04.4圆周运动实例分析和临界问题
圆周运动的实例及临界问题
圆周运动的实例及临界问题一、汽车过拱形桥1.汽车在拱形桥最高点时,向心力:F 合=mg -N =m v 2R.支持力:N =mg -mv 2R<mg ,汽车处于失重状态. 2.汽车对桥的压力N ′与桥对汽车的支持N 是一对相互作用力,大小相等,所以汽车通过最高点时的速度越大,汽车对桥面的压力就越小.例1 一辆质量m =2 t 的轿车,驶过半径R=90 m 的一段凸形桥面,g =10 m/s 2,求:(1)轿车以10 m/s 的速度通过桥面最高点时,对桥面的压力是多大?(2)在最高点对桥面的压力等于轿车重力的一半时,车的速度大小是多少?解析 (1)轿车通过凸形桥面最高点时,受力分析如图所示:合力F =mg -N ,由向心力公式得mg -N =m v 2R,故桥面的支持力大小N =mg -m v2R=(2 000×10-2000×10290) N ≈×104 N 根据牛顿第三定律,轿车在桥面最高点时对桥面压力的大小为×104N. (2)对桥面的压力等于轿车重力的一半时,向心力F ′=mg -N ′=,而F ′=m v ′2R ,所以此时轿车的速度大小v ′=错误!=错误! m/s ≈21.2 m/s 答案 (1)×104N (2)21.2 m/s 二、圆锥摆模型 1.运动特点:人及其座椅在水平面内做匀速圆周运动,悬线旋转形成一个圆锥面. 图12.运动分析:将“旋转秋千”简化为圆锥摆模型(如图1所示) (1)向心力:F 合=mg tan_α(2)运动分析:F 合=mω2r =mω2l sin α(3)缆绳与中心轴的夹角α满足cos α=g ω2l. 图6例2 如图6所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平面做匀速圆周运动,以下物理量大小关系正确的是( )A .速度v A >vB B .角速度ωA >ωBC .向心力F A >F BD .向心加速度a A >a B解析 设漏斗的顶角为2θ,则小球的合力为F 合=mgtan θ,由F =F 合=mgtan θ=mω2r =m v 2r=ma ,知向心力F A =F B ,向心加速度a A =a B ,选项C 、D错误;因r A >r B ,又由v = grtan θ和ω=gr tan θ知v A >v B 、ωA <ωB ,故A 对,B 错.答案 A三、火车转弯1.运动特点:火车转弯时做圆周运动,具有向心加速度,需要向心力. 2.铁路弯道的特点:转弯处外轨略高于内轨,铁轨对火车的支持力斜向弯道的内侧,此支持力与火车所受重力的合力指向圆心,为火车转弯提供了一部分向心力.例3 铁路在弯道处的内、外轨道高度是不同的,已知内、外轨道平面与水平面的夹角为θ,如图7所示,弯道处的圆弧半径为R ,若质量为m 的火车转弯时速度等于gR tan θ,则( ) A .内轨对内侧车轮轮缘有挤压 B .外轨对外侧车轮轮缘有挤压 C .这时铁轨对火车的支持力等于mgcos θD .这时铁轨对火车的支持力大于mgcos θ解析 由牛顿第二定律F 合=m v 2R,解得F 合=mg tanθ,此时火车受重力和铁路轨道的支持力作用,如图所示,N cos θ=mg ,则N =mg cos θ,内、外轨道对火车均无侧向压力,故C 正确,A 、B 、D 错误. 答案 C课后巩固训练2.(圆锥摆模型)两个质量相同的小球,在同一水平面内做匀速圆周运动,悬点相同,如图9所示,A 运动的半径比B 的大,则( )A .A 所需的向心力比B 的大 B .B 所需的向心力比A 的大C .A 的角速度比B 的大D .B 的角速度比A 的大解析 小球的重力和绳子的拉力的合力充当向心力,设悬线与竖直方向夹角为θ,则F =mg tanθ=mω2l sin θ,θ越大,向心力F 越大,所以A 对,B 错;而ω2=gl cos θ=gh.故两者的角速度相同,C 、D 错.答案 A3.半径为R 的光滑半圆球固定在水平面上(如图2所示),顶部有一小物体A ,今给它一个水平初速度v 0=Rg ,则物体将( )A .沿球面下滑至M 点B .沿球面下滑至某一点N ,便离开球面做斜下抛运动C .沿半径大于R 的新圆弧轨道做圆周运动D .立即离开半圆球做平抛运动答案 D解析 当v 0=gR 时,所需向心力F =m v 20R=mg ,此时,物体与半球面顶部接触但无弹力作用,物体只受重力作用,故做平抛运动.4.质量为m 的飞机,以速率v 在水平面内做半径为R 的匀速圆周运动,空气对飞机作用力的大小等于( )A .m g 2+v 4R 2 B .m v 2RC .mv 4R 2-g 2D .mg解析 空气对飞机的作用力有两个作用效果,其一:竖直方向的作用力使飞机克服重力作用而升空;其二:水平方向的作用力提供向心力,使飞机可在水平面内做匀速圆周运动.对飞机的受力情况进行分析,如图所示.飞机受到重力mg 、空气对飞机的作用力F 升,两力的合力为F ,方向沿水平方向指向圆心.由题意可知,重力mg 与F垂直,故F 升=m 2g 2+F 2,又F =m v 2R ,联立解得F升=m g 2+v 4R2. 图3答案 A5.质量不计的轻质弹性杆P 插在桌面上,杆端套有一个质量为m 的小球,今使小球沿水平方向做半径为R 的匀速圆周运动,角速度为ω,如图4所示,则杆的上端受到的作用力大小为( )A .m ω2RD .不能确定 答案 C解析 小球在重力和杆的作用力下做匀速圆周运动.这两个力的合力充当向心力必指向圆心,如图所示.用力的合成法可得杆对球的作用力:N =(mg )2+F 2=m 2g 2+m 2ω4R 2,根据牛顿第三定律,小球对杆的上端的作用力N ′=N ,C 正确.图56.火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定.若在某转弯处规定行驶速度为v ,则下列说法中正确的是( )A .当以v 的速度通过此弯路时,火车重力与轨道面支持力的合力提供向心力B .当以v 的速度通过此弯路时,火车重力、轨道面支持力和外轨对轮缘弹力的合力提供向心力C .当速度大于v 时,轮缘挤压外轨D .当速度小于v 时,轮缘挤压外轨解析 当以v 的速度通过此弯路时,向心力由火车的重力和轨道的支持力的合力提供,A 对,B 错;当速度大于v 时,火车的重力和轨道的支持力的合力小于向心力,外轨对轮缘有向内的弹力,轮缘挤压外轨,C 对,D 错.答案 AC解析 设赛车的质量为m ,赛车受力分析如图所示,可见:F 合=mg tan θ,而F 合=m v 2r,故v =gr tan θ.7.如图11,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R =0.5 m ,离水平地面的高度H =0.8 m ,物块平抛落地过程水平位移的大小x =0.4 m .设物块所受的最大静摩擦力等于滑动摩擦力,重力加速度g取10 m/s 2.求:图11(1)物块做平抛运动的初速度大小v 0; (2)物块与转台间的动摩擦因数μ. 答案 (1)1 m/s (2)解析 (1)物块做平抛运动,竖直方向有 H =12gt 2① 水平方向有x =v 0t ②联立①②两式得v 0=x g 2H =1 m/s ③ (2)物块离开转台时,最大静摩擦力提供向心力,有 μmg =m v 20R ④ 联立③④得μ=v 20gR = 8.(多选)如图5所示,质量为m 的物体,沿着半径为R 的半球形金属壳内壁滑下,半球形金属壳竖直固定放置,开口向上,滑到最低点时速度大小为v ,若物体与球壳之间的动摩擦因数为μ,则物体在最低点时,下列说法正确的是( )图5 A .受到的向心力为mg +m v 2RB .受到的摩擦力为μm v 2RC .受到的摩擦力为μ(mg +m v 2R)D .受到的合力方向斜向左上方解析 物体在最低点做圆周运动,则有F N -mg =m v 2R ,解得F N =mg +m v 2R,故物体受到的滑动摩擦力F f =μF N =μ(mg +m v 2R),A 、B 错误,C 正确.物体受到竖直向下的重力、水平向左的摩擦力和竖直向上的支持力(支持力大于重力),故物体所受的合力斜向左上方,D 正确. 答案 CD临界问题分析一:水平面内圆周运动的临界问题处理临界问题的解题步骤(1)判断临界状态:有些题目中有“刚好”“恰好”“正好”等字眼,明显表明题述的过程存在着临界点;若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应着临界状态;若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程存在着极值,这个极值点也往往对应着临界状态.(2)确定临界条件:判断题述的过程存在临界状态之后,要通过分析弄清临界状态出现的条件,并以数学形式表达出来. (3)选择物理规律:当确定了物体运动的临界状态和临界条件后,要分别对不同的运动过程或现象,选择相对应的物理规律,然后列方程求解.例1 如图8所示,高速公路转弯处弯道圆半径R =100 m ,汽车轮胎与路面间的动摩擦因数μ=.最大静摩擦力与滑动摩擦力相等,若路面是水平的,问汽车转弯时不发生径向滑动(离心现象)所允许的最大速率v m 为多大?当超过v m 时,将会出现什么现象?(g =9.8 m/s 2)解析 在水平路面上转弯,向心力只能由静摩擦力提供,设汽车质量为m ,则f m =μmg ,则有m v 2m R=μmg ,v m =μgR ,代入数据可得v m ≈15 m/s =54 km/h.当汽车的速度超过54 km/h 时,需要的向心力m v 2R大于最大静摩擦力,也就是说提供的合外力不足以维持汽车做圆周运动所需的向心力,汽车将做离心运动,严重的将会出现翻车事故.答案 54 km/h 汽车做离心运动或出现翻车事故2.[相对滑动的临界问题](2014·新课标全国Ⅰ·20)(多选)如图6所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )图6A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg解析小木块a、b做圆周运动时,由静摩擦力提供向心力,即f=mω2R.当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a:f a=mω2a l,当f a=kmg时,kmg=mω2a l,ωa=kgl;对木块b:f b=mω2b·2l,当f b=kmg时,kmg=mω2b·2l,ωb=kg2l,所以b先达到最大静摩擦力,选项A正确;两木块滑动前转动的角速度相同,则f a=mω2l,f b=mω2·2l,f a<f b,选项B错误;当ω=kg2l时b刚开始滑动,选项C正确;当ω=2kg3l时,a没有滑动,则f a=mω2l=23kmg,选项D错误.答案AC3.[接触与脱离的临界问题]如图8所示,用一根长为l=1 m的细线,一端系一质量为m=1 kg 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为F T.(g取10 m/s2,结果可用根式表示)求:图8(1)若要小球刚好离开锥面,则小球的角速度ω0至少为多大?(2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大?解析(1)若要小球刚好离开锥面,则小球只受到重力和细线的拉力,受力分析如图所示.小球做匀速圆周运动的轨迹圆在水平面上,故向心力水平,在水平方向运用牛顿第二定律及向心力公式得:mg tan θ=mω20l sin θ解得:ω20=gl cos θ即ω0=gl cos θ=522 rad/s.(2)同理,当细线与竖直方向成60°角时,由牛顿第二定律及向心力公式得:mg tan α=mω′2l sin α解得:ω′2=gl cos α,即ω′=gl cos α=2 5 rad/s.二:竖直面内圆周运动的临界问题1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管)约束模型”.210.[过山车的分析](多选)如图9所示甲、乙、丙、丁是游乐场中比较常见的过山车,甲、乙两图的轨道车在轨道的外侧做圆周运动,丙、丁两图的轨道车在轨道的内侧做圆周运动,两种过山车都有安全锁(由上、下、侧三个轮子组成)把轨道车套在了轨道上,四个图中轨道的半径都为R,下列说法正确的是( )图9A.甲图中,当轨道车以一定的速度通过轨道最高点时,座椅一定给人向上的力B.乙图中,当轨道车以一定的速度通过轨道最低点时,安全带一定给人向上的力C.丙图中,当轨道车以一定的速度通过轨道最低点时,座椅一定给人向上的力D .丁图中,轨道车过最高点的最小速度为gR 解析 在甲图中,当速度比较小时,根据牛顿第二定律得,mg -F N =m v 2R,即座椅给人施加向上的力,当速度比较大时,根据牛顿第二定律得,mg+F N =m v 2R,即座椅给人施加向下的力,故A 错误;在乙图中,因为合力指向圆心,重力竖直向下,所以安全带给人一定是向上的力,故B 正确;在丙图中,当轨道车以一定的速度通过轨道最低点时,合力方向向上,重力竖直向下,则座椅给人的作用力一定竖直向上,故C 正确;在丁图中,由于轨道车有安全锁,可知轨道车在最高点的最小速度为零,故D 错误. 答案 BC11.[杆模型分析](2014·新课标Ⅱ·17)如图10所示,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m 的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g .当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )图10A .Mg -5mgB .Mg +mgC .Mg +5mgD .Mg +10mg解析 设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12mv 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =mv 2R ,所以在最低点时大环对小环的支持力F N =mg +mv 2R=5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件轻杆对大环的拉力T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C正确,选项A 、B 、D 错误. 答案 C。
圆周运动_临界问题
当v=v0,对轨道刚好无压力,小球刚好能够通过最高点;
当v>v0,对轨道有压力,小球能够通过最高点; 当v<v0,小球偏离原运动轨道,不能通过最高点。
要保证过山车在最高点不掉下来,此时的速度必须满足:v gr
规律总结:无支持物
物体在圆周运动过最高点时,轻绳对物体只能产生沿绳收 缩方向向下的拉力,或轨道对物体只能产生向下的弹力; 若速度太小物体会脱离圆轨道——无支持物模型
①临界条件:绳子或轨道对小球恰好没有弹力的 作用,重力提供向心力,即 mg=mvR2临界, 解得小球恰能通过最高点的临界速度为: v = 临界 Rg. ②能过最高点的条件:v≥ gR,当 v> gR时,绳对 球产生拉力,轨道对球产生压力.
③不能过最高点的条件:V<V临界(实际上小球尚未到达 最高点时就脱离了轨道).
能使小球在管内做完整的圆周运动?
临界速度:F 0,v0 gR
当v<v0,内壁对球有向上的支持力;
当v>v0,外壁对球有向下的压力。
使小球能做完整的圆周运动在最低点的速度:
vA>2
gr
过最高 点的临 界条件 最低点 的临界
速度
轻绳模型 由 mg=mvr2 得 v 临= gr 由机械能守恒可得
,v2
gL
由牛顿第三定律,B球对O轴的L 拉力 T v24mg ,竖直向下。 ⑵杆对B球无作用力,对A球:T mg m ,T mg
由牛顿第三定律,A球对O轴的拉力 T 2Lmg ,竖直向下。
⑶在杆的转速逐渐变化的过程中,能否出现O轴不 受力的情况?请计算说明。
v2
若B球在上端A球在下端,对B球:T 2mg 2mg
(1)若m在最高点时突然与电机脱离, 它将如何运动? (2)当角速度ω为何值时,铁块在最高 点与电机恰无作用力? (3)本题也可认为是一电动打夯机的原 理示意图。若电机的质量为M,则ω多大 图3-5 时,电机可以“跳”起来?此情况下,对 地面的最大压力是多少?
圆周运动临界问题
圆周运动的临界问题通常涉及到物体在竖直平面内做变速圆周运动的情况,如轻绳模型过最高点或最低点的情况,以及物体通过其他特殊点的情况。
在这些情况下,临界状态通常是由于圆周运动的向心力和离心力的平衡状态被打破所导致的。
以轻绳模型过最高点为例,当物体通过最高点时,轻绳对物体的拉力与物体的重力相等,即T = mg。
当拉力大于或小于重力时,物体将处于超重或失重状态,并可能出现临界情况。
在这种情况下,可以通过牛顿第二定律和向心力公式来求解物体的运动状态。
在求解时,首先根据题意确定物体通过最高点时的受力情况,然后根据牛顿第二定律列式,最后根据向心力公式求解出物体在最高点时的速度。
根据速度的大小,可以判断出物体是否处于临界状态,并求出相应的临界条件。
需要注意的是,在圆周运动的临界问题中,物体的运动状态可能会发生突变,因此需要特别注意物体的加速度和速度的变化情况。
此外,在求解临界条件时,需要将物体的运动状态与受力情况结合起来考虑,并灵活运用向心力和牛顿第二定律进行求解。
(完整版)圆周运动中的临界问题
圆周运动中的临界问题一、水平面内圆周运动的临界问题关于水平面内匀速圆周运动的临界问题,涉及的是临界速度与临界力的问题,具体来说,主要是与绳的拉力、弹簧的弹力、接触面的弹力和摩擦力有关。
1、与绳的拉力有关的临界问题例1 如图1示,两绳系一质量为kg m 1.0=的小球, 上面绳长m l 2=,两端都拉直时与轴的夹角分别为o30与o45,问球的角速度在什么范围内,两绳始终张紧,当角速度为s rad /3时,上、下两绳拉力分别为多大?2、因静摩擦力存在最值而产生的临界问题 例2 如图2所示,细绳一端系着质量为kg M 6.0= 的物体,静止在水平面上,另一端通过光滑小孔吊着 质量为kg m 3.0=的物体,M 的中心与圆孔距离为m 2.0并知M 与水平面间的最大静摩擦力为N 2,现让此平面 绕中心轴匀速转动,问转动的角速度ω满足什么条件 可让m 处于静止状态。
(2/10s m g =)3、因接触面弹力的有无而产生的临界问题二、竖直平面内圆周运动的临界问题对于物体在竖直平面内做变速圆周运动,中学物理中只研究物体通过最高点和最低点的情况,并且也经常会出现临界状态。
1、轻绳模型过最高点如图所示,用轻绳系一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直平面内光滑轨道内侧做圆周运动过最到点的情况相似,都属于无支撑的类型。
临界条件:假设小球到达最高点时速度为0v ,此时绳子的拉力(轨道的弹力)C图1图2刚好等于零,小球的重力单独提供其做圆周运动的向心力,即rvm mg 20=,gr v =0,式中的0v 是小球过最高点的最小速度,即过最高点的临界速度。
(1)0v v = (刚好到最高点,轻绳无拉力)(2)0v v > (能过最高点,且轻绳产生拉力的作用) (3)0v v < (实际上小球还没有到最高点就已经脱离了轨道) 例4、如图4所示,一根轻绳末端系一个质量为kg m 1=的小球, 绳的长度m l 4.0=, 轻绳能够承受的最大拉力为N F 100max =, 现在最低点给小球一个水平初速度,让小球以轻绳的一端O 为 圆心在竖直平面内做圆周运动,要让小球在竖直平面内做完整的圆周运动且轻绳不断,小球的初速度应满足什么条件?(10m g =2、轻杆模型过最高点如图所示,轻杆末端固定一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直放置的圆形管道内过最到点的情况相似,都属于有支撑的类型。
圆周运动临界问题的分析与求解
外力才指向圆心
从 a 点 到b 点,物 块 受 到 的 摩 擦 力 先
C.
增大后减小
56
/
B.
r
a
d
s
3
2
0
/
D. r
a
d
s
3
从b 点到a 点,
物块处于失重状态
D.
参考答案:
1.
A 2.
D
作者单位:
河南省商城高级中学
Copyright©博看网. All Rights Reserved.
(
责任编辑
张
巧)
沿绳方 向 的 分 速 度 和 垂 直 于 绳 方 向 的 分 速
A.
vs
i
nθ
)
。
B.
vc
o
sθ
v
D.
t
a
nθ
C.
vt
a
nθ
将光 盘 水 平 向 左 移 动 的 速
度,
将两分 速 度 按 照 矢 量 运 算 法 则 合 成 可 以
度v 分 解 为 沿 桌 面 上 方 倾 斜 段
得到合速度。
v2
b
。联立以上各式
=m
R
R
b
a
解得g= ,
m = R ,选 项 A 正 确,
B 错 误。
R
b
根据 Nv2 图像 可 知,当 v2 <b 时,轻 杆 对 小
球的弹力方向向上,
当 v2 >b 时,
轻杆对小球
的弹力方 向 向 下。 因 此 当 v2 =c 时,轻 杆 对
小球的 弹 力 方 向 向 下,
选 项 C 错 误。 若 v2 =
圆周运动的临界问题结论总结
圆周运动的临界问题结论总结引言圆周运动是物理学中一个重要的研究对象,它广泛应用于机械、电子、核物理等领域。
在圆周运动中,存在着临界问题,即在达到一定条件下,系统会出现特殊的运动状态。
本文将对圆周运动的临界问题进行总结和讨论,探究其背后的原理和应用。
圆周运动简介圆周运动是物体绕着一个固定点以相同的速度做匀速运动的过程。
在圆周运动中,我们经常涉及到的几个重要概念包括角速度、圆周位移、向心加速度等。
圆周运动的临界问题在圆周运动中,当某些条件达到一定数值时,系统会出现特殊的运动状态,即临界状态。
以下是几个常见的圆周运动的临界问题:1. 临界速度临界速度是指物体在圆周运动中的最小速度,即达到这个速度后,物体将能够保持圆周运动而不会脱离。
临界速度的计算可以通过向心加速度和半径之间的关系得到。
2. 临界半径临界半径是指物体在圆周运动中最大的半径,即当半径超过这个值时,物体将无法保持圆周运动。
临界半径的计算可以通过向心加速度和速度之间的关系得到。
3. 同步转速同步转速是指当一个物体在圆周运动中与另一个物体由于某种相互作用而达到相同的转速。
同步转速常见于机械传动系统中,应用于传感器、电机等设备。
4. 切向加速度的临界条件在圆周运动中,物体的切向加速度也扮演着重要的角色。
临界条件是切向加速度的大小是否足够让物体保持圆周运动,当切向加速度小于临界值时,物体将离开圆周运动。
圆周运动的应用圆周运动的临界问题在实际应用中具有重要意义。
以下是几个典型的应用:1. 离心力的利用离心力是圆周运动中一种重要的力,它的大小与向心加速度成正比。
在很多设备中,我们会利用离心力进行分离、过滤、加速等操作。
2. 地球绕太阳的运动地球绕太阳做圆周运动,正是由于地球的临界速度和太阳的引力,地球才能在太阳系中稳定运动。
3. 卫星轨道维持人造卫星在轨道上运行时,需要使用推进器进行修正,使卫星维持在临界半径内,避免脱离圆周运动。
4. 强化材料的测试在材料科学中,可以通过使材料在高速旋转的离心机中达到临界速度,来测试材料的强度和耐久性。
圆周运动_临界问题
速度v0,使小球在竖直平面内做圆周运动,并且刚好
过最高点,则下列说法中正确的是:( D )
A.小球过最高点时速度为零
B.小球开始运动时绳对小球的拉力为m
v
2 0
C.小球过最高点时绳对小的拉力mg L
D.小球过最高点时速度大小为 gL
变型题2:在倾角为α=30°的光滑斜面上用细绳 拴住一小球,另一端固定,其细线长为0.8m, 现为了使一质量为0.2kg的小球做圆周运动,则 小球在最高点的速度至少为多少?
【答案】 2.9 rad/s≤ω≤6.5 rad/s
如图所示,匀速转动的水平圆盘上,沿半径方向 两个用细线相连的小物体A、B的质量均为m,它们到 转轴的距离分别为rA=20cm,rB=30cm。A、B与圆盘间 的最大静摩擦力均为重力的0.4倍,(g=10m/s2)求:
(1)当细线上开始出现张力,圆盘的角速度;
例1:如图所示,半径为R的圆盘绕垂直于
盘面的中心轴匀速转动,其正上方h处沿OB
方向水平抛出一个小球,要使球与盘只碰
一次,且落点为B,则小球的初速度v=
_________,圆盘转动的角速度ω=
_________。
图3-6
例2:如图所示,小球Q在竖直平面内做匀 速圆周运动,当Q球转到图示位置时,有 另一小球P在距圆周最高点为h处开始自由 下落.要使两球在圆周最高点相碰,则Q球 的角速度ω应满足什么条件?
当v=v0,对轨道刚好无压力,小球刚好能够通过最高点;
当v>v0,对轨道有压力,小球能够通过最高点; 当v<v0,小球偏离原运动轨道,不能通过最高点。
要保证过山车在最高点不掉下来,此时的速度必须满足:v gr
规律总结:无支持物
物体在圆周运动过最高点时,轻绳对物体只能产生沿绳收 缩方向向下的拉力,或轨道对物体只能产生向下的弹力; 若速度太小物体会脱离圆轨道——无支持物模型
圆周运动的临界问题
解:在最高点F向=G+T, 即G+T=mv2/r
T=mv2/r-mg≥0
小球经过最高点的速度:v gr
线或绳
讨论:
①、当 v gr 时,细绳对小球没有拉力作用。向心
力只由小球所受重力提供。
②、如果 v> gr ,轻绳对小球存在拉力。
③、如果 v< gr ,小球无法到达圆周的最高点
练习:如图,在“水流星”表演中,绳长为 1m,水桶的质量为2kg,若水桶通过最高点的 速度为4m/s,求此时绳受到的拉力大小。
变式训练2:如图所示,一个光滑的圆锥体固定在水平桌面上,其
轴线沿竖直方向,母线与轴线之间的夹角为θ=30°,一条长度为L 的绳(质量不计),一端的位置固定在圆锥体的顶点O处,另一端 拴着一个质量为m的小物体(物体可看质点),物体以速率v绕圆 锥体的轴线做水平匀速圆周运动。
⑴当v= gl 6
时,求绳对物体的拉力;
练习:长L=0.5m,质量可以忽略的的杆,其下端 固定于O点,上端连接着一个质量m=2kg的小球A,A 绕O点做圆周运动,在A通过最高点时,试讨论在下列 两种情况下杆的受力:
①当A的速率v1=1m/s时 ②当A的速率v2=4m/s时
A
L
O
小结:
一.水平面内的圆周运动的临界问题
处理这类问题的关键是分析出静摩擦力的变化,从 而结合其他力分析出指向圆心的合外力的变化,以 确定圆周运动的其他物理量的变化范围。
mgt0 am n ω 1 2L 3s0 i3n00
B
30 0
45 0
C
将已知代入解得ω1=2.4 rad/s
②当角速度ω继续增大时TAC减小,TBC
增大。设角速度达到ω2时,TAC=0,则③ω=3 rad/s,此时两绳拉
高考物理 专题集锦(一)圆周运动实例分析与临界问题
圆周运动实例分析与临界问题圆周运动是高考命题的热点,命题点围绕弹力和摩擦力的临界态展开,具体表现为水平、竖直面和斜面内的圆周运动,命题中凸显学生对临界思想的理解和分析能力,有些问题还涉及图象,复习中要抓住热点,掌握解决的方法。
一、水平面内的圆周运动【例1】如图1所示,叠放在水平转台上的物体A 、B 、C 能随转台一起以角速度ω匀速转动,A 、B 、C 的质量分别为 3m 、2m 、m ,A 与B 、B 和C 与转台间的动摩擦因数都为μ,A 和B 、C 离转台中心的距离分别为r 、l.5r 。
设本题中的最大静摩擦力等于滑动摩擦力,下列说法正确的是 ( ) A.B 对A 的摩擦力一定为3μmg B.B 对A 的摩擦力一定为3m ω2rC.转台的角速度一定满足gr μω≤D.转台的角速度一定满足23grμω≤【解析】B 对A 的摩擦力是A 做圆周运动的向心力,所以23fBA F m r ω=,A 项错误,B 项正确;当滑块与转台间不发生相对运动,并随转台一起转动时,转台对滑块的静摩擦力提供向心力,所以当转速较大,滑块转动需要的向心力大于最大静摩擦力时,滑块将相对于转台滑动,对应的临界条件是静擦力提供向心力,即2mg m r μω=,g rμω=,所以,质量为m 、离转台中心距离为r 的滑块,能够随转台一起转动的条件是g rμω≤;对于本题,物体C 需要满足的条件23grμω≤,物体A 和B 需要满足的条件均是g rμω≤所以, 要使三个物体都能够随转台转动,转台的角速度一定满足23grμω≤, C 项错误,D 项正确。
【答案】BD【总结】水平面内的圆周运动主要涉及的问题是摩擦力临界。
常见问题如下(图中物体质量为m ,距离圆心为r ,转盘转动的角速度为ω,最大静摩擦力为F m ,绳的拉力为F T ):【例2】(2016 •山东临沂教学质检)质量为m 的小球由轻绳a 和b 分别系于一轻质细杆的A 点和B 点,如图2所示,绳a 与水平方向夹角为θ, 绳b 沿水平方向且长为l ,当轻杆绕轴AB 以角速度ω匀速转动时,小球在水平面内做勻速圆周运动,则下列说法正确的是 ( )A.a 绳张力不可能为零B.a 绳的张力随角速度的增大而增大C.当角速度cos g lθω>,b 绳将出现弹力 D.若b 绳突然被剪断,a 绳的弹力可能不变【解析】小球做匀速圆周运动,在竖直方向上的合力为零,水平方向上的合力提供向心力,所以a 绳在竖直方向上的分力与重力相等,可知a 绳的张力不可能为零,故A 项正确;根据竖直方向上平衡得,sin a F mg θ=,解得/sin a F mg θ=,可知a 绳的拉力不变,故B 项错误;当b 绳拉力为零时,有2cot mg ml θω=,解得cot g lθω=,可知当角速度cot g lθω>时,b 绳出现弹力,故C 项错误;由于b 绳可能没有弹力,故b 绳突然被剪断,a 绳的弹力可能不变,故D 项正确。
圆周运动实例分析与临界问题
圆周运动实例分析与临界问题教学要求】1.知道非匀速圆周运动的特点;2 .掌握竖直平面内的圆周运动的两种典型情况,会分析其临界条件。
3.会运用圆周运动的有关知识分析解决实际问题。
知识再现】一、火车转弯问题由于火车的质量比较大,火车拐弯时所需的向心力就很大.如果铁轨内外侧一样高,则外侧轮缘所受的压力很大,容易损坏;实用中使略咼于_________ 从而 _________ 和 ___________ '勺合力提供火车拐弯时所需的向心力。
铁轨拐弯处半径为R,内外轨高度差为H ,两轨间距为L,火车总质量为M,贝心(1) 火车在拐弯处运动的规定速度’即内外轨均不受压的速度V p= _______(2) 若火车实际速度大于V p,则—将受到侧向压力;(3) 若火车实际速度小于V p,则—将受到侧向压力。
二、水流星”问题绳系装满水的杯子在竖直平面内做圆周运动,即使到了最高点杯子中的水也不会流出,这是因为水的重力提供水做圆周运动的向心力.(1) _____________________________ 杯子在最高点的最小速度v min = _______________________________ .(2) 当杯子在最高点速度为V>V min时,杯子内的水对杯底有压力,若计算中求得杯子在最高点速度V<V min,则杯子不能到达最高点。
知识点一竖直平面内的圆周运动竖直平面内的变速圆周运动,是典型的变速圆周运动,对于物体在竖直平面内做变速圆周运动的问题,中学物理中只研究物体通过最高点和最低点的情况,并且经常出现临界状态。
此类问题多为讨论最高点时的情况,下面具体分析几种情况:1、绳模型”一-卜轨、绳的约束(1 )临界条件:小球到最高点时绳子的拉力 (或轨道的弹力)冈収子等于零,小球的重力提供做圆周运动的向心力,mg=mv 临2/r v 临二.gr即V临是小球能通过最高点时的最小速度(2)能通过最高点的条件:v细临(3) 不能通过最高点的条件v<v临。
圆周运动的实例及临界问题
圆周运动的实例及临界问题一、汽车过拱形桥1.汽车在拱形桥最高点时,向心力:F 合=mg -N =m v 2R.支持力:N =mg -mv 2R<mg ,汽车处于失重状态.2.汽车对桥的压力N ′与桥对汽车的支持N 是一对相互作用力,大小相等,所以汽车通过最高点时的速度越大,汽车对桥面的压力就越小.例1 一辆质量m =2 t 的轿车,驶过半径R =90 m 的一段凸形桥面,g =10 m/s 2,求:(1)轿车以10 m/s 的速度通过桥面最高点时,对桥面的压力是多大? (2)在最高点对桥面的压力等于轿车重力的一半时,车的速度大小是多少?解析 (1)轿车通过凸形桥面最高点时,受力分析如图所示:合力F =mg -N ,由向心力公式得mg -N =m v 2R,故桥面的支持力大小N =mg -m v 2R=(2 000×10-2 000×10290) N ≈1.78×104 N根据牛顿第三定律,轿车在桥面最高点时对桥面压力的大小为1.78×104 N.(2)对桥面的压力等于轿车重力的一半时,向心力F ′=mg -N ′=0.5mg ,而F ′=m v ′2R,所以此时轿车的速度大小v ′=0.5gR =0.5×10×90 m/s ≈21.2 m/s答案 (1)1.78×104 N (2)21.2 m/s 二、圆锥摆模型1.运动特点:人及其座椅在水平面内做匀速圆周运动,悬线旋转形成一个圆锥面.图1 2.运动分析:将“旋转秋千”简化为圆锥摆模型(如图1所示)(1)向心力:F 合=mg tan_α (2)运动分析:F 合=mω2r =mω2l sin α (3)缆绳与中心轴的夹角α满足cos α=g ω2l . 图6例2 如图6所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平面做匀速圆周运动,以下物理量大小关系正确的是( ) A .速度v A >v B B .角速度ωA >ωBC .向心力F A >F BD .向心加速度a A >a B解析 设漏斗的顶角为2θ,则小球的合力为F 合=mg tan θ,由F =F 合=mg tan θ=mω2r =m v 2r=ma ,知向心力F A =F B ,向心加速度a A =a B ,选项C 、D错误;因r A >r B ,又由v =grtan θ和ω=gr tan θ知v A >v B 、ωA <ωB ,故A 对,B 错.答案 A三、火车转弯1.运动特点:火车转弯时做圆周运动,具有向心加速度,需要向心力.2.铁路弯道的特点:转弯处外轨略高于内轨,铁轨对火车的支持力斜向弯道的内侧,此支持力与火车所受重力的合力指向圆心,为火车转弯提供了一部分向心力.例3铁路在弯道处的内、外轨道高度是不同的,已知内、外轨道平面与水平面的夹角为θ,如图7所示,弯道处的圆弧半径为R,若质量为m的火车转弯时速度等于gR tan θ,则( ) A.内轨对内侧车轮轮缘有挤压B.外轨对外侧车轮轮缘有挤压C.这时铁轨对火车的支持力等于mgcos θD.这时铁轨对火车的支持力大于mgcos θ解析由牛顿第二定律F合=m v2R,解得F合=mg tan θ,此时火车受重力和铁路轨道的支持力作用,如图所示,N cos θ=mg,则N=mgcos θ,内、外轨道对火车均无侧向压力,故C正确,A、B、D错误.答案C课后巩固训练2.(圆锥摆模型)两个质量相同的小球,在同一水平面内做匀速圆周运动,悬点相同,如图9所示,A运动的半径比B的大,则( )A.A所需的向心力比B的大B.B所需的向心力比A的大C.A的角速度比B的大D.B的角速度比A的大解析小球的重力和绳子的拉力的合力充当向心力,设悬线与竖直方向夹角为θ,则F=mg tan θ=mω2l sin θ,θ越大,向心力F越大,所以A对,B错;而ω2=gl cos θ=gh.故两者的角速度相同,C、D错.答案A3.半径为R的光滑半圆球固定在水平面上(如图2所示),顶部有一小物体A,今给它一个水平初速度v0=Rg,则物体将( )A.沿球面下滑至M点B.沿球面下滑至某一点N,便离开球面做斜下抛运动C.沿半径大于R的新圆弧轨道做圆周运动D.立即离开半圆球做平抛运动答案D解析当v0=gR时,所需向心力F=mv20R=mg,此时,物体与半球面顶部接触但无弹力作用,物体只受重力作用,故做平抛运动.4.质量为m的飞机,以速率v在水平面内做半径为R的匀速圆周运动,空气对飞机作用力的大小等于( )A.m g2+v4R2B.mv2RC.mv4R2-g2D.mg解析空气对飞机的作用力有两个作用效果,其一:竖直方向的作用力使飞机克服重力作用而升空;其二:水平方向的作用力提供向心力,使飞机可在水平面内做匀速圆周运动.对飞机的受力情况进行分析,如图所示.飞机受到重力mg 、空气对飞机的作用力F 升,两力的合力为F ,方向沿水平方向指向圆心.由题意可知,重力mg与F 垂直,故F 升=m 2g 2+F 2,又F =m v 2R,联立解得F 升=mg 2+v 4R2.图3答案 A5.质量不计的轻质弹性杆P 插在桌面上,杆端套有一个质量为m 的小球,今使小球沿水平方向做半径为R 的匀速圆周运动,角速度为ω,如图4所示,则杆的上端受到的作用力大小为( )A .m ω2RB.m 2g 2-m 2ω4R 2C.m 2g 2+m 2ω4R 2 D .不能确定 答案 C解析 小球在重力和杆的作用力下做匀速圆周运动.这两个力的合力充当向心力必指向圆心,如图所示.用力的合成法可得杆对球的作用力:N =(mg )2+F 2=m 2g 2+m 2ω4R 2,根据牛顿第三定律,小球对杆的上端的作用力N ′=N ,C 正确.图56.火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定.若在某转弯处规定行驶速度为v ,则下列说法中正确的是( )A .当以v 的速度通过此弯路时,火车重力与轨道面支持力的合力提供向心力B .当以v 的速度通过此弯路时,火车重力、轨道面支持力和外轨对轮缘弹力的合力提供向心力C .当速度大于v 时,轮缘挤压外轨D .当速度小于v 时,轮缘挤压外轨解析 当以v 的速度通过此弯路时,向心力由火车的重力和轨道的支持力的合力提供,A 对,B 错;当速度大于v 时,火车的重力和轨道的支持力的合力小于向心力,外轨对轮缘有向内的弹力,轮缘挤压外轨,C 对,D 错.答案 AC解析 设赛车的质量为m ,赛车受力分析如图所示,可见:F 合=mg tan θ,而F 合=m v 2r ,故v =gr tan θ.7.如图11,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R =0.5 m ,离水平地面的高度H =0.8 m ,物块平抛落地过程水平位移的大小x =0.4 m .设物块所受的最大静摩擦力等于滑动摩擦力,重力加速度g 取10 m/s 2.求:图11(1)物块做平抛运动的初速度大小v 0; (2)物块与转台间的动摩擦因数μ. 答案 (1)1 m/s (2)0.2解析 (1)物块做平抛运动,竖直方向有H =12gt 2①水平方向有x =v 0t ② 联立①②两式得v 0=xg2H=1 m/s ③ (2)物块离开转台时,最大静摩擦力提供向心力,有μmg =m v 20R④联立③④得μ=v 20gR=0.28.(多选)如图5所示,质量为m 的物体,沿着半径为R 的半球形金属壳内壁滑下,半球形金属壳竖直固定放置,开口向上,滑到最低点时速度大小为v ,若物体与球壳之间的动摩擦因数为μ,则物体在最低点时,下列说法正确的是( )图5A .受到的向心力为mg +m v 2RB .受到的摩擦力为μm v 2RC .受到的摩擦力为μ(mg +m v 2R)D .受到的合力方向斜向左上方解析 物体在最低点做圆周运动,则有F N -mg=m v 2R,解得F N =mg +m v 2R ,故物体受到的滑动摩擦力F f =μF N =μ(mg +m v 2R),A 、B 错误,C 正确.物体受到竖直向下的重力、水平向左的摩擦力和竖直向上的支持力(支持力大于重力),故物体所受的合力斜向左上方,D 正确. 答案 CD临界问题分析 一:水平面内圆周运动的临界问题处理临界问题的解题步骤(1)判断临界状态:有些题目中有“刚好”“恰好”“正好”等字眼,明显表明题述的过程存在着临界点;若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应着临界状态;若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程存在着极值,这个极值点也往往对应着临界状态. (2)确定临界条件:判断题述的过程存在临界状态之后,要通过分析弄清临界状态出现的条件,并以数学形式表达出来.(3)选择物理规律:当确定了物体运动的临界状态和临界条件后,要分别对不同的运动过程或现象,选择相对应的物理规律,然后列方程求解.例1 如图8所示,高速公路转弯处弯道圆半径R =100 m ,汽车轮胎与路面间的动摩擦因数μ=0.23.最大静摩擦力与滑动摩擦力相等,若路面是水平的,问汽车转弯时不发生径向滑动(离心现象)所允许的最大速率v m 为多大?当超过v m 时,将会出现什么现象?(g =9.8 m/s 2)解析 在水平路面上转弯,向心力只能由静摩擦力提供,设汽车质量为m ,则f m =μmg ,则有mv 2mR=μmg ,v m =μgR ,代入数据可得v m ≈15 m/s =54 km/h.当汽车的速度超过54 km/h 时,需要的向心力m v 2R大于最大静摩擦力,也就是说提供的合外力不足以维持汽车做圆周运动所需的向心力,汽车将做离心运动,严重的将会出现翻车事故.答案 54 km/h 汽车做离心运动或出现翻车事故2.[相对滑动的临界问题](2014·新课标全国Ⅰ·20)(多选)如图6所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )图6 A .b 一定比a 先开始滑动 B .a 、b 所受的摩擦力始终相等C .ω= kg2l是b 开始滑动的临界角速度 D .当ω= 2kg3l时,a 所受摩擦力的大小为kmg 解析 小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即f =mω2R .当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a :f a =mω 2a l ,当f a =kmg 时,kmg =mω 2a l ,ωa = kg l;对木块b :f b =mω 2b ·2l ,当f b =kmg 时,kmg =mω 2b ·2l ,ωb =kg2l,所以b 先达到最大静摩擦力,选项A 正确;两木块滑动前转动的角速度相同,则f a =mω2l ,f b =mω2·2l ,f a <f b ,选项B 错误;当ω=kg 2l时b 刚开始滑动,选项C 正确;当ω=2kg3l时,a 没有滑动,则f a =mω2l =23kmg ,选项D 错误.答案 AC3.[接触与脱离的临界问题]如图8所示,用一根长为l =1 m 的细线,一端系一质量为m =1 kg 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为F T .(g 取10 m/s 2,结果可用根式表示)求:图8(1)若要小球刚好离开锥面,则小球的角速度ω0至少为多大?(2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大?解析 (1)若要小球刚好离开锥面,则小球只受到重力和细线的拉力,受力分析如图所示.小球做匀速圆周运动的轨迹圆在水平面上,故向心力水平,在水平方向运用牛顿第二定律及向心力公式得:mg tan θ=mω 20l sin θ 解得:ω 20=gl cos θ即ω0= g l cos θ=52 2 rad/s. (2)同理,当细线与竖直方向成60°角时,由牛顿第二定律及向心力公式得:mg tan α=mω′2l sin α 解得:ω′2=g l cos α,即ω′=g l cos α=2 5rad/s.二:竖直面内圆周运动的临界问题1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管)约束模型”. 2 绳模型 杆模型 常见类型均是没有支撑的小球 均是有支撑的小球 过最高点的临界条件 由mg =m v 2r 得v 临=gr 由小球恰能做圆周运动得v 临=010.[过山车的分析](多选)如图9所示甲、乙、丙、丁是游乐场中比较常见的过山车,甲、乙两图的轨道车在轨道的外侧做圆周运动,丙、丁两图的轨道车在轨道的内侧做圆周运动,两种过山车都有安全锁(由上、下、侧三个轮子组成)把轨道车套在了轨道上,四个图中轨道的半径都为R,下列说法正确的是( )图9A.甲图中,当轨道车以一定的速度通过轨道最高点时,座椅一定给人向上的力B.乙图中,当轨道车以一定的速度通过轨道最低点时,安全带一定给人向上的力C.丙图中,当轨道车以一定的速度通过轨道最低点时,座椅一定给人向上的力D.丁图中,轨道车过最高点的最小速度为gR解析在甲图中,当速度比较小时,根据牛顿第二定律得,mg-F N=mv2R,即座椅给人施加向上的力,当速度比较大时,根据牛顿第二定律得,mg+F N=mv2R,即座椅给人施加向下的力,故A错误;在乙图中,因为合力指向圆心,重力竖直向下,所以安全带给人一定是向上的力,故B正确;在丙图中,当轨道车以一定的速度通过轨道最低点时,合力方向向上,重力竖直向下,则座椅给人的作用力一定竖直向上,故C正确;在丁图中,由于轨道车有安全锁,可知轨道车在最高点的最小速度为零,故D错误.答案BC11.[杆模型分析](2014·新课标Ⅱ·17)如图10所示,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g.当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )图10A.Mg-5mg B.Mg+mg C.Mg+5mg D.Mg+10mg解析设大环半径为R,质量为m的小环下滑过程中遵守机械能守恒定律,所以12mv2=mg·2R.小环滑到大环的最低点时的速度为v=2gR,根据牛顿第二定律得F N-mg=mv2R,所以在最低点时大环对小环的支持力F N=mg+mv2R=5mg.根据牛顿第三定律知,小环对大环的压力F N′=F N=5mg,方向向下.对大环,据平衡条件轻杆对大环的拉力T=Mg+F N′=Mg+5mg.根据牛顿第三定律,大环对轻杆拉力的大小为T′=T=Mg+5mg,故选项C正确,选项A、B、D错误.答案C(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,感谢您的配合和支持)。
圆周运动中的临界问题(最新整理)
C、24N 的拉力
D、24N 的压力
m
A L O
例 3 长 L=0.5m,质量可以忽略的的杆,其下端固定于 O 点, 上端连接着一个质量 m=2kg 的小球 A,A 绕 O 点做圆周运动(同 图 5),在 A 通过最高点,试讨论在下列两种情况下杆的受力:
①当 A 的速率 v1=1m/s 时 ②当 A 的速率 v2=4m/s 时
离圆心,大小等于最大静摩擦力 2N。 此时,对 M 运用牛顿第二定律。
M
ro
有
T-fm=Mω12r
且 T=mg
解得 ω1=2.9 rad/s
m
第5页
图 7
当ω为所求范围最大值时,M 有背离圆心运动的趋势,水平面对 M 的静摩擦力的方向向着圆
心,大小还等于最大静摩擦力 2N。
再对 M 运用牛顿第二定律。
有
T+fm=Mω22r
解得 ω2=6.5 rad/s
所以,题中所求ω的范围是: 2.9 rad/s<ω<6.5 rad/s
第6页
注意:解题时注意圆心的位置(半径的大小)。
如果ω<2.4 rad/s 时,TBC=0,AC 与轴的夹角小于 30°。 如果ω>3.16rad/s 时,TAC=0,BC 与轴的夹角大于 45
例 5 解析:要使 m 静止,M 也应与平面相对静止。而 M 与平面静止时有两个临界状态:
当ω为所求范围最小值时,M 有向着圆心运动的趋势,水平面对 M 的静摩擦力的方向背
①当 v1=1m/s< 5m/s 时,小球受向下的重力 mg 和向上的支持力 N v2
由牛顿第二定律 mg-N=m L v2
N=mg-m =16N L
(完整版)单元圆周运动中的临界问题
第五单元 圆周运动中的临界问题一.圆周运动的临界问题,实际上是讨论物体能否通过该点继续做圆周运动的问题。
物体在某点是否符合圆周运动的特点关键是看物体的“动”“力”学特征。
“动”——物体以在该点的线速度和半径做圆周运动所需要的向心力向F 。
向F =___________=___________=____________=__________“力”——物体在该点实际所受合力在径向的分力r F二.讨论围绕物体在某点实际运动所需要的向心力向F 和在该点实际所受合力在径向的分力r F 的大小比较,来分析物体做何种运动。
1.若r F =向F ,则说明物体能够通过以圆周运动的形式通过该点,即为圆周运动。
2.若r F <向F ,则说明____________________________________,即为______运动。
3.若r F >向F ,则说明____________________________________,即为______运动。
一、竖直平面内圆周运动问题分析1.“轻绳”模型例题1 如图,用长为l 的轻质细绳一端系一质量为m 的小球,另一端固定于O 点。
满足什 么条件才能使物体在竖直面上做完整的圆周运动?思考:为什么只有满足这个条件才能保证小球能够在竖直面上做完整的圆周运动?充式训练1一质量为m 的小球在半径为R 的光滑圆弧轨道上运动,要满足什么条件才能使它在竖直面内做匀速圆周运动?巩固练习1 如图所示,一细绳一端固定质量为m的小球,以另一端O为圆心,使小球做半径为R的圆周运动,以下说法正确的是:A.小球过最高点时,细绳所受的弹力可以等于零OB .小球过最高点时的起码速度为gRC.小球过最高点时,细绳对球的作用力可以与球所受重力方向相反,此时重力一定大于绳对球的作用于力D.小球过最高点时,绳对球作用力一定与小球所受重力方向相反2.“轻杆”模型例题2如图,用长为l的轻质细杆一端系一质量为m的小球,另一端固定于O点。
圆周运动中的临界分析
圆周运动中的临界分析在高中阶段,我们经常碰到圆周运动中有关临界的问题.遇到这类题目,要求学生根据题中提供的信息,抓住物体的运动特点以及运动状态,根据圆周运动的知识去分析解决.一.水平面内做圆周运动的临界问题例1:如图所示,质量为m =0.1kg 的小球和A 、B 两根细绳相连,两绳固定在细杆的A 、B 两点,其中A 绳长L A =2m ,当两绳都拉直时,A 、B 两绳和细杆的夹角θ1=30°,θ2=45°,g =10m/s 2.求:(1)当细杆转动的角速度ω在什么范围内,A 、B 两绳始终张紧?(2)当ω=3rad/s 时,A 、B 两绳的拉力分别为多大?解析:(1)当B 绳恰好拉直,但T B =0时,细杆的转动角速度为ω1,有:T A cos30°=mg ,021030sin 30sin A A L m T ω=解得:ω1=2.4 rad/s当A 绳恰好拉直,但T A =0时,细杆的转动角速度为ω2,有:mg T B =045cos022030sin 45sin A B L m T ω= 解得:ω2=3.15(rad/s )要使两绳都拉紧2.4 rad/s≤ω≤3.15 rad/s .(2)当ω=3 rad/s 时,两绳都紧.︒=︒+︒30sin 45sin 30sin 2A B A L m T T ωmg T T B A =︒+︒45cos 30cos T A =0.27 N , T B =1.09 N .点评:分析两个极限(临界)状态来确定变化范围,是求解“范围”题目的基本思路和方法. 一般情况下,临界问题总是伴随极值问题的出现而出现,因此这类问题的关键是抓住出现极值时的临界状态,如果临界状态不明显,则可利用极限思维将某一物理量推至最小(常为0)或最大(常为∞),就能迅速找到临界状态.二.竖直面内做圆周运动的临界问题例2:在质量为M 的电动机上,装有质量为m的偏心轮,偏心轮转动的角速度为ω,当偏心轮重心在转轴正上方时,电动机对地面的压力刚好为零;则偏心轮重心离转轴的距离多大?在转动过程中,电动机对地面的最大压力多大?解析:设偏心轮的重心距转轴r,偏心轮等效为用一长为r的细杆固定质量为m(轮的质量)的质点,绕转轴转动,如图,轮的重心在正上方时,电动机对地面的压力刚好为零,则此时偏心轮对电动机向上的作用力大小等于电动机的重力,即:F =M g ① 根据牛顿第三定律,此时轴对偏心轮的作用力向下,大小为F =M g,其向心力为: F +mg =mω2r ②由①②得偏心轮重心到转轴的距离为:r =(M +m )g /(mω2) ③当偏心轮的重心转到最低点时,电动机对地面的压力最大.对偏心轮有:F '-mg =mω2r ④对电动机,设它所受支持力为F N ,F N =F '+Mg ⑤由③、④、⑤解得F N =2(M +m )g ,由牛顿第三定律得,电动机对地面的最大压力为2(M +m )g .点评:本题中电动机和偏心轮组成为一个系统,电动机对地面刚好无压力,是偏心轮运动的结果,因而把它们隔离开来进行研究思路比较清晰;先以电动机为研究对象,再以偏心轮为研究对象,分别列方程,再利用牛顿第二定律把它们联系起来即可求解;另外还要找出最高点和最低点这两个临界状态.三.与其他知识综合的临界问题例3:如图所示,被长为L 的轻杆连接的小球A 能绕固定点O 在竖直平面内做圆周运动,O 点竖直高度为h .如果杆受到的拉力等于小球所受重力的5倍时,就会断裂,则当小球运动的角速度为多大时,杆恰好断裂?小球飞出后,落地点与O 点的水平距离是多少?解析:小球在竖直面内做圆周运动,由受力情况可知,在最低点杆受的拉力最大,在最高点杆的受力最小,所以杆被拉断的位置应在最低点.在最低点,小球受重力mg 、杆竖直向上的拉力F T ,由牛顿第二定律有:F T -mg=mω2L , 当F T =5mg 时杆断裂,这时小球的角速度为Lg L g 24==ω, 小球飞出后做平抛运动,飞出点距地面的高度为y=h -L ,由平抛运动规律可知在竖直方向y=221gt , 在水平方向:x=vt=ωLt , 由以上各式可解得:)(22L h L x -=.点评:要求能正确判断出在最低点杆所受的拉力最大,而杆受力最小的位置在最高点,这是一个具有普遍意义的结论.。
圆周运动中的临界问题和周期性问题
mg Omg O 轨道圆周运动中的临界问题和周期性问题一、圆周运动问题的解题步骤:1、确定研究对象2、画出运动轨迹、找出圆心、求半径3、分析研究对象的受力情况,画受力图4、确定向心力的来源v 2 22π 2 5、由牛顿第二定律 F n = ma n = m r 二、临界问题常见类型:1、按力的种类分类: = m ω r = m () Tr ……列方程求解 (1)、与弹力有关的临界问题:接触面间的弹力:从有到无,或从无到有绳子的拉力:从无到有,从有到最大,或从有到无(2)、与摩擦力有关的弹力问题:从静到动,从动到静,临界状态下静摩擦力达到最大静摩擦 2、按轨道所在平面分类: (1)、竖直面内的圆周运动 (2)、水平面内的圆周运动 三、竖直面内的圆周运动的临界问题1、单向约束之绳、外轨道约束下的竖直面内圆周运动临界问题: 特点:绳对小球,轨道对小球只能产生指向圆心的弹力1 临界条件:绳子或轨道对小球没有力的作用:mg=mv 2/R →v 临界= (可理解为恰好转过或恰好转不过的速度)即此时小球所受重力全部提供向心力②能过最高点的条件:v ≥ ,当 v > 时,绳对球产生拉力,轨道对球产生压力.③不能过最高点的条件:v <V 临界(实际上球还没到最高点时就脱离了轨道做斜抛运动) 例 1、绳子系着装有水的木桶,在竖直面内做圆周运动,水的质量 m=0.5kg ,绳子长度为 l=60cm , 求:(g 取 10m/s 2) A 、最高点水不留出的最小速度? B 、设水在最高点速度为 V=3m/s ,求水对桶底的压力? 答案:(1) 6m / s(2)2.5NRg Rg RgRg Rg变式 1、如图所示,一质量为 m 的小球,用长为 L 细绳系住,使其在竖直面内作圆周运动.(1)若过小球恰好能通过最高点,则小球在最高点和最低点的速度分别是多少?小球的受力情况分别如何?(2)若小球在最低点受到绳子的拉力为 10mg ,则小球在最高点的速度及受到绳子的拉力是多少?2、单向约束之内轨道约束下(拱桥模型)的竖直面内圆周运动的临界问题:汽车过拱形桥时会有限速,是因为当汽车通过半圆弧顶部时的速度v = gr 时,汽车对弧顶的压力 FN=0,此时汽车将脱离桥面做平抛运动,因为桥面不能对汽车产生拉力.例 2、半径为 R 的光滑半圆球固定在水平面上,顶部有一小物体,如图所示。
圆周运动的临界问题
圆周运动的临界问题一、圆周运动中的临界问题的分析方法:1、明确研究对象。
2、分析物理过程,明确做圆周运动的平面、圆心和半径等。
3、对研究对象进行正确的受力分析,然后确定向心力,根据向心力公式列出方程。
4、由方程中的某个力的变化与速度变化的对应关系,从而分析找到临界值。
二、“绳模型”例题1、如图所示,质量为m的一小球用细线系住,在竖直平面内做圆周运动,已知绳长为L。
试求:(g取10m/s2)(1)若m=2kg,L=0.5m,小球通过最高点的线速度为V=5m/s,求小球通过最高点时,小球对细绳的拉力。
(2)小球以多大的速度通过最高点时,细绳对小球的拉力为0。
(3)小球在竖直平面内做圆周运动,通过最高点的速度的取值范围。
m三、“轻杆模型”例题2、如图所示,一根长为L的轻杆,一端固定一质量为m的小球,使其在竖直平面内绕杆的另一端做做圆周运动,试求:(g取10m/s2)(1)若m=5kg,L=0.625m,小球通过最高点的线速度为V=5m/s,求小球通过最高点时,轻杆对小球的作用力?(2)若小球通过最高点时,线速度V=2m/s,情况又如何?(3)小球一多大速度通过最高点时,小球对杆既无压力也无拉力?(4)小球在竖直平面内做圆周运动,通过最高点的速度的取值范围?四、课后练习1另一端O 在竖直平面内转动,不计空气阻力,用F 表示球到达最高点时细线对小球的作用力,则F 可能 ( )A .是拉力B .是推力C .等于零D .可能是拉力,可能是推力,也可能等于零2、长度为L =0.5 m 的轻质细杆OA ,A 端有一质量为m =3.0kg 的小球,所示,小球以O 点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是2.0m/s ,g 取10m/s 2,则此时细杆OA 受到( )A.6.0N 的拉力B.6.0N 的压力C.24N 的拉力D.24N 的压力3、如图,质量为0.5kg 的小杯里盛有1kg 的水,用绳子系住小杯在竖直 平面内做“水流星”表演,转动半径为1m ,小杯通过最高点的速度为4m/s ,g 取10m/s 2,求:(1) 在最高点时,绳的拉力?(2) 在最高点时水对小杯底的压力?(3) 为使小杯经过最高点时水不流出, 在最高点时最小速率是多少?4、如图所示,杆长为R ,杆的一端固定一质量为m 的小球,杆的质量忽略不计,整个系统绕杆的另一端在竖直平面内的作圆周运动,求:(1)小球在最高点时速率vA 为多大时,才能使杆对小球m 的作用力为零?(2)如m=0.5kg ,L=0.5m ,vA=0.4m/s ,则在最高点A 和最低点B 时,杆对小球m 的作用力各是多大?是推力还是拉力?(3)当小球在最高点时的速度为4m/s 时,杆对球的作用力是多大?是推力还是 拉力?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题 §4.4圆周运动实例分析和临界问题 第四章《曲线运动 万有引力》 姓名:
一、圆周运动、向心运动和离心运动问题:设物体在圆周半径方向受到的合力为F :
①若满足F =mv 2/R ,物体做圆周运动; ②若满足F >mv 2/R ,物体做向心运动; ③若满足F <mv 2/R ,物体做离心运动。
二、火车转弯问题(注意:火车转弯时其圆周平面是水平的,不是斜的)
最佳情况是向心力恰好由支持力和重力的合力提供,铁轨的内、外轨均不受到侧向挤
压的力,此时有mg tan θ=mv 02/r
当火车实际转弯速度为v 时,可有三种可能:
①若v =v 0时,内外轨均不受侧向挤压的力;
②若v >v 0时,外轨受到侧向挤压的力(这时向心力增大,外轨提供一部分力);
③若v <v 0时,内轨受到侧向挤压的力(这时向心力减少,内轨提供一部分力)。
三、竖直平面内的非匀速圆周运动问题
(1)如图1和图2所示,没有物体支撑的小球,在竖直面内作圆周运动通过最高点:
①临界条件是绳子或轨道对小球没
有力的作用,在最高点v =Rg .
②小球能通过最高点的条件是在最
高点v ≥Rg .
③小球不能通过最高点的条件是在
最高点v <Rg .
(2)如图3和图4所示,有物体支撑的小球,在竖直面内作圆周运动通过最高点,轻质杆对小球的弹力情况是:①小球在最高点v =0时,是支持力; ②小球在最高点0<v <Rg 时,是支持力;
③小球在最高点v =Rg 时,作用力为零; ④小球在最高点v >Rg 时,是拉力。
四、汽车过凸形桥和凹形桥问题
五、巩固练习
1、高速公路转弯处常修建成外高内低倾斜状。
如图所示,弯道的倾角为θ,半径为r ,则汽车
完全不靠摩擦力转弯的速率是(转弯半径水平)( )
A .θsin gr
B .θcos gr
C .θtan gr
D .θcot gr
2、在光滑水平面,一小球以某一速度运动到A 点,遇到一段半径为R 的1/4圆弧曲面AB 后,
落到水平地面的C 点,已知小球没有跟圆弧曲面的任何点接触,则BC 的最小距离为______.
3、某高速公路上,汽车的设计时速是108km/h .汽车在该路面上行驶时,它的轮胎与地面的最大静摩擦力等于车重的0.6倍.如果汽车在该高速路的水平弯道上拐弯,假设弯道的路面是水平的,其弯道的最小半径是多少?如果高速路上设计了圆弧拱桥做立交桥,要使汽车能够安全通过圆弧拱桥,这个圆弧拱桥的半径至少是多少?
4、在倾角为α=300的光滑斜面上,有一根长为L =0.8m 的细绳,一端固定在O 点,另一端系一质量为m =0.2kg 的小球,沿斜面作圆周运动,试计算:(1)小球通过最高点A 的最小速度.(2)若细绳的抗拉力为F max =10N ,小球在最低点B 的最大速度是多少?
图1 图2 图3 图4
θ θ
5、在光滑的水平面上相距40 cm 的两个钉子A 和B ,如图所示,长1 m 的细绳一端系着质量为0.4 k g 的小球,另一端固定在钉子A 上,开始时,小球和钉子A 、B 在同一直线上,小球始终以2 m/s 的速率在水平面上做匀速圆周运动.若细绳能承受的最大拉力是4 N ,那么,从开始到细绳断开所经历的时间是( )
A .π9.0s
B .π8.0s
C .π2.1s
D .π6.1s
6、一圆盘可以绕其竖直轴在水平面内转动,圆盘半径为R ,甲、乙两物体的质量分别为M 与m (M >m ),它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用一根长为L (L <R )的轻绳连在一起,如图。
某次实验中先将甲物体放在转轴的位置上,甲、乙连线刚好沿半径方向伸直,然后开始逐渐加速转动
圆盘,要使两物体与转盘之间不发生相对滑动,则转盘旋转的角速度最大值不得超过( )
A 、mL g m M )μ(-
B 、ML g m M )μ(-
C 、ML g m M )μ(+
D 、mL
g m M )μ(+
7、如图所示,水平转盘的中心有个竖直小圆筒,质量为m 的物体A 放在转盘上,A 到竖直筒中心的距离为r ,物体A 通过轻绳、无摩擦的滑轮与物体B 相连,B 与A 质量相同,物体A 与转盘间的最大静摩擦力是正压力的μ倍(μ<1),则转盘转动的角速度在什么范围内,物体A 才能随盘一起转动而不出现滑动.
8、如图所示,在光滑的圆锥顶端,用长为L 的细绳悬一质量为m 的小球,圆锥顶角为θ°,现小球靠在圆锥上和圆锥一起绕中心轴以角速度w 匀速转动。
求:(1)小球受到圆锥体对它的支持力F N 。
(2)若要保证小球不离开圆锥体,求加速度w 的取值要求。
9、如图所示,质量为m =0.1kg 的小球A 、B 和两根细绳相连,两绳固定在细杆的A 、B 两点,其中A 绳长L A =2m ,当两绳都拉直时,A 、B 两绳和细杆的夹角θ1=30°,θ2=45°,g =10m/s 2.求:(1)当细杆转动的角速度ω在什么范围内,A 、B 两绳始终伸直?(2)当ω=3rad/s 时,A 、B 两绳的拉力分别为多大?
答案:1、C 2、(2-1)R 3、150m ,90m 4、(1)2m/s (2)6m/s 5、B 6、D 7、r g /)1(μ-≤ω≤r g /)1(μ+
8、⑴F N =mgsin θ-mw 2Lsin θcos θ ⑵w ≤θ
cos L g 9、(1)2.4 rad/s ≤ω≤3.15 rad/s (2)T A =0.27N ,T B
=1.09N
A B。