最新-2018年高考数学试题分类汇编——不等式 精品
不等式(原卷版)-五年(2018-2022)高考数学真题分项汇编(全国通用)
专题14不等式1.【2022年全国乙卷】若x ,y 满足约束条件+O2,+2N4,O0,则=2−的最大值是()A .−2B .4C .8D .122.【2021年乙卷文科】若,x y 满足约束条件4,2,3,x y x y y +≥⎧⎪-≤⎨⎪≤⎩则3z x y =+的最小值为()A .18B .10C .6D .43.【2021年乙卷文科】下列函数中最小值为4的是()A .224y x x =++B .4sin sin y x x=+C .222x xy -=+D .4ln ln y x x=+4.【2020年新课标3卷文科】已知函数f (x )=sin x +1sin x,则()A .f (x )的最小值为2B .f (x )的图象关于y 轴对称C .f (x )的图象关于直线x π=对称D .f (x )的图象关于直线2x π=对称5.【2019年新课标2卷理科】若a >b ,则A .ln(a −b )>0B .3a <3b C .a 3−b 3>0D .│a │>│b │6.【2022年新高考2卷】若x ,y 满足2+2−B =1,则()A .+≤1B .+≥−2C .2+2≤2D .2+2≥17.【2020年新高考1卷(山东卷)】已知a >0,b >0,且a +b =1,则()A .2212a b +≥B .122a b->C .22log log 2a b +≥-D≤8.【2020年新课标1卷理科】若x ,y 满足约束条件220,10,10,x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩则z =x +7y 的最大值为______________.9.【2020年新课标2卷文科】若x ,y 满足约束条件1121,x y x y x y +≥-⎧⎪-≥-⎨⎪-≤⎩,,则2z x y =+的最大值是__________.10.【2020年新课标3卷理科】若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩,,则z =3x +2y 的最大值为_________.11.【2020年新课标3卷理科】关于函数f (x )=1sin sin x x+有如下四个命题:①f (x )的图象关于y 轴对称.②f (x )的图象关于原点对称.③f (x )的图象关于直线x =2π对称.④f (x )的最小值为2.其中所有真命题的序号是__________.12.【2019年新课标2卷文科】若变量x ,y 满足约束条件23603020x y x y y ,,,+-≥⎧⎪+-≤⎨⎪-≤⎩则z =3x –y 的最大值是___________.13.【2018年新课标1卷理科】若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_____________.14.【2018年新课标2卷理科】若,x y 满足约束条件250,230,50,x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩则z x y =+的最大值为__________.15.【2018年新课标3卷文科】若变量x y ,满足约束条件23024020.x y x y x ++≥⎧⎪-+≥⎨⎪-≤⎩,,则13z x y =+的最大值是________.。
高三数学-2018年全国各地高考试题-向量、不等式高考题选 精品
2018年向量、不等式高考题选一、选择题1.不等式x x x <-24的解集是( )(2018年天津文1)A .(0,2)B .(2,+∞)C .(2,4)D .(-∞,0)∪(2,+∞)2.若不等式6|2|<+ax 的解集为(-1,2),则实数a 等于(2018年北京春理11)A .8B .2C .-4D .-83.不等式2112x x ++<的解集是( ) (2018年安徽春理5)A.{}10xx -<<B. 302x x ⎧⎫-<<⎨⎬⎩⎭C. 504x x ⎧⎫-<<⎨⎬⎩⎭D. {}20x x -<<4.设集合B A x x B x x A ⋂>=>-=则|},0log |{},01|{22等于( )(2018年北京理1)A .}1|{>x xB .}0|{>x xC .}1|{-<x xD .}11|{>-<x x x 或5.设5.1344.029.01)21(,8,4-===y y y ,则 ( )(2018年北京理2)A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 26.O 是平面上一 定点,A 、B 、C 是平面上不共线的三个点,动点P 满足 ).,0[(+∞∈++=λλOA OP 则P 的轨迹一定通过△ABC 的( )(2018年天津文8) A .外心 B .内心C .重心D .垂心7.设c bx ax x f a ++=>2)(,0,曲线)(x f y =在点))(,(00x f x P 处切处的倾斜角的取值范围为]4,0[π,则P 到曲线)(x f y =对称轴距离的取值范围为( )(2018年天津理7)A .]1,0[aB .]21,0[a C .|]2|,0[a b D .|]21|,0[ab - 8.已知双曲线中心在原点且一个焦点为与其相交于直线1),0,7(-=x y F M 、N 两点,MN 中点的横坐标为,32-则此双曲线的方程是( )(2018年天津理9)A .14322=-y x B .13422=-y x C .12522=-y x D .15222=-y x 9.若C z ∈且|22|,1|22|i z i z --=-+则的最小值是( )(2018年北京理6)A .2 B .3C .4D .510.a 1、b 1、c 1、a 2、b 2、c 2均为非零实数,不等式a 1x 2+b 1x +c 1>0和a 2x 2+b 2x +c 2>0的解集分别为集合M 和N ,那么“212121c c b b a a ==”是“M=N ”的( )(2018年上海理15)A .充分非必要条件.B .必要非充分条件.C .充要条件D .既非充分又非必要条件.二、填空题1.在正四棱锥P —ABCD 中,若侧面与底面所成二面角的大小为60°,则异面直线PA 与BC 所成角的大小等于 .(结果用反三角函数值表示)(2018年上海理5) 2.设集合A={x ||x |<4},B={x |x 2-4x +3>0}, 则集合{x |x ∈A 且}B A x ∉= (2018年上海理6)3.已知定点A (0,1),点B 在直线x +y=0上运动,当线段AB 最短时,点B 的坐标是 . (2018年上海文4)三、解答题1.(本小题满分12分)解不等式:.1)1(log )2(log 21221-->--x x x (2018年北京春理17)2、(本题满分12分)解不等式组:2680321{x x x x -+>+>-(2018年上海春17)3.(本小题满分12分)(2018年全国理19)已知.0>c 设P :函数x c y =在R 上单调递减. Q :不等式1|2|>-+c x x 的解集为R ,如果P 和Q 有且仅有一个正确,求c 的取值范围.4.(本小题满分14分)(2018年北京理19)有三个新兴城镇,分别位于A ,B ,C 三点处,且AB=AC=a ,BC=2b.今计划合建一个中心医院,为同时方便三镇,准备建在BC 的垂直平分线上的P 点处,(建立坐标系如图) (Ⅰ)若希望点P 到三镇距离的平方和为最小, 点P 应位于何处? (Ⅱ)若希望点P 到三镇的最远距离为最小,点P 应位于何处?5.(本题满分12分)(2018年上海理18)已知平行六面体ABCD —A 1B 1C 1D 1中,A 1A ⊥平面ABCD ,AB=4,AD=2.若B 1D ⊥BC ,直线B 1D 与平面ABCD 所成的角等于30°,求平行六面体ABCD —A 1B 1C 1D 1的体积.6.(本题满分16分)共3个小题,第1小题满分4分,第2小题满分5分,第3小题满分7分. (2018年上海理21) 在以O 为原点的直角坐标系中,点A (4,-3)为△OAB 的直角顶点.已知|AB|=2|OA|,且点B 的纵坐标大于零. (1)求向量的坐标;(2)求圆02622=++-y y x x 关于直线OB 对称的圆的方程;(3)是否存在实数a ,使抛物线12-=ax y 上总有关于直线OB 对称的两个点?若不存在,说明理由:若存在,求a 的取值范围. 7.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. (2018年上海理20)如图,某隧道设计为双向四车道,车道总宽22米,要求通行车辆限高4.5米,隧道全长2.5千米,隧道的拱线近似地看成半个椭圆形状.(1)若最大拱高h 为6米,则隧道设计的拱宽l 是多少?(2)若最大拱高h 不小于6米,则应如何设 计拱高h 和拱宽l ,才能使半个椭圆形隧道的土方工程量最最小? (半个椭圆的面积公式为lh S 4π=,柱体体积为:底面积乘以高.本题结果精确到0.1米)8、(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分。
最新-2018年高考数学真题汇编 8:不等式 理 精品
2018高考真题分类汇编:不等式1.【2018高考真题重庆理2】不等式0121≤+-x x 的解集为 A.⎥⎦⎤ ⎝⎛-1,21 B.⎥⎦⎤⎢⎣⎡-1,21 C.[)+∞⋃⎪⎭⎫ ⎝⎛-∞-,121. D.[)+∞⋃⎥⎦⎤ ⎝⎛-∞-,121, 对【答案】A2.【2018高考真题浙江理9】设a 大于0,b 大于0.A.若2a+2a=2b+3b ,则a >b B.若2a+2a=2b+3b ,则a >b C.若2a-2a=2b-3b ,则a >b D.若2a-2a=a b-3b ,则a <b 【答案】A3.【2018高考真题四川理9】某公司生产甲、乙两种桶装产品。
已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克。
每桶甲产品的利润是300元,每桶乙产品的利润是400元。
公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克。
通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )A 、1800元B 、2400元C 、2800元D 、3100元【答案】C.4.【2018高考真题山东理5】已知变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y =-的取值范围是(A )3[,6]2- (B )3[,1]2-- (C )[1,6]- (D )3[6,]2-【答案】A5.【2018高考真题辽宁理8】设变量x ,y 满足,15020010⎪⎩⎪⎨⎧≤≤≤+≤≤-y y x y x 则y x 32+的最大值为(A) 20 (B) 35 (C) 45 (D) 55 【答案】D【解析】画出可行域,根据图形可知当x=5,y=15时2x +3y 最大,最大值为55,故选D【点评】本题主要考查简单线性规划问题,难度适中。
该类题通常可以先作图,找到最优解求出最值,也可以直接求出可行域的顶点坐标,代入目标函数进行验证确定出最值。
高考文科数学—2018真题分类-专题十五--不等式选讲第三十五讲不等式选讲(带答案)word版本
专题十五 不等式选讲 第三十五讲 不等式选讲解答题1.(2018全国卷Ⅰ)[选修4–5:不等式选讲](10分)已知()|1||1|f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围. 2.(2018全国卷Ⅱ) [选修4-5:不等式选讲](10分)设函数()5|||2|=-+--f x x a x . (1)当1a =时,求不等式()0≥f x 的解集; (2)若()1≤f x ,求a 的取值范围.3.(2018全国卷Ⅲ) [选修4—5:不等式选讲](10分)设函数()|21||1|f x x x =++-. (1)画出()y f x =的图像;(2)当[0,)x ∈+∞时,()f x ax b +≤,求a b +的最小值.4.(2018江苏)D .[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值.5.(2017新课标Ⅰ)已知函数2()4f x x ax =-++,()|1||1|g x x x =++-.(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[1,1]-,求a 的取值范围. 6.(2017新课标Ⅱ)已知0a >,0b >,332a b +=,证明:(1)55()()4a b a b ++≥; (2)2a b +≤.7.(2017新课标Ⅲ)已知函数()|1||2|f x x x =+--.(1)求不等式()1f x ≥的解集;(2)若不等式2()f x x x m -+≥的解集非空,求m 的取值范围.8.(2017江苏)已知a ,b ,c ,d 为实数,且224a b +=,2216c d +=,证明8ac bd +≤.9.(2016年全国I 高考)已知函数()|1||23|f x x x =+--.(I )在图中画出()y f x =的图像; (II )求不等式|()|1f x >的解集.10.(2016年全国II )已知函数()1122f x x x =-++,M 为不等式()2f x <的解集. (I )求M ;(II )证明:当a ,b M ∈时,1a b ab +<+.11.(2016年全国III 高考)已知函数()|2|f x x a a =-+(Ⅰ)当a =2时,求不等式()6f x ≤的解集;(Ⅱ)设函数()|21|g x x =-,当x ∈R 时,()()3f x g x +≥,求a 的取值范围. 12.(2015新课标1)已知函数()|1|2||f x x x a =+--,0a >.(Ⅰ)当1a =时,求不等式()1f x >的解集;(Ⅱ)若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围. 13.(2015新课标2)设,,,a b c d 均为正数,且a b c d +=+,证明:(Ⅰ)若ab >cd >>||||a b c d -<- 的充要条件.14.(2014新课标1)若0,0a b >>,且11a b+=. (Ⅰ) 求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由. 15.(2014新课标2)设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.16.(2013新课标1)已知函数()f x =|21||2|x x a -++,()g x =3x +.(Ⅰ)当a =-2时,求不等式()f x <()g x 的解集; (Ⅱ)设a >-1,且当x ∈[2a -,12)时,()f x ≤()g x ,求a 的取值范围. 17.(2013新课标2)设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤(Ⅱ)2221a b c b c a++≥ 18.(2012新课标)已知函数|2|||)(-++=x a x x f .(Ⅰ)当|3-=a 时,求不等式()3f x …的解集;(Ⅱ)若()|4|f x x -…的解集包含]2,1[,求a 的取值范围. 19.(2011新课标)设函数()3f x x a x =-+,其中0a >. (Ⅰ)当1a =时,求不等式()32f x x ≥+的解集; (Ⅱ)若不等式()0f x ≤的解集为{}|1x x ≤- ,求a 的值.专题十五 不等式选讲 第三十五讲 不等式选讲答案部分1.【解析】(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.--⎧⎪=-<<⎨⎪⎩≤≥x f x x x x故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立. 若0≤a ,则当(0,1)x ∈时|1|1-≥ax ; 若0a >,|1|1ax -<的解集为20x a <<,所以21≥a,故02<≤a . 综上,a 的取值范围为(0,2].2.【解析】(1)当1=a 时,24,1,()2,12,26, 2.+-⎧⎪=-<⎨⎪-+>⎩≤≤x x f x x x x可得()0≥f x 的解集为{|23}-≤≤x x . (2)()1≤f x 等价于|||2|4++-≥x a x .而|||2||2|++-+≥x a x a ,且当2=x 时等号成立.故()1≤f x 等价于|2|4+≥a . 由|2|4+≥a 可得6-≤a 或2≥a ,所以a 的取值范围是(,6][2,)-∞-+∞U .3.【解析】(1)1 3,,21()2,1,23, 1.x xf x x xx x⎧-<-⎪⎪⎪=+-<⎨⎪⎪⎪⎩≤≥()y f x=的图像如图所示.(2)由(1)知,()y f x=的图像与y轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a≥且2b≥时,()f x ax b+≤在[0,)+∞成立,因此a b+的最小值为5.4.D.【证明】由柯西不等式,得2222222()(122)(22)x y z x y z++++++≥.因为22=6x y z++,所以2224x y z++≥,当且仅当122x y z==时,不等式取等号,此时244333x y z===,,,所以222x y z++的最小值为4.5.【解析】(1)当1a=时,不等式()()f xg x≥等价于2|1||1|40x x x x-+++--≤.①当1x<-时,①式化为2340x x--≤,无解;当11x-≤≤时,①式化为220x x--≤,从而11x-≤≤;当1x >时,①式化为240x x +-≤,从而1x <≤所以()()f x g x ≥的解集为1{|1}2x x -+-<≤. (2)当[1,1]x ∈-时,()2g x =.所以()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥. 又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一, 所以(1)2f -≥且(1)2f ≥,得11a -≤≤. 所以a 的取值范围为[1,1]-.6.【解析】(1)556556()()a b a b a ab a b b ++=+++3323344()2()a b a b ab a b =+-++ 2224()ab a b =+-4≥(2)∵33223()33a b a a b ab b +=+++23()ab a b =++ 23()2()4a b a b +++≤33()24a b +=+,所以3()8a b +≤,因此2a b +≤.7.【解析】(1)3,1()21,123,2x f x x x x -<-⎧⎪=--⎨⎪>⎩≤≤,当1x <-时,()f x 1≥无解;当x -12≤≤时,由()f x 1≥得,x -211≥,解得x 12≤≤当>2x 时,由()f x 1≥解得>2x . 所以()f x 1≥的解集为{}x x 1≥.(2)由()f x x x m -+2≥得m xx x x +---+212≤,而x x x x x x x x +---+--+2212+1+2≤x ⎛⎫ ⎪⎝⎭2355=--+244≤且当32x =时,2512=4x x x x +---+. 故m 的取值范围为5-,4⎛⎤∞ ⎥⎝⎦.8.【解析】证明:由柯西不等式可得:22222()()()ac bd a b c d +++≤,因为22224,16,a b c d +=+= 所以2()64ac bd +≤, 因此8ac bd +≤. 9.【解析】(1)如图所示:(2)()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥,()1f x >.当1x -≤,41x ->,解得5x >或3x <,1x -∴≤. 当312x -<<,321x ->,解得1x >或13x <,113x -<<∴或312x <<,当32x ≥,41x ->,解得5x >或3x <,332x <∴≤或5x >,综上,13x <或13x <<或5x >,()1f x >∴,解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭U U ,,,. 10.【解析】(I )当12x <-时,()11222f x x x x =---=-,若112x -<<-;当1122x -≤≤时,()111222f x x x =-++=<恒成立;当12x >时,()2f x x =,若()2f x <,112x <<.综上可得,{}|11M x x =-<<.(Ⅱ)当()11a b ∈-,,时,有()()22110a b -->, 即22221a b a b +>+,则2222212a b ab a ab b +++>++, 则()()221ab a b +>+, 即1a b ab +<+,证毕.11.【解析】(Ⅰ)当2a =时,()|22|2f x x =-+.解不等式|22|26x -+…,得13x -剟.因此,()6f x ≤的解集为{|13}x x-剟.(Ⅱ)当x R ∈时,()()|2||12|f x g x x a a x +=-++-|212|x a x a -+-+…|1|a a =-+,当12x =时等号成立, 所以当x R ∈时,()()3f x g x +…等价于|1|3a a -+…. ① 当1a …时,①等价于13a a -+…,无解. 当1a >时,①等价于13a a -+…,解得2a …. 所以a 的取值范围是[2,)+∞.12.【解析】(Ⅰ)当1a =时,不等式()1f x >化为|1|2|1|10x x +--->,当1x -≤时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<; 当1x ≥时,不等式化为20x -+>,解得12x <≤. 所以()1f x >的解集为2{|2}3x x <<. (Ⅱ)有题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--⎨⎪-++>⎩≤≤,所以函数()f x 图象与x 轴围成的三角形的三个顶点分别为21(,0),(21,0),(,1)3a A B a C a a -++,ABC ∆的面积为22(1)3a +.有题设得22(1)63a +>,故2a >.所以a 的取值范围为(2,)+∞. 13.【解析】(Ⅰ)∵2a b =++2c d =++由题设a b c d +=+,ab cd >得22>.>(Ⅱ)(ⅰ)若||||a b c d -<-,则22()()a b c d -<-, 即22()4()4a b ab c d cd +-<+-.因为a b c d +=+,所以ab cd >>>则22>,即a b c d ++>++ 因为a b c d +=+,所以ab cd >,于是2222()()4()4()a b a b ab c d cd c d -=+-<+-=-. 因此||||a b c d -<-,>||||a b c d -<-的充要条件.14.【解析】(I11a b =+≥,得2ab ≥,且当a b ==时取等号. 故33ab+≥a b ==时取等号.所以33ab +的最小值为(II )由(I)知,23a b +≥≥.由于6>,从而不存在,a b , 使得236a b +=.15.【解析】(I )由0a >,有()f x 111()2x x a x x a a a a a=++-≥+--=+≥. 所以()f x ≥2. (Ⅱ)1(3)33f a a=++-. 当时a >3时,(3)f =1a a+,由(3)f <5得3<a<52.当0<a ≤3时,(3)f =16a a-+,由(3)f <5得12+<a ≤3.综上,a,52+). 16.【解析】(Ⅰ)当a =-2时,不等式()f x <()g x 化为|21||22|30x x x -+---<,设函数y =|21||22|3x x x -+---,y =15, 212, 1236, 1x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩,其图像如图所示,从图像可知,当且仅当(0,2)x ∈时,y <0,∴原不等式解集是{|02}x x <<. (Ⅱ)当x ∈[2a -,12)时,()f x =1a +,不等式()f x ≤()g x 化为13a x ++≤,∴2x a -≥对x ∈[2a -,12)都成立,故2a -≥2a -,即a ≤43, ∴a 的取值范围为(-1,43]. 17.【解析】(Ⅰ)2222222,2,2a b ab b c bc c a ca +≥+≥+≥得 222a b c ab bc ca ++≥++由题设得()21a b c ++=,即2222221a b c ab bc ca +++++=. 所以()31ab bc ca ++≤,即13ab bc ca ++≤ (Ⅱ)∵2222,2,2a b c b a c b a c b c a+≥+≥+≥ ∴222()2()a b c a b c a b c b c a+++++≥++ 即222a b c a b c b c a++≥++ ∴2221a b c b c a++≥ 18.【解析】(1)当3a =-时,()3323f x x x ⇔-+-厖2323x x x ⎧⇔⎨-+-⎩……或23323x x x <<⎧⇔⎨-+-⎩…或3323x x x ⎧⇔⎨-+-⎩……1x ⇔…或4x ….(2)原命题()4f x x ⇔-…在[1,2]上恒成立24x a x x ⇔++--…在[1,2]上恒成立22x ax ⇔---剟在[1,2]上恒成立 30a⇔-剟.19.【解析】(Ⅰ)当1a =时,()32f x x ≥+可化为|1|2x -≥.由此可得 3x ≥或1x ≤-.故不等式()32f x x ≥+的解集为{|3x x ≥或1}x ≤-.( Ⅱ) 由()0f x ≤ 得30x a x -+≤,此不等式化为不等式组30x a x a x ≥⎧⎨-+≤⎩ 或30x a a x x ≤⎧⎨-+≤⎩, 即4x a a x ⎧⎪⎨⎪⎩≥≤或2x a a x ⎧⎪⎨-⎪⎩≤≤, 因为0a >,所以不等式组的解集为{}|2ax x ≤-, 由题设可得2a -=1-,故2a =.。
2018年高考题分类汇编之三角函数与不等式(可编辑修改word版)
2018 年数学高考题分类汇编之三角函数与平面向量1.【2018 年新课标I 卷文】已知函数,则A. 的最小正周期为π,最大值为3B. 的最小正周期为π,最大值为4C. 的最小正周期为,最大值为3D. 的最小正周期为,最大值为42.【2018 年天津卷文】将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减【来源】2018 年全国普通高等学校招生统一考试文科数学(天津卷)3.【2018 年文北京卷】在平面坐标系中,是圆上的四段弧(如图),点P 在其中一段上,角以O x为始边,OP 为终边,若,则P 所在的圆弧是A. B. C. D.4.【2018 年新课标 I 卷文】已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,,且,则A. B. C. D.5.【2018 年全国卷Ⅲ文】的内角的对边分别为,,,若的面积为,则A. B. C. D.6.【2018 年全国卷Ⅲ文】函数的最小正周期为A. B. C. D.7.【2018 年全国卷Ⅲ文】若,则A. B. C. D.8.【2018 年浙江卷】在△ABC 中,角A,B,C 所对的边分别为a,b,c.若a=,b=2,A=60°,则sin B= ,c= .9.【2018 年文北京卷】若的面积为,且∠C 为钝角,则∠B= ;的取值范围是.10.【2018 年江苏卷】在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为.12.【2018 年新课标I 卷文】△的内角的对边分别为,已知,,则△的面积为.13.【2018 年全国卷II 文】已知,则.14.【2018 年浙江卷】已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P().(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β 满足sin(α+β)= ,求cosβ 的值.15.【2018 年天津卷文】在中,内角A,B,C 所对的边分别为a,b,c.已知. (I)求角B 的大小;(II)设a=2,c=3,求b 和的值.16.【2018 年文北京卷】已知函数.(Ⅰ)求的最小正周期;(Ⅱ)若在区间上的最大值为,求的最小值.17.【2018 年江苏卷】已知为锐角,,.(1)求的值;(2)求的值.18.【2018 年浙江卷】已知a,b,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为,向量b 满足b2−4e·b+3=0,则|a−b|的最小值是A. −1B. +1C. 2D. 2−19.【2018 年天津卷文】在如图的平面图形中,已知, 则的值为A. B. C. D. 020.【2018 年文北京卷】设向量a=(1,0),b=(−1,m),若,则m= .21.【2018 年江苏卷】在平面直角坐标系中,A 为直线上在第一象限内的点,,以AB 为直径的圆C 与直线l 交于另一点D.若,则点A 的横坐标为.。
2018年高考数学分类汇编:不等式
E 单元不等式E1 不等式的概念与性质 E2 绝对值不等式的解法 E3 一元二次不等式的解法 E4 简单的一元高次不等式的解法E5 简单的线性规划问题14.E5【2018·全国卷Ⅰ】 若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,,,则32z x y =+的最大值为 . 14.【答案】6【解析】不等式组表示的平面区域如图中阴影部分所示,当直线y=-32x+z2经过点A (2,0)时,z 最大,所以z max =3×2+2×0=6.14.E5【2018·全国卷Ⅱ】若x ,y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,,则z=x+y 的最大值为 . 14.【答案】9【解析】作出不等式组表示的可行域如图中阴影部分所示.当直线y x z =-+过点A (5,4)时,直线的纵截距z 最大,所以max 549z =+=.15.E5【2018·全国卷Ⅲ】 若变量x ,y 满足约束条件23024020x y x y x ++≥⎧⎪-+≥⎨⎪-≤⎩,,,则13z x y =+的最大值是 .15.3 【解析】 作出不等式组表示的可行域如图中阴影部分所示,由图易知目标函数在点A (2,3)处取得最大值,最大值为2+13×3=3.12.E5【2018·浙江卷】 若x ,y 满足约束条件0262x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩,,,则z=x+3y 的最小值是 ,最大值是 . 12.【答案】2-;8【解析】 作出如图中阴影部分所示的可行域,易知A (2,2),B (4,-2),C (1,1),目标函数表示斜率为-13的一组平行直线.由图可知,当直线x+3y-z=0经过点A 时,z 取得最大值,最大值为2+3×2=8;当直线x+3y-z=0经过点B 时,z 取得最小值,最小值为()4322+⨯-=-.13.E5【2018·北京卷】 若x ,y 满足x+1≤y ≤2x ,则2y-x 的最小值是 .13.3 【解析】 x ,y 满足的可行域如图中阴影部分所示,联立{y =x +1,y =2x ,得交点坐标为(1,2),由图可知,当目标函数z=2y-x 过点(1,2)时,z 有最小值,z min =2×2-1=3.E6 2a b+≤13.E6【2018·天津卷】已知,a b ∈R ,且360a b -+=,则123ab+的最小值为 . 【解题提示】运用基本不等式求解. 【答案】14【解析】由已知得36a b -=-,由基本不等式得1122284a b +≥==(当且仅当a=-3b=-3时取等号).E7 不等式的证明方法E8 不等式的综合应用 E9 单元综合8.E9【2018·北京卷】 设集合A={(x ,y )|x-y ≥1,ax+y>4,x-ay ≤2},则( ) A.对任意实数a ,(2,1)∈A B.对任意实数a ,(2,1)∉A C.当且仅当a<0时,(2,1)∉A D.当且仅当a ≤32时,(2,1)∉A8.D 【解析】当a=0时,A 为空集,排除A ;当a=2时,(2,1)∈A ,排除B ;当a=32时,作出可行域如图中阴影部分所示,由x y 13x y 42-=⎧⎪⎨+=⎪⎩,,得P (2,1),又∵ax+y>4,取不到边界值,∴(2,1)∉A.故选D.1.【2018·北京通州区期末】 已知a ,b ∈R ,a>b>0,则下列不等式一定成立的是( ) A . 1a >1b B . tan a>tan b C . |log 2a|>|log 2b| D . a ·2-b >b ·2-a1.D 【解析】 对于A ,a>b>0,则1a <1b ,故不成立;对于B ,不妨设a=3π4>b=π4>0,则tan 3π4=-1,tan π4=1,故不成立;对于C ,不妨设a=2,b=14,则|log 2a |=1,|log 2b |=2,故不成立.故选D . 2.【2018·唐山五校联考】 已知不等式x 2-bx-a ≥0的解集是{x|x ≤2或x ≥3},则不等式ax 2-bx-1>0的解集是( ) A .{x|2<x<3} B .{x |-12<x <-13} C .{x |13<x <12} D .{x |x <13或x <12}2.B 【解析】 ∵不等式x 2-bx-a ≥0的解集是{x|x ≤2或x ≥3},∴x 2-bx-a=0的解是x 1=2和x 2=3,∴{2+3=b ,2×3=-a ,解得{a =-6,b =5,则不等式ax 2-bx-1>0即为-6x 2-5x-1>0,解得{x |-12<x <-13}. 3.【2018·遵义联考】 已知O 是坐标原点,点A (-1,1),若点M (x ,y )为平面区域{x +y ≥2,x ≤1,y ≤2上的一个动点,则OA ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ 的取值范围是 . 3.【0,2】【解析】设z=OA⃗⃗⃗ ·OM ⃗⃗⃗⃗ =-x+y.在直角坐标系内作出可行域如图所示.由图可知,当直线z=-x+y 经过可行域内点C (0,2)时,z 有最大值,即(OA ⃗⃗⃗ ·OM ⃗⃗⃗⃗ )max =-0+2=2;当直线z=-x+y 经过可行域内点A (1,1)时,z 有最小值,即(OA ⃗⃗⃗ ·OM ⃗⃗⃗⃗ )min =-1+1=0.所以OA ⃗⃗⃗ ·OM ⃗⃗⃗⃗ 的取值范围为【0,2】.4. 【2018·衡水一中月考】 若x ,y 都是正数,且x+y=3,则4x+1+1y+1的最小值为 .4.95 【解析】 设m=x+1,n=y+1.∵x+y=3,∴{x =m -1,y =n -1,则m+n=5,∴4x+1+1y+1=4m +1n =(4m +1n )(m 5+n5)=45+4n 5m +m5n +15≥1+2√4n 5m·m 5n =95,当且仅当m=103,n=53,即x=73,y=23时取等号.。
2018年高考真题理科数学分类汇编专题4数列与不等式
专题4数列与不等式(2018全国1卷)4. 设为等差数列的前项和,若,,则A. B. C. D.【答案】B详解:设该等差数列的公差为,根据题中的条件可得,整理解得,所以,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差的值,之后利用等差数列的通项公式得到与的关系,从而求得结果.(2018北京卷)4. “十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A. B.C. D.【答案】D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解. 详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.(2018全国1卷)13. 若,满足约束条件,则的最大值为_____________.【答案】6【解析】分析:首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式,之后在图中画出直线,在上下移动的过程中,结合的几何意义,可以发现直线过B点时取得最大值,联立方程组,求得点B的坐标代入目标函数解析式,求得最大值.详解:根据题中所给的约束条件,画出其对应的可行域,如图所示:由可得,画出直线,将其上下移动,结合的几何意义,可知当直线过点B时,z取得最大值,由,解得,此时,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.(2018全国2卷)14. 若满足约束条件则的最大值为__________.【答案】9【解析】分析:先作可行域,再平移直线,确定目标函数最大值的取法.详解:作可行域,则直线过点A(5,4)时取最大值9.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.(2018天津卷)2. 设变量x,y满足约束条件则目标函数的最大值为A. 6B. 19C. 21D. 45【答案】C【解析】分析:首先画出可行域,然后结合目标目标函数的几何意义确定函数取得最大值的点,最后求解最大值即可.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.本题选择C选项.点睛:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.(2018天津卷)4. 设,则“”是“”的A. 充分而不必要条件B. 必要而不重复条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】分析:首先求解绝对值不等式,然后求解三次不等式即可确定两者之间的关系.详解:绝对值不等式,由.据此可知是的充分而不必要条件.本题选择A选项.点睛:本题主要考查绝对值不等式的解法,充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.(2018北京卷)12. 若x,y满足x+1≤y≤2x,则2y–x的最小值是__________.【答案】3【解析】分析:作可行域,根据目标函数与可行域关系,确定最小值取法.详解:作可行域,如图,则直线过点A(1,2)时,取最小值3.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.(2018天津卷)13. 已知,且,则的最小值为_____________.【答案】【解析】分析:由题意首先求得a-3b的值,然后结合均值不等式的结论整理计算即可求得最终结果,注意等号成立的条件.详解:由可知,且:,因为对于任意x,恒成立,结合均值不等式的结论可得:.当且仅当,即时等号成立.综上可得的最小值为.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误. (2018江苏卷)13. 在中,角所对的边分别为,,的平分线交于点D ,且,则的最小值为________.【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值. 详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.(2018浙江卷)12.若x ,y 满足约束条件,则z =x +3y 的最小值是________________________,最大值是_____________________ 12.答案:2- 8解答:不等式组所表示的平面区域如图所示,当42x y ì=ïïíï=-ïî时,3z x y =+取最小值,最小值为2-;当22x y ì=ïïíï=ïî时,3z x y =+取最大值,最大值为8.(2018全国1卷)14. 记为数列的前项和,若,则_____________.【答案】【解析】分析:首先根据题中所给的,类比着写出,两式相减,整理得到,从而确定出数列为等比数列,再令,结合的关系,求得,之后应用等比数列的求和公式求得的值. 详解:根据,可得, 两式相减得,即, 当时,,解得,所以数列是以-1为首项,以2为公布的等比数列,所以,故答案是.点睛:该题考查的是有关数列的求和问题,在求解的过程中,需要先利用题中的条件,类比着往后写一个式子,之后两式相减,得到相邻两项之间的关系,从而确定出该数列是等比数列,之后令,求得数列的首项,最后应用等比数列的求和公式求解即可,只要明确对既有项又有和的式子的变形方向即可得结果. (2018北京卷)9. 设是等差数列,且a 1=3,a 2+a 5=36,则的通项公式为__________.【答案】【解析】分析:先根据条件列关于公差的方程,求出公差后,代入等差数列通项公式即可. 详解:点睛:在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为首项与公差(公比)问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用. (2018浙江卷)10已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),若a 1>1,则( )A . a 1<a 3,a 2<a 4B . a 1>a 3,a 2<a 4C . a 1<a 3,a 2>a 4D . a 1>a 3,a 2>a 410.答案:B解答:∵ln 1x x ≤-,∴1234123123ln()1a a a a a a a a a a +++=++≤++-,得41a ≤-,即311a q ≤-,∴0q <.若1q ≤-,则212341(1)(1)0a a a a a q q +++=++≤,212311(1)1a a a a q q a ++=++≥>,矛盾.∴10q -<<,则2131(1)0a a a q -=->,2241(1)0a a a q q -=-<. ∴13a a >,24a a <.(2018江苏卷)14. 已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________.【答案】27【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.详解:设,则由得所以只需研究是否有满足条件的解,此时,,为等差数列项数,且.由得满足条件的最小值为.点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如).(2018全国2卷)17. 记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.【答案】(1)a n=2n–9,(2)S n=n2–8n,最小值为–16.【解析】分析:(1)根据等差数列前n项和公式,求出公差,再代入等差数列通项公式得结果,(2)根据等差数列前n项和公式得的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.详解:(1)设{a n}的公差为d,由题意得3a1+3d=–15.由a1=–7得d=2.所以{a n}的通项公式为a n=2n–9.(2)由(1)得S n=n2–8n=(n–4)2–16.所以当n=4时,S n取得最小值,最小值为–16.点睛:数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.(2018全国3卷)17. 等比数列中,.(1)求的通项公式;(2)记为的前项和.若,求.【答案】(1)或(2)【解析】分析:(1)列出方程,解出q可得;(2)求出前n项和,解方程可得m。
2018年高考题分类汇编之三角函数与不等式
2018年数学高考题分类汇编之三角函数与平面向量1.【2018年新课标I卷文】已知函数,则A. 的最小正周期为π,最大值为3B. 的最小正周期为π,最大值为4C. 的最小正周期为,最大值为3D. 的最小正周期为,最大值为42.【2018年天津卷文】将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减【来源】2018年全国普通高等学校招生统一考试文科数学(天津卷)3.【2018年文北京卷】在平面坐标系中,是圆上的四段弧(如图),点P在其中一段上,角以O x为始边,OP为终边,若,则P所在的圆弧是A. B. C. D.4.【2018年新课标I卷文】已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,,且,则A. B. C. D.5.【2018年全国卷Ⅲ文】的内角的对边分别为,,,若的面积为,则A. B. C. D.6.【2018年全国卷Ⅲ文】函数的最小正周期为A. B. C. D.7.【2018年全国卷Ⅲ文】若,则A. B. C. D.8.【2018年浙江卷】在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=___________,c=___________.9.【2018年文北京卷】若的面积为,且∠C为钝角,则∠B=_________;的取值范围是_________.10.【2018年江苏卷】在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.12.【2018年新课标I卷文】△的内角的对边分别为,已知,,则△的面积为________.13.【2018年全国卷II文】已知,则__________.14.【2018年浙江卷】已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P().(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.15.【2018年天津卷文】在中,内角A,B,C所对的边分别为a,b,c.已知.(I)求角B的大小;(II)设a=2,c=3,求b和的值.16.【2018年文北京卷】已知函数.(Ⅰ)求的最小正周期;(Ⅱ)若在区间上的最大值为,求的最小值.17.【2018年江苏卷】已知为锐角,,.(1)求的值;(2)求的值.18.【2018年浙江卷】已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2−4e·b+3=0,则|a−b|的最小值是A. −1B. +1C. 2D. 2−19.【2018年天津卷文】在如图的平面图形中,已知,则的值为A. B. C. D. 020.【2018年文北京卷】设向量a=(1,0),b=(−1,m),若,则m=_________.21.【2018年江苏卷】在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为直径的圆C与直线l交于另一点D.若,则点A的横坐标为________.。
2018年高考题分类汇编之数列与不等式
2018年数学高考分类汇编之数列与不等式1.【2018年浙江卷】已知成等比数列,且.若,则A. B. C. D.2.【2018年文北京卷】】“十二平均律” 是通用的音律体系,明代朱载堉最先用数学方式计算出半音比例,为那个理论的进展做出了重要奉献.十二平均律将一个纯八度音程分成十二份,依次取得十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率f,则第八个单音频率为A. B. C. D.3.【2018年浙江卷】已知集合,.将的所有元素从小到大依次排列组成一个数列.记为数列的前n项和,则使得成立的n的最小值为________.4.【2018年浙江卷】已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}知足b1=1,数列{(b n+1−b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.5.【2018年天津卷文】设{a n}是等差数列,其前n项和为S n(n∈N*);{b n}是等比数列,公比大于0,其前n 项和为T n(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.(Ⅰ)求S n和T n;(Ⅱ)若S n+(T1+T2+…+T n)=a n+4b n,求正整数n的值.6.【2018年文北京卷】设是等差数列,且.(Ⅰ)求的通项公式;(Ⅱ)求.7.【2018年江苏卷】设,对1,2,···,n的一个排列,若是当s<t时,有,则称是排列的一个逆序,排列的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记为1,2,···,n的所有排列中逆序数为k的全数排列的个数.(1)求的值;(2)求的表达式(用n表示).8.【2018年江苏卷】设是首项为,公差为d的等差数列,是首项为,公比为q的等比数列.(1)设,若对均成立,求d的取值范围;(2)若,证明:存在,使得对均成立,并求的取值范围(用表示).9.【2018年新课标I卷文】已知数列知足,,设.(1)求;(2)判定数列是不是为等比数列,并说明理由;(3)求的通项公式.10.【2018年全国卷Ⅲ文】等比数列中,.(1)求的通项公式;(2)记为的前项和.若,求.11.【2018年天津卷文】设变量x,y知足约束条件则目标函数的最大值为A. 6B. 19C. 21D. 4512.【2018年文北京卷】设集合则A. 对任意实数a,B. 对任意实数a,(2,1)C. 当且仅当a<0时,(2,1)D. 当且仅当时,(2,1)13.【2018年浙江卷】若知足约束条件则的最小值是___________,最大值是___________.14.【2018年天津卷文】已知,且,则的最小值为_____________.15.【2018年文北京卷】若x,y知足,则2y−x的最小值是_________.16.【2018年江苏卷】在中,角所对的边别离为,,的平分线交于点D,且,则的最小值为________.17.【2018年全国卷Ⅲ文】若变量知足约束条件则的最大值是________.18.【2018年全国卷II文】若知足约束条件则的最大值为__________.。
2018--2020年高考数学试题分类汇编不等式选讲附答案详解
2018-2020年高考数学试题分类汇编不等式选讲1、(2018年高考全国卷1文理科第23题)(10分)已知f(x)=|x+1|﹣|ax﹣1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.【解答】解:(1)当a=1时,f(x)=|x+1|﹣|x﹣1|=,由f(x)>1,∴或,解得x>,故不等式f(x)>1的解集为(,+∞),(2)当x∈(0,1)时不等式f(x)>x成立,∴|x+1|﹣|ax﹣1|﹣x>0,即x+1﹣|ax﹣1|﹣x>0,即|ax﹣1|<1,∴﹣1<ax﹣1<1,∴0<ax<2,∵x∈(0,1),∴a>0,∴0<x<,∴a<∵>2,∴0<a≤2,故a的取值范围为(0,2].2、(2018年高考全国卷II文理科第23题)[选修4-5:不等式选讲](10分)设函数f(x)=5﹣|x+a|﹣|x﹣2|.(1)当a=1时,求不等式f(x)≥0的解集;(2)若f(x)≤1,求a的取值范围.【解答】解:(1)当a=1时,f(x)=5﹣|x+1|﹣|x﹣2|=.当x≤﹣1时,f(x)=2x+4≥0,解得﹣2≤x≤1,当﹣1<x<2时,f(x)=2≥0恒成立,即﹣1<x<2,当x≥2时,f(x)=﹣2x+6≥0,解得2≤x≤3,综上所述不等式f(x)≥0的解集为[﹣2,3],(2)∵f(x)≤1,∴5﹣|x+a|﹣|x﹣2|≤1,∴|x+a|+|x﹣2|≤4,∴|x+a|+|x﹣2|=|x+a|+|2﹣x|≥|x+a+2﹣x|=|a+2|,∴|a+2|≤4,即﹣4≤a+2≤4,解得﹣6≤a≤2,故a的取值范围[﹣6,2].3、(2018年高考全国卷III文理科第23题)[选修4-5:不等式选讲](10分)设函数f(x)=|2x+1|+|x﹣1|.(1)画出y=f(x)的图象;(2)当x∈[0,+∞)时,f(x)≤ax+b,求a+b的最小值.【解答】解:(1)当x≤﹣时,f(x)=﹣(2x+1)﹣(x﹣1)=﹣3x,当﹣<x<1,f(x)=(2x+1)﹣(x﹣1)=x+2,当x≥1时,f(x)=(2x+1)+(x﹣1)=3x,则f(x)=对应的图象为:画出y=f(x)的图象;(2)当x∈[0,+∞)时,f(x)≤ax+b,当x=0时,f(0)=2≤0•a+b,∴b≥2,当x>0时,要使f(x)≤ax+b恒成立,则函数f(x)的图象都在直线y=ax+b的下方或在直线上,∵f(x)的图象与y轴的交点的纵坐标为2,且各部分直线的斜率的最大值为3,故当且仅当a≥3且b≥2时,不等式f(x)≤ax+b在[0,+∞)上成立,即a+b的最小值为5.4、(2018年高考江苏卷第24题)[选修4-5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z=6,求x 2+y 2+z 2的最小值.【解答】解:由柯西不等式得(x 2+y 2+z 2)(12+22+22)≥(x +2y +2z )2, ∵x +2y +2z=6,∴x 2+y 2+z 2≥4 是当且仅当时,不等式取等号,此时x=,y=,z=,∴x 2+y 2+z 2的最小值为45、(2019全国III 卷文理科)[选修4-5:不等式选讲](10分) 设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-. 解:(1)由于2[(1)(1)(1)]x y z -++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-2223(1)(1)(1)x y z ⎡⎤≤-++++⎣⎦,故由已知得2224(1)(1)(1)3x y z -++++≥, 当且仅当x =53,y =–13,13z =-时等号成立.所以222(1)(1)(1)x y z -++++的最小值为43. (2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--2223(2)(1)()x y z a ⎡⎤≤-+-+-⎣⎦,故由已知2222(2)(2)(1)()3a x y z a +-+-+-≥,当且仅当43a x -=,13a y -=,223a z -=时等号成立. 因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +.由题设知2(2)133a +≥,解得3a ≤-或1a ≥-.6、(2019全国II 卷文理科)[选修4-5:不等式选讲](10分)已知()|||2|().f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集; (2)若(,1]x ∈-∞时,()0f x <,求a 的取值范围. 解:(1)当a =1时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥. 所以,不等式()0f x <的解集为(,1)-∞. (2)因为()=0f a ,所以1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x ----- 所以,a 的取值范围是[1,)+∞.7、(2019全国I 卷文理科)[选修4—5:不等式选讲](10分)已知a ,b ,c 为正数,且满足abc =1.证明:(1)222111a b c a b c++≤++; (2)333()()()24a b b c c a +++≥++.解:(1)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c++++≥++==++.所以222111a b c a b c++≤++. (2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥=3(+)(+)(+)a b b c a c3≥⨯⨯⨯=24.所以333()()()24a b b c c a +++++≥. 8、(2019江苏卷21C )C.[选修4-5:不等式选讲](本小题满分10分) 设x ∈R ,解不等式||+|2 1|>2x x -.解:当x <0时,原不等式可化为122x x -+->,解得x <-13; 当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或. 9、(2020•全国1卷)已知函数()|31|2|1|f x x x =+--. (1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集. 答案:(1)详解解析;(2)7,6⎛⎫-∞-⎪⎝⎭. 解析:(1)根据分段讨论法,即可写出函数()f x 的解析式,作出图象; (2)作出函数()1f x +的图象,根据图象即可解出.解:(1)因为()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图象,如图所示:(2)将函数()f x 的图象向左平移1个单位,可得函数()1f x +的图象,如图所示: 由()3511x x --=+-,解得76x =-. 所以不等式()(1)f x f x >+的解集为7,6⎛⎫-∞-⎪⎝⎭. 10、(2020•全国2卷)已知函数2()|21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ,求a 的取值范围. 答案:(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞.解析:(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果; (2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果. 解:(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤; 当34x <<时,()4314f x x x =-+-=≥,无解; 当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭. (2)()()()()22222121211f x x a x a x ax a aa a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥, a ∴的取值范围为(][),13,-∞-+∞.11、(2020•全国3卷)设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c . 答案:(1)证明见解析(2)证明见解析.解析:(1)由2222()2220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明;(2)不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bcbc+++=⋅==,结合基本不等式,即可得出证明. 解:(1)2222()2220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. 1,,,abc a b c =∴均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<; (2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--=,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=.当且仅当b c =时,取等号,a ∴≥,即3max{,,}4a b c .12、(2020•江苏卷)设x ∈R ,解不等式2|1|||4x x ++≤. 答案:22,3⎡⎤-⎢⎥⎣⎦解析:根据绝对值定义化为三个方程组,解得结果解:因为1224x x x <-⎧⎨---≤⎩或10224x x x -≤≤⎧⎨+-≤⎩或0224x x x >⎧⎨++≤⎩21x ∴-≤<-或10x -≤≤或203x <≤所以解集为22,3⎡⎤-⎢⎥⎣⎦。
最新-2018年高考数学试题分项版解析专题18 不等式(教师版) 理 精品
2018年高考试题分项版解析数学(理科)专题18 不等式(教师版)一、选择题:1. (2018年高考广东卷理科5)已知变量x ,y 满足约束条件241y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则z=3x+y 的最大值为( )A.12B.11C.3D.-13. (2012年高考福建卷理科5)下列不等式一定成立的是( )A .)0(lg )41lg(2>>+x x x B .),(2sin 1sin Z k k x xx ∈≠≥+π C .)(||212R x x x ∈≥+ D .)(1112R x x ∈>+4. (2018年高考福建卷理科9)若直线x y 2=上存在点),(y x 满足约束条件⎪⎩⎪⎨⎧≥≤--≤-+m x y x y x 03203,则实数m 的最大值为( ) A .21 B .1 C .23D .25. (2018年高考辽宁卷理科8)设变量x ,y 满足,15020010⎪⎩⎪⎨⎧≤≤≤+≤≤-y y x y x 则y x 32+的最大值为( )(A) 20 (B) 35 (C) 45 (D) 556.(2018年高考辽宁卷理科12)若[0,)x ∈+∞,则下列不等式恒成立的是( ) (A)21xe x x ++ (211)124x x <-+(C)21cos 12x x -…(D)21ln(1)8x x x +-…7.(2018年高考江西卷理科8)某农户计划种植黄瓜和韭菜,种植面积不超过50计,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表为使一年的种植总利润(总利润=总销售收入 总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为( )A .50,0B .30,20C .20,30D .0,508.(2018年高考湖南卷理科8)已知两条直线1l :y =m 和2l : y=821m +(m >0),1l 与函数2log y x =的图像从左至右相交于点A ,B ,2l 与函数2log y x =的图像从左至右相交于C,D .记线段AC 和BD 在X 轴上的投影长度分别为a ,b ,当m 变化时,ba的最小值为 ( )A . B.9. (2018年高考四川卷理科9)某公司生产甲、乙两种桶装产品。
2018年全国各地高考数学分类汇编word版含答案7-不等式
2018年全国各地高考数学分类汇编word版含答案7-不等式一、选择题(共5小题;共25分)1. 设变量x,y满足约束条件x+y≤5,2x−y≤4,−x+y≤1,y≥0,则目标函数z=3x+5y的最大值为 A. 6B. 19C. 21D. 452. 设x∈R,则“x3>8”是“ x >2”的 A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件3. 设x∈R,则“x−12<12”是“x3<1”的 A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件4. 设集合A=x,y x−y≥1,ax+y>4,x−ay≤2,则 A. 对任意实数a,2,1∈AB. 对任意实数a,2,1∉AC. 当且仅当a<0时,2,1∉AD. 当且仅当a≤32时,2,1∉A5. 已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln a1+a2+a3.若a1>1,则A. a1<a3,a2<a4B. a1>a3,a2<a4C. a1<a3,a2>a4D. a1>a3,a2>a4二、填空题(共7小题;共35分)6. 若变量x,y满足约束条件2x+y+3≥0,x−2y+4≥0,x−2≤0,则z=x+13y的最大值是.7. 若x,y满足约束条件x−2y−2≤0,x−y+1≥0,y≤0,则z=3x+2y的最大值为.8. 若x,y满足约束条件x−y≥0,2x+y≤6,x+y≥2,则z=x+3y的最小值是,最大值是.9. 已知a,b∈R,且a−3b+6=0,则2a+18的最小值为.10. 在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120∘,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为.11. 若x,y满足x+1≤y≤2x,则2y−x的最小值是.12. 已知a∈R,函数f x=x2+2x+a−2,x≤0−x2+2x−2a,x>0.若对任意x∈−3,+∞,f x≤ x 恒成立,则a的取值范围是.三、解答题(共2小题;共26分)13. 某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族 S中的成员仅以自驾或公交方式通勤.分析显示:当 S 中 x % 0<x <100 的成员自驾时,自驾群体的人均通勤时间为 f x = 30,0<x ≤302x +1800x −90,30<x <100(单位:分钟),而公交群体的人均通勤时间不受 x 影响,恒为 40 分钟.试根据上述分析结果回答下列问题:(1)当 x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族 S 的人均通勤时间 g x 的表达式;讨论 g x 的单调性,并说明其实际意义.14. 设 a n 是首项为 a 1,公差为 d 的等差数列, b n 是首项为 b 1,公比为 q 的等比数列.(1)设 a 1=0,b 1=1,q =2,若 a n −b n ≤b 1 对 n =1,2,3,4 均成立,求 d 的取值范围;(2)若 a 1=b 1>0,m ∈N ∗,q ∈ 1, 2m,证明:存在 d ∈R ,使得 a n −b n ≤b 1 对n =2,3,⋯,m +1 均成立,并求 d 的取值范围(用 b 1,m ,q 表示).答案第一部分1. C2. A3. A4. D5. B第二部分 6. 37. 68. −2,89. 1410. 911. 312. 18,2第三部分13. (1) 由题意 2x +1800x −90>40,因为 30<x <100,解得 45<x <100.(2) 当 0<x ≤30 时,g x =30⋅x %+40 1−x % =40−x 10; 当 30<x <100 时,g x = 2x +1800−90 ⋅x %+40 1−x % =x 2−13x +58, 所以 g x = 40−x 10,0<x ≤30x 250−1310x +58,30<x <100. 当 0<x <32.5 时,g x 单调递减;当 32.5≤x <100 时,g x 单调递增.说明当 S 中有少于 32.5% 的成员自驾时,通勤时间人均递减;当自驾成员大于 32.5% 时,人均通勤时间递增;当自驾成员为 32.5% 时,人均通勤时间最少.14. (1) 由条件知:a n = n −1 d ,b n =2n−1.因为 a n −b n ≤b 1 对 n =1,2,3,4 均成立,即 n −1 d −2n−1 ≤1 对 n =1,2,3,4 均成立,即1≤1,1≤d≤3,3≤2d≤5,7≤3d≤9,得73≤d≤52.因此,d的取值范围为73,52.(2)由条件知:a n=b1+n−1d,b n=b1q n−1.若存在d,使得a n−b n ≤b1n=2,3,⋯,m+1成立,即b1+n−1d−b1q n−1 ≤b1n=2,3,⋯,m+1,即当n=2,3,⋯,m+1时,d满足q n−1−2n−1b1≤d≤q n−1n−1b1.因为q∈1,2m,则1<q n−1≤q m≤2,从而q n−1−2n−1b1≤0,q n−1n−1b1>0,对n=2,3,⋯,m+1均成立.因此,取d=0时,a n−b n ≤b1对n=2,3,⋯,m+1均成立.下面讨论数列q n−1−2n−1的最大值和数列q n−1n−1的最小值(n=2,3,⋯,m+1).①当2≤n≤m时,q n−2n−q n−1−2n−1=nq n−q n−nq n−1+2n n−1=n q n−q n−1−q n+2n n−1,当1<q≤21时,有q n≤q m≤2,从而n q n−q n−1−q n+2>0 .因此,当2≤n≤m+1时,数列q n−1−2n−1单调递增,故数列q n−1−2n−1的最大值为q m−2m.②设f x=2x1−x,当x>0时,fʹx=ln2−1−x ln22x<0,所以f x单调递减,从而f x<f0=1.当2≤n≤m时,q nnq n−1=q n−1n≤21n1−1n=f1n<1,因此,当2≤n≤m+1时,数列q n−1n−1单调递减,故数列q n−1n−1的最小值为q mm.因此,d的取值范围为b1q m−2m ,b1q mm.。
历届高考不等式题汇编不等式
不等式不等式的性质与一元二次不等式一、选择题1.(2018全国卷Ⅰ)已知集合2{20}=-->A x x x ,则A =R ðA .{12}-<<x xB .{12}-≤≤x xC .{|1}{|2}<->x x x xD .{|1}{|2}-≤≥x x x x2.(2018天津)已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >> C .c b a >> D .c a b >>3.(2018全国卷Ⅲ)设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+4.(2017新课标Ⅰ)已知集合{|1}A x x =<,{|31}x B x =<,则A .{|0}AB x x =< B .A B R =C .{|1}A B x x =>D .A B =∅5.(2017山东)设函数y =的定义域A ,函数ln(1)y x =-的定义域为B ,则A B ⋂= A .(1,2) B .(1,2] C .(2,1)- D .[2,1)-6.(2017山东)若0a b >>,且1ab =,则下列不等式成立的是A .()21log 2a b a a b b +<<+B .()21log 2a b a b a b<+<+ C .()21log 2a b a a b b +<+< D .()21log 2a b a b a b +<+< 7.(2016年北京)已知,x y R ∈,且0x y >>,则A .110x y-> B .sin sin 0x y -> C .11()()022x y -< D .ln ln 0x y +> 8.(2015山东)已知集合2{|430}A x x x =-+<,{|24}B x x =<<,则A B =A .(1,3)B .(1,4)C .(2,3)D .(2,4)9.(2015福建)若定义在R 上的函数()f x 满足()01f =-,其导函数()f x '满足()1f x k '>> ,则下列结论中一定错误的是A .11()f k k <B .11()1f k k >- C .11()11f k k <-- D .1()11k f k k >-- 10.(2015湖北)设x ∈R ,[]x 表示不超过x 的最大整数.若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n = 同时成立....,则正整数n 的最大值是 A .3 B .4 C .5 D .611.(2014新课标Ⅰ)已知集合A={x |2230x x --≥},B={x |-2≤x <2},则A B =A .[-2, -1]B .[-1,1]C .[-1,2)D .[1,2)12.(2014山东)若0a b >>,0c d <<,则一定有A .a b c d >B .a b c d <C .a b d c >D .a b d c< 13.(2014四川)已知实数y x ,满足)10(<<<a a a y x ,则下列关系式恒成立的是A .111122+>+y x B .)1ln()1ln(22+>+y x C .y x sin sin > D .33y x >14.(2014辽宁)已知定义在[0,1]上的函数()f x 满足:①(0)(1)0f f ==;②对所有,[0,1]x y ∈,且x y ≠,有1|()()|||2f x f y x y -<-. 若对所有,[0,1]x y ∈,|()()|f x f y k -<恒成立,则k 的最小值为( )A .12B .14C .12πD .1815.(2013陕西)在如图所示的锐角三角形空地中, 欲建一个面积不小于300m 2的内接矩形花园(阴影部分), 则其边长x (单位m )的取值范围是A .[15,20]B .[12,25]C .[10,30]D .[20,30]16.(2013重庆)关于x 的不等式22280x ax a --<(0a >)的解集为12(,)x x ,且2115x x -=,则a =A .52B .72C .154D .15217.(2013天津)已知函数()(1||)f x x a x =+.设关于x 的不等式()()f x a f x +< 的解集为A , 若11,22A⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是 A .⎫⎪⎪⎝⎭B .⎫⎪⎪⎝⎭C .⎛⋃⎝⎫⎪⎝⎭⎪⎭D .⎛- ⎝⎭∞ 18.(2012辽宁)若[)0,+x ∈∞,则下列不等式恒成立的是A .21++xe x x ≤ B 2111-+24x x ≤ C .21cos 1-2x x ≥ D .()21ln 1+-8x x x ≥ 19.(2011湖南)已知函数2()1,()43x f x e g x x x =-=-+-,若有()()f a g b =,则b的取值范围为A . 2⎡⎣B . 22⎡-+⎣C . []1,3D . ()1,3二、填空题20.(2017新课标Ⅲ)设函数1,0()2,0x x x f x x +⎧=⎨>⎩≤,则满足1()()12f x f x +->的x 的取值范围是___.21.(2017江苏)记函数()f x =的定义域为D .在区间[4,5]-上随机取一个数x ,则x D ∈ 的概率是 .22.(2017北京)能够说明“设a ,b ,c 是任意实数.若a b c >>,则a b c +>”是假命题的一组整数a ,b ,c 的值依次为________________.23.(2014江苏)已知函数,1)(2-+=mx x x f 若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值范围是 .24.(2013重庆)设0απ≤≤,不等式28(8sin )cos20x x αα-+≥对x R ∈恒成立,则a 的取值范围为 .25.(2013浙江)设,a b R ∈,若0x ≥时恒有()243201x x ax b x ≤-++≤-,则ab =__.26.(2013四川)已知函数()4(0,0)a f x x x a x=+>>在3x =时取得最小值,则a =__. 27.(2013广东)不等式220x x +-<的解集为___________.28.(2013江苏)已知)(x f 是定义在R 上的奇函数.当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示为 .29.(2013四川)已知)(x f 的定义域为R 的偶函数,当0≥x 时,x x x f 4)(2-=,那么,不等式5)2(<+x f 的解集是____________.30.(2012福建)已知关于x 的不等式220x ax a -+>在R 上恒成立,则实数a 的取值范围是_________.31.(2012江苏)已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为 . 32.(2012江西)不等式2902x x ->-的解集是___________. 33.(2010江苏)已知函数21,0()1,0x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的范围是__ ___.34.(2010江苏)设实数,x y 满足3≤2xy ≤8,4≤y x 2≤9,则43y x 的最大值是 .35.(2010天津)设函数1()f x x x=-,对任意x [1,)()()0f mx mf x ∈+∞<,+恒成立,则实数m 的取值范围是________.36.(2010天津)设函数2()1f x x =-,对任意2,3x ⎡⎫∈+∞⎪⎢⎣⎭,24()x f m f x m ⎛⎫- ⎪⎝⎭≤ (1)4()f x f m -+恒成立,则实数m 的取值范围是 .37.(2010浙江)某商家一月份至五月份累计销售额达3860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等,若一月至十月份销售总额至少至少达7000万元,则,x 的最小值 .三、解答题38.(2014广东)设函数()f x =2k <-,(1)求函数()f x 的定义域D (用区间表示);(2)讨论函数()f x 在D 上的单调性;(3)若6k <-,求D 上满足条件()(1)f x f >的x 的集合(用区间表示).39.(2014北京)已知函数()cos sin ,[0,]2f x x x x x π=-∈, (Ⅰ)求证:()0f x ≤; (Ⅱ)若sin x a b x<<在(0,)2π上恒成立,求a 的最大值与b 的最小值.二元一次不等式(组)与简单的线性规划问题 一、选择题1.(2018天津)设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +⎧⎪-⎪⎨-+⎪⎪⎩≤≤≤≥ 则目标函数35z x y =+的最大值为A . 6B .19C .21D .452.(2017新课标Ⅱ)设x,y满足约束条件2330233030x yx yy+-⎧⎪-+⎨⎪+⎩≤≥≥,则2z x y=+的最小值是A .B .C .D .3.(2017天津)设变量,x y满足约束条件20,220,0,3,x yx yxy+⎧⎪+-⎪⎨⎪⎪⎩≥≥≤≤则目标函数z x y=+的最大值为A.23B.1 C.32D.34.(2017山东)已知x,y满足3035030x yx yx-+⎧⎪++⎨⎪+⎩≤≤≥,则2z x y=+的最大值是A.0 B.2 C.5 D.65.(2017北京)若x,y满足32xx yy x⎧⎪+⎨⎪⎩≤≥≤则2x y+的最大值为A.1 B.3 C.5 D.96.(2017浙江)若x,y满足约束条件3020xx yx y⎧⎪+-⎨⎪-⎩≥≥≤,则2z x y=+的取值范围是A.[0,6] B.[0,4] C.[6,)+∞D.[4,)+∞7.(2016年山东)若变量x,y满足2,239,0,x yx yxì+?ïïïï-?íïï锍ïî则22x y+的最大值是A.4 B.9 C.10 D.12 8.(2016浙江)在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影.由区域20340xx yx y-≤⎧⎪+≥⎨⎪-+≥⎩,中的点在直线20x y+-=上的投影构成的线段记为AB,则||AB= A.B.4 C.D.69.(2016天津)设变量x ,y 满足约束条件20,2360,3290.x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩,则目标函数25z x y =+的最小值为A .4-B .6C .10D .1710.(2015陕西)某企业生产甲、乙两种产品均需用,A B 两种原料,已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、A .12万元B .16万元C .17万元D .18万元11.(2015天津)设变量,x y 满足约束条件2030230x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩,则目标函数6z x y =+的最大值为A .3B .4C .18D .4012.(2015福建)若变量,x y 满足约束条件20,0,220,x y x y x y +⎧⎪-⎨⎪-+⎩≥≤≥ 则2z x y =-的最小值等于A .52-B .2-C .32-D .2 13.(2015山东)已知,x y 满足约束条件020x y x y y -⎧⎪+⎨⎪⎩≥≤≥,若z ax y =+的最大值为4,则a =A .3B .2C .-2D .-314.(2014新课标Ⅰ)不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题: 1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥,3p :(,),23x y D x y ∀∈+≤, 4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3pB .1p ,4pC .1p ,2pD .1p ,3p15.(2014安徽)y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ,若ax y z -=取得最大值的最优解不唯一,则实数a 的值为( )A .121-或B .212或 C .2或1 D .12-或 16.(2014福建)已知圆()()22:1C x a y b -+-=,设平面区域70,70,0x y x y y +-≤⎧⎪Ω=-+≥⎨⎪≥⎩,若圆心C ∈Ω,且圆C 与x 轴相切,则22a b +的最大值为A .5B .29C .37D .4917.(2014北京)若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为-4,则k 的值为A .2B .-2C .12D .12-18.(2013新课标Ⅱ)设,x y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则23z x y =-的最小值是A .7-B .6-C .5-D .3-19.(2013陕西)若点(,)x y 位于曲线y = |x |与y = 2所围成的封闭区域,则2x -y 的最小值为 A .-6 B .-2 C .0 D .220.(2013四川)若变量,x y 满足约束条件8,24,0,0,x y y x x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩且5z y x =-的最大值为a ,最小值为b ,则a b -的值是A .48B .30C .24D .1621.(2012广东)已知变量,x y 满足约束条件211y x y x y ⎧⎪+⎨⎪-⎩………,则3z x y =+的最大值为A .12B .11C .3D .-122.(2012广东)已知变量,x y 满足约束条件1101x y x x y +≤⎧⎪+≥⎨⎪-≤⎩,则2z x y =+的最小值为 A .3 B .1 C .5- D .6-23.(2012山东)设变量y x ,满足约束条件222441x y x y x y +⎧⎪+⎨⎪--⎩………,则目标函数y x z -=3的取值范围是 A .⎥⎦⎤⎢⎣⎡-6,23 B .⎥⎦⎤⎢⎣⎡--1,23 C .[]6,1- D .⎥⎦⎤⎢⎣⎡-23,6 24.(2012福建)若直线2y x =上存在点(,)x y 满足约束条件30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩则实数m 的最大值为 A .1- B .1 C .32 D .225.(2012天津)设变量,x y 满足约束条件22024010x y x y x +-⎧⎪-+⎨⎪-⎩………,则目标函数32z x y =-的最小值为A .−5B .−4C .−2D .326.(2012辽宁)设变量,x y 满足-100+20015x y x y y ≤⎧⎪≤≤⎨⎪≤≤⎩,则2+3x y 的最大值为A .20B .35C .45D .5527.(2011广东)已知平面直角坐标系xOy 上的区域D由不等式02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定,若(,)M x y 为D 上的动点,点A的坐标为,则z =OM ·OA 的最大值为A .3B .4C .D .28.(2011安徽)设变量y x y x y x 2,1||||,+≤+则满足的最大值和最小值分别为A .1,-1B .2,-2C .1,-2D .2,-129.(2011湖南)设m >1,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为A .(1,1 B .(1+∞) C .(1,3 ) D .(3,+∞)30.(2010新课标)已知ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在ABCD 的内部,则z =2x -5y 的取值范围是A .(-14,16)B .(-14,20)C .(-12,18)D .(-12,20)31.(2010山东)设变量,x y 满足约束条件20510080x y x y x y -+⎧⎪-+⎨⎪+-⎩≥≤≤,则目标函数34z x y =-的最大值和最小值分别为A .3,11-B .3,11--C .11,3-D .11,3二、填空题32.(2018北京)若x ,y 满足12x y x +≤≤,则2y x -的最小值是__________.33.(2018全国卷Ⅰ)若x ,y 满足约束条件220100--⎧⎪-+⎨⎪⎩≤≥≤x y x y y ,则32z x y =+的最大值为__.34.(2018全国卷Ⅱ)若,x y 满足约束条件25023050+-⎧⎪-+⎨⎪-⎩≥,≥,≤,x y x y x 则=+z x y 的最大值为___.35.(2018浙江)若x ,y 满足约束条件0262x y x y x y -⎧⎪+⎨⎪+⎩≥≤≥,则3z x y =+的最小值是__,最大值是__. 36.(2017新课标Ⅰ)设x ,y 满足约束条件21210x y x y x y +⎧⎪+-⎨⎪-⎩≤≥≤,则32z x y =-的最小值为 .37.(2017新课标Ⅲ)若x,y满足约束条件20x yx yy-⎧⎪+-⎨⎪⎩≥≤≥,则34z x y=-的最小值为__.38.(2016年全国I)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.39.(2016全国III)若x,y满足约束条件1020220x yx yx y-+⎧⎪-⎨⎪+-⎩≥≤≤,则z x y=+的最大值为.40.(2016江苏)已知实数x,y满足240220330x yx yx y-+≥⎧⎪+-≥⎨⎪--≤⎩,则22x y+的取值范围是.41.(2015新课标Ⅰ)若,x y满足约束条件1040xx yx y-⎧⎪-⎨⎪+-⎩≥≤≤,则yx的最大值为.42.(2015新课标Ⅱ)若,x y满足约束条件10,20,220,x yx yx y-+⎧⎪-⎨⎪+-⎩≥≤≤,则z x y=+的最大值为__.43.(2014安徽)不等式组20240320x yx yx y+-≥⎧⎪+-≤⎨⎪+-≥⎩表示的平面区域的面积为________.44.(2014浙江)当实数x,y满足240,10,1,x yx yx+-≤⎧⎪--≤⎨⎪≥⎩时,14ax y≤+≤恒成立,则实数a的取值范围是________.45.(2014湖南)若变量,x y满足约束条件4y xx yy k≤⎧⎪+≤⎨⎪≥⎩,且2z x y=+的最小值为-6,则k=.46.(2013新课标Ⅰ)设,x y满足约束条件13,10xx y≤≤⎧⎨-≤-≤⎩,则2z x y=-的最大值为___.47.(2013浙江)设z kx y =+,其中实数,x y 满足2242240x x y x y ≥⎧⎪-+≥⎨⎪--<⎩,若z 的最大值为12,则实数k =________ .48.(2013湖南)若变量x ,y 满足约束条件28,04,03,x y x y +≤⎧⎪≤≤⎨⎪≤≤⎩则x +y 的最大值为________.49.(2012新课标)设x ,y 满足约束条件1300x y x y x y --⎧⎪+⎪⎨⎪⎪⎩…………,则y x z 2-=得取值范围为 .50.(2011湖南)设1,m >在约束条件1y x y mxx y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数5z x y =+的最大值为4,则m 的值为 .51.(2011陕西)如图,点(,)x y 在四边形ABCD 内部和边界上运动,那么2x y -的最小值为________.52.(2011新课标)若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值 是_________.53.(2010安徽)设x ,y 满足约束条件2208400,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数(0,0)z abx y a b =+>>的最大值为8,则a b +的最小值为 __ _.54.(2010陕西)铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的的2CO 排放量b 及每万吨铁矿石的价格c 如下表:某冶炼厂至少要生产1.9(万吨)铁,若要求2CO 的排放量不超过2(万吨)则购买铁矿石的最少费用为 (万元).三、解答题55.(2010广东)某营养师要为某个儿童预定午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C .另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C .如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?不等式的综合应用一、选择题1.(2018北京)设集合{(,)|1,4,2},A x y x y ax y x ay =-+>-≥≤则A .对任意实数a ,(2,1)A ∈B .对任意实数a ,(2,1)A ∉C .当且仅当0a <时,(2,1)A ∉D .当且仅当32a ≤时,(2,1)A ∉2.(2017天津)已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+⎪⎩≥设a ∈R ,若关于x 的不等式()||2x f x a +≥在R 上恒成立,则a 的取值范围是A .[2,2]-B .[-C .[- D.[-3.(2015北京)设{}n a 是等差数列.下列结论中正确的是A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则2a >D .若10a <,则()()21230a a a a -->4.(2015陕西)设()ln f x x =,0a b <<,若p f =,()2a b q f +=, 1(()())2r f a f b =+,则下列关系式中正确的是A .q r p =<B .q r p =>C .p r q =<D .p r q =>5.(2014重庆)若b a ab b a +=+则)(,log 43log 24的最小值是A .326+B .327+C .346+D .347+6.(2013福建)若122=+y x ,则y x +的取值范围是A .]2,0[B .]0,2[-C .),2[+∞-D .]2,(--∞7.(2013山东)设正实数,,x y z 满足22340x xy y z -+-=.则当xy z取得最大值时, 212x y z+-的最大值为 A .0 B .1 C .94D .3 8.(2013山东)设正实数z y x ,,满足04322=-+-z y xy x ,则当z xy取得最大值时, 2x y z +-的最大值为A .0B .98C .2D .949.(2012浙江)若正数,x y 满足35x y xy +=,则34x y +的最小值是A .245B .285C .5D .6 10.(2012浙江)若正数,x y 满足35x y xy +=,则34x y +的最小值是A .245B .285C .5D .6 11.(2012陕西)小王从甲地到乙地的时速分别为a 和b (a b <),其全程的平均时速为v ,则A .a v <<B .vC v <2a b + D .v =2a b +12.(2012湖南)已知两条直线1l :y m = 和2l :y =821m +(0m >),1l 与函数2log y x =的图像从左至右相交于点,A B ,2l 与函数2log y x =的图像从左至右相交于,C D .记线段AC 和BD 在x 轴上的投影长度分别为,a b ,当m 变化时,b a的最小值为A .B .C .D .13.(2011陕西)设0a b <<,则下列不等式中正确的是A.2a b a b +<<<B.2a b a b +<<< C.2a b a b +<< D2a b a b +<<< 14.(2011上海)若,a b R ∈,且0ab >,则下列不等式中,恒成立的是A .222a b ab +> B.a b +≥ C.11a b +> D .2b a a b +≥ 二、填空题15.(2018天津)已知,a b ∈R ,且360a b -+=,则128a b+的最小值为 . 16.(2018浙江)已知λ∈R ,函数24,()43,x x f x x x x λλ-⎧=⎨-+<⎩≥,当2λ=时,不等式()0f x <的解集是___________.若函数()f x 恰有2个零点,则λ的取值范围是___________. 17.(2017北京)已知0x ≥,0y ≥,且1x y +=,则22x y +的取值范围是_______.18.(2017天津)若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________. 19.(2017江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费之和最小,则x 的值是 .20.(2017浙江)已知a ∈R ,函数4()||f x x a a x=+-+在区间[1,4]上的最大值是5,则a 的取值范围是 .21.(2014浙江)已知实数,,a b c 满足0a b c ++=,2221a b c ++=,则a 的最大值是__;22.(2014辽宁)对于0c >,当非零实数a ,b 满足22420a ab b c -+-=,且使|2|a b +最大时,124a b c++的最小值为 . 23.(2014辽宁)对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c-+的最小值为 . 24.(2014湖北)某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、平均车长l (单位:米)的值有关,其公式为2760001820v F v v l=++. (Ⅰ)如果不限定车型, 6.05l =,则最大车流量为 辆/小时;(Ⅱ)如果限定车型,5l =,则最大车流量比(Ⅰ)中的最大车流量增加 辆/小时.25.(2013天津)设a + b = 2, b >0, 则当a = 时,1||2||a a b +取得最小值. 26.(2013四川)已知函数()4(0,0)a f x x x a x=+>>在3x =时取得最小值,则a =__. 27.(2011浙江)若实数,x y 满足221x y xy ++=,则x y +的最大值是____.28.(2011湖南)设,x y R ∈,则222211()(4)x y y x++的最小值为 . 29.(2010安徽)若0,0,2a b a b >>+=,则下列不等式对一切满足条件的,a b 恒成立的是 (写出所有正确命题的编号).①1ab ≤; ③222a b +≥; ④333a b +≥; ⑤112a b+≥。
最新-北京市2018年高考数学最新联考试题分类大汇编(6)
北京市2018年高考数学最新联考试题分类大汇编一、选择题:5.(北京市西城区2018年1月高三期末考试理科)已知点(,)P x y 的坐标满足条件1,2,220,x y x y ≤⎧⎪≤⎨⎪+-≥⎩那么22x y +的取值范围是( ) (A )[1,4](B )[1,5](C )4[,4]5(D )4[,5]5【答案】D(A )1a b >-(B )1a b >+(C )||||a b >(D )22a b> 【答案】A(7)(2018年4月北京市海淀区高三一模理科)已知函数2,1,()1,1,x ax x f x ax x ⎧-+≤=⎨->⎩ 若1212,,x x x x ∃∈≠R ,使得12()()f x f x =成立,则实数a 的取值范围是(A )2a < (B )2a >(C )22a -<< (D )2a >或2a <- 【答案】A【答案】D3.(北京市西城区2018年4月高三第一次模拟文)若2log 3a =,3log 2b =,41log 3c =,则下列结论正确的是( D ) (A )a c b << (B )c a b << (C )b c a <<(D )c b a <<y x z 2-=的最小值为 (A )27- (B ) 2- (C )1 (D ) 25【答案】A(3)(北京市东城区2018年4月高考一模文科)若点(,)P x y 在不等式组,,2y x y x x ≤⎧⎪≥-⎨⎪≤⎩表示的平面区域内,则2z x y =+的最大值为(A )0 (B )2 (C ) 4 (D )6 【答案】D3.(2018年3月北京市丰台区高三一模文科)若变量x ,y 满足约束条件0,21,43,y x y x y ≤⎧⎪-≥⎨⎪-≤⎩则z =3x +5y 的取值范围是(A) [3,)+∞(B) [-8,3](C) (,9]-∞(D) [-8,9]二、填空题:(14) (北京市东城区2018年1月高三考试文科)在平面内,已知直线12l l ,点A 是12,l l 之间的定点,点A 到12,l l 的距离分别为3和2,点B 是2l 上的一个动点,若AC AB ⊥,且AC 与1l 交于点C ,则ABC ∆面积的最小值为____.12. (2018年3月北京市朝阳区高三一模文科)设,x y 满足约束条件0,, 230,y y x x y ≥⎧⎪≤⎨⎪+-≤⎩则目标函数2z x y =-的最大值是 3 ; 使z 取得最大值时的点(,)x y 的坐标是 . 3,02⎛⎫⎪⎝⎭2l1l CBA E F(Ⅱ)若||||CD k AB ≤,其中k 为常数,且01k <<,求S 的最大值.19.(本小题满分13分)(Ⅰ)解:依题意,点C 的横坐标为x ,点C 的纵坐标为29C y x =-+. ……1分点B 的横坐标B x 满足方程290B x -+=,解得3B x =,舍去3B x =-. ……2分所以2211(||||)(223)(9)(3)(9)22C S CD AB y x x x x =+⋅=+⨯-+=+-+. ……4分由点C 在第一象限,得03x <<.令()0f x '=,得1x =. ………………9分① 若13k <,即113k <<时,()f x '与()f x 的变化情况如下: x(0,1)1(1,3)k()f x ' +-()f x↗极大值↘。
【高三数学试题精选】2018年全国高考理科数学不等式试题汇编
2018年全国高考理科数学不等式试题汇编
5 c [x]B.[2 x] = 2[x]c.[x+]≤[x]+[]D.[x-]≤[x]-[]
【答案】D
3 .(7B.-4
c.1D.2
【答案】A
7 .(的最小值为___-4_____
【答案】- 4
15.(2018年高考四川卷(理))已知是定义域为的偶函数,当≥ 时, ,那么,不等式的解集是____________
【答案】
16.(2018年普通高等学校招生统一考试广东省数学(理)卷(纯RD版))给定区域 ,令点集 ,是在上取得最大值或最小值的点 ,则中的点共确定_____ _条不同的直线
【答案】
17.(2018年普通高等学校招生统一考试浙江数学(理)试题(纯RD版))设 ,其中实数满足 ,若的最大值为12,则实数 ________ 【答案】2
18.(2018年普通高等学校招生统一考试天津数学(理)试题(含答案))设a + b = 2, b 0, 则当a = ______时, 取得最小值【答案】
19.(2018年普通高等学校招生统一考试广东省数学(理)卷(纯RD版))不等式的解集为___________
【答案】
20.(2018年高考湖南卷(理))已知 ______
【答案】12
三、解答题。
2018年数学(文科)高考题分类 真题与模拟题 不等式
E 单元不等式E1 不等式的概念与性质 E2 绝对值不等式的解法 E3 一元二次不等式的解法 E4 简单的一元高次不等式的解法E5 简单的线性规划问题14.E5[2018·全国卷Ⅰ] 若x ,y 满足约束条件{x -2y -2≤0,x -y +1≥0,y ≤0,则z=3x+2y 的最大值为 .14.6 [解析] 不等式组表示的平面区域如图中阴影部分所示,当直线y=-32x+z2经过点A (2,0)时,z 最大,所以z max =3×2+2×0=6.14.E5[2018·全国卷Ⅱ] 若x ,y 满足约束条件{x +2y -5≥0,x -2y +3≥0,x -5≤0,则z=x+y 的最大值为 .14.9 [解析] 作出不等式组表示的可行域如图中阴影部分所示.当直线y=-x+z 经过点A (5,4)时,直线的纵截距z 最大,所以z max =5+4=9.15.E5[2018·全国卷Ⅲ] 若变量x ,y 满足约束条件{2x +y +3≥0,x -2y +4≥0,x -2≤0,则z=x+13y 的最大值是 .15.3 [解析] 作出不等式组表示的可行域如图中阴影部分所示,由图易知目标函数在点A (2,3)处取得最大值,最大值为2+13×3=3.12.E5[2018·浙江卷] 若x ,y 满足约束条件{x -y ≥0,2x +y ≤6,x +y ≥2,则z=x+3y 的最小值是 ,最大值是 . 12.-2 8[解析] 作出如图中阴影部分所示的可行域,易知A (2,2),B (4,-2),C (1,1),目标函数表示斜率为-13的一组平行直线.由图可知,当直线x+3y-z=0经过点A 时,z 取得最大值,最大值为2+3×2=8;当直线x+3y-z=0经过点B 时,z 取得最小值,最小值为4+3×(-2)=-2.13.E5[2018·北京卷] 若x ,y 满足x+1≤y ≤2x ,则2y-x 的最小值是 .13.3 [解析] x ,y 满足的可行域如图中阴影部分所示,联立{y =x +1,y =2x,得交点坐标为(1,2),由图可知,当目标函数z=2y-x 过点(1,2)时,z 有最小值,z min =2×2-1=3.E6 2a b+≤13.C8,E6[2018·江苏卷] 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC=120°,∠ABC 的平分线交AC 于点D ,且BD=1,则4a+c 的最小值为 .13.9 [解析] 方法一:由∠ABC=120°,∠ABC 的平分线交AC 于点D ,得∠ABD=∠CBD=60°.由S △ABC =S △BAD +S △BCD ,得12ac sin 120°=12a ·BD ·sin 60°+12c ·BD ·sin 60°,又BD=1,所以ac=a+c ,则1a +1c=1.而a>0,c>0,所以4a+c=(4a+c )1a +1c=4+4a c +c a +1≥5+2√4a c ·c a =9当且仅当4a c =ca ,即c=2a 时,取等号.因此4a+c 的最小值为9.方法二:以B 为坐标原点,BD 所在直线为x 轴建立直角坐标系,则D (1,0),A c 2,√3c 2,C a 2,-√3a2,故AD⃗⃗⃗⃗⃗ =1-c 2,-√3c2,DC⃗⃗⃗⃗⃗ =a2-1,-√3a 2,又AD ⃗⃗⃗⃗⃗ ∥DC⃗⃗⃗⃗⃗ ,所以1-c 2-√3a2=a 2-1-√3c2,整理得ac=a+c ,以下同方法一.13.E6[2018·天津卷] 已知a ,b ∈R,且a-3b+6=0,则2a +18b 的最小值为 .13.14 [解析] 由已知得a-3b=-6,由基本不等式得2a +18b ≥2√2a -3b =223=14(当且仅当a=-3b=-3时取等号).E7 不等式的证明方法 E8 不等式的综合应用 E9 单元综合8.E9[2018·北京卷] 设集合A={(x ,y )|x-y ≥1,ax+y>4,x-ay ≤2},则 ( ) A . 对任意实数a ,(2,1)∈A B . 对任意实数a ,(2,1)∉A C . 当且仅当a<0时,(2,1)∉A D . 当且仅当a ≤32时,(2,1)∉A8.D [解析] 当a=0时,A 为空集,排除A;当a=2时,(2,1)∈A ,排除B;当a=32时,作出可行域如图中阴影部分所示,由{x -y =1,32x +y =4,得P (2,1),又∵ax+y>4,取不到边界值,∴(2,1)∉A.故选D .1.[2018·北京通州区期末] 已知a ,b ∈R,a>b>0,则下列不等式一定成立的是 ( ) A . 1a >1b B . tan a>tan b C . |log 2a|>|log 2b| D . a ·2-b >b ·2-a1.D [解析] 对于A,a>b>0,则1a <1b ,故不成立;对于B,不妨设a=3π4>b=π4>0,则tan 3π4=-1,tan π4=1,故不成立;对于C,不妨设a=2,b=14,则|log 2a |=1,|log 2b |=2,故不成立.故选D . 2.[2018·唐山五校联考] 已知不等式x 2-bx-a ≥0的解集是{x|x ≤2或x ≥3},则不等式ax 2-bx-1>0的解集是 ( ) A .{x|2<x<3} B .{x |-12<x <-13} C .{x |13<x <12}D .{x |x <13或x <12}2.B [解析] ∵不等式x 2-bx-a ≥0的解集是{x|x ≤2或x ≥3},∴x 2-bx-a=0的解是x 1=2和x 2=3,∴{2+3=b,2×3=-a,解得{a =-6,b =5,则不等式ax 2-bx-1>0即为-6x 2-5x-1>0,解得{x |-12<x <-13}. 3.[2018·遵义联考] 已知O 是坐标原点,点A (-1,1),若点M (x ,y )为平面区域{x +y ≥2,x ≤1,y ≤2上的一个动点,则OA ⃗⃗⃗⃗⃗ ·OM⃗⃗⃗⃗⃗⃗ 的取值范围是 . 3.[0,2] [解析] 设z=OA ⃗⃗⃗ ·OM ⃗⃗⃗⃗ =-x+y.在直角坐标系内作出可行域如图所示.由图可知,当直线z=-x+y 经过可行域内点C (0,2)时,z 有最大值,即(OA ⃗⃗⃗ ·OM ⃗⃗⃗⃗ )max =-0+2=2;当直线z=-x+y 经过可行域内点A (1,1)时,z 有最小值,即(OA ⃗⃗⃗ ·OM ⃗⃗⃗⃗ )min =-1+1=0.所以OA ⃗⃗⃗ ·OM⃗⃗⃗⃗ 的取值范围为[0,2].4. [2018·衡水一中月考] 若x ,y 都是正数,且x+y=3,则4x+1+1y+1的最小值为 .4.95 [解析] 设m=x+1,n=y+1.∵x+y=3,∴{x =m -1,y =n -1,则m+n=5,∴4x+1+1y+1=4m +1n =(4m +1n )(m 5+n 5)=45+4n 5m +m 5n +15≥1+2√4n 5m ·m 5n =95,当且仅当m=103,n=53,即x=73,y=23时取等号.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年高考数学试题分类汇编
不等式
一. 选择题:
1.(广东卷10)设,a b R ∈,若||0a b ->,则下列不等式中正确的是( D )
A 、0b a ->
B 、330a b +<
C 、220a b -<
D 、0b a +>
2.(海南卷7)已知1230a a a >>>,则使得2(1)1i a x -<(1,2,3)i =都成立的x 取值范围是( B )
A.(0,11a )
B. (0,12a )
C. (0,31a )
D. (0,3
2a ) 3.(湖南卷2)“21<-x ”是“3<x ”的( A )
A .充分不必要条件 B.必要不充分条件
C .充分必要条件 D.既不充分也不必要条件
4.(辽宁卷4)已知01a <<
,log log a a x =1log 52
a y =
,log log a a z =,则( C )
A .x y z >>
B .z y x >>
C .y x z >>
D .z x y >>
5.(山东卷7)不等式
252(1)x x +-≥的解集是( D ) A .132⎡⎤-⎢⎥⎣⎦, B .132⎡⎤-⎢⎥⎣⎦
, C .(]11132⎡⎫⎪⎢⎣⎭,, D .(]11132⎡⎫-⎪⎢⎣⎭,, 6.(陕西卷6)“1a =”是“对任意的正数x ,21a x x
+≥”的( A ) A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
7.(四川卷5)不等式22x x -<的解集为( A )
(A)()1,2- (B)()1,1- (C)()2,1- (D)()2,2-
8.(天津卷8)已知函数20()20x x f x x x +⎧=⎨-+>⎩,≤,,,
则不等式2()f x x ≥的解集为( A ) A .[]11-, B .[]22-, C .[]21-, D .[]12-,
9.(浙江卷3)已知a ,b 都是实数,那么“22b a >”是“a >b ”的D
(A )充分而不必要条件 (B )必要而不充分条件
(C )充分必要条件 (D )既不充分也不必要条件
10.(浙江卷(5)0,0a b ≥≥,且2a b +=,则C
(A )12ab ≤ (B )12
ab ≥ (C )222a b +≥ (D )223a b +≤ 11.(重庆卷2)设x 是实数,则“x >0”是“|x |>0”的 A
(A)充分而不必要条件
(B)必要而不充分条件 (C)充要条件
(D)既不充分也不必要条件 二. 填空题:
1.(北京卷10)不等式112
x x ->+的解集是 .{}|2x x <- 2.(江苏卷11.已知,,x y z R +∈,230x y z -+=,则2
y xz
的最小值 .3 3.(江西卷13)不等式224122
x x +-≤的解集为 .[3,1]- 4.(上海卷1)不等式11x -<的解集是 .
(0,2) 三. 解答题:。