◆江苏高考数学专题巩固与提升(一):解三角形

合集下载

备战高考数学(精讲+精练+精析)专题4.3解三角形试题(江苏版)(含解析)

备战高考数学(精讲+精练+精析)专题4.3解三角形试题(江苏版)(含解析)

专题3 解三角形【三年高考】1. 【2016高考江苏,理15】在中,AC=6,(1)求AB的长;(2)求的值.【答案】(1);(2)(2)在中,,所以,于是又故因为,所以因此【考点】同角三角函数的基本关系、正余弦定理、两角和与差的正余弦公式【名师点睛】三角函数是以角为自变量的函数,因此解三角函数题,首先应从角进行分析,善于用已知角表示所求角,即注重角的变换.角的变换涉及诱导公式、同角三角函数的基本关系、两角和与差的三角公式、二倍角公式、配角公式等,选用恰当的公式是解决三角问题的关键,同时应明确角的范围、开方时正负的取舍等.2.【2015江苏高考,15】(本小题满分14分)在中,已知.(1)求的长;(2)求的值.【答案】(1);(2)【解析】试题分析:(1)已知两边及夹角求第三边,应用余弦定理,可得的长,(2)利用(1)的结果,则由余弦定理先求出角C的余弦值,再根据平方关系及三角形角的范围求出角C的正弦值,最后利用二倍角公式求出的值.试题解析:(1)由余弦定理知,,所以.(2)由正弦定理知,,所以.因为,所以为锐角,则.因此.【考点定位】余弦定理,二倍角公式3.[2016高考新课标Ⅲ文数改编]在中,,边上的高等于,则()【答案】【解析】试题分析:设边上的高线为,则,所以.由正弦定理,知,即,解得.考点:正弦定理.【方法点拨】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.4.【2016高考山东文数改编】中,角A,B,C的对边分别是a,b,c,已知,则A= .【答案】考点:余弦定理【名师点睛】本题主要考查余弦定理的应用、三角函数的同角公式及诱导公式,是高考常考知识内容.本题难度较小,解答此类问题,注重边角的相互转换是关键,本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.5.【2016高考新课标2文数】△ABC的内角A,B,C的对边分别为a,b,c,若,,a=1,则b=____________.【答案】【解析】试题分析:因为,且为三角形内角,所以,,又因为,所以.考点:正弦定理,三角函数和差公式.【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.6.【2016高考北京文数】在△ABC中,,,则=_________.【答案】1考点:解三角形【名师点睛】①根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.②熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.7.【2016高考四川文科】(本题满分12分)在△ABC中,角A,B,C所对的边分别是a,b,c,且.(I)证明:;(II)若,求.【答案】(Ⅰ)证明详见解析;(Ⅱ)4.【解析】试题分析:(Ⅰ)已知条件式中有边有角,利用正弦定理,将边角进行转化(本小题是将边转化为角),结合诱导公式进行证明;(Ⅱ)从已知式可以看出首先利用余弦定理解出cos A=,再根据平方关系解出sinA,代入(Ⅰ)中等式sin A sin B=sin A cos B+cos A sin B,解出tanB的值.试题解析:(Ⅰ)根据正弦定理,可设===k(k>0).则a=k sin A,b=k sin B,c=k sin C.代入+=中,有+=,变形可得sin A sin B=sin A cos B+cos A sin B=sin(A+B).在△ABC中,由A+B+C=π,有sin(A+B)=sin(π–C)=sin C,所以sin A sin B=sin C.考点:正弦定理、余弦定理、商数关系、平方关系.【名师点睛】本题考查正弦定理、余弦定理、商数关系等基础知识,考查学生的分析问题的能力和计算能力.在解三角形的应用中,凡是遇到等式中有边又有角时,可用正弦定理进行边角互化,一种是化为三角函数问题,一般是化为代数式变形问题.在角的变化过程中注意三角形的内角和为这个结论,否则难以得出结论.8.【2016高考天津文数】(本小题满分13分)在中,内角所对应的边分别为a,b,c,已知.(Ⅰ)求B;(Ⅱ)若,求sinC的值.【答案】(Ⅰ)(Ⅱ)【解析】试题分析:(Ⅰ)利用正弦定理,将边化为角:,再根据三角形内角范围化简得,(Ⅱ)问题为“已知两角,求第三角”,先利用三角形内角和为,将所求角化为两已知角的和,再根据两角和的正弦公式求解试题解析:(Ⅰ)解:在中,由,可得,又由得,所以,得;(Ⅱ)解:由得,则,所以考点:同角三角函数的基本关系、二倍角的正弦公式、两角和的正弦公式以及正弦定理【名师点睛】三角函数是以角为自变量的函数,因此解三角函数题,首先从角进行分析,善于用已知角表示所求角,即注重角的变换.角的变换涉及诱导公式、同角三角函数关系、两角和与差公式、二倍角公式、配角公式等,选用恰当的公式,是解决三角问题的关键,明确角的范围,对开方时正负取舍是解题正确的保证. 9.【2016高考浙江文数】(本题满分14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2a cos B.(Ⅰ)证明:A=2B;(Ⅱ)若cos B=,求cos C的值.【答案】(I)证明见解析;(II).【解析】试题分析:(I)先由正弦定理可得,进而由两角和的正弦公式可得,再判断的取值范围,进而可证;(II)先用同角三角函数的基本关系可得,再用二倍角公式可得,进而可得和,最后用两角和的余弦公式可得.试题解析:(I)由正弦定理得,故,于是,,又,故,所以或,因此,(舍去)或,所以,.(II)由,得,,故,,.考点:三角函数及其变换、正弦和余弦定理.【思路点睛】(I)用正弦定理将边转化为角,进而用两角和的正弦公式转化为含有,的式子,根据角的范围可证;(II)先用同角三角函数的基本关系及二倍角公式可得,进而可得和,再用两角和的余弦公式可得.10.【2016高考新课标1卷】(本小题满分为12分)的内角A,B,C的对边分别为a,b,c,已知(I)求C;(II)若的面积为,求的周长.【答案】(I)(II)【解析】试题分析:(I)先利用正弦定理进行边角代换化简得得,故;(II)根据.及得.再利用余弦定理得.再根据可得的周长为.试题解析:(I)由已知及正弦定理得,,即.故.可得,所以.(II)由已知,.又,所以.由已知及余弦定理得,.故,从而.所以的周长为.考点:正弦定理、余弦定理及三角形面积公式【名师点睛】三角形中的三角变换常用到诱导公式,,就是常用的结论,另外利用正弦定理或余弦定理处理条件中含有边或角的等式,常考虑对其实施“边化角”或“角化边.”11.【2015高考上海,理14】在锐角三角形中,,为边上的点,与的面积分别为和.过作于,于,则.【答案】【解析】由题意得:,又,因为DEAF四点共圆,因此12.【2015高考湖北,理13】如图,一辆汽车在一条水平的公路上向正西行驶,到处时测得公路北侧一山顶D在西偏北的方向上,行驶600m后到达处,测得此山顶在西偏北的方向上,仰角为,则此山的高度 m.【答案】【解析】依题意,,,在中,由,所以,因为,由正弦定理可得,即m,在中,因为,,所以,所以m.13.【2015高考山东,理16】设.(Ⅰ)求的单调区间;(Ⅱ)在锐角中,角的对边分别为,若,求面积的最大值.(II)由得,由题意知为锐角,所以,由余弦定理:,可得:,即:当且仅当时等号成立.因此,所以面积的最大值为14.【2015高考四川,理19】如图,A,B,C,D为平面四边形ABCD的四个内角.(1)证明:(2)若求的值.A BCD【解析】(1).(2)由,得.由(1),有连结BD ,在中,有,在中,有,所以,则,于是.连结AC ,同理可得,于是,所以.15.【2015高考陕西,理17】的内角,,所对的边分别为,,.向量与平行.(I )求;(II )若,求的面积.【解析】(I )因为,所以,由正弦定理,得,又,从而,由于,所以(II)解法一:由余弦定理,得,而,得,即,因为,所以.故的面积为.解法二:由正弦定理,得,从而,又由,知,所以.故,所以的面积为.16. 【2014全国2高考理第4题】钝角三角形ABC的面积是,AB=1,BC=,则AC=_______.【答案】17.【2014天津高考理第12题】在中,内角所对的边分别是.已知,,则的值为_______.【答案】.【解析】因为代入得,由余弦定理得.18.【2014全国1高考理第16题】已知分别为三个内角的对边,,且,则面积的最大值为____________.【答案】19.【2014高考浙江理第18题】在中,内角所对的边分别为.已知,(I)求角的大小;(II)若,求的面积.【解析】(I)由题意得,,即,,由得,,又,得,即,所以;(II)由,,得,由,得,从而,故,所以的面积为.【2017年高考命题预测】纵观2016各地高考试题,解三角形问题,是每年高考必考的知识点之一,题型一般是选择和填空的形式,大题往往结合三角恒等变换,也有单独解三角形,主要考查正弦定理或余弦定理的运用,以及在三角形中运用三角公式进行三角变换的能力和利用三角形面积求边长等,考查利用三角公式进行恒等变形的技能,以及基本运算的能力,特别突出算理方法的考查.难度属于中、低档;分值为5分,或12分.高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主,从近几年的高考试题来看,正弦定理、余弦定理是高考的热点,主要涉及三角形的边角转化、三角形形状的判断、三角形内三角函数的求值以及三角恒等式的证明问题,立体几何体的空间角以及解析几何中的有关角等问题.今后高考的命题会以正弦定理、余弦定理为知识框架,以三角形为主要依托,结合实际应用问题考察正弦定理、余弦定理及应用.题型一般为选择题、填空题,也可能是中、难度的解答题, 主要考查学生分析问题、解决问题的能力和处理交汇性问题的能力.故在201.7年复习备考中,注意掌握利用正弦定理、余弦定理转化为三角形中各边之间的关系或各角之间的关系,并结合三角形的内角和为180°,诱导公式,同角三角函数基本关系,两角和与差的正弦、余弦、正切公式进行化简求值.预测2017年高考仍将以正弦定理、余弦定理,尤其是两个定理的综合应用为主要考点,重点考查计算能力以及应用数学知识分析和解决问题的能力.【2017年高考考点定位】高考对解三角形的考查有两种主要形式:一是直接考查正弦定理、余弦定理;二是以正弦定理、余弦定理为工具考查涉及三角形的边角转化、三角形形状的判断、三角形内三角函数的求值以及三角恒等式的证明问题.从涉及的知识上讲,常与诱导公式,同角三角函数基本关系,两角和与差的正弦、余弦、正切公式,向量等知识相联系,小题目综合化是这部分内容的一种趋势.【考点1】利用正余弦定理在三角形中求三角函数值、求角、求边长【备考知识梳理】1.直角三角形中各元素间的关系: 如图,在中,,.(1)三边之间的关系:.(勾股定理) (2)锐角之间的关系:;(3)边角之间的关系:(锐角三角函数定义),,.46810ab c CBA2.斜三角形中各元素间的关系:如图,在中,为其内角,分别表示的对边.(1)三角形内角和:.(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等.(为外接圆半径)变形:,,;;;.(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍;;.推论:;;.变形:;;.【规律方法技巧】解斜三角形的常规思维方法是: (1)已知两角和一边(如),由求,由正弦定理求;(2)已知两边和夹角(如),应用余弦定理求边;再应用正弦定理先求较短边所对的角,然后利用,求另一角;(3)已知两边和其中一边的对角(如),应用正弦定理求B,由求,再由正弦定理或余弦定理求边,要注意解可能有多种情况;A为锐角A为钝角或直角图形关系式a<b sin A a=b sin A b sin A<a<b a≥b a>b a≤b 解的个数无解一解两解一解一解无解(4)已知三边,应余弦定理求,再由,求角.(5)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.(6)在含有三角形内角的三角函数和边的混合关系式中要注意变换方向的选择.正弦定理、余弦定理、三角形面积公式本身就是一个方程,在解三角形的试题中方程思想是主要的数学思想方法,要注意从方程的角度出发分析问题.(7)如何恰当选择正弦定理与余弦定理解题利用正弦定理解三角形时,可将正弦定理视为方程或方程组,利用方程思想处理已知量与未知量的关系.熟记正弦定理同三角形外接圆半径、三角形面积之间的关系等结论,对于相关问题是十分有益的.利用正弦定理可解决以下两类问题:一是已知两角和一角的对边,求其他边角;二是已知两边和一边对应的角,求其他边角,由于此时的三角形不能确定,应对它进行分类讨论.利用正弦定理解题一般适应的特点(1)如果所给的等式两边有齐次的边的形式或齐次的角的正弦的形式,可以利用正弦定理进行边角互换,这是高考中常见的形式;(2)根据所给条件构造(1)的形式,便于利用正弦定理进行边角互换,体现的是转化思想的灵活应用.余弦定理与平面几何知识、向量、三角函数有着密切的联系,常解决一下两类问题:一是已知两边和它们的夹角,求其他边角;二是已知三边求三角.由于这两种情形下三角形是唯一确定的,所以其解也是唯一. 余弦定理的重要应用(8)三角形的余弦定理作为解决三角形问题的利剑,必须熟练掌握应用.为此,就其常见的几种变形形式,介绍如下.①联系完全平方式巧过渡:由则.②联系重要不等式求范围:由,则当且仅当等号成立.③联系数量积的定义式妙转化:在中,由.(9)在三角形内求值、证明或判断三角形形状时,要用正、余弦定理完成边与角的互化,一般是都化为边或都化为角,然后用三角公式或代数方法求解,从而达到求值、证明或判断的目的.解题时要注意隐含条件.【考点针对训练】1. 【江苏省如东高级中学2016届高三上学期期中考试数学试题】在锐角中,角A,B,C的对边分别是a,b,c,,的面积为,则的最大角的正切值是________【答案】【解析】由题意得,由余弦定理得:,因此B角最大,2.已知△的三边所对的角分别为,且, 则的值为________.【答案】【解析】由正弦定理得:,因为,所以,所以,因为,所以,所以.【考点2】利用正余弦定理求三角形面积【备考知识梳理】三角形的面积公式:(1)(分别表示上的高);(2);(3);(4);(为外接圆半径)(5);(6)△=;;(7).(为内切圆半径,)【规律方法技巧】利用来求的面积是在已知两边及夹角的前提下来求的,事实上,两边及夹角中的某个(或两个)量需要通过解三角形求出,这就需要先利用正、余弦定理解三角形.求解此类三角形的基本量的技巧:先将几何问题转化为代数问题,正确分析已知等式中的边角关系,利用正弦定理、余弦定理、任意三角形面积公式等工具进行三角形中边角的互化,若要把“边”化为“角”,常利用“,,,;”,若要把“角”化为“边”,常利用,;;等;然后利用三角形的内角和定理、大边对大角等知识求出三角形的基本量.解三角形中,应特别注意问题中的隐含条件,正弦定理和余弦定理,三角形的面积公式,三角形中的边角关系,内角和定理等.例如利用边的值判断隐含条件或,极其隐蔽.另外常见的错误还有:(1)在化简三角函数式子时要注意恒等变形不要轻易约分(消去某一个式子)等,(2)在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解或无解,所以要进行分类讨论.【考点针对训练】1. 【江苏省南京市2016届高三年级第三次学情调研适应性测试数学】在ΔABC中,角A,B,C的对边分别为a,b,c,且a=,b=3,sin C=2sin A,则ΔABC的面积为.【答案】【解析】由正弦定理得:,因此由余弦定理得:,因此2.【江苏省启东中学2015届高三下学期期初调研测】.已知△ABC中,∠B=45°,AC=4,则△ABC面积的最大值为 .【答案】;【解析】,,得,,△ABC面积的最大值为【考点3】利用正余弦定理判断三角形形状【备考知识梳理】解斜三角形的主要依据是:设的三边为,对应的三个角为.(1)角与角关系:;(2)边与边关系:,,,;(3)边与角关系:正弦定理.(为外接圆半径);余弦定理;;.它们的变形形式有:,,.5.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点.(1)角的变换因为在中,,所以;;.;(2)三角形边、角关系定理及面积公式面积公式r为三角形内切圆半径,p为周长之半.(3)在中,熟记并会证明:成等差数列的充分必要条件是;是正三角形的充分必要条件是成等差数列且成等比数列.【规律方法技巧】依据已知条件中的边角关系判断三角形的形状时,主要有如下两种方法:1.利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;2.利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用这个结论.如何利用余弦定理判定三角形的形状由于与同号,故当时,角为锐角;当时,三角形为直角三角形;当时,三角形为钝角三角形.三角形中常见的结论(1) .(2)在三角形中大边对大角,反之亦然.(3)任意两边之和大于第三边,任意两边之差小于第三边.(4)在中,是的充要条件【考点针对训练】1. 【江苏省启东中学2015~2016学年度第一学期第一次阶段测试】(本小题满分14分)已知中,角、、所对的边分别为、、,满足.⑴求角的值;⑵若,,成等差数列,试判断的形状.【答案】(1);(2)等边三角形.【解析】⑴由正弦定理,得:,整理,得:,由余弦定理,得:,是的内角,;⑵,,成等差数列,,由⑴可知,,,整理,得:,由,得,,是等边三角形.2.设的内角A、B、C所对的边分别为a,b,c,若,则的形状为_________.【答案】直角三角形【解析】因为,由正弦定理可得:,所以,即,A为三角形内角,所以sinA=1,A=,所以三角形是直角三角形.【考点4】正、余弦定理的实际应用【备考知识梳理】仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角.(如图(a)).2.方位角从某点的指北方向线起按顺时针转到目标方向线之间的水平夹角叫做方位角.如B点的方位角为α(如图(b)).3.方向角正北或正南方向线与目标方向线所成的锐角,通常表达为北(南)偏东(西)××度.易混点:易混淆方位角与方向角概念:方位角是指北方向与目标方向线按顺时针之间的夹角,而方向角是正北或正南方向线与目标方向线所成的锐角.【规律方法技巧】三角形应用题的解题要点:解斜三角形的问题,通常都要根据题意,从实际问题中寻找出一个或几个三角形,然后通过解这些三角形得出所要求的量,从而得到实际问题的解.有些时候也必须注意到三角形的特殊性,如直角三角形、等腰三角形、锐角三角形等.正确理解和掌握方位角、俯角、仰角对于解决三角形应用题也是必不可少的.把握解三角形应用题的四步:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系;(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型;(3)根据题意选择正弦定理或余弦定理求解;(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.求距离问题的注意事项:(1)选定或确定要求解的三角形,即所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.求解高度问题应注意:(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角;(2)准确理解题意,分清已知条件与所求,画出示意图;(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.解决测量角度问题的注意事项:(1)明确方位角的含义;(2)分析题意,分清已知与所求,再根据题意正确画出示意图,这是最关键、最重要的一步;(3)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的“联袂”使用.【考点针对训练】1. 【江苏省清江中学数学模拟试卷】(15分)在一个六角形体育馆的一角MAN内,用长为a的围栏设置一个运动器材存储区域(如图所示),已知,B是墙角线AM上的一点,C是墙角线AN上的一点. (1)若,求存储区域面积的最大值;(2)若,在折线MBCN内选一点D,使,求四边形存储区域DBAC的最大面积.【答案】(1)最大值为;(2)最大面积为.(2)由,知点D在以B,C为焦点的椭圆上,∵,∴要使四边形DBAC面积最大,只需的面积最大,此时点D到BC的距离最大,即D必为椭圆短轴顶点.由,得短半轴长,面积的最大值为.因此,四边形ACDB面积的最大值为.2. 【江苏省扬州中学2015届高三8月开学】一走廊拐角处的横截面如图所示,已知内壁和外壁都是半径为1m的四分之一圆弧,分别与圆弧相切于两点,且两组平行墙壁间的走廊宽度都是1m.(1)若水平放置的木棒的两个端点分别在外壁和上,且木棒与内壁圆弧相切于点设试用表示木棒的长度(2)若一根水平放置的木棒能通过该走廊拐角处,求木棒长度的最大值.②若M在线段CT上,即若S在线段GT的延长线上,则TS=QS-QT,在中,,因此..(2)设,则,因此.因为,又,所以恒成立,因此函数在是减函数,所以,即.所以一根水平放置的木棒若能通过该走廊拐角处,则其长度的最大值为.【两年模拟详解析】1.【南京市、盐城市2016届高三年级第一次模拟考试数学】在中,设分别为角的对边,若,,,则边= .【答案】7【解析】由得,由得,由得.2.【江苏省扬州中学2015—2016学年第二学期质量检测】已知,若存在,满足,则称是的一个“友好”三角形.若等腰存在“友好”三角形,则其底角的弧度数为.【答案】【解析】不妨设为顶角,则由题意得,且,因此有,逐一验证得:满足.3.【江苏省扬州中学2016届高三4月质量监测】已知△ABC中,角A,B,C所对的边分别为a,b,c,且BC边上的高为a,则的最大值为______.【答案】【解析】由题意得,因此,当且仅当时取等号.4.【江苏省苏北三市(徐州市、连云港市、宿迁市)2016届高三最后一次模拟考试】已知函数和函数的图象交于三点,则的面积为 . 【答案】5.【盐城市2016届高三年级第三次模拟考试】在中,角所对的边分别为,若为锐角三角形,且满足,则的取值范围是 .【答案】【解析】由得,因此即,因为为锐角三角形,所以从而,.6.【江苏省扬州中学2015—2016学年第二学期质量检测】设的内角的对边分别为,且为钝角.(1)证明:;(2)求的取值范围.【答案】(1)详见解析(2)【解析】(1)由及正弦定理,得,∴,即,又为钝角,因此,(不写范围的扣1分)故,即;(2)由(1)知,,∴,于是,∵,∴,因此,由此可知的取值范围是.7.【江苏省苏中三市2016届高三第二次调研测试数学试题】在斜三角形中,.(1)求的值;(2)若,,求的周长.【答案】(1)(2)(2)在中,,则,由正弦定理,得,故,.所以的周长为.8.【江苏省南京市2016届高三年级第三次学情调研适应性测试数学】(本小题满分14分)。

2023-2024学年高考数学专项复习——三角函数与解三角形(含答案)

2023-2024学年高考数学专项复习——三角函数与解三角形(含答案)

决胜3.在中,角,,所对的边分别为,,,且,.ABC A B C a b c 23a c b +=3A C π-=(1)求;cos B (2)若,求的面积.5b =ABC 4.设()()()()πsin 2πcos 2cos sin πf ααααα⎛⎫++ ⎪⎝⎭=---(1)将化为最简形式;()f α(2)已知,求的值.()3f θ=-()sin 1sin2sin cos θθθθ++5.已知函数.()π1sin 232f x x ⎛⎫=-- ⎪⎝⎭(1)求函数的单调递增区间,并解不等式;()f x ()0f x ≥(2)关于的方程在上有两个不相等的实数解,求实数的取x 11022m f x +⎛⎫+= ⎪⎝⎭[]0,πx ∈12,x x m 值范围及的值.()12f x x +6.已知角为第四象限角,且角的终边与单位圆交于点.αα1,3P y ⎛⎫ ⎪⎝⎭(1)求的值;sin α(2)求的值.()πtan sin 2sin cos παααα⎛⎫+ ⎪⎝⎭+7.在平面直角坐标系中,角以为始边,它的终边与单位圆交于第二象限内的点xOy αOx .(),P x y (1)若,求及的值;255y =tan α7sin 2cos sin 4cos αααα+-(2)若,求点P 的坐标.sin 11cos 2αα=-(1)若,求;3BC =ADCD (2)若,求线段的长11cos 14A =AD(1)求函数在区间上的最大值和最小值;()f x ππ[,]64-(2)若函数在区间上恰有2个零点,求的值.5()()4g x f x =-π(0,)212,x x 12cos()x x -11.在中,,点D 在AB 边上,且为锐角,,的面积为ABC 25BC =BCD ∠2CD =BCD △4.(1)求的值;cos BCD ∠(2)若,求边AC 的长.30A =︒12.记三个内角的对边分别为,已知为锐角,ABC ,,A B C ,,a b c B .sin sin sin 2sin sin a A b B c C a A B +-=(1)求;()sin A C -(2)求的最小值.sin sin A B 13.已知函数且的最小正周期为.()πsin 23f x x ω⎛⎫=+ ⎪⎝⎭()f x π(1)求函数的单调递减区间;()f x (2)若,求x 的取值范围.()22f x ≤14.已知函数在上单调递增.()sin (0)f x x ωω=>ππ,34⎡⎤-⎢⎥⎣⎦(1)求的取值范围:ω(2)当取最大值时,将的图象向左平移个单位,再将图象上所有点的横坐标变为原来ω()f x π9的3倍,得到的图象,求在内的值域.()g x ()g x ππ,32⎡⎤-⎢⎥⎣⎦15.在中,角所对的边分别为,已知.ABC ,,A B C ,,a b c sin cos cos cos cos sin sin A B C B C A B +=--(1)求;C (2)若外接圆的半径为,求的面积最大值.ABC 233ABC 16.已知函数.()()πe e sin ,32x xf x xg x --==(1)若,求;321π3f α⎛⎫+= ⎪⎝⎭32πf α⎛⎫- ⎪⎝⎭(2)设函数,证明:在上有且仅有一个零点,且()()ln h x x f x =+()h x ()0,∞+0x .()()034g f x >-17.在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终xOy αO x 边与单位圆交于第三象限点.525,55P ⎛⎫-- ⎪⎝⎭(1)求的值;sin cos αα-(2)若角的终边绕原点按逆时针方向旋转,与单位圆交于点,求点的坐标.αO π2Q Q 18.设函数,且.2()2cos 23sin cos (0)f x x x x m ωωωω=++>(0)1f =(1)求的值;m (2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数存在,求()f x 的值及的零点.ω()f x 条件①:是奇函数;()f x 条件②:图象的两条相邻对称轴之间的距离是;()f x π条件③:在区间上单调递增,在区间上单调递减.()f x π0,6⎡⎤⎢⎥⎣⎦ππ,63⎡⎤⎢⎥⎣⎦注:如果选择的条件不符合要求,第(2)问得分;如果选择多个符合要求的条件分别解答,0按第一个解答计分.答案:1.(1)1-(2)12-【分析】(1)根据点坐标求得.P tan α(2)根据点坐标求得,利用诱导公式求得正确答案.P sin ,cos αα【详解】(1)即,3π,cos π3sin 44P ⎛⎫ ⎪⎝⎭22,22P ⎛⎫- ⎪ ⎪⎝⎭所以.22tan 122α-==-(2)由(1)得,所以,22,22P ⎛⎫- ⎪ ⎪⎝⎭22222sin 22222α-==-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭,22222cos 22222α==⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭()1617πsin πsin πsin sin 808π22αααα⎛⎫⎛⎫-+=++ ⎪ ⎪⎝⎭⎝⎭πsin sin sin cos 2αααα⎛⎫=+= ⎪⎝⎭.221222⎛⎫=-⨯=- ⎪ ⎪⎝⎭2.(1),1tan 7α=1tan 3β=(2)π4【分析】(1)先根据同角三角函数平方关系求出,再根据商数关系和两角和正切公式cos α化简得结果;(2)根据二倍角公式得,,再根据两角和余弦公式得,最后根据sin 2,cos 2ββ()cos 2αβ+范围求结果.【详解】(1)因为为锐角,,所以,,αβ2sin 10α=272cos 1sin 10αα=-=所以,2sin 110tan cos 77210ααα===又因为,所以,tan tan 1tan()1tan tan 2αβαβαβ++==-1tan 3β=(2)因为为锐角,,所以,解得,,αβ1tan 3β=22sin 1cos 3sin cos 1ββββ⎧=⎪⎨⎪+=⎩10sin 10310cos 10ββ⎧=⎪⎪⎨⎪=⎪⎩所以,sin 22sin cos 103103101052βββ==⨯=⨯,24cos 212sin 5ββ=-=所以,()724232cos 2cos cos 2sin sin 21051052αβαβαβ+=-=⨯-⨯=又因为为锐角,所以,,αβ3π022αβ<+<所以.π24αβ+=3.(1)78(2)111512【分析】(1)根据已知条件,利用正弦定理化为,结合23a c b +=sin sin 23sin A C B +=已知条件,有,,代入解三角形即可.3A C π-=32B C π=-232B A π=-sin sin 23sin A C B +=(2)根据(1)终结论,利用余弦定理,结合,,解得,利用面5b =23a c b +=443ac =积公式即可求得面积为.11115sin 212ABC S ac B ==△【详解】(1)因为,所以由正弦定理得,23a c b +=sin sin 23sin A C B +=因为,且,所以,,3A C π-=A B C π++=32B C π=-232B A π=-所以2sin sin 23sin 3232B B B ππ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭即,22sin cos cos sin sin cos cos sin 23sin 32323232B B B B B ππππ-+-=所以,所以,3cos 23sin 2B B =cos 4sin cos 222B B B =因为,所以,所以;022B π<<1sin 24B =27cos 12sin 28B B =-=(2)由余弦定理可得,2222cos b a c ac B =+-即,得,得,()27524a c ac ac =+--()2155234b ac =-443ac =因为,所以,所以7cos 8B =15sin 8B =11115sin 212ABC S ac B ==△4.(1)tan α-(2)65【分析】(1)根据三角函数的诱导公式,结合同角三角函数的商式关系,可得答案;(2)利用正弦函数的二倍角公式以及同角三角函数的平方式,整理齐次式,可得答案.【详解】(1).()()()()πsin 2πcos sin sin 2tan cos sin πcos sin f αααααααααα⎛⎫++ ⎪-⎝⎭===----(2)由,则,()tan 3f θθ=-=-tan 3θ=,()()()()()22222sin 1sin2sin (sin cos )tan (tan 1)sin cos sin cos sin cos tan 1tan 1θθθθθθθθθθθθθθθ+++==+++++.()()2223(31)34641053131⨯+⨯===⨯+⨯+5.(1)答案见解析(2)(()1212,3,2f x x ⎤--+=-⎦【分析】(1)由题意分别令,πππ2π22π,Z 232k x k k -+≤-≤+∈,解不等式即可得解.ππ5π2π22π,Z 366k x k k +≤-≤+∈(2)由题意得在上有两个不相等的实数解,结合三角()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 函数单调性、最值即可求出的取值范围,结合对称性代入求值即可得的值.m ()12f x x +【详解】(1)由题意令,解得,πππ2π22π,Z 232k x k k -+≤-≤+∈π5πππ,Z 1212k x k k -+≤≤+∈即函数的单调递增区间为,()f x ()π5ππ,π,Z 1212k k k ⎡⎤-++∈⎢⎥⎣⎦令,所以,()π1sin 2032f x x ⎛⎫=--≥ ⎪⎝⎭π1sin 232x ⎛⎫-≥ ⎪⎝⎭所以,解得,ππ5π2π22π,Z 366k x k k +≤-≤+∈π7πZ 412ππ,k x k k +≤≤+∈所以不等式的解集为.()0f x ≥()π7ππ,π,Z 412k k k ⎡⎤++∈⎢⎥⎣⎦(2)由题意即,11022m f x +⎛⎫+= ⎪⎝⎭πsin 032m x ⎛⎫-+= ⎪⎝⎭即在上有两个不相等的实数解,()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 当时,,而在上单调递减,在上单[]0,πx ∈ππ2π,333t x ⎡⎤=-∈-⎢⎥⎣⎦2sin y t =-ππ,32⎡⎤-⎢⎥⎣⎦π2π,23⎡⎤⎢⎥⎣⎦调递增,所以当即时,,ππ32t x =-=5π6x =()min 2g x =-当即时,,ππ33t x =-=-0x =()max 3g x =又即时,,π2π33t x =-=πx =()3g x =-所以若在上有两个不相等的实数解,()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 则实数的取值范围为,m (2,3⎤--⎦因为,所以是的对称轴,()min 5π26g x g ⎛⎫==- ⎪⎝⎭5π6x =()g x所以.()125π5ππ112sin 263322f x x f ⎛⎫⎛⎫+=⨯=⨯--=- ⎪ ⎪⎝⎭⎝⎭6.(1)223-(2)3-【分析】(1)将点代入单位圆后结合任意角三角函数定义求解即可.(2)利用诱导公式化简求值即可.【详解】(1)在单位圆中,解得,22113y ⎛⎫+= ⎪⎝⎭223y =±因为第四象限角,所以α223y =-22sin 3α∴=-(2)第四象限角22sin ,3αα=-1cos 3α∴=.()πtan sin 123sin cos πcos ααααα⎛⎫+ ⎪⎝⎭∴=-=-+7.(1),;2-2(2).34(,)55-【分析】(1)根据给定条件,求出点的坐标及,再利用齐次式法计算即得.P tan α(2)利用同角公式,结合三角函数定义求解即得.【详解】(1)角以Ox 为始边,它的终边与单位圆交于第二象限内的点,α(),P x y 当时,,则,255y =22551()55x =--=-tan 2y x α==-所以.7tan 27(2)227ta 4sin 2cos sin 42c 4os n αααααα+⨯-++==---=-(2)依题意,,sin 0,cos 0αα><由,得,代入,sin 11cos 2αα=-cos 12sin αα=-22sin cos 1αα+=于是,解得,22sin (12sin )1αα+-=2sin ,cos 1sin 5543ααα==--=-即,所以点P 的坐标为.34,55x y =-=34(,)55-8.(1);π3A =(2).2AD =【分析】(1)由正弦定理化边为角,然后由三角恒等变换求解;(2)设,利用由余弦定理求得,从而由正弦定理求得AD x =πADB ADC ∠+∠=cos ADB ∠(用表示),再代入余弦定理的结论中求得值.AC x x 【详解】(1)由正弦定理及已知得2cos cos cos 2c a A B b A =-,sin 2sin cos cos sin cos 2sin 2cos sin cos 2sin(2)C A A B B A A B B A A B =-=-=-或,C 2A B =-2πC A B +-=又,所以,A B ≤22πC A B C B B C B +-≤+-=+<所以,从而,所以;C 2A B =-2πB C A A +==-π3A =(2)由余弦定理得,,2222cos AB BD AD AD BD ADB =+-⋅∠,2222cos AC CD AD AD CD ADC =+-⋅∠又是角平分线,所以,又,则,记,因为AD 2AC CD AB BD ==3a =2,1CD BD ==AD x =,πADB ADC ∠+∠=所以,所以,2244cos 412cos x x ADC x x ADC +-∠=++∠cos 4x ADC ∠=-,则,0πADC <∠<2sin 116x ADC ∠=-由正弦定理得,sin sin AC CD ADC CAD =∠∠所以,222116π16sin 6x AC x =⋅-=-所以,解得,即.221644()4x x x x -=+-⋅-2x =2AD =9.(1)263(2)677【分析】(1)利用正弦定理及其余弦定理求解;(2)利用三角形的面积公式求解.【详解】(1)因为平分,,故,AD BAC ∠3AB BC ==2C BAC θ∠=∠=在中,由正弦定理知:,ADC △sin sin 22cos sin sin AD ACD CD DAC θθθ∠===∠由余弦定理有,2222223231cos 2cos 22323CA CB BA C CA CB θ+-+-====⋅⨯⨯又因为,所以,21cos 22cos 13θθ==-6cos 3θ=即;262cos 3AD CDθ==(2)由,得,则,11cos 14A =11cos 214θ=cos 2157cos 214θθ+==又由,()11sin 2sin 22ABC ABD ACD S AB AC S S AB AC AD θθ=⋅=+=+△△△得.()sin 21267cos sin 57AB AC AD AB AC θθθ⋅===+10.(1)最大值和最小值分别为;2,1-(2).58【分析】(1)求出函数的解析式,再利用余弦函数的性质求解即得.()f x (2)利用余弦函数图象的对称性,结合诱导公式计算.12cos()x x -【详解】(1)由函数的最小正周期为,得,解得,()f x π2ππω=π2,()2cos(2)3x f x ω==-当时,,则当,即时,,ππ[,]64x ∈-π2ππ2[,]336x -∈-π2π233x -=-π6x =-min ()1f x =-当,即时,,π203x -=π6x =max ()2f x =所以函数在区间上的最大值和最小值分别为.()f x ππ[,]64-2,1-(2)()2222252cos 25222525BD BC CD BC CD BCD =+-⨯∠=+-⨯⨯⨯,故,204816=+-=4BD =有,故,22216420BD CD BC +=+==CD AB ⊥则,即.21sin sin 302CD A AC AC ==︒==4AC =12.(1);()sin 1A C -=(2)无最小值;【分析】(1)利用正弦定理和余弦定理可得,结合为锐角可得,所sin cos A C =B π2A C =+以;()sin 1A C -=(2)利用诱导公式可得,再由导数判断出在3sin sin 2sin sin A B A A =-()32f t t t =-上单调递增,可得无最小值;2,12t ⎛⎫∈ ⎪ ⎪⎝⎭sin sin A B 【详解】(1)因为,sin sin sin 2sin sin a A b B c C a A B +-=由正弦定理得,2222sin a b c ab A +-=由余弦定理可得,2222cos a b c ab C +-=所以可得,解得或;sin cos A C =π2A C =-π2A C =+又为锐角,所以(舍),即,B π2A C =-π2A C =+因此;()πsin sin12A C -==(2)结合(1)中,又可得:π2A C =+πA B C ++=;33πsin sin sin sin 2sin cos 22sin sin 2A B A A A A A A ⎛⎫=-=-=- ⎪⎝⎭令,则,sin t A =()3sin sin 2A B f t t t ==-又为锐角,,所以,B 3ππ20,22A ⎛⎫-∈ ⎪⎝⎭π3π24A <<可得,212t <<所以,当时,恒成立,()261f t t '=-212t <<()2610f t t '=->即可得为单调递增,()32f t t t =-所以时,,所以无最值;2,12t ⎛⎫∈ ⎪ ⎪⎝⎭()()0,1f t ∈()f t 因此无最小值;sin sin A B 13.(1)答案见解析(2)答案见解析【分析】(1)根据最小正周期为求得,求出单调递减区间;π=1ω±(2)根据写出x 的取值范围.()22f x ≤【详解】(1)因为的周期为,()πsin 23f x x ω⎛⎫=+ ⎪⎝⎭π故,所以.2ππ2ω==1ω±当时,,=1ω()πsin 23f x x ⎛⎫=+ ⎪⎝⎭由,得到,ππ3π2π22π232k x k +≤+≤+π7πππ1212k x k +≤≤+故的递减区间为.()f x π7ππ,π,Z 1212k k k ⎡⎤++∈⎢⎥⎣⎦当时,,1ω=-()ππsin 2sin 233f x x x ⎛⎫⎛⎫=-+=-- ⎪ ⎪⎝⎭⎝⎭由,得到πππ2π22π232k x k -+≤-≤+π5πππ1212k x k -+≤≤+故的递减区间为.()f x π5ππ,π,Z 1212k k k ⎡⎤-++∈⎢⎥⎣⎦(2)当时,,=1ω()π2sin 232f x x ⎛⎫=+≤ ⎪⎝⎭所以,5πππ2π22π434k x k -+≤+≤+解得.19ππππ,Z 2424k x k k -+≤≤-+∈当时,,1ω=-()ππ2sin 2sin 2332f x x x ⎛⎫⎛⎫=-+=--≤ ⎪ ⎪⎝⎭⎝⎭即,π2sin 232x ⎛⎫-≥- ⎪⎝⎭所以,ππ5π2π22π434k x k -+≤-≤+解得.π19πππ2424k x k +≤≤+综上:当时,;=1ω19ππππ2424k x k -+≤≤-+当时,.1ω=-π19πππ,Z 2424k x k k +≤≤+∈14.(1)302ω<≤(2)260,4⎡⎤+⎢⎥⎣⎦【分析】(1)由题设条件,列出不等式,求解即可.,32πππ4π2ωω-≥-≤(2)根据函数图像平移变换,写出函数,再结合区间和三角函数性质求1π()sin 26g x x ⎛⎫=+ ⎪⎝⎭出值域.【详解】(1)由,得 ,ππ,34x ⎡⎤∈-⎢⎥⎣⎦ππ,34x ωωω⎡⎤∈-⎢⎥⎣⎦又函数在上单调递增,()sin (0)f x x ωω=>ππ,34⎡⎤-⎢⎥⎣⎦所以,解得,32πππ4π2ωω-≥-≤32ω≤因为,所以.0ω>302ω<≤(2)由(1)知的最大值为,此时,ω323()sin 2f x x =根据题意,,31π1π()sin sin 23926g x x x ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦当时,.ππ,32x ⎡⎤∈-⎢⎥⎣⎦1πππ02664x ≤+≤+所以,故值域为.ππ260()sin 644g x +⎛⎫≤≤+= ⎪⎝⎭260,4⎡⎤+⎢⎥⎣⎦15.(1)π3C =(2)3【分析】(1)利用正弦定理、三角恒等变换计算即可.(2)利用正余弦定理、三角形面积公式及基本不等式计算即可.【详解】(1)由已知可得:,222sin sin sin cos cos A A B B C -=-∴,()222sin sin sin 1sin 1sin A A B B C -=---∴,222sin sin sin sin sin A B C A B +-=根据正弦定理可知:,222a b c ab +-=∴.2221cos 22a b c C ab +-==又.π(0,π),3C C ∈∴=(2)∵外接圆的半径为,ABC 233r =∴,解得.432sin 3c r C==2c =又由(1)得,222a b c ab +-=故,∴,当且仅当时等号成立22424a b ab ab +-=≥-4ab ≤2a b ==∴,13sin 324ABC S ab C ab ==≤△∴的面积最大值为.ABC 316.(1)23(2)证明见解析【分析】(1)化简已知条件求得,利用诱导公式求得.πsin 3α⎛⎫+ ⎪⎝⎭32πf α⎛⎫- ⎪⎝⎭(2)先求得的表达式,然后对进行分类讨论,结合零点存在性定理证得在()h x x ()h x 上有且仅有一个零点,求得的表达式,然后利用函数的单调性证得不等()0,∞+0x()()0g f x 式成立.()()034g f x >-【详解】(1)由,则,321π3f α⎛⎫+= ⎪⎝⎭π2sin 33α⎛⎫+= ⎪⎝⎭所以32π2sin π3f αα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭.ππ2sin πsin 333αα⎡⎤⎛⎫⎛⎫=-+=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)证明:由题意得.()πln sin 3h x x x =+①当时,,所以单调递增.30,2x ⎛⎤∈ ⎥⎝⎦ππ0,32x ⎛⎤∈ ⎥⎝⎦()h x 又,由于,而,1πsin ln226h ⎛⎫=- ⎪⎝⎭π1sin 62=1ln2ln e 2>=所以.又,102h ⎛⎫< ⎪⎝⎭()3102h =>所以由零点存在定理得在内有唯一零点,使得.()h x 30,2⎛⎤ ⎥⎝⎦0x ()00h x =当时,,所以,则在上无零点;3,32x ⎛⎤∈ ⎥⎝⎦πln 0,sin 03x x >≥()0h x >()h x 3,32⎛⎤ ⎥⎝⎦当时,,所以,则在上无零点.()3,x ∈+∞πln 1,1sin 13x x >-≤≤()0h x >()h x ()3,+∞综上,在上有且仅有一个零点.()h x ()0,∞+0x ②由①得,且,0112x <<()00ln 0x f x +=则.()()()()00000011ln ,ln 2f x x g f x g x x x ⎛⎫=-=-=- ⎪⎝⎭由函数的单调性得函数在上单调递增,()000112x x x ϕ⎛⎫=-⎪⎝⎭1,12⎛⎫ ⎪⎝⎭则,()01324x ϕϕ⎛⎫>=- ⎪⎝⎭故.()()034g f x >-求解已知三角函数值求三角函数值的问题,可以考虑利用诱导公式等三角恒等变换的公式来进行求解.判断函数零点的个数,除了零点存在性定理外,还需要结合函数的单调性来进行判断.17.(1)55-(2)255,55⎛⎫- ⎪ ⎪⎝⎭【分析】(1)直接根据三角函数的定义求解;(2)利用诱导公式求出旋转后的角的三角函数值即可.【详解】(1)由三角函数的定义可得,5sin c 5o 255s αα-=-=,所以;5s 5in 5c 2os 555αα⎛⎫--=- ⎪ ⎪⎝⎭-=-(2)角的终边绕原点O 按逆时针方向旋转,得到角,απ2π2α+则,,π5sin cos 25αα⎛⎫+==- ⎪⎝⎭π25cos sin 25αα⎛⎫+=-= ⎪⎝⎭所以点Q 的坐标为.255,55⎛⎫- ⎪ ⎪⎝⎭18.(1)1m =-(2)选择①,不存在;选择②,,;选择③,,12ω=ππ,Z 6k k -+∈1ω=ππ,Z 122k k -+∈【分析】(1)利用二倍角公式以及辅助角公式化简函数,根据,即可求解;(0)1f =(2)根据奇函数性质、三角函数图象的性质以及三角函数的单调性,即可逐个条件进行判断和求解.【详解】(1)2()2cos 23sin cos f x x x x m ωωω=++,πcos 23sin212sin 216x x m x m ωωω⎛⎫=+++=+++ ⎪⎝⎭又,所以.1(0)2112f m =⨯++=1m =-(2)由(1)知,,()π2sin 26f x x ω⎛⎫=+ ⎪⎝⎭选择①:因为是奇函数,()f x 所以与已知矛盾,所以不存在.()00f =()f x 选择②:因为图象的两条相邻对称轴之间的距离是,()f x π所以,,,π2T =2πT =2π21T ω==12ω=则,()π2sin 6f x x ⎛⎫=+ ⎪⎝⎭令,()π2sin 06f x x ⎛⎫=+= ⎪⎝⎭解得.ππ,Z 6k x k -+∈=即零点为.()f x ππ,Z 6k k -+∈选择③:对于,,()π2sin 26f x x ω⎛⎫=+ ⎪⎝⎭0ω>令,,πππ2π22π,Z 262k x k k ω-+≤+≤+∈ππ3π2π22π,Z 262k x k k ω+≤+≤+∈解得,,ππππ,Z 36k k x k ωωωω-+≤≤+∈ππ2ππ,Z 63k k x k ωωωω+≤≤+∈即增区间为,()f x ππππ,,Z 36k k k ωωωω⎡⎤-++∈⎢⎥⎣⎦减区间为,()f x ππ2ππ,,Z 63k k k ωωωω⎡⎤++∈⎢⎥⎣⎦因为在区间上单调递增,在区间上单调递减,()f x π0,6⎡⎤⎢⎥⎣⎦ππ,63⎡⎤⎢⎥⎣⎦所以时符合,0k =即在上单调递增,在上单调递减,()f x ππ,36ωω⎡⎤-⎢⎥⎣⎦π2π,63ωω⎡⎤⎢⎥⎣⎦所以且,π03ππ66ωω⎧-≤⎪⎪⎨⎪≥⎪⎩2ππ33ππ66ωω⎧≥⎪⎪⎨⎪≤⎪⎩解得,则,1ω=()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭所以令,()π2sin 206f x x ⎛⎫=+= ⎪⎝⎭解得,ππ,Z 122k x k =-+∈即零点为.()f x ππ,Z 122k k -+∈。

2021年江苏省高考数学总复习:三角函数及解三角形

2021年江苏省高考数学总复习:三角函数及解三角形

第 1 页 共 31 页2021年江苏省新高考数学二轮解答题专项复习:三角函数及解三角形1.在三角形ABC 中,已知tan C =12,cos B =−√1010.(1)求tan A 的值;(2)若△ABC 的面积为310,求边BC 的长.【解答】解:(1)在△ABC 中,cos B =−√1010,所以sinB =√1−cos 2B =3√1010,所以tanB =sinB cosB =−3,则:tan A =﹣tan (B +C )=−tanB+tanC 1−tanBtanC =1, (2)由于tan A =1,故A =π4,由于△ABC 的面积为310, 所以12bcsin π4=310,所以bc =3√25.由于已知tan C =12,所以sin C =5, 利用正弦定理:b sinB =c sinC ,整理得b =3√22c , 解得c =√105,故b =3√55.进一步利用正弦定理:c sinC =asinA ,解得a =1,即BC =1.2.已知锐角△ABC 的三个内角A 、B 、C 满足sin B sin C =(sin 2B +sin 2C ﹣sin 2A )tan A .(Ⅰ)求角A 的大小;(Ⅱ)若△ABC 的外接圆的圆心是O ,半径是1,求OA →•(AB →+AC →)的取值范围.【解答】解:(Ⅰ)sin B sin C =(sin 2B +sin 2C ﹣sin 2A )tan A ,由正弦定理可得bc =(b 2+c 2﹣a 2)tan A ,由余弦定理可得bc =2bc cos A tan A =2bc sin A ,可得sin A =12,0<A <π2,解得A =π6;。

2020学年高中数学第1章解三角形1.2余弦定理(2)应用案巩固提升课件苏教版必修5

2020学年高中数学第1章解三角形1.2余弦定理(2)应用案巩固提升课件苏教版必修5

第1章 解三角形
4.已知△ABC 的三个内角满足 2B=A+C,且 AB=1,BC= 4,则边 BC 上的中线 AD 的长为________. 解析:由 2B=A+C,及 A+B+C=π 知, B=π3. 在△ABD 中,AB=1,BD=B2C=2, 所以 AD2=AB2+BD2-2AB·BDcosπ3=3. 因此 AD= 3. 答案: 3
第1章 解三角形
3.若△ABC 的内角 A,B,C 所对的边 a,b,c 满足 (a+b)2-c2=4,且 C=60°,则 ab 的值为______. 解析:由(a+b)2-c2=4, 得 a2+b2-c2+2ab=4,① 由余弦定理得 a2+b2-c2=2abcos C=2abcos 60°=ab,② 将②代入①得,ab+2ab=4,即 ab=43. 答案:43
第1章 解三角形
(2)因为 a= 3b, 所以ab= 3, 由 a2=b(b+c)可得 c=2b, cos B=a2+2ca2c-b2=3b2+4 43bb2-2 b2= 23, 所以 B=30°,A=2B=60°,C=90°. 所以△ABC 为直角三角形.
第1章 解三角形
[B 能力提升] 1.在△ABC 中,已知 a=7,b=8,cos C=1134,则最大角的余 弦值是________. 解析:先由 c2=a2+b2-2abcos C,求出 c=3,所以最大边为 b,最大角为 B,所以 cos B=a2+2ca2c-b2=-17. 答案:-17
第1章 解三角形
7.在△ABC 中,b=8,c=3,A=60°,则此三角形外接圆 面积是______. 解析:在△ABC 中,由余弦定理,得 a2=b2+c2-2bccos A=
64+9-2×8×3×12=49,所以 a=7.设三角形外接圆的半径为 R,

江苏省2019高考数学二轮复习 专题一 三角 1.3 大题考法—解三角形讲义(含解析)

江苏省2019高考数学二轮复习 专题一 三角 1.3 大题考法—解三角形讲义(含解析)

第三讲 大题考法——解三角形题型(一)三角变换与解三角形的综合问题主要考查利用正、余弦定理求解三角形的边长或角的大小(或三角函数值),且常与三角恒等变换综合考查.[典例感悟][例1] (2018·南京学情调研)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,cos B =错误!. (1)若c =2a ,求sin Bsin C 的值;(2)若C -B =错误!,求sin A 的值.[解] (1)法一(角化边):在△ABC 中,因为cos B =45,所以错误!=错误!.因为c =2a ,所以错误!=错误!,即错误!=错误!, 所以错误!=错误!.又由正弦定理得,错误!=错误!,所以错误!=错误!。

法二(边化角):因为cos B =错误!,B ∈(0,π), 所以sin B =错误!=错误!.因为c =2a ,由正弦定理得sin C =2sin A ,所以sin C =2sin (B +C )=错误!cos C +错误!sin C , 即-sin C =2cos C.又因为sin 2C +cos 2C =1,sin C >0,解得sin C =错误!, 所以错误!=错误!。

(2)因为cos B =错误!,所以cos 2B =2cos 2B -1=错误!. 又0<B <π,所以sin B =1-cos 2B =错误!, 所以sin 2B =2sin B cos B =2×错误!×错误!=错误!。

因为C -B =错误!,即C =B +错误!, 所以A =π-(B +C )=错误!-2B , 所以sin A =sin 错误!=sin 3π4cos 2B -cos 错误!sin 2B=错误!×错误!-错误!×错误! =错误!。

[方法技巧]三角变换与解三角形综合问题求解策略(1)三角变换与解三角形综合问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的,其基本步骤是:(2)三角变换与解三角形的综合问题要关注三角形中的隐藏条件,如A+B+C=π,sin(A+B)=sin C,cos(A+B)=-cos C,以及在△ABC中,A>B⇔sin A>sin B等.[演练冲关]1.在△ABC中,a,b,c分别为内角A,B,C的对边,且b sin 2C=c sin B。

江苏省2024高考数学二轮复习专题一三角1

江苏省2024高考数学二轮复习专题一三角1

三角函数、解三角形A 组——抓牢中档小题1.sin 20°cos 10°-cos 160°sin 10°=________.解析:sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12.答案:122.(2024·苏北四市期末)若函数f (x )=sin ⎝⎛⎭⎪⎫ωπx -π6(ω>0)的最小正周期为15,则f ⎝ ⎛⎭⎪⎫13的值为________.解析:因为f (x )的最小正周期为2πωπ=15,所以ω=10,所以f (x )=sin ⎝⎛⎭⎪⎫10πx -π6,所以f ⎝ ⎛⎭⎪⎫13=sin ⎝ ⎛⎭⎪⎫10π3-π6=sin 19π6=-sin π6=-12.答案:-123.(2024·盐城期中)在△ABC 中,已知sin A ∶sin B ∶sin C =3∶5∶7,则此三角形的最大内角的大小为________.解析:由正弦定理及sin A ∶sin B ∶sin C =3∶5∶7知,a ∶b ∶c =3∶5∶7,可设a=3k ,b =5k ,c =7k ,且角C 是最大内角,由余弦定理知cos C =a 2+b 2-c 22ab =9k 2+25k 2-49k 22×3k ×5k=-12,因为0°<C <180°,所以C =120°.答案:120°4.(2024·苏州期中调研)已知tan ⎝ ⎛⎭⎪⎫α-π4=2,则cos 2α的值是________. 解析:因为tan ⎝ ⎛⎭⎪⎫α-π4=2,所以tan α-11+tan α=2,即tan α=-3,故cos 2α=1-tan 2α1+tan 2α=-810=-45. 答案:-455.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A =π6,a =1,b =3,则B=________.解析:由正弦定理得a sin A =bsin B,即1sinπ6=3sin B , 解得sin B =32.又因为b >a ,所以B =π3或2π3. 答案:π3或2π36.(2024·南京、盐城一模)将函数y =3sin ⎝ ⎛⎭⎪⎫2x +π3的图象向右平移φ⎝ ⎛⎭⎪⎫0<φ<π2个单位后,所得函数为偶函数,则φ=________.解析:将函数y =3sin ⎝ ⎛⎭⎪⎫2x +π3的图象向右平移φ⎝ ⎛⎭⎪⎫0<φ<π2个单位后,所得函数为f (x )=3sin ⎣⎢⎡⎦⎥⎤2x -φ+π3,即f (x )=3sin ⎣⎢⎡⎦⎥⎤2x +⎝ ⎛⎭⎪⎫π3-2φ.因为f (x )为偶函数,所以π3-2φ=π2+k π,k ∈Z ,所以φ=-π12-k π2,k ∈Z ,因为0<φ<π2,所以φ=5π12. 答案:5π127.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且2b =a +c ,若sin B =45,cos B =9ac,则b 的值为________.解析:∵sin B =45,cos B =9ac,sin 2B +cos 2B =1,∴ac =15,又∵2b =a +c ,∴b 2=a 2+c 2-2ac cos B =a 2+c 2-18=(a +c )2-48=4b 2-48,解得b =4.答案:48.(2024·盐城三模)已知函数f (x )=3sin(ωx +φ)-cos(ωx +φ)(ω>0,0<φ<π)为偶函数,且其图象的两条相邻对称轴间的距离为π2,则f ⎝ ⎛⎭⎪⎫-π8的值为________.解析:f (x )=3sin(ωx +φ)-cos(ωx +φ)=2sin ⎣⎢⎡⎦⎥⎤ωx +φ-π6,由题意知,T =π2×2=π=2πω,解得ω=2.由函数f (x )为偶函数得,f (0)=2sin ⎝⎛⎭⎪⎫φ-π6=±2,又因为0<φ<π,所以φ=2π3,f (x )=2sin2x +π2=2cos 2x ,故f ⎝ ⎛⎭⎪⎫-π8=2cos π4= 2.答案: 29.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则cos(α-β)=________.解析:因为角α与角β的终边关于y 轴对称,所以α+β=2k π+π,k ∈Z ,所以cos(α-β)=cos(2α-2k π-π)=-cos 2α=-(1-2sin 2α)=-⎣⎢⎡⎦⎥⎤1-2×⎝ ⎛⎭⎪⎫132=-79.答案:-7910.(2024·无锡期末)设函数f (x )=sin 2x -3cos x cos ⎝ ⎛⎭⎪⎫x +π2,则函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间为________.解析:f (x )=1-cos 2x 2+3cos x sin x =12-12cos 2x +32sin 2x =sin ⎝ ⎛⎭⎪⎫2x -π6+12.令-π2+2k π≤2x -π6≤π2+2k π,k ∈Z ,得-π6+k π≤x ≤π3+k π,k ∈Z ,当k =0时,-π6≤x ≤π3,故f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间是⎣⎢⎡⎦⎥⎤0,π3.答案:⎣⎢⎡⎦⎥⎤0,π311.(2024·南通、扬州、泰州、淮安三调)在锐角△ABC 中,AB =3,AC =4.若△ABC 的面积为33,则BC =________.解析:因为b =4,c =3,由S △ABC =12bc sin A =6sin A =33,解得sin A =32,因为△ABC 是锐角三角形,所以cos A =1-sin 2A =12或求出锐角A =π3,再求cos A =12,在△ABC 中,由余弦定理得,a 2=b 2+c 2-2bc cos A =16+9-2×4×3×12=13,所以a =13,即BC =13.答案:1312.已知tan ⎝ ⎛⎭⎪⎫α+π4=12,且-π2<α<0,则2sin 2α+sin 2αcos ⎝ ⎛⎭⎪⎫α-π4=________. 解析:由tan ⎝ ⎛⎭⎪⎫α+π4=tan α+11-tan α=12,得tan α=-13. 又-π2<α<0,所以sin α=-1010.故2sin 2α+sin 2αcos ⎝ ⎛⎭⎪⎫α-π4=2sin αsin α+cos α22sin α+cos α=22sin α=-255.答案:-25513.已知cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435,则sin ⎝ ⎛⎭⎪⎫α+7π6的值是________. 解析:由cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435, ∴3sin ⎝ ⎛⎭⎪⎫α+π6=435,sin ⎝ ⎛⎭⎪⎫α+π6=45,∴sin ⎝ ⎛⎭⎪⎫α+7π6=-sin ⎝ ⎛⎭⎪⎫α+π6=-45. 答案:-4514.(2024·苏锡常镇一模)已知sin α=3sin ⎝ ⎛⎭⎪⎫α+π6,则tan ⎝ ⎛⎭⎪⎫α+π12=________. 解析:∵sin α=3sin ⎝⎛⎭⎪⎫α+π6=3sin αcos π6+3cos α·sin π6=332sin α+32cosα,∴tan α=32-33.又tan π12=tan ⎝ ⎛⎭⎪⎫π3-π4=tan π3-tanπ41+tan π3tanπ4=3-13+1=2-3,∴tan ⎝⎛⎭⎪⎫α+π12=tan α+tanπ121-tan αtanπ12=32-33+2-31-32-33×()2-3=23-4.答案:23-4B 组——力争难度小题1.如图,已知A ,B 分别是函数f (x )=3sin ωx (ω>0)在y 轴右侧图象上的第一个最高点和第一个最低点,且∠AOB =π2,则该函数的最小正周期是________.解析:设函数f (x )的最小正周期为T ,由图象可得A ⎝ ⎛⎭⎪⎫T 4,3,B ⎝ ⎛⎭⎪⎫3T 4,-3,则OA ―→·OB ―→=3T216-3=0,解得T =4. 答案:42.△ABC 的三个内角为A ,B ,C ,若3cos A +sin A3sin A -cos A=tan ⎝ ⎛⎭⎪⎫-7π12,则tan A =________.解析:3cos A +sin A 3sin A -cos A =2sin ⎝ ⎛⎭⎪⎫A +π32sin ⎝ ⎛⎭⎪⎫A -π6=-sin ⎝⎛⎭⎪⎫A +π3cos ⎝⎛⎭⎪⎫A +π3=-tan ⎝ ⎛⎭⎪⎫A +π3=tan ⎝ ⎛⎭⎪⎫-A -π3=tan ⎝ ⎛⎭⎪⎫-7π12,所以-A -π3=-7π12,所以A =7π12-π3=π4,所以tan A =tan π4=1.答案:13.已知α为锐角,cos(α+π4)=55.则sin ⎝ ⎛⎭⎪⎫2α+π3的值为________.解析:因为α∈⎝ ⎛⎭⎪⎫0,π2,所以α+π4∈⎝ ⎛⎭⎪⎫π4,3π4,所以sin ⎝⎛⎭⎪⎫α+π4=1-cos 2⎝⎛⎭⎪⎫α+π4=255,因为sin ⎝ ⎛⎭⎪⎫2α+π2=sin 2⎝ ⎛⎭⎪⎫α+π4=2 sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4=45,cos ⎝ ⎛⎭⎪⎫2α+π2=cos 2⎝ ⎛⎭⎪⎫α+π4=2 cos 2⎝ ⎛⎭⎪⎫α+π4-1=-35,所以sin ⎝ ⎛⎭⎪⎫2α+π3=sin ⎝ ⎛⎭⎪⎫2α+π2-π6=sin ⎝ ⎛⎭⎪⎫2α+π2·cos π6-cos ⎝⎛⎭⎪⎫2α+π2sin π6=43+310. 答案:43+3104.函数f (x )=A sin(ωx +φ),A >0,ω>0,|φ|<π2的部分图象如图所示,若x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),则f (x 1+x 2)=________. 解析:由图象可得A =1,T 2=2π2ω=π3-⎝ ⎛⎭⎪⎫-π6,解得ω=2,所以f (x )=sin(2x +φ),将点⎝ ⎛⎭⎪⎫π3,0代入函数f (x )可得0=sin ⎝ ⎛⎭⎪⎫2π3+φ,所以2π3+φ=k π,所以φ=k π-2π3(k∈Z ),又|φ|<π2,所以φ=π3,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3.因为⎝ ⎛⎭⎪⎫-π6,0,⎝ ⎛⎭⎪⎫π3,0的中点坐标为⎝⎛⎭⎪⎫π12,0,又x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),所以x 1+x 2=π12×2=π6,所以f (x 1+x 2)=sin ⎝⎛⎭⎪⎫2×π6+π3=32. 答案:325.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a 2+b 2+2c 2=8,则△ABC 面积S 的最大值为________.解析:由S =12ab sin C ,得S 2=14a 2b 2(1-cos 2C )=14a 2b 2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫a 2+b 2-c 22ab 2, ∵a 2+b 2+2c 2=8, ∴a 2+b 2=8-2c 2,∴S 2=14a 2b 2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫a 2+b 2-c 22ab 2=14a 2b 2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫8-3c 22ab 2 =14a 2b 2-8-3c 2216≤a 2+b 2216-8-3c2216=-5c 416+c 2,当且仅当a 2=b 2时等号成立,由二次函数的性质可知,当c 2=85时,S 2取得最大值,最大值为45,故S 的最大值为255.答案:2556.(2024·南通基地卷)将函数y =3sin ⎝⎛⎭⎪⎫π4x 的图象向左平移3个单位长度,得到函数y =3sin π4x +φ(|φ|<π)的图象如图所示,点M 、N 分别是函数f (x )图象上y 轴两侧相邻的最高点和最低点,设∠MON =θ,则tan(φ-θ)的值为________.解析:将函数y =3sin ⎝ ⎛⎭⎪⎫π4x 的图象向左平移3个单位长度,得到函数y =3sin ⎝ ⎛⎭⎪⎫π4x +3π4,所以φ=34π,M (-1,3),|OM |=2,N (3,-3),ON =23,|MN |=27,由余弦定理可得,cos θ=4+12-282×2×23=-32,θ=5π6,tan(φ-θ)=tan ⎝ ⎛⎭⎪⎫3π4-5π6=tan 3π4-tan5π61+tan 3π4·ta n5π6=-2+ 3.答案:-2+ 3。

2024数学高考前冲刺题《解三角形》含答案

2024数学高考前冲刺题《解三角形》含答案

黄金冲刺大题01 解三角形(精选30题)1.(2024·江苏·一模)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知2cos 1c B a+=.(1)证明:2B A =;(2)若sin A b ==,求ABC 的周长.2.(2024·湖南常德·三模)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且222sin sin sin sin sin A B A B C ++=.(1)求角C ;(2)若a ,b ,c 成等差数列,且ABC ABC 的周长.3.(2024·江苏·一模)在ABC 中,()sin sin B A A C -=.(1)求B 的大小;(2)延长BC 至点M ,使得2BC CM = .若π4CAM ∠=,求BAC ∠的大小.4.(2024·浙江温州·二模)记ABC 的内角,,A B C 所对的边分别为,,a b c ,已知2sin c B =.(1)求C ;(2)若tan tan tan A B C =+,2a =,求ABC 的面积.5.(2024·浙江嘉兴·二模)在ABC 中,内角,,A B C 所对的边分别是,,a b c ,已知2cos 3cos23A A -=.(1)求cos A 的值;(2)若ABC 为锐角三角形,23b c =,求sin C 的值.6.(2023·福建福州·模拟预测)在ABC 中,角,,A B C 的对边分别是,,a b c ,且2sin sin ,3a C c B C π==.(1)求B ;(2)若ABC BC 边上中线的长.7.(2024·山东淄博·一模)如图,在△ABC 中,2,3BAC BAC π∠=∠的角平分线交 BC 于P 点,2AP =.(1)若8BC =,求△ABC 的面积;(2)若4CP =,求BP 的长.8.(2024·安徽·模拟预测)如图,在平面四边形ABCD 中,4AB AD ==,6BC =.(1)若2π3A =,π3C =,求sin BDC ∠的值;(2)若2CD =,cos 3cos A C =,求四边形ABCD 的面积.9.(2024·浙江·一模)在ABC 中,内角,,A B C 所对的边分别是,,a b c ,已知2222sin sin c Cb c a B=+-.(1)求角A ;(2)设边BC 的中点为D ,若a =ABC AD 的长.10.(2024·湖北·一模)在ABC 中,已知π4AB AC C ===.(1)求B 的大小;(2)若BC AC >,求函数()()()sin 2sin 2f x x B x A C =--++在[]π,π-上的单调递增区间.11.(2024·福建厦门·二模)定义:如果三角形的一个内角恰好是另一个内角的两倍,那么这个三角形叫做倍角三角形.如图,ABC 的面积为S ,三个内角、、A B C 所对的边分别为,,a b c ,且222sin SC c b =-.(1)证明:ABC 是倍角三角形;(2)若9c =,当S 取最大值时,求tan B .12.(2024·福建漳州·模拟预测)如图,在四边形ABCD 中,π2DAB ∠=,π6B =,且ABC 的外接圆半径为4.(1)若BC =AD =ACD 的面积;(2)若2π3D =,求BC AD -的最大值.13.(2024·山东济南·二模)如图,在平面四边形ABCD 中,BC CD ⊥,AB BC ==ABC θ∠=,120180θ︒≤<︒.(1)若120θ=°,3AD =,求ADC ∠的大小;(2)若CD =,求四边形ABCD 面积的最大值.14.(2024·湖北武汉·模拟预测)已知锐角ABC 的三内角A B C ,,的对边分别是a b c ,,,且222(cos cos )b c b C c B bc +-⋅+⋅=,(1)求角A 的大小;(2)bc 的取值范围.15.(2024·湖南邵阳·模拟预测)在ABC 中,角,,A B C 的对边分别为,,a b c ,且ABC 的周长为sin sin sin sin a BA B C+-.(1)求C ;(2)若2a =,4b =,D 为边AB 上一点,π6BCD ∠=,求BCD △的面积.16.(2024·广东梅州·二模)在ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,cos sin B b A -=,2c =,(1)求A 的大小:(2)点D 在BC 上,(Ⅰ)当AD AB ⊥,且1AD =时,求AC 的长;(Ⅱ)当2BD DC =,且1AD =时,求ABC 的面积ABC S .17.(2024·广东广州·一模)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,ABC 的面积为S .已知222)S a c b =+-.(1)求B ;(2)若点D 在边AC 上,且π2ABD ∠=,22AD DC ==,求ABC 的周长.18.(2024·广东佛山·模拟预测)在ABC 中,角,,A B C 所对的边分别为,,a b c ,其中1a =,21cos 2c A b-=.(1)求角B 的大小;(2)如图,D 为ABC 外一点,AB BD =,ABC ABD ∠=∠,求sin sin CABCDB∠∠的最大值.19.(2024·河北石家庄·二模)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,设向量(2sin )m A A A =,π2π(cos ,cos sin ),(),,63n A A A f A m n A ⎡⎤=-=⋅∈⎢⎥⎣⎦.(1)求函数()f A 的最大值;(2)若()0,sin f A a B C ==+=ABC 的面积.20.(2024·广东·一模)设锐角三角形ABC 的内角,,A B C 的对边分别为,,a b c ,已知cos 2cos cos b c A a B C -=.(1)求cos B ;(2)若点D 在AC 上(与,A C 不重合),且π,24C ADB CBD =∠=∠,求CDAD 的值.21.(2024·辽宁·二模)在ABC 中,D 为BC 边上一点,1DC CA ==,且ACD 面积是ABD △面积的2倍.(1)若AB =,求AB 的长;(2)求sin sin ADBB∠的取值范围.22.(2024·黑龙江齐齐哈尔·一模)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知π,4cos 24B bC a ==+.(1)求tan C ;(2)若ABC 的面积为32,求BC 边上的中线长.23.(2024·重庆·模拟预测)如图,某班级学生用皮尺和测角仪(测角仪的高度为1.7m )测量重庆瞰胜楼的高度,测角仪底部A 和瞰胜楼楼底O 在同一水平线上,从测角仪顶点C 处测得楼顶M 的仰角,16.5MCE ∠=︒(点E 在线段MO 上).他沿线段AO 向楼前进100m 到达B 点,此时从测角仪顶点D 处测得楼顶M 的仰角48.5MDE ∠=︒,楼尖MN 的视角 3.5MDN ∠=︒(N 是楼尖底部,在线段MO 上).(1)求楼高MO 和楼尖MN ;(2)若测角仪底在线段AO 上的F 处时,测角仪顶G 测得楼尖MN 的视角最大,求此时测角仪底到楼底的距离FO .参考数据:sin16.5sin48.52sin325︒︒≈︒,8tan16.527︒≈,8tan48.57︒≈37.4,≈24.(2024·重庆·模拟预测)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知2π2cos sin cos 12222A B B b b a ⎡⎤⎛⎫=-- ⎪⎢⎥⎝⎭⎣⎦.(1)求角A 的大小;(2)若BP PC =,且2b c +=,求AP 的最小值.25.(2024·山西朔州·一模)已知ABC 的内角,,A B C 的对边分别为,,a b c ,向量()(),,sin sin ,sin sin m a b c n A C A B =+=-- ,且//m n .(1)求B ;(2)求222b a c+的最小值.26.(2024·河南开封·二模)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin b A B =.(1)求sin A ;(2)若a =①,条件②,条件③中选择一个条件作为已知,使其能够确定唯一的三角形,并求ABC 的面积.条件① :=b ;条件② :b =③ :1sin 3C =.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.27.(2024·河南·一模) ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足22b a ac -=.(1)求证:2B A =;(2)若ABC 为锐角三角形,求sin()sin sin C A BA--的取值范围.28.(2023·河南·三模)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2222a abc c b +-=,且a c ≠.(1)求证:2B C =;(2)若ABC ∠的平分线交AC 于D ,且12a =,求线段BD 的长度的取值范围.29.(2024·湖北·二模)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,()c a b <,2cos cos cos 2c a A B b A =-.(1)求A ;(2)者13BD BC =,2AD = ,求b c +的取值范围.30.(2024·河北·二模)若ABC 内一点P 满足PAB PBC PCA θ∠=∠=∠=,则称点P 为ABC 的布洛卡点,θ为ABC 的布洛卡角.如图,已知ABC 中,BC a =,AC b =,AB c =,点P 为的布洛卡点,θ为ABC的布洛卡角.(1)若b c =,且满足PBPA=ABC ∠的大小.(2)若ABC 为锐角三角形.(ⅰ)证明:1111tan tan tan tan BAC ABC ACBθ=++∠∠∠.(ⅱ)若PB 平分ABC ∠,证明:2b ac =.黄金冲刺大题01 解三角形(精选30题)1.(2024·江苏·一模)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知2cos 1c B a+=.(1)证明:2B A =;(2)若sin A b ==,求ABC 的周长.【答案】(1)证明见解析(2)7【分析】(1)利用正弦定理边化角结合角范围可证;(2)利用倍角公式求得sin C ,然后利用正弦定理可得【详解】(1)()()2cos 1sin sin sin sin cos cos sin B A C A B A B A B+==+=+()sin sin cos cos sin sin A B A B A B A ⇒=-=-因为()(),0,π,π,πA B B A ∈∴-∈-A B A ∴=-或()πA B A +-=(舍),2B A ∴=.(2)由sin A =1)知()30,πA B A +=∈,则π0,3A ⎛⎫∈ ⎪⎝⎭,得cos A ===sin sin22sin cos 2B A A A ====,213cos cos212sin 1284B A A ==-=-⨯=,()3sin sin sin cos cos sin 4C A B A B A B ∴=+=+===由正弦定理得25sin sin sin a a b c c A B C =⎧==⇒==⇒⎨=⎩ABC ∴的周长为7a b c ++=2.(2024·湖南常德·三模)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且222sin sin sin sin sin A B A B C ++=.(1)求角C ;(2)若a ,b ,c 成等差数列,且ABC ABC 的周长.【答案】(1)2π3(2)15【分析】(1)先利用正弦定理角化边得出222a b ab c ++=;再结合余弦定理得出1cos 2C =-即可求解.(2先根据a ,b ,c 成等差数列得出2a c b +=;再利用三角形的面积公式得出15ab =;最后结合(1)中的222a b ab c ++=,求出a ,b ,c 即可解答.【详解】(1)因为222sin sin sin sin sin A B A B C ++=,由正弦定理sin sin sin a b cA B C==可得:222a b ab c ++=.由余弦定理可得:2222222()1cos 222a b c a b a b ab C ab ab +-+-++===-.又因为(0,π)C ∈,所以2π3C =.(2)由a ,b ,c 成等差数列可得:2a c b +=①.因为三角形ABC ,2π3C =,1sin 2ab C ∴=15ab =②.由(1)知:222a b ab c ++=③由①②③解得:3,5,7a b c ===.15a b c ∴++=,故三角形ABC 的周长为15.3.(2024·江苏·一模)在ABC 中,()sin sin B A A C -=.(1)求B 的大小;(2)延长BC 至点M ,使得2BC CM = .若π4CAM ∠=,求BAC ∠的大小.【答案】(1)π4B =;(2)π12BAC ∠=或5π12.【分析】(1)由()sin sin C A B =+,代入已知等式中,利用两角和与差的正弦公式化简得cos B =B 的大小;(2)设BC x =,BAC θ∠=,在ABC 和ACM △中,由正弦定理表示边角关系,化简求BAC ∠的大小.【详解】(1)在ABC 中,A B C π++=,所以()sin sin C A B =+.因为()sin sin B A A C -=,所以()()sin sin B A A A B -=+,即sin cos cos sin sin cos cos sin B A B A A B A B A -=+2cos sin A B A =.因为()0,πA ∈,所以sin 0A ≠,cos B =因为0πB <<,所以π4B =.(2)法1:设BC x =,BAC θ∠=,则2CM x =.由(1)知π4B =,又π4CAM ∠=,所以在ABM 中,π2AMC θ∠=-.在ABC 中,由正弦定理得sin sin BC AC BAC B=∠,即πsin sin 4x ACθ=①.在ACM △中,由正弦定理得sin sin CM ACCAM M =∠,即2ππsin sin 42x ACθ=⎛⎫- ⎪⎝⎭②.①÷②=12sin cos 2θθ=,所以1sin 22θ=.因为3π0,4θ⎛⎫∈ ⎪⎝⎭,3π20,2θ⎛⎫∈ ⎪⎝⎭,所以π26θ=或5π6,故π12θ=或5π12.法2:设BC x =,则2CM x =,3BM x =.因为π4CAM B ∠==,所以ACM BAM △△∽,因此AM CMBM AM=,所以226AM BM CM x =⋅=,AM =.在ABM 中,由正弦定理得sin sin =∠BM AM BAM B,即3sin x BAM =∠化简得sin BAM ∠=因为30,4BAM π⎛⎫∠∈ ⎪⎝⎭,所以π3BAM ∠=或2π3,π4BAC BAM ∠=∠-,故π12BAC ∠=或5π12.4.(2024·浙江温州·二模)记ABC 的内角,,A B C 所对的边分别为,,a b c,已知2sin c B =.(1)求C ;(2)若tan tan tan A B C =+,2a =,求ABC 的面积.【答案】(1)π4C =或3π4(2)43【分析】(1)根据正弦定理,边化角,结合三角形中角的取值范围,可得sin C ,从而确定角C .(2)根据条件求角求边,再结合三角形面积公式求面积.【详解】(1)由2sin c B得2sin sin C B B =,而B 为三角形内角,故sin B >0,得sin C =C 为三角形内角,∴π4C =或3π4(2)由()tan tan tan tan A B C B C =-+=+得tan tan tan tan 1tan tan B CB C B C+-=+-,又tan tan 0B C +≠,∴tan tan 2B C =, ,故π,0,2B C ⎛⎫∈ ⎪⎝⎭,由(1)得tan 1C =,故tan 2B =,∴tan tan tan 3A B C =+=,而A 为三角形内角,∴sin A =又sin sin a c A C ==⇒c =又tan 2B =,而B为三角形内角,故sin B =114sin 2223S ac B ∴==⨯=.5.(2024·浙江嘉兴·二模)在ABC 中,内角,,A B C 所对的边分别是,,a b c ,已知2cos 3cos23A A -=.(1)求cos A 的值;(2)若ABC 为锐角三角形,23b c =,求sin C 的值.【答案】(1)1cos 3A =或cos 0A =;.【分析】(1)根据题意,利用二倍角余弦公式化简求解;(2)解法一,由23b c =,利用正弦定理边化角得2sin 3sin B C =,结合()sin sin A C B +=和1cos 3A =,化简运算并结合平方关系求得答案;解法二,根据条件利用余弦定理可得23c a =,再利用正弦定理边化角并结合条件求得答案.【详解】(1)由题可得()22cos 32cos 13A A --=,即23cos cos 0A A -=,解得1cos 3A =或cos 0A =.(2)解法一:因为23b c =,由正弦定理得2sin 3sin B C =,即()2sin 3sin A C C +=,即2sin cos 2sin cos 3sin A C C A C +=,因为1cos 3A =,所以sin A =2sin 3sin 3C C C +=,又22sin cos 1C C +=,且ABC为锐角三角形,解得sin C =.解法二:由余弦定理得2221cos 23b c a A bc +-==,因为23b c =,所以222291433c c a c +-=,即2249c a =,所以23c a =,所以2sin sin 3C A =,又1cos 3A =,所以sin A =,所以2sin sin 3C A ==.6.(2023·福建福州·模拟预测)在ABC 中,角,,A B C 的对边分别是,,a b c ,且2sin sin ,3a C c B C π==.(1)求B ;(2)若ABCBC 边上中线的长.【答案】(1)π6B =【分析】(1)由正弦定理边化角即可得到角B ;(2)根据A B =,得a b =,结合三角形面积公式即可得到a b ==c ,以及2AD AB AC =+,即可得到答案.【详解】(1)sin sin a C c B = ,由正弦定理边化角得sin sin sin sin A C C B =,sin 0C ≠ ,sin sin A B ∴=,A B ∴=或πA B +=(舍),又 2π3C =,∴π6B =;(2) π6B =,2π3C =,π6A =,a b ∴=,∴1sin 2ABC S ab C =212a =a b ==由正弦定理sin sin a cA C=,得sin 3sin a Cc A==,设BC 边的中点为D ,连接AD ,如下图:2AD AB AC =+ ,即22(2)()AD AB AC =+,即22242cos 9323AD c b bc A =++=++解得AD 7.(2024·山东淄博·一模)如图,在△ABC 中,2,3BAC BAC π∠=∠的角平分线交 BC 于P 点,2AP =.(1)若8BC =,求△ABC 的面积;(2)若4CP =,求BP 的长.【答案】【分析】(1)利用余弦定理和三角形面积公式即可求出答案;(2)首先利用余弦定理求出1AC =,再利用正弦定理求出sin C ,再根据三角恒变换求出sin B ,最后再根据正弦定理即可.【详解】(1)ABC 中,设角A 、B 、C 的对边分别为a 、b 、c ,在ABC 中由余弦定理得2222cos BC AB AC AB AC CAB =+-⋅⋅∠,即2264c b b c =++⋅①因ABC MBP MCP S S S =+,即22222bc c b =整理得22b c b c ⋅=+②①②解得2b c ⋅=+所以1sin 2ABC S bc BAC =∠=(2)因为π2,4,3AP CP PAC ==∠=,所以在APC △中由余弦定理可得2222cos CP AP AC AP AC CAP =+-⋅⋅∠,所以21642AC AC =+-解得1AC =,由正弦定理得sin sin AP PCC CAP=∠,即2sin Csin C =所以cos C ==,sin sin()sin cos cos sin B BAC C BAC C BAC C =∠+=∠+∠=ABC 中由正弦定理得sin sin AC BC B BAC=∠=解得BC所以4PB BC PC =-==8.(2024·安徽·模拟预测)如图,在平面四边形ABCD 中,4AB AD ==,6BC =.(1)若2π3A =,π3C =,求sin BDC ∠的值;(2)若2CD =,cos 3cos A C =,求四边形ABCD 的面积.【答案】(1)34【分析】(1)ABD △中求出BD ,在BCD △中,由正弦定理求出sin BDC ∠的值;(2)ABD △和BCD △中,由余弦定理求出cos A 和cos C ,得sin A 和sin C ,进而可求四边形ABCD 的面积.【详解】(1)在ABD △中,4AB AD ==,2π3A =,则π6ADB ∠=,π2cos 24cos 6BD AD ADB =∠=⨯⨯=,在BCD △中,由正弦定理得sin sin BC BDBDC C=∠,sin 3sin 4BC C BDC BD ∠===.(2)在ABD △和BCD △中,由余弦定理得222222cos 44244cos 3232cos BD AB AD AB AD A A A =+-⋅=+-⨯⨯⨯=-,222222cos 62262cos 4024cos BD CB CD CB CD C C C =+-⋅=+-⨯⨯⨯=-,得4cos 3cos 1A C -=-,又cos 3cos A C =,得11cos ,cos 39A C =-=-,则sin A =sin C =四边形ABCD 的面积11sin sin 22ABD BCD S S S AB AD A CB CD C =+=⋅⋅+⋅⋅11446222=⨯⨯⨯⨯9.(2024·浙江·一模)在ABC 中,内角,,A B C 所对的边分别是,,a b c ,已知2222sin sin c Cb c a B=+-.(1)求角A ;(2)设边BC 的中点为D ,若a =ABC AD 的长.【答案】(1)π3A =【分析】(1)根据正弦定理和题中所给式子化简计算得到222b c a bc +-=,再结合余弦定理即可求出角A ;(2)根据三角形面积公式得到3bc =和2210b c +=,再结合中线向量公式计算即可.【详解】(1)在ABC 中,由正弦定理得,sin sin C cB b=,因为2222sin sin c Cb c a B =+-,所以2222c c b c a b =+-,化简得,222b c a bc +-=,在ABC 中,由余弦定理得,2221cos 22b c a A bc +-==,又因为0πA <<,所以π3A =(2)由1sin 2ABC S bc A ===△3bc =,由2222cos a b c bc A =+-,得2273b c =+-,所以2210b c +=.又因为边BC 的中点为D ,所以()12AD AB AC =+,所以12AD ====10.(2024·湖北·一模)在ABC 中,已知π4AB AC C ===.(1)求B 的大小;(2)若BC AC >,求函数()()()sin 2sin 2f x x B x A C =--++在[]π,π-上的单调递增区间.【答案】(1)π3B =或2π3B =(2)7ππ5π11ππ,,,,,π12121212⎡⎤⎡⎤⎡⎤---⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦【分析】(1)利用正弦定理及三角函数的特殊值对应特殊角即可求解;(2)利用大边对大角及三角形的内角和定理,再利用诱导公式及三角函数的性质即可求解.【详解】(1)在ABC 中,由正弦定理可得:sin sin AB ACC B==sin B =又0πB <<,故π3B =或2π3B =.(2)由BC AC >,可得A B >,故π2π,33B AC =+=.()π2πππsin 2sin 2sin 2sin 2π3333f x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=--+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭π2sin 23x ⎛⎫=- ⎪⎝⎭,令πππ2π22π,Z 232k x k k -+≤-≤+∈,解得π5πππZ 1212k x k k -+≤≤+∈,.由于[]π,π∈-x ,取1k =-,得7ππ12x -≤≤-;取0k =,得π51212πx -≤≤;取1k =,得11ππ12x ≤≤,故()f x 在[]π,π-上的单调递增区间为7ππ5π11ππ,,,,,π12121212⎡⎤⎡⎤⎡⎤---⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.11.(2024·福建厦门·二模)定义:如果三角形的一个内角恰好是另一个内角的两倍,那么这个三角形叫做倍角三角形.如图,ABC 的面积为S ,三个内角、、A B C 所对的边分别为,,a b c ,且222sin SC c b =-.(1)证明:ABC 是倍角三角形;(2)若9c =,当S 取最大值时,求tan B .【答案】(1)证明见解析【分析】(1)由三角形面积公式化简条件,结合余弦定理及正弦定理进一步化简即可证明;(2)由正弦定理结合题中条件得到9sin 3sin 2B a B=,结合三角形面积公式1sin 2S ac B =⨯化为关于tan B 的表达式,构造函数,利用导数求得最大值即可.【详解】(1)因为22222212sin 2sin 2sin ab CS ab C C c b c b c b ⨯===---,又sin 0C ≠,所以221abc b =-,则22b c ab =-,又由余弦定理知,2222cos b a c ac B =+-,故可得2cos c B a b =+,由正弦定理,2sin cos sin sin C B A B =+,又()sin sin sin cos cos sin A B C B C B C =+=+,代入上式可得sin cos sin cos sin C B B C B =+,即sin cos sin cos sin C B B C B -=,()sin sin C B B -=,则有,2C B B C B -==,故ABC 是倍角三角形.(2)因为2C B =,所以ππ30A B C B =--=->,故π03B <<,则(tan B ∈,又9c =,又sin sin a c A C =,则()9sin π39sin 9sin 3sin sin 2sin 2B A Ba C B B-===,则19sin sin 22S ac B a B=⨯=99sin 381sin 3sin 2sin 24cos B B B B B =⨯⨯=⋅,81sin 2cos cos 2sin 4cos B B B B B +=⋅()81sin 2cos 2tan 4B B B =⨯+222812tan 1tan tan 41tan 1tan B BB B B ⎛⎫-=+⋅ ⎪++⎝⎭32813tan tan 41tan B B B-=⨯+设(tan x B =∈,()3231x x f x x -=+,则()()()()()22322331321x x x x x f x x -+--⋅+'=()4222631x x x --+=+令()0f x '=得23x =-或者23x =-(舍),且当203x <<时,()0f x '>,当233x <<时,()0f x '<,则()f x 在(上单调递增,在上单调递减,故当x =()f x 取最大值,此时S 也取最大值,故tan B =.12.(2024·福建漳州·模拟预测)如图,在四边形ABCD 中,π2DAB ∠=,π6B =,且ABC 的外接圆半径为4.(1)若BC =AD =ACD 的面积;(2)若2π3D =,求BC AD -的最大值.【答案】(1)4;.【分析】(1)在三角形ABC 中,根据正弦定理求得,AC CAB ∠,再在三角形ADC 中,利用三角形面积公式即可求得结果;(2)设DAC ∠θ=,在三角形,ADC ABC 中分别用正弦定理表示,BC AD ,从而建立BC AD -关于θ的三角函数,进而求三角函数的最大值,即可求得结果.【详解】(1)因为π6B =,ABC 的外接圆半径为4,所以8sin ACB=,解得4AC =.在ABC 中,BC =8sin BC CAB ==∠,解得sin CAB ∠又π0,2CAB ⎛⎫∠∈ ⎪⎝⎭,所以π4CAB ∠=;在ACD 中,4AC =,ππ24DAC CAB ∠=-∠=,AD =所以1442ACD S ∆=⨯⨯=.(2)设DAC ∠θ=,π0,3θ⎛⎫∈ ⎪⎝⎭.又2π3D =,所以π3ACD θ∠=-.因为π2DAB ∠=,所以π2CAB θ∠=-.在DAC △中,4AC =,由正弦定理得sin sin AC ADD ACD=∠,πsin 3ADθ=⎛⎫- ⎪⎝⎭,解得π1sin 32AD θθθ⎫⎛⎫=-=-⎪ ⎪⎪⎝⎭⎭4cos θθ=.在ABC 中,4AC =,由正弦定理得sin sin AC BCB CAB=∠,即41πsin 22BC θ=⎛⎫- ⎪⎝⎭,解得π8sin 8cos 2BC θθ⎛⎫=-= ⎪⎝⎭,所以4cos BC AD θθ⎛⎫-= ⎪ ⎪⎝⎭π3θ⎛⎫+ ⎪⎝⎭.又π0,3θ⎛⎫∈ ⎪⎝⎭,所以ππ2π,333θ⎛⎫+∈ ⎪⎝⎭,当且仅当ππ32θ+=,即π6θ=时,πsin 3θ⎛⎫+ ⎪⎝⎭取得最大值1,所以BC AD -.13.(2024·山东济南·二模)如图,在平面四边形ABCD 中,BC CD ⊥,AB BC ==ABC θ∠=,120180θ︒≤<︒.(1)若120θ=°,3AD =,求ADC ∠的大小;(2)若CD =,求四边形ABCD 面积的最大值.【答案】(1)=45ADC ∠︒2【分析】(1)在ABC 中,利用余弦定理可得AC =30BCA ∠=︒,然后在ADC △中利用正弦定理即可求解;(2)利用勾股定理求得BD =BCD ABD S S + 即可求解.【详解】(1)在ABC 中,AB BC ==120θ=°,所以30BCA ∠=︒,由余弦定理可得,2221262AC ⎛⎫=+--= ⎪⎝⎭,即AC =又BC CD ⊥,所以60ACD ∠=︒,在ADC △中,由正弦定理可得3sin 60=︒sin ADC ∠=因为AC AD <,所以060ADC ︒<∠<︒,所以=45ADC ∠︒.(2)在Rt BCD 中,BC CD ==BD =,所以,四边形ABCD 的面积1122BCD ABD S S S ABD=+=∠2sin ABD =∠,当90ABD Ð=°时,max 2S =,即四边形ABCD 2.14.(2024·湖北武汉·模拟预测)已知锐角ABC 的三内角A B C ,,的对边分别是a b c ,,,且222(cos cos )b c b C c B bc +-⋅+⋅=,(1)求角A 的大小;(2)bc 的取值范围.【答案】(1)π3(2)(]6,9【分析】(1)由余弦定理将cos ,cos B C 化成边,化简再结合余弦定理可求得答案;(2)利用正弦定理,将边化角,再利用角的范围即可得出结果.【详解】(1)()222cos cos b c b C c B bc +-+=Q ,由余弦定理可得22222222222a b c a c b b c b c bc ab ac ⎛⎫+-+-+-⋅+⋅= ⎪⎝⎭,化简整理得222b c a bc +-=,又2222cos b c a bc A +-=,1cos 2A ∴=,又π02A <<,所以π3A =.(2)因为三角形外接圆半径为R b B =,c C =,12sin sin bc B C ∴=,由(1)得2π3B C +=,所以2π112sin sin 12sin sin 12sin sin 32bc B C B B B B B ⎫⎛⎫==-=+⎪ ⎪⎪⎝⎭⎭()2cos 6sin 231cos 2B B B B B =+=+-162cos 232B B ⎫=-+⎪⎪⎭π6sin 236B ⎛⎫=-+ ⎪⎝⎭,因为ABC 是锐角三角形,且2π3B C +=,所以ππ62B <<,ππ5π2666B ∴<-<,1πsin 2126B ⎛⎫∴<-≤ ⎪⎝⎭,π66sin 2396B ⎛⎫∴<-+≤ ⎪⎝⎭,即69bc <≤.所以bc 的取值范围为(]6,9.15.(2024·湖南邵阳·模拟预测)在ABC 中,角,,A B C 的对边分别为,,a b c ,且ABC 的周长为sin sin sin sin a BA B C+-.(1)求C ;(2)若2a =,4b =,D 为边AB 上一点,π6BCD ∠=,求BCD △的面积.【答案】(1)2π3C =;【分析】(1)根据给定条件,利用正弦定理角化边,再利用余弦定理求解即得.(2)由(1)的结论,利用三角形面积公式,结合割补法列式求出CD ,再求出BCD △的面积.【详解】(1)在ABC 中,sin sin sin sin a B A B C a b c +=-++,由正弦定理得aba b c a b c++=+-,整理得222a b c ab +-=-,由余弦定理得2221cos 22a b c C ab +-==-,而0πC <<,所以2π3C =.(2)由D 为边AB 上一点,π6BCD ∠=及(1)得π2ACD ∠=,且+= ACD BCD ABC S S S ,即有1π1π12πsin sin sin 222623b CD a CD ab ⋅+⋅=,则4CD CD +=,解得CD =所以BCD △的面积1π1sin 2264BCD S a CD =⋅=⨯=16.(2024·广东梅州·二模)在ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,cos sin B b A -=,2c =,(1)求A 的大小:(2)点D 在BC 上,(Ⅰ)当AD AB ⊥,且1AD =时,求AC 的长;(Ⅱ)当2BD DC =,且1AD =时,求ABC 的面积ABC S .【答案】(1)2π3A =(2)AC =ABC S 【分析】(1)利用正弦定理,三角函数恒等变换的应用化简已知等式可得tan A 的值,结合(0,)A π∈即可求解A 的值;(2)(Ⅰ)根据锐角三角函数和差角公式可得cos AB AD ABC ABC C BD BD ∠=∠===正弦定理即可求解.(Ⅱ)采用面积分割的方法以及正弦定理即可解决.【详解】(1)cos sin B b A -=,cos sin sin A B B A C -=,又sin sin()sin cos cos sin C A B A B A B =+=+,所以sin sin sin B A A B -=,因为B 为三角形内角,sin 0B >,所以sin A A -=,可得tan A =因为(0,π)A ∈,所以2π3A =;(2)(Ⅰ)此时22AB AD ==,AD AB ⊥,所以D B ==2π1cos sin 32AB AD ABC ABC C B BD BD ⎛⎫⎛⎫∠=∠===+-= ⎪ ⎪⎝⎭⎝⎭在ABC中,由正弦定理可得sin sin sin sin AC AB AB ABCAC ABC C C∠=⇒==∠=(Ⅱ)设CAD α∠=,由ABC BAD CAD S S S =+ ,2π2sin()sin 3b αα=-+2πsin 2sin()3b αα-=-有2,2πsin sin sin sin()3b CD BD ADC ADB αα==∠∠-,由于2BD DC =,所以sin sin 12πsin 22sin()3b ADB ADC αα∠⨯=∠-,所以2πsin()13sin sin 2b ααα-==⇒b =则1sin 2ABC S bc A ==17.(2024·广东广州·一模)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,ABC 的面积为S .已知222)S a c b =+-.(1)求B ;(2)若点D 在边AC 上,且π2ABD ∠=,22AD DC ==,求ABC 的周长.【答案】(1)2π3;(2)3+【分析】(1)根据三角形面积公式和余弦定理,化简已知条件,结合B 的范围,即可求得结果;(2)利用平面向量的线性运算及数量积运算,求得,AB BC ,即可求得三角形周长.【详解】(1)由222)S a c b =+-,则1sin 2cos 2ac B ac B ⋅=⋅,tan B =又()0,πB ∈,故2π3B =.(2)由(1)可知,2π3B =,又π2ABD ∠=,则π6CBD ∠=;由题可知,22AD DC ==,故()11213333BD BC CD BC CA BC BA BC BC BA =+=+=+-=+,所以2211103333BA BD BA BC BA c ac ⎛⎫⋅=⋅+=-= ⎪⎝⎭ ,因为0c ≠,所以a c =,π6A C ==,在Rt △ABD中,πcos6c AD =⋅=,故ABC的周长为33AB BC AC ++=+=+18.(2024·广东佛山·模拟预测)在ABC 中,角,,A B C 所对的边分别为,,a b c ,其中1a =,21cos 2c A b-=.(1)求角B 的大小;(2)如图,D 为ABC 外一点,AB BD =,ABC ABD ∠=∠,求sin sin CABCDB∠∠的最大值.【答案】(1)π3B =【分析】(1)根据题意,由正弦定理将边化为角,可得角的方程,化简计算,即可得到结果;(2)根据题意,由正弦定理可得sin sin CAB CDCDB AC∠=∠,再由余弦定理分别得到22,AC CD ,再由基本不等式代入计算,即可得到结果.【详解】(1)因为1a =,所以2cos 2c aA b-=,由正弦定理sin sin sin a b cA B C ==,可得2sin sin cos 2sin C A A B-=,整理可得2sin cos 2sin sin B A C A =-,又因为()sin sin sin cos sin cos C A B A B B A =+=+,化简可得sin 2sin cos A A B =,而sin 0A ≠,则1cos 2B =,又()0,πB ∈,则π3B =(2)在BCD △中,由sin sin BC CD CDB CBD=∠∠可得2sin 3sin CDB CD π∠=,在ABC 中,由sin sin BC AC CAB ABC=∠∠可得sin3sin CAB ACπ∠=,所以sin sin CAB CDCDB AC∠=∠,设()0AB BD t t ==>,由余弦定理2222cos CD BA BC BA BC CBD =+-⋅⋅∠,2222cos AC BA BC BA BC CBA =+-⋅⋅∠,可得221CD t t =++,221AC t t =+-,因此222221211311CD t t tAC t t t t++==+≤=+-+-,当且仅当1t t =时,即1t =等号成立,所以sin sin CABCDB∠∠1AB BD ==.19.(2024·河北石家庄·二模)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c,设向量(2sin )m A A A =,π2π(cos ,cos sin ),(),,63n A A A f A m n A ⎡⎤=-=⋅∈⎢⎥⎣⎦.(1)求函数()f A 的最大值;(2)若()0,sin f A a B C ==+=ABC 的面积.【答案】(2)ABC S !【分析】(1)由平面向量的数量积与三角恒等变换知识计算可得π()2sin(23f x A =+,再结合三角函数的值域计算即可求得;(2)由题中条件计算可得π3A =,再由正弦定理得b c +=,由余弦定理可得1bc =,再由三角形的面积公式计算即可求得.【详解】(1)()2sin cos )(cos sin )f x m n A A A A A A =⋅=+-22πsin 2sin )sin 222sin(2)3A A A A A A =-=+=+因为π2π,63A ⎡⎤∈⎢⎥⎣⎦,所以π2π5π2,333A ⎡⎤+∈⎢⎥⎣⎦,所以当π2π233A +=,即π6A =时,()f x有最大值2=;(2)因为()0f A =,所以π2sin(2)03A +=,所以π2π,Z 3A k k +=∈,因为π2[,]63A A ∈,所以π3A =,由正弦定理得:22sin a R A===,所以sin 22b bB R ==,sin 22c c C R ==,又因为sin sin B C +=22b c +=所以b c +=,由余弦定理有:2222cos a b c bc A =+-,即23()3b c bc =+-,所以1bc =,所以11sin 122ABC S bc A ==⨯=△20.(2024·广东·一模)设锐角三角形ABC 的内角,,A B C 的对边分别为,,a b c ,已知cos 2cos cos b c A a B C -=.(1)求cos B ;(2)若点D 在AC 上(与,A C 不重合),且π,24C ADB CBD =∠=∠,求CDAD 的值.【答案】(1)12(2)2【分析】(1)根据条件,边转角得到sin sin cos 2sin cos cos B C A A B C -=,再利用sin sin cos cos sin B A C A C =+即可求出结果;(2)根据题设得到π4DBC C ∠==,进而可求得5π12A =,π12ABD ∠=,再利用BCD ABD S CD AD S = ,即可求出结果.【详解】(1)由cos 2cos cos b c A a B C -=,得到sin sin cos 2sin cos cos B C A A B C -=,又sin sin(π)sin()sin cos cos sin B A C A C A C A C =--=+=+,所以cos sin 2sin cos cos C A A B C =,又三角形ABC 为锐角三角形,所以sin 0,cos 0A C ≠≠,得到12cos B =,即1cos 2B =.(2)因为2ADB CBD ∠=∠,又ADB ACB CBD ∠=∠+∠,所以ACB CBD ∠=∠,则BD CD =,所以π4DBC C ∠==,由(1)知,π3B =,则ππ5ππ3412A =--=,π5πππ21212ABD ∠=--=,则1ππ5πππsin sin sin sin sin cos1244124121ππππππsin sin sin sin sin sin tan 212124121212BCDABDBC BD A S CD AD S AB BD C ⋅⋅⋅======⋅⋅⋅ ,又πππtan tan(1243=-=2CD AD ==21.(2024·辽宁·二模)在ABC 中,D 为BC 边上一点,1DC CA ==,且ACD 面积是ABD △面积的2倍.(1)若AB =,求AB的长;(2)求sin sin ADBB∠的取值范围.【答案】(1)1(2)5,4⎛⎫+∞ ⎪⎝⎭【分析】(1)根据三角形面积公式,结合余弦定理进行求解即可;(2)根据余弦定理、二倍角的余弦公式求出,AB AD 的表达式,最后根据正弦定理求出sin sin ADBB∠的表达式,利用余弦函数的最值性质进行求解即可.【详解】(1)设BC 边上的高为AE ,垂足为E ,因为ACD 面积是ABD △面积的2倍,所以有113221222ACD ABDCD AES BD BC S BD AE ⋅==⇒=⇒=⋅ ,设AB x AD ==⇒=,由余弦定理可知:222222229111142cos 322211212x x AC BC AB AC DC AD C AC BC AC DC +-+-+-+-==⇒=⋅⋅⨯⨯⨯⨯,解得1x =或=1x -舍去,即1AB =;(2)由(1)可知13,22BD BC ==,设ADC θ∠=,由π2DC CA DAC ADC C θθ=⇒∠=∠=⇒=-且π0,2θ⎛⎫∈ ⎪⎝⎭,由余弦定理可得:AD ==2cos θ==,AB ====,在ABD △中,因为π0,2θ⎛⎫∈ ⎪⎝⎭,所以由正弦定理可知:sin sin sin sin AB AD ADB ABADB B B AD∠=⇒=∠1144==,因为π0,2θ⎛⎫∈ ⎪⎝⎭,所以()()22211cos 0,1cos 0,1124255cos cos θθθθ∈⇒∈⇒>⇒+>⇒>,于是有sin 5sin 4ADB B ∠>,因此sin sin ADBB ∠的取值范围为5,4∞⎛⎫+ ⎪⎝⎭..22.(2024·黑龙江齐齐哈尔·一模)记ABC 的内角,,A B C 的对边分别为,,a b c,已知π,4cos 24B bC a ==+.(1)求tan C ;(2)若ABC 的面积为32,求BC 边上的中线长.【答案】(1)1tan 2C =.【分析】(1)利用正弦定理以及三角恒等变换的知识求得tan C .(2)根据三角形ABC 的面积求得ac ,根据同角三角函数的基本关系式求得sin ,cos A A ,利用正弦定理、向量数量积运算来求得BC 边上的中线长.【详解】(1)由正弦定理可得sin sin c bC B=,所以4sin cos 2sin B C C A =+,即2sin C C A +,又πA B C ++=,所以π2sin 4C C C C C ⎛⎫=++= ⎪⎝⎭,C C =,解得1tan 2C =;(2)依题意,113sin 222ac B ac ==,解得ac =又3π1tan tan tan 341tan CA C C--⎛⎫=-==- ⎪-⎝⎭,所以A 为钝角,所以由22sin 3cos sin cos 1AAA A ⎧=-⎪⎨⎪+=⎩,解得sin A A ==由正弦定理可得sin sin c C a A ===,又ac =所以sin 3,sin c Ba cb C=====设BC 的中点为D ,则()12AD AB AC =+,所以222212cos 5()444b c bc A AD AB AC ++=+===,所以BC23.(2024·重庆·模拟预测)如图,某班级学生用皮尺和测角仪(测角仪的高度为1.7m )测量重庆瞰胜楼的高度,测角仪底部A 和瞰胜楼楼底O 在同一水平线上,从测角仪顶点C 处测得楼顶M 的仰角,16.5MCE ∠=︒(点E 在线段MO 上).他沿线段AO 向楼前进100m 到达B 点,此时从测角仪顶点D 处测得楼顶M 的仰角48.5MDE ∠=︒,楼尖MN 的视角 3.5MDN ∠=︒(N 是楼尖底部,在线段MO 上).(1)求楼高MO 和楼尖MN ;(2)若测角仪底在线段AO 上的F 处时,测角仪顶G 测得楼尖MN 的视角最大,求此时测角仪底到楼底的距离FO.参考数据:sin16.5sin48.52sin325︒︒≈︒,8tan16.527︒≈,8tan48.57︒≈37.4,≈【答案】(1)41.7m ,5m (2)FO 为37.4m【分析】(1)法一:在CDM V 中,由正弦定理得,可得100sin 48.5sin 32CM ︒=︒,进而求得ME ,MO ,进而求得CE ,计算可求得楼离MO 和楼尖MN ;法二:利用tan ME CE MCE=∠,tan MEDE MDE =∠,可求得ME ,进而计算可求得楼离MO 和楼尖MN ;(2)设m FO x =,40tan MGE x∠=,35tan NGE x ∠=,进而可得()tan tan MGN MGE NGE ∠=∠-∠403540351x x x x -=+⋅,利用基本不等式可求得楼尖MN 的视角最大时x 的值.【详解】(1)法一:16.5MCE ∠=︒,48.5MDE ∠=︒,∴32DMC ∠=︒.在CDM V 中,由正弦定理得,sin sin CD CDMCM DMC∠=∠,又100m CD =,∴()100sin 18048.5100sin 48.5sin 32sin 32CM ︒-︒︒==︒︒.∴100sin 48.5sin16.5sin 40m sin 32ME CM MCE ︒︒=∠==︒,∴40m 1.7m 41.7m MO ME EO =+=+=.40401358tan tan16.527ME CE MCE ====∠︒(m ).∴35m DE CE CD =-=.∵45NDE MDE MDN ∠=∠-∠=︒,∴35m NE DE ==,5m MN ME NE =-=.法二:tan ME CE MCE=∠,tan MEDE MDE =∠,∴100tan tan ME MECE DE MCE MDE-=-=∠∠,即27710088ME ⎛⎫⨯-= ⎪⎝⎭,∴40m ME =,∴40m 1.7m 41.7m MO ME EO =+=+=.40401358tan tan16.527ME CE MCE ====∠︒m .∴35m DE CE CD =-=.∵45NDE MDE MDN ∠=∠-∠=︒,∴35m NE DE ==,5m MN ME NE =-=.(2)设m FO x =,40tan MGE x∠=,35tan NGE x ∠=,∴()tan tan tan tan 1tan tan MGE NGEMGN MGE NGE MGE NGE∠-∠∠=∠-∠=+∠⋅∠40355403540351x x x x x x -==≤=⨯+⋅+当且仅当4035x x⨯=,即37.4x ≈时,等号成立.∴测角仪底到楼底的距离FO 为37.4m 处时,测得楼尖MN 的视角最大.24.(2024·重庆·模拟预测)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知2π2cos sin cos 12222A B B b b a ⎡⎤⎛⎫=-- ⎪⎢⎥⎝⎭⎣⎦.(1)求角A 的大小;(2)若BP PC =,且2b c +=,求AP 的最小值.【答案】(1)π3A =;【分析】(1)根据题意,由正弦定理代入计算,结合三角恒等变换公式代入计算,即可得到结果;(2)根据题意,由平面向量数量积的运算律代入计算,结合基本不等式代入计算,即可得到结果.【详解】(1)在ABC 中,由正弦定理sin sin a bA B=,可得sin sin a B b A =又由2π2cos sin cos 12222A B B b b a ⎡⎤⎛⎫=-- ⎪⎢⎥⎝⎭⎣⎦知2π2sin cos 2cos 122122B B A a b ⎡⎤⎛⎫=⋅-- ⎪⎢⎥⎝⎭⎣⎦,即πsin cos 6a B b A ⎛⎫=- ⎪⎝⎭,得πsin cos 6b A b A ⎛⎫=- ⎪⎝⎭,得π1sin cos sin 62A A A A ⎛⎫=-=+ ⎪⎝⎭,得1sin 2A A =,所以tan A =又因为()0,πA ∈,所以π3A =.(2)由BP PC =,得1122AP AB AC =+ ,所以22221111122442AP AB AC AB AC AB AC⎛⎫=+=++⋅ ⎪⎝⎭ 2222111111cos 442444c b bc A c b bc =++=++()()()22221133442164b c b c bc b c b c ⎡⎤+⎛⎫⎡⎤=+-≥+-=+=⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦,当且仅当2b c b c =⎧⎨+=⎩,即1b c ==时等号成立,故AP25.(2024·山西朔州·一模)已知ABC 的内角,,A B C 的对边分别为,,a b c ,向量()(),,sin sin ,sin sin m a b c n A C A B =+=-- ,且//m n.(1)求B ;(2)求222b a c +的最小值.【答案】(1)π3B =(2)12【分析】(1)利用向量共线的坐标形式可得222a c b ac +-=,结合余弦定理可求B ;(2)利用基本不等式可求最小值.【详解】(1)因为//m n ,所以()()()sin sin sin sin a b A B c A C +-=-,由正弦定理可得()()()a b a b c a c +-=-即222a b ac c -=-,故222a cb ac +-=,所以2221cos 22a cb B ac +-==,而B 为三角形内角,故π3B =.(2)结合(1)可得:2222222221ac b a c ca c c c a a a +==+--++,2211111222c a c a a c c a -≥-=-=+,当且仅当a c =时等号成立,故222b a c+的最小值为12.26.(2024·河南开封·二模)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c,已知cos sin b A B =.(1)求sin A ;(2)若a =①,条件②,条件③中选择一个条件作为已知,使其能够确定唯一的三角形,并求ABC 的面积.条件①:=b ;条件②:b =③ :1sin 3C =.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1)sin A =;(2)答案见解析.【分析】(1)利用正弦定理边化角,结合同角公式计算即得.(2)选择条件①,利用余弦定理及三角形面积公式计算求解;选择条件②,利用正弦定理计算判断三角形不唯一;选择条件③,利用正弦定理计算判断,再求出三角形面积.【详解】(1)由cos sin b A B =得:sin cos sin B A A B =,而sin 0B ≠,则cos 0A A =>,A 为锐角,又22sin cos 1A A +=,解得sin A =所以sin A =且A 为锐角.(2)若选条件①,由sin A =A为锐角,得cos A =由余弦定理得2222cos a b c bc A =+-,又=b ,则222364c c c =+-,解得1,c b ABC ==唯一确定,所以1sin 2ABC S bc A ==.若选条件②,由正弦定理得sin sin a b A B=,则sin 1B =<,由b a =>=B A >,因此角B 有两解,分别对应两个三角形,不符合题意.若选条件③,由sin A =,A为锐角,得cos A又1sin sin 3A C =>=,得a c >,A C >,则cos C =,因此sin sin()sin cos cos sin B A C A C A C ABC =+=+=唯一确定,由正弦定理得sin sin a cA C=,则1c ==,所以1sin 2ABC S ac B ==△。

江苏省高考数学总复习:三角函数及解三角形

江苏省高考数学总复习:三角函数及解三角形
(1)求sinB的值;
(2)若b=2,△ABC的面积为 ,求△ABC的周长.
29小正周期为3π.
(1)求ω的值;
(2)当x∈[ ]时,求函数f(x)的最小值.
30.设函数 ,a,b,c分别为△ABC内角A,B,C的对边,已知f(A)=0,b=2.
(1)若 ,求B;
(2)若a=2c,求△ABC的面积.
31.在锐角△ABC中,角A,B,C对应的边分别是a,b,c,且cos2A+sin( A)+1=0.
(1)求角A的大小;
(2)若△ABC的面积S=3 ,b=3.求sinC的值.
32.在△ABC中,角A、B、C所对的边分别为a、b、c,且﹣2sin2C+2 cosC+3=0.
(2)若a=4,且b+c=6,求△ABC的面积.
12.在△ABC中,角A,B,C的对边分别为a,b,c(a,b,c互不相等),且满足bcosC=(2b﹣c)cosB.
(1)求证:A=2B;
(2)若 ,求cosB.
13.已知△ABC中内角A、B、C所对的边分别为a、b、c,且bcosC+ccosB=﹣4cosA,a=2.
2021年江苏省新高考数学总复习:三角函数及解三角形
1.在三角形ABC中,已知tanC ,cosB .
(1)求tanA的值;
(2)若△ABC的面积为 ,求边BC的长.
2.已知锐角△ABC的三个内角A、B、C满足sinBsinC=(sin2B+sin2C﹣sin2A)tanA.
(Ⅰ)求角A的大小;
(Ⅱ)若△ABC的外接圆的圆心是O,半径是1,求 •( )的取值范围.
3.在△ABC中,内角A,B,C的对边分别为a,b,c,若b=c,2sinB sinA,

2025年高考数学一轮复习-三角函数、解三角形(基础巩固卷)【含答案】

2025年高考数学一轮复习-三角函数、解三角形(基础巩固卷)【含答案】

三角函数、解三角形(基础巩固卷)题号123456789101112答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知=12,且θ()A.0B.12C.32D.12.黄金分割数5-12的近似值为0.618,这一数值也可表示为a=2sin18°,若a2+b=4,则a2b1-cos72°=()A.1 2B.2C.5+12D.43.△ABC中,角A,B,C所对的边分别为a,b,c,满足a=23,B=45°,C =75°,则b=()A.2B.6C.22D.324.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即在△ABC 中,角A,B,C所对的边分别为a,b,c,则△ABC的面积S=根据此公式,若a cos B+(b-2c)cos A=0,且b2+c2-a2=4,则△ABC的面积为()A.6B.23C.3D.325.为得到函数f(x)=sin2x+cos2x的图象,只需将函数g(x)=sin2x-cos2x的图象()A.向左平移π4个单位长度B.向左平移π2个单位长度C.向右平移π4个单位长度D.向右平移π2个单位长度6.已知αα=-17,则sin2α-cos2α1+cos2α的值是()A.-32B.-1 C.1 D.327.在△ABC中,角A,B,C的对边分别为a,b,c.若a sin A+2c sin C=2b sin C cos A,则角A的最大值为()A.π6B.π4C.π3D.2π38.故宫是世界上现存规模最大、保存最为完整的木质结构古建筑群.故宫宫殿房檐设计恰好使北房在冬至前后阳光满屋,夏至前后屋檐遮阴.已知北京地区夏至前后正午太阳高度角约为75°,冬至前后正午太阳高度角约为30°,图1是顶部近似为正四棱锥、底部近似为正四棱柱的宫殿,图2是其示意图,则其出檐AB的长度(单位:米)约为()A.3B.4C.6(3-1)D.3(3+1)二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数f(x)=sin x2,则以下结论恒成立的是()A.f(-x)=-f(x)B.f(-x)=f(x)C.f(2π-x)=f(x)D.f(π+x)=f(π-x)10.已知函数f(x)=cos2x1+sin x,则()A.f(x+π)=f(-x)B.f(x)的最大值为4-22C.f(x)是奇函数D.f(x)的最小值为-1211.在△ABC中,内角A,B,C所对的边分别为a,b,c,B=π4,BC边上的高等于a3,则以下四个结论正确的有()A.cos C=255B.sin∠BAC=31010C.tan∠BAC=3D.b2-c2=a2312.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<π)的部分图象如图所示,关于此函数的描述下列选项正确的是()A.ω=2B.φ=π3C.若x 1+x 2=π3,则f (x 1)=f (x 2)D.若x 1+x 2=π3,则f (x 1)+f (x 2)=0三、填空题:本题共4小题,每小题5分,共20分.13.已知α是第三象限角,且cos =35,则tan α=________,sin (π-α)cos (π+α)=________.14.某设计师为天文馆设计科普宣传图片,其中有一款设计图如图所示.QRT 是一个以点O 为圆心、QT 长为直径的半圆,QT =23dm.QST 的圆心为P ,PQ =PT =2dm.QRT 与QST 所围的灰色区域QRTSQ 即为某天所见的月亮形状,则该月亮形状的面积为________dm 2.15.对任意两实数a ,b ,定义运算“*”:a *b a -2b ,a ≥b ,b -2a ,a <b ,则函数f (x )=sin x *cosx 的值域为________.16.[2022·江西红色七校联考]在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为S ,若4S =b 2+c 2-a 2,b =6,2cos 2B +cos 2B =0,则S =________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)下面给出有关△ABC 的四个论断:①S △ABC =32;②b 2+ac =a 2+c 2;③a c =2或12;④b =3.以其中的三个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若________,则________(用序号表示);并给出证明过程.18.(12分)如图,在平面直角坐标系xOy 中,角φ的终边与单位圆的交点为A ,圆C :x 2+y 2=3与x 轴正半轴的交点是P 0.若圆C 上一动点从P 0开始,以πrad/s 的角速度逆时针做圆周运动,t s 后到达点P .设f (t )=|AP |2.(1)若φ=π3且t ∈(0,2),求函数f (t )的单调递增区间;(2)若2,π3<φ<5π6,求19.(12分)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,3c sin A =4b sin C ,再从下面条件①与②中任选一个作为已知条件,完成以下问题.(1)证明:△ABC 为等腰三角形;(2)若△ABC 的面积为25,点D 在线段AB 上,且BD =2DA ,求CD 的长.条件①:cos C =23;条件②:cos A =19.注:如果选择多个条件分别解答,按第一个解答给分.20.(12分)函数f (x )=A sin(ωx +φ>0,ω>0,|φ|.(1)求f (x )的最小正周期及解析式;(2)设g(x)=f(x)-cos2x,求函数g(x)在区间0,π2上的单调性.21.(12分)已知在△ABC中,角A,B,C所对的边分别是a,b,c,从以下三个条件中选取一个解答该题.①2b-ca=cos Ccos A;②4cos(B+C)+2cos2A=-3;③a3cos A=bsin(A+C).(1)求角A的大小;(2)若a=14,b+c=42,求△ABC的面积.注:如果选择多个条件分别解答,按第一个解答计分.22.(12分)已知f(x)=x+12sinx-34.(1)求f(x)的单调递增区间;(2)若2对任意的x∈π4,π3恒成立,求实数a的取值范围.参考答案1.D [由θ,得-π6<θ-π6<π3,又=12,所以θ-π6=π6,解得θ=π3,故cos 0=1,故选D.]2.B[把a =2sin 18°代入a 2+b =4,得b =4-a 2=4-4sin 218°=4cos 218°,a 2b 1-cos 72°=4sin 218°·4cos 218°1-cos 72°4sin 236°1-(1-2sin 236°)=2.故选B.]3.C[由题意A =180°-45°-75°=60°,由正弦定理b sin B =a sin A ,得b =a sin Bsin A=23×sin 45°sin 60°=22,故选C.]4.C[因为a cos B +(b -2c )cos A =0,所以由余弦定理可得a ×a 2+c 2-b 22ac+(b -2c )×b 2+c 2-a 22bc =0,即b 2+c 2-a 2=bc ,又b 2+c 2-a 2=4,所以bc =4,由△ABC的面积公式得S 1216-4=3,故选C.]5.A [f (x )=2sinx g (x )=2sin x g (x )的图象→f (x )的图象,即g (x )的图象向左平移π4个单位长度.故选A.]6.B [由α=-17,可得tan 2α+11-tan 2α=-17,解得tan 2α=-43,又由2tan α1-tan 2α=-43,解得tan α=-12,或tan α=2(舍去),则sin 2α-cos 2α1+cos 2α=2sin αcos α-cos 2α2cos 2α=tan α-12=-1.故选B.]7.A[由正弦定理可得a 2+2c 2=2bc cos A ,根据余弦定理得b 2+c 2-2bc cos A +2c 2=2bc cos A ,整理得4bc cos A =b 2+3c 2≥23bc ,当且仅当b =3c 时等号成立,所以cos A ≥32,又A ∈(0,π),所以0<A ≤π6,故选A.]8.C[如图,根据题意得∠ACB =15°,∠ACD =105°,∠ADC =30°,CD =24,所以∠CAD =45°,所以在△ACD 中,由正弦定理得CD sin ∠CAD =ACsin ∠ADC,即24sin 45°=ACsin 30°,解得AC =122,所以在Rt △ACB 中,sin ∠ACB =ABAC ,即sin 15°=AB 122,解得AB =122sin 15°=122sin(60°-45°)=122×22-12×122×6-24=32(6-2)=63-6.故选C.]9.ACD [对于A ,B ,f (-x )=sin x2=-f (x ),所以A 正确,B 错误;对于C ,f (2π-x )=sin 2π-x 2=sin x2=f (x ),所以C 正确;对于D ,因为f (π+x )=sin π+x 2=cos x2,f (π-x )=sin π-x 2==cos x2,所以f (π+x )=f (π-x ),所以D 正确,故选ACD.]10.AB [由题意,函数f (x )=cos 2x 1+sin x ,可得f (x +π)=cos[2(x +π)]1+sin (x +π)=cos 2x1-sin x ,f (-x )=cos (-2x )1+sin (-x )=cos 2x1-sin x,所以A 正确;f(x)=cos2x1+sin x=1-2sin2x 1+sin x=4+2sin x4-22,当且仅当sin x=22-1时等号成立,故B正确;由f(-x)=cos(-2x)1+sin(-x)=cos2x1-sin x,得f(-x)≠-f(x),所以C不正确;1+=-121-32=-2-3<-12,所以D不正确.故选AB.]11.ABD[∵sin B=a3c=a3c=22,∴c=23a.由余弦定理知,cos B=a2+c2-b22ac==22,解得b=53a,b2-c2=13a2,选项D正确;b=53a,由正弦定理得sin B=53sin∠BAC=22,则sin∠BAC=31010,选项B 正确;易知c=105b,B=π4,则C<π4⇒∠BAC>π2,tan∠BAC=-3,选项C错误;sin C=105sin B=105×22=55⇒cos C=255,选项A正确.故选ABD.]12.AC[对于A,由题图知,f(x)的最小正周期T=25π12-π,所以ω=2πT =2,故A正确;对于B,由A知f(x)=2sin(2x+φ),-π12,得2+φ=2kπ(k∈Z),结合|φ|<π解得φ=π6,故B错误;对于C 、D ,由B 知f (x )=x令2x +π6=k π+π2(k ∈Z ),得x =k π2+π6(k ∈Z ),所以直线x =π6是函数f (x )图象的一条对称轴,由x 1+x 2=π3,知x 1,x 2关于直线x =π6对称,所以f (x 1)=f (x 2),故C 正确,D 错误.综上所述,正确的结论为A 、C.]13.34-45[因为=35,所以-sin α=35,所以sin α=-35.又因为α是第三象限角,所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=34,sin (π-α)cos (π+α)=-sin αcos α-sin α=cos α=-45.]14.3+π6[连接PO ,可得PO ⊥QT ,因为sin ∠QPO =QO PQ =32,所以∠QPO =π3,∠QPT =2π3,所以月牙的面积为S =12×π×(3)222×2π3-12×23×2.故答案为3+π6.]15.[0,22][由题知a *b =2|a -b |,则f (x )=sin x *cos x =2|sin x -cos x |=22|∈[0,22].]16.3+32[在△ABC 中,由余弦定理得,cos A =b 2+c 2-a 22bc,因为4S =b 2+c 2-a 2,S =12bc sin A ,所以cos A =4S 2bc =4×12bc sin A 2bc=sin A ,所以tan A=1.又AA =π4由2cos 2B +cos 2B =0得2cos 2B +2cos 2B -1=0,即cos 2B =14,又BB =π3,由正弦定理a sin A =b sin B 得,a =b sin A sin B =6×2232=2.因为sin C =sin[π-(A +B )]=sin(A +B )=sin A cos B +cos A sin B =22×12+22×32=6+24,所以S =12ab sin C =3+32.]17.解方案一若①②③,则④.由②得b 2=a 2+c 2-ac ,得cos B =12,又B ∈(0°,180°),即B =60°.由①S △ABC =32,得12ac sin B =32,又B =60°,故ac =2.由③a c =2或12,不妨取a c=2,与ac =2联立,得a =2,c =1.故b 2=a 2+c 2-ac =4+1-2=3,得b =3,④成立.方案二若①②④,则③.由②得b 2=a 2+c 2-ac ,得cos B =12,又B ∈(0°,180°),即B =60°.由①S △ABC =32,得12ac sin B =32,又B =60°,故ac =2.由④b =3,且b 2=a 2+c 2-ac ,可得a 2+c 2-ac =3,从而(a +c )2=9,a +c =3,与ac =2联立,=2,=1=1,=2,故a c =2或12,③成立.方案三若①③④,则②.(错误选择,零分)由①S △ABC =32,得12ac sin B =32,由③a c =2或12,不妨取a c =2,得c 2sin B =32,即sin B =32c2.由④b =3,且b 2=a 2+c 2-2ac cos B ,a c=2,可得5c 2-4c 2cos B =3,从而cos B =5c 2-34c 2.又sin 2B +cos 2B =1,得3c 4-10c 2+7=0,得c =1或73,当c =1时,得a =2,由余弦定理b 2=a 2+c 2-2ac cos B 及b =3,得cos B =12,又B ∈(0°,180°).即B =60°,即b 2=a 2+c 2-ac 成立,②成立;当c =73时,得a =273,由余弦定理b 2=a 2+c 2-2ac cos B 及b =3,得cos B =1314,故B =60°不成立,即b 2=a 2+c 2-ac 不成立,②不成立.方案四若②③④,则①.由②得b 2=a 2+c 2-ac ,得cos B =12,又B ∈(0°,180°),即B =60°.由④b =3,且b 2=a 2+c 2-ac ,得a 2+c 2-ac =3.由③a c =2或12,不妨取a c=2,代入a 2+c 2-ac =3中可得,3c 2=3,得c =1,a =2,从而得12ac sin B =32,即S △ABC =32,①成立.18.解由已知条件和三角函数的定义得,A (cos φ,sin φ),P (3cos πt ,3sin πt ),∴f (t )=|AP |2=(cos φ-3cos πt )2+(sin φ-3sin πt )2=4-23cos(πt -φ).(1)若φ=π3,则f (t )=4-23cos t 令2k π≤πt -π3≤π+2k π(k ∈Z ),得13+2k ≤t ≤43+2k (k ∈Z ).又t ∈(0,2),∴函数f (t )的单调递增区间是13,43.(2)由2,及π3<φ<5π6,得=33,-π2<π3-φ<0,∴=-63,∴4-23cos=4+23sin 4-2 2.19.解选择条件①cos C =23.(1)证明由3c sin A =4b sin C 和正弦定理得3a =4b ,由cos C =23和余弦定理得23=a 2+b 2-c 22ab =25b 2-9c 224b 2,∴b =c ,∴△ABC 为等腰三角形.(2)由(1)得3a =4b ,b =c ,∵cos ∠ACB =23,且∠ACB 为△ABC 一内角,∴sin ∠ACB =53,∴S △ABC =12ab sin ∠ACB =259c 2=25,∴c =b =3,a =4.∵BD =2DA ,∴BD =2,DA =1,∴CD 2=a 2+BD 2-2a ·BD cos B =42+22-2×4×2×23=283,∴CD =2213.选择条件②cos A =19.(1)证明由3c sin A =4b sin C 和正弦定理得3a =4b ,由cos A =19和余弦定理得19=b 2+c 2-a 22bc =9c 2-7b 218bc ,∴b =c 或b =-97c (舍去),∴△ABC 为等腰三角形.(2)由(1)得3a =4b ,b =c ,∵cos A =19,且A ∈(0,π).∴sin A =459,∴S △ABC =12bc sin A =259b 2=25,∴c =b =3,a =4.∵BD =2DA ,∴BD =2,DA =1,∴CD 2=b 2+AD 2-2b ·AD cos A =283,∴CD =2213.20.解(1)由图可得A =1,T 2=2π3-π6=π2,则T =π,ω=2,当x =π6时,f (x )=1,可得2×π6+φ=π2+2k π(k ∈Z ),而|φ|<π2,于是有φ=π6,所以f (x )的解析式为f (x )=x π.(2)g (x )=f (x )-cos 2x =x cos 2x =sin 2x cos π6+cos 2x sin π6-cos 2x =32sin 2x -12cos 2x =x 由0≤x ≤π2,得-π6≤2x -π6≤5π6,当-π6≤2x -π6≤π2有0≤x ≤π3,g (x )单调递增,当π2<2x -π6≤5π6有π3<x ≤π2,g (x )单调递减,所以g (x )在0,π3单调递增,在,π2单调递减.21.解若选①,(1)根据正弦定理知,2b -c a =2sin B -sin C sin A=cos C cos A ,即2sin B ·cosA =cos C ·sin A +sin C ·cos A ,即2sinB ·cos A =sin(A +C ),因为A +C =π-B ,所以2sin B ·cos A =sin B ,又B ∈(0,π),故sin B ≠0,解得cos A =12.又A ∈(0,π),所以A =π3.(2)因为a 2=b 2+c 2-2bc cos A=(b +c )2-2bc -2bc cos A ,a =14,b +c =42,A =π3,所以(14)2=(42)2-2bc -2bc ×12,得bc =6,所以S △ABC =12bc ·sin A =12×6×sin π3=332.若选②,(1)由题意可得4cos(B +C )+2(2cos 2A -1)=-3,又cos(B +C )=-cos A ,所以-4cos A +2(2cos 2A -1)=-3,所以4cos 2A -4cos A +1=0,解得cos A =12,又A ∈(0,π),所以A =π3.(2)因为a 2=b 2+c 2-2bc cos A=(b +c )2-2bc -2bc cos A ,a =14,b +c =42,A =π3,所以(14)2=(42)2-2bc -2bc ×12,得bc =6,所以S △ABC =12bc ·sin A =12×6×sin π3=332.若选③,(1)由正弦定理及a 3cos A =b sin (A +C ),得sin A 3cos A =sin B sin (A +C ),又sin(A +C )=sin(π-B )=sin B ,所以sin A 3cos A =sin B sin B ,得tan A = 3.又A ∈(0,π),所以A =π3.(2)因为a 2=b 2+c 2-2bc cos A=(b +c )2-2bc -2bc cos A ,a =14,b +c =42,A =π3,所以(14)2=(42)2-2bc -2bc ×12,得bc =6,所以S △ABC =12bc ·sin A =12×6×sin π3=332.22.解(1)化简得f (x )=cosx +32cos2x +32cos 2-34=14sin 2x +32×1+cos 2x 2+14sin 2x +34cos 2x -34=12sin 2x +32cos 2x =x 令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,解得k π-5π12≤x ≤k π+π12,k ∈Z ,所以单调递增区间为-512π+k π,π12+k π,k ∈Z .(2)由(1)可得a sin x -cos x ≥2,即a ≥2+cos x sin x,对任意的x ∈π4,π3恒成立,只需要amax 即可,2+cos x sin x=2sin x 2cos x 22sin x 2cos x 2令t=sin x2cos x2=tanx2,因为x∈π4,π3,则x2∈π8,π6,所以t=tan x2∈2-1,33,所以2+cos xsin x=3+t22t=32t+t2,由对勾函数性质可得,当t∈2-1,33时,y=32t+t2为减函数,所以当t=2-1max=22+1,所以实数a的取值范围是[22+1,+∞).。

压轴题05 三角函数与解三角形范围与最值问题(解析版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题05 三角函数与解三角形范围与最值问题(解析版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题05三角函数与解三角形范围与最值问题三角函数与解三角形是每年高考常考内容,在选择、填空题中考查较多,有时会出现在选择题、填空题的压轴小题位置,综合考查以解答题为主,中等难度.考向一:ω取值与范围问题考向二:面积与周长的最值与范围问题考向三:长度的范围与最值问题1、正弦定理和余弦定理的主要作用,是将三角形中已知条件的边、角关系转化为角的关系或边的关系,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素.2、与三角形面积或周长有关的问题,一般要用到正弦定理或余弦定理,进行边和角的转化.要适当选用公式,对于面积公式111sin sin sin222S ab C ac B bc A===,一般是已知哪一个角就使用哪个公式.3、对于利用正、余弦定理解三角形中的最值与范围问题,主要有两种解决方法:一是利用基本不等式,求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围,确定所求式的范围.4、利用正、余弦定理解三角形,要注意灵活运用面积公式,三角形内角和、基本不等式、二次函数等知识.5、正弦定理和余弦定理是求解三角形周长或面积最值问题的杀手锏,要牢牢掌握并灵活运用.利用三角公式化简三角恒等式,并结合正弦定理和余弦定理实现边角互化,再结合角的范围、辅助角公式、基本不等式等求其最值.6、三角形中的一些最值问题,可以通过构建目标函数,将问题转化为求函数的最值,再利用单调性求解.7、“坐标法”是求解与解三角形相关最值问题的一条重要途径.充分利用题设条件中所提供的特殊边角关系,建立恰当的直角坐标系,选取合理的参数,正确求出关键点的坐标,准确表示出所求的目标,再结合三角形、不等式、函数等知识求其最值.一、单选题1.(2023·浙江金华·模拟预测)已知函数π()sin cos (0)6f x x x ωωω⎛⎫=-+> ⎪⎝⎭在[0,π]上有且仅有2个零点,则ω的取值范围是()A .131,6⎡⎤⎢⎥⎣⎦B .713,66⎡⎫⎪⎢⎣⎭C .7,26⎡⎫⎪⎢⎣⎭D .131,6⎡⎫⎪⎢⎣⎭【答案】B【解析】π1()sin cos sin sin 62f x x x x x x ωωωωω⎫⎛⎫=-+=--⎪ ⎪⎪⎝⎭⎝⎭3sin cos 22x x ωω=-1sin cos 22x x ωω⎫=-⎪⎪⎭π6x ω⎛⎫=- ⎪⎝⎭因为()f x 在 [0,π]上仅有2个零点,当 [0,π]x ∈时,πππ,π666x ωω⎡⎤-∈--⎢⎥⎣⎦(0ω>),所以πππ6ππ2π6ωω⎧-≥⎪⎪⎨⎪-<⎪⎩,解得71366ω≤<.故选:B.2.(2023·吉林长春·统考三模)已知函数()π2cos 13f x x ω⎛⎫=-+ ⎪⎝⎭,(0ω>)的图象在区间()0,2π内至多存在3条对称轴,则ω的取值范围是()A .50,3⎛⎤ ⎥⎝⎦B .25,33⎛⎤ ⎥⎝⎦C .57,36⎡⎫⎪⎢⎣⎭D .5,3⎡⎫+∞⎪⎢⎣⎭【答案】A【解析】因为()0,2πx ∈,0ω>,所以πππ,2π333x ωω⎛⎫-∈-- ⎪⎝⎭,画出2cos 1y z =+的图象,要想图象在区间()0,2π内至多存在3条对称轴,则ππ2π,3π33ω⎛⎤-∈- ⎥⎝⎦,解得50,3ω⎛⎤∈ ⎥⎝⎦.故选:A3.(2023·河南·许昌实验中学校联考二模)已知函数())π2sin 06f x x ωω⎛⎫=-> ⎪⎝⎭在3π0,4⎡⎤⎢⎥⎣⎦内有且仅有两个零点,则ω的取值范围是()A .75,93⎛⎤⎥⎝⎦B .75,93⎡⎫⎪⎢⎣⎭C .1010,93⎡⎫⎪⎢⎣⎭D .1010,93⎛⎤⎥⎝⎦【答案】C【解析】由题意知π3sin 62x ω⎛⎫-= ⎪⎝⎭在3π0,4⎡⎤⎢⎥⎣⎦内有且仅有两个解.因为3π0,4x ⎡⎤∈⎢⎥⎣⎦,所以ππ3ππ,6646x ωω⎡⎤-∈--⎢⎥⎣⎦,则需2π3ππ7π3463ω≤-<,解得101093ω≤<.故选:C4.(2023·广西·统考一模)定义平面凸四边形为平面上每个内角度数都小于180︒的四边形.已知在平面凸四边形ABCD 中,30,105,2A B AB AD ∠=︒==︒∠=,则CD 的取值范围是()A .⎫⎪⎪⎣⎭B .⎣⎭C .⎣⎭D .212⎫⎪⎢⎪⎣⎭【答案】A【解析】在ABD △中,由余弦定理得:2222cos 3422cos301BD AB AD AB AD A =+-⋅=+-⨯=,显然2224AB BD AD +==,即90ABD ∠=o ,60ADB ∠=o ,在BCD △中,1BD =,15CBD ∠= ,因为ABCD 为平面凸四边形,则有0120BDC <∠< ,因此45165BCD <∠< ,而62sin165sin15sin(4530)sin 45cos30cos 45sin 302==-=-=,由正弦定理sin sin CD BD CBD BCD =∠∠得:sin 62sin 4sin BD CBD CD BCD BCD∠==∠∠,当4590BCD <∠≤ 时,sin 12BCD <∠≤,当90165BCD <∠< 时,sin 1BCD <∠<,sin 1BCD <∠≤,11sin BCD ≤<∠1CD ≤<,所以CD 的取值范围是62[4.故选:A5.(2023·全国·校联考二模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,3b =,若2222b a c =+,则△ABC 面积的最大值为()A .2B .34C .1D .32【答案】D【解析】因为2222b a c =+,所以()222cos ,0,π22a c b aB B ac c+-==-∈,所以sin B =42c=,所以△ABC 的面积14sin 24ABCS ac B == =222194122a c a +-⨯()22421122a c +=⨯32=,当且仅当22249c a a -=,即a c ==ABC 面积的最大值为32.故选:D6.(2023·广西柳州·柳州高级中学校联考模拟预测)在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知60B = ,4b =,则ABC 面积的最大值为()A .B .C .D .6【答案】B【解析】由余弦定理可得22222162cos 2b a c ac B a c ac ac ac ac ==+-=+-≥-=,即16ac ≤,当且仅当4a c ==时,等号成立,故1sin 162ABC S ac B ac =⨯= .因此,ABC面积的最大值为故选:B.7.(2023·全国·模拟预测)已知函数()sin()(0)f x x ωϕω=+>是在区间π5π,1836⎛⎫⎪⎝⎭上的单调减函数,其图象关于直线π36x =-对称,且f (x )的一个零点是7π72x =,则ω的最小值为()A .2B .12C .4D .8【答案】C【解析】因为函数()()sin f x x ωϕ=+的图象关于直线π36x =-对称,所以πππ362n ωϕ-⋅+=+,n ∈Z ,所以ϕ=1π236n ω⎛⎫++ ⎪⎝⎭,n ∈Z ,根据π5π1836x <<,则π5π1836x ωωω<<,所以π5π1836x ωωϕωϕϕ+<+<+,因为()()sin f x x ωϕ=+是在区间π5π,1836⎛⎫⎪⎝⎭上的单调减函数.所以ππ2π,1825π3π2π,362k k k k ωϕωϕ⎧+≥+∈⎪⎪⎨⎪+≤+∈⎪⎩Z Z ,所以π1ππ2π,,1823625π13ππ2π,,362362n k n k n k n k ωωωω⎧⎛⎫+++≥+∈∈ ⎪⎪⎪⎝⎭⎨⎛⎫⎪+++≤+∈∈ ⎪⎪⎝⎭⎩Z Z Z Z ,即112,,1823625132,,362362n k n k n k n k ωωωω⎧⎛⎫+++≥+∈∈ ⎪⎪⎪⎝⎭⎨⎛⎫⎪+++≤+∈∈ ⎪⎪⎝⎭⎩Z Z Z Z ,解得()()122621k n k n ω-≤≤-+,n ∈Z ,k ∈Z ,因为0ω>,所以20k n -=或21k n -=,当20k n -=时,06ω<≤,当21k n -=时,1212ω≤≤;由于π7π5π187236<<,且f (x )的一个零点是7π72x =,所以()7π21π72m ωϕ⨯+=+,m ∈Z ,所以()7π1π21π72236n m ωω⎛⎫⨯+++=+ ⎪⎝⎭,m ∈Z ,n ∈Z ,即()824m n ω=-+,m ∈Z ,n ∈Z .根据06ω<≤或1212ω≤≤,可得4ω=,或12ω=,所以ω的最小值为4.故选:C.二、多选题8.(2023·安徽滁州·统考二模)在平面直角坐标系xOy 中,△OAB 为等腰三角形,顶角OAB θ∠=,点()3,0D 为AB 的中点,记△OAB 的面积()S f θ=,则()A .()18sin 54cos f θθθ=-B .S 的最大值为6C .AB 的最大值为6D .点B 的轨迹方程是()22400x y x y +-=≠【答案】ABD【解析】由OAB θ∠=,OA AB =,()3,0D 为AB 的中点,若(,)A x y 且0y ≠,则(6,)B x y --,故222222(62)(2)4(3)4x y x y x y +=-+-=-+,整理得:22(4)4x y -+=,则A 轨迹是圆心为(4,0),半径为2的圆(去掉与x 轴交点),如下图,由圆的对称性,不妨令A 在轨迹圆的上半部分,即02A y <≤,令22OA AB AD a ===,则222||||2cos OD OA AD OA AD θ=+-,所以2254cos 9a a θ-=,则2954cos a θ=-,所以2118sin sin 2sin 254cos OAB OAD OBD S S S OA AB a θθθθ=+===- ,A 正确;由113(0,6]22OAB OAD OBD A B A S S S y OD y OD y =+=⋅+⋅=∈ ,则S 的最大值为6,B 正确;由下图知:(2,6)OA AB =∈,所以AB 无最大值,C 错误;令(,)B m n ,则60A A x my n =-⎧⎨=-≠⎩代入A 轨迹得22(2)4m n -+=,即2240m m n -+=,所以B 轨迹为2240x x y -+=且0y ≠,D正确;故选:ABD三、填空题9.(2023·青海·校联考模拟预测)在锐角ABC 中,内角A ,B ,C 所对应的边分别是a ,b ,c ,且()2sin 2sin cos sin 2c B A a A B b A -=+,则ca的取值范围是______.【答案】()1,2【解析】由正弦定理和正弦二倍角公式可得()2sin sin 2sin sin cos sin sin 2C B A A A B B A-=+()2sin sin cos 2sin sin cos 2sin sin cos sin cos A A B B A A A A B B A =+=+()2sin sin A A B =+,因为π0<<,π2C C A B -=+,所以()()0s s in s in πin C A C B =-=≠+,可得()sin sin B A A -=,因为ππ0022A B <<<<,,所以ππ22B A -<-<,所以2B A =,π3C A =-,由202πB A <=<,203ππC A <<=-可得ππ64A <<,cos 22A <<,213cos 24A <<,由正弦定理得()sin 2sin sin 3sin 2cos cos 2sin sin sin sin sin A A c C A A A A Aa A A A A++====()222cos cos 24cos 11,2A A A =+=-∈.故答案为:()1,2.10.(2023·上海金山·统考二模)若函数πsin 3y x ω⎛⎫=- ⎪⎝⎭(常数0ω>)在区间()0,π没有最值,则ω的取值范围是__________.【答案】506ω<≤【解析】因为0ω>,()0,πx ∈,所以ππππ333x ωω-<-<-,又因为函数πsin 3y x ω⎛⎫=- ⎪⎝⎭(常数0ω>)在区间()0,π没有最值,所以πππ32ω-≤,解得506ω<≤,所以ω的取值范围是506ω<≤故答案为:506ω<≤.11.(2023·全国·校联考二模)设锐角三角形ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且sin sin sin b B a A a C =+,则3b ca-的取值范围是______.【答案】132,]4【解析】由sin sin sin b B a A a C =+,得22b a ac =+,由余弦定理得2222cos 222b c a c ac a cA bc bc b+-++===,由正弦定理得sin sin cos 22sin a c A C A b B++==,即s sin 2sin c i o n s C B A A +=,又()sin sin C A B =+,所以sin sin cos cos sin 2cos sin A A B A B A B ++=,即sin sin os sin cos A Bc A A B =-,所以()sin sin A B A =-,因为,A B 为ABC 的内角,所以πB A A -+=(舍去)或B A A -=,所以2B A =.由正弦定理得33sin sin 3sin 2sin()3sin 2sin 3sin sin sin b c B C A B A A Aa A A A---+-===因为()2sin 3sin 2sin 2cos cos 2sin 2sin cos cos 2sin A A A A A A A A A A A =+=+=+,又(0,π),sin 0A A ∈≠,所以236sin cos 2sin cos cos 2sin sin b c A A A A A Aa A---=2226cos 2cos cos 26cos 2cos 2cos 1A A A A A A =--=--+223134cos 6cos 14(cos )44A A A =-++=--+,由于π2(0,)2B A =∈得π(0,)4A ∈,由πππ3(0,)2C A B A =--=-∈,得ππ(,)63A ∈,则ππ(,)64A ∈,所以2cos 2A ∈,当3cos 4A =时,23134(cos )44A --+取最大值134,当cos A =23134(cos )44A --+等于2,当cos A =23134(cos )44A --+等于1,而21>,所以3b ca -取值范围是132,]4,故答案为:132,]412.(2023·上海嘉定·统考二模)如图,线段AB 的长为8,点C 在线段AB 上,2AC =.点P 为线段CB 上任意一点,点A 绕着点C 顺时针旋转,点B 绕着点P 逆时针旋转.若它们恰重合于点D ,则CDP △的面积的最大值为__________.【答案】【解析】由题意可知,6C AB C B A =-=,即6PC PB +=.在CDP △中,有CD AC 2==,DP PB =,所以6PC DP +=.由余弦定理可得,()222224cos 22PC DP PC DP PC DP CD CPD PC DP PC DP+-⋅-+-∠==⋅⋅3624162PC DP PC DP PC DP PC DP-⋅--⋅==⋅⋅,所以22sin 1cos CPD CPD ∠=-∠2161PC DP PC DP -⋅⎛⎫=- ⎪⋅⎝⎭2221632PC DP PC DP -+⋅=⋅,所以有221sin 2CDPS PC PD CPD ⎛⎫=⋅∠ ⎪⎝⎭△22221256324PC DPPC DP PC DP -+⋅=⋅⋅⋅⋅864PC DP =⋅-2864896482PC DP +⎛⎫≤-=⨯-= ⎪⎝⎭,当且仅当3PC PB ==时,等号成立.所以,28CDP S ≤△,所以,CDP S ≤△CDP △的面积的最大值为故答案为:四、解答题13.(2023·湖南益阳·统考模拟预测)ABC 中,角,,A B C 的对边分别为,,a b c ,从下列三个条件中任选一个作为已知条件,并解答问题.①sin sin 2B Cc a C +=;②sin 1cos a C A=-;③ABC )222b c a +-.(1)求角A 的大小;(2)求sin sin B C 的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.【解析】(1)选择①:由正弦定理可得,sin cossin sin 2AC A C =,因为(0,π),sin 0C C ∈>,所以cossin 2A A =,即cos 2sin cos 222A A A =,因为π022A <<,所以cos 02A >,所以1sin 22A =,所以π26A =,即π3A =;选择②sin 1cos a CA=-,则sin cos a C A =,由正弦定理得sin sin cos A C C C A =-,因为(0,π),sin 0C C ∈>,所以sin A A =,即π3sin 32A ⎛⎫+= ⎪⎝⎭,因为0πA <<,所以ππ4π333A <+<,所以π2π33A +=,即π3A =;选择③:由()2221sin 42ABC S b c a bc A =+-= ,222sin 2b c a A bc+-=sin A A =,所以tan A =0πA <<,故π3A =.(2)方法一:πsin sin sin sin 3B C B B ⎛⎫=⋅+ ⎪⎝⎭1sin sin cos 22B B B ⎛⎫=+ ⎪ ⎪⎝⎭21sin sin cos 22B B B =+11cos244B B =-11πsin 2426B ⎛⎫=+- ⎪⎝⎭因为2π03B <<,所以ππ7π2666B -<-<,所以1πsin 2126B ⎛⎫-<-≤ ⎪⎝⎭,所以11π3024264B ⎛⎫<+-≤ ⎪⎝⎭,即sin sin B C 的取值范围为30,4⎛⎤⎥⎝⎦.方法二:由余弦定理,222222cos a b c bc A b c bc =+-=+-,再由正弦定理,222sin sin sin sin sin A B C B C =+-,因为π3A =,所以223sin sin sin sin 2sin sin sin sin 4B C B C B C B C =+-≥-,即3sin sin 4B C ≥,当且仅当sin sin 2B C ==时“=”成立.又因为sin 0B >,sin 0C >,所以30sin sin 4B C <≤,即sin sin B C 的取值范围为30,4⎛⎤⎥⎝⎦.14.(2023·陕西榆林·统考三模)已知,,a b c 分别为ABC 的内角,,A B C 所对的边,4AB AC ⋅=,且sin 8sin ac B A =.(1)求A ;(2)求sin sin sin A B C 的取值范围.【解析】(1)cos 4AB AC bc A ⋅==,由sin 8sin ac B A =及正弦定理,得8abc a =,得8bc =,代入cos 4bc A =得1cos 2A =,又因为(0,π)A ∈,所以π3A =.(2)由(1)知π3A =,所以2ππ3C A B B =--=-.所以2ππsin sin sin sin sin 33A B C B B B B ⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭213cos sin sin cos sin 22244B B B B B B ⎛⎫=+=+ ⎪ ⎪⎝⎭3sin 228B B =+π2468B ⎛⎫=-+ ⎪⎝⎭,因为2π03B <<,所以ππ7π2666B -<-<,所以1πsin 2126B ⎛⎫-<-≤ ⎪⎝⎭,所以3π333024688B ⎛⎫<-+ ⎪⎝⎭,故sin sin sin A B C 的取值范围是⎛ ⎝⎦.15.(2023·上海浦东新·统考二模)已知,0R ωω∈>,函数cos y x x ωω-在区间[0,2]上有唯一的最小值-2,则ω的取值范围为______________.【解析】πcos 2sin 6y x x x ωωω⎛⎫=-=- ⎪⎝⎭,因为[]0,2x ∈,0ω>,所以πππ,2666x ωω⎡⎤-∈--⎢⎥⎣⎦,因为函数π2sin 6y x ω⎛⎫=- ⎪⎝⎭在[]0,2x ∈上有唯一的最小值-2,所以π3π7π2,622ω⎡⎫-∈⎪⎢⎣⎭,解得5π11π,66ω⎡⎫∈⎪⎢⎣⎭,故ω的取值范围是5π11π,66⎡⎫⎪⎢⎣⎭.故答案为:5π11π,66⎡⎫⎪⎢⎣⎭16.(2023·浙江金华·模拟预测)在ABC 中,角A ,B ,C 所对应的边为a ,b ,c .已知ABC 的面积4ac S =,其外接圆半径2R =,且()224cos cos ()sin A B b B -=.(1)求sin A ;(2)若A 为钝角,P 为ABC 外接圆上的一点,求PA PB PB PC PC PA ⋅+⋅+⋅的取值范围.【解析】(1)由1sin 42ac S ac B ==,得1sin 2B =,()()()()2222224cos cos 41sin 1sin 4sin sin A B A B B A ⎡⎤-=---=-⎣⎦,由正弦定理24sin sin a bR A B===,4sin ,4sin a A b B ==,则2()sin 4sin 4sin b B B A B =-,由()224cos cos ()sin A B b B -=,得()2224sin sin 4sin 4sin B A B A B -=-,化简得2sin sin A A B =,由()0,πA ∈,sin 0A ≠,解得sin A B =,因此sin A =.(2)由(1)得,若A 为钝角,则120A =o ,则3030B C == ,,如图建立平面直角坐标系,则(0,2),(A B C ,设(2cos ,2sin )P θθ.则(2cos ,22sin )PA θθ=-- ,(2cos ,12sin )PB θθ=- ,2cos ,12sin )PC θθ=-,有66sin PA PB θθ⋅=-+ ,66sin PA PC θθ⋅=-- ,24sin PB PC θ⋅=-,则1416sin PA PB PA PC PB PC ⋅+⋅+⋅=-θ.由sin [1,1]θ∈-,则1416sin [2,30]-∈-θ,所以PA PB PB PC PC PA ⋅+⋅+⋅的取值范围为[2,30]-.17.(2023·山西·校联考模拟预测)已知函数()()()sin 0,0f x A x A ωϕω=+>>的图象是由π2sin 6y x ω⎛⎫=+ ⎪⎝⎭的图象向右平移π6个单位长度得到的.(1)若()f x 的最小正周期为π,求()f x 的图象与y 轴距离最近的对称轴方程;(2)若()f x 在π3π,22⎡⎤⎢⎥⎣⎦上有且仅有一个零点,求ω的取值范围.【解析】(1)由2ππω=,得2ω=,所以()πππ2sin 22sin 2666f x x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令ππ2π62x k -=+,k ∈Z ,解得ππ23k x =+,k ∈Z ,取0k =,得π3x =,取1k =-,得π6x =-,因为ππ63-<,所以与y 轴距离最近的对称轴方程为π6x =-.(2)由已知得()()1πππ2sin 2sin666f x x x ωωω-⎡⎤⎡⎤⎛⎫=-+=+⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎣⎦,令()1ππ6x k ωω-+=,k ∈Z ,解得61π6k x ωω+-=,k ∈Z .因为()f x 在π3π,22⎡⎤⎢⎥⎣⎦上有且仅有一个零点,所以π613ππ26267ππ<62653ππ>62k k k ωωωωωω+-⎧≤≤⎪⎪+-⎪⎨⎪++⎪⎪⎩()k ∈Z 所以616182676528k k k k ωω--⎧≤≤⎪⎪⎨-+⎪<<⎪⎩.因为0ω>,所以616102861026567082k k k k k --⎧-≥⎪⎪⎪->⎨⎪⎪+-->⎪⎩,解得133618k <<,k ∈Z ,所以1k =,解得51188ω≤<,即ω的取值范围为511,88⎡⎫⎪⎢⎣⎭.18.(2023·山东德州·统考一模)在锐角ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2cos c b A b -=.(1)求证:2A B =;(2)若A 的角平分线交BC 于D ,且2c =,求ABD △面积的取值范围.【解析】(1)因为2cos c b A b -=,由正弦定理得sin 2sin cos sin C B A B -=又πA B C ++=,所以()()sin 2sin cos sin cos cos sin sin sin A B B A A B A B A B B+-=-=-=因为ABC 为锐角三角形,所以π0,2A ⎛⎫∈ ⎪⎝⎭,π0,2B ⎛⎫∈ ⎪⎝⎭,ππ,22A B ⎛⎫-∈- ⎪⎝⎭又sin y x =在ππ,22⎛⎫- ⎪⎝⎭上单调递增,所以A B B -=,即2A B =;(2)由(1)可知,2A B =,所以在ABD △中,ABC BAD ∠=∠,由正弦定理得:()2sin sin π2sin2AD AB B B B ==-,所以1cos AD BD B==,所以1sin sin tan 2cos ABD BS AB AD B B B=⨯⨯⨯== .又因为ABC 为锐角三角形,所以π02B <<,0π22B <<,0π3π2B <-<,解得π6π4B <<,所以tan B ⎫∈⎪⎪⎝⎭,即ABD △面积的取值范围为⎫⎪⎪⎝⎭.19.(2023·江西吉安·统考一模)在直角坐标系xOy 中,M 的参数方程为cos ,2sin x y θθ=⎧⎨=⎩(θ为参数),直线:sin 4l πρθ⎛⎫+= ⎪⎝⎭(1)求M 的普通方程;(2)若D 为M 上一动点,求D 到l 距离的取值范围.【解析】(1)由22sin cos 1θθ+=得M 的普通方程为2214y x +=.(2)直线l 即sin cos 4ρθρθ+=,由cos ,sin x y ρθρθ==得直线l 的普通方程为40x y +-=,设(cos ,2sin )D θθ,则d =其中cos ϕϕ==因为cos()[1,1]θϕ-∈-,⎤⎥⎣⎦,所以D 到l 距离的取值范围为4210421022⎡⎢⎣⎦.20.(2023·江西九江·统考二模)在锐角ABC 中,角A ,B ,C 所对的边为a ,b ,c ,已知()()0a b c a b c ab -+--+=,sin 3cos 3cos bc C c A a C =+.(1)求c ;(2)求a b +的取值范围.【解析】(1)()()0a b c a b c ab -+--+= ,222a b c ab ∴+-=,即222122a b c ab +-=,1cos 2C ∴=,又0πC << ,π3C ∴=,sin C ∴=,sin 3cos 3cos bc C c A a C =+,sin C=sin 3(sin cos sin cos )3sin()3sin 2B cC A A C A C B∴⋅⋅=+=+=,0πB << ,即sin 0B ≠,32c =,解得c =.(2)由正弦定理得,4sin sin sin a b c A B C ===,∴4sin a A =,4sin b B =,∴4sin 4sin a b A B +=+,πA B C ++=,π3C =,∴2π3B A =-则2π4sin 4sin 3a b A A ⎛⎫+=+-⎪⎝⎭14(sin cos sin )2A A A =+6sin A A=+π6A ⎛⎫=+ ⎪⎝⎭,ABC 为锐角三角形,∴π0,2A ⎛⎫∈ ⎪⎝⎭,π0,2B ⎛⎫∈ ⎪⎝⎭∴ππ,62A ⎛⎫∈ ⎪⎝⎭∴ππ2π,633A ⎛⎫+∈ ⎪⎝⎭,∴πsin ,162A ⎛⎤⎛⎫+∈⎥ ⎪ ⎝⎭⎝⎦,∴(π6,6A ⎛⎫+∈ ⎪⎝⎭,即(6,a b +∈.21.(2023·广东汕头·金山中学校考模拟预测)在锐角ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知sin sin sin B A Cb c b a-=-+.(1)求角A 的值;(2)若2c =,求a b +的取值范围.【解析】(1)由正弦定理sin sin sin a b cA B C==得:b a cb c b a-=-+,整理得:222b c a bc +-=,由余弦定理得:2221cos 222b c a bc A bc bc +-===,∵(0,π)A ∈,则π3A =.(2)由(1)可得:π3A =,且2c =,锐角ABC 中,由正弦定理得:sin sin sin a b cA B C==,可得π2sin sin sin 31sin sin sin C c A c B a b C C C ⎛⎫+ ⎪⋅⋅⎝⎭====则)21cos 21111sin 2sin cos tan 222CC a b C C C C ++=++=+=+∵ABC 锐角三角形,且π3A =,则π02π02C B ⎧<<⎪⎪⎨⎪<<⎪⎩,即π022ππ032C C ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得ππ62C <<,即ππ1224C <<,且ππtantanπππ34tan tan 2ππ12341tan tan 34-⎛⎫=-==- ⎪⎝⎭+⋅可得()tan 22C ∈,则(114tan 2C++,故a b +的范围是(14+.22.(2023·湖南长沙·湖南师大附中校考一模)在ABC 中,角,,A B C 的对边分别为,,a b c ,已知7b =,且sin sin sin sin a b A Cc A B+-=-.(1)求ABC 的外接圆半径R ;(2)求ABC 内切圆半径r 的取值范围.【解析】(1)由正弦定理,sin sin sin sin a b A C a cc A B a b+--==--,可得222,b a c ac =+-再由余弦定理,1cos 2B =,又()0,πB ∈,所以π3B =.因为2sin3bRB==,所以3R=.(2)由(1)可知:2249a c ac+-=,则2()493a c ac+=+.()11sin22ABCS ac B a b c r==++⋅则)23()497277ac a cr a ca c a c+-===+-++++.在ABC中,由正弦定理,sin sin sina c bA C B===,sina A c C,则)1431432πsin sin sin sin333a c A C A A⎡⎤⎛⎫+=+=+-⎪⎢⎥⎝⎭⎣⎦14331sin cos sin322A A A⎛⎫=+⎪⎪⎝⎭31πsin cos14sin cos14sin226A A A A A⎫⎛⎫⎛⎫==+⋅=+⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,又ππ2π0,,333A⎛⎫⎛⎫∈⋃⎪ ⎪⎝⎭⎝⎭,所以ππππ5π,,66226A⎛⎫⎛⎫+∈⋃⎪⎝⎭⎝⎭,所以π1sin,162A⎛⎫⎛⎫+∈⎪ ⎪⎝⎭⎝⎭,()π14sin7,146A⎛⎫+∈⎪⎝⎭,所以r⎛∈⎝⎭.23.(2023·黑龙江哈尔滨·哈尔滨市第六中学校校考一模)在锐角ABC中,设边,,a b c 所对的角分别为,,A B C,且22a b bc-=.(1)求角B的取值范围;(2)若4c=,求ABC中AB边上的高h的取值范围.【解析】(1)因为22a b bc-=,所以2222cos 222b c a c bc c bA bc bc b+---===,所以2cos c b b A -=,sin sin 2sin cos C B B A -=,又()πC A B =-+,所以()sin sin 2sin cos A B B B A =+-,整理可得()sin sin A B B -=,所以A B B -=或πA B B -+=(舍去),所以2A B =,又ABC 为锐角三角形,所以π02π022π0π32B A B C B ⎧<<⎪⎪⎪<=<⎨⎪⎪<=-<⎪⎩,所以64ππ,B ⎛⎫∈ ⎪⎝⎭;(2)由题可知11sin 22S ch ac B ==,即sin h a B =,又()sin 2sin sin π3a b cB B B ==-,所以4sin 2sin 3Ba B=,所以4sin 2sin 4sin 2sin sin sin 3sin 2cos cos 2sin B B B Bh a B B B B B B===+248tan 81133tan tan tan tan 2tan B B B B B B===-+-,由64ππ,B ⎛⎫∈ ⎪⎝⎭,可得tan B ⎫∈⎪⎪⎝⎭,所以3tan tan B B ⎛-∈ ⎝⎭,所以)4h ∈,即ABC 中AB 边上的高h 的取值范围是)4.24.(2023·辽宁鞍山·统考二模)请从①2sin cos cos cos a B B C B =;②()22sin sin sin sin sin A C B A C -=-;③sin 1cos Aa B=+这三个条件中任选一个,补充在下面问题中,并加以解答(如未作出选择,则按照选择①评分.选择的编号请填写到答题卡对应位置上)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若___________,(1)求角B 的大小;(2)若△ABC 为锐角三角形,1c =,求22a b +的取值范围.【解析】(1)若选①因为2sin cos cos cos a B B C B =,由正弦定理得2sin sin cos cos cos A B B B C C B =,即sin sin (sin cos sin cos )A B B B C C B +sin()B B C =+,所以sin sin sin A B B A =,由(0,π)A ∈,得sin 0A ≠,所以sin B B =,即tan B =因为(0,π)B ∈,所以π3B =.若选②由22(sin sin )sin sin sin A C B A C -=-,化简得222sin sin sin sin sin A C B A C +-=.由正弦定理得:222a cb ac +-=,即222122a cb ac +-=,所以1cos 2B =.因为(0,π)B ∈,所以π3B =.若选③sin A =sin sin (1cos )B A A B =+,因为0πA <<,所以sin 0A ≠,1cos B B =+,所以π1sin 62B ⎛⎫-= ⎪⎝⎭,又因为ππ5π666B -<-<,所以π3B =.(2)在ABC 中,由正弦定理sin sin a c A C =,得sin sin c A a C =,sin sin 2sin c B b C C ==由(1)知:π3B =,又с=1代入上式得:222223sin 3sin 3sin()22cos 12()cos 1cos 1cos sin sin sin sin A A B C a b c ab C C C CC C C C ++=+=+⨯=+=+22π1sin()3321cos 1cos 1sin 2tan C C C C C +=+==+因为ABC 为锐角三角形,所以π022ππ032C C ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得ππ,62C ⎛⎫∈ ⎪⎝⎭,所以tan C1tan C ∴∈,所以()2222331711,72tan 2tan 2tan 68a b C C C ⎛+=++=++∈ ⎝⎭.25.(2023·福建·统考模拟预测)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且π2sin 6b c A ⎛⎫=+ ⎪⎝⎭.(1)求C ;(2)若1c =,D 为ABC 的外接圆上的点,2BA BD BA ⋅=,求四边形ABCD 面积的最大值.【解析】(1)因为π2sin 6b c A ⎛⎫=+ ⎪⎝⎭,在ABC 中,由正弦定理得,i s n in 2sin πs 6B AC ⎛⎫=+ ⎪⎝⎭.又因为()()sin sin πsin B A C A C =--=+,所以()πsin 2s n sin i 6A C A C ⎛⎫+=+⎪⎝⎭,展开得sin cos cos sin sin sin cos 122A C A C C A A ⎫+=+⎪⎪⎝⎭,即sin cos 0n sin A C C A =,因为sin 0A ≠,故cos C C =,即tan C =又因为()0,πC ∈,所以π6C =.(2)解法一:如图1设ABC 的外接圆的圆心为O ,半径为R ,因为2BA BD BA ⋅= ,所以()0BA BD BA ⋅-= ,即0BA AD ⋅=,所以DA BA ⊥,故BD 是O 的直径,所以BC CD ⊥.在ABC 中,1c =,122πsin sin 6c A R BC =∠==,所以2BD =.在ABD △中,AD =.设四边形ABCD 的面积为S ,BC x =,CD y =,则224x y +=,ABD CBD S S S =+△△111222AB BC xyAD CD =+⋅=⋅22112222x y +≤+⋅=,当且仅当x y ==时,等号成立.所以四边形ABCD1+.解法二:如图1设ABC 的外接圆的圆心为O ,半径为R ,BD 在BA上的投影向量为BA λ ,所以()2BA BD BA BA BA λλ⋅=⋅= .又22BA BD BA BA ⋅== ,所以1λ=,所以BD 在BA 上的投影向量为BA ,所以DA BA ⊥.故BD 是O 的直径,所以BC CD ⊥.在ABC 中,1c =,122πsin sin 6c A R BC =∠==,所以2BD =,在ABD △中,AD =.设四边形ABCD 的面积为S ,CBD θ∠=,π0,2θ⎛⎫∈ ⎪⎝⎭,则2cos CB θ=,2sin CD θ=,所以ABD CBD S S S =+△△1122B AD CD AB C =⋅⋅+sin 22θ=+,当π22θ=时,S 最大,所以四边形ABCD1.解法三:如图1设ABC 的外接圆的圆心为O ,半径为R ,因为2BA BD BA ⋅= ,所以()0BA BD BA ⋅-= ,即0BA AD ⋅= ,所以DA BA ⊥.故BD 是O 的直径,所以BC CD ⊥.在ABC 中,1c =,122πsin sin 6c A R BC =∠==,所以2BD =.在ABD △中,AD =.设四边形ABCD 的面积为S ,点C 到BD 的距离为h ,则ABD CBD S S S =+△△1122AD h AB BD ⋅+⋅=2h =+,当1h R ==时,S 最大,所以四边形ABCD1.解法四:设ABC 的外接圆的圆心为O ,半径为R ,在ABC 中,1c =,122πsin sin 6c A R BC =∠==,故ABC 外接圆O 的半径1R =.即1OA OB AB ===,所以π3AOB ∠=.如图2,以ABC 外接圆的圆心为原点,OB 所在直线为x 轴,建立平面直角坐标系xOy ,则12A ⎛ ⎝⎭,()10B ,.因为C ,D 为单位圆上的点,设()cos ,sin C αα,()cos ,sin D ββ,其中()0,2πα∈,()0,2πβ∈.所以122BA ⎛⎫=- ⎪ ⎪⎝⎭,()cos 1,sin BD ββ=- ,代入2BA BD BA ⋅= ,即1BA BD ⋅=,可得11cos 122ββ-+=,即π1sin 62β⎛⎫-= ⎪⎝⎭.由()0,2πβ∈可知ππ11π,666β⎛⎫-∈- ⎪⎝⎭,所以解得ππ66β-=或π5π66β-=,即π3β=或πβ=.当π3β=时,A ,D 重合,舍去;当πβ=时,BD 是O 的直径.设四边形ABCD 的面积为S ,则11sin sin 2222ABD CBD S S S BD BD αα=+=⋅+⋅=+△△,由()0,2πα∈知sin 1α≤,所以当3π2α=时,即C 的坐标为()0,1-时,S 最大,所以四边形ABCD 面积最大值为12+.26.(2023·山西·校联考模拟预测)如图,在四边形ABCD 中,已知2π3ABC ∠=,π3BDC ∠=,AB BC ==(1)若BD =AD 的长;(2)求ABD △面积的最大值.【解析】(1)在BCD △中,由余弦定理,得2222cos BC BD DC BD DC BDC =+-⋅⋅∠,∴222π2cos 3CD CD =+-⨯⋅,整理得2720CD --=,解得CD =CD =-∴2222221c os27BD BC CD DBC BD BC +-∠===⋅,而2π(0,)3DBC ∠∈,故sin DBC ∠=,∴2π1311cos cos cos sin 32214ABD DBC DBC DBC ⎛⎫∠=-∠=-∠+∠= ⎪⎝⎭,故在ABD △中,2222cos AD AB BD AB BD ABD=+-⋅⋅∠221125714=+-⨯=,∴AD =(2)设,2π(0,)3CBD θθ∠=∈,则在BCD △中,sin sin BC BD BDC BCD=∠∠,则2πsin()sin π314sin()2πsin 3sin 3BC BCD BD BDCθθ-∠===+∠,所以π2π11sin sin 2214sin()()33ABD S AB BD ABD θθ=+=⨯⨯∠-⋅△2π34()θ=+,当2πsin (13θ+=,即π6θ=时,ABD △面积取到最大值27.(2023·湖南·校联考二模)在ABC 中,内角A ,B ,C 所对的边长分别为a ,b ,c ,且满足236sin02A Ba b b +-+=.(1)求证:3cos 0a b C +=;(2)求tan A 的最大值.【解析】(1)∵236sin02A Ba b b +-+=,∴22π36sin36cos 022C Ca b b a b b --+=-+=,∴1cos 3602Ca b b +-+⋅=,∴3cos 0a b C +=.(2)由(1)可得:sin 3sin cos 0A B C +=,且C 为钝角,即4sin cos cos sin 0B C B C +=,即4tan tan 0B C +=,tan 4tan C B =-,()2tan tan 3tan 3tan tan 11tan tan 4tan 14tan tan B C B A B C B C B B B+=-+=-==-++34=,当且仅当14tan tan B B =,即1tan 2B =时取等号.故tan A 的最大值为34.28.(2023·黑龙江大庆·铁人中学校考二模)在ABC 中,a ,b ,c 分别是ABC 的内角A ,B ,C 所对的边,且sin sin sin sin b a c A C B C-=+-.(1)求角A 的大小;(2)记ABC 的面积为S ,若12BM MC = ,求2AMS的最小值.【解析】(1)因为sin sin sin sin b a c A C B C -=+-,即sin sin sin sin B C a cA C b--=+由正弦定理可得,b c a ca c b--=+,化简可得222a b c bc =+-,且由余弦定理可得,2222cos a b c bc A =+-,所以1cos 2A =,且()0,πA ∈,所以π3A =.(2)因为12BM MC = ,则可得1233AM AC AB =+ ,所以222212144cos 33999AM AC AB AC AC AB A AB ⎛⎫=+=+⋅+ ⎪⎝⎭22142999b c =++且1sin 2S bc A ==,即2221424299999b c bc bc bcAM S+++= 当且仅当1233b c =,即2b c =时,等号成立.所以2minAM S ⎛⎫ ⎪=⎪ ⎪⎝⎭ 29.(2023·云南·统考二模)ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,π3A =.(1)若2b =,3c =.求证:tan sin a bA B+=(2)若D 为BC 边的中点,且ABC的面积为AD 长的最小值.【解析】(1)证明:π3A =Q ,2b =,3c =,由余弦定理可得22212cos 4922372a b c bc A =+-=+-⨯⨯⨯=,a ∴=ππtan sin tan sin tan sin 33a b a a A B A A ∴+=+.(2)由1sin 24ABC S bc A bc ===V 24bc =.D 为边BC 的中点,则0DB DC +=,()()2AB AC AD DB AD DC AD ∴+=+++=,所以,()222222π422cos3AD AB ACAB AC AB AC c b cb =+=++⋅=++222372b c bc bc bc bc =++≥+==,即AD ≥当且仅当b c ==AD 长的最小值为30.(2023·广西·统考一模)在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,满足(2)cos cos 0b a C c B ++=.(1)求C ;(2)若角C 的平分线交AB 于点D ,且2CD =,求2a b +的最小值.【解析】(1)因为(2)cos cos 0b a C c B ++=,由正弦定理得(sin 2sin )cos sin cos 0B A C C B ++=,即sin cos sin cos 2sin cos B C C B A C +=-,所以()sin sin 2sin cos B C A A C +==-,又()0,πA ∈,则sin 0A >,所以1cos 2C =-,又因()0,πC ∈,所以2π3C =;(2)因为角C 的平分线交AB 于点D ,所以π3ACD BCD ∠=∠=,由ABC ACD BCD S S S =+△△△,得12π1π1πsinsin sin 232323ab CD b CD a =⋅+⋅,即22a b ab +=,所以221ab+=,则()222422666b a a b a b a b a b ⎛⎫⎛⎫+=++=++≥+=+ ⎪ ⎪⎝⎭⎝⎭当且仅当24b a a b=,即2b ==时取等号,所以2a b +的最小值为6+.31.(2023·安徽宣城·统考二模)设ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知1sin 1cos 2cos sin 2A BA B--=.(1)判断ABC 的形状,并说明理由;(2)求2254cos a a c c B-的最小值.【解析】(1)ABC 为钝角三角形,证明如下:由21sin 1cos 22sin sin cos sin 22sin cos cos A B B B A B B B B--===,则有cos sin cos sin cos B A B B A -=,所以cos sin()B A B =+,因为()0,πA B +∈,所以()cos sin 0B A B =+>,则B 为锐角.所以()cos sin sin 2πB B A B ⎛⎫=-=+⎪⎝⎭,所以π2B A B -=+或()2πB A B π⎛⎫-++= ⎪⎝⎭,则22πA B +=或π2A =,由题意知cos 0A ≠,所以π2A ≠,所以22πA B +=,所以,22C πA B B πππ⎛⎫=--=+∈ ⎪⎝⎭,故ABC 为钝角三角形.(2)由(1)知22πA B +=,π2C B =+,由正弦定理,有22225sin 5sin 4cos sin 4sin cos a a A Ac c B C C B-=-22sin 25sin 222sin 4sin cos 22B B B B B ππππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=-⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭222cos 25cos 2cos 4cos B B B B =-222222cos 15(2cos 1)cos 4c ()os B B B B --=-42224cos 4cos 155cos 4cos 2B B B B -+=+-229134cos 4cos 2B B =+-132≥12=-当且仅当2294cos 4cos B B=时等号成立,由B 为锐角,则cos 2B =,所以当π6B =时取最小值12-.32.(2023·全国·模拟预测)已知ABC 是斜三角形,角A ,B ,C 满足cos(2)cos sin 2A B A B ++=.(1)求证:cos sin 0C B +=;(2)若角A ,B ,C 的对边分别是边a ,b ,c ,求22245a b c+的最小值,并求此时ABC 的各个内角的大小.【解析】(1)由()cos 2cos sin2A B A B ++=得cos cos2sin sin2cos sin2A B A B A B -+=,所以()()cos 1cos21sin sin2A B A B +=+,所以()22cos cos 21sin sin cos A B A B B =+.因为ABC 是斜三角形,所以cos 0B ≠,所以()cos cos 1sin sin A B A B =+,所以cos cos sin sin sin 0A B A B B --=,所以()cos sin 0A B B +-=,又A B C π++=,所以cos sin 0C B +=.(2)在ABC 中,有sin 0B >,由(1)知cos sin 0C B +=,所以cos 0C <,于是角C 为钝角,角B 为锐角,根据cos cos 2C B π⎛⎫=+⎪⎝⎭,所以2C B π=+.由正弦定理,得()2222222222224sin 25sin 4sin 5sin 454sin 5sin 22sin sin sin C C B C B a b A B c C C Cππ⎛⎫⎛⎫-+- ⎪ ⎪++++⎝⎭⎝⎭===()()2222242222412sin 55sin 4cos 25cos 16sin 21sin 9sin sin sin CCC CC C CCC-+-+-+===,22916sin 21213sin C C=+-≥=,当且仅当22916sin sin C C =,即23sin 4C =,sin 2C =时等号成立,又角C 为钝角,所以120C =︒时,等号成立,由2C B π=+,得30B =︒,由180A B C ++=︒,得30A =︒,因此22245a b c +的最小值为3,此时三角形ABC 的各个内角为30A =︒,30B =︒,120C =︒.33.(2023·吉林·统考三模)如图,圆O 为ABC 的外接圆,且O 在ABC 内部,1OA =,2π3BOC ∠=.(1)当π2AOB ∠=时,求AC ;(2)求图中阴影部分面积的最小值.【解析】(1)法一:由题意可知,π2π5π2π236AOC ∠=--=,在AOC 中,由余弦定理得2222311211cos 22AC OA OC OA O AOC C ⎛∠=+-⨯⨯⨯-=+⎭-⎝=+⋅∴622AC =.法二:在ABC 中,π2π5π2π236AOC ∠=--=,1OA =,1π24ACB AOB ∠=∠=,15π212ABC AOC ∠=∠=,AB =由正弦定理得sin sin AB ACACB ABC=∠∠,∴π5πsin sin 412AC=,5πππππππsin sin()sin cos cos sin 124646464=+=+=,∴2AC =.(2)设AOB θ∠=,则4π3AOC θ∠=-114π1π11sin 11sin sin sin 22323AOB AOC S S θθθθ⎡⎤⎛⎫⎛⎫+=⨯⨯⨯+⨯⨯⨯-=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦△△13πsin sin 22226θθθ⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭,设阴影部分面积为S ,优弧 BC所对的扇形BOC 面积为S 扇形,则212π2π12π233S ⎛⎫=⨯⨯-= ⎪⎝⎭扇形,∴()π2πsin 263AOB AOC S S S S θ⎛⎫=-+=-+ ⎪⎝⎭扇形△△,∵点O 在ABC 内部,∴ππ3θ<<,∴ππ5π666θ<-<,当ππ62θ-=时,即2π3θ=时,min 2π3S =-。

江苏省2019届高三数学《解三角形》题型归纳

江苏省2019届高三数学《解三角形》题型归纳

江苏省2019届高三数学《解三角形》题型归纳(含解析)题型一:求某边的值(1)ABC △的内角A B C ,,的对边分别为,,a b c .已知25,2,cos 3a c A ===,则b =_______.(2)如图,在四边形ABCD 中,已知AD ⊥CD , AD =10, AB =14, ∠BDA =60︒, ∠BCD =135︒ ,则BC = .(3)在△ABC 中,内角A ,B ,C 的对边依次为a ,b ,c ,若a 2-c 2=3b ,且sin B =8cos A sin C ,则边b = .(4)钝角△ABC 的面积是12,AB =1,BC = 2 ,则AC = .(5)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,b-c =2,cos A =-14,则a 的值为________.(6)在ABC △中,已知3,120AB A ==,且ABC △的面积为1534,则BC 边长为______. (7)在ABC △中,已知5,3,2AB BC B A ===,则边AC 的长为________.答案:(1)3 (2)8 2 (3)4 (4) 5 (5)8 (6)7 (7)26题型二:三角形的角(1)在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =________.(2)在△ABC 中,内角A ,B ,C 的对边依次为a ,b ,c ,已知85,2b c C B ==,则cos C = (3)在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,且.则A =________. (4)设△ABC 的三个内角A ,B ,C 所对的边依次为a ,b ,c ,且cos sin a cA C=,则A =________. (5)在△ABC 中,若tan :tan :tan 1:2:3A B C =,则A =________.(6)设△ABC 的三个内角A ,B ,C 所对边分别为a ,b ,c ,若三边的长为连续的三个正整数,且A B C >>, 320cos b a A =,则sin :sin :sin A B C =________.答案:(1)-1010tan 21tan A cB b+=(2)725(3) 解析:即,∴,∴ ∵,∴.(4)4π(5)6π (6) 6:5:4题型三:三角形面积的最值问题(1)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,2a =且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为_________.(2)已知ABC ∆的三个内角A B C ,,的对边依次为a b c ,,,外接圆半径为1,且满足,则ABC ∆面积的最大值为___________. (3)在ABC ∆中,若222,8AB AC BC =+=,则ABC ∆面积的最大值为___________. (4)若2,AB AC ==,则ABC ∆面积的最大值为___________.(5)已知ABC ∆面积S 和三边,,a b c 满足:()22,8S a b c b c =--+=则ABC ∆面积的最大值为___________.答案:(1解析 由2a =,(2)(sin sin )()sin b A B c b C +-=-得()(sin sin )()sin a b A B c b C +-=-.由正弦定理得222()()(),a b a b c b c b c a bc +-=-+-=,1cos ,23A A π==.因为222b c a bc +-=,所以22224,42,4b c bc b c bc bc bc +-=+=+≥≤,当且仅当b c =时取等号.所以1sin 2ABCSbc A =≤ (2)解析:由可得,即π3A =tan 2sin cos 2sin 11tan sin cos sin A c A B CB b B A B+=⇒+=sin cos sin cos 2sin sin cos sin B A A B CB A B +=sin()2sin sin cos sin A BC B A B +=1cos 2A =0πA <<π3A =,也即A B A C B A cos sin cos sin 2cos sin -=,故A C B A cos sin 2)sin(=+,也即1cos 2=A ,则060=A ,由正弦定理可得再由余弦定理可得cb b c 3)(32-+=,即cb b c cb 4)(332≥+=+,所以3≤cb ,(3(4)(5)6417题型四:求三角形边的最值或范围 (1)已知ABC ∆是锐角三角形,若,则的取值范围是_______.(2)在锐角ABC ∆,若2C B =,则cb的取值范围是_______. (3)设A 是ABC ∆的最小角,它所对的边为a ,若,1cos 1a A a -=+,则a 的取值范围是_______.(4)在△ABC 中,若3sin 2sin C B =,点E ,F 分别是AC ,AB 的中点,则值范围为 .(5)在钝角ABC ∆中,已知1,2a b ==,则最大边的取值范围是 .(6)已知顶点在单位圆上的△ABC ,角A ,B ,C 所对的边分别是,,a b c ,且cos cos a c B b C =+,若b a ≥,则2b c -的取值范围是 .(7)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 .答案:(1)解析:由题意得,在中,由正弦定理可得,又因为,所以,又因为锐角三角形,所以且,所以,所以,所以的取值范围是(2)(3)[)3,+∞ 解析:A B C π++=,所以,A B A C ≤≤,所以3,03A A ππ≤<≤,所以1cos 12A ≤<,所以答案为[)3,+∞(4(5 解析:因为是钝角三角形的最大边,所以C 是最大角.22212+>c 即52>c ,,又1212+<<-c ,重合与E 点时,AB 最长,在△BCE 中,∠B =∠C =75°,∠E =30°,BC =2,由正弦定理可得,即,解得BE =,题型五:求三角形中角的最值或取值范围(1)ABC ∆各角的对应边分别为______. (2)的最小值是 . (3)已知ABC ∆中,2cos2B C =,则cos C 的最小值是 .(4)在ABC ∆中,角A B C ,,的对边依次为a b c ,,,若222,,a b c 成等差数列,则cos B 的最小值是 .(5)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知 cos C 的最小值是 .答案:(13(2)8 解析(3)12(4)12解析:2222b a c =+,22222221cos 222a c b b b B ac ac a c +-==≥=+,当且仅当a c =时等号成立.(5)12所以,当且仅当a b =时,等号成立.故 cos C 的最小值为题型六:判断三角形的形状(1)在三角形ABC 中,三边a 、b 、c 满足::21)a b c =,则三角形的形状为________.(2)在ABC ∆中,设,,,BC a CA b AB c ===若,a b b c c a ⋅=⋅=⋅则三角形的形状为________.(3)在ABC ∆中,若22tan :tan :,A B a b =则三角形的形状为________.答案:(1)锐角三角行 解析:a b c << 则c 边最大,且24c =+228a b +=,222c a b ∴<+,则最大角C 为锐角,所以三角形为锐角三角形(2)等边三角形 解析:0a b c ++=,22,()a b c a b c ∴+=-+=,2222a b a b c ∴++⋅= 同理2222b c b c a ++⋅=,两式相减,得22222()a c a b b c c a -+⋅-⋅=-,a b b c ⋅=⋅,∴2a =2c ,a c =,同理a b =,∴a b c ==,故ABC ∆是等边三角形。

苏教版必修第二册第11章解三角形章末复习提升课课件_1

苏教版必修第二册第11章解三角形章末复习提升课课件_1
acosB-π6. (1)求角 B 的大小; (2)设 a=2,c=3,求 b 和 sin(2A-B)的值.
【解】 (1)在△ABC 中,由正弦定理sina A=sinb B,可得 bsin A=asin B, 又由 bsin A=acosB-π6,得 asin B=acosB-π6,即 sin B=cosB-π6, 可得 tan B= 3.又因为 B∈(0,π),可得 B=π3.
【解】 (1)在△ABC 中,因为 a=3,c= 2,B=45°,
由余弦定理 b2=a2+c2-2ac cos B,得 b2=9 +2-2×3× 2cos 45°=5,
所以 b= 5.
在△ABC 中,由正弦定理sinb B=sinc C,
得sin 455°=sin2C,
所以
sin
C=
5 5.
(2)在△ADC 中,因为 cos ∠ADC=-45,所以∠ADC 为钝角, 而∠ADC+C+∠CAD= 180°,所以 C 为锐角. 故 cos C= 1-sin2C=255, 则 tan C=csoins CC=12.
解:(1)由已知可得 EF=2,∠F=45°,∠EAF=60°-45°=15°, 在△AEF 中,由正弦定理得,sinAE∠F=sin E∠FEAF,即sinAE45°=sin215°, 解得 AE=2 3+1.
(2)由已知可得∠BAE=180°-30°-60°=90°,在 Rt△ABE 中,BE=2AE
(2)方法一:由余弦定理 a2=b2+c2-2bc cos A,a= 7,b=2,A=π3,
得 7=4+c2-2c,即 c2-2c-3=0,
因为 c>0,所以 c=3.
故△ABC
的面积为12bc
sin

高考江苏数学大一轮精准复习课件专题五解三角形

高考江苏数学大一轮精准复习课件专题五解三角形

三角形中线、高、角平分线性质
三角形中线性质
三角形高性质
三角形的三条高交于一点,这点称为三角形的垂心 。
三角形的三条中线交于一点,这点称为三角 形的重心。重心分中线为2:1。
三角形角平分线性质
三角形的三条角平分线交于一点,这点称为 三角形的内心。内心是三角形内切圆的圆心 ,到三角形三边距离相等。
02 正弦定理及其应用
余弦定理证明
可以通过向量的点积和模长关系进行证明,也可以通过构造直角三角形和运用勾股定理进行证明。
余弦定理在解三角形中应用
要点一
已知两边及夹角求第三边
要点二
已知三边求角度
通过余弦定理公式,可以直接求解出第三边的长度。
通过余弦定理公式变形,可以求解出三角形的任意一个角 度。
余弦定理在判断三角形形状中应用
解答题答题技巧与策略
A
规范书写格式
按照解题步骤,规范书写解答过程,保持卷面 整洁。
突出关键步骤
在解答过程中,突出关键步骤和转折点, 使阅卷老师能够快速理解解题思路。
B
C
避免跳步和漏步
确保每一步都有明确的依据和推导过程,避 免跳步和漏步导致的失分。
总结与反思
在解答完成后,对解题过程进行总结和反思 ,提炼解题方法和技巧,为类似问题提供借 鉴。
通过正弦定理可以判断三角形的形状,如等边三角形、等腰三角形、直角三角形 等。
判断三角形解的个数
在已知三角形的部分元素时,通过正弦定理可以判断三角形解的个数,如无解、 一个解或两个解。
正弦定理在求解实际问题中应用
01
测量问题
在测量问题中,可以通过正弦定理来求解不可直接测量 的距离或角度。
02
航海问题

课后答案-2024新高考数学基础知识梳理与课本优秀题目巩固-模块09-解三角形

课后答案-2024新高考数学基础知识梳理与课本优秀题目巩固-模块09-解三角形

课后答案-模块九:解三角形【课本优质习题汇总】
人教A版必修二P51
【解析】
人教A版必修二P53
【解析】
人教A版必修二P53
【解析】
人教A版必修二P53
【解析】
人教A版必修二P54
【解析】
人教A版必修二P54
【解析】
人教A版必修二P61
【解析】
人教B版必修四P7
【解析】
人教B版必修四P10
人教B版必修四P10
【上述公式成为射影定理,熟记熟练应用】【解析】
人教B版必修四P11
【解析】
人教B版必修四P12
【解析】
人教B版必修四P12
【解析】
人教B版必修四P12
【解析】
人教B 版必修四P14
【解析】
人教B版必修四P15
【解析】
人教B版必修四P16
【解析】
人教B版必修四P16
【解析】
人教B版必修四P20
【解析】
人教B版必修四P21
【解析】
人教B版必修四P21
【解析】
人教B版必修四P21
【解析】
人教B版必修四P22
【解析】。

高考数学(江苏)二轮专题:专题一 第4讲 解三角形 冲刺提分

高考数学(江苏)二轮专题:专题一 第4讲 解三角形 冲刺提分

第4讲 解三角形1.(2018江苏南通调研)在△ABC 中,已知AB=1,AC=√2,∠B=45°,则BC 的长为 .2.(2018江苏扬州调研)在△ABC 中,若sin A ∶sin B ∶sin C=4∶5∶6,则cos C 的值为 .3.(2018江苏三校联考)在△ABC 中,∠A,∠B,∠C 所对的边分别为a,b,c.已知a+√2c=2b,sin B= √2sin C,则cos C= .4.(2018江苏南京、盐城模拟)在△ABC 中,角A,B,C 所对的边分别为a,b,c.若bsin Asin B+acos 2B=2c,则ac 的值为 .5.(2018江苏南京模拟)在△ABC 中,角A,B,C 所对的边分别为a,b,c,已知sin B+sin A(sin C-cos C)=0,a=2,c=√2,则∠C 的值为 .6.(2018苏锡常镇四市调研)设△ABC 的内角A,B,C 的对边分别是a,b,c,且满足acos B-bcos A=35c,则tanAtanB = .7.(2018南京师大附中模拟)在△ABC 中,已知AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ +2BA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =3CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ ,则cos C 的最小值是 .8.(2018江苏南通中学模拟)在△ABC 中,BC 边上的中线长等于BC 长的2倍,则sin Bsin C sin2A的最大值为 .9.(2018苏锡常镇四市调研)在△ABC 中,三个内角A,B,C 的对边分别为a,b,c,设△ABC 的面积为S,且4S=√3(a 2+c 2-b 2). (1)求∠B 的大小;(2)设向量m=(sin 2A,3cos A),n=(3,-2cos A),求m ·n 的取值范围.10.(2018江苏南通中学模拟)在△ABC中,AB=√10,BC=5,tan(A-π4)=12.(1)求sin A的值;(2)求△ABC的面积.11.(2018江苏扬州中学模拟)已知△ABC的三个内角A,B,C所对的边分别为a,b,c,向量m=(1,2),n=(cos2A,cos2A2),且m·n=1.(1)求角A的大小;(2)若b+c=2a=2√3,求sin(B-π4)的值.答案精解精析1.答案√2+√62解析 由余弦定理可得2=BC 2+1-√2BC,即BC 2-√2BC-1=0,解得BC=√2+√62(舍负). 2.答案18解析 sin A ∶sin B ∶sin C=4∶5∶6,由正弦定理可得a ∶b ∶c=4∶5∶6,不妨设a=4,b=5,c=6,则由余弦定理可得cos C=a 2+b 2-c 22ab=16+25-3640=18.3.答案34解析 sin B=√2sin C,由正弦定理得b=√2c,则a=√2c.由余弦定理可得cos C=2c 2+2c 2-c 22×2c 2=34.4.答案 2解析 由正弦定理及题意得 sin Asin 2B+sin Acos 2B=2sin C, 即sin A=2sin C,则a c =sinAsinC =2. 5.答案π6解析 在△ABC 中,sin B=sin(A+C),则sin Acos C+sin Ccos A+sin Asin C-sin Acos C=0,即sin Ccos A+sin Asin C=0.又sin C ≠0,则cos A+sin A=0,即tan A=-1.又A ∈(0,π),则A=3π4.由正弦定理得a sinA =c sinC ,即√22=√2sinC ,则sin C=12.又C ∈(0,π4),则C=π6.6.答案 4解析 由正弦定理可将条件acos B-bcos A=35c 变形为sin Acos B-sin Bcos A=35sin C,则sin Acos B-sin Bcos A=35sin(A+B)=35(sin Acos B+cos Asin B),化简得sin Acos B=4sin Bcos A,所以tan A=4tan B,即tanAtanB =4. 7.答案√23解析 设△ABC 中角A,B,C 的对边分别是a,b,c,AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ +2BA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =3CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ ,即bccos A+2accos B=3abcos C,bc ·b 2+c 2-a 22bc+2ac ·a 2+c 2-b 22ac=3ab ·a 2+b 2-c 22ab,化简得a 2+2b 2=3c 2,则cosC=a 2+b 2-c 22ab=2a 2+b 26ab≥2√26=√23,当且仅当√2a=b 时取等号,故最小值是√23.8.答案1715解析 设△ABC 中角A,B,C 的对边分别是a,b,c,取BC 的中点为D,连接AD,则AD=2a.又∠ADB+∠ADC=π,∴cos ∠ADB+cos ∠ADC=0.由余弦定理可得(2a)2+(a 2)2-c 22×2a×a2+(2a)2+(a 2)2-b 22×2a×a2=0,化简得b 2+c 2=172a 2.又sinBsinC sin2A =sinAsinBsinC 2sin AcosA =bcsinA2a cosA ≤b 2+c 24a tan A=178tan A,当且仅当b=c 时取等号,此时AD ⊥BC,tan A2=a 22a =14,则tan A=2tanA 21-tan 2A2=121-116=815,所以sinBsinCsin2A≤178×815=1715,故sinBsinC sin2A的最大值为1715.9.解析 (1)由题意得4×12acsin B=√3(a 2+c 2-b 2), 则sin B=√3(a 2+c 2-b 2)2ac, 所以sin B=√3cos B. 因为sin B ≠0,所以cos B ≠0, 所以tan B=√3. 又0<B<π,所以B=π3.(2)由向量m=(sin 2A,3cos A),n=(3,-2cos A),得 m ·n=3sin 2A-6cos 2A =3sin 2A-3cos 2A-3 =3√2sin (2A -π4)-3. 易知0<A<2π3, 所以-π4<2A-π4<1312π, 所以-√22<sin (2A -π4)<1,所以m ·n 的取值范围为(-6,3√2-3). 10.解析 (1)因为tan (A -π4)=12, 所以tan A=tan (A -π4+π4)=tan(A -π4)+tanπ41-tan(A -π4)tanπ4=12+11-12×1=3.因为tan A>0,所以0<A<π2, 所以{sinA =3cosA,sin 2A +cos 2A =1,sinA >0,解得{sinA =3√1010,cosA =√1010.所以sin A=3√1010.(2)在△ABC 中,由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·cos A, 所以25=10+AC 2-2√10×AC×√1010, 解得AC=5或AC=-3(舍去).所以△ABC 的面积S=12AB ·AC ·sin A=12×√10×5×3√1010=152. 11.解析 (1)由题意得m ·n=cos 2A+2cos 2A2=2cos 2A-1+cos A+1=2cos 2A+cos A. ∵m ·n=1,∴2cos 2A+cos A=1,解得cos A=12或cos A=-1.又0<A< π,∴cos A=12,∴A=π3.(2)在△ABC 中,由余弦定理得(√3)2=b 2+c 2-2bc×12=b 2+c 2-bc,①又b+c=2 √3,∴b=2 √3-c,代入①整理得c 2-2√3c+3=0,解得c=√3,∴b=√3, 于是a=b=c=√3,即△ABC 为等边三角形,∴B=π3, ∴sin (B -π4)=sin (π3-π4)=sin π3·cos π4-cos π3sin π4=√6-√24.。

江苏高三数学一轮复习 三角函数与解三角形

江苏高三数学一轮复习    三角函数与解三角形

第1讲弧度制与任意角的三角函数考试要求 1.任意角的概念,弧度制的概念,弧度与角度的互化,A级要求;2.任意角的三角函数(正弦、余弦、正切)的定义,B级要求.知识梳理1.角的概念的推广(1)正角、负角和零角:一条射线绕顶点按逆时针方向旋转所形成的角叫作正角,按顺时针方向旋转所形成的角叫作负角;如果射线没有作任何旋转,那么也把它看成一个角,叫作零角.(2)象限角:以角的顶点为坐标原点,角的始边为x轴的正半轴,建立平面直角坐标系,这样,角的终边在第几象限,我们就说这个角是第几象限的角.终边落在坐标轴上的角(轴线角)不属于任何象限.(3)终边相同的角:与角α的终边相同的角的集合为{β|β=k·360°+α,k∈Z}.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式3.续表1.判断正误(在括号内打“√”或“×”) (1)小于90°的角是锐角.( ) (2)锐角是第一象限角,反之亦然.( )(3)将表的分针拨快5分钟,则分针转过的角度是30°.( ) (4)若α∈⎝⎛⎭⎪⎫0,π2,则tan α>α>sin α.( ) (5)相等的角终边一定相同,终边相同的角也一定相等.( ) 解析 (1)锐角的取值范围是⎝⎛⎭⎪⎫0,π2.(2)第一象限角不一定是锐角. (3)顺时针旋转得到的角是负角. (5)终边相同的角不一定相等.答案 (1)× (2)× (3)× (4)√ (5)× 2.若角α与角8π5的终边相同,则在[0,2π]内终边与角α4终边相同的角是________.解析 由题意知,α=2k π+8π5,k ∈Z ,∴α4=k π2+2π5,k ∈Z ,又α4∈[0,2π],∴k =0,α=2π5;k =1,α=9π10;k =2,α=7π5;k =3,α=19π10. 答案2π5,9π10,7π5,19π103.(必修4P15习题6改编)若tan α>0,sin α<0,则α在第________象限. 解析 由tan α>0,得α在第一或第三象限,又sin α<0,得α在第三或第四象限或终边在y 轴的负半轴上,故α在第三象限. 答案 三4.已知角α的终边经过点(-4,3),则cos α=________. 解析 ∵角α的终边经过点(-4,3), ∴x =-4,y =3,r =5.∴cos α=x r =-45.答案 -455.(必修4P10习题8改编)一条弦的长等于半径,这条弦所对的圆心角大小为________弧度.答案 π3考点一 角的概念及其集合表示 【例1】 (1)若角α是第二象限角,则α2是第________象限角.(2)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________. 解析 (1)∵α是第二象限角, ∴π2+2k π<α<π+2k π,k ∈Z , ∴π4+k π<α2<π2+k π,k ∈Z . 当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.(2)如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,43π;在[-2π,0)内满足条件的角有两个:-23π,-53π,故满足条件的角α构成的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-53π,-23π,π3,43π.答案 (1)一或三(2)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-53π,-23π,π3,43π规律方法 (1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需的角.(2)确定kα,αk(k ∈N *)的终边位置的方法先用终边相同角的形式表示出角α的范围,再写出kα或αk 的范围,然后根据k 的可能取值讨论确定kα或αk的终边所在位置.【训练1】 (1)设集合M =⎩⎪⎨⎪⎧x ⎪⎪⎪⎭⎪⎬⎪⎫x =k 2·180°+45°,k ∈Z ,N =⎩⎪⎨⎪⎧x ⎪⎪⎪⎭⎪⎬⎪⎫x =k 4·180°+45°,k ∈Z ,则下列结论:①M =N ;②M ?N ;③N ?M ;④M ∩N =?. 其中正确的是________(填序号).(2)集合⎩⎪⎨⎪⎧α⎪⎪⎪⎭⎪⎬⎪⎫k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是________(填序号).解析 (1)法一 由于M =⎩⎪⎨⎪⎧x⎪⎪⎪⎭⎪⎬⎪⎫x =k 2·180°+45°,k ∈Z ={…,-45°,45°,135°,225°,…},N =⎩⎪⎨⎪⎧x ⎪⎪⎪⎭⎪⎬⎪⎫x =k 4·180°+45°,k ∈Z ={…,-45°,0°,45°,90°,135°,180°,225°,…},显然有M ?N .法二 由于M 中,x =k2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ?N .(2)当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+5π4≤α≤2n π+3π2,此时α表示的范围与5π4≤α≤3π2表示的范围一样.答案 (1)② (2)③ 考点二 弧度制及其应用【例2】 已知一扇形的圆心角为α,半径为R ,弧长为l . (1)若α=60°,R =10 cm ,求扇形的弧长l ;(2)已知扇形的周长为10 cm ,面积是4 cm 2,求扇形的圆心角;(3)若扇形周长为20 cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大? 解 (1)α=60°=π3 rad ,∴l =α·R =π3×10=10π3(cm). (2)由题意得⎩⎨⎧2R +Rα=10,12α·R 2=4,解得⎩⎨⎧R =1,α=8(舍去),⎩⎨⎧R =4,α=12.故扇形圆心角为12.(3)由已知得,l +2R =20.所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5时,S 取得最大值25,此时l =10,α=2.规律方法 应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形. 【训练2】 已知一扇形的圆心角为α (α>0),所在圆的半径为R . (1)若α=90°,R =10 cm ,求扇形的弧长及该弧所在的弓形的面积; (2)若扇形的周长是一定值C (C >0),当α为多少弧度时,该扇形有最大面积? 解 (1)设弧长为l ,弓形面积为S 弓,则α=90°=π2,R =10,l =π2×10=5π(cm),S 弓=S 扇-S △=12×5π×10-12×102=25π-50(cm 2). (2)扇形周长C =2R +l =2R +αR , ∴R =C2+α,∴S 扇=12α·R 2=12α·⎝⎛⎭⎪⎫C 2+α2=C 2α2·14+4α+α2=C 22·14+α+4α≤C 216.当且仅当α2=4,即α=2时,扇形面积有最大值C 216.考点三 三角函数的概念【例3】 (1)(2017·扬州一中月考)已知角α的终边与单位圆x 2+y 2=1交于点P ⎝ ⎛⎭⎪⎫12,y 0,则cos 2α=________.(2)(2017·泰州模拟)已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为________.(3)若sin α·tan α<0,且cos αtan α<0,则角α是第________象限角.解析 (1)根据题意可知,cos α=12,∴cos 2α=2cos 2α-1=2×14-1=-12.(2)∵r =64m 2+9, ∴cos α=-8m 64m 2+9=-45, ∴m >0,∴4m 264m 2+9=125,即m =12.(3)由sin α·tan α<0可知sin α,tan α异号,从而α为第二或第三象限的角,由cos αtan α<0,可知cos α,tan α异号,从而α为第三或第四象限角.综上,α为第三象限角.答案 (1)-12 (2)12(3)三规律方法 (1)利用三角函数的定义,求一个角的三角函数值,需确定三个量:角的终边上任意一个异于原点的点的横坐标x ,纵坐标y ,该点到原点的距离r .(2)根据三角函数定义中x ,y 的符号来确定各象限内三角函数的符号,理解并记忆:“一全正、二正弦、三正切、四余弦”.(3)利用三角函数线解三角不等式时要注意边界角的取舍,结合三角函数的周期性正确写出角的范围.【训练3】 (1)(2017·无锡期末)已知角α的终边与单位圆的交点P ⎝ ⎛⎭⎪⎫-12,y ,则sinα·tan α=________.(2)满足cos α≤-12的角α的集合为________.解析 (1)由|OP |2=14+y 2=1,得y 2=34,y =±32.当y =32时,sin α=32,tan α=-3,此时,sin α·tan α=-32.当y =-32时,sin α=-32,tan α=3,此时,sin α·tan α=-32.(2)作直线x =-12交单位圆于C ,D 两点,连接OC ,OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为⎩⎪⎨⎪⎧α⎪⎪⎪⎭⎪⎬⎪⎫2k π+23π≤α≤2k π+43π,k ∈Z .答案 (1)-32 (2)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α2k π+23π≤α≤2k π+43π,k ∈Z[思想方法]1.在利用三角函数定义时,点P 可取终边上任一点,如有可能则取终边与单位圆的交点.|OP |=r 一定是正值.2.三角函数符号是重点,也是难点,在理解的基础上可借助口诀:一全正,二正弦,三正切,四余弦.3.在解决简单的三角不等式时,利用单位圆及三角函数线是一个小技巧. [易错防范]1.注意易混概念的区别:象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.3.已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况.基础巩固题组(建议用时:30分钟)1.给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题的个数为________. 解析 -3π4是第三象限角,故①错误.4π3=π+π3,从而4π3是第三象限角,②正确. -400°=-360°-40°,从而③正确.-315°=-360°+45°,从而④正确. 答案 32.已知点P (tan α,cos α)在第三象限,则角α的终边在第________象限. 解析 由题意知tan α<0,cos α<0,∴α是第二象限角. 答案 二3.(2017·苏州期末)已知角θ的终边经过点P (4,m ),且sin θ=35,则m =________.解析 sin θ=m16+m2=35,解得m =3. 答案 34.已知角α的终边在如图所示阴影表示的范围内(不包括边界),则角α用集合可表示为________.解析 在[0,2π)内,终边落在阴影部分角的集合为⎝ ⎛⎭⎪⎫π4,56π,所以,所求角的集合为⎝ ⎛⎭⎪⎫2k π+π4,2k π+56π(k ∈Z ).答案 ⎝⎛⎭⎪⎫2k π+π4,2k π+56π(k ∈Z )5.设P 是角α终边上一点,且|OP |=1,若点P 关于原点的对称点为Q ,则Q 点的坐标是________.解析 由已知P (cos α,sin α),则Q (-cos α,-sin α). 答案 (-cos α,-sin α)6.已知扇形的圆心角为π6,面积为π3,则扇形的弧长等于________.解析设扇形半径为r ,弧长为l ,则⎩⎪⎨⎪⎧l r =π6,12lr =π3,解得⎩⎨⎧l =π3,r =2.答案π37.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为________.解析 由三角函数定义可知Q 点的坐标(x ,y )满足x =cos2π3=-12,y =sin 2π3=32. 答案 ⎝ ⎛⎭⎪⎫-12,328.设θ是第三象限角,且⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是第________象限角.解析 由θ是第三象限角,知θ2为第二或第四象限角,∵⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,∴cos θ2≤0,综上知θ2为第二象限角. 答案 二9.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α∈(0,π)的弧度数为________.解析 设圆半径为r ,则其内接正三角形的边长为3r ,所以3r =α·r ,∴α= 3. 答案310.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=________.解析 由题意知,tan θ=2,即sin θ=2cos θ,将其代入sin 2θ+cos 2θ=1中可得cos 2θ=15,故cos 2θ=2cos 2θ-1=-35.答案 -3511.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角; ③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确命题的个数是________.解析 举反例:第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin π6=sin5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时既不是第二象限角,也不是第三象限角,故⑤错.综上可知只有③正确.答案 112.(2017·苏北四市期末)已知角α的终边经过点(3a -9,a +2),且cos α≤0,sinα>0,则实数a 的取值范围是________.解析 ∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y 轴的正半轴上.∴⎩⎨⎧3a -9≤0,a +2>0,∴-2<a ≤3.答案 (-2,3]能力提升题组 (建议用时:15分钟)13.已知圆O :x 2+y 2=4与y 轴正半轴的交点为M ,点M 沿圆O 顺时针运动π2弧长到达点N ,以ON 为终边的角记为α,则tan α=________. 解析 圆的半径为2,π2的弧长对应的圆心角为π4,故以ON 为终边的角为⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=2k π+π4,k ∈Z ,故tan α=1.答案 114.(2017·泰州模拟)设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan α=________. 解析 因为α是第二象限角, 所以cos α=15x <0,即x <0.又cos α=15x =xx 2+16,解得x =-3,所以tan α=4x =-43.答案 -4315.函数y =2sin x -1的定义域为________. 解析 ∵2sin x -1≥0, ∴sin x ≥12.由三角函数线画出x 满足条件的终边范围(如图阴影所示). ∴x ∈⎣⎢⎡⎦⎥⎤2k π+π6,2k π+5π6(k ∈Z ). 答案 ⎣⎢⎡⎦⎥⎤2k π+π6,2k π+5π6(k ∈Z )16.如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动,当圆滚动到圆心位于(2,1)时,OP →的坐标为________.解析 如图,作CQ ∥x 轴,PQ ⊥CQ, Q 为垂足.根据题意得劣弧=2,故∠DCP =2,则在△PCQ 中,∠PCQ =2-π2, |CQ |=cos ⎝⎛⎭⎪⎫2-π2=sin 2,|PQ |=sin ⎝⎛⎭⎪⎫2-π2=-cos 2, 所以P 点的横坐标为2-|CQ |=2-sin 2,P 点的纵坐标为1+|PQ |=1-cos 2,所以P 点的坐标为(2-sin 2,1-cos 2),故OP →=(2-sin 2,1-cos 2). 答案 (2-sin 2,1-cos 2)第2讲 同角三角函数基本关系式及诱导公式考试要求 1.同角三角函数的基本关系式:sin 2α+cos 2α=1,sin αcos α=tan α,B级要求;±α,π±α,-α的正弦、余弦的诱导公式,B 级要求.知 识 梳 理1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan α.2.三角函数的诱导公式1.判断正误(在括号内打“√”或“×”)(1)sin(π+α)=-sin α成立的条件是α为锐角.( ) (2)六组诱导公式中的角α可以是任意角.( )(3)诱导公式的记忆口诀中“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.( )(4)若sin(k π-α)=13(k ∈Z ),则sin α=13.( )解析 (1)对于α∈R ,sin(π+α)=-sin α都成立. (4)当k 为奇数时,sin α=13,当k 为偶数时,sin α=-13.答案 (1)× (2)√ (3)√ (4)× 2.sin 600°的值为________.解析 sin 600°=sin(360°+240°)=sin 240°=sin(180°+60°)=-sin 60°=-32. 答案 -323.(2017·苏北四市摸底)已知sin ⎝ ⎛⎭⎪⎫5π2+α=15,那么cos α=________. 解析 ∵sin ⎝⎛⎭⎪⎫5π2+α=sin ⎝ ⎛⎭⎪⎫π2+α=cos α,∴cos α=15. 答案 154.(2017·南通调研)已知sin θ+cos θ=43,θ∈⎝⎛⎭⎪⎫0,π4,则sin θ-cos θ=________.解析 ∵sin θ+cos θ=43,∴sin θcos θ=718.又∵(sin θ-cos θ)2=1-2sin θcos θ=29,∴sin θ-cos θ=23或-23. 又∵θ∈⎝⎛⎭⎪⎫0,π4,∴sin θ-cos θ=-23.答案 -235.(必修4P23习题11改编)已知tan α=2,则sin α+cos αsin α-cos α的值为________.解析 原式=tan α+1tan α-1=2+12-1=3.答案 3考点一 同角三角函数基本关系式及其应用 【例1】 (1)(2015·福建卷改编)若sin α=-513,且α为第四象限角,则tan α的值等于________.(2)(2017·盐城模拟)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为________.(3)(2016·全国Ⅲ卷改编)若tan α=34,则cos 2α+2sin 2α=________.解析 (1)∵sin α=-513,且α为第四象限角,∴cos α=1-sin 2α=1213,∴tan α=sin αcos α=-512. (2)∵5π4<α<3π2,∴cos α<0,sin α<0且cos α>sin α, ∴cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,∴cos α-sin α=32. (3)tan α=34,则cos 2α+2sin 2α=cos 2α+2sin 2αcos 2α+sin 2α=1+4tan α1+tan 2α=6425.答案 (1)-512 (2)32 (3)6425规律方法 (1)利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.(2)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二. (3)注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.【训练1】 (1)已知sin α-cos α=2,α∈(0,π),则tan α=________. (2)(2017·盐城调研)若3sin α+cos α=0,则1cos 2α+2sin αcos α=________.解析 (1)由⎩⎨⎧sin α-cos α=2,sin 2α+cos 2α=1,得:2cos 2α+22cos α+1=0, 即()2cos α+12=0,∴cos α=-22.又α∈(0,π),∴α=3π4,∴tan α=tan 3π4=-1. (2)3sin α+cos α=0?cos α≠0?tan α=-13,1cos 2α+2sin αcos α=cos 2α+sin 2αcos 2α+2sin αcos α=1+tan 2α1+2tan α =1+⎝ ⎛⎭⎪⎫-1321-23=103.答案 (1)-1 (2)103考点二 诱导公式的应用【例2】 (1)化简:sin(-1 200°)cos 1 290°+cos(-1 020°)·sin(-1 050°); (2)求值:设f (α)=2sin?π+α?cos?π-α?-cos?π+α?1+sin 2α+cos ⎝ ⎛⎭⎪⎫3π2+α-sin 2⎝ ⎛⎭⎪⎫π2+α(1+2sin α≠0),求f ⎝ ⎛⎭⎪⎫-23π6的值.解 (1)原式=-sin 1 200°cos 1 290°-cos 1 020°sin 1 050°=-sin(3×360°+120°)cos(3×360°+210°)-cos(2×360°+300°)sin(2×360°+330°)=-sin 120°cos 210°-cos 300°sin 330°=-sin(180°-60°)cos(180°+30°)-cos(360°-60°)·sin(360°-30°)=sin 60°cos 30°+cos 60°sin 30°=32×32+12×12=1. (2)∵f (α)=?-2sin α??-cos α?+cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α=cos α?1+2sin α?sin α?1+2sin α?=1tan α,∴f ⎝⎛⎭⎪⎫-23π6=1tan ⎝⎛⎭⎪⎫-23π6=1tan ⎝⎛⎭⎪⎫-4π+π6=1tanπ6= 3.规律方法 (1)诱导公式的两个应用①求值:负化正,大化小,化到锐角为终了. ②化简:统一角,统一名,同角名少为终了. (2)含2π整数倍的诱导公式的应用由终边相同的角的关系可知,在计算含有2π的整数倍的三角函数式中可直接将2π的整数倍去掉后再进行运算,如cos(5π-α)=cos(π-α)=-cos α. 【训练2】 (1)已知A =sin?k π+α?sin α+cos?k π+α?cos α(k ∈Z ),则A 的值构成的集合是________.(2)化简:tan?π-α?cos?2π-α?sin ⎝⎛⎭⎪⎫-α+3π2cos?-α-π?sin?-π-α?=______.解析 (1)当k 为偶数时,A =sin αsin α+cos αcos α=2; k 为奇数时,A =-sin αsin α-cos αcos α=-2.(2)原式=-tan α·cos α·?-cos α?cos?π+α?·[-sin?π+α?]=tan α·cos α·cos α-cos α·sin α=sin αcos α·cos α-sin α=-1.答案 (1){2,-2} (2)-1考点三 诱导公式、同角三角函数关系式的综合应用【例3】 (1)已知tan ⎝ ⎛⎭⎪⎫π6-α=33,则tan ⎝ ⎛⎭⎪⎫56π+α=________.(2)(2017·南京、盐城模拟)已知cos ⎝⎛⎭⎪⎫5π12+α=13,且-π<α<-π2,则cos ⎝ ⎛⎭⎪⎫π12-α=________.解析 (1)∵⎝ ⎛⎭⎪⎫5π6+α+⎝ ⎛⎭⎪⎫π6-α=π, ∴tan ⎝ ⎛⎭⎪⎫5π6+α=tan ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-α =-tan ⎝ ⎛⎭⎪⎫π6-α=-33.(2)因为⎝ ⎛⎭⎪⎫512π+α+⎝ ⎛⎭⎪⎫π12-α=π2,所以cos ⎝ ⎛⎭⎪⎫π12-α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π12-α=sin ⎝⎛⎭⎪⎫5π12+α. 因为-π<α<-π2,所以-7π12<α+5π12<-π12. 又cos ⎝ ⎛⎭⎪⎫5π12+α=13>0,所以-π2<α+5π12<-π12,所以sin ⎝ ⎛⎭⎪⎫5π12+α=-1-cos 2⎝ ⎛⎭⎪⎫5π12+α =-1-⎝ ⎛⎭⎪⎫132=-223.答案 (1)-33 (2)-223规律方法 (1)常见的互余的角:π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等.(2)常见的互补的角:π3+θ与2π3-θ;π4+θ与3π4-θ等.【训练3】 (1)已知sin ⎝ ⎛⎭⎪⎫π3-α=12,则cos ⎝ ⎛⎭⎪⎫π6+α=________.(2)设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x ,当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎪⎫23π6=________.解析 (1)∵⎝ ⎛⎭⎪⎫π3-α+⎝ ⎛⎭⎪⎫π6+α=π2,∴cos ⎝ ⎛⎭⎪⎫π6+α=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-α=sin ⎝ ⎛⎭⎪⎫π3-α=12.(2)由f (x +π)=f (x )+sin x ,得f (x +2π)=f (x +π)+sin(x +π) =f (x )+sin x -sin x =f (x ), 所以f ⎝ ⎛⎭⎪⎫236π=f ⎝ ⎛⎭⎪⎫116π+2π=f ⎝ ⎛⎭⎪⎫116π=f ⎝ ⎛⎭⎪⎫π+56π=f ⎝ ⎛⎭⎪⎫56π+sin 56π.因为当0≤x <π时,f (x )=0. 所以f ⎝ ⎛⎭⎪⎫236π=0+12=12.答案 (1)12 (2)12[思想方法]1.同角三角函数基本关系可用于统一函数;诱导公式主要用于统一角,其主要作用是进行三角函数的求值、化简和证明,已知一个角的某一三角函数值,求这个角的其它三角函数值时,要特别注意平方关系的使用.2.三角求值、化简是三角函数的基础,在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan x =sin x cos x 进行切化弦或弦化切,如a sin x +b cos xc sin x +d cos x,a sin 2x +b sin x cos x +c cos 2x 等类型可进行弦化切.(2)和积转换法:如利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=sin 2θ⎝ ⎛⎭⎪⎫1+1tan 2θ=tan π4=….[易错防范]1.利用诱导公式进行化简求值时,可利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐. 特别注意函数名称和符号的确定.2.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. 3.注意求值与化简后的结果一般要尽可能有理化、整式化.基础巩固题组(建议用时:30分钟)1.(2016·四川卷)sin 750°=________.解析 sin 750°=sin(720°+30°)=sin 30°=12.答案 122.(2017·镇江期末)已知α是第四象限角,sin α=-1213,则tan α=________. 解析 因为α是第四象限角,sin α=-1213, 所以cos α=1-sin 2α=513, 故tan α=sin αcos α=-125.答案 -1253.已知tan α=12,且α∈⎝⎛⎭⎪⎫π,3π2,则sin α=________. 解析 ∵tan α=12>0,且α∈⎝⎛⎭⎪⎫π,3π2,∴sin α<0,∴sin 2α=sin 2αsin 2α+cos 2α=tan 2αtan 2α+1=1414+1=15,∴sin α=-55. 答案 -55=________. 解析1-2sin?π+2?cos?π-2?=1-2sin 2cos 2=?sin 2-cos 2?2=|sin 2-cos 2|=sin 2-cos 2. 答案 sin 2-cos 25.(2016·全国Ⅰ卷)已知θ是第四象限角,且sin ⎝ ⎛⎭⎪⎫θ+π4=35,则tan ⎝ ⎛⎭⎪⎫θ-π4=________.解析 由题意,得cos ⎝⎛⎭⎪⎫θ+π4=45,∴tan ⎝ ⎛⎭⎪⎫θ+π4=34. ∴tan ⎝ ⎛⎭⎪⎫θ-π4=tan ⎝⎛⎭⎪⎫θ+π4-π2=-1tan⎝⎛⎭⎪⎫θ+π4=-43. 答案 -436.(2017·扬州中学质检)向量a =⎝ ⎛⎭⎪⎫13,tan α,b =(cos α,1),且a ∥b ,则cos ⎝ ⎛⎭⎪⎫π2+α=________.解析 ∵a =⎝ ⎛⎭⎪⎫13,tan α,b =(cos α,1),且a ∥b ,∴13×1-tan αcos α=0,∴sin α=13,∴cos ⎝ ⎛⎭⎪⎫π2+α=-sin α=-13.答案 -137.(2017·广州二测改编)cos ⎝ ⎛⎭⎪⎫π12-θ=13,则sin ⎝⎛⎭⎪⎫5π12+θ=________. 解析 sin ⎝⎛⎭⎪⎫5π12+θ=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π12-θ=cos ⎝ ⎛⎭⎪⎫π12-θ=13. 答案 138.(2017·泰州模拟)已知tan α=3,则1+2sin αcos αsin 2α-cos 2α的值是________.解析 原式=sin 2α+cos 2α+2sin αcos αsin 2α-cos 2α=?sin α+cos α?2?sin α+cos α??sin α-cos α?=sin α+cos αsin α-cos α=tan α+1tan α-1=3+13-1=2. 答案 29.已知α为钝角,sin ⎝ ⎛⎭⎪⎫π4+α=34,则sin ⎝ ⎛⎭⎪⎫π4-α=________.解析 因为α为钝角,所以cos ⎝ ⎛⎭⎪⎫π4+α=-74,所以sin ⎝ ⎛⎭⎪⎫π4-α=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4-α=cos ⎝ ⎛⎭⎪⎫π4+α=-74.答案 -7410.已知sin α=55,则sin 4α-cos 4α的值为________. 解析 sin 4α-cos 4α=sin 2α-cos 2α=2sin 2α-1=25-1=-35.答案 -3511.化简:sin 2?α+π?·cos?π+α?·cos?-α-2π?tan?π+α?·sin 3⎝ ⎛⎭⎪⎫π2+α·sin?-α-2π?=________.解析 原式=sin 2α·?-cos α?·cos αtan α·cos 3α·?-sin α?=sin 2αcos 2αsin 2αcos 2α=1.答案 112.(2017·西安模拟)已知函数f (x )=a sin(πx +α)+b cos(πx +β),且f (4)=3,则f (2 017)的值为________.解析 ∵f (4)=a sin(4π+α)+b cos(4π+β) =a sin α+b cos β=3,∴f (2 017)=a sin(2 017π+α)+b cos(2 017π+β) =a sin(π+α)+b cos(π+β) =-a sin α-b cos β =-3. 答案 -3能力提升题组(建议用时:15分钟)13.已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ=________. 解析 ∵sin(π+θ)=-3cos(2π-θ), ∴-sin θ=-3cos θ, ∴tan θ=3,∵|θ|<π2,∴θ=π3. 答案π314.若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为________. 解析 由题意知sin θ+cos θ=-m 2,sin θ·cos θ=m4.又()sin θ+cos θ2=1+2sin θcos θ, ∴m 24=1+m2,解得m =1± 5.又Δ=4m 2-16m ≥0,∴m ≤0或m ≥4,∴m =1- 5. 答案 1-515.(2017·苏州调研)已知sin ⎝ ⎛⎭⎪⎫x +π6=13,则sin ⎝ ⎛⎭⎪⎫x -5π6+sin 2⎝ ⎛⎭⎪⎫π3-x 的值为________.解析 sin ⎝ ⎛⎭⎪⎫x -5π6+sin 2⎝ ⎛⎭⎪⎫π3-x =sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +π6-π+sin 2⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫x +π6=-sin ⎝⎛⎭⎪⎫x +π6+cos 2⎝⎛⎭⎪⎫x +π6 =-sin ⎝ ⎛⎭⎪⎫x +π6+1-sin 2⎝⎛⎭⎪⎫x +π6=59.答案 5916.已知cos ⎝ ⎛⎭⎪⎫π6-θ=a ,则cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=________. 解析 ∵cos ⎝ ⎛⎭⎪⎫5π6+θ=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-θ =-cos ⎝ ⎛⎭⎪⎫π6-θ=-a .sin ⎝⎛⎭⎪⎫2π3-θ=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π6-θ=cos ⎝ ⎛⎭⎪⎫π6-θ=a , ∴cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=0. 答案 0第3讲 三角函数的图象和性质考试要求 =sin x ,y =cos x ,y =tan x 的图象及周期性,A 级要求;2正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最值及与x 轴的交点等),B 级要求;3.正切函数在区间⎝ ⎛⎭⎪⎫-π2,π2内的单调性,B 级要求.知 识 梳 理1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0). (2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )1.判断正误(在括号内打“√”或“×”)(1)由sin ⎝ ⎛⎭⎪⎫π6+2π3=sin π6知,2π3是正弦函数y =sin x (x ∈R )的一个周期.( )(2)余弦函数y =cos x 的对称轴是y 轴.( ) (3)正切函数y =tan x 在定义域内是增函数.( ) (4)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( ) (5)y =sin|x |是偶函数.( )解析 (1)函数y =sin x 的周期是2k π(k ∈Z ).(2)余弦函数y =cos x 的对称轴有无穷多条,y 轴只是其中的一条.(3)正切函数y =tan x 在每一个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上都是增函数,但在定义域内不是单调函数,故不是增函数.(4)当k >0时,y max =k +1;当k <0时,y max =-k +1. 答案 (1)× (2)× (3)× (4)× (5)√2.(必修4P33例4改编)函数y =2tan ⎝ ⎛⎭⎪⎫x -π3的定义域为________.解析 ∵x -π3≠k π+π2,k ∈Z ,∴x ≠k π+5π6,k ∈Z ,即函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ∈R ,且x ≠k π+5π6,k ∈Z. 答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ∈R ,且x ≠k π+5π6,k ∈Z3.(2017·苏州一模)若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=________.解析 由已知f (x )=sinx +φ3是偶函数,可得φ3=k π+π2,即φ=3k π+3π2(k ∈Z ),又φ∈[0,2π],所以φ=3π2. 答案3π24.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为________.解析 由已知x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,故函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为-22.答案 -225.(2017·南通调研)若函数y =2cos ωx 在区间⎣⎢⎡⎦⎥⎤0,2π3上单调递减,且有最小值1,则ω的值为________.解析 因为y =cos x 在⎣⎢⎡⎦⎥⎤-π2,0上单调递增,在⎣⎢⎡⎦⎥⎤0,π2上单调递减,所以必有ω>0,且2π3·ω≤π2.所以0<ω≤34.当x =2π3时,2cos 2ω3π=1,cos 2ω3π=12. 所以ω=12.答案12考点一 三角函数的定义域及简单的三角不等式 【例1】 (1)函数f (x )=-2tan ⎝⎛⎭⎪⎫2x +π6的定义域是________. (2)不等式3+2cos x ≥0的解集是________.(3)函数f (x )=64-x 2+log 2(2sin x -1)的定义域是________. 解析 (1)由正切函数的定义域,得2x +π6≠k π+π2,即x ≠k π2+π6(k ∈Z ). (2)由3+2cos x ≥0,得cos x ≥-32, 由余弦函数的图象,得在一个周期[-π,π]上,不等式cos x ≥-32的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x -5π6≤x ≤56π,故原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x -56π+2k π≤x ≤56π+2k π,k ∈Z .(3)由题意,得⎩⎨⎧64-x 2≥0,①2sin x -1>0,②由①得-8≤x ≤8,由②得sin x >12,由正弦曲线得π6+2k π<x <56π+2k π(k ∈Z ).所以不等式组的解集为⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝⎛⎦⎥⎤13π6,8. 答案(1)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫xx ≠k π2+π6,k ∈Z (2)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x -56π+2k π≤x ≤56π+2k π,k ∈Z(3)⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8 规律方法 (1)三角函数定义域的求法①以正切函数为例,应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域.②转化为求解简单的三角不等式求复杂函数的定义域. (2)简单三角不等式的解法 ①利用三角函数线求解. ②利用三角函数的图象求解.【训练1】 (1)函数y =tan 2x 的定义域为________. (2)函数y =sin x -cos x 的定义域为________. 解析 (1)由2x ≠k π+π2,k ∈Z ,得x ≠k π2+π4,k ∈Z , ∴y =tan 2x 的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫xx ≠k π2+π4,k ∈Z . (2)法一要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为 ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z .法二 利用三角函数线,画出满足条件的终边范围(如图阴影部分所示). 所以定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z . 法三 sin x -cos x =2sin ⎝⎛⎭⎪⎫x -π4≥0,将x -π4视为一个整体,由正弦函数y =sinx 的图象和性质可知2k π≤x -π4≤π+2k π(k ∈Z ),解得2k π+π4≤x ≤2k π+5π4(k ∈Z ).所以定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z . 答案(1)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫xx ≠k π2+π4,k ∈Z (2)⎩⎨⎧⎭⎬⎫x⎪⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z 考点二 三角函数的值域【例2】 (1)函数y =-2sin x -1,x ∈⎣⎢⎡⎭⎪⎫76π,136π的值域是________. (2)(2016·全国Ⅱ卷改编)函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为________.(3)函数y =sin x -cos x +sin x cos x 的值域为________.解析 (1)由正弦曲线知y =sin x 在⎣⎢⎡⎭⎪⎫76π,136π上,-1≤sin x <12,所以函数y = -2sin x -1,x ∈⎣⎢⎡⎭⎪⎫7π6,136π的值域是(-2,1]. (2)由f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x =1-2sin 2x +6sin x =-2⎝ ⎛⎭⎪⎫sin x -322+112,所以当sin x =1时函数的最大值为5. (3)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x , sin x cos x =1-t 22,且-2≤t ≤ 2.∴y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2.∴函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1.答案 (1)(-2,1] (2)5 (3)⎣⎢⎡⎦⎥⎤-12-2,1规律方法 求解三角函数的值域(最值)常见到以下几种类型:(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值);(2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);(3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).【训练2】 (1)(2017·泰州模拟)函数y =2sin ⎝ ⎛⎭⎪⎫π6x -π3 (0≤x ≤9)的最大值与最小值之和为________.(2)函数y =-2cos ⎝ ⎛⎭⎪⎫12x -π3+1的最大值是________,此时x 的取值集合为________.解析 (1)因为0≤x ≤9,所以-π3≤π6x -π3≤7π6,所以sin ⎝⎛⎭⎪⎫π6x -π3∈⎣⎢⎡⎦⎥⎤-32,1. 所以y ∈[-3,2],所以y max +y min =2- 3.(2)y max =-2×(-1)+1=3,此时,12x -π3=2k π+π,即x =4k π+8π3(k ∈Z ).答案 (1)2- 3 (2)3⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫xx =4k π+8π3,k ∈Z考点三 三角函数的性质(多维探究) 命题角度一 三角函数的奇偶性与周期性【例3-1】 (1)(2017·常州期末)函数y =2cos 2⎝⎛⎭⎪⎫x -π4-1的最小正周期为________的________函数(填“奇”或“偶”).(2)(2017·衡水中学金卷)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=________. 解析 (1)y =2cos 2⎝⎛⎭⎪⎫x -π4-1=cos2⎝ ⎛⎭⎪⎫x -π4=cos ⎝ ⎛⎭⎪⎫2x -π2=cos ⎝ ⎛⎭⎪⎫π2-2x =sin 2x ,则函数为最小正周期为π的奇函数. (2)f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3,由题意可得f (0)=2sin ⎝ ⎛⎭⎪⎫θ-π3=±2,即sin ⎝⎛⎭⎪⎫θ-π3=±1,∴θ-π3=π2+k π(k ∈Z ),∴θ=5π6+k π(k ∈Z ),∵|θ|<π2,∴k =-1时,θ=-π6. 答案 (1)π 奇 (2)-π6规律方法 (1)若f (x )=A sin(ωx +φ)(A ,ω≠0),则 ①f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );②f (x )为奇函数的充要条件是φ=k π(k ∈Z ).(2)函数y =A sin(ωx +φ)与y =A cos(ωx +φ)的最小正周期T =2π|ω|,y =A tan(ωx +φ)的最小正周期T =π|ω|.命题角度二 三角函数的单调性【例3-2】 (1)函数f (x )=sin ⎝⎛⎭⎪⎫-2x +π3的单调递减区间为________.(2)若f (x )=2sin ωx +1(ω>0)在区间⎣⎢⎡⎦⎥⎤-π2,2π3上是增函数,则ω的取值范围是________.解析 (1)由已知可得函数为y =-sin ⎝ ⎛⎭⎪⎫2x -π3,欲求函数的单调减区间,只需求y =sin ⎝⎛⎭⎪⎫2x -π3的单调增区间.由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所求函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ).(2)法一 由2k π-π2≤ωx ≤2k π+π2,k ∈Z ,得f (x )的增区间是⎣⎢⎡⎦⎥⎤2k πω-π2ω,2k πω+π2ω(k ∈Z ).因为f (x )在⎣⎢⎡⎦⎥⎤-π2,2π3上是增函数,所以⎣⎢⎡⎦⎥⎤-π2,2π3?⎣⎢⎡⎦⎥⎤-π2ω,π2ω. 所以-π2≥-π2ω且2π3≤π2ω,所以ω∈⎝ ⎛⎦⎥⎤0,34.法二 因为x ∈⎣⎢⎡⎦⎥⎤-π2,2π3,ω>0.所以ωx ∈⎣⎢⎡⎦⎥⎤-ωπ2,2πω3, 又f (x )在区间⎣⎢⎡⎦⎥⎤-π2,2π3上是增函数,所以⎣⎢⎡⎦⎥⎤-ωπ2,2πω3?⎣⎢⎡⎦⎥⎤-π2,π2, 则⎩⎪⎨⎪⎧-ωπ2≥-π2,2πω3≤π2,又ω>0,得0<ω≤34.法三 因为f (x )在区间⎣⎢⎡⎦⎥⎤-π2,2π3上是增函数,故原点到-π2,2π3的距离不超过T 4,即⎩⎪⎨⎪⎧π2≤T4,2π3≤T 4,得T ≥8π3,即2πω≥8π3,又ω>0,得0<ω≤34. 答案 (1)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ) (2)⎝⎛⎦⎥⎤0,34规律方法 (1)求较为复杂的三角函数的单调区间时,首先化简成y =A sin(ωx +φ)形式,再求y =A sin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sinx 的相应单调区间内即可,注意要先把ω化为正数.(2)对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解. 命题角度三 三角函数的对称轴或对称中心【例3-3】 (1)(2017·苏、锡、常、镇四市调研)若函数f (x )=2sin(4x +φ)(φ<0)的图象关于直线x =π24对称,则φ的最大值为________.(2)(2016·全国Ⅰ卷改编)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为________. 解析 (1)由题可得,4×π24+φ=π2+k π,k ∈Z ,∴φ=π3+k π,k ∈Z ,∵φ<0,∴φmax =-2π3.(2)因为x =-π4为f (x )的零点,x =π4为f (x )的图象的对称轴,所以π4-⎝ ⎛⎭⎪⎫-π4=T 4+kT ,即π2=4k +14T =4k +14·2πω,所以ω=4k +1(k ∈N *),又因为f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,所以5π36-π18=π12≤T 2=2π2ω,即ω≤12,由此得ω的最大值为9.答案 (1)-2π3(2)9规律方法 (1)对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.(2)对于可化为f (x )=A cos(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx+φ=k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可.【训练3】 (1)(2017·无锡期末)若函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +5π2的图象关于点(x 0,0)成中心对称,x 0∈⎣⎢⎡⎦⎥⎤0,π2,则x 0=______.(2)已知ω>0,函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递增,则ω的取值范围是________.解析 (1)因为f (x )=cos ⎝ ⎛⎭⎪⎫2x +5π2=cos ⎝ ⎛⎭⎪⎫π2+2x =-sin 2x ,f (-x )=-sin(-2x )=sin 2x =-f (x ),所以f (x )=-sin 2x 是奇函数,所以f (x )的图象关于原点对称. (2)函数y =cos x 的单调递增区间为[-π+2k π,2k π],k ∈Z ,则⎩⎪⎨⎪⎧ωπ2+π4≥-π+2k π,ωπ+π4≤2k π(k ∈Z ),解得4k -52≤ω≤2k -14,k ∈Z ,又由4k -52-⎝ ⎛⎭⎪⎫2k -14≤0,k ∈Z 且2k -14>0,k ∈Z ,得k =1,所以ω∈⎣⎢⎡⎦⎥⎤32,74.答案 (1)0 (2)⎣⎢⎡⎦⎥⎤32,74[思想方法]1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式. 2.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质. 3.数形结合是本讲的重要数学思想. [易错防范]1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性;含参数的最值问题,要讨论参数对最值的影响.2.要注意求函数y =A sin(ωx +φ)的单调区间时A 和ω的符号,尽量化成ω>0时情况,避免出现增减区间的混淆.基础巩固题组(建议用时:40分钟)一、填空题1.在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎪⎫2x +π6,④y =tan ⎝ ⎛⎭⎪⎫2x -π4中,最小正周期为π的函数有________(填序号). 解析 ①y =cos|2x |=cos 2x ,最小正周期为π; ②由图象知y =|cos x |的最小正周期为π; ③y =cos ⎝ ⎛⎭⎪⎫2x +π6的最小正周期T =2π2=π;④y =tan ⎝ ⎛⎭⎪⎫2x -π4的最小正周期T =π2.答案 ①②③2.(2017·南京模拟)函数f (x )=tan ⎝⎛⎭⎪⎫2x -π3的单调递增区间是________.解析 当k π-π2<2x -π3<k π+π2(k ∈Z )时,函数y =tan ⎝⎛⎭⎪⎫2x -π3单调递增,解得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数y =tan ⎝⎛⎭⎪⎫2x -π3的单调递增区间是⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ). 答案 ⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ) 3.(2017·南通、扬州、泰州、淮安调研)设函数y =sin ⎝⎛⎭⎪⎫ωx +π3(0<x <π),当且仅当x =π12时,y 取得最大值,则正数ω的值为________.解析 由题意可得π12ω+π3=π2+2k π,k ∈Z 且π≤2πω,解得ω=2. 答案 24.(2017·徐州检测)函数y =cos 2x -2sin x 的最大值与最小值分别为________. 解析 y =cos 2x -2sin x =1-sin 2x -2sin x =-sin 2x -2sin x +1,令t =sin x ,则t ∈[-1,1],y =-t 2-2t +1=-(t +1)2+2, 所以y max =2,y min =-2. 答案 2,-25.(2017·苏北四市联考)函数y =12sin x +32cos x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的单调递增区间是________.解析 ∵y =12sin x +32cos x =sin ⎝ ⎛⎭⎪⎫x +π3,由2k π-π2≤x +π3≤2k π+π2(k ∈Z ),。

解三角形章末综合提升课件苏教版必修第二册

解三角形章末综合提升课件苏教版必修第二册

cos∠PAB=PA2+2PAAB·A2-B PB2=x2+2022-x·20x-122=3x+5x32. 同理 cos∠PAC=723-x x. ∵cos∠PAB=cos∠PAC, ∴3x+5x32=723-x x, 解得 x=1372.
(2) 作 PD⊥a 于 D , 在 Rt△PDA 中 , PD = PAcos∠APD = PAcos∠PAB=x·3x+5x32=3×17352+32≈17.71(km).
在 △ABD 中 , 由 余 弦 定 理 , 得 AB2 = BD2 + DA2 - 2BD·DA·cos∠ADB,
即 4=BD2+1136- 213BDcos∠ADB, 在 △BDC 中 , 由 余 弦 定 理 , 得 BC2 = BD2 + DC2 - 2BD·DC·cos∠CDB, 即94=BD2+1136- 213BDcos∠CDB.
=13×79+2 32×49 2=2237.
[跟进训练] 4.在△ABC 中,内角 A,B,C 所对的边分别是 a,b,c.已知 m=(a,c-2b),n=(cos C,cos A),且 m⊥n. (1)求角 A 的大小; (2)若A→B-13A→C=2,求△ABC 面积的最大值.
[解] (1)由 m⊥n 得 a·cos C+(c-2b)·cos A=0, 则 sin Acos C+(sin C-2sin B)cos A=0, 得 sin(A+C)-2sin Bcos A=0, 即 sin B-2sin Bcos A=0. 由于 sin B≠0,得 cos A=12. 又 A 为△ABC 的内角,因此 A=60°.
[解]
(1)在△ABC
中,由正弦定理sina
A=sinb B,及
bsin
A=

江苏省2023届新高考数学高三上学期10月月考试卷分类汇编:三角部分小题之解三角形(原卷版)

江苏省2023届新高考数学高三上学期10月月考试卷分类汇编:三角部分小题之解三角形(原卷版)

江苏省2023届新高考数学高三上学期10月期初考试试卷分类汇编:三角部分小题【类型三:解三角形】1.(2023·江苏常州八校10月联考)法国数学家费马被称为业余数学之王,很多数学定理以他的名字命名.对△ABC而言,若其内部的点P满足∠APB=∠BPC=∠CP A=120°,则称P 为△ABC的费马点.在△ABC中,已知∠BAC=45°,设P为△ABC的费马点,且满足∠PBA =45°,P A=4.则△BPC的外接圆半径长为.2.(2023·江苏丹阳高级中学、常州高级中学、南菁高级中学10月联考)拿破仑是法国伟大的军事家、政治家,对数学也很有兴趣,他发现并证明了著名的拿破仑定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个等边三角形的中心恰为另一个等边三角形的顶点”.在△ABC中,以AB,BC,CA为边向外构造的三个等边三角ABP,BCQ,CAR 它们的中心依次为D,E,F.若AB=3,BC=5,CA=7,则△DEF的面积为.3.(2023·江苏苏州八校联盟10月)已知△ABC的面积为23,AB=2,AC=4,则△ABC中线AD长的值为▲ .4.(2023·江苏扬州中学10月)(多选题)在△ABC中,角A,B,C的对边分别是a,b,c,下列说法正确的是( )A.若A=30°,b=5,a=2,则△ABC有2解;B.若A>B,则cos A<cos B;C.若cos A cos B cos C>0,则△ABC为锐角三角形;D.若a-b=c⋅cos B-c⋅cos A,则△ABC为等腰三角形或直角三角形.5.(2023·江苏阜宁县实验高级中学10月月考)(多选题)已知△ABC的内角A,B,C所对的边分别为a,b,c,下列四个命题中正确的命题是( )A.若acos A=bcos B=ccos C,则△ABC一定是等边三角形B.若a cos A=b cos B,则△ABC一定是等腰三角形C.若b cos C+c cos B=b,则△ABC一定是等腰三角形D.若a2+b2-c2>0,则△ABC一定是锐角三角形6.(2023·江苏南师附中10月考试)已知锐角△ABC的内角A,B,C所对的边分别为a,b,c,且满足c=3,3tan A tan B=3+tan A+tan B,则a2+b2的取值范围为.7.(2023·江苏南京盐城部分学校10月联考)在△ABC中,点D在边BC上,且BD=2CD,→AB ·→AD =4→AC ·→AD ,记BD ,CD 中点分别为E ,F ,且AE =EF ,则cos△EAF =A .14B .158C .154D .788.(2023·江苏南京六校联合体10月)已知ABC ∆的三个角,,A B C 所对的边为,,a b c ,若60B ︒∠=,D 为边AC 上的一点,且1BD =,AD c DC a =,则11a c+值为_________. 9.(2023·江苏淮安涟水县第一中学10月月考)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,ABC ∆的面积为S ,若()224S b c a =+-,则角A 的值为( ). A .π2 B . 2π3 C .π3 D .π410.(2023·江苏淮安涟水县第一中学10月月考)(多选题)设ABC ∆的内角,,A B C 的对边分别为,,a b c ,若2,3c C π==,则下列选项正确的是( )A .ABC ∆B .ABC ∆C .2a b +最大值为3; D .22a b +的最小值为8 11.(2023·江苏扬州中学10月)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,b +2a =4,(a +c )(sin A -sin C )+b sin B =a sin B ,点D 在边AB 上,且AD =2DB ,则线段CD 长度的最小值为( )A .233B .223C .3D .2 12.(2023·江苏南通如皋10月)湖北宜昌三峡大瀑布是国家4A 级景区,也是神农架探秘的必经之地。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

◆江苏高考数学专题巩固与提升(一):解三角形
江苏省扬州中学2012-2013学年高一5月月考
5、△ABC 的内角A 、B 、C 的对边分别是a 、b 、c ,若a 、b 、c 成等比数列,且c =2a ,则cos B =__________.
江苏省常熟中学2012-2013学年高一上学期期末考试
靖江市2012-2013学年度第二学期期中调研试卷
3.在△ABC 中, 如果sinA:sinB:sinC=3:5:7,则△ABC 的最大角的大小是 ▲ . 6.在△ABC 中,已知a-b=c(cosB-cosA),则△ABC 的形状为 ▲ .
11.在△ABC 中,A =60,b =1,3,则△ABC 外接圆的半径为 ▲ . 17.(本小题满分15分)
已知a 、b 、c 是△ABC 的三条边,它们所对的角分别是A 、B 、C ,若a 、b 、c 成等比数列,且a 2-c 2=ac -bc ,试求: ⑴角A 的度数;(2)求c
bsinB
的值. 19. (本小题满分16分)
某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:在C 处进行该仪器的垂直弹射,观察点A 、B 两地相距100米,∠BAC =60°,在A 地听到弹射声音的时间比B 地晚2
17
秒.A 地测得该仪器在C 处时的俯角为15°,A 地测得最高
点H 的仰角为30°,求该仪器的垂直弹射高度CH .
(声音的传播速度为340米/秒, 保留根式)
2011-2012学年江苏省盐城市高一下学期期末调研
5、在ABC ∆中,已知7,43,13a b c ===,则其最小内角的大小为 ▲ .
江苏省南京六中高一下学期期中考试(数学)
3.已知a =4,b =5,c =6,则cos A =
. 8.已知a =1,A =60°,c =
3
3
,则C =

16.(满分14分)在△ABC 中,已知a =5,b =3,C =120°,求sin A .
江苏省南京一中09-10学年高一下学期期中考试
2、在△ABC 中,若∠A=30°, AB=2 3 , AC=3, 则△ABC 的面积是 . 7、△ABC 中,7, 43, 13a b c ===,则最小内角的大小是 .
12、海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望 C 岛和A 岛成75°的视角,则B 、C 间的距离是 海里.
18、(本题满分10分)设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,2sin a b A =.
(Ⅰ)求B 的大小;(Ⅱ)若33a =,5c =,求b .
江苏省泰州中学10-11学年高一下学期期中考试
2.在ABC ∆中,如果4:3:2::=c b a ,那么C cos = ▲ . 4.在ABC ∆中,C B A ∠∠∠,,所对的边分别是,,a b c ,已知1,3,3
===
b a A π
,则
ABC ∆的形状是 ▲ .
5.海上有B A ,两个小岛相距n 210mile ,从A 岛望C 岛和B 岛所成的视角为0
60,从B
岛望C 岛和A 岛所成的视角为0
75,则B 岛和C 岛之间的距离BC = ▲
n mile .
10.在ABC ∆中,C B A ∠∠∠,,所对的边分别是,,a b c ,若2
2
2
b c a +=,且
b
a
=C ∠= ▲ . 16.(本小题满分14分)
在ABC ∆中,C B A ∠∠∠,,所对的边分别是,,a b c . (Ⅰ)用余弦定理证明:当C ∠为钝角时,2
2
2
c b a <+;
(Ⅱ)当钝角△ABC 的三边,,a b c 是三个连续整数时,求ABC ∆外接圆的半径. 17.(本小题满分15分)
在ABC ∆中,C B A ∠∠∠,,所对的边分别是,,a b c ,不等式
06sin 4cos 2≥++C x C x 对一切实数x 恒成立.
(Ⅰ)求C cos 的取值范围;
(Ⅱ)当C ∠取最大值,且2=c 时,求ABC ∆面积的最大值并指出取最大值时ABC ∆的形状.
江苏省安宜高中高一数学期中试卷
3.在ABC ∆中,若b 2 + c 2 = a 2 + bc , 则A = . 6.在ABC ∆中有B b A a cos cos =则ABC ∆的形状为 。

16、 (本小题满分14分)
在△ABC 中,10=+b a ,cosC 是方程02322
=--x x 的一个根, 求①角C 的度数②△ABC 周长的最小值。

江苏省东海县2010-2011学年度第二学期期中调研考试高一数学试题
8.在ABC ∆中,若B A B A tan tan 33tan tan ⋅=++,则角C 的大小为 .
江苏省姜堰市2010~2011年度第二学期期中调研测试
1、一个三角形的两个内角分别为30º和45º,如果45º角所对的边长为8,那么30º角所对的边长是 ▲
2、若三条线段的长分别为3,4,5;则用这三条线段组成 ▲ 三角形(填锐角或直角或钝角)
3、在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,若1a =,b C =30º;则△ABC 的面积是 ▲
江苏省扬州中学2012-2013学年度第一学期1月质量检测高三数学试卷
16.(本题满分14分)
在ABC ∆中,内角A ,B,C 对边的边长分别是a ,b,c ,已知c =2, C =
3
π.
(Ⅰ)若ABC ∆
a ,
b ;
(Ⅱ)若sin sin()2sin 2C B A A +-=,求ABC ∆的面积.
江苏省镇江市2012-2013学年高三上学期期末考试数学试卷
6. 在△ABC 中,sin :sin :sin 2:3:4A B C =,则cos C = ▲ .
连云港市2012-2013学年度第一学期高三期末考试数学试卷
15.(本小题满分14分)
在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且c cos B +b cos C =3a cos B . (1)求cos B 的值;
(2)若→BA ⋅→
BC =2,求b 的最小值.
南京市、盐城市2013届高三年级第一次模拟考试数学试题
16.(本小题满分14分)
在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若cos(A +)=sin A ,求A 的值; (2)若cos A =,4b =c ,求sin B 的值.
苏北三市(徐州、淮安、宿迁)2013届高三第二次调研考试
15.(本小题满分14分)
在△ABC ,已知.sin sin 3)sin sin )(sin sin sin (sin C B A C B C B A =-+++ (1) 求角A 值;
(2) 求C B cos sin 3-的最大值.
2013年江苏高考数学模拟试卷(二)。

相关文档
最新文档