中心对称图形(定稿)

合集下载

初二数学中心对称图形PPT课件共35页文档

初二数学中心对称图形PPT课件共35页文档

谢谢!
议一议
⑴ 列举出生活中的一些中心对称 图形; ⑵ 看看扑克牌的牌面哪些是中心 对称图形。
随堂练习 ❖ 1.下面哪个图形是中心对称图形?
小结
(1)中心对称图形的有关概念 (2)中心对称图形的基本性质 (3)判定一个图形是否是中心对称图形
课后作业 (1)课本P116习题4.13 1、2
(2)收集生活中的中心对称图形
61、奢侈是舒适的,否则就不是奢侈 。—— CocoChanel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。—— 杰纳勒 尔·乔治 ·S·巴 顿
初二数学中心对称图形PPT课件

6、黄金时代是在我们的前面,而不在 我们的 后面。

7、心急吃不了热汤圆。

8、你可以很有个性,但某些时候请收 敛。

9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。

10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。
角线,得到交点O,用图钉过点O将纸板固定在一张纸上, 并描下此时四边形ABCD的轮廓,绕点O旋转平行四边形纸
板,使得点A移到点C的位置。
(D) B O
A (C)
(A) C
D (B)
思考:
(1)此时的纸板与原来的是否重合? (2)指出旋转中心,求出旋转角的度数。 (3)根据上面的过程,你能验证平行四边形的哪

九年级数学中心对称图形课件

九年级数学中心对称图形课件

正方形中心对称图形的面积计算
总结词
正方形中心对称图形的面积计算与矩形类似,也是通过 计算一个正方形面积再除以2得到。
详细描述
正方形作为特殊的矩形,其中心对称图形的面积计算方 法与矩形相同。将正方形分成两个完全相同的部分,然 后计算一个正方形的面积,最后将结果除以2即可得到整 个中心对称图形的面积。假设正方形边长为a,则其面积 为a^2。所以,中心对称图形的面积为(a^2)/2。
THANKS
感谢观看
03
中心对称图形的判定
通过旋转判定中心对称图形
总结词
旋转法是判定中心对称图形的一种常 用方法。
详细描述
将图形绕着某点旋转180度,如果旋 转后的图形与原图形重合,则该图形 是中心对称图形。例如,正方形、圆 、正六边形等都是中心对称图形。
通过反射判定中心对称图形
总结词
反射法是通过图形的对称性来判定中心对称图形的方法。
05
中心对称图形的面积计算
矩形中心对称图形的面积计算
要点一
总结词
要点二
详细描述
矩形中心对称图形的面积计算相对简单,可以通过计算一 个矩形面积再除以2得到。
对于矩形中心对称图形,我们可以将其分成两个完全相同 的矩形,然后计算一个矩形的面积,最后将结果除以2即可 得到整个中心对称图形的面积。假设矩形长为a,宽为b, 则其面积为ab。所以,中心对称图形的面积为(ab)/2。
九年级数学中心对称图形ppt课件
目 录
• 中心对称图形的定义 • 中心对称图形的性质 • 中心对称图形的判定 • 中心对称图形的作图 • 中心对称图形的面积计算
01
中心对称图形的定义
中心对称图形的文字定义
总结词:简明扼要

中心对称与中心对称图形

中心对称与中心对称图形
对称图形
常见中心对称 图形:正方形、 长方形、圆形

中心对称图形的性质
定义:中心对称图形是指在平面内,如果一个图形绕某一点旋转180度后能与自身重 合,则称该图形为中心对称图形。
性质:中心对称图形具有对称中心,该点是图形旋转后能与自身重合的点。
特点:中心对称图形在几何学中具有重要地位,其性质在许多几何问题中都有应用。
中心对称与中心对称图形的关系
中心对称是指两个图形关于某一点旋转180度后能够完全重合的性质。 中心对称图形是指一个图形关于某一点旋转180度后能够与自身重合的性质。 中心对称的两个图形一定中心对称图形,但中心对称图形不一定是中心对称的两个图形。 中心对称的两个图形具有相同的形状和大小,但方向相反。
XX,a click to unlimited possibilities
汇报人:XX
目录
中心对称的定义
中心对称:两 个图形关于某 一点对称,即 它们关于这一 点旋转180度
后重合
中心对称图形的 定义:一个图形 关于某一点对称, 即该图形上任意 一点关于这一点 对称的点都在图
形上
中心对称的性 质:两个中心 对称的图形, 其对应线段平
工程学:中心对称图形在工程学中的应用,如机械部件、电路板等的设计中,可以利用对称性简化设计和提高效 率。
汇报人:XX
中心对称图形的美学价值
中心对称图形在自然界和生 活中的体现
中心对称图形在建筑和景观 设计中的运用
中心对称图形在艺术和设计 中的应用
中心对称图形在平面设计和 视觉传达中的重要性
常见的中心对称图形
圆形:无论从哪个 角度看,圆形都是 中心对称的,它的 对称中心是圆心。
正方形:正方形有四条 等长的边和四个直角, 它沿着中心点旋转180 度后与原图重合。

轴对称图形中心对称图形的定义及性质

轴对称图形中心对称图形的定义及性质

轴对称图形、中心对称图形的基本概念轴对称图形的定义如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形。

轴对称图形的性质1)如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴。

(对于一个图形来说)(2)把一格图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称。

这条直线就是对称轴。

两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点。

(对于两个图形来说)(3)轴对称图形(或关于某条直线对称的两个图形)的对应线段相等,对应角相等。

中心对称的定义:把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称(central symmetry),这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。

中心对称的性质:①于中心对称的两个图形是全等形。

②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

③关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。

识别一个图形是否是中心对称图形就是看是否存在一点,使图形绕着这个点旋转180°后能与原图形重合。

中心对称是指两个图形绕某一个点旋转180°后,能够完全重合,这两个图形关于该点对称,该点称为对称中心.二者相辅相成,两图形成中心对称,必有对称中点,而点只有能使两个图形旋转180°后完全重合才称为对称中点。

既是轴对称图形又是中心对称图形的有:直线,线段,两条相交直线,矩形,菱形,正方形,圆等.只是轴对称图形的有:射线,角等腰三角形,等边三角形,等腰梯形等.只是中心对称图形的有:平行四边形等.既不是轴对称图形又不是中心对称图形有:不等边三角形,非等腰梯形等.。

中心对称图形说课稿(一等奖)

中心对称图形说课稿(一等奖)

《中心对称图形》说课稿各位评委老师大家好:今天我说课的课题是《中心对称与中心对称图形》第二课时——中心对称图形,下面就教材分析、教学分析、学法分析、教学程序设计等四个方面,谈谈我对本课题的理解和认识。

一、教材分析(一)、教材地位作用本节课选自九年义务教育课程标准实验教科书,湘教版八年级下册第二章第三节《中心对称与中心对称图形》第二课时。

本节课与图形的三种运动(平移、翻折、旋转)之一的“旋转”有着不可分割的联系,通过对这一节课的学习,既可以让学生认识图形“旋转”在几何知识中的重要体现,同时也完善了初中部分对“对称图形”(轴对称图形、中心对称图形)的知识讲授,它不但起到了承上启下的作用,为后面学习图形的设计打下基础。

(二)、教学目标(八年级学生对新事物充满好奇,他们喜欢动手,勤于思考,乐于探究,已经具备了一定的探索新知的能力。

因此,我制定如下教学目标)1、知识与技能目标(1)了解中心对称图形及其基本性质;掌握平行四边形是中心对称图形。

(2)能判断一个图形是不是中心对称图形并了解其运用.2、过程与方法目标经历对中心对称图形概念和性质的探索过程,提高分析、归纳的能力,体验数形结合数学思想。

3、情感态度与价值观目标经历数学知识融于生活实际的学习过程,体验抽象的数学来源于生活,同时又服务于生活,感受数学之美。

(三)、教学重点及难点(新课程提出教师是学生学习的引导者、合作者、参与者,探索中心对称图形的性质,对于锻炼学生的动手操作能力,培养其逻辑思维意识提供了有利的平台,为学生在今后解决图形运动问题奠定了数学模型。

因此,本节课的教学重点是)【教学重点】中心对称图形的概念及有关性质.【教学难点】中心对称图形的性质.【难点成因】对于中心对称图形性质的得出,首先需要学生通过动手操作,在观察的基础上,归纳数学结论,而这需要学生具备一定的分析、归纳和较好的表达能力,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难二、教法分析数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,而且还要使学生“知其所以然”。

《中心对称图形》课件

《中心对称图形》课件
中心对称图形
发现中心对称图形,探索对称之美。本课程介绍中心对称图形的定义、特点、 应用和画法,并探讨其中蕴含的美学价值和意义。
中心对称图形的定义
符号
通过中心点将图形对称的 操作称为中心对称,用“S” 表示。
定义
中心对称图形是指将图形 中每个点关于中心点做对 称变换后仍能重合的图形。
性质
中心对称图形有奇偶性, 若使用射线将图形划分为 两个相同部分,这两部分 的点数在形状、大小面积 上都相等,且互为镜像。
中心对称图形在许多文化中都有重要地位,如佛 教、印度教、伊斯兰教等,代表着不同的历史、 信仰和文化意义。
挑战:创意中心对称
1 主题
以生活中的常见事物为 灵感,创建一个中心对 称的图形。
2 要求
3 分享
注重创意和美感,表现 出中心对称图形的对称、 均衡和和谐美感。
交流分享各自的创意作 品,欣赏中心对称的无 限可能。
教学总结
通过本课程的学习,我们了解了中心对称图形的定义、特点、应用和画法,认识了中心对称的美学价值 和文化意义,灵活掌握了几种常见的排版方式和呈现手法,作为一名有自我创造精神的学习者和实践者, 我们可以尝试用中心对称图形来装点自己的生活和学习,简单的中心对称图形的步骤
确定中心点和需要对称的点,以中心点为中心做线段或圆,确定对称点的位置。
画复杂的中心对称图形的技巧
采用多个对称中心,结合其他变换,一步步引导图形的变化,增加艺术性和创意性。
中心对称图形的意义和价值
美学价值
文化背景
中心对称图形具有许多美学特点,如平衡、对称、 和谐、优美,被广泛应用于设计、美术、工艺等 领域。
中心对称图形的例子
基本图形的中心对称
常见的基本图形如圆、正方形、正三角形等都具 有中心对称性质。

中心对称图形(广昌定稿)

中心对称图形(广昌定稿)

中心对称图形
如果一个图形绕着一个 点旋转180后的图形能 够与原来的图形重合, 那么这个图形叫做中心 对称图形,这个点就是 它的对称中心 中心对称图形上每一对对 应点所连成的线段都被对 称中心平分。
定 义
性 质
区 ①两个图形的关系 别 ②对称点在两个图形上
①具有某种性质的一个图形 ②对称点在一个图形上
轴对称
A
A′
B′
B
C
C′
把一个图形沿着某一条直线折叠,如果它能 够与另一个图形重合,那么就说这两个图形关于 这条直线对称,这条直线叫做对称轴,折叠后重 合的点是对应点,叫做对称点。
轴对称图形
如果一个图形沿一条直线折叠,直线两 旁的部分能够互相重合,这个图形就叫做轴 对称图形,这条直线就是它的对称轴,这时, 我们也说这个图形关于这条直线对称(或成 D,你能很快地找到点E 的对应点F吗?
E A
·

B F


练一练 2.下图是以O为对称中心的多边形的一部分, 请作出这个多边形。 A
B
O C
F
E
D
则多边形ABCDEF就是所求作的多边形
练一练 3.如图,四边形ABCD是以点O为对称中心的 中心对称图形,问四边形ABCD A 是平行四边形吗?为什么? D 解:连结AC、BD B C ∵四边形ABCD是关于点O的中心对称图形 ∴点O在AC和BD上,且OA=OC,OB=OD ∴四边形ABCD是平行四边形(对角线互 相平分的四边形是平行四边形) · O
做一做 1、正方形是中心对称图形吗?正方形绕两条 对角线的交点旋转多少度能与原来的图形重 合?能由此验证正方形的一些特殊性质吗?
绕对角 线交点 旋转 1800

《中心对称图形》旋转中心对称图形

《中心对称图形》旋转中心对称图形
图形。
特点
中心对称图形有一个特点,就是 围绕一个点旋转180度后,能够与 原来的图形重合。这个点通常被 称为“对称中心”。
实例
常见的中心对称图形有圆形、矩形 、菱形等。
中心对称图形的性质
旋转性质
对于中心对称图形,如果我们 将其围绕对称中心旋转180度, 那么它所对应的点也会旋转180
度。
对称性质
中心对称图形的两个部分是关 于对称中心对称的,也就是说 ,如果我们将图形的两部分沿 着对称中心对折,它们会重合
04
中心对称图形和旋转中心对 称图形的实例
中心对称图形的实例

圆是一种典型的中心对称图形,圆的直径是它的对称轴,圆心是 它的对称中心。
蝴蝶
蝴蝶的身体结构呈现出中心对称的特性,当它停在花朵上时,翅 膀上的花纹左右对称,给人以美的享受。
雪花
雪花是一种美丽的晶体,其结构呈现出中心对称的特性,即从中 心向各个方向扩展的形状都是相同的。
中心对称图形与旋转中心对称图形的区别
中心对称图形是对称中心两侧的图形 关于对称中心进行对称,而旋转中心 对称图形是图形围绕某一点旋转180
度后与原图形重合。
中心对称图形是一种静态的对称形式 ,而旋转中心对称图形是一种动态的
对称形式。
中心对称图形强调的是两侧图形的对 称性,而旋转中心对称图形强调的是
THANK YOU.
图形的旋转和重合。
中心对称图形与旋转中心对称图形的转化
旋转中心对称图形可以通过将中心对称图形绕其对称中心旋转180度得 到。
中心对称图形可以通过平移和翻转得到旋转中心对称图形。
在某些情况下,可以将中心对称图形转化为旋转中心对称图形,例如将 一个平行四边形绕其对角线的交点旋转180度后可以得到一个菱形,这 个菱形就是一个旋转中心对称图形。

中心对称定稿(郭金川)

中心对称定稿(郭金川)

旋转后与另一个图形重合。
两个图形是全等形。 对称点连线都过对称中心, 且被对称中心平分。
性 1 两个图形是全等形。
质 2 对称轴是对称点连线 的垂直平分线。
四、灵活运用
1、点的中心对称点的作法 以点O为对称中心,作出点A的对称点A′;
A O A′
点A′即为所求的点
2、线段的中心对称线段的作法
以点O为对称中心,作出线段AB的对称线段点A′B′
三、中心对称性质
点O是AA′的中点。
C A B

△ABC≌△A′B′C′
O B′ A′
C′
性质: 1、中心对称的两个图形,对称点所连线段 经过对称中心,而且被对称中心所平分。 性质:2、中心对称的两个图形是全等形。
五、想一想
中心对称与轴对称有什么区别?又有什么联系?
A C1
B1
O
B C A1

1


中心对称
有一个对称中心—— 点
有一条对称轴—— 直线
180° ) 2 图形沿轴对折(翻转
图形绕中心旋转180°
3
翻转后和另一个图形重合 旋转后和另一个图形重合
轴对称 与中心对称定义、性质对比图:
轴对称 定 1 有一条对称轴—直线 2 图形沿轴对折,(翻 转达180度。) 义 3 翻转后与另一个图形 重合。 中心对称 有一个对称中心—点。 图形绕中心旋转180度。
中 心 对 称
教学目标
• 掌握中心对称的性质 • 会运用中心对称的性质作图 • 理解中心对称的定义
一、复习回顾
上节课我们学习了图形旋转,那么什么是图 形的旋转?旋转的性质有哪些呢?
定义:把图形绕着某一点转到另一个位置叫 做旋转。 性质:1、对应点到旋转中心的距离相等。 2、对应点与旋转中心所连线段的夹角等于旋转 角。

中心对称图形课件(共20张PPT)人教版数学九年级上册

中心对称图形课件(共20张PPT)人教版数学九年级上册
(中心对称图形的特点:绕某一点旋转180°后能与自身重合.中心对称图形 上每一对对称点所连线段都被对称中心平分(合理即可);中心对称图形是 指一个图形本身是中心对称的,反映了一个图形的本质特征,而中心对称 是指两个图形关于某一点对称,表示的是两个图形之间的一种关系)
小组讨论 1.我们已经知道,平行四边形是中心对称图形,你能根据中心 对称图形的性质验证平行四边形的哪些性质? (平行四边形的对边互相平行且相等; 平行四边形的对角相等; 平行四边形的对角线互相平分) 2.试着总结中心对称图形的性质
【题型二】中心对称与中心对称图形的区别和联系 例3: 下列说法中,正确的是( A) ①中心对称与中心对称图形是两个不同的概念;②中心对称与 中心对称图形都只有一个对称中心;③中心对称图形是指两个 图形之间的一种关系;④中心对称的两个图形 ,对称点所连线段 的中点刚好是对称中心. A.①②④ B.①②③ C.①③④ D.②③④
(点A,B,C,D的对应点分别是点C,D,A,B ; 重合)
③上述两个旋转的共同点是什么? (都是绕某一点旋转180°,旋转后的图形能与原图形重合)
自主探究
2.请同学们阅读课本67页,并勾画中心对称图形的概念. 3.你还能说出其他的中心对称图形吗?
(正方形 长方形 正六边形等) 4.说说中心对称图形具有哪些特点?它与中心对称有什么区 别和联系?
图形名称 线段 角 等腰三 等边三 直角三 平行四 矩形 菱形 正方 等腰 直角 圆
角形 角形 角形 边形
形 梯形 梯形
是否是轴对 是 是 是 是 否 否 是 是 是 是 否 是
称图形
是否是中心 是 否 否
对称图形
否 否是 是 是 是否 否 是
板书设计
联 ①把中心对称的两个图形看成一个“整体”,则为中心对称图形; 系 ②把中心对称图形的两部分看成两个图形,则它们中心对称

中心对称(优秀5篇)

中心对称(优秀5篇)

中心对称(优秀5篇)篇一:知识归纳篇一1.中心对称把一个图形绕着某一点旋转,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形中的对应点,叫做关于中心的对称点.中心对称的两个图形具有如下性质:(1)关于中心对称的两个图形全等;(2)关于中心对称的两个图形,对称点的连线都过对称中心,并且被对称中心平分.判断两个图形成中心对称的方法是:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.2.中心对称图形把一个图形绕某一点旋转,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.矩形、菱形、正方形、平行四边形都是中心对称图形,对角钱的交点就是它们的对称中心;圆是中心对称图形,圆心是对称中心;线段也是中心对称图形,线段中点就是它的对称中心.知识结构重点、难点分析:本节课的重点是中心对称的概念、性质和作已知点关于某点的对称点。

因为概念是推导三个性质的主要依据、性质是今后解决有关问题的理论依据;而作已知点关于某个点的对称点又是作中心对称图形的关键。

本节课的难点是中心对称与中心对称图形之间的联系和区别。

从概念角度来说,中心对称图形和中心对称是两个不同而又紧密相联的概念。

从学生角度来讲,在学习轴对称时,有相当一部分学生对轴对称和轴对称图形的概念理解上出现误点。

因此本节课的难点是中心对称与中心对称图形之间的联系和区别。

教法建议本节内容和生活结合较多,新课导入可考虑以下方法:(1)从相似概念引入:中心对称概念与轴对称概念比较相似,中心对称图形与轴对称图形比较相似,可从轴对称类比引入,(2)从汉字引入:有许多汉字都是中心对称图形,如“田”、“日”、“曰”、“中”、“申”、“王”,等等,可从汉字引入,(3)从生活实例引入:生活中有许多中心对称实例和中心对称图形,如飞机的螺旋桨,风车的风轮,纽结,雪花,等等,可从生活实例引入,(4)从商标引入:各公司、企业的商标中有许多中心对称实例和中心对称图形,如联想,联合证券,湘财证券,中国工商银行,中国银行,等等,可从这些商标引入,(5)从车标引入:各品牌汽车的车标中有许多都是中心对称图形,如奥迪,韩国现代,本田,富康,欧宝,宝马,等等,可从车标引入,(6)从几何图形引入:学习过的许多图形都是中心对称图形,如圆,平行四边形,矩形,菱形,正方形,等等,可从几何图形引入,(7)从艺术品引入:艺术品中有许多都是呈中心对称或是中心对称图形,如下图,可从艺术品引入。

中心对称图形

中心对称图形

矩形、菱形、正方形矩形定义:有一个角为直角的平行四边形是矩形对称性:矩形既是中心对称图形又是轴对称图形。

对称中心为对角线交点,对称轴有两条,分别为通过对边中点的直线特殊性质:1.矩形的四个角都是直角2.矩形的对角线相等补充:1.直角三角形斜边上的中线等于斜边的一半。

2.直角三角形中30度的角所对的直角边是斜边的一半判定:1.定义法:有一个角为直角的平行四边形是矩形2.判定定理1:有三个角是直角的四边形是矩形2:对角线相等的平行四边形是矩形菱形定义:有一组邻边相等的平行四边形是菱形。

对称性:菱形既是中心对称图形又是轴对称图形。

对称中心为对角线交点,对称轴有两条,分别为它的对角线所在直线。

特殊性质:1.菱形的四条边都相等。

2.菱形的对角线互相垂直(且平分对角)判定:1.定义法:有一组邻边相等的平行四边形是菱形2.判定定理1:四条边都相等的四边形是菱形2:对角线互相垂直的平行四边形是菱形正方形定义:有一个角为直角,有一组邻边相等的平行四边形是正方形。

正方形还可以看成是:1.有一个角是直角的菱形。

2.有一组邻边相等的矩形。

对称性:正方形既是中心对称图形又是轴对称图形。

对称中心为对角线交点,对称轴有四条,分别为通过对边中点的直线与对角线所在的直线。

特殊性质:1.四条边都相等。

2.四个角都是直角。

3.对角线相等且互相垂直。

3.判定:1.定义法:有一个角为直角,有一组邻边相等的平行四边形是正方形。

2.有一个角是直角的菱形是正方形。

3.有一组邻边相等的矩形是正方形。

矩形、菱形、正方形都是特殊的平行四边形。

正方形既是特殊的矩形又是特殊的菱形。

中心对称和中心对称图形(篇三)

中心对称和中心对称图形(篇三)

中心对称和中心对称图形教学建议知识归纳1.中心对称把一个图形绕着某一点旋转,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形中的对应点,叫做关于中心的对称点.中心对称的两个图形具有如下性质:(1)关于中心对称的两个图形全等;(2)关于中心对称的两个图形,对称点的连线都过对称中心,并且被对称中心平分.判断两个图形成中心对称的方法是:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.2.中心对称图形把一个图形绕某一点旋转,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.矩形、菱形、正方形、平行四边形都是中心对称图形,对角钱的交点就是它们的对称中心;圆是中心对称图形,圆心是对称中心;线段也是中心对称图形,线段中点就是它的对称中心.知识结构重点、难点分析:本节课的重点是中心对称的概念、性质和作已知点关于某点的对称点。

因为概念是推导三个性质的主要依据、性质是今后解决有关问题的理论依据;而作已知点关于某个点的对称点又是作中心对称图形的关键。

本节课的难点是中心对称与中心对称图形之间的联系和区别。

从概念角度来说,中心对称图形和中心对称是两个不同而又紧密相联的概念。

从学生角度来讲,在学习轴对称时,有相当一部分学生对轴对称和轴对称图形的概念理解上出现误点。

因此本节课的难点是中心对称与中心对称图形之间的联系和区别。

教法建议本节内容和生活结合较多,新课导入可考虑以下方法:(1)从相似概念引入:中心对称概念与轴对称概念比较相似,中心对称图形与轴对称图形比较相似,可从轴对称类比引入,(2)从汉字引入:有许多汉字都是中心对称图形,如“田”、“日”、“曰”、“中”、“申”、“王”,等等,可从汉字引入,(3)从生活实例引入:生活中有许多中心对称实例和中心对称图形,如飞机的螺旋桨,风车的风轮,纽结,雪花,等等,可从生活实例引入,(4)从商标引入:各公司、企业的商标中有许多中心对称实例和中心对称图形,如联想,联合证券,湘财证券,中国工商银行,中国银行,等等,可从这些商标引入,(5)从车标引入:各品牌汽车的车标中有许多都是中心对称图形,如奥迪,韩国现代,本田,富康,欧宝,宝马,等等,可从车标引入,(6)从几何图形引入:学习过的许多图形都是中心对称图形,如圆,平行四边形,矩形,菱形,正方形,等等,可从几何图形引入,(7)从艺术品引入:艺术品中有许多都是呈中心对称或是中心对称图形,如下图,可从艺术品引入。

《中心对称图形》

《中心对称图形》

汇报人:日期:目录•中心对称图形的定义•中心对称图形的性质•中心对称图形的应用•中心对称图形的证明方法•中心对称图形的作图方法•中心对称图形的拓展思考中心对称图形的定义特性中心对称图形是轴对称图形的一种特例,其特点是图形以对称中心为旋转轴,旋转180度后能与自身重合。

定义如果一个图形绕某一点旋转180度后,能与自身重合,那么这个图形就叫做中心对称图形。

这个点叫做对称中心。

中心对称图形的定义及特性在中心对称图形中,过对称中心的任意一条直线,都将图形分成两个全等形。

在中心对称图形中,过对称中心的任意一条直线,若该直线与对称中心垂直,则这条直线将图形分成两个全等形。

中心对称图形的几何意义平行线性质垂直平分线性质01直线型以一条直线为对称轴的图形,如正弦函数图像等。

02圆型以圆为对称轴的图形,如圆形、椭圆形等。

03多边形型以多边形为对称轴的图形,如正多边形等。

中心对称图形的分类中心对称图形的性质旋转性质旋转中心01中心对称图形有一个明显的旋转中心,图形围绕这个中心旋转能够完全重合。

旋转角度02对于中心对称图形,旋转角度可以是任意角度,但旋转后图形不会改变形状和大小。

旋转对称性03中心对称图形在旋转后保持对称性,即旋转前后的图形是全等的。

在中心对称图形中,过图形旋转中心的平行线段长度相等且互相平行。

平行线段平行四边形平行性质的应用平行四边形是中心对称图形的一种,其两条对角线互相平分且相等。

利用中心对称图形的平行性质,可以方便地解决一些几何问题。

030201中心对称图形有一条经过图形旋转中心的对称轴,该轴将图形分为两个完全相同的部分。

对称轴对于中心对称图形,沿对称轴进行对称变换可以得到新的图形,这个新的图形与原图形是全等的。

对称变换利用中心对称图形的对称性质,可以找到解决几何问题的捷径。

对称性质的应用中心对称图形的应用中心对称图形在绘画和雕塑中有着广泛的应用,如旋转对称的图案、对称的花纹等,能够带来视觉上的舒适感和美感。

定稿《中心对称》基于标准的教学设计.doc

定稿《中心对称》基于标准的教学设计.doc

《3.3中心对称》基于标准的教学设计【设计者】惠济五中王俊【教材】北京师大出版社2013年版八年级数学下册第三章第三节第81-84页【课程标准】1.了解中心对称、中心对称图形的概念。

2.探索成中心对称的两个图形的基本性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分。

3.认识并欣赏自然界和现实生活中的中心对称图形。

【内容分析】本节课是在学生学习过轴对称、平移、旋转这三种图形变换方式的基础上学习的,这为本节课的学习奠定了基础,特别是本章关于旋转知识的学习,将直接对中心对称的学习提供直接的知识储备和相关活动的经验,本节内容属于空间与图形领域的基础知识,对发展学生的空间观念有着重要的作用,同时为九年级研究平行四边形、圆的中心对称做了准备和铺垫, 在教材中起着承上启下的作用。

【学情分析】学生在七年级学习了对轴对称,本章前两节学习了平移和旋转,对图形的三种基本变换方式有了明确的认识,具备了分析、设计图案的基本技能。

另外,中心对称图形在日常生活中广泛存在,学生比较熟悉,所以本节课的学习立足于学生己有的知识基础和生活经验。

在相关知识的学习过程中,学生已经初步积累了一定的图形变换的数学活动经验,本节课旨在让学生在进行观察、分析、欣赏等活动中,了解中心对称的相关知识,丰富学生对图形变换的认识,进一步深化对图形基本变换的理解和认识。

八年级学生具备了一定的观察能力和分析能力,他们能够独立思考、积极探索,这些对本节的学习也会有所帮助。

【学习目标】1、能在具体的情境中归纳总结出中心对称的概念。

2、探索成中心对称的两个图形的基本性质,能利用基本性质进行中心对称作图。

3、能在具体的情境中归纳出中心对称图形的概念,能够举出常见的中心对称图形,认识并欣赏自然界和现实生活中的中心对称图形。

【学习重点】了解中心对称的概念及性质。

了解中心对称图形的概念。

【学习难点】中心对称与中心对称图形的区别和联系。

【教学准备】多媒体课件,三角板,平行四边形纸板【评价设计】1、通过活动1、活动2、活动6、活动7检验目标1的达成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.7《中心对称图形》导学案
学习目标:
1、掌握中心对称图形和中心对称的概念和性质,会判断常见的图形是否为中心对称图形,能灵活运用中心对称的性质作关于已知点对称的中心对称图形,提高识图与作图的能力
2、通过独立思考、小组合作、展示质疑,类比轴对称图形与成轴对称,进一步理解中心对称图形和中心对称的概念和性质
3、积极投入,全力以赴,感悟生活中的对称美
【重点】:中心对称图形和中心对称的概念和性质。

【难点】:判断常见的图形是否为中心对称图形,作关于已知点对称的中心对称图形。

【能力立意】:通过探索中心对称图形和中心对称的性质,提高认知能力;通过小组合作完成学习目标,提高合作共赢的能力;通过理解与应用知识点,提高瞬时记忆能力。

【学法指导】
基于已有了研究轴对称图形的基础以及旋转知识,本节课教学的重点在于理解中心对称图形的定义及其性质,难点在于理解中心对称图形的定义,会判断哪些图形是中心对称图形,并且还要发展学生的应用意识,会寻找生活中的中心对称图形,会分析各种图案,标志是中心对称图形,还是轴对称图形
预习案
一、已学知识回顾:
1.什么是轴对称图形?什么样的两个图形成轴对称?如何找对称轴?
2.轴对称图形与成轴对称有什么区别和联系?
3.轴对称图形有哪些性质?
二、预习自学
1.中心对称图形:
概念:如图所示的□ABCD,点A绕点O旋转180°时,点A与哪个点重合?点B、C、D呢?你能发现什么规律?具有这样特征的平面图形就叫中心对称图形,请给中心对称图形下定义.
请举出几个常见的中心对称图形的实例.
2.中心对称:
(1)概念:
如图3,线段AC,BD相交于点O,OA=OC,OB=OD. △OCD
与△OAB全等吗?
把△OCD绕点O旋转180°,点A、点B分别与哪个点重合?
△OCD与△OAB完全重合吗?
具有这种特征的两个图形,我们就称作两个图形关于某个点成中心对称。

如△OCD与△OAB关于点O成中心对称.请给出中心对称的定义.
如果图3看作一个图形,则是什么图形?
中心对称与中心对称图形有什么区别和联系?
(2)性质:
观察图4, △ABC与△A’B’C’关于点O成中心对称.
点A关于对称中心的对称点是什么?连接点A与点A′的线段
与对称中心有什么位置关系?连接B点与B′点的线段呢?
由上可知,两个图形关于某点成中心对称的性质是什么?
线段AB与线段A′B′有什么位置关系?线段BC与线段B′C′呢?
三、我的疑惑
探究案
探究点一:中心对称图形的识别(重点)
例1.如图所示,既是轴对称图形又是中心对称图形的是()
探究点二:中心对称图形性质的应用
例2.如图,矩形ABCD中,AB=3,BC=4,若将矩形折叠,使C点和A点重合,•求折痕EF的长.
探究点三:中心对称的性质应用
例3.如图,已知四边形ABCD和点O,画四边形A′B′C′D′,使它与已知四边形关于O点对称.
探究点四:找对称中心
例4.如图,已知△ABC和△A′B′C′成中心对称,
•画出它们的对称中心.
【拓展提升】
如图,四边形ABCD的对角线AC、BD相交于点O,线段AC和BD分别关于点O成中心对称,且点B、D关于AC成轴对称.求证:四边形ABCD是菱形.
巩固练习
一、基础题
1.下列图形中,既是轴对称图形又是中心对称图形的是().
A.角B.等边三角形C.线段D.平行四边形
2.国旗上的每个五角星()
A.是中心对称图形而不是轴对称图形B.是轴对称图形而不是中心对称图形C.既是中心对称图形又是轴对称图形D.既不是中心对称图形,又不是轴对称图形3.(09包头)下列图形中,既是轴对称图形又是中心对称图形的有()
A

4个B.3

C.2个D.1个
4.如图,作出△AOB关于点O的中心对称图形.
二、综合应用题
★5.下列说法:(1)中心对称与中心对称图形是两个不同的概念,它们既有区别,又有联系;(2)中心对称图形是指两个图形之间的一种对称关系;(3)中心对称和中心对称图形有一个共同的特点是它们都有且只有一个对称中心;(4)任何一条经过对称中心的直线都将一个中心对称图形分成两个全等的图形,其中说法正确的序号是()
A.(1)(2) B.(1)(2)(3) C.(2)(3)(4) D.(1)(3)(4)★6.如图,已知AD是△ABC的中线,
画出以D为对称中心,与△ABD成中心对称的三角形.
★7.如图,线段AC、BD相交于点O,且AB∥CD,AB=CD,此图形是中心对称图形吗?试说明你的理由.
【课堂小结】
1、学到的知识点:__________________________________________________________________
B
A
O
2、学到的数学思想方法:____________________________________________________________。

相关文档
最新文档