn 2.b n +1-b n =3n +1-λ(n +1)2-(3n -λn 2) =2·3n -λ(2n +1). ∵数列{b n }为递增数列, ∴2·3n -λ(2n +1)>0, 即λ<2·3n2n +1.令c n =2·3n2n +1,即c n +1c n =2·3n +12n +3·2n +12·3n =6n +32n +3>1. ∴{c n }为递增数列, ∴λ<c 1=2,即λ的取值范围为(-∞,2).1.(2019·烟台、菏泽高考适应性练习一)已知数列:1k ,2k -1,…,k 1(k ∈N *),按照k 从小到大的顺序排列在一起,构成一个新的数列{a n }:1,12,21,13,22,31,…,则89首次出现时为数列{a n }的( )A .第44项B .第76项C .第128项D .第144项C [观察分子分母的和出现的规律:2,3,4,5,…,把数列重新分组:⎝ ⎛⎭⎪⎫11,⎝ ⎛⎭⎪⎫12,21,⎝ ⎛⎭⎪⎫13,22,31,…,⎝ ⎛⎭⎪⎫1k ,2k -1,…,k 1,可看出89第一次出现在第16组,因为1+2+3+…+15=120,所以前15组一共有120项;第16组的项为⎝ ⎛⎭⎪⎫116,215,…,710,89…,所以89是这一组中的第8项,故89第一次出现在数列的第128项,故选C.]2.已知二次函数f (x )=x 2-ax +a (a >0,x ∈R )有且只有一个零点,数列{a n }的前n 项和S n =f (n )(n ∈N *).(1)求数列{a n }的通项公式;(2)设c n =1-4a n(n ∈N *),定义所有满足c m ·c m +1<0的正整数m 的个数,称为这个数列{c n }的变号数,求数列{c n }的变号数.[解] (1)依题意,Δ=a 2-4a =0, 所以a =0或a =4. 又由a >0得a =4, 所以f (x )=x 2-4x +4. 所以S n =n 2-4n +4.当n =1时,a 1=S 1=1-4+4=1; 当n ≥2时,a n =S n -S n -1=2n -5. 所以a n =⎩⎪⎨⎪⎧1,n =1,2n -5,n ≥2.(2)由题意得c n =⎩⎪⎨⎪⎧-3,n =1,1-42n -5,n ≥2. 由c n =1-42n -5可知,当n ≥5时,恒有c n >0.又c 1=-3,c 2=5,c 3=-3,c 4=-13,c 5=15,c 6=37, 即c 1·c 2<0,c 2·c 3<0,c 4·c 5<0,所以数列{c n}的变号数为3.。

数列知识点总结及例题讲解

数列知识点总结及例题讲解

人教版数学必修五第二章数列重难点解析第二章课文目录2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和【重点】1、数列及其有关概念,通项公式及其应用。

2、根据数列的递推公式写出数列的前几项。

3、等差数列的概念,等差数列的通项公式;等差数列的定义、通项公式、性质的理解与应用。

4、等差数列n项和公式的理解、推导及应用,熟练掌握等差数列的求和公式。

5、等比数列的定义及通项公式,等比中项的理解与应用。

6、等比数列的前n项和公式推导,进一步熟练掌握等比数列的通项公式和前n项和公式【难点】1、根据数列的前n项观察、归纳数列的一个通项公式。

2、理解递推公式与通项公式的关系。

3、等差数列的性质,灵活应用等差数列的定义及性质解决一些相关问题。

4、灵活应用等差数列前n项公式解决一些简单的有关问题。

5、灵活应用求和公式解决问题,灵活应用定义式及通项公式解决相关问题。

6、灵活应用等比数列定义、通项公式、性质解决一些相关问题。

一、数列的概念与简单表示法1.数列的定义:按一定次序排列的一列数叫做数列.注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n项,….3.数列的一般形式:aj,az,ag, …,an, …,或简记为{a},其中a。

是数列的第n项4.数列的通项公式:如果数列{a}的第n项a。

与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.注意: (1)并不是所有数列都能写出其通项公式,如上述数列④;(2)一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0, …它的通项公式可以是,也可以是; 1.(3)数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.数列的通项公式具有双重身份,它表示了数列的第召项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.5.数列与函数的关系:数列可以看成以正整数集N(或它的有限子集{1,2,3,…,n})为定义域的函数an= f(n),当自变量从小到大依次取值时对应的一列函数值。

高中数学必修五2.1.1 数列的概念与简单表示法(一)

高中数学必修五2.1.1 数列的概念与简单表示法(一)

2.1 数列的概念与简单表示法2.1.1 数列的概念与简单表示法(一)从容说课本节课先由教师提供日常生活实例,引导学生通过对实例的分析体会数列的有关概念,再通过对数列的项数与项之间的对应关系的探究,认识数列是一种特殊的函数,最后师生共同通过对一列数的观察、归纳,写出符合条件的一个通项公式.通过本节课的学习使学生能理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的通项公式. 教学重点 数列及其有关概念,通项公式及其应用.教学难点 根据一些数列的前几项抽象、归纳数列的通项公式.教具准备 课件三维目标 一、知识与技能1.理解数列及其有关概念,了解数列和函数之间的关系;2.了解数列的通项公式,并会用通项公式写出数列的任意一项;3.对于比较简单的数列,会根据其前几项写出它的通项公式. 二、过程与方法1.采用探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学;2.发挥学生的主体作用,作好探究性学习;3.理论联系实际,激发学生的学习积极性. 三、情感态度与价值观1.通过日常生活中的大量实例,鼓励学生动手试验.理论联系实际,激发学生对科学的探究精神和严肃认真的科学态度,培养学生的辩证唯物主义观点;2.通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣.教学过程 导入新课师 课本图211中的正方形数分别是多少?生 1,3,6,10,….师 图212中正方形数呢?生 1,4,9,16,25,….师 像这样按一定次序排列的一列数你能否再举一些?生 -1的正整数次幂:-1,1,-1,1,…;无穷多个数排成一列数:1,1,1,1,….生 一些分数排成的一列数:32,154,356,638,9910,….推进新课[合作探究] 折纸问题师 请同学们想一想,一张纸可以重复对折多少次?请同学们随便取一张纸试试(学生们兴趣一定很浓).生 一般折5、6次就不能折下去了,厚度太高了.师 你知道这是为什么吗?我们设纸原来的厚度为1长度单位,面积为1面积单位,随依次折的次数,它的厚度和每层纸的面积依次怎样?生 随着对折数厚度依次为:2,4,8,16,…,256,…;① 随着对折数面积依次为21,41 ,81 ,161 ,…,2561 ,…. 生 对折8次以后,纸的厚度为原来的256倍,其面积为原来的分 1[]256式,再折下去太困难了.师 说得很好,随数学水平的提高,我们的思维会更加理性化.请同学们观察上面我们列出的这一列一列的数,看它们有何共同特点?生 均是一列数.生 还有一定次序.师 它们的共同特点:都是有一定次序的一列数. [教师精讲]1.数列的定义:按一定顺序排列着的一列数叫做数列.注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….同学们能举例说明吗? 生 例如,上述例子均是数列,其中①中,“2”是这个数列的第1项(或首项),“16”是这个数列中的第4项.3.数列的分类:1)根据数列项数的多少分:有穷数列:项数有限的数列.例如数列1,2,3,4,5,6是有穷数列.无穷数列:项数无限的数列.例如数列1,2,3,4,5,6…是无穷数列.2)根据数列项的大小分:递增数列:从第2项起,每一项都不小于它的前一项的数列.递减数列:从第2项起,每一项都不大于它的前一项的数列.常数数列:各项相等的数列.摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 请同学们观察:课本P 33的六组数列,哪些是递增数列、递减数列、常数数列、摆动数列? 生 这六组数列分别是(1)递增数列,(2)递增数列,(3)常数数列,(4)递减数列,(5)摆动数列,(6)1.递增数列,2.递减数列.[知识拓展] 师 你能说出上述数列①中的256是这数列的第多少项?能否写出它的第n 项?生 256是这数列的第8项,我能写出它的第n 项,应为a n =2n .[合作探究]同学们看数列2,4,8,16,…,256,…①中项与项之间的对应关系,项 2 4 8 16 32↓ ↓ ↓ ↓ ↓序号 1 2 3 4 5你能从中得到什么启示?生 数列可以看作是一个定义域为正整数集N *(或它的有限子集{1,2,3,…,n })的函数a n =f(n ),当自变量从小到大依次取值时对应的一列函数值.反过来,对于函数y=f(x),如果f(i)(i=1、2、3、4…)有意义,那么我们可以得到一个数列f(1),f(2),f(3),…,f(n ),…. 师 说的很好.如果数列{a n }的第n 项a n 与n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式. [例题剖析]1.根据下面数列{a n }的通项公式,写出前5项:(1)a n =1+n n ;(2)a n =(-1)n ·n . 师 由通项公式定义可知,只要将通项公式中n 依次取1,2,3,4,5,即可得到数列的前5项.生 解:(1)n =1,2,3,4,5.a 1=21;a 2=32;a 3=43;a 4=54;a 5=65. (2)n =1,2,3,4,5.a 1=-1;a 2=2;a 3=-3;a 4=4;a 5=-5.师 好!就这样解.2.根据下面数列的前几项的值,写出数列的一个通项公式:(1)3,5,7,9,11,…;(2)32,154,356,638,9910,…; (3)0,1,0,1,0,1,…;(4)1,3,3,5,5,7,7,9,9,…;(5)2,-6,12,-20,30,-42,….师 这里只给出数列的前几项的值,哪位同学能写出这些数列的一个通项公式?(给学生一定的思考时间)生老师,我写好了!解:(1)a n =2n +1;(2)a n =)12)(12(2+-n n n ;(3)a n =2)1(1n -+; (4)将数列变形为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,…,∴a n =n +2)1(1n-+; (5)将数列变形为1×2,-2×3,3×4,-4×5,5×6,…,∴a n =(-1)n +1n (n +1).师 完全正确!这是由“数”给出数列的“式”的例子,解决的关键是要找出这列数呈现出的规律性的东西,然后再通过归纳写出这个数列的通项公式.[合作探究]师 函数与数列的比较(由学生完成此表):函数 数列(特殊的函数) 定义域R 或R 的子集 N *或它的有限子集{1,2,…,n } 解析式y=f(x) a n =f(n ) 图象 点的集合 一些离散的点的集合师 对于函数,我们可以根据其函数解析式画出其对应图象,看来,数列也可根据其通项公式来画出其对应图象,下面同学们练习画数列:4,5,6,7,8,9,10…;② 1,21 ,31 ,41 ,…③的图象. 生 根据这数列的通项公式画出数列②、③的图象为师 数列4,5,6,7,8,9,10,…②的图象与我们学过的什么函数的图象有关? 生 与我们学过的一次函数y=x+3的图象有关.师 数列1,21 ,31 ,41 ,…③的图象与我们学过的什么函数的图象有关? 生 与我们学过的反比例函数x y 1=的图象有关. 师 这两数列的图象有什么特点?生 其特点为:它们都是一群孤立的点.生 它们都位于y 轴的右侧,即特点为:它们都是一群孤立的,都位于y 轴的右侧的点. 本课时的整个教学过程以学生自主探究为主,教师起引导作用,充分体现学生的主体作用,体现新课程的理念.课堂小结对于本节内容应着重掌握数列及有关定义,会根据通项公式求其任意一项,并会根据数列的前n 项求一些简单数列的通项公式.布置作业课本第38页习题2.1 A 组第1题.板书设计数列的概念与简单表示法(一)定义1.数列 例12.项3.一般形式 例2 函数定义4.通项公式5.有穷数列6.无穷数列备课资料一、备用例题1.写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)1,3,5,7;(2)515;414,313;2122222----; (3)211⨯-,321⨯- ,431⨯- ,541⨯-. 分析:(1)项:1=2×1-1 3=2×2-1 5=2×3-1 7=2×4-1↓ ↓ ↓ ↓序号: 1 2 3 4所以我们得到了a n =2n -1;(2)序号: 1 2 3 4↓ ↓ ↓ ↓项分母: 2=1+1 3=2+1 4=3+1 5=4+1 ↓ ↓ ↓ ↓项分子: 22-1=(1+1)2-1 32-1=(2+1)2-1 42-1=(3+1)2-1 52-1=(4+1)2-1所以我们得到了a n =1)1(2++n n 或1)2(+•+n n n ; (3)序号: 1 2 3 4↓ ↓ ↓ ↓211⨯- 321⨯- 431⨯- 541⨯- ↓ ↓ ↓ ↓)11(11+⨯- )12(21+⨯- )13(31+⨯- )14(41+⨯- 所以我们得到了a n =-)1(1+⨯n n . 2.写出下面数列的一个通项公式,使它的前n 项分别是下列各数:(1)1,0,1,0; 〔a n =2)1(11+-+n ,n ∈N *〕 (2)-32,83 ,154- ,245,356-; 〔a n =(-1)n ·1)1(12-++n n 〕 (3)7,77,777,7 777; 〔a n =97×(10n -1)〕 (4)-1,7,-13,19,-25,31; 〔a n =(-1)n (6n -5)〕(5)23,45 ,169 ,25617. 〔a n =12212-+n n 〕 点评:上述两题都是根据数列的前几项来写出这数列的通项公式,根据数列的前几项来写出这数列的通项公式时,常可联想奇数、偶数、平方数、指数等等.遇到分数的时候,常可根据需要把分子和分母同时扩大再来看看分子和分母中数的规律性,有时可直截了当地研究分子和分母之间的关系.3.已知数列{a n }的通项公式是a n =2n 2-n ,那么( )A .30是数列{a n }的一项B .44是数列{a n }的一项C.66是数列{a n }的一项 D .90是数列{a n }的一项分析:注意到30,44,66,90均比较小,可以写出这个数列的前几项,如果这前几项中出现了这四个数中的某一个,则问题就可以解决了.若出现的数比较大,还可以用解方程求正整数解的方法加以解决.答案:C点评:看一个数A 是不是数列{a n }中的某一项,实质上就是看能不能找出一个非零自然数n ,使得a n =A .4.(链接探究题)假定有一张极薄的纸,厚度为2001cm 就是每200张叠起来刚好为1 cm ,现在把这张纸裁一为二,叠起来,它的厚度记为a 1;再裁一为二,叠起来,它的厚度记为a 2,又裁一为二,叠起来,它的厚度记为a 3,这样一裁一叠,每次叠起来所得的厚度依次排列,就得到一个数列:a 1,a 2,a 3,…,a k ,….你能求出这个数列的通项公式吗?你知道a 50,即裁了50次、叠了50次后的厚度是多少厘米吗?是否有10层楼高呢?答案:这个数列的通项公式为a n =2002n, 裁了50次、叠了50次后的厚度是5 629 499 534 213.12 cm >56 294 995 km ,大于地球到月球距离的146倍. 二、阅读材料无法实现的奖赏相传古印度舍罕王朝有一位宰相叫达依尔,据说是他发明了国际象棋,古印度的舍罕王学会了下国际象棋以后,非常激动,他要重赏他的宰相达依尔. 达依尔对他的国王说:陛下,我不要您的重赏,只要您按我下面的办法赏我一些麦粒就可以了:在我的棋盘上(它有64个格)第一格赏1粒,第二格赏2粒,第三格赏4粒,第四格赏8粒……依此类推每后一格的麦粒数都是前面一格的两倍.国王答应了达依尔的要求,但是几天以后他就发现事实上这是一个无法兑现的奖赏.请问国王为什么不能兑现他的奖赏呢? 2.1.2 数列的概念与简单表示法(二)从容说课这节课通过对数列通项公式的正确理解,让学生进一步了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项;通过经历数列知识的感受及理解运用的过程,作好探究性教学.发挥学生的主体作用,提高学生的分析问题以及解决问题的能力.教学重点 根据数列的递推公式写出数列的前几项.教学难点 理解递推公式与通项公式的关系.教具准备 多媒体三维目标一、知识与技能1.了解数列的递推公式,明确递推公式与通项公式的异同;2.会根据数列的递推公式写出数列的前几项.二、过程与方法1.经历数列知识的感受及理解运用的过程;2.发挥学生的主体作用,作好探究性实验;3.理论联系实际,激发学生的学习积极性.三、情感态度与价值观通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣.教学过程导入新课师 同学们,昨天我们学习了数列的定义,数列的通项公式的意义等内容,哪位同学能谈一谈什么叫数列的通项公式?生 如果数列{a n }的第n 项与序号之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.师 你能举例说明吗?生 如数列0,1,2,3,…的通项公式为a n =n -1(n ∈N *);1,1,1的通项公式为a n =1(n ∈N *,1≤n ≤3); 1,21 ,31 ,41 ,…的通项公式为a n =n1 (n ∈N *). [合作探究]数列的表示方法 师 通项公式是表示数列的很好的方法,同学们想一想还有哪些方法可以表示数列? 生 图象法,我们可仿照函数图象的画法画数列的图形.具体方法是以项数n 为横坐标,相应的项a n 为纵坐标,即以(n ,a n )为坐标在平面直角坐标系中作出点(以前面提到的数列1, 21,31,41,…为例,作出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在y 轴的右侧,而点的个数取决于数列的项数.从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势.师 说得很好,还有其他的方法吗?生 ……师 下面我们来介绍数列的另一种表示方法:递推公式法 知识都来源于实践,同时还要应用于生活,用其来解决一些实际问题.下面同学们来看右下图:钢管堆放示意图(投影片).观察钢管堆放示意图,寻其规律,看看能否建立它的一些数学模型.生 模型一:自上而下第1层钢管数为4,即14=1+3;第2层钢管数为5,即25=2+3;第3层钢管数为6,即36=3+3;第4层钢管数为7,即47=4+3;第5层钢管数为8,即58=5+3;第6层钢管数为9,即69=6+3;第7层钢管数为10,即710=7+3.若用a n 表示钢管数,n 表示层数,则可得出每一层的钢管数为一数列,且a n =n +3(1≤n ≤7). 师 同学们运用每一层的钢管数与其层数之间的对应规律建立了数列模型,这完全正确,运用这一关系,会很快捷地求出每一层的钢管数.这会给我们的统计与计算带来很多方便.让同学们继续看此图片,是否还有其他规律可循?(启发学生寻找规律)生 模型二:上下层之间的关系自上而下每一层的钢管数都比上一层钢管数多1,即a 1=4;a 2=5=4+1=a 1+1;a 3=6=5+1=a 2+1.依此类推:a n =a n -1+1(2≤n ≤7).师对于上述所求关系,同学们有什么样的理解?生 若知其第1项,就可以求出第二项,以此类推,即可求出其他项.师 看来,这一关系也较为重要,我们把数列中具有这种递推关系的式子叫做递推公式. 推进新课1.递推公式定义:如果已知数列{a n }的第1项(或前几项),且任一项a n 与它的前一项a n -1(或前n 项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.注意:递推公式也是给出数列的一种方法.如下列数字排列的一个数列:3,5,8,13,21,34,55,89.递推公式为:a 1=3,a 2=5,a n =a n -1+a n -2(3≤n ≤8).2.数列可看作特殊的函数,其表示也应与函数的表示法有联系,函数的表示法有:列表法、图象法、解析式法.相对于数列来说也有相应的这几种表示方法:即列表法、图象法、解析式法. [例题剖析]【例1】 设数列{a n }满足1,11111>n a a a n n ⎪⎩⎪⎨⎧+==-.写出这个数列的前五项. 师 分析:题中已给出{a n }的第1项即a 1=1,题目要求写出这个数列的前五项,因而只要再求出二到五项即可.这个递推公式:a n =1+11-n a 我们将如何应用呢? 生 这要将n 的值2和a 1=1代入这个递推公式计算就可求出第二项,然后依次这样进行就可以了.师 请大家计算一下!生 解:据题意可知:a 1=1,a 2=1+11a =2,a 3=1+21a =32,a 4=1+31a =35,a 5=58师 掌握递推公式很关键的一点就是其中的递推关系,同学们要注意探究和发现递推公式中的前项与后项,或前后几项之间的关系.【例2】 已知a 1=2,a n +1=2a n ,写出前5项,并猜想a n .师 由例1的经验我们先求前5项.生 前5项分别为2,4,8,16,32.师 对,下面来猜想第n 项.生 由a 1=2,a 2=2×2=22,a 3=2×22=23观察可得,我猜想a n =2n .师 很好!生 老师,本题若改为求a n 是否还可这样去解呢?师 不能.必须有求解的过程.生 老师,我由a n +1=2a n 变形可得a n =2a n -1,即21=-n n a a ,依次向下写,一直到第一项,然后将它们乘起来,就有⨯⨯⨯-----32211n n n n n n a a a a a a …×1122-=n aa ,所以a n =a 1·2n -1=2n .师 太妙了,真是求解的好方法.你所用的这种方法通常叫迭乘法,这种方法在已知递推公式求数列通项的问题中是比较常用的方法,对应的还有迭加法. [知识拓展]已知a 1=2,a n +1=a n -4,求a n .师 此题与前例2比较,递推式中的运算改为了减法,同学们想一想如何去求解呢? 生1 写出:a 1=2,a 2=-2,a 3=-6,a 4=-10,…观察可得:a n =2+(n -1)(n -4)=2-4(n -1).生2 他这种解法不行,因为不是猜出a n ,而是要求出a n .我这样解:由a n +1-a n =-4依次向下写,一直到第一项,然后将它们加起来,a n -a n -1=-4a n -1-a n -2=-4a n -2-a n -3=-4 …… )1(44a )112--=--=-+n a a a n ∴a n =2-4(n -1).师 好极了,真是触类旁通啊,这种方法也请同学们课后多体会.[教师精讲](1)数列的递推公式是由初始值和相邻几项的递推关系确定的,如果只有递推关系而无初始值,那么这个数列是不能确定的.例如,由数列{a n }中的递推公式a n +1=2a n +1无法写出数列{a n }中的任何一项,若又知a 1=1,则可以依次地写出a 2=3,a 3=7,a 4=15,….(2)递推公式是给出数列的一种方法,由递推公式可能求出数列的通项公式,也可能求不出通项公式.[学生活动]根据各个数列的首项和递推公式,写出它的前五项,并归纳出通项公式.(投影片)(1)a 1=0,a n +1=a n +(2n -1)(n ∈N );(2)a 1=1,a n +1=2+n n a a (n ∈N ); (3)a 1=3,a n +1=3a n -2(n ∈N ).(让学生思考一定时间后,请三位学生分别作答)解:(1)a 1=0,a 2=1,a 3=4,a 4=9,a 5=16,∴a n =(n -1)2.(2)a 1=1,a 2=32,a 3=21=42,a 4=52,a 5=31 =62,∴a n =12+n . (3)a 1=3=1+2×30,a 2=7=1+2×31,a 3=19=1+2×32,a 4=55=1+2×33,a 5=163=1+2×34,∴a n =1+2·3 n -1.注:不要求学生进行证明归纳出通项公式.[合作探究]一只猴子爬一个8级的梯子,每次可爬一级或上跃二级,最多能上跃起三级,从地面上到最上一级,你知道这只猴子一共可以有多少种不同的爬跃方式吗?析:这题是一道应用题,这里难在爬梯子有多种形式,到底是爬一级还是上跃二级等情况要分类考虑周到.爬一级梯子的方法只有一种.爬一个二级梯子有两种,即一级一级爬是一种,还有一次爬二级,所以共有两种.若设爬一个n级梯子的不同爬法有a n种,则a n=a n-1+a n-2+a n-3(n≥4),则得到a1=1,a2=2,a3=4及a n=a n-1+a n-2+a n-3(n≥4),就可以求得a8=81.课堂小结师这节课我们主要学习了数列的另一种给出方法,即递推公式及其用法,要注意理解它与通项公式的区别,谁能说说?生通项公式反映的是项与项数之间的关系,而递推公式反映的是相邻两项(或n项)之间的关系.生对于通项公式,只要将公式中的n依次取1,2,3…,即可得到相应的项.而递推公式则要已知首项(或前n项),才可求得其他的项.(让学生自己来总结,将所学的知识,结合获取知识的过程与方法,进行回顾与反思,从而达到三维目标的整合.培养学生的概括能力和语言表达能力)布置作业课本第38页习题2.1A组第4、6题.预习内容:课本P41~P 44.数列的概念与简单表示法(二)一、定义二、例题讲解小结:7.递推公式:例1通项公式与例2 递推公式区别。

人教A版数学必修五2.1 数列的概念与简单表示法-数列的通项公式(二)——利用Sn与an关系求通项公

人教A版数学必修五2.1 数列的概念与简单表示法-数列的通项公式(二)——利用Sn与an关系求通项公

1.已知数列{an}的前 n 项和 Sn 2n2 n 1,求 an 2.已知数列{an}的前 n 项和 Sn 1 3n ,求 an
答案 第1题
4 n 1 an 4n 1 n 2
第2题
an 2 3n1, n N
隐藏 Sn ,求 an
【例 2】已知数列{an}中, a1 2a2 2n1an n2 n ,求 an
(2)由(1)
1 Sn
2n ,
Sn
1 2n
,nN
(又回到了类型一)
①当
n
1 时,
a1
S1
1 2
②当 n 2 时, an Sn Sn1
人教A版数学必修五2.1 数列的概念与简单表示法-数列的 通项公 式(二 )—— 利用Sn 与an关 系求通 项公式 课件【精品】
1 1 2n 2n 2
1 2n2 2n
n2 n (n 1)2 (n 1) 2n 对于 bn 2n ,当 n 1 时, b1 2
所以: bn 2n, n N
又 bn 2n1 an , 则2n1 an 2n
所以: an
n 2n2
,n N
处理方法
换元转换为类型一
3. 已知数列{an}中, a1 3a2 (2n 1)an n(n 1)(n 2) ,求 an
(1)求 an :与类型一的处理方法一样,消去 Sn ,
得到 an 与 an1 的递推关系,再求 an
(2)求 Sn :消去 an ,得到 Sn 与 Sn1 的递推关系,
进而求出 Sn
人教A版数学必修五2.1 数列的概念与简单表示法-数列的 通项公 式(二 )—— 利用Sn 与an关 系求通 项公式 课件【精品】
1 1 2 0即 1 1 2

人教A版高中数学必修五同步练测:2.1数列的概念与简单表示法(含答案解析).docx

人教A版高中数学必修五同步练测:2.1数列的概念与简单表示法(含答案解析).docx

高中数学学习材料马鸣风萧萧 *整理制作2.1 数列的概念与简单表示法 ( 人教 A 版必修 5)建议用时 实际用时满分 实际得分45 分钟一、选择题 (每小题 5 分,共 30 分)1. 若某数列的前 4 项为 1,0,1,0, 则这个数列的通项公式不可能是 ()A. a n = 1[1+(-1)n -1 ]2B. a n = 1[1- cos(n 180 )]2C. a n = sin 2 (n 90 )D. a n =(n -1)( n -2)+ 1[1+ (-1)n- 1] 22. 已知数列 { a n } 的通项公式a n = 1[1+( 1)n 1] ,2 则该数列的前 4 项依次是 ( )A . 1,0,1,0B . 0,1,0,111100 分C. 1D.1 1001045. 已知 a n =3 ( n N * ), 记数列 a n 2n 11 为 S n , 则使 S n > 0 的 n 的最小值为 ( ) A.10 B.11 C.12D.136. 已知非零数列 { a n } 的递推公式为a n =( n > 1) ,则 a 4 = ()A .3a 1B. 2 a 1C .4 a 1D. 1的前 n 项和n ·a n 1n 1C.2,0, 2,0 D. 2,0,2,03. 设 a n1 1 1 1( nN * ), 那么n 1 n 2 n 32n a n +1- a n 等于 ( )A.1 B. 12n 12n2C.1 1D.112n 1 2n 22n 1 2n 24. 若 a 1 = 1, a n + 1 =a n, 给出的数列 a n的第 34项3a n1是 ( )34A.103B.100二、填空题 (每小题 4 分,共 16 分)7. 传说古希腊毕达哥拉斯学派的数学家经常在沙滩上研究数学问题 , 他们在沙滩上画点或用小石子来表示数 . 比如 , 他们将石子摆成如图所示的 三角形状 , 就将其所对应石子个数称为 三角形数 , 则第 10 个三角形数是 ______ .8. 数列 a,b,a,b, 的 一个通项公式是 ______ .9. 已知数列 { a n } 的通项公式 a n = 19 - 2 n ,则使a n 0 成立的最大正整数 n 的值为 ________.10. 已知数列 a n 满足 a 1 = 0, a n + 1=a n +n , 则 a 2 013三、解答题(共54分)11.( 12 分)根据下列 5 个图形及相应圆圈的个数的变化规律 , 试猜测第 n 个图中有多少个圆圈?12. ( 14 分)数列a n 1对所有的n≥ 2, 都有中 , a= 1,a1a2 a3 a n= n2.(1)求 a3+a5;256(2)探究225是否为此数列中的项;(3)试比较 a n与 a n+1( n≥2)的大小.13. ( 14 分)已知函数x -x, 数列 a n 满足f ( x)=2 -2f (log 2a n ) =-2n .(1)求数列 a n的通项公式;(2)证明 : 数列 a n是递减数列 .14.( 14 分)数列 { a } 的通项公式为 a = 30 n n2 .n n(1)问- 60 是不是数列 { a n } 中的项?(2) 当n分别取何值时,a n=0? a n>0? a n<0?2.1 数列的概念与简单表示法( 人教 A 版必修 5) 答题纸得分:一、选择题题号 1 2 3 4 5 6答案二、填空题7. 8. 9. 10.三、解答题11.12.13.14.2.1数列的概念与简单表示法 (人教 A 版必修 5) 答案一、选择题1.D解析: 令 n = 1,2,3,4 代入验证即可 .2.A3.D解析: ∵ a n11 11,∴ a n +1 =1 1 11 1 ,n 1 n 2 n 32nn 2 n 32n 2n 1 2n 2∴ a n + 1 -a n11111.2n 1 2n 2 n 1 2n 1 2n 2114.C解析: a 2 = a 1= 1 1, a 3 = a 2 =41a 4 a 3 =71, 猜想 a n =1,3+ 1 = 3a 23= , =3 =103a 1 1 41 73a 313(n 1)14+ 17+111∴a34= 3× (34 -1) + 1=100.5.B解析: ∵ -a 1=a 10 ,-a 2=a 9,- a 3=a 8 ,-a 4= a 7 ,-a 5=a 6 , ∴S 11 > 0.∴ 当 n ≥11 时 , S n > 0, 故 n 的最小值为 11.6. C解析: 依次对递推公式中的 n 赋值,当 n = 2 时, a = 2 a ;当 n = 3 时, a 3 =3 a = 3 a ;当 n =4 时,2122 14a 4 = 3 a 3 =4 a 1 .二、填空题7.55 解析:三 角形数依次为 1,3,6,10,15,, 由此可得第 10 个三角形数为 1+2+3+4+ +10=55.8. a n =a b( 1)n 1 a b解析: a =ab a b , b = aba b , 故 a n =ab ( 1)n 1a b.222 2 2222解析: 由 a n = 19- 2 n 0,得 n 19n N*,∴ n ≤ 9.9. 9. ∵210.2 025 078 解析: 由 a 1 = 0, a n +1= a n +n ,得a n =a n -1+ n -1, a n -1=a n - 2+n -2 ,?a 2=a 1+1 ,a 1 = 0.累加,得 a n = 0+ 1+ 2+ + n - 1=n(n 1),2 013 2 012= 2 025 078. 2∴ a 2 013 =2三、解答题11. 解:图 (1) 只有 1 个圆圈 , 无分支;图 (2) 除中间 1 个圆圈外 , 有两个分支 , 每个分支有 1个圆圈;图 (3) 除中间1 个圆圈外 , 有三个分支 , 每个分支有2 个圆圈;图 (4) 除中间 1 个圆圈外 , 有四个分支 , 每个分支有3 个圆圈; ;猜测第 n 个图中除中间 一个圆圈外 , 有 n 个分支 , 每个分支有 ( n -1) 个圆圈 , 故第 n 个图中圆圈的个数 为 1 n(n1) n 2 n1 .12. 解: 由题意知 a n =n 2(n 2 ( n ≥2).1)9 2561(1) a 3+a 5 = + = .4 16 16256 16 2 256(2)∵225=152=a16 ,∴225为数列中的项.(3) n ≥2时 , a n -a n +1 =n 2(n 1)2n 4 (n 2 1)2a n +1.2-2=222>0, ∴ a n13.(1) 解: ∵= x - - x , f (log =- 2n , f ( x) 2 2 2 a n )∴ 2log 2 an -2-log2 an =-2n , 即 a n - 1= -2n ,a n∴ a n 2+2na n - 1= 0. 解得 a n =- n n 21 .∵ a n0 , ∴ a n = n 2 1 - n .(2) 证明:a n1=(n 1)2 1 ( n 1) =n 2 1 n < 1.a nn 2 1 n(n 1)21 (n 1)∵a n0 , ∴ n +1n , ∴ 数列a是递减数列.a an14. 解: (1) 假设- 60 是数列 { a n } 中的项,则- 60= 30n n 2 . 解得 n = 10 或 n =- 9( 舍去 ) .∴ - 60 是数列 { a n } 中的第 10 项.(2) 令 30n n 2 = 0,解得 n =6 或 n =- 5( 舍去 ) ;令 30 令 30n n 2> 0,由于n n 2< 0,由于n N * ,所以解得 0< n < 6;n N * ,所以解得 n > 6.即当 n = 6 时, a n = 0; 当 0< n < 6 时, a n > 0;当 n > 6 时, a n < 0.。

高中数学必修5人教A教学同步练习及答案2.1.1数列的概念与简单表示法作业

高中数学必修5人教A教学同步练习及答案2.1.1数列的概念与简单表示法作业

2. 1数列的概念与简单表示法1、下列说法正确的是 ( )A. 数列1,3,5,7可表示为{}7,5,3,1B. 数列1,0,2,1--与数列1,0,1,2--是相同的数列C. 数列⎭⎬⎫⎩⎨⎧+n n 1的第k 项是k 11+ D.数列可以看做是一个定义域为正整数集*N 的函数2、数列 ,28,21,,10,6,3,1x 中,由给出的数之间的关系可知x 的值是( ) A.12 B.15 C.17 D.183、已知数列的通项公式为1582+-=n n a n ,则3 ( )A. 不是数列{}n a 中的项B. 只是数列{}n a 中的第2项C.只是数列{}n a 中的第6项D.是数列{}n a 中的第2项或第6项4、数列{}n a 的通项公式为n n a n 2832-=,则数列{}n a 各项中最小项是 ( )A. 第4项B.第5项C.第6项D.第7项5、已知数列 ,12,,7,5,3,1-n ,则53是它的 ( ) A. 第22项 B. 第23项 C.第24项 D.第28项6、已知031=--+n n a a ,则数列{}n a 是 ( )A. 递增数列B. 递减数列C.常数列D.摆动数列7、已知数列() ,11,,91,41,12nn ---,它的第5项的值为 ( ) A. 51 B. 51- C.251 D.251- 8、数列 ,1,0,1,0,1的一个通项公式是 ( ) A. ()2111+--=n n a B. ()2111+-+=n n a C. ()211--=n n a D. ()211n n a ---=9、用适当的数填空:①2,1, ,41,81, ,321 ②,25,16,9,4,1--- ,49-③1,9,25, ,81④1,0,21,0,31,0, ,0,51,0 10、写出以下各数列的通项公式: ① ,81,41,21,1--② ,1,0,1,0,1,0 ③ ,544,433,322,211④ ,6,7,8,9,10 ⑤ ,31,17,7,5,1 ⑥,6463,3635,1615,43 ⑦ ,301,201,121,61,21 ⑧ ,9999,999,99,9 11、数列{}n a 中,已知()*2,31N n n n a n ∈-+=。

2.1.1数列的概念与简单表示法

2.1.1数列的概念与简单表示法

已知下列数列: 例 1 已知下列数列: (1)2,22,222,2222; ; n-1 - 1 2 (2)0, , ,…, n ,…; ,2 3 1 1 1 (3)1, , ,…, n-1,…; , 3 9 3 (-1)n-1 ) (4)-1,0,- ,…, - ,-1,0, ,…; ,- 2 (5)a,a,a,a,…. , , , ,
写出下面数列的一个通项公式, 例 2 写出下面数列的一个通项公式, 使它的前 4 项分别 是下列各数: 是下列各数: 1 1 1 1 (1) ,- , ,- ; 1×2 2×3 3×4 4×5 × × × × 22-1 32-1 42-1 52-1 (2) 2 , 3 , 4 , 5 ; 1 1 1 1 (3)1 ,2 ,3 ,4 ; 2 4 8 16 (4)9,99,999,9999. [分析 细心寻找每一项 an 与序号 n 之间的变化规律即 分析] 分析 可.
ห้องสมุดไป่ตู้
3.由数列的前几项归纳其通项公式的方法 由数列的前几项归纳其通项公式的方法 据所给数列的前几项求其通项公式时, 据所给数列的前几项求其通项公式时 , 需仔细观察分 抓住其几方面的特征: 析,抓住其几方面的特征: (1)分式中分子、分母的特征; 分式中分子、 分式中分子 分母的特征; (2)相邻项的变化特征; 相邻项的变化特征; 相邻项的变化特征 (3)拆项后的特征; 拆项后的特征; 拆项后的特征 (4)各项的符号特征和绝对值特征. 各项的符号特征和绝对值特征. 并对此进行联想、 各项的符号特征和绝对值特征 并对此进行联想、 转 归纳. 化、归纳.
1 1 [解] (1)是无穷递减数列 > 是无穷递减数列( ). 解 是无穷递减数列 n . n+1 + (2)是有穷递增数列 项随着序号的增加而增大 . 是有穷递增数列(项随着序号的增加而增大 是有穷递增数列 项随着序号的增加而增大). (3)是无穷数列,由于奇数项为正,偶数项为负,故为摆 是无穷数列, 是无穷数列 由于奇数项为正,偶数项为负, 动数列. 动数列. (4)是有穷递增数列. 是有穷递增数列. 是有穷递增数列 (5)是无穷数列,也是摆动数列. 是无穷数列, 是无穷数列 也是摆动数列. (6)是无穷数列,且是常数列. 是无穷数列,且是常数列 是无穷数列

人教a版必修5学案:2.1数列的概念与简单表示法(2)(含答案)

人教a版必修5学案:2.1数列的概念与简单表示法(2)(含答案)

2.1数列的概念与简单表示法(二)自主学习知识梳理1.数列可以看作是一个定义域为________________(或它的有限子集{1,2,3,…,n})的函数,当自变量按照从小到大的顺序依次取值时,对应的一列________.2.一般地,一个数列{a n},如果从________起,每一项都大于它的前一项,即____________,那么这个数列叫做递增数列.如果从________起,每一项都小于它的前一项,即____________,那么这个数列叫做递减数列.如果数列{a n}的各项________,那么这个数列叫做常数列.3.数列的最大、最小项问题,可以通过研究数列的单调性加以解决,若求最大项a n,n的值可通过解不等式组________________来确定;若求最小项a n,n的值可通过解不等式组________________来确定.自主探究已知数列{a n}中,a1=1,a2=2,a n+2=a n+1-a n,试写出a3,a4,a5,a6,a7,a8,你发现数列{a n}具有怎样的规律?你能否求出该数列中的第2 011项是多少?对点讲练知识点一利用函数的性质判断数列的单调性例1已知数列{a n}的通项公式为a n=n2n2+1.求证:数列{a n}为递增数列.总结数列是一种特殊的函数,因此可用研究函数单调性的方法来研究数列的单调性.变式训练1在数列{a n}中,a n=n3-an,若数列{a n}为递增数列,试确定实数a的取值范围.知识点二 求数列的最大最小项例2 已知a n =9n (n +1)10n (n ∈N *),试问数列{a n }中有没有最大项?如果有,求出这个最大项;如果没有,说明理由.总结 先考虑{a n }的单调性,再利用单调性求其最值.变式训练2 已知数列{a n }的通项公式为a n =n 2-5n +4 (n ∈N *),则(1)数列中有多少项是负数?(2)n 为何值时,a n 有最小值?并求出最小值.知识点三 由递推公式求通项公式例3 已知数列{a n }满足a 1=1,a n =a n -1+1n (n -1)(n ≥2),写出该数列的前五项及它的一个通项公式.总结 已知递推关系求通项公式这类问题要求不高,主要掌握由a 1和递推关系先求出前几项,再归纳、猜想a n 的方法,以及累加:a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1;累乘:a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1等方法. 变式训练3 已知数列{a n }满足a 1=12,a n a n -1=a n -1-a n ,求数列{a n }的通项公式.函数与数列的联系与区别一方面,数列是一种特殊的函数,因此在解决数列问题时,要善于利用函数的知识、函数的观点、函数的思想方法来解题,即用共性来解决特殊问题.另一方面,还要注意数列的特殊性(离散型),由于它的定义域是N *或它的子集{1,2,…,n },因而它的图象是一系列孤立的点,而不像我们前面所研究过的初等函数一般都是连续的曲线,因此在解决问题时,要充分利用这一特殊性,如研究单调性时,由数列的图象可知,只要这些点每个比它前面相邻的一个高(即a n >a n -1),则图象呈上升趋势,即数列递增,即{a n }递增⇔a n +1>a n 对任意的n (n ∈N *)都成立.类似地,有{a n }递减⇔a n +1<a n 对任意的n (n ∈N *)都成立.课时作业一、选择题1.已知a n +1-a n -3=0,则数列{a n }是( )A .递增数列B .递减数列C .常数项D .不能确定2.已知数列{a n }的首项为a 1=1,且满足a n +1=12a n +12n ,则此数列第4项是( ) A .1 B.12 C.34 D.583.若a 1=1,a n +1=a n 3a n +1,给出的数列{a n }的第34项是( ) A.34103 B .100 C.1100 D.11044.已知a n =32n -11(n ∈N *),记数列{a n }的前n 项和为S n ,则使S n >0的n 的最小值为( )A .10B .11C .12D .135.已知数列{a n }满足a n +1=⎩⎨⎧2a n ⎝⎛⎭⎫0≤a n <12,2a n -1 ⎝⎛⎭⎫12≤a n <1.若a 1=67,则a 2 010的值为( ) A.67 B.57C.37D.17题 号1 2 3 4 5 答 案二、填空题6.已知数列{a n }满足:a 1=a 2=1,a n +2=a n +1+a n ,(n ∈N *),则使a n >100的n 的最小值是________.7.设a n =-n 2+10n +11,则数列{a n }从首项到第m 项的和最大,则m 的值是________.8.已知数列{a n }满足a 1=0,a n +1=a n +n ,则a 2 009=________.三、解答题9.已知函数f (x )=2x -2-x ,数列{a n }满足f (log 2 a n )=-2n .(1)求数列{a n }的通项公式;(2)证明:数列{a n }是递减数列.10.在数列{a n }中,a 1=12,a n =1-1a n -1(n ≥2,n ∈N *). (1)求证:a n +3=a n ; (2)求a 2 010.§2.1 数列的概念与简单表示法(二)知识梳理1.正整数集N * 函数值2.第二项 a n +1>a n 第二项 a n +1<a n 都相同 3.⎩⎪⎨⎪⎧ a n ≥a n -1a n ≥a n +1 ⎩⎪⎨⎪⎧a n ≤a n -1a n ≤a n +1自主探究解 a 1=1,a 2=2,a 3=1,a 4=-1,a 5=-2, a 6=-1,a 7=1,a 8=2,….发现:a n +6=a n ,数列{a n }具有周期性,周期T =6, 证明如下:∵a n +2=a n +1-a n ,∴a n +3=a n +2-a n +1=(a n +1-a n )-a n +1=-a n .∴a n +6=-a n +3=-(-a n )=a n .∴数列{a n }是周期数列,且T =6.∴a 2 011=a 335×6+1=a 1=1.对点讲练例1 证明 ∵a n =n 2n 2+1=1-1n 2+1a n +1-a n =1n 2+1-1(n +1)2+1=[(n +1)2+1]-(n 2+1)(n 2+1)[(n +1)2+1]=2n +1(n 2+1)[(n +1)2+1]. 由n ∈N *,得a n +1-a n >0,即a n +1>a n .∴数列{a n }为递增数列.变式训练1 解 若{a n }为递增数列,则a n +1-a n ≥0.即(n +1)3-a (n +1)-n 3+an ≥0恒成立. 即a ≤(n +1)3-n 3=3n 2+3n +1恒成立, 即a ≤(3n 2+3n +1)min ,∵n ∈N *,∴3n 2+3n +1的最小值为7.∴a 的取值范围为a ≤7.例2 解 因为a n +1-a n =⎝⎛⎭⎫910n +1·(n +2)-⎝⎛⎭⎫910n ·(n +1)=⎝⎛⎭⎫910n +1·⎣⎡⎦⎤(n +2)-109(n +1) =⎝⎛⎭⎫910n +1·8-n 9,则当n ≤7时,⎝⎛⎭⎫910n +1·8-n 9>0,当n =8时,⎝⎛⎭⎫910n +1·8-n 9=0,当n ≥9时,⎝⎛⎭⎫910n +1·8-n 9<0,所以a 1<a 2<a 3<…<a 7<a 8=a 9>a 10>a 11>a 12>…,故数列{a n }存在最大项,最大项为a 8=a 9=99108. 变式训练2 解 (1)a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, 当n =2,3时,a n <0.∴数列中有两项是负数.(2)∵a n =n 2-5n +4=⎝⎛⎭⎫n -522-94,可知对称轴方程为n =52=2.5. 又因n ∈N *,故n =2或3时,a n 有最小值,其最小值为-2.例3 解 由递推公式得a 1=1,a 2=1+12×1=32,a 3=32+13×2=53, a 4=53+14×3=74,a 5=74+15×4=95. 故数列的前五项分别为1,32,53,74,95. ∴通项公式为a n =2n -1n =2-1n(n ∈N *). 变式训练3 解 ∵a n a n -1=a n -1-a n , ∴1a n -1a n -1=1.∴1a n =1a 1+⎝⎛⎭⎫1a 2-1a 1+⎝⎛⎭⎫1a 3-1a 2+…+⎝⎛⎭⎫1a n -1a n -1=2+1+1+…+1(n -1)个1 =n +1. ∴1a n =n +1,∴a n =1n +1(n ∈N *). 课时作业1.A2.B [∵a 1=1,∴a 2=12+12=1,a 3=12+14=34,a 4=12×34+18=12.] 3.C [a 2=a 13a 1+1=13+1=14,a 3=a 23a 2+1=1434+1=17,a 4=a 33a 3+1=1737+1=110, 猜想a n =13(n -1)+1, ∴a 34=13×(34-1)+1=1100.] 4.B [∵-a 1=a 10,-a 2=a 9,-a 3=a 8,-a 4=a 7,-a 5=a 6, ∴S 11>0,则当n ≥11时,S n >0,故n 最小为11.]5.C [计算得a 2=57,a 3=37,a 4=67,故数列{a n }是以3为周期的周期数列, 又知2 010除以3能整除,所以a 2 010=a 3=37.] 6.127.10或11解析 令a n =-n 2+10n +11≥0,则n ≤11. ∴a 1>0,a 2>0,…,a 10>0,a 11=0.∴S 10=S 11且为S n 的最大值.8.2 017 036解析 由a 1=0,a n +1=a n +n 得a n =a n -1+n -1,a n -1=a n -2+n -2,⋮a 2=a 1+1,a 1=0,累加可得a n =0+1+2+…+n -1=n (n -1)2, ∴a 2 009=2 009×2 0082=2 017 036. 9.(1)解 因为f (x )=2x -2-x ,f (log 2 a n )=-2n ,所以2log 2 a n -2-log 2a n =-2n ,a n -1a n=-2n , 所以a 2n +2na n -1=0,解得a n =-n ±n 2+1.因为a n >0,所以a n =n 2+1-n .(2)证明 a n +1a n =(n +1)2+1-(n +1)n 2+1-n=n 2+1+n (n +1)2+1+(n +1)<1. 又因为a n >0,所以a n +1<a n ,所以数列{a n }是递减数列.10.(1)证明 a n +3=1-1a n +2=1-11-1a n +1=1-11-11-1a n =1-11-1a n -1a n=1-11-a n a n -1=1-1a n -1-a n a n -1=1-1-1a n -1=1-(1-a n )=a n .∴a n +3=a n .(2)解 由(1)知数列{a n }的周期T =3,a 1=12,a 2=-1,a 3=2. ∴a 2 010=a 3×670=a 3=2.。

人教a版必修5学案:2.1数列的概念与简单表示法(含答案)

人教a版必修5学案:2.1数列的概念与简单表示法(含答案)

第二章 数 列§2.1 数列的概念与简单表示法材拓展1.从函数的观点看数列一方面,数列是一种特殊的函数,因此在解决数列问题时,要善于利用函数的知识、函数的观点、函数的思想方法来解题,即用共性来解决特殊问题.例如,类比单调函数的定义得出单调数列的判断方法.即:数列{a n }单调递增⇔a n +1>a n 对任意n (n ∈N *)都成立;数列{a n }单调递减⇔a n +1<a n 对任意n (n ∈N *)都成立.另一方面,还要注意数列的特殊性(离散型),由于它的定义域是N *或它的子集{1,2,…,n },因而它的图象是一系列孤立的点,而不像我们前面所研究过的初等函数一般都是连续的曲线.例如:已知a n =n -98n -99,则这个数列的前30项中最大项和最小项分别是( ) A .a 1,a 30 B .a 1,a 9C .a 10,a 9D .a 10,a 30解析 ∵a n =n -99+(99-98)n -99=99-98n -99+1 ∴点(n ,a n )在函数y =99-98x -99+1的图象上. 在直角坐标系中作出函数y =99-98x -99+1的图象.由图象易知当x ∈(0,99)时,函数单调递减.∴a 9<a 8<a 7<…<a 1<1,当x ∈(99,+∞)时,函数单调递减.∴a 10>a 11>…>a 30>1.所以,数列{a n }的前30项中最大的项是a 10,最小的项是a 9.答案 C2.了解一点周期数列的知识类比周期函数的概念可以得出周期数列的定义:对于数列{a n },若存在一个大于1的自然数T (T 为常数),使a n +T =a n ,对一切n ∈N *恒成立,则称数列{a n }为周期数列,T 就是它的一个周期.易知,若T 是{a n }的一个周期,则kT (k ∈N *)也是它的周期,周期最小的那个值叫最小正周期.例如:已知数列{a n }中,a 1=a (a 为正常数),a n +1=-1a n +1(n =1,2,3,…),则下列能使a n =a 的n 的数值是( )A .15B .16C .17D .18解析 a 1=a ,a 2=-1a +1, a 3=-1a 2+1=-1-1a +1+1=-a -1a , a 4=-1a 3+1=-1-a -1a+1=a , a 5=-1a 4+1=-1a +1,……. ∴a 4=a 1,a 5=a 2,…依次类推可得:a n +3=a n ,∴{a n }为周期数列,周期为3.∵a 1=a ,∴a 3k +1=a 1=a .答案 B3.数列的前n 项和S n 与a n 的关系对所有数列都有:S n =a 1+a 2+…+a n -1+a n ,S n -1=a 1+a 2+…+a n -1 (n ≥2).因此,当n ≥2时,有:a n =S n -S n -1.当n =1时,有:a 1=S 1.所以a n 与S n 的关系为:a n =⎩⎪⎨⎪⎧S 1, n =1S n -S n -1, n ≥2.注意这一关系适用于所有数列. 例如:已知数列{a n }的前n 项和S n =(n -1)·2n +1,则a n =________.解析 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=[(n -1)·2n +1]-[(n -2)·2n -1+1]=(n -1)·2n -(n -2)·2n -1=n ·2n -1.所以通项公式可以统一为a n =n ·2n -1.答案 n ·2n -14.由简单的递推公式求通项公式(1)形如a n +1-a n =f (n ),且f (1)+f (2)+…+f (n )可求和,采用累加法求a n .即:a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+f (1)+f (2)+…+f (n -1) =a 1+∑n -1i =1f (i ) (2)形如a n +1=f (n )·a n ,且f (1)·f (2)…f (n )可化简,采用累乘法求a n .即a n =a 1·a 2a 1·a 3a 2·…·a n a n -1=a 1·f (1)·f (2)·…·f (n -1)=a 1·Πn -1i =1f (i ) (注:∑为连加求和符号,Π为连乘求积符号)(3)形如a n +1=Aa n +B (AB ≠0且A ≠1).设a n +1-x =A (a n -x ),则:a n +1=Aa n +(1-A )x由(1-A )x =B ,∴x =B 1-A∴a n +1-B 1-A=A ⎝⎛⎭⎫a n -B 1-A ∴a n -B 1-A=A ⎝⎛⎭⎫a n -1-B 1-A =A 2⎝⎛⎭⎫a n -2-B 1-A =…=A n -1⎝⎛⎭⎫a 1-B 1-A ∴a n =B 1-A+A n -1⎝⎛⎭⎫a 1-B 1-A =(1-A n -1)·B 1-A+A n -1a 1.法突破一、观察法写数列的通项公式方法链接:根据数列前几项,要写出它的一个通项公式,其关键在于观察、分析数列的前几项的特征、特点,找到数列的一个构成规律.根据此规律便可写出一个相应的通项公式.注意以下几点:(1)为了突出显现数列的构成规律,可把序号1,2,3,…标在相应项上,这样便于突出第n 项a n 与项数n 的关系,即a n 如何用n 表示.(2)由于给出的数列的前几项是一些特殊值,必然进行了化简,因此我们要观察出它的构成规律,就必须要对它进行还原工作.如数列的前几项中均用分数表示,但其中有几项分子或分母相同,不妨把这几项的分子或分母都统一起来试一试.(3)当一个数列出现“+”、“-”相间时,应先把符号分离出来,即用(-1)n 或(-1)n -1表示,然后再考虑各项绝对值的规律.(4)熟记一些基本数列的前几项以及它们的变化规律(如增减速度),有利于我们写出它的通项公式.例1 根据数列的前几项,写出下列各数列的一个通项公式:(1)45,12,411,27,…; (2)12,2,92,8,252,…; (3)1,3,6,10,15,…; (4)7,77,777,…;(5)0,3,8,15,24,…; (6)1,13,17,113,121,…. 解 (1)注意前四项中有两项的分子为4,不妨把分子统一为4,即为45,48,411,414,…,于是它们的分母相差3,因而有a n =43n +2. (2)把分母统一为2,则有:12,42,92,162,252,…,因而有a n =n 22. (3)注意6=2×3,10=2×5,15=3×5,规律还不明显,再把各项的分子和分母都乘以2,即1×22,2×32,3×42,4×52,5×62,…,因而有a n =n (n +1)2. (4)把各项除以7,得1,11,111,…,再乘以9,得9,99,999,….因而有a n =79(10n -1). (5)观察数列递增速度较快,有点像成平方地递增,不妨用平方数列对照看一看,即1,22,32,42,52,…,则有a n =n 2-1.(6)显然各项的分子均为1,其关键在于分母,而分母的规律不是很明显,注意到分母组成的数列1,3,7,13,21,…,递增速度也有点像平方数列,不妨从每一项对应减去平方数列的项组成数列0,1,2,3,4,…,其规律也就明显了.故a n =1n 2-n +1. 二、数列的单调性及最值方法链接:数列是一种特殊的函数,因此可用函数的单调性的研究方法来研究数列的单调性.例2 在数列{a n }中,a n =(n +1)⎝⎛⎭⎫1011n (n ∈N *). 试问数列{a n }的最大项是第几项?解 方法一 ∵a n =(n +1)⎝⎛⎭⎫1011n (n ∈N *), ∴a n +1-a n =(n +2)⎝⎛⎭⎫1011n +1-(n +1)⎝⎛⎭⎫1011n =⎝⎛⎭⎫1011n ·(9-n )11.当n ≤8时,a n <a n +1,{a n }递增,即a 1<a 2<…<a 8<a 9.当n =9时,a 9=a 10.当n ≥10时,a n >a n +1,{a n }递减,即a 10>a 11>a 12>….又a 9=a 10=1010119. ∴数列{a n }的最大项是第9项和第10项.方法二 令a n a n -1≥1 (n ≥2), 即(n +1)⎝⎛⎭⎫1011n n ⎝⎛⎭⎫1011n -1≥1. 整理得n +1n ≥1110.解得n ≤10. 令a n a n +1≥1, 即(n +1)⎝⎛⎭⎫1011n (n +2)⎝⎛⎭⎫1011n +1≥1. 整理得n +1n +2≥1011,解得n ≥9. 所以从第1项到第9项递增,从第10项起递减.因此数列{a n }先递增,后递减.∴a 1<a 2<…<a 9,a 10>a 11>a 12>…,且a 9=a 10=1010119. ∴数列{a n }中的最大项是第9项和第10项.三、数列的周期性及运用方法链接:通俗地讲,数列中的项按一定规律重复出现,这样的数列就应考虑是否具有周期性,其周期性往往隐藏于数列的递推公式中,解周期数列问题的关键在于利用递推公式算出前若干项或由递推公式发现规律,得出周期而获解.例3 已知数列{a n },a 1=1,a 2=3,a n =a n -1-a n -2 (n ≥3),那么a 2 010与S 2 009依次是( )A .1,3B .3,1C .-2,2D .2,-2解析 ∵a n =a n -1-a n -2,∴a n +1=a n -a n -1=(a n -1-a n -2)-a n -1=-a n -2.由a n +1=-a n -2,∴a n +3=-a n .∴a n +6=-a n +3=-(-a n )=a n .∴{a n }为周期数列,且周期T =6.∴a 2 010=a 6=-a 3=a 1-a 2=-2.∴a 1+a 2+a 3+a 4+a 5+a 6=(a 1+a 4)+(a 2+a 5)+(a 3+a 6)=0+0+0=0,且2 010是6的倍数,∴S 2 010=0.∴S 2 009=S 2 010-a 2 010=0-a 2 010=0-(-2)=2.答案 C四、已知前n 项和S n ,求通项a n方法链接:已知数列{a n }的前n 项和S n ,求a n ,先由n =1时,a 1=S 1,求出a 1,再由a n =S n -S n -1 (n ≥2)求出a n ,最后验证a 1与a n 能否统一,若能统一要统一成一个代数式,否则分段表示.例4 已知下列各数列{a n }的前n 项和S n 的公式,求{a n }的通项公式.(1)S n =(-1)n +1 n ;(2)S n =3n -2.解 (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=(-1)n ·(-n )-(-1)n ·(n -1)=(-1)n ·(-2n +1).由于a 1也适合此等式,因此a n =(-1)n ·(-2n +1) (n ∈N *).(2)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=2·3n -1.所以a n =⎩⎪⎨⎪⎧1 (n =1),2·3n -1 (n ≥2). 五、由递推公式求通项a n方法链接:由递推公式求通项公式主要观察递推公式的特征,合理选择方法.需要理解一点,对a n -a n -1=n (n ≥2)不仅仅是一个式子而是对任意的n ≥2恒成立的无数个式子,正是因为这一点,在已知递推公式求通项公式的题目中如何将无数个式子转化为a n ,就是解题的关键所在.另外递推公式具有递推性,故由a 1再加上递推公式可以递推到a n .例5 由下列数列{a n }的递推公式求数列{a n }的通项公式:(1)a 1=1,a n -a n -1=n (n ≥2);(2)a 1=1,a n a n -1=n -1n (n ≥2). 解 (1)由题意得,当n ≥2时,a n -a n -1=n ,a n -1-a n -2=n -1,…,a 3-a 2=3,a 2-a 1=2.将上述各式累加得,a n -a 1=n +(n -1)+…+3+2,即a n =n +(n -1)+…+3+2+1=n (n +1)2, 由于a 1也适合此等式.故a n =n (n +1)2. (2)由题意得,当n ≥2时,a n a n -1=n -1n ,a n -1a n -2=n -2n -1,…,a 3a 2=23,a 2a 1=12, 将上述各式累乘得,a n a 1=1n ,即a n =1n. 由于a 1也适合此等式,故a n =1n. 六、数列在日常生活中的初步应用方法链接:数列知识在日常生活中有着广泛的应用.构建递推关系是其中重要的方法之一,利用递推方法解决实际问题常分为三个环节:(1)求初始值;(2)建立递推关系;(3)利用递推关系分析解决问题.其中构建递推关系是关键.例6 某商店的橱窗里按照下图的方式摆着第二十九届北京奥运会吉祥物“福娃迎迎”,如图(1)、(2)、(3)、(4)分别有1个、5个、13个、25个.如果按照同样的方式接着摆下去,记第n 个图需用f (n )个“福娃迎迎”,那么f (n +1)-f (n )=________;f (6)=________.解析 ∵f (1)=1,f (2)=5,f (3)=13,f (4)=25,…,∴f (2)-f (1)=4,f (3)-f (2)=8,f (4)-f (3)=12,…∴f (n +1)-f (n )=4n .∴f (6)=f (1)+[f (2)-f (1)]+[f (3)-f (2)]+[f (4)-f (3)]+[f (5)-f (4)]+[f (6)-f (5)]=1+4+8+12+16+20=61.答案 4n 61区突破1.对数列的概念理解不准而致错例1 已知数列{a n }是递增数列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是________.[错解] 因为a n =n 2+λn 是关于n 的二次函数,且n ≥1,所以-λ2≤1,解得λ≥-2. [点拨] 数列是以正整数N *(或它的有限子集{1,2,…,n })为定义域的函数,因此它的图象只是一些孤立的点.[正解1] 因为a n =n 2+λn ,其图象的对称轴为n =-λ2,由数列{a n }是单调递增数列有-λ2≤1,得λ≥-2;如图所示,当2-⎝⎛⎭⎫-λ2>-λ2-1,即λ>-3时,数列{a n }也是单调递增的. 故λ的取值范围为{λ|λ≥-2}∪{λ|λ>-3}={λ|λ>-3}.即λ>-3为所求的范围.[正解2] 因为数列{a n }是单调递增数列,所以a n +1-a n >0 (n ∈N *)恒成立.又a n =n 2+λn (n ∈N *),所以(n +1)2+λ(n +1)-(n 2+λn )>0恒成立,即2n +1+λ>0.所以λ>-(2n +1) (n ∈N *)恒成立.而n ∈N *时,-(2n +1)的最大值为-3(n =1时),所以λ>-3即为所求的范围.2.对公式使用条件考虑不周而致错例2 已知数列{a n }的前n 项和为S n =3n +2n +1,求a n .[错解] a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2·3n -1+2.[点拨] 公式a n =⎩⎪⎨⎪⎧ a 1 (n =1)S n -S n -1 (n ≥2)是分段的,因为n =1时,S n -1无意义.在上述解答中,应加上限制条件n ≥2,然后验证n =1时的值是否适合n ≥2时的表达式.[正解] a 1=S 1=6;n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2·3n -1+2.由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧6 (n =1)2·3n -1+2 (n ≥2).题多解 例 设{a n }是首项为1的正项数列且(n +1)a 2n +1-na 2n +a n +1·a n =0 (n ∈N *),求a n . 分析 先求出相邻两项a n +1与a n 的关系,再选择适当的方法求a n .解 方法一 (累乘法)由(n +1)a 2n +1-na 2n +a n +1a n =0.得(a n +1+a n )(na n +1-na n +a n +1)=0.由于a n +1+a n >0,∴(n +1)a n +1-na n =0.∴a n +1a n =n n +1. ∴a n =a 1·a 2a 1·a 3a 2·…·a n a n -1=1×12×23×34×…×n -1n =1n. 方法二 (换元法)由已知得(n +1)a n +1-na n =0,设b n =na n ,则b n +1-b n =0.∴{b n }是常数列.∴b n =b 1=1×a 1=1,即na n =1.∴a n =1n.题赏析1.(2009·北京)已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N *,则a 2 009=______,a 2 014=______.解析 a 2 009=a 4×503-3=1,a 2 014=a 1 007=a 252×4-1=0.答案 1 0赏析 题目小而灵活,考查了充分利用所给条件灵活处理问题的能力.2.(2009·湖北八市调研)由1,3,5,…,2n -1,…构成数列{a n },数列{b n }满足b 1=2,当n ≥2时,b n =ab n -1,则b 6的值是( )A .9B .17C .33D .65解析 ∵b n =ab n -1,∴b 2=ab 1=a 2=3,b 3=ab 2=a 3=5,b 4=ab 3=a 5=9,b 5=ab 4=a 9=17,b 6=ab 5=a 17=33.答案 C 赏析 题目新颖别致,考查了对新情境题目的审题能力.。

人教A版高中数学必修五2.1 数列的概念与简单表示法.doc

人教A版高中数学必修五2.1 数列的概念与简单表示法.doc

2.1 数列的概念与简单表示法一、选择题1.(3分)下列说法正确的是()A.数列1,3,5,7可表示为{1,3,5,7}B.数列1,0,﹣1,﹣2与数列﹣2,﹣1,0,1是相同的数列C.数列{}的第k项为1+D.数列0,2,4,6,…可记为{2n}2.(3分)已知数列{n2+n},那么()A.0是数列中的一项B.21是数列中的一项C.702是数列中的一项D.以上答案都不对3.(3分)数列11,13,15,…,2n+1的项数是()A.n B.n﹣3 C.n﹣4 D.n﹣5 4.(3分)若,则a n与a n+1的大小关系是()A.a n>a n+1B.a n<a n+1C.a n=a n+1D.不能确定5.(3分)数列{a n}满足a n=4a n﹣1+3,且a1=0,则此数列的第5项是()A.15 B.255 C.16 D.36 6.(3分)已知数列1,,,,…,,…,则3是它的()A.第22项B.第23项C.第24项D.第28项7.(3分)数列1,0,1,0,1,…的一个通项公式是()A.B.C.D.8.(3分)在数列{a n}中,对所有的正整数n都成立,且,则a5=()A.0B.1C.﹣1 D.29.(3分)在数列1,1,2,3,5,8,x,21,34,55中,x等于()A.11 B.12 C.13 D.14 10.(3分)在数列{a n}中,,则a5=()A.B.C.D.11.(3分)600是数列1×2,2×3,3×4,4×5,…的第()项.A.20 B.24 C.25 D.30 12.(3分)数列﹣1,,﹣,,…的一个通项公式是()A.3(1)()21nnn nan-+=+B.(1)(3)21nnn nan-+=+C.2(1)[(1)1]21nnnan-+-=-D.(1)(2)21nnn nan-+=+13.(3分)一个数列{a n},其中a1=3,a2=6,a n+2=a n+1﹣a n,那么这个数列的第五项是()A.6B.﹣3 C.﹣12 D.﹣614.(3分)下列关于星星的图案构成一个数列,该数列的一个通项公式是()A.a n=n2﹣n+1 B.a n=C.a n=D.a n=15.(3分)已知数列,则是这个数列的()A.第六项B.第七项C.第八项D.第九项16.(3分)下面对数列的理解有四种:①数列可以看成一个定义在N*上的函数;②数列的项数是无限的;③数列若用图象表示,从图象上看都是一群孤立的点;④数列的通项公式是唯一的.其中说法正确的序号是()A.①②③B.②③④C.①③D.①②③④二、填空题17.(3分)数列7,77,777,7777,77777,…的通项公式为_________.18.(3分)数列{a n}中,,那么150是其第_________项.19.(3分)已知,则a5=_________.20.(3分)在数列{a n}中,a1=a,以后各项由递推公式给出,写出这个数列的前4项:_________、_________、_________、_________,并由此写出一个通项公式a n=_________.21.(3分)已知数列{a n}的通项公式,它的前8项依次为_________、_________、_________、_________、_________、_________、_________、_________.22.(3分)已知f(1)=2,f(n+1)=(n∈N*),则f(4)=_________.三、解答题23.数列{a n}中,已知a n=(﹣1)n n+a(a为常数),且a1+a4=3a2,求a100.24.已知数列{a n}的通项公式a n=5+3n,求:(1)a7等于多少;(2)81是否为数列{a n}中的项,若是,是第几项;若不是,说明理由.2.1 数列的概念与简单表示法一、选择题1.(3分)下列说法正确的是()A.数列1,3,5,7可表示为{1,3,5,7}B.数列1,0,﹣1,﹣2与数列﹣2,﹣1,0,1是相同的数列C.数列{}的第k项为1+D.数列0,2,4,6,…可记为{2n}考点:数列的概念及简单表示法.分析:本题考查的知识点是数列的概念胶简单表示法,根据数列的定义及表示方法对四个答案逐一进行分析即可得到答案.解答:解:由数列的定义可知A中{1,3,5,7}表示的是一个集合,而非数列,故A错误;B中,数列中各项之间是有序的,故数列1,0,﹣1,﹣2与数列﹣2,﹣1,0,1是不同的数列,故B错误;C中,数列{}的第k项为=1+,故C正确;数列0,2,4,6,的通项公式为a n=2n﹣2,故D错.故选C.点评:在理解和掌握数列的概念及表示法的时候,要用类比的思想,注意区分数列与集合的关系,及数列的函数的关系.2.(3分)已知数列{n2+n},那么()A.0是数列中的一项B.21是数列中的一项C.702是数列中的一项D.以上答案都不对考点:数列的概念及简单表示法.专题:点列、递归数列与数学归纳法.分析:已知数列{a n}的通项公式为a n=n2+n,可以把a n=0,21,702代入进行求解,注意n是正整数.对四个选项进行一一判断.解答:解:因为数列{a n}的通项公式为a n=n2+n,(n∈N*)∴当a n=0时,n2+n=0⇒n∈∅;当a n=21时,n2+n=21⇒n∈∅;当a n=702时,n2+n=702⇒n∈∅;以上答案都不对.故选D.点评:此题主要考查数列简单表示法,数列的概念及其应用,是一道基础题.3.(3分)数列11,13,15,…,2n+1的项数是()A.n B.n﹣3 C.n﹣4 D.n﹣5考点:数列的概念及简单表示法.专题:等差数列与等比数列.分析:由数列11,13,15,…,2n+1可知:该数列是一个首项为11,公差为2的等差数列,即可得到通项公式a n=11+(n﹣1)×2=2n+9.令2k+9=2n+1,解出即可.解答:解:由数列11,13,15,…,2n+1可知:该数列是一个首项为11,公差为2的等差数列,∴通项公式a n=11+(n﹣1)×2=2n+9.令2k+9=2n+1,解得k=n﹣4,(n≥5).故选C.点评:数列等差数列的通项公式是解题的关键.4.(3分)若,则a n与a n+1的大小关系是()A.a n>a n+1B.a n<a n+1C.a n=a n+1D.不能确定考点:数列的函数特性.专题:点列、递归数列与数学归纳法.分析:化简数列{a n}的通项公式为a n=1﹣,显然当n增大时,a n的值增大,故数列{a n}是递增数列,由此得到结论.解答:解:∵数列{a n}的通项公式是a n===1﹣,(n∈N*),显然当n增大时,a n的值增大,故数列{a n}是递增数列,故有a n<a n+1,故选B.点评:本题主要考查数列的函数特性,化简数列{a n}的通项公式为a n=1﹣,是解题的关键,属于基础题.5.(3分)数列{a n}满足a n=4a n﹣1+3,且a1=0,则此数列的第5项是()A.15 B.255 C.16 D.36考点:数列递推式.专题:计算题.分析:分别令n=2,3,4,5代入递推公式计算即可.解答:解:a2=4a1+3=3a3=4a2+3=4×3+3=15a4=4a3+3=4×15+3=63a5=4a4+3=4×63+3=255故选B.点评:本题考查数列递推公式简单直接应用,属于简单题.6.(3分)已知数列1,,,,…,,…,则3是它的()A.第22项B.第23项C.第24项D.第28项考点:数列的概念及简单表示法.专题:等差数列与等比数列.分析:先化简3=,进而利用通项即可求出答案.解答:解:∵3=,令45=2n﹣1,解得n=23.∴3是此数列的第23项.故选B.点评:理解数列的通项公式得意义是解题的关键.7.(3分)数列1,0,1,0,1,…的一个通项公式是()A.B.C.D.考点:数列的概念及简单表示法.专题:探究型.分析:由数列的项的变化规律可以看出,1,0交错出现,由此规律去对四个选项进行验证即可得出正确答案解答:解:A选项不正确,数列首项不是1;B选项正确,验证知恰好能表示这个数列;C选项不正确,其对应的首项是﹣1;D选项不正确,其对应的首项为0,不合题意.故选B点评:本题考查数列的概念及数列表示法,求解的关键是从数列的前几项中发现数列各项变化的规律,利用此规律去验证四个选项.8.(3分)在数列{a n}中,对所有的正整数n都成立,且,则a5=()A.0B.1C.﹣1 D.2考点:数列的概念及简单表示法.专题:点列、递归数列与数学归纳法.分析:由数列{a n}中,对所有的正整数n都成立,令n=6得,把a7代入即可解得a6,依此类推解得a5.解答:解:∵数列{a n}中,对所有的正整数n都成立,∴令n=6得,∵,∴,解得a6=.令n=5,得,∴,解得a5=1.故选B.点评:正确理解数列的递推公式和递推关系是解题的关键.9.(3分)在数列1,1,2,3,5,8,x,21,34,55中,x等于()A.11 B.12 C.13 D.14考点:数列的概念及简单表示法.专题:计算题.分析:从已知数列观察出特点:从第三项开始每一项是前两项的和即可求解解答:解:∵数列1,1,2,3,5,8,x,21,34,55 设数列为{a n}∴a n=a n﹣1+a n﹣2(n>3)∴x=a7=a5+a6=5+8=13故选C点评:本题考查了数列的概念及简单表示法,是斐波那契数列,属于基础题.10.(3分)在数列{a n}中,,则a5=()A.B.C.D.考点:数列的概念及简单表示法.专题:计算题.分析:利用递推关系式依次直接求出数列的第五项即可.解答:解:在数列{a n}中,,所以a2=,a3=,,.故选A.点评:本题是基础题,考查数列的递推关系式的应用,考查计算能力.11.(3分)600是数列1×2,2×3,3×4,4×5,…的第()项.A.20 B.24 C.25 D.30考点:数列的概念及简单表示法.专题:等差数列与等比数列.分析:由数列1×2,2×3,3×4,4×5,…通过观察可得通项公式a n=n(n+1),令n(n+1)=600,解出即可.解答:解:由数列1×2,2×3,3×4,4×5,…可得通项公式a n=n(n+1),令n(n+1)=600,∵24×25=600,∴n=24.故选B.点评:由数列1×2,2×3,3×4,4×5,…通过观察可得通项公式a n=n(n+1)是解题的关键.12.(3分)数列﹣1,,﹣,,…的一个通项公式是()A.3(1)()21nnn nan-+=+B.(1)(3)21nnn nan-+=+C.2(1)[(1)1]21nnnan-+-=-D.(1)(2)21nnn nan-+=+考点:数列递推式.专题:计算题.分析:采用特殊值法来求解.取n=1代入即可.解答:解:因为这是一道选择题,可以采用特殊值法来求解.取n=1代入,发现只有答案D成立,故选D.点评:由于选择题自身的特点是只要答案,不要过程,所以在做能用数代入的题目时,可以直接代入求解,把过程简单化.13.(3分)一个数列{a n},其中a1=3,a2=6,a n+2=a n+1﹣a n,那么这个数列的第五项是()A.6B.﹣3 C.﹣12 D.﹣6考点:数列的概念及简单表示法.专题:计算题.分析:利用递推关系式,分别计算a3=3,a4=﹣3,a5=﹣6即可.解答:解:由题意,a3=6﹣3=3,a4=3﹣6=﹣3,a5=﹣3﹣3=﹣6,故选D.点评:本题主要考查递推关系式的运用,属于基础题.14.(3分)下列关于星星的图案构成一个数列,该数列的一个通项公式是()A.a n=n2﹣n+1 B.a n=C.a n=D.a n=考点:数列递推式.专题:规律型.分析:由图中所给的星星个数:1,1+2,1+2+3,…,1+2+3+…+n;得出数列第n项,即通项公式.解答:解析:从图中可观察星星的构成规律,n=1时,有1个;n=2时,有3个;n=3时,有6个;n=4时,有10个;∴a n=1+2+3+4+…+n=.答案:C点评:这是一个简单的自然数求和公式,由观察得出猜想,一般不需要证明.考查学生的观察猜想能力.15.(3分)已知数列,则是这个数列的()A.第六项B.第七项C.第八项D.第九项考点:等差数列与等比数列的综合;数列的概念及简单表示法.专题:规律型.分析:本题通过观察可知:原数列每一项的平方组成等差数列,且公差为3,即a n2﹣a n﹣12=3从而利用等差数列通项公式a n2=2+(n﹣1)×3=3n﹣1=20,得解,n=7解答:解:数列,各项的平方为:2,5,8,11,…∵5﹣2=11﹣8=3,即a n2﹣a n﹣12=3,∴a n2=2+(n﹣1)×3=3n﹣1,令3n﹣1=20,则n=7.故选B.点评:本题通过观察并利用构造法,构造了新数列{a n2}为等差数列,从而得解,构造法在数列中经常出现,我们要熟练掌握.16.(3分)下面对数列的理解有四种:①数列可以看成一个定义在N*上的函数;②数列的项数是无限的;③数列若用图象表示,从图象上看都是一群孤立的点;④数列的通项公式是唯一的.其中说法正确的序号是()A.①②③B.②③④C.①③D.①②③④考点:数列的概念及简单表示法.分析:①因为a n=f(n)(n∈N*),所以数列可以看成一个定义在N*上的函数;②数列的项数可以是有限的,例如1,2,3这3个数组成一个数列;③由①可知:数列若用图象表示,从图象上看都是一群孤立的点;④数列的通项公式不是唯一的,例如数列1,0,1,0,…,可用或,(n∈N*),两种形式表示.解答:解:①∵a n=f(n)(n∈N*),∴数列可以看成一个定义在N*上的函数,故正确;②数列的项数可以是有限的,如1,2,3这3个数组成一个数列,故不正确;③∵a n=f(n)(n∈N*)或(n∈A⊆N*),∴数列若用图象表示,从图象上看都是一群孤立的点,正确;④数列的通项公式不是唯一的,如数列1,0,1,0,…,可用或,(n∈N*),故不正确.综上可知:只有①③正确.故选C.点评:正确理解数列的定义、数列与函数的关系是解题的关键.二、填空题17.(3分)数列7,77,777,7777,77777,…的通项公式为.考点:归纳推理;数列的概念及简单表示法.专题:探究型.分析:观察发现7=,77=,777=,…从而归纳出通式得到答案解答:解:由于7=,77=,777=,7777=,77777=…故数列7,77,777,7777,77777,…的通项公式为故答案为点评:本题考查归纳推理,解答的关键是对所给的项进行变形,从而归纳出通式,归纳推理是发现规律的一种常用的推理方式,要好好掌握18.(3分)数列{a n}中,,那么150是其第16项.考点:函数的概念及其构成要素.专题:函数的性质及应用.分析:由数列的通项公式,令其等于150,可解n的值,即为第几项.解答:解:由数列的特点可知:通项公式,令n2﹣7n+6=150,可解得n=16或n=﹣9(舍去),故150是第16项,故答案为:16.点评:本题考查等差数列的通项公式,正确求解数列的通项公式是解决问题的关键,属基础题.19.(3分)已知,则a5=.考点:数列递推式.专题:计算题.分析:根据数列的递推依次求得a2,a3,a4,则答案可求.解答:解:依题意可知a2=1+=2,a3=1+=,a4=1+=,a5=1+=故答案为点评:本题主要考查了数列的递推式.属基础题.20.(3分)在数列{a n}中,a1=a,以后各项由递推公式给出,写出这个数列的前4项:a、、、,并由此写出一个通项公式a n=.考点:函数的概念及其构成要素.专题:规律型;函数的性质及应用.分析:可根据递推公式写出数列的前4项,然后分析每一项与该项的序号之间的关系,归纳概括出a n与n 之间的一般规律,从而作出猜想,写出满足前4项的该数列的一个通项公式.解答:解:∵a1=a,a n+1=,∴a2=,a3===,a4===.观察规律:a n=.故答案为:a,,,;.点评:从特殊的事例,通过分析、归纳、抽象总结出一般规律,再进行科学地证明,这是创新意识的具体体现,这种探索问题的方法,在解数列的有关问题中经常用到,应引起足够的重视.21.(3分)已知数列{a n}的通项公式,它的前8项依次为1、3、、7、、11、、15.考点:数列的概念及简单表示法.专题:计算题;点列、递归数列与数学归纳法.分析:由题意,根据数列的通项公式依次对n赋值即可解出它的前八项解答:解:因为数列{a n}的通项公式,所以它的前8项依次为1、3、、7、、11、、15故答案为1、3、、7、、11、、15点评:本题考查数列的简单表示,对n赋值,代入相应的解析式进行求值是解答的关键22.(3分)已知f(1)=2,f(n+1)=(n∈N*),则f(4)=.考点:函数恒成立问题;函数的值.专题:计算题;函数的性质及应用.分析:由题设可看出,直接根据所给的恒成立的等式依次求出n=2,3,4时的函数值,即可得到正确答案解答:解:因为f(1)=2,f(n+1)=(n∈N*)恒成立,所以f(2)=,f(3)=,f(4)==故答案为点评:本题考查函数恒成立问题,列举法依次求出出n=2,3,4时的函数值是解答此类题的主要方式三、解答题23.数列{a n}中,已知a n=(﹣1)n n+a(a为常数),且a1+a4=3a2,求a100.考点:数列的概念及简单表示法.专题:点列、递归数列与数学归纳法.分析:由已知a n=(﹣1)n n+a(a为常数),可得a1,a2,a3,a4用a表示,再利用a1+a4=3a2,即可解得a,从而得出a100.解答:解:由已知a n=(﹣1)n n+a(a为常数),可得a1=a﹣1,a2=a+2,a3=a﹣3,a4=a+4.∵a1+a4=3a2,∴a﹣1+a+4=3(a+2),解得a=﹣3.∴.∴.点评:利用已知关系式分别取n=1,2,3,4求出a是解题的关键.24.已知数列{a n}的通项公式a n=5+3n,求:(1)a7等于多少;(2)81是否为数列{a n}中的项,若是,是第几项;若不是,说明理由.考点:等差数列的性质.专题:等差数列与等比数列.分析:(1)直接将n=7代入即可;(2)利用通项公式解出n是否是正整数即可得到答案.解答:解:(1)∵数列{a n}的通项公式a n=5+3n∴a7=5+3×7=26(2)假设81是数列{a n}中的项,则81=5+3n∴n=∵n∈N*所以81不是数列{a n}中的项.点评:此题考查了等差数列的性质,属于基础性的题目.。

2.1.1 数列的概念与简单表示法

2.1.1 数列的概念与简单表示法

奇数项都为负,且分子都是1,偶数项都为正,且分子
都是3,分母依次是1,2,3,4,…正负号可以用
(-1)n调整.
an



3
n
1 (n n (n
2k 1), 2k),其中k

N
. *
由于1=2-1,3=2+1,所以数列的通项公式可合写成
an= (1)n 2 (1)n .
2.(1)这个数列各项的整数部分分别为1,2,3,4,
…,恰好是序号n;分数部分分别为 1,2,3,4,…,与序
2345
号n的关系是
n
n
1
,所以这个数列的一个通项公式是an=
n n n2 2n . n 1 n 1
(2)数列各项的绝对值为1,3,5,7,9,…,是连续的
正奇数;考虑(-1)n具有转换符号的作用,所以数列的一
5,那么可以叫做数列的个数为( )
A.1
B.2
C.3
D.4
【解析】选D.按照数列定义得出四种形式均为数列.
3.已知数列 3, 5 , 7 , 9 , a b ,…,根据前三项给
2 4 6 a b 10
出的规律,则实数对(a,b)可能是( )
A.(19,3) C.( 19,3 )
22
B.(19,-3) D.( 19, 3 )
个通项公式为an=(-1)n(2n-1).
(3)数列1,0,1,0,…的通项公式为 (1)n1 1,数列
2
0,1,0,1…的通项公式为 (1)n 1 ,因此数列a,0,
2
a,0…的通项公式为 (1)n1 1a ,数列0,b,0,b,…
2

的通项公式为 (1)n 1b ,所以数列a,b,a,b,a,b,

高一数学《数列》同步训练(共7份)含答案必修5

高一数学《数列》同步训练(共7份)含答案必修5

必修5《数列》同步训练(共7份)含答案2.1 数列的概念与简单表示法一、选择题:1.下列解析式中不.是数列1,-1,1,-1,1,-1…,的通项公式的是 ( ) A.(1)n n a =- B.1(1)n n a +=- C.1(1)n n a -=- D.{11n n a n =-,为奇数,为偶数2,的一个通项公式是 ( )A. n aB. n a =C. n a =D.n a =3.已知数列{}n a ,1()(2)n a n N n n +=∈+,那么1120是这个数列的第 ( )项. A. 9 B. 10 C. 11 D. 124.数列{}n a ,()n a f n =是一个函数,则它的定义域为 ( )A. 非负整数集B. 正整数集C. 正整数集或其子集D. 正整数集或{}1,2,3,4,,n5.已知数列{}n a ,22103n a n n =-+,它的最小项是 ( )A. 第一项B. 第二项C. 第三项D. 第二项或第三项6.已知数列{}n a ,13a =,26a =,且21n n n a a a ++=-,则数列的第五项为( )A. 6B. 3-C. 12-D. 6-二.填空题:7、观察下面数列的特点,用适当的数填空(1),14,19,116,; (2)32,54,,1716,3332,。

8.已知数列{}n a ,85,11n a kn a =-=且,则17a =.9.根据下列数列的前几项的值,写出它的一个通项公式。

(1)数列0.7,0.77,0.777,0.7777,…的一个通项公式为.(2)数列4,0,4,0,4,0,…的一个通项公式为.(3)数列1524354863,,,,,,25101726的一个通项公式为.10.已知数列{}n a 满足12a =-,1221n n na a a +=+-,则4a =.三.解答题11.已知数列{}n a 中,13a =,1021a =,通项n a 是项数n 的一次函数,①求{}n a 的通项公式,并求2005a ;②若{}n b 是由2468,,,,,a a a a 组成,试归纳{}n b 的一个通项公式.12.已知{}n a 满足13a =,121n n a a +=+,试写出该数列的前5项,并用观察法写出这个数列的一个通项公式.2.2等差数列一.选择题:1、等差数列{a n }中,a 1=60,a n+1=a n+3则a 10为………………………………( ) A 、-600 B 、-120 C 、60 D 、-602、若等差数列中,a 1=4,a 3=3,则此数列的第一个负数项是……………………( )A 、a 9B 、a 10C 、a 11D 、a 12 3.若数列{}n a 的通项公式为25n a n =+,则此数列是 ( )A.公差为2的等差数列B. 公差为5的等差数列C.首项为5的等差数列D. 公差为n 的等差数列4.已知{a n }是等差数列,a 7+a 13=20,则a 9+a 10+a 11=……………………( ) A 、36 B 、30 C 、24 D 、185.等差数列3,7,11,,---的一个通项公式为 ( )A.47n -B.47n --C.41n +D.41n -+6.若{}n a 是等差数列,则123a a a ++,456a a a ++,789a a a ++,,32313n n n a a a --++,是 ( )A.一定不是等差数列B.一定是递增数列C.一定是等差数列D.一定是递减数列二.填空题:7.等差数列{}n a 中,350a =,530a =,则7a =.8.等差数列{}n a 中,3524a a +=,23a =,则6a =.9.已知等差数列{}n a 中,26a a 与的等差中项为5,37a a 与的等差中项为7,则n a =.10.若{a n }是等差数列,a 3,a 10是方程x 2-3x-5=0的两根,则a 5+a 8=.三.解答题11.判断数52,27()k k N ++∈是否是等差数列{}n a :5,3,1,1,,---中的项,若是,是第几项?12.等差数列{a n}中,a1=23,公差d为整数,若a6>0,a7<0.(1)求公差d的值;(2)求通项a n.13、若三个数a-4,a+2,26-2a,适当排列后构成递增等差数列,求a的值和相应的数列.2.3等差数列的前n 项和一.选择题:1.等差数列{}n a 中,10120S =,那么110a a += ( )A.12B.24C.36D.482.从前180个正偶数的和中减去前180个正奇数的和,其差为 ( )A.0B.90C.180D.3603.已知等差数列{}n a ,219n a n =-,那么这个数列的前n 项和n s ( )A.有最小值且是整数B.有最小值且是分数C.有最大值且是整数D.有最大值且是分数4.等差数列{}n a 的前m 项的和为30,前2m 项的和为100,则它的前3m 项的和为( )A.130B.170C.210D.2605.在等差数列{}n a 和{}n b 中,125a =,175b =,100100100a b +=,则数列{}n n a b +的前100项和为 ( )A.0B.100C.1000D.100006.若关于x 的方程20x x a -+=和20x x b -+=()a b ≠的四个根组成首项为14的等差数列,则a b += ( ) A.38B.1124C.1324D.3172二.填空题:本大题共4小题,每小题 4分,共16分,把正确答案写在题中横线上.7.等差数列{}n a 中,若638a a a =+,则9s =.8.等差数列{}n a 中,若232n S n n =+,则公差d =.9.有一个 凸n 边形,各内角的度数成等差数列,公差是100,最小角为1000,则边数n=.10.若两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,且满足733n n S n T n +=+,则88a b =. 三.解答题11.在等差数列{}n a 中,40.8a =,11 2.2a =,求515280a a a +++.12.已知等差数列{a n}的项数为奇数,且奇数项的和为44,偶数项的和为33,求此数列的中间项及项数。

新课标高中数学人教A版必修五全册课件2.1数列的概念与简单表示法

新课标高中数学人教A版必修五全册课件2.1数列的概念与简单表示法
2.1数列的概念与
简单表示法(二)
第一页,编辑于星期日:十三点 十七分。
复习引入
练习. 1. 以下四个数中,是数列{n(n+1)}中的 一项的是 ( A )
A. 380
B. 39 C. 32 D. 18
第二页,编辑于星期日:十三点 十七分。
复习引入
练习. 1. 以下四个数中,是数列{n(n+1)}中的 一项的是 ( A )
第十三页,编辑于星期日:十三点 十七分。
讲授新课
观察以下数列,并写出其通项公式: a1 1,
第十四页,编辑于星期日:十三点 十七分。
讲授新课
观察以下数列,并写出其通项公式:
a1 1, a2 3 1 2 a1 2,
第十五页,编辑于星期日:十三点 十七分。
讲授新课
观察以下数列,并写出其通项公式:
给出,
写出这个数列的前五项.
第二十四页,编辑于星期日:十三点 十七分。
讲解范例:
例1.已知数列{an}的第一项是1,以后
的各项由公式
1 an 1 an1 给出,
写出这个数列的前五项.
1, 2, 3 , 5 , 8 . 235
第二十五页,编辑于星期日:十三点 十七分。
小结:
若记数列 {an }的前n项之和为 Sn ,则
a1 1, a2 3 1 2 a1 2, a3 5 a 2 2,,
第十六页,编辑于星期日:十三点 十七分。
讲授新课
观察以下数列,并写出其通项公式:
a1 1, a2 3 1 2 a1 2, a3 5 a 2 2,, an an1 2
第十七页,编辑于星期日:十三点 十七分。
他项.
3. 用递推公式求通项公式的方法: 观察法、累加法、迭乘法.

最新人教A版高中数学必修五2.1.1 数列的概念与简单表示法同步测试题(含解析)

最新人教A版高中数学必修五2.1.1 数列的概念与简单表示法同步测试题(含解析)

2. 1数列地概念与简单表示法1、下列说法正确地是 ( ) A. 数列1,3,5,7可表示为{}7,5,3,1B. 数列1,0,2,1--与数列1,0,1,2--是相同地数列C. 数列⎭⎬⎫⎩⎨⎧+n n 1地第k 项是k11+ D. 数列可以看做是一个定义域为正整数集*N 地函数2、数列Λ,28,21,,10,6,3,1x 中,由给出地数之间地关系可知x 地值是( )A. 12B. 15C. 17D. 18 3、已知数列地通项公式为1582+-=n n a n ,则 3( )A. 不是数列{}na 中地项 B. 只是数列{}na 中地第2项C. 只是数列{}na 中地第6项 D. 是数列{}na 中地第2项或第6项 4、数列{}na 地通项公式为nn an2832-=,则数列{}na 各项中最小项是 ( )A. 第4项B. 第5项C. 第6项D. 第7项 5、已知数列ΛΛ,12,,7,5,3,1-n ,则53是它地 ( )A. 第22项B. 第23项C. 第24项D. 第28项 6、已知031=--+n n a a,则数列{}na 是 ( )A. 递增数列B. 递减数列C. 常数列D.摆动数列7、已知数列()ΛΛ,11,,91,41,12nn---,它地第5项地值为( )A. 51B. 51- C. 251 D. 251- 8、数列Λ,1,0,1,0,1地一个通项公式是 ( ) A.()2111+--=n n a B.()2111+-+=n n a C. ()211--=nnaD. ()211nna---=9、用适当地数填空:①2,1, ,41,81, ,321②,25,16,9,4,1--- ,49- ③1,9,25, ,81④1,0,21,0,31,0, ,0,51,0 10、写出以下各数列地通项公式:①Λ,81,41,21,1-- ②Λ,1,0,1,0,1,0③Λ,544,433,322,211 ④Λ,6,7,8,9,10 ⑤Λ,31,17,7,5,1⑥Λ,6463,3635,1615,43 ⑦Λ,301,201,121,61,21 ⑧Λ,9999,999,99,9 11、数列{}na 中,已知()*2,31N n n n a n ∈-+=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 2.1一、选择题1.下列有关数列的说法正确的是( )①同一数列的任意两项均不可能相同;②数列-1,0,1与数列1,0,-1是同一个数列;③数列中的每一项都与它的序号有关.A.①②B.①③C.②③D.③[答案] D[解析] ①是错误的,例如无穷个3构成的常数列3,3,3,…的各项都是3;②是错误的,数列-1,0,1与数列1,0,-1各项的顺序不同,即表示不同的数列;③是正确的,故选D.2.下面四个结论:①数列可以看作是一个定义在正整数集(或它的有限子集{1,2,3…,n})上的函数.②数列若用图象表示,从图象上看都是一群孤立的点.③数列的项数是无限的.④数列通项的表示式是唯一的.其中正确的是( )A.①②B.①②③C.②③D.①②③④[答案] A[解析] 数列的项数可以是有限的也可以是无限的.数列通项的表示式可以不唯一.例如数列1,0,-1,0,1,0,-1,0,…的通项可以是a n=sin nπ2,也可以是a n =cosn+3 π2等等.3.已知a n=n(n+1),以下四个数中,哪个是数列{a n}中的一项( ) A.18 B.21C.25 D.30[答案] D[解析] 依次令n(n+1)=18,21,25和30检验.有正整数解的便是,知选D.4.已知数列{a n}的通项公式是a n=n-1n+1,那么这个数列是( )A.递增数列B.递减数列C.常数列D.摆动数列[答案] A[解析] a n=n-1n+1=1-2n+1,随着n的增大而增大.5.数列1,-3,5,-7,9,…的一个通项公式为( )A.a n=2n-1 B.a n=(-1)n(1-2n)C.a n=(-1)n(2n-1) D.a n=(-1)n(2n+1)[答案] B[解析] 当n=1时,a1=1排除C、D;当n=2时,a2=-3排除A,故选B.6.已知数列2,5,22,11,…,则25可能是这个数列的( ) A.第6项B.第7项C.第10项D.第11项[答案] B[解析] 调整为:2,5,8,11,可见每一项都含有根号.且被开方数后一项比前一项多3,又25=20,∴应是11后的第3项,即第7项,选B.二、填空题7.23,415,635,863,1099,…的一个通项公式是________.[答案] a n=2n2n-1 2n+1[解析] 23=21×3,415=2×23×5,635=2×35×7,863=2×47×9,1099=2×59×11,…,∴a n=2n2n-1 2n+1.8.已知数列3,7,11,15,19,…,那么311是这个数列的第________项.[答案] 25[解析] 观察可见,数列中的后一项被开方数比前一项大4,a1=3,a2=3+4,a3=3+4×2,a4=3+4×3,∴a n=3+4 n-1 =4n-1,令4n-1=311得n=25,∴a25=311.三、解答题9.写出下列数列的一个通项公式.(1)-11+1,14+1,-19+1,116+1,…;(2)2,3,5,9,17,33,…;(3)12,25,310,417,526,…;(4)1,43,2,165,…;(5)-13,18,-115,124,…;(6)2,6,12,20,30,….[解析] (1)符号规律(-1)n,分子都是1,分母是n2+1,∴a n=(-1)n·1n2+1.(2)a1=2=1+1,a2=3=2+1,a3=5=22+1,a4=9=23+1,a5=17=24+1,a6=33=25+1,∴a n=2n-1+1.(3)a1=12=111+1,a2=25=222+1,a3=310=332+1,a4=417=442+1…,∴a n=nn2+1.(4)a1=1=22,a2=43,a3=2=84,a4=165…,∴a n=2nn+1.(5)a1=-13=-11×3,a2=18=12×4,a3=-115=-13×5,a4=124=14×6,∴a n=(-1)n·1n n+2.(6)a1=2=1×2,a2=6=2×3,a3=12=3×4,a4=20=4×5,a5=30=5×6,∴a n=n(n+1).10.已知数列{a n}中,a1=2,a n+1=a n+n,求a5.[解析] ∵a1=2,a n+1=a n+n,∴当n=1时,a2=a1+1=2+1=3;当n=2时,a3=a2+2=3+2=5;当n=3时,a4=a3+3=5+3=8;当n=4时,a5=a4+4=8+4=12,即a5=12.一、选择题1.数列{a n}满足a1=1,a n+1=2a n-1(n∈N*),则a1000=( )A.1 B.1999C.1000 D.-1[答案] A[解析] a1=1,a2=2×1-1=1,a3=2×1-1=1,a4=2×1-1=1,…,可知a n=1(n∈N*).2.对任意的a1∈(0,1),由关系式a n+1=f(a n)得到的数列满足a n+1>a n(n∈N*),则函数y=f(x)的图象是( )[答案] A[解析] 据题意,由关系式a n+1=f(a n)得到的数列{a n},满足a n+1>a n,即该函数y =f (x )的图象上任一点(x ,y )都满足y >x ,结合图象,只有A 满足,故选A.3.若数列的前4项分别为2,0,2,0,则这个数列的通项公式不能是( ) A .a n =1+(-1)n +1 B .a n =1-cos n π C .a n =2sin 2n π2D .a n =1+(-1)n -1+(n -1)(n -2) [答案] D[解析] 当n =1时,D 不满足,故选D.4.函数f (x )满足f (1)=1,f (n +1)=f (n )+3 (n ∈N *),则f (n )是( ) A .递增数列 B .递减数列 C .常数列 D .不能确定[答案] A[解析] ∵f (n +1)-f (n )=3(n ∈N *), ∴f (2)>f (1),f (3)>f (2),f (4)>f (3),…,f (n +1)>f (n ),…, ∴f (n )是递增数列. 二、填空题5.已知数列{a n }满足a 1=-2,a n +1=2+2a n1-a n,则a 6=__________. [答案] -143[解析] a n +1=2+2a n 1-a n =21-a n ,a 1=-2,∴a 2=21-a 1=23,a 3=21-a 2=6,a 4=-25,a 5=107,a 6=-143.6.已知数列{a n }的通项公式a n =⎩⎨⎧3n +1 n 为奇数 2n -2 n 为偶数 ,则a 2·a 3=__________.[答案] 20[解析] (1)可见偶数项为0,∴a12=0.(2)相当于分段函数求值,a2=2×2-2=2,a3=3×3+1=10,∴a2·a3=20.三、解答题7.已知数列{a n}中,a n=nn+1,判断数列{a n}的增减性.[解析] a n+1=n+1 n+2,则a n+1-a n=n+1n+2-nn+1= n+1 2-n n+2n+2 n+1=1n+2 n+1.∵n∈N*,∴n+2>0,n+1>0,∴1n+2 n+1>0,∴a n+1>a n.∴数列{a n}是递增数列.8.已知数列{a n}的通项公式为a n=n2-5n+4.(1)求数列{a n}中有多少项是负数?(2)当n为何值时,a n有最小值?并求出最小值.[解析] (1)令a n=n2-5n+4<0,解得1<n<4,∵n∈N+,∴n=2,3.即数列{a n}中有两项是负数.(2)a n=n2-5n+4=(n-52)2-94,∴当n=2或3时,a n取得最小值,最小值为-2.。

相关文档
最新文档