2010届中考数学等腰三角形与直角三角形复习题
等腰三角形与直角三角形(共50题)【原卷版】--中考数学必考考点总结+题型专训
等腰三角形与直角三角形(共50题)--中考数学必考考点总结+题型专训一.选择题(共24小题)1.(2022•宿迁)若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是()A.8cm B.13cm C.8cm或13cm D.11cm或13cm 2.(2022•泰安)如图,l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=25°,∠1=60°.则∠2的度数是()A.70°B.65°C.60°D.55°3.(2022•自贡)等腰三角形顶角度数比一个底角度数的2倍多20°,则这个底角的度数是()A.30°B.40°C.50°D.60°4.(2022•天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)5.(2022•台湾)如图,△ABC中,D点在AB上,E点在BC上,DE为AB的中垂线.若∠B=∠C,且∠EAC>90°,则根据图中标示的角,判断下列叙述何者正确?()A.∠1=∠2,∠1<∠3B.∠1=∠2,∠1>∠3C.∠1≠∠2,∠1<∠3D.∠1≠∠2,∠1>∠36.(2022•广元)如图,在△ABC中,BC=6,AC=8,∠C=90°,以点B为圆心,BC长为半径画弧,与AB交于点D,再分别以A、D为圆心,大于AD的长为半径画弧,两弧交于点M、N,作直线MN,分别交AC、AB于点E、F,则AE的长度为()A.B.3C.2D.7.(2022•金华)如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,﹣2),下列各地点中,离原点最近的是()A.超市B.医院C.体育场D.学校8.(2022•温州)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,连结CF,作GM⊥CF于点M,BJ⊥GM于点J,AK⊥BJ于点K,交CF于点L.若正方形ABGF与正方形JKLM的面积之比为5,CE=+,则CH的长为()A.B.C.2D.9.(2022•安徽)已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△PAB,△PBC,△PCA的面积分别记为S0,S1,S2,S3.若S1+S2+S3=2S0,则线段OP长的最小值是()A.B.C.3D.10.(2022•南充)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE∥AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.BF=1B.DC=3C.AE=5D.AC=911.(2022•宜昌)如图,在△ABC中,分别以点B和点C为圆心,大于BC长为半径画弧,两弧相交于点M,N.作直线MN,交AC于点D,交BC于点E,连接BD.若AB=7,AC=12,BC=6,则△ABD的周长为()A.25B.22C.19D.1812.(2022•河北)题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:d≥2,乙答:d=1.6,丙答:d=,则正确的是()A.只有甲答的对B.甲、丙答案合在一起才完整CD.三人答案合在一起才完整13.(2022•宜宾)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点D是BC边上的动点(不与点B、C重合),DE与AC交于点F,连结CE.下列结论:①BD=CE;②∠DAC=∠CED;③若BD=2CD,则=;④在△ABC内存在唯一一点P,使得PA+PB+PC的值最小,若点D在AP的延长线上,且AP的长为2,则CE=2+.其中含所有正确结论的选项是()A.①②④B.①②③C.①③④D.①②③④14.(2022•眉山)在△ABC中,AB=4,BC=6,AC=8,点D,E,F分别为边AB,AC,BC的中点,则△DEF的周长为()A.9B.12C.14D.1615.(2022•湘潭)中国古代数学家赵爽在为《周髀算经》作注解时,用4个全等的直角三角形拼成正方形(如图),并用它证明了勾股定理,这个图被称为“弦图”.若“弦图”中小正方形面积与每个直角三角形面积均为1,α为直角三角形中的一个锐角,则tanα=()A.2B.C.D.16.(2022•苏州)如图,点A的坐标为(0,2),点B是x轴正半轴上的一点,将线段AB绕点A按逆时针方向旋转60°得到线段AC.若点C的坐标为(m,3),则m的值为()A.B.C.D.17.(2022•扬州)如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为△ABC,提供下列各组元素的数据,配出来的玻璃不一定符合要求的是()A.AB,BC,CA B.AB,BC,∠B C.AB,AC,∠B D.∠A,∠B,BC 18.(2022•湖州)如图,已知在锐角△ABC中,AB=AC,AD是△ABC的角平分线,E是AD上一点,连结EB,EC.若∠EBC=45°,BC=6,则△EBC的面积是()A.12B.9C.6D.319.(2022•宁波)如图,在Rt△ABC中,D为斜边AC的中点,E为BD上一点,F为CE中点.若AE=AD,DF=2,则BD的长为()A.2B.3C.2D.420.(2022•云南)如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F 与O点都不重合,连接ED、EF.若添加下列条件中的某一个,就能使△DOE≌△FOE.你认为要添加的那个条件是()A.OD=OE B.OE=OF C.∠ODE=∠OED D.∠ODE=∠OFE 21.(2022•达州)如图,AB∥CD,直线EF分别交AB,CD于点M,N,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=80°,则∠PNM等于()A.15°B.25°C.35°D.45°22.(2022•金华)如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是()A.B.C.D.23.(2022•舟山)如图,在Rt△ABC和Rt△BDE中,∠ABC=∠BDE=90°,点A在边DE的中点上,若AB=BC,DB=DE=2,连结CE,则CE的长为()A.B.C.4D.24.(2022•遂宁)如图,D、E、F分别是△ABC三边上的点,其中BC=8,BC边上的高为6,且DE∥BC,则△DEF面积的最大值为()A.6B.8C.10D.12二.填空题(共15小题)25.(2022•岳阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,若BC=6,则CD=.26.(2022•苏州)定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC是“倍长三角形”,底边BC的长为3,则腰AB的长为.27.(2022•云南)已知△ABC是等腰三角形.若∠A=40°,则△ABC的顶角度数是.28.(2022•滨州)如图,屋顶钢架外框是等腰三角形,其中AB=AC,立柱AD⊥BC,且顶角∠BAC=120°,则∠C的大小为.29.(2022•丽水)三个能够重合的正六边形的位置如图.已知B点的坐标是(﹣,3),则A点的坐标是.1cm,得到△A'B'C',连结CC',则四边形AB'C'C的周长为cm.31.(2022•宜宾)《数书九章》是中国南宋时期杰出数学家秦九韶的著作,书中提出了已知三角形三边a、b、c求面积的公式,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即为S=.现有周长为18的三角形的三边满足a:b:c=4:3:2,则用以上给出的公式求得这个三角形的面积为.32.(2022•十堰)【阅读材料】如图①,四边形ABCD中,AB=AD,∠B+∠D=180°,点E,F分别在BC,CD上,若∠BAD=2∠EAF,则EF=BE+DF.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD.已知CD=CB=100m,∠D=60°,∠ABC=120°,∠BCD=150°,道路AD,AB上分别有景点M,N,且DM=100m,BN =50(﹣1)m,若在M,N之间修一条直路,则路线M→N的长比路线M→A→N的长少m(结果取整数,参考数据:≈1.7).33.(2022•山西)如图,在正方形ABCD中,点E是边BC上的一点,点F在边CD的延长线上,且BE=DF,连接EF交边AD于点G.过点A作AN⊥EF,垂足为点M,交边CD于点N.若BE=5,CN=8,则线段AN的长为.34.(2022•武汉)如图,在Rt△ABC中,∠ACB=90°,AC>BC,分别以△ABC的三边为边向外作三个正方形ABHL,ACDE,BCFG,连接DF.过点C作AB的垂线CJ,垂足为J,分别交DF,LH于点I,K.若CI=5,CJ=4,则四边形AJKL的面积是.35.(2022•孝感)勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1.柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m (m≥3,m为正整数),则其弦是(结果用含m的式子表示).36.(2022•台州)如图,在△ABC中,∠ACB=90°,D,E,F分别为AB,BC,CA的中点.若EF的长为10,则CD的长为.37.(2022•嘉兴)小曹同学复习时将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件.38.(2022•株洲)如图所示,点O在一块直角三角板ABC上(其中∠ABC=30°),OM⊥AB于点M,ON ⊥BC于点N,若OM=ON,则∠ABO=度.39.(2022•成都)如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于BC的长为半径作弧,两弧相交于点M和N;②作直线MN交边AB于点E.若AC=5,BE=4,∠B=45°,则AB的长为.三.解答题(共11小题)40.(2022•温州)如图,BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)求证:∠EBD=∠EDB.(2)当AB=AC时,请判断CD与ED的大小关系,并说明理由.41.(2022•金华)如图1,将长为2a+3,宽为2a的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形.(1)用关于a的代数式表示图2中小正方形的边长.(2)当a=3时,该小正方形的面积是多少?42.(2022•山西)综合与实践问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF=90°,将三角板的直角顶点D放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N.猜想证明:(1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由;问题解决:(2)如图②,在三角板旋转过程中,当∠B=∠MDB时,求线段CN的长;(3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.43.(2022•武汉)问题提出如图(1),在△ABC中,AB=,D是AC的中点,延长BC至点E,使DE=DB,延长ED交AB于点F,探究的值.问题探究(1)先将问题特殊化.如图(2),当∠BAC=60°时,直接写出的值;(2)再探究一般情形.如图(1),证明(1)中的结论仍然成立.问题拓展如图(3),在△ABC中,AB=AC,D是AC的中点,G是边BC上一点,=(n<2),延长BC至点E,点DE=DG,延长ED交AB于点F.直接写出的值(用含n的式子表示).44.(2022•怀化)如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).45.(2022•杭州)如图,在Rt△ACB中,∠ACB=90°,点M为边AB的中点,点E在线段AM上,EF⊥AC于点F,连接CM,CE.已知∠A=50°,∠ACE=30°.(1)求证:CE=CM.(2)若AB=4,求线段FC的长.46.(2022•陕西)问题提出(1)如图1,AD是等边△ABC的中线,点P在AD的延长线上,且AP=AC,则∠APC的度数为.问题探究(2)如图2,在△ABC中,CA=CB=6,∠C=120°.过点A作AP∥BC,且AP=BC,过点P作直线l⊥BC,分别交AB、BC于点O、E,求四边形OECA的面积.问题解决(3)如图3,现有一块△ABC型板材,∠ACB为钝角,∠BAC=45°.工人师傅想用这块板材裁出一个△ABP型部件,并要求∠BAP=15°,AP=AC.工人师傅在这块板材上的作法如下:①以点C为圆心,以CA长为半径画弧,交AB于点D,连接CD;②作CD的垂直平分线l,与CD交于点E;③以点A为圆心,以AC长为半径画弧,交直线l于点P,连接AP、BP,得△ABP.请问,若按上述作法,裁得的△ABP型部件是否符合要求?请证明你的结论.47.(2022•绍兴)如图,在△ABC中,∠ABC=40°,∠ACB=90°,AE平分∠BAC交BC于点E.P是边BC上的动点(不与B,C重合),连结AP,将△APC沿AP翻折得△APD,连结DC,记∠BCD=α.(1)如图,当P与Eα的度数.(2)当P与E不重合时,记∠BAD=β,探究α与β的数量关系.48.(2022•扬州)如图1,在△ABC中,∠BAC=90°,∠C=60°,点D在BC边上由点C向点B运动(不与点B、C重合),过点D作DE⊥AD,交射线AB于点E.(1)分别探索以下两种特殊情形时线段AE与BE的数量关系,并说明理由;①点E在线段AB的延长线上且BE=BD;②点E在线段AB上且EB=ED.(2)若AB=6.①当=时,求AE的长;②直接写出运动过程中线段AE长度的最小值.49.(2022•嘉兴)小东在做九上课本123页习题:“1:也是一个很有趣的比.已知线段AB(如图1),用直尺和圆规作AB上的一点P,使AP:AB=1:.”小东的作法是:如图2,以AB为斜边作等腰直角三角形ABC,再以点A为圆心,AC长为半径作弧,交线段AB于点P,点P即为所求作的点.小东称点P为线段AB的“趣点”.(1)你赞同他的作法吗?请说明理由.(2)小东在此基础上进行了如下操作和探究:连结CP,点D为线段AC上的动点,点E在AB的上方,构造△DPE,使得△DPE∽△CPB.①如图3,当点D运动到点A时,求∠CPE的度数.②如图4,DE分别交CP,CB于点M,N,当点D为线段AC的“趣点”时(CD<AD),猜想:点N是否为线段ME的“趣点”?并说明理由.50.(2022•湘潭)在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,过点B、C分别作l的垂线,垂足分别为点D、E.(1)特例体验:如图①,若直线l∥BC,AB=AC=,分别求出线段BD、CE和DE的长;(2)规律探究:(Ⅰ)如图②,若直线l从图①状态开始绕点A旋转α(0<α<45°),请探究线段BD、CE和DE的数量关系并说明理由;(Ⅱ)如图③,若直线l从图①状态开始绕点A顺时针旋转α(45°<α<90°),与线段BC相交于点H,请再探线段BD、CE和DE的数量关系并说明理由;.(3)尝试应用:在图③中,延长线段BD交线段AC于点F,若CE=3,DE=1,求S△BFC。
中考数学专题复习:等腰三角形
中考数学专题复习:等腰三角形一、选择题1. 若等腰三角形的顶角为50°,则它的底角度数为( )A .40°B .50°C .60°D .65° 2. 如图,在ABC ∆中,AB AC =,40A ∠=︒,//CD AB ,则BCD ∠=( )A.40°B.50°C.60°.D.70°3. 一个等腰三角形两边的长分别为75和18,则这个三角形的周长为()A .10 3+3 2B .5 3+6 2C .10 3+3 2或5 3+6 2D .无法确定4. 如图,在△ABC 中,AB =AC ,∠C =65°,点D 是BC 边上任意一点,过点D 作DF ∥AB 交AC 于点E ,则∠FEC 的度数是( )A .120°B .130°C .145°D .150°5. 如图,在ABC ∆中,,40AC BC A =∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为( )A .40︒B .45︒C .50︒D .60︒6. 如图,已知△ABC 和△ADE 都是等腰三角形,∠BAC =∠DAE =90°,BD ,CE 交于点F ,连接AF .下列结论:①BD =CE ;②BF ⊥CF ;③AF 平分∠CAD ;④∠AFE =45°.其中正确结论的个数有( )A .1B .2个C .3个D .4个CE F7. △ABC 中,AB =AC ,∠A 为锐角,CD 为AB 边上的高,I 为△ACD 的内切圆圆心,则∠AIB 的度数是( )A. 120°B. 125°C. 135°D. 150°8. 如图,在△ABC 中,AB =AC ,BC =12,E 为AC 边的中点,线段BE 的垂直平分线交边BC 于点D .设BD =x ,tan ∠ACB =y ,则()A. x -y 2=3B. 2x -y 2=9C. 3x -y 2=15D. 4x -y 2=21二、填空题9. 若等腰三角形的顶角为120°,腰长为2 cm ,则它的底边长为________ cm . 10. 如图,AD 是△ABC 的边BC 上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是________.(把所有正确答案的序号都填写在横线上) ①∠BAD =∠ACD ②∠BAD =∠CAD③ AB +BD =AC +CD ④ AB -BD =AC -CD11. 如图,在△ABC 中,AB =AC ,∠BAC 的平分线AD 交BC 于点D ,E 为AB 的中点.若BC =12,AD =8,则DE 的长为________.ECB A12. 如图,在△ABC 中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若△AFC 是等边三角形,则∠B =________°. ABC DE F13. 如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC=18,则△AMN的周长为________.14. 如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE 的延长线于点D,BD=8,AC=11,则边BC的长为________.15. 如图,在直角坐标系中,点A(1,1),B(3,3)是第一象限角平分线上的两点,点C的纵坐标为1,且CA=CB,在y轴上取一点D,连接AC,BC,AD,BD,使得四边形ACBD的周长最小,这个最小周长的值为__________.16. 如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M 是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为________.MD CBA三、解答题17. 如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;ODABCxy(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.18. 如图,在△ABC中,CD是AB边上的高,BE是AC边上的中线,且BD=CE.求证:(1)点D在BE的垂直平分线上;(2)∠BEC=3∠ABE.19. 如图,在四边形ABCD中,∠DAB=∠ABC=90°,AB=BC,E是AB的中点,CE⊥BD,连接AC交DE于点M.(1)求证:AD=BE;(2)求证:AC是线段ED的垂直平分线;(3)△DBC是等腰三角形吗?说明理由.20. 如图,在△ABC中,AB=AC,∠ABC=60°,延长BA至点D,延长CB至点E,使BE=AD,连接CD,AE,延长EA交CD于点G.(1)求证:△ACE≌△CBD;(2)求∠CGE的度数.21. 如图,在△ABC中,AB=AC=5 cm,BC=6 cm,AD是BC边上的高.点P 由C出发沿CA方向匀速运动.速度为1 cm/s.同时,直线EF由BC出发沿DA 方向匀速运动,速度为1 cm/s,EF//BC,并且EF分别交AB、AD、AC于点E,Q,F,连接PQ.若设运动时间为t(s)(0<t<4),解答下列问题:(1)当t为何值时,四边形BDFE是平行四边形?(2)设四边形QDCP的面积为y(cm2),求出y与t之间的函数关系式;(3)是否存在某一时刻t,使点Q在线段AP的垂直平分线上?若存在,求出此时点F到直线PQ的距离h;若不存在,请说明理由.参考答案1. 【答案】D2. 【答案】D【解析】 根据三角形内角和定理和等腰三角形的等边对等角且AB AC =,40A ∠=,可得:70ABC ACB ∠=∠=;然后根据两直线平行内错角相等且//CD AB 可得:70BCD ABC ∠=∠=,所以选D .3. 【答案】[解析] A 因为75=5 3,18=3 2.当5 3为腰长时,三角形的周长为10 3+3 2;当5 3为底边长时,因为3 2+3 2=6 2=72,72<75,所以不能构成三角形,故三角形的周长为10 3+3 2.4. 【答案】B【解析】可利用三角形的外角性质求∠ FEC 的度数,结合等腰三角形与平行线的性质,可得∠ EDC 、∠B 均与∠C 相等.即:∵AB =AC ,∴∠B =∠C =65°.∵DF ∥AB ,∴∠ EDC =∠B =65°.∴∠FEC =∠EDC +∠C =65°+65°=130°.5. 【答案】C【解析】由作法得CG AB ⊥,∵AB AC =,∴CG 平分ACB ∠,A B ∠=∠, ∵1804040100ACB ∠=︒-︒-︒=︒,∴1502BCG ACB ∠=∠=︒.故选C . 6. 【答案】C【解析】∵△ABC 和△ADE 都是等腰直角三角形,∴AB=AC ,AD=AE ,∵∠BAD=90°+∠CAD ,∠CAE=90°+∠CAD ,∴∠BAD=∠CAE ,在△AEC 与△ADB 中, AB AC BAD CAE AD AE =∠=∠=⎧⎪⎨⎪⎩,∴△AEC ≌△ADB(SAS),∴BD=CE ,故①正确;∴∠ADB=∠AEC ,∵∠DEF+∠AEC+∠EDA=90°,∴∠DEF+∠ADB+∠EDA=90°∴∠DEF+∠EDF=90∘,∴BD ⊥CE ,故②正确;∵作AN ⊥CE ,AM ⊥BD∵△AEC ≌△ADB(SAS),∴AM=AN,∵AF是∠BFE的角平分线,∠BFE=90°,∴∠AFE=45°,故④正确,故③正确;因为QF≠PF,故③错误。
中考数学考点20等腰三角形总复习(原卷版)
等腰三角形【命题趋势】在中考中.等腰三角形常以选择题和填空题的形式考查;也经常在解答题中结合二次函数考查;等边三角形常以选择题、填空题和解答题考查.经常与圆综合题作为考查。
【中考考查重点】一、等腰三角形二、等边三角形考点一:等腰三角形的性质与判定1.(2021秋•绥棱县期末)有两边相等的三角形的两边长为4cm.5cm.则它的周长为()A.8cm B.14cm C.13cm D.14cm或13cm 2.(2021秋•延边州期末)如图.在△ABC中.AD是角平分线.且AD=AC.若∠BAC=60°.则∠B的度数是()A.45°B.50°C.52°D.58°3.(2021秋•和平区校级期中)如图.∠ABC、∠ACB的平分线相交于点F.过F作DE ∥BC.交AB于点D.交AC于点E.BD=3cm.EC=2cm.则DE=5cm.4.(2021秋•龙凤区校级期末)已知等腰三角形一腰上的高线与另一腰的夹角为40°.那么这个等腰三角形的顶角等于()A.50°或130°B.130°C.80°D.50°或80°性质1.等腰三角形的两个底角度数相等2.等腰三角形的顶角平分线.底边上的中线.底边上的高相互重合(简写成“等腰三角形三线合一”)3.等腰三角形是轴对称图形.有2条对称轴判定1.有两条边相等的三角形的等腰三角形2.有两个角相等的三角形是等腰三角形面积公式.其中a是底边常.hs是底边上的高5.(2021•淄博)如图.在△ABC中.∠ABC的平分线交AC于点D.过点D作DE∥BC交AB于点E.(1)求证:BE=DE;(2)若∠A=80°.∠C=40°.求∠BDE的度数.6.(2021秋•临江市期末)如图.在△ABC中.AB=AC.点D、E、F分别在AB、BC、AC 边上.且BE=CF.BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时.求∠DEF的度数.7.(2020秋•呼和浩特期末)如图.点O是等边△ABC内一点.D是△ABC外的一点.∠AOB=110°.∠BOC=α.△BOC≌△ADC.∠OCD=60°.连接OD.(1)求证:△OCD是等边三角形;(2)当α=150°时.试判断△AOD的形状.并说明理由;(3)探究:当α为多少度时.△AOD是等腰三角形.考点二: 等边三角形的性质与判定8.(2021秋•浦城县期中)△ABC 是等边三角形.点P 在△ABC 内.P A =4.将△P AB 绕点A 逆时针旋转得到△P 1AC .则P 1P 的长等于( )A .4B .C .2D .9.(2020秋•紫阳县期末)如图.在等腰△ABC 中.AB =AC .点E 为AC 的中点.延长BC 到点D .使得CD =CE .延长DE 交AB 于点F .若∠A =60°.EF =4cm .则DF 的长为( )性质1. 三条边相等2. 三个内角相等.且每个内角都等于60°3. 等边三角形是轴对称图形.有3条对称轴判定1. 三条边都相等的三角形是等边三角形2. 三个角相等的三角形是等边三角形3. 有一个角的是60°的等腰三角形是等边三角形面积公式 是等边三角形的边长.h 是任意边上的高A.12cm B.10cm C.8cm D.6cm 10.(2021春•张店区期末)如图.P是等边三角形ABC内的一点.且P A=3.PB=4.PC=5.以BC为边在△ABC外作△BQC≌△BP A.连接PQ.则以下结论错误的是()A.△BPQ是等边三角形B.△PCQ是直角三角形C.∠APB=150°D.∠APC=135°11.(2020秋•河东区期中)如图.点M.N分别在正三角形ABC的BC.CA边上.且BM=CN.AM.BN交于点Q.求证:∠BQM=60°.1.(2021秋•九龙坡区期中)如图.在△ABC中.AB=AC.点D为边AC上一点.且AD=BD.∠A=40°.则∠DBC的度数是()A.20°B.30°C.40°D.50°2.如图.为了让电线杆垂直于地面.工程人员的操作方法是:从电线杆DE上一点A往地面拉两条长度相等的固定绳AB与AC.当固定点B.C到杆脚E的距离相等.且B.E.C在同一直线上时.电线杆DE就垂直于BC.工程人员这种操作方法的依据是()A.等边对等角B.等角对等边C.垂线段最短D.等腰三角形“三线合一”3.(2021秋•九台区期末)如图.已知△ABC的面积为24.AB=AC=8.点D为BC边上一点.过点D分别作DE⊥AB于E.DF⊥AC于F.若DF=2DE.则DF长为()A.4B.5C.6D.85.(2021秋•天河区期末)如图所示的正方形网格中.网格线的交点称为格点.已知A、B是两格点.如果C也是图中的格点.且使得△ABC为等腰三角形.则点C的个数是()A.6个B.7个C.8个D.9个5.(2021秋•南安市期末)如图:D为△ABC内一点.CD平分∠ACB.BD⊥CD.∠A =∠ABD.若BD=1.BC=3.则AC的长为()A.5B.4C.3D.26.(2021•滨州)如图.在△ABC中.点D是边BC上的一点.若AB=AD=DC.∠BAD=44°.则∠C的大小为.7.(2019•重庆)如图.在△ABC中.AB=AC.AD⊥BC于点D.(1)若∠C=42°.求∠BAD的度数;(2)若点E在边AB上.EF∥AC交AD的延长线于点F.求证:AE=FE.8.(2021秋•长春期末)如图.在等边△ABC中.点D在边BC上.过点D作DE∥AB交AC于点E.过点E作EF⊥DE.交BC的延长线于点F.(1)求∠F的度数;(2)求证:DC=CF.9.(2020秋•淮南期末)已知.在等边三角形ABC中.点E在AB上.点D在CB的延长线上.且ED=EC.(1)【特殊情况.探索结论】如图1.当点E为AB的中点时.确定线段AE与DB的大小关系.请你直接写出结论:AE DB(填“>”、“<”或“=”).(2)【特例启发.解答题目】如图2.当点E为AB边上任意一点时.确定线段AE与DB的大小关系.请你直接写出结论.AE DB(填“>”、“<”或“=”);理由如下.过点E作EF∥BC.交AC 于点F.(请你完成以下解答过程).(3)【拓展结论.设计新题】在等边三角形ABC中.点E在直线AB上.点D在线段CB的延长线上.且ED=EC.若△ABC的边长为1.AE=2.求CD的长(请你画出相应图形.并直接写出结果).1.(2021•赤峰)如图.AB∥CD.点E在线段BC上.CD=CE.若∠ABC=30°.则∠D的度数为()A.85°B.75°C.65°D.30°2.(2021•青海)已知a.b是等腰三角形的两边长.且a.b满足+(2a+3b﹣13)2=0.则此等腰三角形的周长为()A.8B.6或8C.7D.7或8 3.(2021•广西)如图.⊙O的半径OB为4.OC⊥AB于点D.∠BAC=30°.则OD的长是()A.B.C.2D.3 4.(2020•铜仁市)已知等边三角形一边上的高为2.则它的边长为()A.2B.3C.4D.4 5.(2021•康巴什一模)如图所示.已知m∥n.等边△ABC的顶点B在直线n上.∠1=25°.则∠2的度数是()A.25°B.35°C.45°D.55°6.(2021•荆门一模)如图.△ABC是等边三角形.△BCD是等腰三角形.且BD=CD.过点D作AB的平行线交AC于点E.若AB=8.DE=6.则BD的长为()A.6B.C.D.7.(2021•丹东模拟)如图.△ABC是等边三角形.AD是BC边上的中线.点E在AD上.且DE=BC.则∠AFE=()A.100°B.105°C.110°D.115°8.(2020•台州)如图.等边三角形纸片ABC的边长为6.E.F是边BC上的三等分点.分别过点E.F沿着平行于BA.CA方向各剪一刀.则剪下的△DEF的周长是.9.(2019•哈尔滨)如图.在四边形ABCD中.AB=AD.BC=DC.∠A=60°.点E为AD边上一点.连接BD、CE.CE与BD交于点F.且CE∥AB.若AB=8.CE=6.则BC的长为.10.(2021•朝阳)如图.在平面直角坐标系中.点A的坐标为(5.0).点M的坐标为(0.4).过点M作MN∥x轴.点P在射线MN上.若△MAP为等腰三角形.则点P的坐标为.1.(2021•贵港模拟)如图.在△ABC中.AB=BC.∠A=36°.AB的垂直平分线DE交AB于点D.交AC于点E.若AB=10.则CE的长为()A.5B.8C.10D.10 2.(2021•西湖区二模)如图.在△ABC中.点D在边BC上.且满足AB=AD=DC.过点D 作DE⊥AD.交AC于点E.设∠BAD=α.∠CAD=β.∠CDE=γ.则()A.2α+3β=180°B.3α+2β=180°C.β+2γ=90°D.2β+γ=90°3.(2021•陕西模拟)如图.△ABC中.AB=AC.AD⊥BC于点D.DE⊥AB于点E.BF⊥AC 于点F.DE=2.则BF的长为()A.3B.4C.5D.6 4.(2021•西陵区模拟)如图.已知Rt△OAB.∠OAB=50°.∠AOB=90°.O点与坐标系原点重合.若点P在x轴上.且△APB是等腰三角形.则点P的坐标可能有()个.A.1个B.2个C.3个D.4个5.(2021•成都模拟)如图.把一张长方形纸片沿对角线折叠.若△EDF是等腰三角形.则∠BDC=()A.45°B.60°C.67.5°D.75°6.(2021•中山区一模)如图.直线m∥n.点A在直线m上.点B、C在直线n上.AB=CB.∠1=70°.则∠BAC等于()A.40°B.55°C.70°D.110°7.(2021•饶平县校级模拟)如图.在△ABC中.AB=6.AC=4.∠ABC和∠ACB的平分线交于点E.过点E作MN∥BC分别交AB、AC于M、N.则△AMN的周长为()A.12B.10C.8D.不确定8.(2021•商河县校级模拟)如图.△ABC的面积为8cm2.AP垂直∠B的平分线BP于P.则△PBC的面积为()A.2cm2B.3cm2C.4cm2D.5cm2 9.(2021•甘谷县一模)如图.已知:∠MON=30°.点A1.A2.A3……在射线ON上.点B1.B2.B3……在射线OM上.△A1B1A2.△A2B2A3.△A3B3A4……均为等边三角形.若OA1=1.则△A7B7A8的边长为()A.64B.32C.16D.128 10.(2021•蔡甸区二模)如图.△ABC中.点D在BC边上.且∠ADB=90°∠CAD.(1)求证:AD=AC;(2)点E在AB边上.连接CE交AD于点F.且∠CFD=∠CAB.AE=BD.①求∠ABC的度数;②若AB=8.DF=2AF.直接写出EF的长.。
中考数学 专题18 等腰三角形与直角三角形(解析版)
3 1 3
3 3
,∴S△OBC
1 2
BC•ON
3
.
3
∵∠EOF=∠AOB=120°,∴∠EOF﹣∠BOF=∠AOB﹣∠BOF,即∠EOB=∠FOC.
OBE OCF 30
在△EOB 和△FOC 中,∵ OB OC EOB FOC
,∴△EOB≌△FOC(ASA),∴S 阴影=S△OBC
【例 2】(2019 四川省宜宾市,第 7 题,3 分)如图,∠EOF 的顶点 O 是边长为 2 的等边△ABC 的重心,
∠EOF 的两边与△ABC 的边交于 E,F,∠EOF=120°,则∠EOF 与△ABC 的边所围成阴影部分的面积是 ( )
3
23
3
3
A. B. C. D.
中考数学复习资料
(2)在直角三角形中,如果一个锐角等于 30°,那么它所对的直角边等于斜边的一半; (3)在直角三角形中,斜边上的中线等于斜边的一半. 基本方法归纳:(1)两个内角互余的三角形是直角三角形. (2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形. 注意问题归纳:注意区分直角三角形的性质与直角三角形的判定,在直角三角形中,如果一 个锐角等于 30°,那么它所对的直角边等于斜边的一半,它的逆命题不能直接使用.
【详解】连接 OB、OC,过点 O 作 ON⊥BC,垂足为 N.
∵△ABC 为等边三角形,∴∠ABC=∠ACB=60°.
∵点 O 为△ABC 的内心,∴∠OBC=∠OBA 1 ∠ABC,∠OCB 1 ∠ACB,∴∠OBA=∠OBC=∠OCB=30
2
2
°,∴OB=OC.∠BOC=120°.
∵ON⊥BC,BC=2,∴BN=NC=1,∴ON=tan∠OBC•BN
中考总复习数学第3节 等腰三角形与直角三角形
五、解答题(15 分) 16.(2020·哈尔滨)已知:在△ABC 中,AB=AC,点 D,点 E 在边 BC 上,BD=CE,连接 AD,AE. (1)如图①,求证:AD=AE; (2)如图②,当∠DAE=∠C=45°时,过点 B 作 BF∥AC 交 AD 的延长线于点 F,在不添加任何辅助线的 情况下,请直接写出图②中的四个等腰三角形,使写出 的每个等腰三角形的顶角都等于 45°.
<θ<90°),得到 BP,连接 CP,过点 A 作 AH⊥CP 交
CP 的延长线于点 H,连接 AP,则∠PAH 的度数( C ) A.随着 θ 的增大而增大 B.随着 θ 的增大而减小 C.不变 D.随着 θ 的增大,先增大后减小
12.(2020·孝感)如图,点 E 在正方形
ABCD 的边 CD 上,将△ADE 绕点 A 顺时
大于21OC 的长为半径画弧,两弧相交于 E,F.画直线 EF, 分别交 OA 于点 D,交 OB 于点 G.那么,△ODG 一定是
(C) A.锐角三角形
B.钝角三角形
C.等腰三角形
D.直角三角形
二、填空题(每小题 5 分,共 20 分) 5.(2020·岳阳)如图,在 Rt△ABC 中,CD 是斜边 AB 上的中线,∠A=20°,则∠BCD= 70 °.
3.(2020·自贡)如图,在 Rt△ABC 中,∠ACB=90°,∠A=50°,以点 B 为 圆心,BC 长为半径画弧,交 AB 于点 D, 连接 CD,则∠ACD 的度数是 ( D )
A.50° B.40° C.30°
中考数学总复习--等腰三角形与直角三角形
中考数学总复习--等腰三角形与直角三角形1.如图,Rt △ABC 中,AB ⊥BC ,AB=6,BC=4,P 是△ABC 内部的一个动点,且满足∠PAB=∠PBC ,则线段CP 长的最小值为 ( )A.23 B.2 C.13138 D.1313122.如图1,Rt △ABC 中,∠ACB=90°,点D 为边AC 上一点,DE ⊥AB 于点E ,点M 为BD 的中点,CM 的延长线交AB 于点F 。
(1)求证:CM=EM ;(2)若∠BAC=50°,求∠EMF 的大小;(3)如图2,若△DAE ≌△CEM ,点N 为CM 的中点,求证:AN ∥EM 。
3.如图1,A ,B 分别在射线OM ,ON 上,且∠MON 为钝角,现以线段OA ,OB 为斜边向∠MON 的外侧作等腰直角三角形,分别是△OAP ,△OBQ ,点C ,D ,E 分别是OA ,OB ,AB 的中点。
(1)求证:△PCE ≌△EDQ ;(2)延长PC ,QD 交于点R 。
①如图2,若∠MON=150°,求证:△ABR 为等边三角形;②如图3,若△ARB ∽△PEQ ,求∠MON 的大小和PQAB 的值。
1.如图,在三角形ABC 中,直线DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B=60°,∠C=25°,则∠BAD 为 ( )A.50°B.70°C.75°D.80°2.平面直角坐标系中,已知A (2,2),B (4,0),若在坐标轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是 ( )A.5B.6C.7D.83.如图,在△ABC 中,∠A=36°,AB=AC ,BD 是△ABC 的角平分线,若在边AB 上截取BE=BC ,连接DE ,则图中等腰三角形共有 ( )A.2个B.3个C.4个D.5个4.等腰三角形的一个底角为50°,则它的顶角的度数为 。
(中考精题)等腰三角形与直角三角形-备战中考数学一遍过
一、等腰三角形1.等腰三角形的性质定理:等腰三角形的两个底角相等(简称:等边对等角).)直角三角形两锐角互余;,那么它所对的直角边等于斜边的一半;典例1 (2020·四川省武胜县万善初级中学初二月考)等腰三角形的一个内角为内角的度数分别为1.(2020·自贡市田家炳中学初二期中)等腰三角形的周长为三角形的底边为__________cm.典例3 如图,在△ABC于F.2.已知在△ABC中,(1)求△ABC的周长;(典例4 (2019·山东初二期末)如图,在于E,若BE=1,则AC3.(2020·山东初二期中)如图,∆,连接CEBDE典例5 下列推理中,错误的是A.∵∠A=∠B=∠C,∴△4.如图,已知OA=5等边三角形.典例6 如图,在Rt△的长为__________.5.已知直角三角形的两条边分别是典例7 (2020·云南初二月考)直角三角形的两条直角边长分别为∆6.如图所示,在ABC1.(2020·浙江初二月考)直角三角形两直角边长分别为A.3 B.4为等腰三角形;的长.中,AB=AC,AD⊥BC于点D.3.【答案】(1)见解析;(2)20°.【解析】(1)由060ABC DBE ∠=∠=,得ABD CBE ∠=∠,由,AB BC BD BE ==, 得ABD CBE ∆≅∆(SAS );(2)由ABD CBE ∆≅∆,得060BCE A ∠=∠=,所以00000180180806040CBE BEC BCE ∠=-∠-∠=--=, 所以000060604020DBC CBE ∠=-∠=-=.【名师点睛】本题主要考查全等三角形的判定和性质以及三角形内角和定理,先证明三角形全等是解决本题的突破口. 4.【答案】5【解析】已知∠AON =60°,当OP =OA =5时,根据有一个角为60°的等腰三角形为等边三角形,可得△AOP 为等边三角形.故答案为:5. 5.【答案】6或6.5【解析】分两种情况:①5和12是两条直角边,根据勾股定理求得斜边为13,利用直角三角形斜边的中线等于斜边的一半即可得斜边上的中线的长度为6.5;②5是直角边,12为斜边,利用直角三角形斜边的中线等于斜边的一半即可得斜边上的中线的长度为6,故答案为:6或6.5. 6.【答案】(1)BD =2,13AD =;(2)136AE =,56BE = 【解析】(1)∵在ABC ∆中,90B ∠=︒,3AB =,5AC =, ∴在Rt ABC ∆中,222225316BC AC AB =-=-=, ∴4BC =,又∵D 为BC 边上的中点, ∴122BD DC BC ===, ∴在Rt ABD ∆中,222222133AD AB BD =+=+=, ∴13AD =.(2)ABC ∆折叠后如图所示,EF 为折痕,连接DE ,-,3x本题考查了折叠的性质、全等三角形的判定和性质、直角三角形的性质,属于常考题型,熟练掌握上述图形的性质是解题关键中,已知AB=2.5 m,BO=0.7 m,=2.4 m,m,【名师点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键. 7.【答案】70【解析】∵∠ABC =90°,AB =AC ,∴∠CBF =180°–∠ABC =90°,∠ACB =45°,在Rt △ABE 和Rt △CBF 中,AB CBAE CF =⎧⎨=⎩,∴Rt △ABE ≌Rt △CBF ,∴∠BCF =∠BAE =25°,∴∠ACF =∠ACB +∠BCF =45°+25°=70°,故答案为:70.【名师点睛】本题考查了等腰直角三角形的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键. 8.【解析】(1)∵CAF BAE ∠=∠,∴BAC EAF ∠=∠,∵AE AB AC AF ==,, ∴BAC EAF △≌△, ∴EF BC =.(2)∵65AB AE ABC =∠=︒,, ∴18065250BAE ∠=︒-︒⨯=︒, ∴50FAG ∠=︒, ∵BAC EAF △≌△, ∴28F C ∠=∠=︒, ∴502878FGC ∠=︒+︒=︒.【名师点睛】本题主要考查全等三角形证明与性质,等腰三角形性质,旋转性质等知识点,比较简单,基础知识扎实是解题关键. 9.【解析】(1)∵AB =AC ,AD ⊥BC 于点D ,∴∠BAD =∠CAD ,∠ADC =90°,又∠C =42°,∴∠BAD =∠CAD =90°-42°=48°. (2)∵AB =AC ,AD ⊥BC 于点D , ∴∠BAD =∠CAD , ∵EF ∥AC , ∴∠F =∠CAD , ∴∠BAD =∠F ,∴AE =FE .10.【解析】(1)∵AB =AC ,∴∠ECB =∠DBC ,在DBC △与ECB △中,BD CE DBC ECB BC CB =⎧⎪∠=∠⎨⎪=⎩,∴DBC △≌ECB △.(2)由(1)DBC △≌ECB △, ∴∠DCB =∠EBC , ∴OB =OC .11.【解析】(1)∵AB AC =,∴C ABC ∠=∠,∵36C ∠=︒, ∴36ABC ∠=︒,∵D 为BC 的中点,∴AD BC ⊥,∴90903654BAD ABC ∠=-∠=-︒=︒︒︒. (2)∵BE 平分ABC ∠,∴ABE EBC ∠=∠, 又∵EF BC ∥,∴EBC BEF ∠=∠, ∴EBF FEB ∠=∠, ∴BF EF =.【名师点睛】本题考查等腰三角形的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.【解析】(1)∵90BAC ∠=︒,AB AC =,AD BC ⊥,∴AD BD DC ==,45ABC ACB ∠=∠=︒,45BAD CAD ∠=∠=︒, ∵2AB =,∴2,AD BD DC ===,∵30AMN ∠=︒,∴180903060BMD ∠=︒-︒-︒=︒, ∴30BMD ∠=︒,∴2BM DM =,由勾股定理得,222BM DM BD -=,即222(2)(2)DM DM -=,解得233DM =, ∴2323AM AD DM =-=-.。
2010年中考数学一轮复习——等腰三角形与直角三角形
等腰三角形与直角三角形◆课前热身1.如图,等边△ABC 的边长为3,P 为BC 上一点,且BP =1,D 为AC 上一点,若∠APD = 60°,则CD 的长为( )A .32B .23C .12D .342.如图,已知△ABC 中,AB =17,AC =10,BC 边上的高 AD =8, 则边BC 的长为( )A .21B .15C .6D .以上答案都不对3.等腰三角形一腰上的高与另一腰的夹角为30º,腰长为4 cm ,则其腰上的高为 cm .4.如图,在边长为1的等边△ABC 中,中线AD 与中线BE 相交于点O ,则OA 长度为 .【参考答案】 1. B 2. A 3.4. 33AD CPB第1题图 60°ACD B第2题图◆考点聚焦等腰三角线1.等腰三角形的判定与性质.2.等边三角形的判定与性质.3.运用等腰三角形、等边三角形的判定与性质解决有关计算与证明问题.直角三角形1.运用勾股定理计算线段的长,证明线段的数量关系,解决与面积有关的问题以及简单的实际问题.2.运用勾股定理及其逆定理从数的角度来研究直角三角形.3.折叠问题.4.将直角三角形,平面直角坐标系,函数,开放性问题,探索性问题结合在一起综合运用.◆备考兵法等腰三角线1.运用三角形不等关系,•结合等腰三角形的判定与性质解决等腰三角形中高、边、角的计算问题,并要注意分类讨论.2.要正确辨析等腰三角形的判定与性质.3.能熟练运用等腰三角形、方程(组)、函数等知识综合解决实际问题.直角三角形1.正确区分勾股定理与其逆定理,掌握常用的勾股数.2.在解决直角三角形的有关问题时,应注意以勾股定理为桥梁建立方程(组)•来解决问题,实现几何问题代数化.3.在解决直角三角形的相关问题时,要注意题中是否含有特殊角(30°,45°,60°).若有,则应运用一些相关的特殊性质解题.4.在解决许多非直角三角形的计算与证明问题时,•常常通过作高转化为直角三角形来解决.5.折叠问题是新中考热点之一,在处理折叠问题时,动手操作,认真观察,充分发挥空间想象力,注意折叠过程中,线段,角发生的变化,寻找破题思路.◆考点链接一.等腰三角形的性质与判定:1. 等腰三角形的两底角__________;2. 等腰三角形底边上的______,底边上的________,顶角的_______,三线合一;3. 有两个角相等的三角形是_________. 二.等边三角形的性质与判定:1. 等边三角形每个角都等于_______,同样具有“三线合一”的性质;2. 三个角相等的三角形是________,三边相等的三角形是_______,一个角等于60°的_______三角形是等边三角形. 三.直角三角形的性质与判定: 1. 直角三角形两锐角________.2. 直角三角形中30°所对的直角边等于斜边的________.3. 直角三角形中,斜边的中线等于斜边的______.;4. 勾股定理:_________________________________________.5. 勾股定理的逆定理:_________________________________________________. ◆典例精析例1(2009年湖北襄樊)在A B C △中,12cm 6cm A B A C B C D ===,,为B C 的中点,动点P 从B 点出发,以每秒1cm 的速度沿B A C →→的方向运动.设运动时间为t ,那么当t = 秒时,过D 、P 两点的直线将A B C △的周长分成两个部分,使其中一部分是另一部分的2倍. 【答案】7或17【解析】本题考查等腰三角形中的动点问题,两种情况,①当点P 在BA 上时,BP =t ,AP =12-t ,2(t+3)=12-t+12+3,解得t =7;②当点P 在AC 上时, PC =24-t ,t+3=2(24-t+3),解得t =17,故填7或17.例2(2009年山东滨州)某楼梯的侧面视图如图所示,其中4A B =米,30B A C ∠=°,90C ∠=°,因某种活动要求铺设红色地毯,则在AB 段楼梯所铺地毯的长度应为 .【答案】(2+23)米.【解析】掌握30°所对的直角边等于斜边的一半,即可求解.BC A30°例3(2008年四川乐山)如图,AD⊥CD,AB=13,BC=12,CD=3,AD=4,则sinB等于()A.513B.1213C.35D.45【答案】 A【解析】由AD⊥DC,知△ADC为直角三角形.由勾股定理得:AC2=AD2+DC2=32+42=5,AC=5,在△ACB中,∵AB2=169,BC2+AC2=52+122=169,∴AB2=BC2+AC2.由勾股定理的逆定理知:△ABC是直角三角形.∴sinB=A CA B=513.例4(2008年安徽)已知点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画图表示.图1 图2解析(1)过点O作OE⊥AB,OF⊥AC,E,F分别是垂尺,由题意知,OE=OF,又OB=OC.∴Rt△OEB≌Rt△OFC.∴∠B=∠C.∴AC=AB.(2)过点O作OE⊥AB,OF⊥AC,E,F分别是垂足.由题意知,OE=OF.在Rt△OEB和Rt△OFC中,OE=OF,OB=OC.∴Rt△OEB≌Rt△OFE.∴∠OBE=∠OCF.又OB=OC.∴∠OBC=∠OCB.∴∠ABC=∠ACB.∴AC=AB.(3)不一定成立.当∠A的平分线所在直线与边BC的垂直平分线重合时,有AB=AC,否则AB≠AC,•如示例图.成立不成立【点拨】本例从O点的特殊位置(BC边的中点)探究图形的性质,再运用变化的观点探究一般位置(点O在△ABC内,点O在三角形外)下图形的性质有何变化,培养同学们从不同的角度分析,解决问题的能力,拓展思维,提高综合解题能力.◆迎考精练一、选择题1.(2009年四川达州)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是()A.13 B.26 C.47 D.942.(2009年甘肃白银)如图,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为()A.5 B.4 C.3 D.23.(2009年山东济宁)“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图,是一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上), 则投掷一次飞镖扎在中间小正方形区域(含边线)的概率是()A.12B.14C.15D.1104.(2009年浙江嘉兴)如图,等腰△ABC 中,底边a BC =,∠A =36°, ∠ABC 的平分线交AC 于D ,∠BCD 的平分线交BD 于E ,设215-=k ,则DE =( )A .a k 2B .a k 3C .2ka D .3ka5.(2009年湖北恩施)如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( )A ..25 C .5 D .35 6.(2009年浙江宁波)等腰直角三角形的一个底角的度数是( )A .30°B .45°C .60°D .90°7.(2009年山东威海)如图,AB =AC,BD =BC ,若∠A =40°,则∠ABD 的度数是( )A .20B .30C .35D .408.(2009年湖北襄樊)如图,已知直线110A B C D D C F =︒∥,∠,且A E A F =,则A ∠等于( )A .30︒B .40︒C .50︒D .70︒二、填空题1.(2009年四川泸州)如图,已知Rt △ABC 中,AC =3,BC = 4,过直角顶点C 作 CA 1⊥AB ,垂足为A 1,再过A 1作A 1C 1⊥BC ,垂足为C 1,过C 1作C 1A 2⊥AB ,垂足为A 2,再过A 2AF BDEBADCADC EB 第4题图作A 2C 2⊥BC ,垂足为C 2,…,这样一直做下去,得到了一组线段CA 1,A 1C 1,12C A ,…,则CA 1= ,=5554C A A C2.(2009年四川内江)已知Rt △ABC 的周长是344+,斜边上的中线长是2,则S △ABC =___.3.(2009年四川宜宾)已知:如图,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中阴影部分的面积为 .第12题图4.(2009年湖南长沙)如图,等腰A B C △中,A B A C =,A D 是底边上的高,若5cm 6cm A B B C ==,,则AD = cm .三、解答题1.(2009年河南)如图所示,∠BAC =∠ABD ,AC =BD ,点O 是AD 、BC 的交点,点E 是AB 的中点.试判断OE 和AB 的位置关系,并给出证明.AC DB2.(2009年浙江绍兴)如图,在A B C △中,40A B A C B A C =∠=,°,分别以A B A C ,为边作两个等腰直角三角形ABD 和AC E ,使90B A D C A E ∠=∠=°. (1)求D B C ∠的度数;(2)求证:B D C E =.3.(2009年湖北恩施)恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷()A 和世界级自然保护区星斗山()B 位于笔直的沪渝高速公路X 同侧,50k m A B A =,、B 到直线X 的距离分别为10km 和40km ,要在沪渝高速公路旁修建一服务区P ,向A 、B 两景区运送游客.小民设计了两种方案,图(1)是方案一的示意图(A P 与直线X 垂直,垂足为P ),P 到A 、B 的距离之和1S PA PB =+,图(2)是方案二的示意图(点A 关于直线X 的对称点是A ',连接B A '交直线X 于点P ),P 到A 、B 的距离之和2S PA PB =+.(1)求1S 、2S ,并比较它们的大小; (2)请你说明2S PA PB =+的值为最小;(3)拟建的恩施到张家界高速公路Y 与沪渝高速公路垂直,建立如图(3)所示的直角坐标系,B 到直线Y 的距离为30km ,请你在X 旁和Y 旁各修建一服务区P 、Q ,使P 、A 、B 、Q 组成的四边形的周长最小.并求出这个最小值.4.(2009年广东中山)如图所示,A B C △是等边三角形, D 点是A C 的中点,延长B C 到E ,使C E C D =,(1)用尺规作图的方法,过D 点作D M BE ⊥,垂足是M (不写作法,保留作图痕迹); (2)求证:B M E M =.P图(1)图(3)图(2)【参考答案】 选择题 1. C 2. A 3. C 4. A 5. B 6. B 7. B 8. B【解析】本题考查平行线的性质、等腰三角形的性质等知识,∵110A B C D D C F =︒∥,∠,所以110EFB D C F ∠=∠=︒,∴70AFE ∠=︒,∵A E A F =,∴70E AFE ∠=∠=︒,∴40A ∠=︒,故选B 填空题 1.512,452. 83.294. 4 解答题1. OE ⊥AB .证明:在△BAC 和△ABD 中, AC BD BAC ABD AB BA =⎧⎪∠=∠⎨⎪=⎩∴△BAC ≌△ABD .∴∠OBA =∠OAB , ∴OA =OB . 又∵AE =BE , ∴OE ⊥AB .2. 解:(1)ΔABD 是等腰直角三角形,90∠=°B A D , ∴∠ABD =45°,AB =AC,∴∠ABC =70°,∴∠CBD =70°+45°=115°.证明:(2)AB =AC,90B A D C A E ∠=∠=°,AD =AE,∴ΔBAD ≌ΔCAE,∴BD =CE .3. 解:⑴图(1)中过B 作BC ⊥AP,垂足为C,则PC =40,又AP =10,∴AC =30在Rt △ABC 中,AB =50 AC =30 ∴BC =40∴ BP =24022=+BC CPS 1=10240+⑵图10(2)中,过B 作BC ⊥AA ′垂足为C ,则A ′C =50,又BC =40∴BA'=4110504022=+由轴对称知:PA =PA'∴S 2=BA'=4110∴1S ﹥2S(2)如 图10(2),在公路上任找一点M,连接MA,MB,MA',由轴对称知MA =MA' ∴MB+MA =MB+MA'﹥A'B∴S 2=BA'为最小(3)过A 作关于X 轴的对称点A', 过B 作关于Y 轴的对称点B', 连接A'B',交X 轴于点P, 交Y 轴于点Q,则P,Q 即为所求过A'、 B'分别作X 轴、Y 轴的平行线交于点G,A'B'=5505010022=+ ∴所求四边形的周长为55050+4. 解:(1)作图见下图,(2) A B C △是等边三角形,D 是A C 的中点, BD ∴平分A B C ∠(三线合一), 2A B C D B E ∴∠=∠. C E C D = ,C ED C DE ∴∠=∠. 又AC B C ED C D E ∠=∠+∠ , 2AC B E ∴∠=∠.又A B C A C B ∠=∠ , 22D B C E ∴∠=∠,D B CE ∴∠=∠,BD D E ∴=.又D M BE ⊥ ,BM EM ∴=.AC B DEM。
中考数学专题复习试题分类汇编三等腰三角形和直角三角形
中考数学专题复习试题分类汇编三等腰三角形和直角三角形学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.已知线段AB,按如下步骤作图:①作射线AC,使AC AB⊥;①作BAC∠的平分线AD;①以点A为圆心,AB长为半径作弧,交AD于点E;①过点E作EP AB⊥于点P,则:AP AB=()A.1:5B.1:2C.1:3D.1:22.如图,在ABC中,45,60,B C AD BC∠=︒∠=︒⊥于点D,3BD=.若E,F分别为AB,BC的中点,则EF的长为()A.33B.32C.1D.623.如图,在Rt ABC△纸片中,90,4,3ACB AC BC∠=︒==,点,D E分别在,AB AC 上,连结DE,将ADE沿DE翻折,使点A的对应点F落在BC的延长线上,若FD 平分EFB∠,则AD的长为()252515204.如图,正三角形ABC的边长为3,将①ABC绕它的外心O逆时针旋转60°得到①A'B'C',则它们重叠部分的面积是()A.23B.334C.332D.35.如图,在Rt①ABC中,①ACB=90°,CD为中线,延长CB至点E,使BE=BC,连结DE,F为DE中点,连结BF.若AC=8,BC=6,则BF的长为()A.2B.2.5C.3D.46.①BDE和①FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.①ABC的周长B.①AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长7.如图,等腰直角三角形ABC中,①ABC=90°,BA=BC,将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,连结CP,过点A作AH①CP交CP的延长线于点H,连结AP,则①P AH的度数()B.随着θ的增大而减小C.不变D.随着θ的增大,先增大后减小8.已知直线m n,将一块含45︒角的直角三角板ABC按如图方式放置,其中斜边BC 与直线n交于点D.若125∠=︒,则2∠的度数为()A.60︒B.65︒C.70︒D.75︒9.“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC CD DE==,点D,E可在槽中滑动,若75BDE∠=︒,则CDE∠的度数是()A.60°B.65°C.75°D.80°10.在ABC中,若一个内角等于另外两个角的差,则()A.必有一个角等于30B.必有一个角等于45︒C.必有一个角等于60︒D.必有一个角等于90︒评卷人得分二、填空题11.如图,在①ABC中,①ACB=90°,AC<BC.分别以点A,B为圆心,大于12AB的长为半径画弧,两弧交于D,E两点,直线DE交BC于点F,连接AF.以点A为圆心,AF为半径画弧,交BC延长线于点H,连接AH.若BC=3,则①AFH的周长为_____.12.如图,在ABC中,AB AC=,70B∠=︒,以点C为圆心,CA长为半径作弧,交直线BC于点P,连结AP,则BAP∠的度数是_______.13.如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是_____ .评卷人得分三、解答题14.如图,在四边形ABCD中,AB=AD=20,BC=DC=102(1)求证:①ABC①①ADC;(2)当①BCA=45°时,求①BAD的度数.15.问题:如图,在①ABD中,BA=BD.在BD的延长线上取点E,C,作①AEC,使EA=EC,若①BAE=90°,①B=45°,求①DAC的度数.答案:①DAC=45°思考:(1)如果把以上“问题”中的条件“①B=45°”去掉,其余条件不变,那么①DAC的度数会改变吗?说明理由;(2)如果把以上“问题”中的条件“①B=45°”去掉,再将“①BAE=90°”改为“①BAE=n°”,其余条件不变,求①DAC的度数.16.如图,在△ABC和△DCE中,AC=DE,①B=①DCE=90°,点A,C,D依次在同一直线上,且AB①DE.(1)求证:△ABC①①DCE;(2)连结AE,当BC=5,AC=12时,求AE的长.17.如图1是实验室中的一种摆动装置,BC 在地面上,支架ABC 是底边为BC 的等腰直角三角形,摆动臂长AD 可绕点A 旋转,摆动臂DM 可绕点D 旋转,30AD =,10DM =.(1)在旋转过程中:①当,,A D M 三点在同一直线上时,求AM 的长;②当,,A D M 三点在同一直角三角形的顶点时,求AM 的长.(2)若摆动臂AD 顺时针旋转90︒,点D 的位置由ABC 外的点1D 转到其内的点2D 处,连结12D D ,如图2,此时2135AD C ∠=︒,260CD =,求2BD 的长.18.如图,在76⨯的方格中,ABC 的顶点均在格点上,试按要求画出线段EF (E ,F 均为格点),各画出一条即可.19.如图,在ABC中,AC AB BC.①已知线段AB的垂直平分线与BC边交于点P,连结AP,求证:2APC B;①以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连结AQ,若B,求B的度数.3AQC参考答案:1.D【解析】【分析】由题意易得①BAD =45°,AB =AE ,进而可得①APE 是等腰直角三角形,然后根据等腰直角三角形的性质可求解.【详解】解:①AC AB ⊥,①90CAB ∠=︒,①AD 平分BAC ∠,①①BAD =45°,①EP AB ⊥,①①APE 是等腰直角三角形,①AP =PE ,①222AE AP PE AP =+=,①AB =AE ,①2AB AP =,①:1:2AP AB =;故选D .【点睛】本题主要考查等腰直角三角形的性质与判定、勾股定理及角平分线的定义,熟练掌握等腰直角三角形的性质与判定、勾股定理及角平分线的定义是解题的关键.2.C【解析】【分析】根据条件可知①ABD 为等腰直角三角形,则BD =AD ,①ADC 是30°、60°的直角三角形,可求出AC 长,再根据中位线定理可知EF =2AC 。
中考数学专题16等腰三角形与直角三角形(共5题)(全国通用解析版)
等腰三角形与直角三角形一.选择题(共24小题)1.(2022•宿迁)若等腰三角形的两边长分别是3cm和5cm.则这个等腰三角形的周长是()A.8cm B.13cm C.8cm或13cm D.11cm或13cm 【分析】题目给出等腰三角形有两条边长为3cm和5cm.而没有明确腰、底分别是多少.所以要进行讨论.还要应用三角形的三边关系验证能否组成三角形.【解析】当3cm是腰长时.3.3.5能组成三角形.当5cm是腰长时.5.5.3能够组成三角形.则三角形的周长为11cm或13cm.故选:D.【点评】本题考查等腰三角形的性质及三角形三边关系.已知没有明确腰和底边的题目一定要想到两种情况.分类进行讨论.还应验证各种情况是否能构成三角形进行解答.这点非常重要.也是解题的关键.2.(2022•泰安)如图.l1∥l2.点A在直线l1上.点B在直线l2上.AB=BC.∠C=25°.∠1=60°.则∠2的度数是()A.70°B.65°C.60°D.55°【分析】利用等腰三角形的性质得到∠C=∠BAC=25°.利用平行线的性质得到∠BEA=95°.再根据三角形外角的性质即可求解.【解析】如图.∵AB=BC.∠C=25°.∴∠C=∠BAC=25°.∵l1∥l2.∠1=60°.∴∠BEA=180°﹣60°﹣25°=95°.∵∠BEA=∠C+∠2.∴∠2=95°﹣25°=70°.故选:A.【点评】本题考查了等腰三角形的性质.平行线的性质以及三角形外角的性质.解决问题的关键是注意运用两直线平行.同旁内角互补.3.(2022•自贡)等腰三角形顶角度数比一个底角度数的2倍多20°.则这个底角的度数是()A.30°B.40°C.50°D.60°【分析】设底角的度数是x°.则顶角的度数为(2x+20)°.根据三角形内角和是180°列出方程.解方程即可得出答案.【解析】设底角的度数是x°.则顶角的度数为(2x+20)°.根据题意得:x+x+2x+20=180.解得:x=40.故选:B.【点评】本题考查了等腰三角形的性质.考查了方程思想.掌握等腰三角形两个底角相等是解题的关键.4.(2022•天津)如图.△OAB的顶点O(0.0).顶点A.B分别在第一、四象限.且AB⊥x轴.若AB=6.OA=OB=5.则点A的坐标是()A.(5.4)B.(3.4)C.(5.3)D.(4.3)【分析】根据等腰三角形的性质求出AC.根据勾股定理求出OC.根据坐标与图形性质写出点A的坐标.【解析】设AB与x轴交于点C.∵OA=OB.OC⊥AB.AB=6.∴AC=AB=3.由勾股定理得:OC===4.∴点A的坐标为(4.3).故选:D.【点评】本题考查的是等腰三角形的性质、坐标与图形性质.掌握等腰三角形的三线合一是解题的关键.5.(2022•台湾)如图.△ABC中.D点在AB上.E点在BC上.DE为AB的中垂线.若∠B=∠C.且∠EAC>90°.则根据图中标示的角.判断下列叙述何者正确?()A.∠1=∠2.∠1<∠3B.∠1=∠2.∠1>∠3C.∠1≠∠2.∠1<∠3D.∠1≠∠2.∠1>∠3【分析】根据线段垂直平分线的性质.等腰三角形的性质解答即可.【解析】∵DE为AB的中垂线.∴∠BDE=∠ADE.BE=AE.∴∠B=∠BAE.∴∠1=∠2.∵∠EAC>90°.∴∠3+∠C<90°.∵∠B+∠1=90°.∠B=∠C.∴∠1>∠3.∴∠1=∠2.∠1>∠3.故选:B.【点评】本题主要考查了线段垂直平分线的性质和等腰三角形的性质.熟练掌握相关的性质定理是解答本题的关键.6.(2022•广元)如图.在△ABC中.BC=6.AC=8.∠C=90°.以点B为圆心.BC长为半径画弧.与AB交于点D.再分别以A、D为圆心.大于AD的长为半径画弧.两弧交于点M、N.作直线MN.分别交AC、AB于点E、F.则AE的长度为()A.B.3C.2D.【分析】利用勾股定理求出AB.再利用相似三角形的性质求出AE即可.【解析】在Rt△ABC中.BC=6.AC=8.∴AB===10.∵BD=CB=6.∴AD=AB=BC=4.由作图可知EF垂直平分线段AD.∴AF=DF=2.∵∠A=∠A.∠AFE=∠ACB=90°.∴△AFE∽△ACB.∴=.∴=.∴AE=.故选:A.【点评】本题考查勾股定理.相似三角形的判定和性质等知识.解题的关键是正确寻找相似三角形解决问题.属于中考常考题型.7.(2022•金华)如图是城市某区域的示意图.建立平面直角坐标系后.学校和体育场的坐标分别是(3.1).(4.﹣2).下列各地点中.离原点最近的是()A.超市B.医院C.体育场D.学校【分析】根据题意可以画出相应的平面直角坐标系.然后根据勾股定理.可以得到点O到超市、学校、体育场、医院的距离.再比较大小即可.【解析】如右图所示.点O到超市的距离为:=.点O到学校的距离为:=.点O到体育场的距离为:=.点O到医院的距离为:=.∵<=<.∴点O到超市的距离最近.故选:A.【点评】本题考查勾股定理、平面直角坐标系.解答本题的关键是明确题意.作出合适平面直角坐标系.8.(2022•温州)如图.在Rt△ABC中.∠ACB=90°.以其三边为边向外作正方形.连结CF.作GM⊥CF于点M.BJ⊥GM于点J.AK⊥BJ于点K.交CF于点L.若正方形ABGF与正方形JKLM的面积之比为5.CE=+.则CH的长为()A.B.C.2D.【分析】设CF交AB于P.过C作CN⊥AB于N.设正方形JKLM边长为m.根据正方形ABGF与正方形JKLM的面积之比为5.得AF=AB=m.证明△AFL ≌△FGM(AAS).可得AL=FM.设AL=FM=x.在Rt△AFL中.x2+(x+m)2=(m)2.可解得x=m.有AL=FM=m.FL=2m.从而可得AP=.FP=m.BP=.即知P为AB中点.CP=AP=BP=.由△CPN∽△FP A.得CN =m.PN=m.即得AN=m.而tan∠BAC===.又△AEC∽△BCH.得=.即=.故CH=2.【解析】设CF交AB于P.过C作CN⊥AB于N.如图:设正方形JKLM边长为m.∴正方形JKLM面积为m2.∵正方形ABGF与正方形JKLM的面积之比为5.∴正方形ABGF的面积为5m2.∴AF=AB=m.由已知可得:∠AFL=90°﹣∠MFG=∠MGF.∠ALF=90°=∠FMG.AF=GF.∴△AFL≌△FGM(AAS).∴AL=FM.设AL=FM=x.则FL=FM+ML=x+m.在Rt△AFL中.AL2+FL2=AF2.∴x2+(x+m)2=(m)2.解得x=m或x=﹣2m(舍去).∴AL=FM=m.FL=2m.∵tan∠AFL====.∴=.∴AP=.∴FP===m.BP=AB﹣AP=m﹣=.∴AP=BP.即P为AB中点.∵∠ACB=90°.∴CP=AP=BP=.∵∠CPN=∠APF.∠CNP=90°=∠F AP.∴△CPN∽△FP A.∴==.即==.∴CN=m.PN=m.∴AN=AP+PN=m.∴tan∠BAC====.∵△AEC和△BCH是等腰直角三角形.∴△AEC∽△BCH.∴=.∵CE=+.∴=.∴CH=2.故选:C.【点评】本题考查正方形性质及应用.涉及全等三角形判定与性质.相似三角形判定与性质.勾股定理等知识.解题的关键是用含m的代数式表示相关线段的长度.9.(2022•安徽)已知点O是边长为6的等边△ABC的中心.点P在△ABC外.△ABC.△P AB.△PBC.△PCA的面积分别记为S0.S1.S2.S3.若S1+S2+S3=2S0.则线段OP长的最小值是()A.B.C.3D.【分析】如图.不妨假设点P在AB的左侧.证明△P AB的面积是定值.过点P作AB的平行线PM.连接CO延长CO交AB于点R.交PM于点T.因为△P AB的面积是定值.推出点P的运动轨迹是直线PM.求出OT的值.可得结论.【解析】如图.不妨假设点P在AB的左侧.∵S△P AB+S△ABC=S△PBC+S△P AC.∴S1+S0=S2+S3.∵S1+S2+S3=2S0.∴S1+S1+S0=2.∴S1=S0.∵△ABC是等边三角形.边长为6.∴S0=×62=9.∴S1=.过点P作AB的平行线PM.连接CO延长CO交AB于点R.交PM于点T.∵△P AB的面积是定值.∴点P的运动轨迹是直线PM.∵O是△ABC的中心.∴CT⊥AB.CT⊥PM.∴•AB•RT=.CR=3.OR=.∴RT=.∴OT=OR+TR=.∵OP≥OT.∴OP的最小值为.当点P在②区域时.同法可得OD的最小值为.如图.当点P在①③⑤区域时.OP的最小值为.当点P在②④⑥区域时.最小值为.∵<.故选:B.【点评】本题考查等边三角形的性质.解直角三角形.三角形的面积等知识.解题的关键是证明△P AB的面积是定值.10.(2022•南充)如图.在Rt△ABC中.∠C=90°.∠BAC的平分线交BC于点D.DE∥AB.交AC于点E.DF⊥AB于点F.DE=5.DF=3.则下列结论错误的是()A.BF=1B.DC=3C.AE=5D.AC=9【分析】根据角平分线的性质和和勾股定理.可以求得CD和CE的长.再根据平行线的性质.即可得到AE的长.从而可以判断B和C.然后即可得到AC的长.即可判断D.再根据全等三角形的判定和性质即可得到BF的长.从而可以判断A.【解析】∵AD平分∠BAC.∠C=90°.DF⊥AB.∴∠1=∠2.DC=FD.∠C=∠DFB=90°.∵DE∥AB.∴∠2=∠3.∴∠1=∠3.∴AE=DE.∵DE=5.DF=3.∴AE=5.CD=3.故选项B、C正确.∴CE==4.∴AC=AE+EC=5+4=9.故选项D正确.∵DE∥AB.∠DFB=90°.∴∠EDF=∠DFB=90°.∴∠CDF+∠FDB=90°.∵∠CDF+∠DEC=90°.∴∠DEC=∠FDB.∵tan∠DEC=.tan∠FDB=.∴.解得BF=.故选项A错误.故选:A.【点评】本题考查勾股定理、全等三角形的判定和性质、等腰三角形的性质、角平分线的性质.解答本题的关键是明确题意.利用数形结合的思想解答.11.(2022•宜昌)如图.在△ABC中.分别以点B和点C为圆心.大于BC长为半径画弧.两弧相交于点M.N.作直线MN.交AC于点D.交BC于点E.连接BD.若AB=7.AC=12.BC=6.则△ABD的周长为()A.25B.22C.19D.18【分析】根据题意可知MN垂直平分BC.即可得到DB=DC.然后即可得到AB+BD+AD=AB+DC+AD=AB+AC.从而可以求得△ABD的周长.【解析】由题意可得.MN垂直平分BC.∴DB=DC.∵△ABD的周长是AB+BD+AD.∴AB+BD+AD=AB+DC+AD=AB+AC.∵AB=7.AC=12.∴AB+AC=19.∴∵△ABD的周长是19.故选:C.【点评】本题考查线段垂直平分线的性质.三角形的周长.解答本题的关键是明确题意.利用数形结合的思想解答.12.(2022•河北)题目:“如图.∠B=45°.BC=2.在射线BM上取一点A.设AC =d.若对于d的一个数值.只能作出唯一一个△ABC.求d的取值范围.”对于其答案.甲答:d≥2.乙答:d=1.6.丙答:d=.则正确的是()A.只有甲答的对B.甲、丙答案合在一起才完整C.甲、乙答案合在一起才完整D.三人答案合在一起才完整【分析】由题意知.当CA⊥BA或CA>BC时.能作出唯一一个△ABC.分这两种情况求解即可.【解析】由题意知.当CA⊥BA或CA>BC时.能作出唯一一个△ABC.①当CA⊥BA时.∵∠B=45°.BC=2.∴AC=BC•sin45°=2×=.即此时d=.②当CA=BC时.∵∠B=45°.BC=2.∴此时AC=2.即d>2.综上.当d=或d>2时能作出唯一一个△ABC.故选:B.【点评】本题主要考查三角形的三边关系及等腰直角三角形的知识.熟练掌握等腰直角三角形的性质及三角形的三边关系是解题的关键.13.(2022•宜宾)如图.△ABC和△ADE都是等腰直角三角形.∠BAC=∠DAE=90°.点D是BC边上的动点(不与点B、C重合).DE与AC交于点F.连结CE.下列结论:①BD=CE.②∠DAC=∠CED.③若BD=2CD.则=.④在△ABC内存在唯一一点P.使得P A+PB+PC的值最小.若点D在AP的延长线上.且AP的长为2.则CE=2+.其中含所有正确结论的选项是()A.①②④B.①②③C.①③④D.①②③④【分析】①正确.证明△BAD≌△DAE(SAS).可得结论.②正确.证明A.D.C.E四点共圆.利用圆周角定理证明.③正确.设CD=m.则BD=CE=2m.DE=m.OA=m.过点C作CJ⊥DF于点J.求出AO.CJ.可得结论.④错误.将△BPC绕点B顺时针旋转60°得到△BNM.连接PN.当点A.点P.点N.点M共线时.P A+PB+PC值最小.此时∠APB=∠APC=∠BPC=120°.PB =PC.AD⊥BC.设PD=t.则BD=AD=t.构建方程求出t.可得结论.【解析】如图1中.∵∠BAC=∠DAE=90°.∴∠BAD=∠CAE.∵AB=AC.AD=AE.∴△BAD≌△DAE(SAS).∴BD=EC.∠ADB=∠AEC.故①正确.∵∠ADB+∠ADC=180°.∴∠AEC+∠ADC=180°.∴∠DAE+∠DCE=180°.∴∠DAE=∠DCE=90°.取DE的中点O.连接OA.OA.OC.则OA=OD=OE=OC.∴A.D.C.E四点共圆.∴∠DAC=∠CED.故②正确.设CD=m.则BD=CE=2m.DE=m.OA=m.过点C作CJ⊥DF于点J.∵tan∠CDF===2.∴CJ=m.∵AO⊥DE.CJ⊥DE.∴AO∥CJ.∴===.故③正确.如图2中.将△BPC绕点B顺时针旋转60°得到△BNM.连接PN.∴BP=BN.PC=NM.∠PBN=60°.∴△BPN是等边三角形.∴BP=PN.∴P A+PB+PC=AP+PN+MN.∴当点A.点P.点N.点M共线时.P A+PB+PC值最小.此时∠APB=∠APC=∠BPC=120°.PB=PC.AD⊥BC.∴∠BPD=∠CPD=60°.设PD=t.则BD=AD=t.∴2+t=t.∴t=+1.∴CE=BD=t=3+.故④错误.故选:B.【点评】本题考查等腰直角三角形的性质.全等三角形的判定和性质.四点共圆.圆周角定理.解直角三角形等知识.解题的关键是学会添加常用辅助线.构造特殊三角形解决问题.属于中考选择题中的压轴题.14.(2022•眉山)在△ABC中.AB=4.BC=6.AC=8.点D.E.F分别为边AB.AC.BC 的中点.则△DEF的周长为()A.9B.12C.14D.16【分析】根据三角形的中位线平行于第三边.并且等于第三边的一半.可得出△ABC的周长=2△DEF的周长.【解析】如图.点E.F分别为各边的中点.∴DE、EF、DF是△ABC的中位线.∴DE=BC=3.EF=AB=2.DF=AC=4.∴△DEF的周长=3+2+4=9.故选:A.【点评】本题考查了三角形中位线定理.解题的关键是根据中位线定理得出边之间的数量关系.15.(2022•湘潭)中国古代数学家赵爽在为《周髀算经》作注解时.用4个全等的直角三角形拼成正方形(如图).并用它证明了勾股定理.这个图被称为“弦图”.若“弦图”中小正方形面积与每个直角三角形面积均为1.α为直角三角形中的一个锐角.则tanα=()A.2B.C.D.【分析】根据题意和题目中的数据.可以先求出大正方形的面积.然后设出小直角三角形的两条直角边.再根据勾股定理和两直角边的关系可求得直角三角形的两条直角边的长.然后即可求得tanα的值.【解析】由已知可得.大正方形的面积为1×4+1=5.设直角三角形的长直角边为a.短直角边为b.则a2+b2=5.a﹣b=1.解得a=2.b=1或a=1.b=﹣2(不合题意.舍去).∴tanα===2.故选:A.【点评】本题考查勾股定理的证明、解直角三角形.解答本题的关键是求出直角三角形的两条直角边长.16.(2022•苏州)如图.点A的坐标为(0.2).点B是x轴正半轴上的一点.将线段AB绕点A按逆时针方向旋转60°得到线段AC.若点C的坐标为(m.3).则m的值为()A.B.C.D.【分析】过C作CD⊥x轴于D.CE⊥y轴于E.根据将线段AB绕点A按逆时针方向旋转60°得到线段AC.可得△ABC是等边三角形.又A(0.2).C(m.3).即得AC==BC=AB.可得BD==.OB==.从而+=m.即可解得m=.【解析】过C作CD⊥x轴于D.CE⊥y轴于E.如图:∵CD⊥x轴.CE⊥y轴.∠DOE=90°.∴四边形EODC是矩形.∵将线段AB绕点A按逆时针方向旋转60°得到线段AC.∴AB=AC.∠BAC=60°.∴△ABC是等边三角形.∴AB=AC=BC.∵A(0.2).C(m.3).∴CE=m=OD.CD=3.OA=2.∴AE=OE﹣OA=CD﹣OA=1.∴AC===BC=AB.在Rt△BCD中.BD==.在Rt△AOB中.OB==.∵OB+BD=OD=m.∴+=m.化简变形得:3m4﹣22m2﹣25=0.解得m=或m=﹣(舍去).∴m=.故选:C.【点评】本题考查直角坐标系中的旋转变换.解题的关键是熟练应用勾股定理.用含m的代数式表示相关线段的长度.17.(2022•扬州)如图.小明家仿古家具的一块三角形形状的玻璃坏了.需要重新配一块.小明通过电话给玻璃店老板提供相关数据.为了方便表述.将该三角形记为△ABC.提供下列各组元素的数据.配出来的玻璃不一定符合要求的是()A.AB.BC.CA B.AB.BC.∠B C.AB.AC.∠B D.∠A.∠B.BC 【分析】直接利用全等三角形的判定方法分析得出答案.【解析】A.利用三角形三边对应相等.两三角形全等.三角形形状确定.故此选项不合题意.B.利用三角形两边、且夹角对应相等.两三角形全等.三角形形状确定.故此选项不合题意.C.AB.AC.∠B.无法确定三角形的形状.故此选项符合题意.D.根据∠A.∠B.BC.三角形形状确定.故此选项不合题意.故选:C.【点评】此题主要考查了全等三角形的应用.正确掌握全等三角形的判定方法是解题关键.18.(2022•湖州)如图.已知在锐角△ABC中.AB=AC.AD是△ABC的角平分线.E 是AD上一点.连结EB.EC.若∠EBC=45°.BC=6.则△EBC的面积是()A.12B.9C.6D.3【分析】根据等腰三角形的性质得到BD=CD=3.AD⊥BC.根据等腰直角三角形的性质求出ED.根据三角形的面积公式计算.得到答案.【解析】∵AB=AC.AD是△ABC的角平分线.∴BD=CD=BC=3.AD⊥BC.在Rt△EBD中.∠EBC=45°.∴ED=BD=3.∴S△EBC=BC•ED=×6×3=9.故选:B.【点评】本题考查的是等腰三角形的性质、直角三角形的性质.掌握等腰三角形的三线合一是解题的关键.19.(2022•宁波)如图.在Rt△ABC中.D为斜边AC的中点.E为BD上一点.F为CE中点.若AE=AD.DF=2.则BD的长为()A.2B.3C.2D.4【分析】根据三角形中位线可以求得AE的长.再根据AE=AD.可以得到AD的长.然后根据直角三角形斜边上的中线和斜边的关系.可以求得BD的长.【解析】∵D为斜边AC的中点.F为CE中点.DF=2.∴AE=2DF=4.∵AE=AD.∴AD=4.在Rt△ABC中.D为斜边AC的中点.∴BD=AC=AD=4.故选:D.【点评】本题考查直角三角线斜边上的中线和斜边的关系、三角形的中位线.解答本题的关键是求出AD的长.20.(2022•云南)如图.OB平分∠AOC.D、E、F分别是射线OA、射线OB、射线OC上的点.D、E、F与O点都不重合.连接ED、EF.若添加下列条件中的某一个.就能使△DOE≌△FOE.你认为要添加的那个条件是()A.OD=OE B.OE=OF C.∠ODE=∠OED D.∠ODE=∠OFE【分析】由OB平分∠AOC.得∠DOE=∠FOE.由OE=OE.可知∠ODE=∠OFE.即可根据AAS得△DOE≌△FOE.可得答案.【解析】∵OB平分∠AOC.∴∠DOE=∠FOE.又OE=OE.若∠ODE=∠OFE.则根据AAS可得△DOE≌△FOE.故选项D符合题意.而增加OD=OE不能得到△DOE≌△FOE.故选项A不符合题意.增加OE=OF不能得到△DOE≌△FOE.故选项B不符合题意.增加∠ODE=∠OED不能得到△DOE≌△FOE.故选项C不符合题意.故选:D.【点评】本题考查全等三角形的判定.解题的关键是掌握全等三角形判定定理并会应用.21.(2022•达州)如图.AB∥CD.直线EF分别交AB.CD于点M.N.将一个含有45°角的直角三角尺按如图所示的方式摆放.若∠EMB=80°.则∠PNM等于()A.15°B.25°C.35°D.45°【分析】根据平行线的性质得到∠DNM=∠BME=80°.由等腰直角三角形的性质得到∠PND=45°.即可得到结论.【解析】∵AB∥CD.∴∠DNM=∠BME=80°.∵∠PND=45°.∴∠PNM=∠DNM﹣∠DNP=80°﹣45°=35°.故选:C.【点评】本题考查了平行线的性质.等腰直角三角形的性质.熟练掌握平行线的性质是解题的关键.22.(2022•金华)如图.圆柱的底面直径为AB.高为AC.一只蚂蚁在C处.沿圆柱的侧面爬到B处.现将圆柱侧面沿AC“剪开”.在侧面展开图上画出蚂蚁爬行的最近路线.正确的是()A.B.C.D.【分析】利用圆柱的侧面展开图是矩形.而点B是展开图的一边的中点.再利用蚂蚁爬行的最近路线为线段可以得出结论.【解析】将圆柱侧面沿AC“剪开”.侧面展开图为矩形.∵圆柱的底面直径为AB.∴点B是展开图的一边的中点.∵蚂蚁爬行的最近路线为线段.∴C选项符合题意.故选:C.【点评】本题主要考查了圆柱的侧面展开图.最短路径问题.掌握两点之间线段最短是解题的关键.23.(2022•舟山)如图.在Rt△ABC和Rt△BDE中.∠ABC=∠BDE=90°.点A 在边DE的中点上.若AB=BC.DB=DE=2.连结CE.则CE的长为()A.B.C.4D.【分析】根据题意先作出合适的辅助线.然后根据勾股定理可以得到AB和BC 的长.根据等面积法可以求得EG的长.再根据勾股定理求得EF的长.最后计算出CE的长即可.【解析】作EF⊥CB交CB的延长线于点F.作EG⊥BA交BA的延长线于点G.∵DB=DE=2.∠BDE=90°.点A是DE的中点.∴BE===2.DA=EA=1.∴AB===.∵AB=BC.∴BC=.∵=.∴.解得EG=.∵EG⊥BG.EF⊥BF.∠ABF=90°.∴四边形EFBG是矩形.∴EG=BF=.∵BE=2.BF=.∴EF===.CF=BF+BC=+=.∵∠EFC=90°.∴EC===.故选:D.【点评】本题考查勾股定理、等腰直角三角形.解答本题的关键是明确题意.求出EF和CF的长.24.(2022•遂宁)如图.D、E、F分别是△ABC三边上的点.其中BC=8.BC边上的高为6.且DE∥BC.则△DEF面积的最大值为()A.6B.8C.10D.12【分析】过点A作AM⊥BC于M.交DE于点N.则AN⊥DE.设AN=a.根据DE ∥BC.证出△ADE∽△ABC.根据相似三角形对应高的比等于相似比得到DE=a.列出△DEF面积S的函数表达式.根据配方法求最值即可.【解析】如图.过点A作AM⊥BC于M.交DE于点N.则AN⊥DE.设AN=a.∵DE∥BC.∴∠ADE=∠B.∠AED=∠C.∴△ADE∽△ABC.∴=.∴=.∴DE=a.∴△DEF面积S=×DE×MN=×a•(6﹣a)=﹣a2+4a=﹣(a﹣3)2+6.∴当a=3时.S有最大值.最大值为6.故选:A.【点评】本题考查了三角形的面积.平行线的性质.列出△DEF面积S的函数表达式.根据配方法求最值是解题的关键.二.填空题(共15小题)25.(2022•岳阳)如图.在△ABC中.AB=AC.AD⊥BC于点D.若BC=6.则CD=3.【分析】根据等腰三角形的性质可知D是BC的中点.即可求出CD的长.【解析】∵AB=AC.AD⊥BC.∴CD=BD.∵BC=6.∴CD=3.故答案为:3.【点评】本题考查了等腰三角形的性质.熟练掌握等腰三角形三线合一是解题的关键.26.(2022•苏州)定义:一个三角形的一边长是另一边长的2倍.这样的三角形叫做“倍长三角形”.若等腰△ABC是“倍长三角形”.底边BC的长为3.则腰AB的长为6.【分析】由等腰△ABC是“倍长三角形”.可知AB=2BC或BC=2AB.若AB =2BC=6.可得AB的长为6.若BC=3=2AB.因1.5+1.5=3.故此时不能构成三角形.这种情况不存在.即可得答案.【解析】∵等腰△ABC是“倍长三角形”.∴AB=2BC或BC=2AB.若AB=2BC=6.则△ABC三边分别是6.6.3.符合题意.∴腰AB的长为6.若BC=3=2AB.则AB=1.5.△ABC三边分别是1.5.1.5.3.∵1.5+1.5=3.∴此时不能构成三角形.这种情况不存在.综上所述.腰AB的长是6.故答案为:6.【点评】本题考查三角形三边关系.涉及新定义.解题的关键是分类思想的应用及掌握三角形任意两边的和大于第三边.27.(2022•云南)已知△ABC是等腰三角形.若∠A=40°.则△ABC的顶角度数是40°或100°.【分析】分∠A是顶角和底角两种情况讨论.即可解答.【解析】当∠A是顶角时.△ABC的顶角度数是40°.当∠A是底角时.则△ABC的顶角度数为180°﹣2×40°=100°.综上.△ABC的顶角度数是40°或100°.故答案为:40°或100°.【点评】本题考查了等腰三角形的性质.此类题目.难点在于要分情况讨论.28.(2022•滨州)如图.屋顶钢架外框是等腰三角形.其中AB=AC.立柱AD⊥BC.且顶角∠BAC=120°.则∠C的大小为30°.【分析】根据等腰三角形的性质和三角形内角和得到∠B=∠C=30°.【解析】∵AB=AC且∠BAC=120°.∴∠B=∠C=(180°﹣∠BAC)=×60°=30°.故答案为:30°.【点评】本题考查了等腰三角形的性质.熟练掌握等腰三角形的两个底角相等的性质是解题的关键.29.(2022•丽水)三个能够重合的正六边形的位置如图.已知B点的坐标是(﹣.3).则A点的坐标是(.﹣3).【分析】根据正六边形的性质可得点A和点B关于原点对称.进而可以解决问题.【解析】因为点A和点B关于原点对称.B点的坐标是(﹣.3).所以A点的坐标是(.﹣3).故答案为:(.﹣3).【点评】本题考查了正六边形的性质.中心对称图形.解决本题的关键是掌握关于原点对称的点的坐标特征.30.(2022•金华)如图.在Rt△ABC中.∠ACB=90°.∠A=30°.BC=2cm.把△ABC沿AB方向平移1cm.得到△A'B'C'.连结CC'.则四边形AB'C'C的周长为(8+2)cm.【分析】利用含30°角的直角三角形的性质.勾股定理和平移的性质.求得四边形AB'C'C的四边即可求得结论.【解析】∵在Rt△ABC中.∠ACB=90°.∠A=30°.BC=2cm.∴AB=2BC=4.∴AC==2.∵把△ABC沿AB方向平移1cm.得到△A'B'C'.∴B′C′=BC=2.AA′=CC′=1.A′B′=AB=4.∴AB′=AA′+A′B′=5.∴四边形AB'C'C的周长为AB′+B′C′+CC′+AC=5+2+1+2=(8+2)cm.故答案为:(8+2).【点评】本题主要考查了含30°角的直角三角形的性质.勾股定理和平移的性质.熟练掌握平移的性质是解题的关键.31.(2022•宜宾)《数书九章》是中国南宋时期杰出数学家秦九韶的著作.书中提出了已知三角形三边a、b、c求面积的公式.其求法是:“以小斜幂并大斜幂减中斜幂.余半之.自乘于上.以小斜幂乘大斜幂减上.余四约之.为实.一为从隅.开平方得积.”若把以上这段文字写成公式.即为S=.现有周长为18的三角形的三边满足a:b:c =4:3:2.则用以上给出的公式求得这个三角形的面积为3.【分析】根据题意先求出a、b、c.再代入公式进行计算即可.【解析】根据a:b:c=4:3:2.设a=4k.b=3k.c=2k.则4k+3k+2k=18.解得:k=2.∴a=4k=4×2=8.b=3k=3×2=6.c=2k=2×2=4.∴S===3.故答案为:3.【点评】本题考查了二次根式的运算.要注意运算顺序.解答的关键是对相应的运算法则的熟练掌握.32.(2022•十堰)【阅读材料】如图①.四边形ABCD中.AB=AD.∠B+∠D=180°.点E.F分别在BC.CD上.若∠BAD=2∠EAF.则EF=BE+DF.【解决问题】如图②.在某公园的同一水平面上.四条道路围成四边形ABCD.已知CD=CB=100m.∠D=60°.∠ABC=120°.∠BCD=150°.道路AD.AB上分别有景点M.N.且DM=100m.BN=50(﹣1)m.若在M.N之间修一条直路.则路线M→N的长比路线M→A→N的长少370m(结果取整数.参考数据:≈1.7).【分析】解法一:如图.作辅助线.构建直角三角形.先根据四边形的内角和定理证明∠G=90°.分别计算AD.CG.AG.BG的长.由线段的和与差可得AM和AN 的长.最后由勾股定理可得MN的长.计算AM+AN﹣MN可得答案.解法二:构建【阅读材料】的图形.根据结论可得MN的长.从而得结论.【解析】解法一:如图.延长DC.AB交于点G.∵∠D=60°.∠ABC=120°.∠BCD=150°.∴∠A=360°﹣60°﹣120°﹣150°=30°.∴∠G=90°.∴AD=2DG.Rt△CGB中.∠BCG=180°﹣150°=30°.∴BG=BC=50.CG=50.∴DG=CD+CG=100+50.∴AD=2DG=200+100.AG=DG=150+100.∵DM=100.∴AM=AD﹣DM=200+100﹣100=100+100.∵BG=50.BN=50(﹣1).∴AN=AG﹣BG﹣BN=150+100﹣50﹣50(﹣1)=150+50.Rt△ANH中.∵∠A=30°.∴NH=AN=75+25.AH=NH=75+75.由勾股定理得:MN===50(+1).∴AM+AN﹣MN=100+100+150+50﹣50(+1)=200+100≈370(m).答:路线M→N的长比路线M→A→N的长少370m.解法二:如图.延长DC.AB交于点G.连接CN.CM.则∠G=90°.∵CD=DM.∠D=60°.∴△BCM是等边三角形.∴∠DCM=60°.由解法一可知:CG=50.GN=BG+BN=50+50(﹣1)=50.∴△CGN是等腰直角三角形.∴∠GCN=45°.∴∠BCN=45°﹣30°=15°.∴∠MCN=150°﹣60°﹣15°=75°=∠BCD.由【阅读材料】的结论得:MN=DM+BN=100+50(﹣1)=50+50.∵AM+AN﹣MN=AD+AG﹣MN=100+100+150+50﹣50(+1)=200+100≈370(m).答:路线M→N的长比路线M→A→N的长少370m.故答案为:370.【点评】此题重点考查了含30°的直角三角形的性质.勾股定理.二次根式的混合运算等知识与方法.解题的关键是作出所需要的辅助线.构造含30°的直角三角形.再利用线段的和与差进行计算即可.33.(2022•山西)如图.在正方形ABCD中.点E是边BC上的一点.点F在边CD 的延长线上.且BE=DF.连接EF交边AD于点G.过点A作AN⊥EF.垂足为点M.交边CD于点N.若BE==8.则线段AN的长为4.【分析】连接AE.AF.EN.由正方形的性质可得AB=AD.BC=CD.∠ABE=∠BCD=∠ADF=90°.可证得△ABE≌△ADF(SAS).可得∠BAE=∠DAF.AE =AF.从而可得∠EAF=90°.根据等腰三角形三线合一可得点M为EF中点.由AN⊥EF可证得△AEM≌△AFM(SAS).△EMN≌△FMN(SAS).可得EN =FN.设DN=x.则EN=FN=x+5.CE=x+3.由勾股定理解得x=12.可得AB=CD=20.由勾股定理可得AE=5.从而可得AM=EM=FM=.由勾股定理可得MN=.即可求解.【解析】如图.连接AE.AF.EN.∵四边形ABCD为正方形.∴AB=AD.BC=CD.∠ABE=∠BCD=∠ADF=90°.∵BE=DF.∴△ABE≌△ADF(SAS).∴∠BAE=∠DAF.AE=AF.∴∠EAF=90°.∴△EAF为等腰直角三角形.∵AN⊥EF.∴EM=FM.∠EAM=∠F AM=45°.∴△AEM≌△AFM(SAS).△EMN≌△FMN(SAS).∴EN=FN.设DN=x.∵BE=DF==8.∴CD=CN+DN=x+8.∴EN=FN=DN+DF=x+5.CE=BC﹣BE=CD﹣BE=x+8﹣5=x+3.在Rt△ECN中.由勾股定理可得:CN2+CE2=EN2.即82+(x+3)2=(x+5)2.解得:x=12.∴AB=CD=x+8=20.EN=x+5=17.在Rt△ABE中.由勾股定理可得:AE===5.∴AM=EM=FM==.在Rt△EMN中.由勾股定理可得:MN===.∴AN=AM+MN=+=4.故答案为:4.【点评】本题考查正方形的性质.勾股定理.等腰三角形的性质.全等三角形的判定与性质等知识点.解题的关键是正确作出辅助线.构建全等三角形解决问题.34.(2022•武汉)如图.在Rt△ABC中.∠ACB=90°.AC>BC.分别以△ABC的三边为边向外作三个正方形ABHL.ACDE.BCFG.连接DF.过点C作AB的垂线CJ.垂足为J.分别交DF.LH于点I.K.若CI=5.CJ=4.则四边形AJKL的面积是80.【分析】过点D作DM⊥CI于点M.过点F作FN⊥CI于点N.由正方形的性质可证得△ACJ≌△CDM.△BCJ≌△CFN.可得DM=CJ.FN=CJ.可证得△DMI ≌△FNI.由直角三角形斜边上的中线的性质可得DI=FI=CI.由勾股定理可得MI.NI.从而可得CN.可得BJ与AJ.即可求解.【解析】过点D作DM⊥CI.交CI的延长线于点M.过点F作FN⊥CI于点N.∵△ABC为直角三角形.四边形ACDE.BCFG为正方形.过点C作AB的垂线CJ.CJ=4.∴AC=CD.∠ACD=90°.∠AJC=∠CMD=90°.∠CAJ+∠ACJ=90°.BC=CF.∠BCF=90°.∠CNF=∠BJC=90°.∠FCN+∠CFN=90°.∴∠ACJ+∠DCM=90°.∠FCN+∠BCJ=90°.∴∠CAJ=∠DCM.∠BCJ=∠CFN.∴△ACJ≌△CDM(AAS).△BCJ≌△CFN(AAS).∴AJ=CM.DM=CJ=4.BJ=CN.NF=CJ=4.∴DM=NF.∴△DMI≌△FNI(AAS).∴DI=FI.MI=NI.∵∠DCF=90°.∴DI=FI=CI=5.在Rt△DMI中.由勾股定理可得:MI===3.∴NI=MI=3.∴AJ=CM=CI+MI=5+3=8.BJ=CN=CI﹣NI=5﹣3=2.∴AB=AJ+BJ=8+2=10.∵四边形ABHL为正方形.∴AL=AB=10.∵四边形AJKL为矩形.∴四边形AJKL的面积为:AL•AJ=10×8=80.故答案为:80.【点评】本题考查正方形的性质.勾股定理.全等三角形的判定与性质等知识点.解题的关键是正确作出辅助线.利用全等三角形的性质进行求解.35.(2022•孝感)勾股定理最早出现在商高的《周髀算经》:“勾广三.股修四.经隅五”.观察下列勾股数:3.4.5.5.12.13.7.24.25.….这类勾股数的特点是:勾为奇数.弦与股相差为1.柏拉图研究了勾为偶数.弦与股相差为2的一类勾股数.如:6.8.10.8.15.17.….若此类勾股数的勾为2m(m≥3.m为正整数).则其弦是m2+1(结果用含m的式子表示).【分析】根据题意得2m为偶数.设其股是a.则弦为a+2.根据勾股定理列方程即可得到结论.【解析】∵m为正整数.∴2m为偶数.设其股是a.则弦为a+2.根据勾股定理得.(2m)2+a2=(a+2)2.解得a=m2+1.综上所述.其弦是m2+1.故答案为:m2+1.【点评】本题考查了勾股数.勾股定理.熟练掌握勾股定理是解题的关键.36.(2022•台州)如图.在△ABC中.∠ACB=90°.D.E.F分别为AB.BC.CA的中点.若EF的长为10.则CD的长为10.【分析】根据三角形中位线定理求出AB.根据直角三角形斜边上的中线的性质即可求出CD.【解析】∵E.F分别为BC.CA的中点.∴EF是△ABC的中位线.∴EF=AB.∴AB=2EF=20.在Rt△ABC中.∠ACB=90°.D为AB中点.AB=20.。
中考数学一轮复习《等腰三角形与直角三角形》知识梳理及典型例题讲解课件
A
3.如图,在等边三角形ABC中,AB=4,D是边BC上一点,且∠BAD=30°,则CD的长为 2 .
2
4.如图,在△ABC中,∠ACB=90°,∠ACB的平分线交AB于点D,∠B=45°,BC=4,则AB的长为 4 ,CD的长为 2 .
4
2
5.如图,将长为8 cm的橡皮筋放置在水平面上,固定两端A和B,然后把中点C垂直向上拉升3 cm至点D,则橡皮筋被拉长了 2 cm.
(2)用四个同样的含60°角的直角三角形拼成如图2所示的正方形ABCD,若正方形EFGH的边长是-1,则正方形ABCD的边长是 2 ;
2
(3)如图3,△ABD是等腰直角三角形,∠ADB=90°,F是BD上一点,延长AD至点E,使DE=DF,连接BE,AF,延长AF交BE于点C.若BE=5,则AF的长为 5 ;
2
6.如图,在△ABC中,∠B,∠C的平分线交于点O,过点O作EF∥BC,交AB,AC于点E,F.当EF=6,CF=4时,BE的长为 2 .
2
命题点1 等腰三角形的性质与判定
1.已知等边三角形一边上的高为2,则它的边长为( C )
A.2
B.3
C.4
D.4
2.5月26日,“2023中国国际大数据产业博览会”在贵阳开幕,在“自动化立体库”中有许多几何元素,其中有一个等腰三角形模型(示意图如图所示),它的顶角为120°,腰长为12 m,则底边上的高是( B )
如图1,则有DE+DF=CG;
如图2,则有DF-DE=CG.
图1
图2
4.涉及等腰三角形且图形不定时,应分类讨论,即有边时,考虑谁为腰,谁为底;有角时,考虑谁为顶角,谁为底角;有高时,考虑高在三角形内,还是高在三角形外.
中考数学总复习分层提分训练:等腰三角形与直角三角形含答案(以2010-2012年真题为例)
等腰三角形与直角三角形一级训练1.(2011年湖南邵阳)如图4-2-31所示,在△ABC中,AB=AC,∠B=50°,则∠A=() A.40°B.50°C.80°D.100°图4-2-31 图4-2-32图4-2-332.(2011年浙江舟山)如图4-2-32,边长为4的等边△ABC中,DE为中位线,则四边形BCED的面积为()A.2 3B.3 3 C. 4 3 D. 6 33.如图4-2-33,在△ABC中,∠C=90°,EF∥AB,∠1=50°,则∠B的度数为() A.50°B.60°C.30°D.40°4.(2010年广东深圳)如图4-2-34,在△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是()A.40°B.35°C.25°D.20°图4-2-34 图4-2-35 图4-2-365.(2012年山东济宁)如图4-2-35,在平面直角坐标系中,点P的坐标为(-2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.-4和-3之间B.3和4之间C.-5和-4之间D.4和5之间6.下列性质中,等腰三角形具有而直角三角形不一定具有的是()A.两边之和大于第三边B.有一个角的平分线垂直于这个角的对边C.有两个锐角的和等于90°D.内角和等于180°7.已知在△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是() A.0<x<3 B.x>3 C.3<x<6 D.x>68.(2011年江苏无锡)如图4-2-36,在Rt△ABC中,∠ACB=90°,D,E,F分别是AB,BC,CA的中点,若CD=5 cm,则EF=_________cm.9.在等腰三角形ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7 B.11 C.7或11 D.7或1010.(2011年山东德州)下列命题中,其逆命题成立的是________(只填写序号).①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.11.如图4-2-37,△ABC是等边三角形,点D是BC边上的任意一点,DE⊥AB于点E,DF⊥AC于点F.若BC=2,则DE+DF=______.图4-2-37 图4-2-3812.(2012年江苏淮安)如图4-2-38,在△ABC中,∠C=90°,点D在AC上,已知∠BDC =45°,BD=102,AB=20.求∠A的度数.13.若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为() A.75°或15°B.36°或60°C.75°D.30°14.(2012年贵州黔西南州)如图4-2-39,在△ABC中,∠ACB=90°,D是BC的中点,DE ⊥BC,CE∥AD,若AC=2,CE=4,则四边形ACEB的周长为______.图4-2-39 图4-2-4015.(2011年山东枣庄)如图4-2-40,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题:(1)画线段AD∥BC且使AD=BC,连接CD;(2)线段AC的长为________,CD的长为________,AD的长为________;(3)△ACD为________三角形,四边形ABCD的面积为________;(4)若E为BC的中点,则tan∠CAE的值是______.三级训练16.如图4-2-41,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=4,则图中阴影部分的面积为________.图4-2-41 图4-2-4217.(2011年湖北黄冈)如图4-2-42,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上的中点,过点D作DE丄DF,交AB于点E,交BC于点F,若AE=4,FC=3,求EF 的长.1.C 2.B 3.D 4.C 5.A 6.B 7.B 8.59.C10.①④ 11. 312.解:∵在直角三角形BDC 中,∠BDC =45°,BD = 102,∴BC =CD =10 .又∵∠C =90°,AB =20,∴∠A =30°.13.A 解析:三角形的高可在三角形内、三角形外,于是可得等腰三角形的顶角为30°或150°,故底角为75°或15°.14.10+21315.解:(1)如图D11.图D11(2)2 55 5 (3)直角 10 (4)1216.817.解:连接BD ,如图D12.图D12 ∵在等腰直角三角形ABC 中,D 为AC 边上的中点,∴BD ⊥AC ,BD =CD =AD ,∠ABD =45°.∴∠C =45°.∴∠ABD =∠C .又∵DE ⊥DF ,∴∠FDC +∠BDF =∠EDB +∠BDF .∴∠FDC =∠EDB .在△EDB 与△FDC 中,∵⎩⎪⎨⎪⎧ ∠EBD =∠C ,BD =CD ,∠EDB =∠FDC ,∴△EDB ≌△FDC (ASA). ∴BE =FC =3.∴AB =7,则BC =7. ∴BF =4.在R T △EBF 中,EF 2=BE 2+BF 2=32+42, ∴EF =5.。
中考数学备考专题复习等腰三角形含解析(2)
中考数学备考专题复习等腰三角形含解析(2)一、单选题(共12题;共24分)1、已知等腰三角形一腰上的高线等于腰长的一半,那么这个等腰三角形的一个底角等于()A、15°或75°B、15°C、75°D、150°和30°2、如图,CD是Rt△ABC斜边AB上的高,将△BCD 沿 CD折叠,B点恰好落在AB的中点E处,则∠A等于()A、25B、30C、45D、603、如图所示,A是斜边长为m的等腰直角三角形,B , C , D都是正方形.则A,B,C,D 的面积的和等于 ( )A、B、C、D、4、如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为( )A、2B、2.4C、2.6D、35、如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm, A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是()A、15 dmB、20dmC、25dmD、30dm6、如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=10,则PQ的长为()A、B、C、3D、47、直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD 的长度为( )A、B、C、D、8、如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC ,若AD=6,则CD是()A、1B、2C、3D、49、在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF.EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是()A、②③B、③④C、①②④D、②③④10、(20__•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A、50°B、51°C、51.5°D、52.5°11、(20__•深圳)如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A、1B、2C、3D、412、(20__•黔东南州)20__年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A、13B、19C、25D、169二、填空题(共5题;共6分)13、矩形的两条对角线的夹角为60°,一条对角线与短边的和为15,则短边的长是________,对角线的长是________.14、如图,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF的弧EF上.若∠BAD=120°,则弧BC的长度等于________.15、(20__•菏泽)如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC=________.16、(20__•贵港)如图,AB是半圆O的直径,C是半圆O上一点,弦AD平分∠BAC,交BC于点E,若AB=6,AD=5,则DE的长为________.17、(20__•张家界)如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC 相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是________cm.三、解答题(共2题;共10分)18、如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.19、如图,△ABC中,∠BAC=90°,AB=AC,O为BC的中点,点E,D分别为边AB,AC上的点,且满足OE⊥OD,求证:OE=OD.四、综合题(共5题;共65分)20、如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.21、(20__•丽水)如图,矩形ABCD中,点E为BC上一点,F为DE的中点,且∠BFC=90°.(1)当E为BC中点时,求证:△BCF≌△DEC;(2)当BE=2EC时,求的值;(3)设CE=1,BE=n,作点C关于DE的对称点C′,连结FC′,AF,若点C′到AF的距离是,求n的值.22、(20__•贵港)如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.①求证:△AGE≌△AFE;②若BE=2,DF=3,求AH的长.(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.23、(20__•天津)在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO 绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.(1)如图①,若α=90°,求AA′的长;(2)如图②,若α=120°,求点O′的坐标;(3)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)24、(20__•义乌)如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C 在坐标轴上,点P在BC边上,直线l1:y=2_+3,直线l2:y=2_﹣3.(1)分别求直线l1与_轴,直线l2与AB的交点坐标;(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F 上,Q是坐标平面内的点,且N点的横坐标为_,请直接写出_的取值范围(不用说明理由).答案解析部分一、单选题【答案】A【考点】三角形内角和定理,等腰三角形的性质,含30度角的直角三角形【解析】【解答】此题有两种情况,一种是该高线在等腰三角形内部,另外一种是在等腰三角形外部.当该高线在三角形内部时,那么该三角形的顶角度数为30°,其底角也就是为75°.当高线在三角形外部时,其顶角度数为150°,那么其底角为15°.【分析】此题有一定的难度.考生容易忽视两种情况,只考虑到一种情况.此类型题经常出现在各种试卷上,希望考生能通过此题达到举一反三的效果.【答案】B【考点】等边三角形的判定,直角三角形斜边上的中线,翻折变换(折叠问题)【解析】【解答】△ABC沿CD折叠B与E重合,则BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选:B.【分析】先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE=BE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.【答案】A【考点】勾股定理,等腰直角三角形【解析】【解答】等腰直角三角形中斜边长为m,则腰长为, C,D的边长为,∴A的面积为,C,D的面积为,B的面积为m2 ,故A、B、C、D的面积和为.故选 A.【分析】根据等腰直角三角形斜边长为m,即可求得等腰直角三角形腰长,则正方形B、C、D 的面积均可以求出来.【答案】B【考点】垂线段最短,直角三角形斜边上的中线,矩形的判定与性质,相似三角形的判定与性质【解析】【解答】连结AP,在△ABC中,AB=6,AC=8,BC=10,∴∠BAC=90°,∵PE⊥AB,PF⊥AC,∴四边形AFPE是矩形,∴EF=AP.∵M是EF的中点,∴AM=AP,根据直线外一点到直线上任一点的距离,垂线段最短,即AP⊥BC时,AP最短,同样AM也最短,∴当AP⊥BC时,△ABP∽△CBA,∴,∴,∴AP最短时,AP=4.8∴当AM最短时,AM==2.4.故选B.【分析】先求证四边形AFPE是矩形,再根据直线外一点到直线上任一点的距离,垂线段最短,利用相似三角形对应边成比例即可求得AP最短时的长,然后即可求出AM最短时的长.【答案】C【考点】平面展开-最短路径问题【解析】【解答】依题意知作楼梯平面图.易知AB=.选C.【分析】本题难度较低,主要考查学生对直角三角形勾股定理知识点的掌握.【答案】C【考点】等腰三角形的判定与性质,三角形中位线定理【解析】【解答】∵BQ平分∠ABC,BQ⊥AE,∴△BAE是等腰三角形.同理△CAD是等腰三角形.∴点Q是AE中点,点P是AD中点(三线合一).∴PQ是△ADE的中位线.∵BE+CD=AB+AC=26﹣BC=26﹣10=16,∴DE=BE+CD﹣BC=6.∴PQ=DE=3.故选C.【分析】首先判断△BAE、△CAD是等腰三角形,从而得出BA=BE,CA=CD,由△ABC的周长为26,及BC=10,可得DE=6,利用中位线定理可求出PQ.【答案】A【考点】平行线之间的距离,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质,等腰直角三角形【解析】【解答】如图,分别过点A、B、D作AF⊥l3 ,BE⊥l3 ,DG⊥l3 ,∵△ABC是等腰直角三角形,∴AC=BC.∵∠EBC+∠BCE=90°,∠BCE+∠ACF=90°,∠ACF+∠CAF=90°,∴∠EBC=∠ACF,∠BCE=∠CAF.在△BCE与△ACF中,∵∠EBC=∠ACF,BC=AC,∠BCE=∠CAF,∴△BCE≌△ACF(ASA).∴CF=BE=3,CE=AF=4.在Rt△ACF中,∵AF=4,CF=3,∴.∵AF⊥l3 ,DG⊥l3 ,∴△CDG∽△CAF. ∴,即,解得.在Rt△BCD中,∵, BC=5,∴.故选A.【分析】分别过点A、B、D作AF⊥l3 ,BE⊥l3 ,DG⊥l3 ,先根据全等三角形的判定定理得出△BCE≌△ACF,故可得出CF及CE的长,在Rt△ACF中根据勾股定理求出AC的长,再由相似三角形的判定得出△CDG∽△CAF,故可得出CD的长,在Rt△BCD中根据勾股定理即可求出BD的长.【答案】C【考点】角平分线的定义,等腰三角形的判定,含30度角的直角三角形【解析】【解答】因为△ABC中,∠C=90° ,∠ABC=60° ,所以∠BAC=30°;因为BD平分∠ABC ,所以∠ABD=∠DBC=30° ,所以AD=BD,因为AD=6,所以CD=3,故C项正确.【分析】结合根据角平分线的定义得∠ABD=∠DBC=30°,由含30°角的直角三角形可得CD是BD的一半即可得CD的长度,【答案】D【考点】角平分线的性质,等腰三角形的性质,等边三角形的性质,矩形的性质【解析】【解答】∵AB=1,AD=,∴BD=AC=2,OB=OA=OD=OC=1.∴△OAB,△OCD为正三角形.AF平分∠DAB,∴∠FAB=45°,即△ABF是一个等腰直角三角形.∴BF=AB=1,BF=BO=1.∵AF平分∠DAB,∴∠FAB=45°,∴∠CAH=45°﹣30°=15°.∵∠ACE=30°(正三角形上的高的性质)∴∠AHC=15°,∴CA=CH由正三角形上的高的性质可知:DE=OD÷2,OD=OB,∴BE=3ED.所以正确的是②③④.故选D.【分析】这是一个特殊的矩形:对角线相交成60°的角.利用等边三角形的性质结合图中的特殊角度解答.本题主要考查了矩形的性质及正三角形的性质.【答案】D【考点】对顶角、邻补角,三角形内角和定理,三角形的外角性质,等腰三角形的性质【解析】【解答】解:∵AC=CD=BD=BE,∠A=50°,∴∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,∵∠B+∠DCB=∠CDA=50°,∴∠B=25°,∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED= (180°﹣25°)=77.5°,∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°,故选D.【分析】根据等腰三角形的性质推出∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,根据三角形的外角性质求出∠B=25°,由三角形的内角和定理求出∠BDE,根据平角的定义即可求出选项.本题主要考查对等腰三角形的性质,三角形的内角和定理,三角形的外角性质,邻补角的定义等知识点的理解和掌握,熟练地运用这些性质进行计算是解此题的关键.【答案】D【考点】全等三角形的判定与性质,矩形的判定与性质,正方形的性质,相似三角形的判定与性质,等腰直角三角形【解析】【解答】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠C=90°=∠ACB,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB= FB•FG= S四边形CBFG ,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故选:D.【分析】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB= FB•FG= S四边形CEFG ,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.【答案】C【考点】勾股定理的证明【解析】【解答】解:根据题意得:c2=a2+b2=13,4_ ab=13﹣1=12,即2ab=12,则(a+b)2=a2+2ab+b2=13+12=25,故选C【分析】此题考查了勾股定理的证明,利用了数形结合的思想,熟练掌握勾股定理是解本题的关键.根据题意,结合图形求出ab与a2+b2的值,原式利用完全平方公式化简后代入计算即可求出值.二、填空题【答案】5;10【考点】等边三角形的判定与性质,矩形的性质【解析】【解答】如下图所示,∠AOB=60°,AB+AC=15;∵在矩形ABCD中,∠AOB=60°,∴△AOB是正三角形,∴AB=OA ,∴AC=2AB ,又∵AB+AC=15,∴AB=5,AC=10即短边的长是5,对角线的长是10.【分析】矩形的性质与两条对角线的夹角为60°相结合得到所需的正三角形.【答案】【考点】等边三角形的判定与性质,菱形的性质,弧长的计算【解析】【解答】∵菱形ABCD中,AB=BC,又∵AC=AB,∴AB=BC=AC,即△ABC是等边三角形.∴∠BAC=60°,∴弧BC的长是: =故答案是:【分析】本题考查了弧长公式,理解B,C两点恰好落在扇形AEF的弧EF上,即B、C在同一个圆上,得到△ABC是等边三角形是关键.【答案】【考点】正方形的性质,解直角三角形,等腰直角三角形【解析】【解答】解:作EF⊥BC于F,如图,设DE=CE=a,∵△CDE为等腰直角三角形,∴CD= CE= a,∠DCE=45°,∵四边形ABCD为正方形,∴CB=CD= a,∠BCD=90°,∴∠ECF=45°,∴△CEF为等腰直角三角形,∴CF=EF= CE= a,在Rt△BEF中,tan∠EBF= = = ,即∠EBC= .故答案为.【分析】作EF⊥BC于F,如图,设DE=CE=a,根据等腰直角三角形的性质得CD= CE= a,∠DCE=45°,再利用正方形的性质得CB=CD= a,∠BCD=90°,接着判断△CEF为等腰直角三角形得到CF=EF= CE= a,然后在Rt△BEF中根据正切的定义求解.本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.也考查了等腰直角三角形的性质.【答案】【考点】勾股定理,圆周角定理,相似三角形的判定与性质【解析】【解答】解:如图,连接BD,∵AB为⊙O的直径,AB=6,AD=5,∴∠ADB=90°,∴BD= = ,∵弦AD平分∠BAC,∴ ,∴∠DBE=∠DAB,在△ABD和△BED中,,∴△ABD∽△BED,∴,即BD2=ED_AD,∴()2=ED_5,解得DE= .故答案为:.【分析】此题主要考查了相似三角形的判定和性质,以及圆周角定理,解答此题的关键是作辅助线,构造出△ABD∽△BED.连接BD,由勾股定理先求出BD的长,再判定△ABD∽△BED,根据对应边成比例列出比例式,可求得DE的长.【答案】8【考点】勾股定理,矩形的性质,翻折变换(折叠问题),相似三角形的判定与性质【解析】【解答】解:设AH=a,则DH=AD﹣AH=8﹣a,在Rt△AEH中,∠EAH=90°,AE=4,AH=a,EH=DH=8﹣a,∴EH2=AE2+AH2 ,即(8﹣a)2=42+a2 ,解得:a=3.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴ = = = .∵C△HAE=AE+EH+AH=AE+AD=12,∴C△EBF= C△HAE=8.故答案为:8.【分析】设AH=a,则DH=AD﹣AH=8﹣a,通过勾股定理即可求出a值,再根据同角的余角互补可得出∠BFE=∠AEH,从而得出△EBF∽△HAE,根据相似三角形的周长比等于对应比即可求出结论.本题考查了翻折变换、矩形的性质、勾股定理以及相似三角形的判定及性质,解题的关键是找出△EBF∽△HAE.本题属于中档题,难度不大,解决该题型题目时,通过勾股定理求出三角形的边长,再根据相似三角形的性质找出周长间的比例是关键.三、解答题【答案】解:∵DE垂直平分AB,∴∠DAE=∠B,∵在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,∴∠DAE=(90°-∠B)=∠B,∴3∠B=90°,∴∠B=30°.【考点】三角形内角和定理,角平分线的性质,线段垂直平分线的性质【解析】【分析】根据DE垂直平分AB,求证∠DAE=∠B,再利用角平分线的性质和三角形内角和定理,即可求得∠B的度数.【答案】证明:如图,连接AO,∵∠BAC=90°,AB=AC,O为BC的中点,∴AO=BO,∠OAD=∠B=45°,∵AO⊥BO,OE⊥OD,∴∠AOE+∠BOE=∠AOE+∠AOD=90°,在△AOD和△BOE中∴△AOD≌△BOE,∴OE=OD.【考点】全等三角形的判定与性质,等腰直角三角形【解析】【分析】连接AO,证明△BEO≌△ADO即可.四、综合题【答案】(1)【解答】证明:∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△A FE和Rt△BCA中∴△AFE≌△BCA(HL),∴AC=EF;(2)【解答】∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形.【考点】全等三角形的判定与性质,等边三角形的性质,平行四边形的判定【解析】【分析】(1)首先Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又因为△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后即可证明△AFE≌△BCA,再根据全等三角形的性质即可证明AC=EF;(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.【答案】(1)证明;∵在矩形ABCD中,∠DCE=90°,F是斜边DE的中点,∴CF= DE=EF,∴∠FEC=∠FCE,∵∠BFC=90°,E为BC中点,∴EF=EC,∴CF=CE,在△BCF和△DEC中,,∴△BCF≌△DEC(ASA)(2)解:设CE=a,由BE=2CE,得:BE=2a,BC=3a,∵CF是Rt△DCE斜边上的中线,∴CF= DE,∵∠FEC=∠FCE,∠BFC=∠DCE=90°,∴△BCF∽△DEC,∴ ,即: = ,解得:ED2=6a2 ,由勾股定理得:DC= = = a,∴ = =(3)解:过C′作C′H⊥AF于点H,连接CC′交EF于M,如图所示:∵CF是Rt△DCE斜边上的中线,∴FC=FE=FD,∴∠FEC=∠FCE,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠ADF=∠CEF,∴∠ADF=∠BCF,在△ADF和△BCF中,,∴△ADF≌△BCF(SAS),∴∠AFD=∠BFC=90°,∵CH⊥AF,C′C⊥EF,∠HFE=∠C′HF=∠C′MF=90°,∴四边形C′MFH是矩形,∴FM=C′H= ,设EM=_,则FC=FE=_+ ,在Rt△EMC和Rt△FMC中,由勾股定理得:CE2﹣EM2=CF2﹣FM2 ,∴12﹣_2=(_+ )2﹣()2 ,解得:_= ,或_=﹣(舍去),∴EM= ,FC=FE= + ;由(2)得:,把CE=1,BE=n代入计算得:CF= ,∴ = +解得:n=4【考点】直角三角形斜边上的中线,勾股定理的应用,平行四边形的判定与性质,相似三角形的判定与性质【解析】【分析】本题是四边形综合题目,考查了矩形的性质与判定、全等三角形的判定与性质、直角三角形斜边上的中线性质、勾股定理、相似三角形的判定与性质、等腰三角形的判定与性质等知识;本题综合性强,难度较大,证明三角形全等和三角形相似是解决问题的关键.【答案】(1)解:①由旋转的性质可知:AF=AG,∠DAF=∠BAG.∵四边形ABCD为正方形,∴∠BAD=90°.又∵∠EAF=45°,∴∠BAE+∠DAF=45°.∴∠BAG+∠BAE=45°.∴∠GAE=∠FAE.在△GAE和△FAE中,∴△GAE≌△F AE.②∵△GAE≌△FAE,AB⊥GE,AH⊥EF,∴AB=AH,GE=EF=5.设正方形的边长为_,则EC=_﹣2,FC=_﹣3.在Rt△EFC中,由勾股定理得:EF2=FC2+EC2 ,即(_﹣2)2+(_﹣3)2=25.解得:_=6.∴AB=6.∴AH=6.(2)解:如图所示:将△ABM逆时针旋转90°得△ADM′.∵四边形ABCD为正方形,∴∠ABD=∠ADB=45°.由旋转的性质可知:∠ABM=∠ADM′=45°,BE=DM′.∴∠NDM′=90°.∴NM′2=ND2+DM′2 .∵∠EAM′=90°,∠EAF=45°,∴∠EAF=∠FAM′=45°.在△AMN和△ANM′中,,∴△AMN≌△ANM′.∴MN=NM′.又∵BM=DM′,∴MN2=ND2+BM2 .【考点】全等三角形的判定与性质,勾股定理的应用,正方形的性质,旋转的性质【解析】【分析】本题主要考查的是四边形的综合应用,解答本题主要应用了旋转的性质、全等三角形的性质和判定、勾股定理的应用,正方形的性质,依据旋转的性质构造全等三角形和直角三角形是解题的关键.(1)①由旋转的性质可知:AF=AG,∠DAF=∠BAG,接下来在证明∠GAE=∠FAE,然后依据SAS证明△GAE≌△FAE即可;②由全等三角形的性质可知:AB=AH,GE=EF=5.设正方形的边长为_,接下来,在Rt△EFC中,依据勾股定理列方程求解即可;(2)将△ABM逆时针旋转90°得△ADM′.在△NM′D中依据勾股定理可证明明即可.【答案】(1)解:如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB= =5,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′= BA=5(2)解:作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH= BO′= ,O′H= BH= ,∴OH=OB+BH=3+ = ,∴O′点的坐标为(,)(3)解:∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于_轴的对称点C,连结O′C交_轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于_轴对称,∴C(0,﹣3),设直线O′C的解析式为y=k_+b,把O′(,),C(0,﹣3)代入得,解得,∴直线O′C的解析式为y= _﹣3,当y=0时, _﹣3=0,解得_= ,则P(,0),∴OP= ,∴O′P′=OP= ,作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D= O′P′= ,P′D= O′D= ,∴DH=O′H﹣O′D= ﹣ = ,∴P′点的坐标为(,)【考点】线段的性质:两点之间线段最短,含30度角的直角三角形,旋转的性质,坐标与图形变化-旋转【解析】【分析】本题考查了几何变换综合题:熟练掌握旋转的性质;理解坐标与图形性质;会利用两点之间线段最短解决最短路径问题;记住含30度的直角三角形三边的关系.(1)如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则∠HBO′=60°,再在表示方法写出O′点的坐标;(3)由旋转的性质得BP=BP′,则O′P+BP′=O′P+BP,作B点关于_轴的对称点C,连结O′C交_轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求出直线O′C的解析式为y= _﹣3,从而得到P(,0),则O′P′=OP= ,作P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D和DO′的长,从而可得到P′点的坐标.【答案】(1)解:直线l1:当y=0时,2_+3=0,_=﹣则直线l1与_轴坐标为(﹣,0)直线l2:当y=3时,2_﹣3=3,_=3则直线l2与AB的交点坐标为(3,3)(2)解:①若点A为直角顶点时,点M在第一象限,连结AC,如图1,∠APB>∠ACB>45°,∴△APM不可能是等腰直角三角形,∴点M不存在;②若点P为直角顶点时,点M在第一象限,如图2,过点M作MN⊥CB,交CB的延长线于点N,则Rt△ABP≌Rt△PNM,∴AB=PN=4,MN=BP,设M(_,2_﹣3),则MN=_﹣4,∴2_﹣3=4+3﹣(_﹣4),_= ,∴M(,);③若点M为直角顶点时,点M在第一象限,如图3,设M1(_,2_﹣3),过点M1作M1G1⊥OA,交BC于点H1 ,则Rt△AM1G1≌Rt△PM1H1 ,∴AG1=M1H1=3﹣(2_﹣3),∴_+3﹣(2_﹣3)=4,_=2∴M1(2,1);设M2(_,2_﹣3),同理可得_+2_﹣3﹣3=4,∴_= ,∴M2(,);综上所述,点M的坐标为(,),(2,1),(,)【考点】矩形的性质,等腰直角三角形【解析】【分析】考查了四边形综合题,涉及的知识点有:坐标轴上点的坐标特征,等腰直角三角形的性质,矩形的性质,分类思想的应用,方程思想的应用,综合性较强,有一定的难度.(1)根据坐标轴上点的坐标特征可求直线l1与_轴,直线l2与AB的交点坐标;(2)分三种情况:①若点A为直角顶点时,点M在第一象限;若点P为直角顶点时,点M在第一象限;③若点M为直角顶点时,点M在第一象限;进行讨论可求点M的坐标;(3)根据矩形的性质可求N点的横坐标_的取值范围.。
【数学中考一轮复习】6.2 等腰三角形和直角三角形(含答案)
第六章 三角形6.2 等腰三角形和直角三角形考点突破考点一 等腰三角形的性质和判定典例1 如图所示,在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC 交AC 于点D. 求证:AD =BC.思路导引根据等腰三角形的性质得到∠ABC =∠C =72°,根据角平分线的定义得到∠ABD =∠DBC =36°,∠BDC =72°,根据等腰三角形的判定即可得到结论. 规律总结本题主要考查等腰三角形的性质和判定,掌握等边对等角是解题的关键,注意三角形内角和定理的应用. 跟踪训练 11.如图所示,在△ABC 中,AB =AC.在AB ,AC 上分别截取AP ,AQ ,使AP =AQ.再分别以点P ,Q 为圆心,以大于21PQ 的长为半径作弧,两弧在∠BAC 内交于点R ,作射线AR ,交BC 于点D.若BC =6,则BD 的长为( ) A.2 B.3 C.4 D.5第1题图 第2题图2.如图所示,在△ABC 中,AB =AC ,∠C =65°,点D 是BC 边上任意一点,过点D 作DF ∥AB 交AC 于点E ,则∠FEC 的度数是( )A.120°B.130°C.145°D.150°3.如图所示,在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC=a,BC=b,则CD=()A.2ba+B.2ba-C.a-bD.b-a考点二等腰三角形的分类讨论典例2 Rt△ABC中,∠ABC=90°AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是__________.思路导引在Rt△ABC中,通过解直角三角形可得出AC=5、S△ABC=6,找出所有可能的剪法,并求出剪出的等腰三角形的面积即可.名师点拨本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的剪法,并求出剪出的等腰三角形的面积是解题的关键.跟踪训练 21.等腰三角形的两条边长分别为3和4,则这个等腰三角形的周长是___________.2.腰长为5,高为4的等腰三角形的底边长为__________.3.定义:等腰三角形的顶角与其一个底角的度数的比值称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=_________.考点三等边三角形的性质和判定典例3如图所示,在△ABC中,AB=BC=3,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为()A.63B.9C.6D.33思路导引连接BD交AC于O,根据已知条件得到BD垂直平分AC,求得BD⊥AC,AO=CO,根据等腰三角形的性质得到∠ACB=∠BAC=30°,根据等边三角形的性质得到∠DAC=∠DCA=60°,求得AD=CD=AC=3,于是得到结论.规律总结本题考查了含30°角的直角三角形、等腰三角形的性质、等边三角形的判定和性质,熟练掌握直角三角形的性质是解题的关键.跟踪训练 31.已知等边三角形一边上的高为23,则它的边长为()A.2B.3C.4D.432.如图所示,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是_________.第3题图第4题图3.如图所示,△ABC为等边三角形,边长为6,AD⊥BC,垂足为点D,点E和点F分别是线段AD和AB上的两个动点,连接CE,EF,则CE+EF的最小值为_________.考点四直角三角形的性质和判定典例4对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC,BD交于点O.若AD=2,BC=4,则AB2+CD2=_________.思路导引根据垂直的定义和勾股定理解答即可.规律总结本题考查的是垂直的定义勾股定理的应用,正确理解“垂美”四边形的定义、灵活运用勾股定理是解题的关键.跟踪训练 41.如图所示,在3×3的网格中,每个小正方形的边长均为1,点A ,B ,C 都在格点上,若BD 是△ABC 的高,则BD 的长为( )A.131310 B.13139 C.13138 D.131372.如图所示是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是( ) A.1,4,5 B.2,3,5 C.3,4,5 D.2,2,43.在Rt △ABC 中,∠C =90°,若AB-AC =2,BC =8,则AB 的长是_________.中考真题1.(2020·青海)等腰三角形的一个内角为70°,则另外两个内角的度数分别是( ) A.55°,55° B.70°,40°或70°,55° C.70°,40° D.55°,55°或70°,40°2.(2020·毕节)已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为( ) A.13 B.17 C.13或17 D.13或103.(2020·益阳)如图所示,在△ABC 中,AC 的垂直平分线交AB 于点D ,DC 平分∠ACB ,若∠A =50°,则∠B 的度数为( )A.25°B.30°C.35°D.40°第3题图 第4题图4.(2020·怀化)在Rt △ABC 中,∠B =90°,AD 平分∠BAC ,交BC 于点D ,DE ⊥AC ,垂足为点E ,若BD =3,则DE 的长为( ) A.3 B.23C.2D.65.(2020·荆门)△ABC 中,AB =AC ,∠BAC =120°,BC =23,D 为BC 的中点,AE =41AB ,则△EBD 的面积为( ) A.433 B.833 C.43 D.83第5题图 第6题图6.(2020·自贡)如图所示,在Rt △ABC 中,∠ACB =90°,∠A =50°,以点B 为圆心,BC 长为半径画弧,交AB 于点D ,连接CD ,则∠ACD 的度数是( ) A.50° B.40° C.30° D.20°7.(2020·包头)如图所示,在Rt △ABC 中,∠ACB =90°,D 是AB 的中点,BE ⊥CD ,交CD 的延长线于点E.若AC =2,BC =22,则BE 的长为( ) A.362 B.26 C.3 D.2第7题图 第8题图8.(2020·宁波)如图所示,在Rt △ABC 中,∠ACB =90°,CD 为中线,延长CB 至点E ,使BE =BC ,连接DE ,F 为DE 中点,连接BF.若AC =8,BC =6,则BF 的长为( ) A.2 B.2.5 C.3 D.49.(2020·广西)《九章算术》是古代东方数学代表作,中记载:今有开门去阃(读k ǔn ,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD 的距离为2寸,点C 和点D 距离门槛AB 都为1尺(1尺=10寸),则AB 的长是( )A.50.5寸B.52寸C.101寸D.104寸10.(2020·徐州)如图所示,在Rt△ABC中,∠ABC=90°,D,E,F分别为AB,BC,CA的中点,若BF=5,则DE=__________.第10题图第11题图11.(2020·黔西南州)如图所示,在Rt△ABC中,∠C=90°,点D在线段BC上,且∠B=30°,∠ADC=60°,BC=33,则BD的长度为__________.12.(2020·青海)已知a,b,c为△ABC的三边长.b,c满足(b-2)2+|c-3|=0,且a 为方程|x-4|=2的解,则△ABC的形状为_________三角形.13.(2020·襄阳)如图所示,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=_______.14.(2020·通辽)如图所示,在△ABC中,∠ACB=90°,AC=BC,点P在斜边AB上,以PC为直角边作等腰直角三角形PCQ,∠PCQ=90°,则PA2,PB2,PC2三者之间的数量关系是_____________.15.(2020·扬州)《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?答:折断处离地面___________尺高.16.(2020·安顺)如图所示,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE 的延长线于点D ,BD =8,AC =11,则边BC 的长为__________.17.(2020·贵阳)如图所示,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数; (3)在图③中,画一个直角三角形,使它的三边长都是无理数.参考答案考点突破典例1 证明:∵AB =AC ,∠A =36°,∴∠ABC =∠C =72°. ∵BD 平分∠ABC 交AC 于点D ,∴∠ABD =∠DBC =36°. ∴∠A =∠ABD.∴AD =BD.∴∠BDC =72°.∵∠C =72°,∴∠C =∠BDC.∴BC =BD.∴AD =BC. 跟踪训练11.B2.B3.C 典例 2 3.6或4.32或4.8 跟踪训练 21.10或112.6或25或453.58或41典例 3 D 跟踪训练 31.C2.63.33 典例 4 20跟踪训练 41.D2.B3.17 中考真题1.D2.B3.B4.A5.B6.D7.A8.B9.C 10.5 11.23 12.等腰 13.40° 14.PA 2+PB 2=2PC 2 15.209116.45 17.解:(答案不唯一)(1) (2) (3)。
数学中考考点专题复习训练及答案解析15:等腰三角形与直角三角形
考点15 等腰三角形与直角三角形一、等腰三角形1.等腰三角形的性质定理:等腰三角形的两个底角相等(简称:等边对等角).推论1:等腰三角形顶角平分线平分底边并且垂直于底边,即等腰三角形的顶角平分线、底边上的中线、底边上的高重合.推论2:等边三角形的各个角都相等,并且每个角都等于60°.2.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.推论1:三个角都相等的三角形是等边三角形.推论2:有一个角是60°的等腰三角形是等边三角形.推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.二、等边三角形1.定义:三条边都相等的三角形是等边三角形.2.性质:等边三角形的各角都相等,并且每一个角都等于60°.3.判定:三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.三、直角三角形与勾股定理1.直角三角形定义:有一个角是直角的三角形叫做直角三角形.性质:(1)直角三角形两锐角互余;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半.判定:(1)两个内角互余的三角形是直角三角形;(2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.2.勾股定理及逆定理(1)勾股定理:直角三角形的两条直角边a、b的平方和等于斜边c的平方,即:a2+b2=c2.(2)勾股定理的逆定理:如果三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形.考向一 等腰三角形的性质1.等腰三角形是轴对称图形,它有1条或3条对称轴. 2.等腰直角三角形的两个底角相等且等于45°.学-科网3.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角). 4.等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b<a . 5.等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A =180°-2∠B ,∠B =∠C =2180A∠-︒.典例1 等腰三角形的一个内角为70°,它的一腰上的高与底边所夹的角的度数是 A .35°B .20°C .35°或20°D .无法确定【答案】C【解析】70°是顶角,它的一腰上的高与底边所夹的角的度数是35°,70°是底角,顶角是40°,它的一腰上的高与底边所夹的角的度数是20°,故选C .典例2 如图,等腰三角形ABC 中,∠BAC =90°,在底边BC 上截取BD =AB ,过D 作DE ⊥BC 交AC 于E ,连接AD ,则图中等腰三角形的个数是A .1B .2C .3D .4【答案】D【名师点睛】此题考查了等腰三角形的性质和判定以及三角形的内角和定理,由已知的条件利用相关的性质,求得各个角的度数是正确解题的关键.1.等腰三角形的周长为15 cm,其中一边长为3 cm.则该等腰三角形的腰长为A.3 cm B.6 cm C.3 cm或6 cm D.3 cm或9 cm考向二等腰三角形的判定1.等腰三角形的判定定理是证明两条线段相等的重要依据,是把三角形中的角的相等关系转化为边的相等关系的重要依据.2.底角为顶角的2倍的等腰三角形非常特殊,其底角平分线将原等腰三角形分成两个等腰三角形.典例3 如图,在△ABC中,AB=AC,AD⊥BC于D,E是AB上的一点,EF∥AD交CA的延长线于F.求证:△AEF是等腰三角形.学_科网【解析】∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.又∵AD∥EF,∴∠F=∠CAD,∠FEA=∠BAD,∴∠FEA=∠F,∴△AEF是等腰三角形.2.已知在△ABC中,AB=5,BC=2,且AC的长为奇数.(1)求△ABC的周长;(2)判断△ABC的形状.考向三等边三角形的性质1.等边三角形具有等腰三角形的一切性质.2.等边三角形是轴对称图形,它有三条对称轴.3.等边三角形的内心、外心、重心和垂心重合.典例4 如图,△ABC是等边三角形,P为BC上一点,在AC上取一点D,使AD=AP,且∠APD=70°,∠PAB的度数是A.10°B.15°C.20°D.25°【答案】C【解析】因为AD=AP,所以∠APD=∠ADP,因为∠APD=70°,所以∠ADP=70°,所以∠PAD=180°-70°-70°=40°,因为∠BAC=60°,所以∠PAB=60°-40°=20°,故选C.3.如图,四边形ABCD是正方形,△PAD是等边三角形,则∠BPC等于A.20°B.30°C.35°D.40°考向四等边三角形的判定在等腰三角形中,只要有一个角是60°,无论这个角是顶角还是底角,这个三角形就是等边三角形.典例5 下列推理中,错误的是A.∵∠A=∠B=∠C,∴△ABC是等边三角形B.∵AB=AC,且∠B=∠C,∴△ABC是等边三角形C.∵∠A=60°,∠B=60°,∴△ABC是等边三角形D.∵AB=AC,∠B=60°,∴△ABC是等边三角形【答案】B4.如图,已知OA=5,P是射线ON上的一个动点,∠AON=60°.当OP=__________时,△AOP为等边三角形.考向五直角三角形在直角三角形中,30°的角所对的直角边等于斜边的一半,这个性质常常用于计算三角形的边长,也是证明一边(30°角所对的直角边)等于另一边(斜边)的一半的重要依据.当题目中已知的条件或结论倾向于该性质时,我们可运用转化思想,将线段或角转化,构造直角三角形,从而将陌生的问题转化为熟悉的问题.典例6 如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若∠B=30°,BD=6,则CD的长为__________.【答案】3【解析】∵在Rt△ABC中,∠C=90°,∠B=30°,∴∠BAC=60°.又AD平分∠BAC,∴∠BAD=∠CAD=30°,∴∠BAD=∠B=30°,∴AD=BD=6,∴CD=12AD=3,故答案为:3.5.已知直角三角形的两条边分别是5和12,则斜边上的中线的长度为__________.考向六勾股定理1.应用勾股定理时,要分清直角边和斜边,尤其在记忆a2+b2=c2时,斜边只能是c.若b为斜边,则关系式是a2+c2=b2;若a为斜边,则关系式是b2+c2=a2.2.如果已知的两边没有明确边的类型,那么它们可能都是直角边,也可能是一条直角边、一条斜边,求解时必须进行分类讨论,以免漏解.典例7 下列几组数:①6,8,10;②7,24,25;③9,12,15;④n2-1,2n,n2+1(n)(n是大于1的整数),其中是勾股数的有A.1组B.2组C.3组D.4组【答案】D【解析】①∵62+82=100=102,∴6、8、10是勾股数;②∵72+242=252,∴7,24,25是勾股数;③∵92+122=152,∴9,12,15是勾股数;④∵(n2-1)2+(2n)2=(n2+1)2,∴n2-1,2n,n2+1(n)(n是大于1的整数)是勾股数,故选D.【名师点睛】本题考查了勾股数的判断,解题的关键是根据勾股数的定义分别对每一组数进行分析.6.如图,一圆柱高8 cm,底面半径为6πcm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是A.12 cm B.10 cm C.8 cm D.6 cm1.三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形是A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形2.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于A.30°B.40°C.45°D.36°3.下列长度的线段中,能构成直角三角形的一组是A.3,4,5B.6,7,8C.12,25,27 D.23,25,424.如图,在△ABC中,AB=AC,∠B=30°,AD⊥AB,交BC于点D,AD=4,则BC的长为A.8 B.4 C.12 D.65.已知△ABC的三边分别是a、b、c,下列条件中不能判断△ABC为直角三角形的是A.a2+b2=c2 B.∠A+∠B=90°C.a=3,b=4,c=5 D.∠A∶∠B∶∠C=3∶4∶56.已知等腰三角形的一边长等于4,一边长等于9,则它的周长为A.22 B.17 C.17或22 D.267.如图,△ABC中,AB=AC=5,BC=6,点D在BC上,且AD平分∠BAC,则AD的长为A.6 B.5 C.4 D.38.如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且△ABC是等腰三角形,则符合条件是点C共有A.8个B.9个C.10个D.11个9.如图,Rt△ABC中,∠B=90〬,AB=9,BC=6,,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段AN的长等于A.5 B.6 C.4 D.310.将一个有45°角的三角尺的直角顶点C放在一张宽为3 cm的纸带边沿上,另一个顶点A在纸带的另一边沿上,测得三角尺的一边AC与纸带的一边所在的直线成30°角,如图,则三角尺的最长边的长为A.6 B.32C.42D.6211.等腰三角形的一腰的中线把三角形的周长分成16 cm和12 cm,则等腰三角形的底边长为______.12.如图,在等边△ABC中,点D为BC边上的点,DE⊥BC交AB于E,DF⊥AC于F,则∠EDF的度数为__________.学科_网13.如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE 的长为__________.14.若一个等腰三角形的周长为26,一边长为6,则它的腰长为__________.15.如图,在ABC △中,AB AC =,D 、E 分别是BC 、AC 上一点,且AD AE =,12EDC ∠=︒,则BAD ∠=__________.16.如图,已知△ABC 是等边三角形,点B ,C ,D ,E 在同一直线上,且CG =CD ,DF =DE ,则∠EFD =__________°.17.如图,在矩形ABCD 中,AB =5,BC =7,点E 是AD 上的一个动点,把△BAE 沿BE 向矩形内部折叠,当点A 的对应点A 1恰好落在∠BCD 的平分线上时,CA 1的长为__________.18.如图,在等腰三角形ABC 中,AC =BC ,分别以BC 和AC 为直角边向上作等腰直角三角形△BCD 和△ACE ,AE 与BD 相交于点F ,连接CF 并延长交AB 于点G .求证:CG 垂直平分AB .19.如图,一架2.5 m长的梯子斜立在竖直的墙上,此时梯足B距底端O为0.7 m.(1)求OA的长度;(2)如果梯子顶端下滑0.4米,则梯子将滑出多少米?20.如图,△ABC是等边三角形,点D、E分别在边BC、AC上,AE=BD,连接DE,过点E作EF⊥DE,交线段BC的延长线于点F.(1)求证:CE=CF;(2)若BD=12CE,AB=9,求线段DF的长.21.已知:如图,有人在岸上点C的地方,用绳子拉船靠岸,开始时,绳长CB=10米,CA⊥AB,且CA=6米,拉动绳子将船从点B沿BA方向行驶到点D后,绳长CD=62米.(1)试判定△ACD的形状,并说明理由;(2)求船体移动距离BD的长度.1.(2018·南通)下列长度的三条线段能组成直角三角形的是 A .3,4,5 B .2,3,4 C .4,6,7D .5,11,122.(2018·滨州)在直角三角形中,若勾为3,股为4,则弦为 A .5 B .6 C .7D .83.(2018·湖州)如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB =AC ,∠CAD =20°,则 ∠ACE 的度数是A .20°B .35°C .40°D .70°4.(2018·宿迁)若实数m 、n 满足|2|40m n -+-=,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 A .12 B .10 C .8D .65.(2018·绥化)已知等腰三角形的一个外角为130︒,则它的顶角的度数为__________.6.(2018·青海)如图,将Rt ABC △绕直角顶点C 顺时针旋转90°,得到DEC △,连接AD ,若∠BAC =25°,则∠BAD =__________.7.(2018·甘孜州)直线上依次有A ,B ,C ,D 四个点,AD =7,AB =2,若AB ,BC ,CD 可构成以BC 为腰的等腰三角形,则BC 的长为__________.8.(2018·桂林)如图,在△ABC 中,∠A =36°,AB =AC ,BD 平分∠ABC ,则图中等腰三角形的个数是__________.9.(2018·襄阳)已知CD 是△ABC 的边AB 上的高,若CD =3,AD =1,AB =2AC ,则BC 的长为__________. 10.(2018·嘉兴)已知,在ABC △中,AB AC =,D 为AC 的中点,DE AB ⊥,DF BC ⊥,垂足分别为点E F ,,且DE DF =.求证:ABC △是等边三角形.11.(2018·广安)下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:(1)画一个直角边长为4,面积为6的直角三角形. (2)画一个底边长为4,面积为8的等腰三角形. (3)画一个面积为5的等腰直角三角形.(4)画一个边长为22,面积为6的等腰三角形.1.【答案】B【解析】当3 cm 是底时,则腰长是(15-3)÷2=6(cm ),此时能够组成三角形;当3 cm 是腰时,则底是15-3×2=9(cm ),此时3+3<9,不能组成三角形,应舍去,故选B . 2.【解析】(1)由题意得:5−2<AB <5+2,即:3<AB <7,∵AB 为奇数,∴AB =5, ∴△ABC 的周长为5+5+2=12. (2)∵AB =AC =5, ∴△ABC 是等腰三角形. 3.【答案】B【解析】∵四边形ABCD 是正方形,△PAD 是等边三角形, ∴9060150BAP BAD PAB ∠=∠+∠=︒+︒=︒. ∵PA =AD ,AB =AD ,∴PA =AB , ∴180150152ABP ︒-︒∠==︒,∴901575PBC ABC ABP ∠=∠-∠=︒-︒=︒,同理:75PCB ∠=︒,∴180757530BPC ∠=︒-︒-︒=︒.故选B . 4.【答案】5【解析】已知∠AON =60°,当OP =OA =5时,根据有一个角为60°的等腰三角形为等边三角形,可得△AOP 为等边三角形.故答案为:5. 5.【答案】6或6.5【解析】分两种情况:①5和12是两条直角边,根据勾股定理求得斜边为13,利用直角三角形斜边的中线等于斜边的一半即可得斜边上的中线的长度为6.5;②5是直角边,12为斜边,利用直角三角形斜边的中线等于斜边的一半即可得斜边上的中线的长度为6,故答案为:6或6.5. 6.【答案】B【解析】如图,底面圆周长为2πr ,底面半圆弧长为πr ,即半圆弧长为:12×2π×6π=6(cm ),展开得:变式拓展∵BC=8 cm,AC=6 cm,根据勾股定理得:AB=2268+=10(cm),故选B.1.【答案】C【解析】∵原式可化为a2+b2=c2,∴此三角形是直角三角形,故选C.2.【答案】D【解析】∵AD=BD,∴∠A=∠ABD,∴∠BDC=2∠A.∵BD=BC,∴∠C=∠BDC=2∠A.∵AB=AC,∴∠ABC=∠C=2∠A,由三角形内角和定理,得∠A+2∠A+2∠A=180°,即∠A=36°.故选D.4.【答案】C【解析】∵AB=AC,∴∠B=∠C=30°,∵AB⊥AD,∴BD=2AD=2×4=8,∠B+∠ADB=90°,∴∠ADB=60°,∵∠ADB=∠DAC+∠C=60°,∴∠DAC=30°,∴∠DAC=∠C,∴DC=AD=4,∴BC=BD+DC=8+4=12,故选C.5.【答案】D【解析】A.a2=b2+c2,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;B.∠A+∠B=∠C,此时∠C是直角,能够判定△ABC是直角三角形,不符合题意;C.52=32+42,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;D.∠A∶∠B∶∠C=3∶4∶5,那么∠A=45°、∠B=60°、∠C=75°,△ABC不是直角三角形.故选D.6.【答案】A【解析】分两种情况:①当腰为4时,4+4<9,所以不能构成三角形;②当腰为9时,9+9>4,9-9<4,所以能构成三角形,周长是:9+9+4=22.故选A.7.【答案】C【解析】∵AB=AC=5,AD平分∠BAC,BC=6,∴BD=CD=3,∠ADB=90°,∴AD22AB BD-=4.故选C.考点冲关8.【答案】B【解析】如图,①点C以点A为标准,AB为底边,符合点C的有5个;②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.所以符合条件的点C共有9个.故选B.9.【答案】A【解析】设AN=x,由翻折的性质可知DN=AN=x,则BN=9-x.∵D是BC的中点,∴BD=1632⨯=.在Rt△BDN中,由勾股定理得:ND2=NB2+BD2,即x2=(9-x)2+32,解得x=5,AN=5,故选A.10.【答案】D【解析】如图,作AH⊥CH,在Rt△ACH中,∵AH=3,∠AHC=90°,∠ACH=30°,∴AC=2AH=6,在Rt△ABC中,AB22226662AC BC+=+=D.11.【答案】203cm或12 cm【解析】设等腰三角形的腰长是x,底边是y,根据题意得162122xxxy⎧+=⎪⎪⎨⎪+=⎪⎩或122162xxxy⎧+=⎪⎪⎨⎪+=⎪⎩,解得323203xy⎧=⎪⎪⎨⎪=⎪⎩或812xy=⎧⎨=⎩,经检验,均符合三角形的三边关系.因此三角形的底边是203cm或12 cm.故答案为:203cm或12 cm.12.【答案】60°【解析】∵△ABC是等边三角形,∴∠A=∠B=60°,∵DE⊥BC交AB于E,DF⊥AC于F,∴∠BDE=∠AFD=90°.∵∠AED是△BDE的外角,∴∠AED=∠B+∠BDE=60°+90°=150°,∴∠EDF=360°−∠A−∠AED−∠AFD=360°−60°−150°−90°=60°,故答案为:60°.13.【答案】4【解析】∵△BDE是正三角形,∴∠DBE=60°.∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,则∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°,∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=4,∴BE=DE=4,故答案为:4.14.【答案】10【解析】①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形;②当6为底边时,则腰长=(26-6)÷2=10,因为6-6<10<6+6,所以能构成三角形,故腰长为10.故答案为:10.16.【答案】15【解析】∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.17.【答案】32或42【解析】如图,过点A1作A1M⊥BC于点M.∵点A的对应点A1恰落在∠BCD的平分线上,∠BCD=90°,∴∠A1CM=45°,即△AMC是等腰直角三角形,∴设CM=A1M=x,则BM=7-x.又由折叠的性质知AB=A1B=5,∴在直角△A1MB中,由勾股定理得A1M2=A1B2-BM2=25-(7-x)2,∴25-(7-x)2=x2,解得x1=3,x2=4,∵在等腰Rt△A1CM中,CA1A1M,∴CA118.【解析】∵CA=CB,∴∠CAB=∠CBA,∵△AEC和△BCD为等腰直角三角形,∴∠CAE=∠CBD=45°,∠FAG=∠FBG,∴∠FAB=∠FBA,∴AF=BF,在三角形ACF和△BCF中,AF BF AC BC CF CF=⎧⎪=⎨⎪=⎩,∴△ACF≌△BCF(SSS),∴∠ACF=∠BCF,∴AG=BG,CG⊥AB(三线合一),即CG垂直平分AB.19.【解析】在直角△ABO中,已知AB=2.5 m,BO=0.7 m,则AO,∵AO=AA′+OA′,∴OA′=2 m,∵在直角△A′B′O中,AB=A′B′,且A′B′为斜边,∴OB′=1.5 m,∴BB′=OB′-OB=1.5 m-0.7 m=0.8 m.答:梯足向外移动了0.8 m.20.【解析】(1)∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=∠ABC=∠ACB=60°,∵AE=BD,∴AC-AE=BC-BD,∴CE=CD,且∠ACB=60°,∴△CDE是等边三角形,∴∠ECD=∠DEC=60°,∵EF⊥DE,∴∠DEF=90°,∴∠CEF=30°,∵∠DCE=∠CEF+∠CFE=60°,∴∠CEF=∠CFE=30°,∴CE=CF.(2)∵BD=12 CE,CE=CD,∴BD=12CD,∵AB=9,∴BC=9,∴BD=3,CD=6,∵CE=CF=CD,∴CF=6,∴DF=DC+CF=12.21.【解析】(1)由题意可得:AC=6 m,DC=62m,∠CAD=90°,可得AD=22CD AC-=6(m),故△ACD是等腰直角三角形.(2)∵AC=6 m,BC=10 m,∠CAD=90°,∴AB=22BC AC-=8(m),则BD=AB-AD=8-6=2(m).答:船体移动距离BD的长度为2 m.1.【答案】A【解析】A、∵32+42=52,∴三条线段能组成直角三角形,故A选项正确;B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C、∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;D、∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误.故选A.直通中考4.【答案】B【解析】由题意得:m-2=0,n-4=0,∴m=2,n=4,又∵m、n恰好是等腰△ABC的两条边的边长,①若腰为2,底为4,此时不能构成三角形,舍去;②若腰为4,底为2,则周长为:4+4+2=10,故选B.5.【答案】50︒或80︒【解析】∵等腰三角形的一个外角为130︒,∴与130°相邻的内角为50°,当50︒为顶角时,其他两角都为65︒,65︒;当50︒为底角时,其他两角为50︒,80︒,所以等腰三角形的顶角为50︒或80︒,故答案为:50︒或80︒.6.【答案】70°【解析】∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,∴AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,则∠BAD=∠BAC+∠CAD=25°+45°=70°,故答案为:70°.7.【答案】2或2.5【解析】如图,∵AB=2,AD=7,∴BD=BC+CD=AD-AB=5,∵AB,BC,CD可构成以BC为腰的等腰三角形,∴BC=AB 或BC=CD,∴BC=2或BC=2.5,故答案为:2或2.5.8.【答案】3【解析】∵AB=AC,∴△ABC是等腰三角形.∵∠A=36°,∴∠C=∠ABC=72°.∵BD平分∠ABC交AC于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴△ABD是等腰三角形.∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形.∴共有3个等腰三角形.故答案为:3.9.【答案】2327△是锐角三角形,如图1,【解析】分两种情况:①当ABC∵CD⊥AB,∴∠CDA=90°,∵CD=3,AD=1,∴AC=2,∵AB=2AC,∴AB=4,∴BD=4-1=3,∴BC2222CD BD+=+=;3(3)23②当ABC△是钝角三角形,如图2,同理得:AC=2,AB=4,∴BC=2222CD BD+=+=.综上所述,BC的长为23或27,(3)527故答案为:23或27.10.【解析】∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥BC,∴∠DEA=∠DFC=90°.∵D为的AC中点,∴DA=DC.又∵DE=DF,∴RtΔAED≌RtΔCDF(HL),∴∠A=∠C,∴∠A=∠B=∠C,∴ΔABC是等边三角形.11.【解析】如图所示:。
中考数学专题特训 等腰三角形与直角三角形(含详细参考答案)
中考数学专题复习等腰三角形与直角三角形【基础知识回顾】一、等腰三角形1、定义:有两边的三角形叫做等腰三角形,其中的三角形叫做等边三角形2、等腰三角形的性质:⑴等腰三角形的两腰等腰三角形的两个底角简称为⑵等腰三角形的顶角平分线、互相重合,简称为⑶等腰三角形是轴对称图形,它有条对称轴,是3、等腰三角形的判定:⑴定义法:有两边相等的三角形是等腰三角形⑵有两相等的三角形是等腰三角形,简称【赵老师提醒:1、等腰三角形的性质还有:等腰三角形两腰上的相等,两腰上的相等,两底角的平分线也相等2、同为等腰三角形腰和底角的特殊性,所以在题目中往常出现对边和角的讨论问题,讨论边时应注意保证讨论角时应主要底角只被围角】4、等边三角形的性质:⑴等边三角形的每个内角都都等于⑵等边三角形也是对称图形,它有条对称轴1、等边三角形的判定:⑴有三个角相等的三角形是等边三角形⑵有一个角是度的三角形是等边三角形【赵老师提醒:1、等边三角形具备等腰三角形的所有性质2、有一个角是直角的等腰三角形是三角形】二、线段的垂直平分线和角的平分线1、线段垂直平分线定义:一条线段且这条线段的直线叫做线段的垂直平分线2、性质:线段垂直平分线上的点到得距离相等3、判定:到一条线段两端点距离相等的点在角的平分线:1、性质:角平分线上的点到得距离相等2、判定:到角两边距离相等的【赵老师提醒:1、线段的垂直平分可以看作是的点的集合,角平分线可以看作是的点的2、要移用作一条已知线段的垂直平分线和已知角的角平分线】三、直角三角形:1、勾股定理和它的逆定理:勾股定理:若一个直角三角形的两直角边为a、b斜边为c则a、b、c满足逆定理:若一个三角形的三边a、b、c满足则这个三角形是直角三角形【赵老师提醒:1、勾股定理在几何证明和计算中应用非常广泛,要注意和二次根式的结合2、勾股定理的逆定理是判断一个三角形是直角三角形或证明线段垂直的主要依据,3、勾股数,列举常见的勾股数三组、、】2、直角三角形的性质:除勾股定理外,直角三角形还有如下性质:⑴直角三角形两锐角⑵直角三角形斜边的中线等于⑶在直角三角形中如果有一个锐角是300,那么它就对边是边的一半3、直角三角形的判定:除勾股定理的逆定理外,直角三角形还有如下判定方法:定义法:⑴有一个角是的三角形是直角三角形⑵有两个角是的三角形是直角三角形⑶如果一个三角形一边上的中线等于这边的这个三角形是直角三角形【赵老师提醒:直角三角形的有关性质在边形,中均有广泛应用,要注意这几条性质的熟练掌握和灵活运用】【重点考点例析】考点一:等腰三角形性质的运用例 1 (2012•襄阳)在等腰△ABC中,∠A=30°,AB=8,则AB边上的高CD的长是.分析:此题需先根据题意画出当AB=AC时,当AB=BC时,当AC=BC时的图象,然后根据等腰三角形的性质和解直角三角形,分别进行计算即可.解:(1)当AB=AC时,∵∠A=30°,∴CD=12AC=12×8=4;(2)当AB=BC时,则∠A=∠ACB=30°,∴∠ACD=60°,∴∠BCD=30°,∴CD=cos∠BCD•BC=cos30°×8=43;(3)当AC=BC时,则AD=4,∴CD=tan∠A•AD=tan30°•4=433;故答案为:433或43或4。
中考数学优化训练(等腰三角形与直角三角形)测试题(含答案)
中考数学优化训练(等腰三角形与直角三角形)测试题(含答案)(时间:30分钟分值:40分得分: )评分标准:选择每题3分,填空每题4分.1.等腰三角形的底边长为4,则其腰长x的取值范围是( )A.x>4 B.x>2C.0<x<2 D.2<x<42.如图1,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为( )图1A.35°B.40°C.45°D.50°3.将一块含有45°角的三角板的直角顶点放在一张宽为3 cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图2,则三角板的最大边的长为( )图2A.3 cm B.6 cmC.3 2 cm D.6 2 cm4.如图3,在△ABC中,AB=AC,AD,CE分别是△ABC的中线和角平分线,当∠ACE=35°时,∠BAD的度数是__________.图35.(8分)如图4,已知等边三角形ABC ,点P 在△ABC 内,点Q 在△ABC 外,且∠ABP =∠ACQ ,BP =CQ.判断△APQ 是什么形状?试证明你的结论.图46.满足下列条件时,△ABC 不是直角三角形的为( ) A .AB =41,BC =4,AC =5 B .AB ∶BC ∶AC =3∶4∶5 C .∠A ∶∠B ∶∠C =3∶4∶5 D .⎪⎪⎪⎪⎪⎪cos A -12+()33tan B -2=07.(12分)如图5,△ABC 中,∠BAC =90°,AB =AC =AD ,AD 交BC 于点P ,∠BAD =30°.图5(1)求证:△ACD 是等边三角形; (2)求∠BDC 的度数.8.如图6,已知线段AB =4,O 是AB 的中点,直线l 经过点O ,∠1=60°,P 点是直线l 上一点,当△APB 为直角三角形时,则BP = .图6中考数学优化训练(等腰三角形与直角三角形)测试题参考答案1.B 2.A 3.D 4.20°5.△APQ 为等边三角形.证明如下: ∵△ABC 为等边三角形,∴AB =AC. 在△ABP 与△ACQ 中,⎩⎪⎨⎪⎧AB =AC ,∠ABP =∠ACQ ,BP =CQ ,∴△ABP ≌△ACQ(SAS). ∴AP =AQ ,∠BAP =∠CAQ. ∵∠BAC =∠BAP +∠PAC =60°, ∴∠PAQ =∠CAQ +∠PAC =60°. ∴△APQ 是等边三角形. 6.C7.(1)证明:∵∠BAC =90°,∠BAD =30°,∴∠DAC =60°. ∵AC =AD ,∴△ACD 是等边三角形. (2)∵∠BAD =30°,AB =AD ,∴∠BDA =∠DBA =12×(180°-30°)=75°.由(1)得△ACD 是等边三角形,∴∠ADC =60°. ∴∠BDC =∠BDA +∠ADC =75°+60°=135°. 8.2或23或27.。
中考数学复习《等腰、等边及直角三角形》经典题型(含答案)
中考数学复习《等腰、等边及直角三角形》经典题型(含答案)知识点一:等腰和等边三角形1.等腰三角形定义:有两条边相等的三角形叫等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB=AC ∠B=∠C;②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD是对称轴.(2)判定①定义:有两边相等的三角形是等腰三角形;注意:1.实际解题中的一个常用技巧是,构造等腰三角形,进而利用等腰三角形的性质为解题服务,常用的构造方法有:1)、“角平分线+平行线”构造等腰三角形。
2)、“角平分线+垂线”构造等腰三角形。
3)、用“垂直平分线”构造等腰三角形;4)、用“三角形中角的2倍关系”构造等腰三角形。
2.当等腰三角形的腰和底不明确时,需分类讨论.变式练习1:如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°.3.三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立.变式练习2:如右图,已知AD⊥BC,D为BC的中点,则三角形的形状是等腰三角形.②等角对等边:即若∠B=∠C,则△ABC是等腰三角形.变式练习3:一个等腰三角形的两边长分别为3和7,则它的周长为( ) A. 17 B. 15 C. 13 D. 13或17【解析】A ①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17,故这个等腰三角形的周长是17.变式练习4:如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为 __7__.变式练习5:一个等腰三角形的两边长分别为4,8,则它的周长为( C )A.12 B.16 C.20 D.16或202.等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°.即AB=BC=AC,∠BAC=∠B=∠C=60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.变式练习1:△ABC中,∠B=60°,AB=A C,BC=3,则△ABC的周长为9.变式练习2:在等边△ABC中,点D,E分别在边BC,AC上,若CD=2,过点D 作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.解:∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵DE∥AB,∴∠EDC=∠B=60°,∴△EDC是等边三角形,∴DE=DC=2,在Rt△DEF,∵∠DEF=90°,DE=2,∴DF=2DE=4,∴EF=DF2-DE2=42-22=2 3.变式练习3:如图,△ABC是等边三角形,BD平分∠ABC,点E在BC的延长线上,且CE=1,∠E=30°,则BC=__2__.知识点二:角平分线和垂直平分线1.角平分线(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA⊥OA,PB⊥OB,则PA=PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.4.垂直平分线图形(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP垂直且平分AB,则PA=PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.21P C OBAPCO B A注意:(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB.变式练习:如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.知识点三:直角三角形的判定与性质1.直角三角形的性质(1)两锐角互余.即∠A+∠B=90°;(2) 30°角所对的直角边等于斜边的一半.即若∠B=30°则AC=12AB;(3)斜边上的中线长等于斜边长的一半.即若CD是中线,则CD=12AB.(4)勾股定理:两直角边a、b的平方和等于斜边c的平方.即a2+b2=c2 .2.直角三角形的判定(1) 有一个角是直角的三角形是直角三角形.即若∠C=90°,则△ABC是Rt△;(2) 如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD=BD=CD,则△ ABC是Rt△(3) 勾股定理的逆定理:若a2+b2=c2,则△ABC是Rt△.3.直角三角形相似判定定理1).斜边与一条直角边对应成比例的两直角三角形相似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时28 等腰三角形与直角三角形
【课前热身】
1.等腰三角形的一个角为50°,那么它的一个底角为______.
2. 在△ABC中,AB=AC,∠A=50°,BD为∠ABC的平分线,则∠BDC=_____°.3.在△ABC中,AB=AC,D为AC边上一点,且BD=BC=AD.•则∠A等于()A.30° B.36° C.45° D.72°
(第2题)(第3题)(第4题)
4.(07南充)一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B地,再由B地向北偏西10º的方向行驶40海里到达C地,则A、C两地相距()
A.30海里 B.40海里 C.50海里 D.60海里
【考点链接】
一.等腰三角形的性质与判定:
1. 等腰三角形的两底角__________;
2. 等腰三角形底边上的______,底边上的________,顶角的_______,三线合一;
3. 有两个角相等的三角形是_________.
二.等边三角形的性质与判定:
1. 等边三角形每个角都等于_______,同样具有“三线合一”的性质;
2. 三个角相等的三角形是________,三边相等的三角形是_______,一个角等于60°的_______三角形是等边三角形.
三.直角三角形的性质与判定:
1. 直角三角形两锐角________.
2. 直角三角形中30°所对的直角边等于斜边的________.
3. 直角三角形中,斜边的中线等于斜边的______.;
4. 勾股定理:_________________________________________.
5. 勾股定理的逆定理:_________________________________________________.
【典例精析】
例1 如图,等腰三角形ABC 中,AB=AC ,一腰上的中线BD •将这个等腰三角形周长分
成15和6两部分,求这个三角形的腰长及底边长.
例2 (06包头)《中华人民共和国道路交通管理条例》规定:“小汽车在城市街道上的行驶
速度不得超过70千米/时”.•一辆小汽车在一条城市街道上由西向东行驶(如图所示),在距离路边25米处有“车速检测仪O”,•测得该车从北偏西60°的A 点行驶到北偏西30°的B 点,所用时间为1.5秒.
(1)试求该车从A 点到B 的平均速度; (2)试说明该车是否超过限速.
【中考演练】
1.(08湖州)已知等腰三角形的一个底角为70
,则它的顶角为____________.度.
2.(08白银)已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为____. 3. (08武汉) 如图,小雅家(图中点O处)门前 有一条东西走向的公路,经测得有一水塔(图中
点A处)在她家北偏东60度500m 处,那么水塔 所在的位置到公路的距离AB 是____________.
(第3题)
A O B
东
北
P D B
A
4.如图,已知在直角三角形中,∠C=90°,BD 平分∠ABC 且交AC 于D . ⑴ 若∠BAC=30°,求证:AD=BD ;
⑵ 若AP 平分∠BAC 且交BD 于P ,求∠BPA 的度数.
5.(08义乌) 如图,小明用一块有一个锐角为30
的直角三角板测量树高,已知小明离 树的距离为4米,DE 为1.68米,那么这棵树大约有多高?(精确到0.1米)。