§5.4主视图、左视图、俯视图(1)
主视图、左视图、俯视图(基础训练) (1)
5.4 主视图、左视图、俯视图【提升训练】一、单选题1.如图,是一个由若干个小正方体组成的几何体的从三个方向看到的形状图.则该几何体最少可由()个小正方体组合而成.A.8个B.9个C.10个D.11个2.如图所示,是由一些相同的小正方体构成的几何体的三视图,则构成这个几何体的小正方体的个数是()A.5个B.6个C.7个D.8个3.由一些相同的小正方体组成的几何体从三个方向看得到的形状图,则组成这个几何体的小正方体最多有多少个,最少有多少个.()A.8,7B.9,7C.9,6D.8,64.由10个完全相同的小正方体搭成的物体如图所示.如果再添加若干个相同的小正方体之后,所得到的新物体从正面看和从左面看都跟原来的相同,那么这样的小正方体最多还可以添加()个.A.3B.4C.5D.65.如图是由几个相同的小正方体堆砌成的几何体,从左面看到该几何体的形状图是()A.B.C.D.6.如图的几何体由5个相同的小正方体搭成,从上面看,这个几何体的形状是()A.B.C.D.7.如图所示几何体的左视图正确的是()A.B.C.D.8.如图所示,左侧的几何体是由若干个大小相同的小正方休组成的,该几何体的主视图(从正:面看)是( )A.B.C.D.9.用棱长为1的小立方体摆成如图所示的几何体,从左面看这个几何体得到的平面图形的面积是()A.3B.4C.5D.610.如图是由6个大小相同的小正方体组成的几何体,从上面看到的是()A.B.C.D.11.“津南”幼儿园的小朋友正在玩搭积木的游戏,小南的城堡已经有26cm高,小开拿了一些A正方体木块和B正方体木块过来帮忙,已知A正方体木块高2cm,B正方体木块高bcm,且A、B两种正方体木块数量相同,小开将所有的木块一块接一块的依次叠加上去,现在量得小南的城堡有40cm高,则所有满足要求的整数b的值的和为()A.12B.15C.16D.1712.一个几何体由若干大小相同的小立方块搭成,如图分别是从它的正面和上面看到的形状图,该几何体最少要用________个立方块搭成,最多要用________个立方块搭成()A.7,12B.8,11C.8,10D.9,1313.用一个平面去截下列几何体,截得的平面图形可能是三角形的有()A.0个B.1个C.2个D.3个14.如图,是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的个数为n,则n不可能是( )A.9B.10C.11D.1215.如图所示的主视图和俯视图,其对应的几何体(阴影所示如图)可以是下列()A.B.C.D.16.某个几何体的主视图、左视图、俯视图分别为长方形、长方形、圆,则该几何体是()A.圆柱B.长方体C.圆锥D.四棱锥17.下列几何体中,左视图与主视图不同的是()A.B.C.D.18.如图所示,是由8个完全相同的小正方体搭成的几何体.若小正方体的棱长为1,则该几何体的表面积是()A.16B.30C.32D.3419.如图,几何体由6个大小相同的正方体组成,其俯视图...是()A.B.C.D.20.如图所示的几何体,从正面看到的平面图形是()A.B.C.D.21.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.22.用小立方块搭成的几何体从正面和上面看的视图如图,这个几何体中小立方块的个数不可以是()A.11B.10C.9D.823.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为()A.B.C.D.24.如图所示的物体的左视图是()A.B.C.D.25.下面四个立体图形,从正面、左面、上面观察都不可能看到三角形的是()A.B.C.D.26.如图,是由-些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块最后搭成一个大的长方体,至少还需要添加()个小立方块.A.26B.38C.54D.5627.由6个大小相同的正方体搭成的几何体如图所示,比较从三个不同方向看到的平面图形的面积,则()A.从三个不同方向看到的平面图形的面积一样大B.从正面看到的平面图形面积最小C.从左面看到的平面图形的面积最小D.从上面看到的平面图形的面积最小28.有一个棱长为5的正方体木块,从它的每一个面看都有一个穿透的完全相同的孔(如图中的阴影部分),则这个立体图形的内、外表面的总面积是( )A.192B.216C.218D.22529.我们知道,面动成体!如图,正方形ABCD边长为3cm,以直线AB为轴将正方形旋转一周所得几何体,从正面看到的形状图的面积是().A.9 cm2B.18 cm2C.9π cm2D.27π cm230.从正面、左面、上面看,所看到的形状图完全相同的几何体是()A.B.C.D .31.如图所示的几何体是由8个完全一样的正方体组合而成它的左视图是( ).A .B .C .D .32.如图是一个立体图形从左面和上面看到的形状图,这个立体图形是由相同的小正方体构成,这些相同的小正方体的个数最少是 ( )A .4B .5C .6D .733.如图,正方形ABCD 的边长为3cm ,以直线AB 为轴,将正方形旋转一周,所得几何体的主视图的面积是( )A .29cmB .29πcmC .218πcmD .218cm第II 卷(非选择题)请点击修改第II卷的文字说明二、填空题34.如图是由一些棱长为1的小立方块所搭几何体的三种视图.若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个长方体,至少还需要______个小立方块.35.如图为一个长方体,则该几何体从左面看得到的图形的面积为__________2cm.36.如图,是一个由若干个小正方体搭成的几何体的主视图与视图,设搭这样的几何体最多需要m块小立方块,最少需要n块小立方块,则m+n=_____.37.用若干个大小相同的小立方块搭一个几何体,使得从正面和从上面看到的这个几何体的形状如图所示,则搭出这个几何体至少需要_____个小立方体,最多需要_____个小立方体.38.如图所示,是从不同方向看到的由一些小立方块搭成的几何体的形状图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以便搭成一个大正方体,则至少还需要______个小立方块.39.棱长为2的正方体,摆成如图所示的形状,则该物体的表面积是___________.三、解答题40.如图1,在平整的地面上,用8个棱长都为1cm的小正方体堆成一个几何体.(1)请利用图2中的网格画出这个几何体从正面看、从左面看和从上面看到的形状图.(一个网格为小立方体的一个面)(2)图1中8个小正方体搭成的几何体的表面积(包括与地面接触的部分)是cm2.41.如图是某几何体的三视图,其中主视图和左视图都是长方形,俯视图是一直角三角形.(1)这个几何体的名称是;(2)画出它的表面展开图;(3)若主视图的宽为4cm,长为10cm,俯视图中CD长比左视图中AB长大2cm,它的表面积为132cm2,求该几何体的体积.42.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件.(1)这个零件的表面积是.(2)请按要求在边长为1网格图里画出这个零件的视图.43.(1)图1是由6个相同的小正方体组成的几何体,请画出从正面、左面、上面看到的这个几何体的形状图.(2)图2是由几个相同的小立方块组成的几何体从上面看到的形状图,小正方形中的数字表示该位置上小立方块的个数,请画出这个几何体从左面看到的形状图.44.如图是小明10块棱长都为2cm的正方体搭成的几何体.(1)分别画出从正面、从左面、从上面看到的所搭几何体的形状图;(2)小明所搭几何体的表面积(包括与桌面接触的部分)是.45.画出如图所示几何体分别从正面、左面和上面看到的形状图.46.用若干个完全相同的小正方体搭成一个几何体,使它从正面和左面看到的形状图如图所示.(1)搭这样一个几何体最多需要多少个小正方体?(2)画出(1)中所搭几何体从上面看到的形状图,并标出各个小正方形所在位置的小正方体的个数.47.由几个相同的边长为1的小立方块搭成的几何体如图所示,排放在桌面上.(1)请在下面方格纸中分别画出这个几何体从三个不同的方向(上面、正面和左面)看到的视图;(2)根据三个视图,请你求出这个几何体的表面积(不包括底面积).48.(1)一个几何体由大小相同的小立方体搭成,从上面看到的几何体的形状如图1所示,其中小正方形中的数字表示在该位置的小立方块的个数,请在方格纸画出从正面和从左面看到的这个几何体的形状图.(2)如图2,已知四点A、B、C、D,根据下列语句,画出图形.①连接AD;①画直线AB、CD交于点E;①连接DB,并延长线段DB到点F,使DB=BF;①图中以D为顶点的角中,小于平角的角共有个.49.如图,在平整的地面上,用8个完全相同的小正方体堆成一个几何体,请画出从三个方向看到的几何体的形状图.50.由几个相同的棱长的小正方体搭成的几何体的俯视图如图所示,正方形中的数字表示该位置上小正方体的个数,在网格中画出这个几何体的主视图和左视图(注:网格中小正方形的边长等于小正方体的棱长)51.如图是由一些棱长都为1的小正方体组合成的简单几何体.(1)画出该几何体的主视图、左视图和俯视图;(2)如果在这个几何体上再添加一些小正方体,并保持俯视图和左视图不变,最多可以再添加 块小正方体.52.用若干个大小相同的小立方块搭建一个几何体,从正面和上面观察这个几何体得到下面两幅形状图.(从正面看) (从上面看)(1)请画出一种从左面看这个几何体得到的形状图;(2)搭建这个几何体最少要用a =________个小立方块,最多用b =________个小立方块;(3)在(2)的条件下,若有理数x ,y 满足||x a =,||y b =,且0x y +<,求xy 的值.53.画出该几何体的主视图、左视图、俯视图.54.如图是一个几何体的三视图.(1)说出这个几何体的名称;(2)若主视图的宽为4cm,长为7cm,左视图的宽为3cm,俯视图为直角三角形,其中斜边长为5cm,求这个几何体中所有棱长的和,以及它的表面积和体积.55.(1)如右图,已知A、B、C是由边长为1的小正方形组成网格纸上的三个格点,根据要求在网格中画图.①画线段BC;①过点A画BC的平行线AD;①在①的条件下,过点C画直线AD的垂线,垂足为点E.(2)下图是由10个相同的小立方块搭成的几何体,请在下面方格纸中画出它的主视图.56.某公园门口需要修建一个由一些正方体组合而成的一个立体图形,已知正方体的边长都是0.8米.(1)请画出它的主视图、左视图、俯视图.(2)为了好看,需要在这个立体图形表面刷一层油漆,已知油漆每平方米20元,那么一共需要花费多少元?57.由几个相同的边长为1的小立方块搭成的几何体如图所示,排放在桌面上.(1)请在下面方格纸中分别画出这个几何体从三个不同的方向(上面、正面和左面)看到的视图;(2)根据三个视图,请你求出这个几何体的表面积(不包括底面积).58.作图与推理:如图,是由一些大小相同的小正方体组合成的简单几何体.(1)图中有几块小正方体?(2)诸分别画出从正面看、从左面看和从上面看到的这个几何体的形状图.59.有若干个完全相同的小正方体堆成一个如图所示几何体.(1)图中共有个小正方体.(2)画出该几何体的主视图、左视图、俯视图.(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加个小正方体.60.正方体是特殊的长方体,又称“立方体”、“正六面体”.(1)用一个平面去截一个正方体,截面可能是几边形?(写出至少两种情况)(2)下图是由几个小正方体所搭几何体的俯视图,小正方形中的数字表示该位置的小正方体的个数.请你画出这个几何体的主视图、左视图.61.如图,若干个完全相同的小正方体堆成一个几何体.(1)请在图中方格中画出该几何体的左视图和俯视图.(2)用若干小立方体搭一个几何体,使得它的左视图和俯视图与你在方格中所画的一致,则这样的几何体最多要个小立方块.(3)若小正方体的棱长为1cm,如果将图1中几何体的表面(不含几何体之间叠合部分及与地面接触的底面)喷上油漆,求需喷漆部分的面积.62.如图,学校3D打印小组制作了1个棱长为4的正方体模型(图中阴影部分是分别按三个方向垂直打通的通道).(1)画图:按从前往后的顺序,依次画出每一层从正面看到的图形,通道部分用阴影表示;(2)求这个正方体模型的体积.63.如图所示的几何体,请在下列方框内画出它的从三个方向所看到的图.64.工厂生产某种零件,其示意图如下(单位:mm).(1)该零件的主视图如图所示,请分别画出它的左视图和俯视图;(2)如果要给该零件的表面涂上防锈漆,请你计算需要涂漆的面积.65.用小立方块搭一个几何体,使它从正面和上面看到的形状如图所示,从上面看到形状中小正方形中的字母表示在该位置上小立方块的个数,请问:(1)b=;c=;(2)这个几何体最少由个小立方块搭成,最多由个小立方块搭成;(3)从左面看这个几何体的形状图共有种,请在所给网格图中画出其中的任意一种.66.如图是由7个棱长为1的小正方体搭成的几何体.(1)请分别面出这个几何体的主视图、左视图和俯视图;(2)这个几何体的表面积为___________(包括底面积);(3)用小正方体搭一几何体,使得它的俯视图和左视图与你在(1)中所画的图形一致,则搭这样的几何体最少要__________个小正方体.67.如图所示是由几个小立方体所组成的几何体的从上面看的形状图,小正方形中的数字表示在该位置的小立方体的个数,请画出这个几何体的从正面看、从左面看的图形.68.下图是某几何体的表面展开图:(1)这个几何体的名称是;(2)若该几何体的主视图是正方形,请在网格中画出该几何体的左视图、俯视图;(3)若网格中每个小正方形的边长为1,则这个几何体的体积为.。
七年级数学上册 5.4 主视图、左视图、俯视图 正方体表面展开图的口诀素材 苏科版(2021年整理)
七年级数学上册5.4 主视图、左视图、俯视图正方体表面展开图的口诀素材(新版)苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册5.4 主视图、左视图、俯视图正方体表面展开图的口诀素材(新版)苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册5.4 主视图、左视图、俯视图正方体表面展开图的口诀素材(新版)苏科版的全部内容。
巧记口诀确定正方体表面展开图6个相连的正方形组成的平面图形,经折叠能否围城正方体问题,是近年来中考常考题型。
同学们在学习这一知识时常感到无从下手,现将确定正方体展开图的方法以口诀的方式总结出来,供大家参考:正方体盒巧展开,六个面儿七刀裁。
十四条边布周围,十一类图记分明:四方成线两相卫,六种图形巧组合;跃马失蹄四分开;两两错开一阶梯.对面相隔不相连,识图巧排“7”、“凹”、“田"。
现将口诀的内涵解释如下:将一个正方体盒的表面沿某些棱剪开,展开成平面图形,需剪7刀,故平面展开图中周围有14条边长共有十一种展开图:一、四方成线两相卫,六种图形巧组合(1)(2)(3) (4)(5) (6),另外两个小方块在四个方块的上下两侧,共六种情况.二、跃马失蹄四分开(1) (2) (3) (4)以上四种情况可归结为五个小方块组成“三二相连”的基本图形(如图),另外一个小方块的位置有四种情况,即图中四个小方块中的任意一个,这一图形有点像失蹄的马,故称为“跃马失蹄”. 三、两两错开一阶梯这一种图形是两个小方块一组,两两错开,像阶梯一样,故称“两两错开一阶梯"。
四、对面相隔不相连这是确定展开图的又一种方法,也是确定展开图中的对面的一种方法。
2020学年初中数学5.4 主视图、左视图、俯视图(2020)
在画几何体的主视图、左视图或俯视图时,看得见的部分轮廓线要画成实线,因被其他部分遮挡而看不见的部分轮廓线要画成虚线.
(1)在画图时,如果看不见的轮廓线(虚线)与看得见的轮廓线(实线)重叠,那么这时虚线不需要画出;
(2)虚线也是反映物体形状的重要部分,不可不画.
例:如图,下列关于物体的主视图画法正确的是( )
A.1个B.2个C.3个D.4个
15.下列几何体的主视图与左视图不相同的是( )
A. B. C. D.
16.图①是五棱柱形状的几何体,则它的三视图为( )
A. B. C. D.
二.填空题
17.由一些大小相同的小正方体搭成的几何体从正面和从左面看到的图形如图,则搭成这个几何体的小正方体的个数最多为,最少为.
巩固练习
一.选择题
1.如图,是由大小一样的小立方块摆成的立体图形的三视图,则摆成这个立体图形所需的小立方块的个数为( )
A.3B.4C.5D.6
2.图中为某几何体的分别从上面、前面、左边看到的三个图形,该几何体是( )
A.圆锥B.圆柱C.正三棱柱D.正三棱锥
3.如图,将小立方块①从6个大小相同的小立方块所搭的几何体中移走后,所得几何体( )
A.15B.30C.45D.62
9.如图所示的主视图和俯视图,其对应的几何体(阴影所示如图)可以是下列( )
A. B. C. D.
10.如图是一个几何体的俯视图,则这个几何体的形状可能是( )
A. B. C. D.
11.如图是由五个棱长为2的小立方块搭建而成的几何体,则它的左视图的面积是( )
A.3B.4C.12D.16
3.一个摆好的几何体的三个视图是唯一的,但从一个视图反过来考虑几何体时,它有多种可能性,如主视图是正方形的几何体可能是直棱柱、长方体、圆柱等.
主视图、左视图、俯视图(1)
教师施教提要 (启发、 精讲、 活动等)
再次 优化
2.桌上放着一个长方体、一个棱锥和 一个圆柱,请说出下面的三幅图分别是从哪 个方向看到的?
合 作 探 究 3.观察右表中所示物体,并将看到的 图形填入表中. 概括:任何一个物体都有长、宽、高三 个方向的尺寸. 主视图反映物体的长度和高度; 俯视图反映物体的长度和宽度; 左视图反映物体的高度和宽度. 由于三个视图反映的是同一个物体,所 以每两个视图之间必有一个相同的度量. 因此得到: 主、俯视图等长“长对正” ; 主、左视图等高“高平齐” ; 俯、左视图等宽“宽相等” . 做一做
Hale Waihona Puke 2教 学 环 节学生自学共研的内容方法 (按环节设计自学、讨论、训练、探索、创新 等内容) 如右图所示的物体,你知道下面的三幅图分别 牛刀小试:画出图中两个物体的主视图、左视
教师施教提要 (启发、 精讲、 活动等)
再次 优化
随堂 练习
课堂 小结 达标 检测
图、俯视图. 大显身手 甲、乙、丙、丁四人分别面对面坐在一个 四边形桌子旁边,桌上一张纸写着数字“9”, 甲 说 他 看 到 的 是 “6” , 乙 说 他 看 到 的 是 “ ”,丙说他看到的是“ ”,丁说他 ) .
1.掌握立体图形三视图的知识以及画出简单图形的视图; 教学重 难 点 教 具 与课件 板 书 设 计 教 学 环 节 5.4 主视图、左视图、俯视图(1) 2.了解三视图与观察的位置有关; 3.从不同方向画简单组合体的三视图.
学生自学共研的内容方法 (按环节设计自学、讨论、训练、探索、创 新等内容) 问题的引入
看到的是“9”, 则下列说法正确的是 (
A.甲在丁的对面,乙在甲的左边,丙在 丁的右边; B.丙在乙的对面,丙的左边是甲,右边 是乙; C.甲在乙的对面,甲的右边是丙,左边 是丁; D.甲在丁的对面,乙在甲的右边,丙在丁的 右边 布置 作业 课堂作业 下节课预习内容
主视图、左视图、俯视图(1)
三 视 图
主视图 左视图 俯视图
例:把如图所示物体 的主视图、左视图、俯视图
的名称填在相应的括号内.
( 左视图)
( 主视图 )
(俯视图 )
练:把如图所示物体的主视图、左视图、 俯视图的名称填在相应的括号内.
( 左视图 ) (主视图) (俯视图 )
练:从三个方向看右图,得到
以下三个图形,请同学们说出 哪一个是主视图? 哪一个是左视图? 哪一个是俯视图?
从
上
面
看
俯视图
球与正方体的 三视图呢?
左视图
三棱锥与五棱柱 的三视图呢?
主视图
立体图形
平面图形
2.分别画出图中三个物体的主视图、左视图、 俯视图.
(1)
(2)
(3)
解:(1)如图:
主视图
左视图
俯视图
解:(2)如图:
主视图 俯视图
左视图
解:(3)如图:
主视图
左视图
俯视图
看谁画得好
画出左图的主视图、 左视图、俯视图
左视图
主视图
俯视图
1.观察下表中所示的物体,并将看到的图形画入表中.
物体
观察角度
圆柱
(主视图)
从正面看
(左视图)
从左面看
(俯视图)
从上面看
圆锥
棱柱
.
长 高
主视图
宽
左视图
“主俯长对正” “主左高平齐” “左俯宽相等”
从上面看 宽
俯视图
从左面看
从正面看
从左面看
1.从正面、左面、上面看一个 四棱锥,看到的图形分别是什么?
5.4 主视图、左视图、俯视图(1)
从 上 面 看
从左面看
(1)
(2)
(3)
从正面看
从左面看
从上面看
观察下表中所示物体,并将看到的图 形填入表中.
从正面看到的图形,称为主视图; 从左面看到的图形,称为左视图; 从上面看到的图形,称为俯视图. 从这三个方向上看到的图形,叫 做这个几何体的三个视图.
如右图所示的物体,你 知道下面的三幅图分别是从 哪个方向看到的吗?你能说 出这三幅视图的名称吗?
从三个方向看
主视图
左视图
俯视图
从正面看
看谁画得好 画出左图的主视图 、左视图、俯视图
主视图
左视图
俯视图
悟一悟
通过以上的实验,你得到什么结论? 从不同的方向观察同一个事物,可能 会看到不同的结果。
你能用一句诗概括这个结论吗? 横看成岭侧成峰, 远近高低各不同。
排一排
A B C
D
E
这是一辆汽车从小明身边经过时拍 下的照片,你能把它们被摄入镜头 的先后顺序排列出来吗?
( 1)
( 2) 主视图
( 3) 俯视图
左视图
小 心 地 试 一 试
如右图所示的三棱柱的 主视图为 (1) ; 俯视图为 (3) ; 左视图为 (2) .
从左面看
从 上 面 看
( 1)
( 2)
( 3)
分别画出图中两个物体的主视图、
左视图、俯视图.
现在桌面上摆放着两个几何体,你能绘 出这组几何体的三视图吗?
排一排
答案:C、B、D、A、E
D E
C
B
A
甲、乙、丙、丁四人分别面对面坐在一个 四边形桌子旁边,桌上一张纸写着数字“9”, 甲说他看到的是“6”,乙说他看到的是“ 丙说他看到的是“ 则下列说法正确的是 ( ) ”, ”,丁说他看到的是“9”,
七年级数学上 5.4 主视图、左视图、俯视图
主视图
左视图
俯视图
主视图 左视图 俯视图
你能正确地画出下面物体的三视图吗?
主视图 俯视图
左视图
实际上就 是地基!
•主俯长相等 •主左高平齐 •俯左宽相等
主视图 左视图
半圆柱 俯视图
书本第136页“想一想”、 137页“试一试”、 138页练一练2
知道物体的三视图,就 能知道物体的形状!!!
先想一想,再搭一搭
下面为由若干个小立方体搭成的几何体的三个视图, 你能想象出这个几何体的形状吗?请用小立方体搭出相应 的几何体。
主视图 左视图
俯视图
先想一想,再搭一搭
请画出下面所示物体的三视图:
从正面看 从左面看 从上面看
主视图 左视图 俯视图
★主俯长相等 ★主左高平齐 ★俯左宽相等
主视图 左视图 俯视图
平面图形
立体图形
我是一个几何体,你
左看右看、上看下看、前 看后看,看到的都是一个 同样大小的圆,请猜猜看 我是怎样的几何体?
球
平面图形
立体图形
我是一个几何体,你
主视图 22 12 俯视图
左视图
认真想一想吧!
一个几何体是由若干个小立方块搭成的,下图为它的 三个视图,你能想象出它 俯视图
左视图
(学案58)如图所示,是由若干相同的小正方 体搭成的物体的三视图,那么搭成这个物体的 小正方体的个数是
A、4个 B、5个 C、6个 D、7个
生活中处处有数学!
在一个仓库里堆积着正
方体的货箱若干,要搬运这 些箱子很困难,可是仓库管 主视图 理员要核实一下箱子的数量, 于是就想出一个办法:将这 堆货物的三视图画了出来, 你能根据图中的三视图,帮 他清点一下箱子的数量吗? 俯视图
七年级数学上册5.4主视图、左视图、俯视图(1)
例1 画出下列几何体的三视图.
解 运用画三视图的方法可得答案如下图所示.
主视图
左视图
俯视图
主视图 左视图
主视图 左视图
俯视图
俯视图
例2 画出如图所示的支架的三视图,其中支架 的两个台阶的高度和宽度相等.
解 画组合体的三视图时,构成组合体 的各部分的视图也要遵守“长对正、高平齐、 宽相等”的规律.
解 俯视图的长等于主视图的正,为3cm 俯视图的宽等于左视图的宽,为2cm
则 其俯视图的面积为:3×2=6cm2
课堂小结
1、物体的三视图之间长、宽、高有什么联系?
高平齐
长对正
宽相等
主视图与俯视图的长对正,主视图与左视图的 高平齐,左视图与俯视图的宽相等.
2、画物体三视图的具体方法是什么?
第一步,确定主视图的位置,画出主视图; 第二步,在主视图正下方画出俯视图,注意 与主视图长对正; 第三步,在主视图正右方画出左视图,注意 与主视图高平齐,与俯视图宽相等.
三视图
人们从不同的方向观察某个物体, 可以看到不同的图形,一般地, 我们把从正面看到的图形,称为 主视图;从左面看到的图形,称 为左视图;从上面看到的图形称 为俯视图.
从左面看
主视图
从上面看
正面
主视图
左视图 高
长
宽
宽 俯视图
从正面看
主视图
正面
主视图
左视图
高
长
宽
宽 俯视图
主视图要放在左上方,它的正下方应是俯 视图,它的正右方应是左视图.
3、画物体三视图时应注意哪些问题?
主视图要放在左上方,它的正下方应是俯视 图,它的正右方应是左视图.
画三视图时,看得见部分的轮廓线画成实线, 看不见部分的轮廓线画成虚线;
江苏省昆山市锦溪中学七年级数学上册 5.4 主视图、左
教学课题 5.4 主视图、左视图、俯视图课型新授本课题教时数:本教时为第教时备课日期月日教学目标: 1.经历从不同方向观察物体的活动过程,初步体会从不同方向看同一个物体所看到的形状往往是不同的发展空间观念;2.能识别简单物体的三个视图;3.进一步感知立体图形与平面图形的关系.教学重点、难点:1.掌握立体图形三视图的知识以及画出简单图形的视图;2.了解三视图与观察的位置有关;3.从不同方向画简单组合体的三视图.教学方法与手段:多媒体教学教学过程:教师活动学生活动设计意图问题的引入:1.引用苏轼《题西林壁》中的诗句:横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.2.显示飞机的三视图.1.问题情境反映了一种什么现象?你还能举例说明日常生活中遇到的上述现象吗?激发学生对问题的兴趣.实践探索,解决问题:1.桌上放着一个长方体和1个圆柱,从不同方向观察这两个物体,指出右边的3幅图分别是从哪一个方向看到的?2.桌上放着一个长方体、一个棱锥和一个圆柱,请说出下面的三幅图分别是从哪个方向看到的?1.2.从最基本的入手,引导学生观察基本几何体,并画出相应的三视图.帮助学生对视图有关概念的理解,掌握三视图的特点,并用规范的数学语言表达,帮助学生3.观察右表中所示物体,并将看到的图形填入表中.概括:任何一个物体都有长、宽、高三个方向的尺寸.主视图反映物体的长度和高度;俯视图反映物体的长度和宽度;左视图反映物体的高度和宽度.由于三个视图反映的是同一个物体,所以每两个视图之间必有一个相同的度量.因此得到:主、俯视图等长“长对正”;主、左视图等高“高平齐”;俯、左视图等宽“宽相等”.做一做:如右图所示的物体,你知道下面的三幅图分别是从哪个方向看到的吗?你能说出这三幅视图的名称吗?掌握三视图的特点.牛刀小试:画出图中两个物体的主视图、左视图、俯视图.学生画出三视图.学生在前面两块的基础上,通过实践操作,观察思考,经历探索的过程,学会画一些基本图形的三视图。
苏科版数学七年级上册教学设计《5-4主视图、左视图、俯视图(第1课时)》
苏科版数学七年级上册教学设计《5-4主视图、左视图、俯视图(第1课时)》一. 教材分析《5-4主视图、左视图、俯视图(第1课时)》这部分内容是苏科版数学七年级上册的重点内容。
它主要介绍了三视图的概念及其之间的关系。
通过学习,学生能够理解并掌握主视图、左视图、俯视图的定义,能够根据物体的形状描述出它的三视图,并能够通过三视图来还原物体的形状。
这一部分内容为后续学习立体几何打下基础。
二. 学情分析七年级的学生已经具备了一定的空间想象能力,但是对于三视图的概念和应用可能还比较陌生。
因此,在教学过程中,需要引导学生从实际生活中的例子出发,培养他们的空间想象能力,帮助他们理解和掌握三视图的概念。
三. 教学目标1.知识与技能:学生能够理解主视图、左视图、俯视图的概念,能够根据物体的形状描述出它的三视图,并能够通过三视图来还原物体的形状。
2.过程与方法:通过观察实际生活中的例子,培养学生的空间想象能力,帮助他们理解和掌握三视图的概念。
3.情感态度价值观:培养学生对数学的兴趣,提高他们解决实际问题的能力。
四. 教学重难点1.重点:学生能够理解并掌握主视图、左视图、俯视图的定义,能够根据物体的形状描述出它的三视图,并能够通过三视图来还原物体的形状。
2.难点:学生能够灵活运用三视图的概念来解决实际问题。
五. 教学方法采用情境教学法、案例教学法和小组合作学习法。
通过观察实际生活中的例子,引导学生培养空间想象能力;通过分析典型案例,让学生深入理解和掌握三视图的概念;通过小组合作学习,促进学生之间的交流和合作,提高他们解决实际问题的能力。
六. 教学准备1.准备相关的教学案例和图片,用于引导学生观察和思考。
2.准备教学课件,用于辅助讲解和展示。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过展示一些实际生活中的例子,如房屋、车辆等,引导学生观察并思考:如果你要从不同的角度去观察这些物体,你能够看到什么?从而引出主视图、左视图、俯视图的概念。
七年级数学上册知识讲义-5.4物体的主视图、左视图、俯视图-苏科版
初中数学物体的主视图、左视图、俯视图精讲精练【考点精讲】1. 人们从不同的方向观察某个物体时,可以看到不同的图形,从正面看到的图形,称为主视图;从左面看到的图形,称为左视图;从上面看到的图形,称为俯视图。
2. 常见几何体的三种视图:(用cabri 3d录制动画,进行讲解)几何体主视图左视图俯视图3. 画出几何体的三种视图:主视图反映了物体的长和高;左视图反映了物体的宽和高;俯视图反映了物体的长和宽;于是主视图和俯视图要做到长对正(即长相等);主视图和左视图要做到高平齐;左视图和俯视图要做到宽相等。
注意:(1)在画三种视图的时候,看得见的部分的轮廓线通常画成实线,看不见的部分的轮廓线通常画成虚线;(2)若没有特殊要求,通常情况下把左视图画在主视图的右边,俯视图画在主视图的下方。
4. 以如图所示的几何体为例,用cabri 3d,录制动画,详细讲解三种视图的画法。
【典例精析】例题1 分别画出下列物体的主视图、左视图和俯视图。
图1 图2 图3 思路导航:按照定义,分别从正面、左面和上面去观察几何体,然后画出看到的平面图形即可。
为了更加直观、形象,也为了培养学生的空间想象能力,录制动画,进行讲解。
答案:图1 所示几何体的主视图、左视图和俯视图如下图所示:俯视图左视图主视图图2 所示几何体的主视图、左视图和俯视图如下图所示: 主视图俯视图左视图图3 所示几何体的主视图、左视图和俯视图如下图所示: 左视图俯视图主视图点评:几何体的主视图、左视图和俯视图的画法及步骤:①确定主视图的位置,并且想象从几何体的正面进行观察,画出主视图;②在主视图的下方画俯视图,并且想象从几何体的正上方进行观察,注意与主视图“长对正”;③在主视图的正右方画左视图,并且想象从几何体的左边进行观察,注意与主视图“高平齐”,与俯视图要做到“宽相等”。
例题2 用若干个棱长为1m 的正方体堆成如图所示的物体(并且将其固定在地面上),现在要用油漆喷涂所有的暴露面,则需要喷涂油漆的总面积是多少?思路导航:分别画出主视图、左视图和俯视图,求出其面积,借助于主视图、左视图和俯视图的面积来求暴露面的面积。
苏科版数学七年级上册5.4《主视图、左视图、俯视图》教学设计1
苏科版数学七年级上册5.4《主视图、左视图、俯视图》教学设计1一. 教材分析《苏科版数学七年级上册5.4《主视图、左视图、俯视图》》这一节内容,主要让学生掌握三视图的概念,了解主视图、左视图、俯视图之间的关系,并能够熟练地进行图形的转换。
教材通过实例的展示,引导学生观察、思考,从而发现并掌握三视图的绘制方法。
二. 学情分析七年级的学生已经具备了一定的空间想象能力和图形认知能力,他们对平面图形有一定的了解。
但是,对于三维图形和三视图的概念,可能还比较陌生。
因此,在教学过程中,教师需要通过生动的实例和直观的演示,帮助学生建立起三视图的空间形象,使他们能够更好地理解和掌握这一部分内容。
三. 教学目标1.了解主视图、左视图、俯视图的概念,知道它们之间的关系。
2.能够根据物体的三视图,还原出物体的形状。
3.能够运用三视图的知识,解决一些实际问题。
四. 教学重难点1.重点:主视图、左视图、俯视图的概念及它们之间的关系。
2.难点:如何根据三视图还原出物体的形状,以及如何运用三视图解决实际问题。
五. 教学方法1.情境教学法:通过实例的展示,让学生在实际情境中感受三视图的概念,提高他们的空间想象力。
2.合作学习法:引导学生分组讨论,共同探讨三视图的绘制方法,提高他们的合作能力。
3.实践操作法:让学生动手操作,实际绘制一些简单物体的三视图,增强他们的实践能力。
六. 教学准备1.准备一些常见物体的三视图图片,如圆柱、正方体等。
2.准备一些绘图工具,如直尺、圆规等。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过展示一些常见物体的三视图图片,引导学生观察、思考,让学生初步了解三视图的概念。
2.呈现(10分钟)教师通过讲解和演示,详细介绍主视图、左视图、俯视图的概念,以及它们之间的关系。
同时,让学生动手绘制一些简单物体的三视图,加深他们对三视图的理解。
3.操练(10分钟)教师提出一些练习题,让学生分组讨论,共同完成。
5.4主视图、左视图、俯视图1-2
怀文中学2012—2013学年度第一学期教学设计初一数学(5.4主视图、左视图、俯视图①)主备:郁胜军审校:陈秀珍日期:2012年12月21日教学目标:1.掌握三视图的形成及投影规律;2.掌握三面投影图的画法;3.进一步感知立体图形与平面图形的关系。
教学重点:掌握三面投影体系的建立、画法;教学难点:三面投影图的画法。
教、学具:投影片,小黑板,1个正方体、1个圆柱、1个圆锥、一把剪刀及多媒体。
教学内容:一.自主学习(导学部分)提问:1:用一面视图能否正确反映物体的完整结构形状?用事例否定(用多媒体课件展示)2:用二面视图能否正确反映物体的完整结构形状?用事例否定(用多媒体课件展示)因为任何物体都有长、宽、高三个方向上的度量,所以一般情况下,要反映一个物体的完整结构形状,一般需用三视图。
二、新知教学1、画出如图3.4-1所示的三棱锥的三视图。
答:三视图如图3.4-2。
2、如图3.4-3,是一个由五个小正方体搭成的物体,请画出它的三视图。
答:三视图如图3.4-4所示。
用五个小正方体搭成如图3.4-5的几何体,请画出它的三视图。
答:三视图如图3.4-6所示。
思路点拨:画三视图时要从正面、左面、上面三个方向认真观察,画出有关平面图形。
易错辨析:在观察想象时体的位置要理解清楚。
方法点评:在观察想象时可借助于实物的帮助。
小结:1:三视图的关系及投影规律A:位置关系主视图在上方,俯视图在主视图的正下方,左视图在主视图的正右方。
B:投影关系任何一个物体都有长、宽、高三个方向的尺寸。
主视图反映物体的长度和高度俯视图反映物体的长度和宽度左视图反映物体的高度和宽度由于三个视图反映的是同一个物体,所以每两个视图之间必有一个相同的度量。
因此:得到主、俯视图等长“长对正”主、左视图等高“高平齐”俯、左视图等宽“宽相等”三.巩固练习1、从三个方向观察同一个物体,可能看到不同的图形,简称三视图,下列选项不在三视图之列的是()A、主视图B、右视图C、左视图D、俯视图2、正方体的主视图、左视图、俯视图均为。
5.4主视图、左视图、俯视图(1)课件(共19张PPT
解 这个正三棱柱的三视图如下图所示.
你能看出这个正三棱 柱的主视图与左视图的区 别吗?
练习
1.画出如图摆放的正三棱柱的三视图. 答:这个正三棱柱的三视图如下图所示:
2.画出如图所示物体的三视图. 答:这个物体的三视图如下图所示:
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月4日星期五2022/3/42022/3/42022/3/4 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/42022/3/42022/3/43/4/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/42022/3/4March 4, 2022 •4、享受阅读快乐,提高生活质量。2022/3/42022/3/42022/3/42022/3/4
第三步:从上往下看,画出圆柱在置于它的 下方的水平面上的正投影,这称为
“俯视图”.通俗地说,就是从圆柱 的上面看这个圆柱.
从前后、左右、上下三个方向观察物体, 能够比较全面地了解物体的大小和形状,我们 把主视图、左视图、俯视图统称为“三视图” . 下图即为圆柱的三视图.
在画三视图时,俯视 图在主视图的下边,左视 图在主视图的右边.
谢谢观赏
You made my day!
我们,还在路上……
动脑筋
制造一个圆柱形家具,为了让工人师傅知道 工件的准确形状和大小,设计人员应该如何画出 这个工件的图?
可以采用下述方法来画圆柱的视图.
第一步,从前往后看,画出圆柱在立于它的 后面的竖直平面上的正投影,如图, 这为“主视图”.通俗地说,就是 从圆柱的正面看这个圆柱.
5-4 主视图、左视图、俯视图(基础训练)(解析版)
5.4 主视图、左视图、俯视图【基础训练】一、单选题1.如图所示,这是由4个大小相同的小正方体摆成的几何体,从左面看到的几何体的形状图是()A.B.C.D.【答案】C【分析】根据左视图的定义即可得.【详解】解:左视图是指从左面看物体所得到的视图,这个几何体的左视图为,故选:C.【点睛】本题考查了左视图,熟记定义是解题关键.2.在本学期第一章的数学学习中,我们曾经辨认过从正面、左面、上面三个不同的方向观察同一物体时看到的形状图.如图是马老师带领的数学兴趣小组同学搭建的一个几何体,这个几何体由6个大小相同的正方体组成,你认为从左面看到的几何体的形状应该为()A.B.C.D.【答案】B【分析】从左面看到的平面图形是该组合体的左视图,根据看到的平面图形画出左视图即可得到答案.【详解】解:从左面看该组合体,可以看到两列,左起第一列可以看到两个正方形,第二列看到一个正方形,所以该组合体的左视图是:故选:.B【点睛】本题考查的是三视图的含义,掌握左视图的含义是解题的关键.3.由4个完全相同的小正方体组成的立体图形如图所示,则该立体图形的俯视图是()A.B.C.D.【答案】B【分析】直接从上往下看,看到平面图形就是俯视图,选择正确选项即可.解:根据题意,从上面看原图形可得到在水平面上有一个由两个小正方形和两个小长方形组成的长方形.故选:B.【点睛】本题主要考查简单组合体的三视图,掌握俯视图是从上往下看得到的平面图形是解答本题的关键.4.如图是由几个相同的小正方体堆砌成的几何体,从上面..看到该几何体的形状图是()A.B.C.D.【答案】D【分析】根据从上面看得到的图形可得答案.【详解】解:从上面看第一层三个小正方形,第一层两个小正方形,故D正确;故选:D.【点睛】本题考查了从不同方向观察立体图形的方法,解题的关键是熟练掌握三视图的定义.5.如图是由6个大小相同的小立方体搭成的几何体,从左边看这个几何体得到的图形是().A.B.C.D.【答案】B【分析】根据左视图的定义,从左边看该几何体所得到的的图形即可.解:从左面看易得第一层有2个正方形,第二层有2个正方形.故选:B.【点睛】本题考查了三视图的知识.注意左视图是指从物体的左边看物体.6.由5个小立方体搭成如图所示的几何体,从左面看到的平面图形是()A.B.C.D.【答案】D【分析】由题意依据根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看第一层两个小正方形,第二层右边一个小正方形,故选:D.【点睛】本题考查简单组合体的三视图,注意掌握从左边看得到的图形是左视图.7.如图所示是由七个相同的小正方体堆成的物体,从正面看这个物体的平面图是()A.B.C.D.【答案】A【分析】根据从正面看这个物体的方法,确定各排的数量可得答案.【详解】从正面看这个物体,共有三行,从上到下依次小正方形的个数依次为1,2,3,故选:A.【点睛】本题考查了三视图,结合图形和空间想象力是解题关键.8.如图是由6个相同的小正方体搭成的几何体,则从它的正面看到的几何体的形状是()A.B.C.D.【答案】C【分析】根据几何体直接判断即可.【详解】解:从正面看,底层是三个小正方形,上层左右两边各一个小正方形,故选:C.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.9.某同学把图1所示的几何体的三种视图画出如下(不考虑尺寸):在这三种视图中,其正确的是:()A.①①B.①①C.①①D.①【答案】B【分析】细心观察图中几何体摆放的位置,按照所说的方位观察,所有看得见的棱都应表现在三视图中,判定则可.【详解】解:①①都正确,①矩形中上部应该还有一条横线,故选B.【点睛】本题考查了几何体的三种视图,注意所有的看到的棱都应表现在三视图中.本题考查了几何体的三种视图,注意所有的看到的棱都应表现在三视图中.10.从不同方向看某个立体图形得到的平面图形如图所示,则这个立体图形是()A.球B.长方体C.圆锥D.圆柱【答案】C【分析】主视图、左视图、俯视图分别是从物体正面、左面和上面看,即可确定的图形.【详解】解:这个立体图形从上面看是一个圆,从正面和左面看是等腰三角形,所以这个立体图形是圆锥.故选:C【点睛】本题考查了三视图的有关知识,具备一定的空间想象能力是解答关键.11.如图的几何体由6个相同的小正方体组成,从它的左面看到的平面图形是()A.B.C.D.【答案】D【分析】根据简单组合体的三视图的意义,得出从左面看所得到的图形即可.【详解】解:从左面看,得到的图形有两列,其中第1列有两个小正方形,第2列有1个小正方形,因此选项D中的图形比较符合题意,故选:D.【点睛】本题考查简单组合体的三视图,掌握视图的意义是正确解答的前提.12.一个几何体如图所示,它的俯视图是()A.B.C.D.【答案】C【分析】俯视图是从物体上面往下看,所得到的图形即可.【详解】解:从上面看该几何体,得到的是长方形,且中间有一条竖线,因此选项C中的图形,比较符合题意,故选:C.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应用实线表现在三视图中,没看见的线用虚线表现在三视图中.13.如图摆放的四个几何体中,从上面看和从正面看看到的图形一定相同的是()A.B.C.D.【答案】C【分析】根据几何体的结构可直接进行求解.【详解】解:A、从上面看是圆,从正面看是长方形,故不符合题意;B、从上面看是有圆心的一个圆,从正面看是三角形,故不符合题;C、从上面看是圆,从正面看是圆,故符合题意;D、从上面看可能是长方形也有可能是正方形,从正面看可能是长方形也有可能是正方形,故不符合题意;故选C.【点睛】本题主要考查从不同方向看几何体,熟练掌握几何体的结构是解题的关键.14.观察下面的立体图形,从正面看到的平面图形是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱和看不见的棱的不同.【详解】解:从正面看是一个矩形,中间有两条竖实线和一条虚线,故选:D.【点睛】本题考查了不同方向看立体图形,解题关键是理解看见的棱用实线,看不见的棱用虚线.15.下列立体图形从正面观察是圆形的是().A.圆锥体B.圆柱体C.正方体D.球体【答案】D【分析】根据三视图的性质得出主视图的形状进而得出答案.【详解】解:A.圆锥从正面看到的图形是三角形,不符合题意;B.圆柱从正面看到的图形是矩形,不符合题意;C.正方体从正面看到的图形是正方形,不符合题意;D.球从正面看到的图形是圆形,符合题意;故选:D.【点睛】本题主要考查了简单几何体的三视图,得出主视图形状是解题关键.16.由6个相同的小正方体搭成的几何体如图所示,则它从正面看到的视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看,底层是三个小正方形,上层左边有一个小正方形,故选:D.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.17.如图,在下面四种用相同的正方体储物箱堆放在一起的形态中,从正面看到的和从左面看到的图形不相同的是()A.B.C.D.【答案】D【分析】根据三视图的定义解答即可.【详解】解:A、从正面看到的和从左面看到的图形相同,底层是三个小正方形,中层和上层的左边分别是一个小正方形,故本选项不合题意;B、从正面看到的和从左面看到的图形相同,底层是两个小正方形,上层的左边是一个小正方形,故本选项不合题意;C、从正面看到的和从左面看到的图形相同,底层是三个小正方形,上层的左边是一个小正方形,故本选项不合题意;D、从正面看,底层是三个小正方形,上层是两个小正方形;从左面看,底层是三个小正方形,上层的左边是一个小正方形,故本选项符合题意.故选:D.【点睛】本题考查了几何体的三视图,解题的关键是学生的观察能力和对几何体三种视图的空间想象能力.18.如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱【答案】A【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱;【详解】观察图形可知,这个几何体是三棱柱;故答案选A.【点睛】本题主要考查了立体图形的张开图,准确分析判断是解题的关键.19.如图是一个由5个相同的正方体组成的立体图形,它的三视图是()A.B.C.D.【答案】D【分析】找到从正面、左面、上看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【详解】解:从正面看此几何体的主视图有两排,从上往下分别有1,3个正方形,上排的正方形在最右边;从左向右看几何体的左视图有二列,从左往右分别有2,1个正方形;俯视图有三列,从上往下分别有3,1个正方形,故选择:D.【点睛】本题考查了三视图的知识,掌握三视图所看的位置和定义.准确把握观察角度是解题关键.20.在下面的四个几何体中,它们各自的左视图与主视图不一样的是()A.正方体B.长方体C.圆柱D.圆锥【答案】B【分析】主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图.分别分析四个选项的左视图和主视图,从而得出结论.【详解】解:A、左视图与主视图都是正方形,故A不符合题意;B、左视图与主视图不相同,分别是正方形和长方形,故B符合题意;C、左视图与主视图都是矩形,故C不符合题意;D、左视图与主视图都是等腰三角形.故D不符合题意.故选:B.【点睛】此题主要考查了简单几何体的三视图,同时考查学生的思考能力和对几何体三种视图的空间想象能力.21.如图是由一些大小相同的小正方体堆成的几何体,则从正面看该几何体所得到的图形是()A.B.C.D.【答案】D【分析】从正面看得到的图形是主视图,据此解题.【详解】解:正视图有2行3列,第1行有3个正方形,第3列有2个正方形,故选项A、B、C均不符合题意,选项符合题意,故选:D.【点睛】本题考查简单组合体的三视图,是重要考点,难度较易,掌握相关知识是解题关键.22.六个大小相同的正方体搭成的几何体如图所示,从正面观察这个图形,得到的平面图形是()A.B.C.D.【答案】B【分析】主视图是从正面看得出的图形,结合所给图形及选项即可得出答案.【详解】解:从正面看得到的平面图形如图所示:故选:B.【点睛】此题考查了简单几何体的三视图,解答本题的关键是掌握主视图的观察位置.23.如图是由若干个棱长为2的小正方体描成的物体的三个视图,则这个物体的体积为()A.48B.56C.64D.72【答案】C【分析】利用主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,进而判断图形形状,即可得出小正方体的个数,从而计算出体积.【详解】解:综合三视图,我们可以得出,这个几何模型的底层有6个小正方体,第二层有2个小正方体,因此搭成这个几何体模型所用的小正方体的个数是6+2=8个.①这个几何体的体积是8×23=64,【点睛】本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”是解题的关键.24.十个棱长为a的正方体摆放成如图的形状,这个图形的表面积是()A.236a B.36a C.26a D.230a【答案】A【分析】由图形可得该几何体前后左右上下各都有6个小正方形,共36个小正方形,据此可求解该图形的表面积.【详解】解:由题意可得该图形的表面积为各个面的小正方形的面积之和,①该几何体前后左右上下各都有6个小正方形,共36个小正方形,①小正方形的棱长为a,①该图形的表面积为236a;故选A.【点睛】本题主要考查几何体的表面积,熟练掌握几何体的构造是解题的关键.25.如图是医用酒精瓶的示意图,则从上面看得到的图形是()A.B.C.D.【分析】根据从上面看能看到两个圆解答即可.【详解】解:从上面看能看到一个大圆和一个小圆.故选:C.【点睛】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.26.若干个相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数不可能是()A.7B.8C.9D.10【答案】A【分析】根据三视图的知识,易得这个几何体共有2层,2行,3列,先看右边一列的可能的最少或最多个数,再看中间一列正方体的个数,再看左边一列的可能的最少或最多个数,相加即可.【详解】解:综合俯视图和主视图,这个几何体的右边一列最少有3个正方体,最多有4个正方体,中间一列有2个正方体,左边一列最少有3个正方体,最多有4个正方体,所以组成这个几何体的小正方块最多有10块,最少有8块.则组成这个几何体的小正方体的个数不可能是7.故选:A.【点睛】本题考查了由三视图判断几何体,学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就容易得到答案.27.下图是由四个相同的小正方体搭成的一个几何体,从左面看到的几何体的形状图是()A.B.C.D.【答案】D【分析】根据从左面看得到的图形是左视图,可得答案.【详解】解:从左面看第一层①个小正方形,第二层①个小正方形,故D正确;故选则:D.【点睛】本题考查几何体的三视图,掌握各视图的观察位置并掌握图形构成特点是解题的关键.28.如图是从上面看到的几个小立方块搭成几何体的形状图,小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的从正面看到的形状图是()A.B.C.D.【答案】B【分析】根据小立方块的个数,找出主视图即可.【详解】解:根据小立方块的个数可得主视图为:故选:B.【点睛】本题考查三视图,根据小立方体的个数画出主视图是解题的关键.29.如图4个视图中,不是左图的视图是()A.B.C.D.【答案】C【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:主视图从左往右小正方形的个数依次为:2,1,1,为A ;左视图从左往右小正方形的个数依次为:2,1,为D ;俯视图从左往右小正方形的个数依次为:2,1,1,为B.故选:C.【点睛】本题考查几何体的三种视图,关键是定义的熟练掌握.30.下列四个几何体,从正面和上面看所得到的视图都为长方形的是()A.B.C.D.【答案】B【分析】根据几何体的三视图解答即可.【详解】解:A.圆锥从正面看是三角形和半圆,从上面看是圆,此选项不符合题意;B.长方体从正面看是长方形,从上面看是长方形,此选项符合题意;C.圆柱从正面看是长方形,从上面看是圆,此选项不符合题意;D.此图形从正面看是梯形,从上面看是长方形,此选项不符合题意;故选B.【点睛】本题考查了简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形是解题的关键.二、填空题31.一个几何体是由一些大小相同的校正方体摆成的,从正面看与从上面看得到的形状如图所示,则组成这个几何体的校正方体最多有_________个【答案】6【分析】易得这个几何体共有2层,由主视图和俯视图可得第一层最多正方体的个数为3块,第二层最多正方体的个数为3块,相加即可.【详解】解:组成这个几何体的小正方块最多有3+3=6块.故答案为:6.【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.32.用棱长为1cm的小正方体,搭成如图所示的几何体,则它的表面积为_____cm2.【答案】22【分析】有顺序的计算上下面,左右面,前后面的表面积之和即可.【详解】解:4×2+3×2+4×2=22(cm2).所以该几何体的表面积为22cm2.故答案为:22.【点睛】此题考查了几何体的表面积计算,解题的关键是分别判断出各个视图中小正方形的个数.33.如图是某几何体从不同方向看到的图形.若从正面看的高为10cm,从上面看的圆的直径为4cm,求这个几何体的侧面积(结果保留π)为_____.【答案】40πcm2【分析】根据题意即可判断几何体为圆柱体,再根据告诉的几何体的尺寸即可求出圆锥的侧面积.【详解】解:观察三视图可得这个几何体是圆柱;①从正面看的高为10cm,从上面看的圆的直径为4cm,①该圆柱的底面直径为4cm,高为10cm,①该几何体的侧面积为2πrh=2π×2×10=40π(cm2).故这个几何体的侧面积(结果保留π)为40πcm2.故答案为:40πcm2.【点睛】本题考查了从不同侧面看几何体及求圆柱的侧面积,确定几何体的形状是解题关键.34.用若干个相同的小立方块搭建一个几何体,使从它的正面和上面看到的图形如图所示,动手搭一搭,最多和最少需要的小立方块相差______个.【答案】5【分析】根据正面看与上面看的图形,得到俯视图中最左的一列都为3层,第2列都为2层,第3列为1层,得到最多共3+3+3+2+2+1=14个小正方体,再根据正面看与上面看的图形,得到俯视图中的第1列只有一处为3层,其余为1层,分三种情况考虑:最底层为3层,中间为3层,上面为3层;第2列只有一处为2层,上面或下面;第3列为1层,最少需要1+1+3+1+2+1=9个小正方体.【详解】解:由题意可得:最多需要14个小正方体,最少需要9个正方体,相差14-9=5个,故答案为:5.【点睛】本题考查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.35.如图,是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是_____.【答案】9【分析】根据三视图画出图形,并且得出每列和每行的个数,然后相加即可得出答案.【详解】解:根据三视图可画图如下:则组成这个几何体的小正方体的个数是:1+3+1+1+1+2=9;故答案为:9.【点睛】本题主要考查几何体的三视图,熟练掌握几何体的三视图是解题的关键.36.由一些大小相同的小正方体搭成的几何体的主视图和左视图如图所示,则搭成该几何体的小正方体的个数最少是________.【答案】3【分析】根据所给出的图形可知这个几何体共有2层,2列,先看第一层正方体可能的最少个数,再看第二层正方体的可能的最少个数,相加即可.【详解】解:仔细观察物体的主视图和左视图可知:该几何体的下面最少要有2个小正方体,上面最少要有1个小正方体,故该几何体最少有3个小正方体组成.故答案为:3.【点睛】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.三、解答题37.如图,由几个相同的小正方体搭成一个几何体,请画出这个几何体的三种视图.(在所提供的方格内涂上相应的阴影即可)【答案】见解析.【分析】几何体从正面看有4列,每列小正方形数目分别为1,3,1,1;从左面看有2列,每列小正方形数目分别为3,2;从上面看有4列,每行小正方形数目分别为1,2,1,2,据此作图即可.【详解】解:如图所示:【点睛】本题考查从不同方向看几何体.几何体的三种视图就是从三个方向看到的平面图形.38.如图所示的几何体是由7个相同的小正方体搭成的,请画出这个图形的主视图、左视图和俯视图.【答案】见解析【分析】根据图示,可得该几何体的主视图有3列,从左向右,每列小正方形个数分别为3、2、1;左视图有2列,从左向右,每列小正方形个数分别为3、1;俯视图有2行,每行小正方形个数分别为3、1.【详解】解:根据分析,可得:.【点睛】本题主要考查了物体的三视图的作图,要熟练掌握,解答此题的关键是要明确:物体的主视图、左视图和俯视图分别是从物体的正面、侧面和上面看到的图形.39.画出下面几何体的三视图.【答案】见解析【分析】找到从正面、左面、上面看所得到的图形即可,注意所有的看到的棱都应表现在三视图中.【详解】解:如图所示:【点睛】此题主要考查了三视图的画法,正确掌握三视图之间的数量关系是解决问题的关键.主视图与俯视图长对正,主视图与左视图高平齐,左视图与俯视图宽相等,即长对正,高平齐,宽相等.40.如图,是由若干个完全相同的小正方体组成的一个几何体.请画出这个几何体的三视图;【答案】见解析【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为3,2,1;左视图有2列,每列小正方形数目分别为3,1;俯视图有3列,每列小正方数形数目分别为2,1,1;据此可画出图形.【详解】解:由题可知:主视图有3列,每列小正方数形数目分别为3,2,1;左视图有2列,每列小正方形数目分别为3,1;俯视图有3列,每列小正方数形数目分别为2,1,1;①所画图如下:.【点睛】本题考查了简单组合体的三视图,掌握三视图的特点是解题的关键.41.一个几何体由大小相同的立方块搭成,从上面看到的形状图如图所示,其中小正方形中的数字表示在该位置的立方块个数.(1)在所给的方框中分别画出该几何体从正面、左面看到的形状图;(2)若允许从该几何体中拿掉部分立方块,使剩下的几何体从上面看到的形状图和原几何体从正面看到的形状图相同,则最多可拿掉___________个立方块.【答案】(1)见解析;(2)5【分析】(1)根据简单组合体三视图的画法画出相应的图形即可;(2)根据主视图、俯视图得出拿去的小正方体的个数.【详解】解:(1)该几何体从正面,从左面看到的图形如图所示:(2)拿掉后,剩下的几何体从正面看到的形状图和原几何体从上面看到的形状图相同,则最多可拿掉5个,故答案为:5.【点睛】本题考查简单几何体的三视图,正确想象出几何体的形状是解题关键,画三视图时注意“长对正,宽相等,高平齐”.42.如图所示是由几个小立方块搭成的几何体从上面看的形状图,请画出这个几何体从正面和从左面看的形状图.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主备:阙盛梅 审核:备课组 班级_________ 学号 姓名__________ 【学习目标】
1.初步体会从不同方向观察同一物体可能看到不同的结果.
2.能识别简单物体的三视图,会画简单立方体及其简单组合的三视图. 【重点难点】
重点:由立体图形画三视图. 难点:由立体图形画三视图. 【新知导学】
读一读:阅读欣赏课本P 134-P 135 想一想:
1.以下三幅图分别是从什么角度观察的:
答:图(a ): ; 图(b ): ;图(c ): .
2.我们从不同的方向观察同一个事物,可能会看到不同的结果,从正面看到的
图形,称为
;从左面看到的图形,称为
;从上面看到的图 形,称为
. 练一练:
桌面上放着三个几何体,下面的三幅图分别是什么视图?
例1.观察下列物体,请你将看到的图形画入..
表中.
例2.从三个方向看右图,得到以下三个图形,请同学们说出哪一个是主视图? 哪一个是左视图?哪一个是俯视图?
( ) ( ) ( ) 例3.画出下面几何体的三视图.
主视图
左视图
俯视图
班级_________ 学号姓名__________
【当堂训练】
1.图示的三棱柱的三个视图分别为主视图,俯视图,左视图.
2.指出下图中左面三个平面图形分别是右面这个物体三视图中的哪个视图.
(1)图(2)图(3)图
3.从不同方向观察如图所示的几何体,不可能看到的是().
A B C D
4.观察左图,并在右边的三视图中标出几何体中的相应字母的位置. 1.指出左边三个平面图形是右边这个物体的三视图中的哪个视图.
2.如图,是由五块积木搭成的,这几块积木都是相同的正方体,请画出这个
图形的三视图.
3.用长、宽、高之比为2:1:1的长方体搭成如下物体,请画出它的三视图.
4.有一个正方体,在它的各个面上分别标上数字1、2、3、4、5、6,甲、乙、丙三位同学从三个不同的角度去观察此正方体,观察结果如图所示,问这个正方体各个面上的数字对面各是什么数字?
甲乙
丙A
B
C
D
c
b
a
14
62
1
3
5
4
3。