全国Ⅱ2010年高考数学理(甘肃_贵州_新疆_青海_西藏_内蒙古_云南)
(完整)2010年全国高考数学试题及答案-全国2卷,推荐文档
(完整)2010年全国高考数学试题及答案-全国2卷,推荐文档绝密★启用前2010年普通高等学校招生全国统一考试(全国Ⅱ卷)文科数学第Ⅰ卷(选择题)本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么球的表面积公式(+)()+()P A B P A P B = S=4πR 2如果事件A 、B 相互独立,那么其中R 表示球的半径()()()P A B P A P B ?=? 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34V R 3π= n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径P ()(1)(0,1,2,,)k k n k n n k C p p k n -=-=L一、选择题(1)设全集{}*U 6x N x =∈<,集合{}{}A 1,3B 3,5==,,则U ()A B =U e()(A){}1,4 (B){}1,5 (C){}2,4 (D){}2,5(2)不等式302x x -<+的解集为()(A){}23x x -<< (B){}2x x <-(C){}23x x x <->或(D){}3x x >(3)已知2sin 3α=,则cos(2)πα-= (A) 53- (B) 19- (C) 19(D) 53 (4)函数1ln(1)(1)y x x =+->的反函数是(A) 11(0)x y ex +=-> (B) 11(0)x y e x -=+> (C) 11(R)x y e x +=-∈ (D) 11(R)x y e x -=+∈ (5) 若变量,x y 满足约束条件1325x y x x y ≥-??≥??+≤?,则2z x y =+的最大值为(A) 1 (B) 2 (C) 3 (D)4(6)如果等差数列{}n a 中,3a +4a +5a =12,那么1a +2a +…+7a =(A) 14 (B) 21 (C) 28 (D)35(7)若曲线2y x ax b =++在点(0,)b 处的切线方程式10x y -+=,则(A )1,1a b == (B )1,1a b =-=(C )1,1a b ==- (D )1,1a b =-=-(8)已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA=3,那么直线AB 与平面SBC 所成角的正弦值为(A )3 (B )5 (C )7 (D ) 34(9)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有(A )12种(B )18种(C )36种(D )54种(10)△ABC 中,点D 在边AB 上,CD 平分∠ACB ,若CB a =,CA b =,1,2a b ==,则CD =(A )1233a b + (B )2233a b + (C )3455a b + (D )4355a b + (11)与正方体1111ABCD A B C D -的三条棱AB 、1CC 、11A D 所在直线的距离相等的点(A )有且只有1个(B )有且只有2个(C )有且只有3个(D )有无数个(12)已知椭圆C :22x a +22by =1(0)a b >>的离心率为23,过右焦点F 且斜率为k (k >0)的直线与C 相交于A 、B 两点,若AF =3FB ,则k = (A )1(B )2 (C )3 (D )2第Ⅱ卷(非选择题)二.填空题:本大题共4小题,每小题5分,共20分。
2010年普通高等学校招生全国统一考试(新课标全国卷)(数学[理])
2010年普通高等学校招生全国统一考试(新课标全国卷)数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.其中第Ⅱ卷第22~24题为选考题,其他题为必考题.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x ||x |≤2,x ∈R},B ={x |x ≤4,x ∈Z},则A ∩B =( ) A .(0,2) B .[0,2] C .{0,2}D .{0,1,2}解析:∵A ={x |-2≤x ≤2,x ∈R},B ={x |0≤x ≤16,x ∈Z}, ∴A ∩B ={x |0≤x ≤2,x ∈Z}={0,1,2}. 答案:D 2.已知复数z =3+i(1-3i )2,z 是z 的共轭复数,则z ·z =( )A.14B.12C .1D .2解析:∵z =3+i (1-3i )2=3+i1-23i -3 =3+i-2-23i =3+i-2(1+3i )=(3+i )(1-3i )-2×(1+3)=3-3i +i +3-8=23-2i -8=3-i-4, ∴z =3+i -4,∴z ·z =|z |2=14.答案:A 3.曲线y =xx +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -2解析:∵y ′=x ′(x +2)-x (x +2)′(x +2)2=2(x +2)2,∴k =y ′|x =-1=2(-1+2)2=2, ∴切线方程为:y +1=2(x +1),即y =2x +1. 答案:A4.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数图象大致为( )解析:法一:(排除法)当t =0时,P 点到x 轴的距离为2,排除A 、D ,由角速度为1知,当t =π4或t =5π4时,P 点落在x 轴上,即P 点到x 轴的距离为0,故选C. 法二:由题意知P (2cos(t -π4),2sin(t -π4)),∴P 点到x 轴的距离为d =|y 0|=2|sin(t -π4)|,当t =0时,d =2; 当t =π4时,d =0.故选C.答案:C5.已知命题p 1:函数y =2x -2-x在R 为增函数.p 2:函数y =2x +2-x在R 为减函数.则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是( )A .q 1,q 3B .q 2,q 3C .q 1,q 4D .q 2,q 4解析:p 1是真命题,则綈p 1为假命题;p 2是假命题,则綈p 2为真命题; ∴q 1:p 1∨p 2是真命题,q 2:p 1∧p 2是假命题, ∴q 3:(綈p 1)∨p 2为假命题,q 4:p 1∧(綈p 2)为真命题. ∴真命题是q 1,q 4. 答案:C6.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400解析:记“不发芽的种子数为ξ”,则ξ~B (1 000,0.1),所以Eξ=1 000×0.1=100,而X =2ξ,故EX =E (2ξ)=2Eξ=200.答案:B7.如果执行如图的框图,输入N =5,则输出的数等于( )A.54B.45C.65D.56解析:由框图知:k =1时,S =0+11×2;k =2时,S =11×2+12×3;当k =3时,S =11×2+12×3+13×4;当k =4时,S =11×2+12×3+13×4+14×5;满足条件k <5,故还需进行下一步运算,当k =5时,S =11×2+12×3+13×4+14×5+15×6=(1-12)+(12-13)+…+(15-16)=1-16=56,不满足条件k <5,故输出S ,选D. 答案:D8.设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( ) A .{x |x <-2或x >4} B .{x |x <0或x >4} C .{x |x <0或x >6}D .{x |x <-2或x >2}解析:当x <0时,-x >0, ∴f (-x )=(-x )3-8=-x 3-8, 又f (x )是偶函数, ∴f (x )=f (-x )=-x 3-8,∴f (x )=⎩⎪⎨⎪⎧x 3-8,x ≥0-x 3-8,x <0.∴f (x -2)=⎩⎪⎨⎪⎧(x -2)3-8,x ≥2-(x -2)3-8,x <2,⎩⎨⎧ x ≥2(x -2)3-8>0或⎩⎨⎧x <2-(x -2)3-8>0, 解得x >4或x <0. 答案:B9.若cos α=-45,α是第三象限的角,则1+tanα21-tanα2=( ) A .-12B.12C .2D .-2解析:∵cos α=-45且α是第三象限的角,∴sin α=-35,∴1+tan α21-tan α2=cos α2+sin α2cos α2cos α2-sinα2cos α2=cos α2+sin α2cos α2-sin α2=(cos α2+sin α2)2(cos α2-sin α2)(cos α2+sin α2)=1+sin αcos 2α2-sin 2α2=1+sin αcos α=1-35-45=-12.答案:A10.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2B.73πa 2C.113πa 2D .5πa 2解析:三棱柱如图所示,由题意可知:球心在三棱柱上、下底面的中心O 1、O 2的连线的中点O 处, 连接O 1B 、O 1O 、OB ,其中OB 即为球的半径R , 由题意知:O 1B =23×3a 2=3a 3,所以半径R 2=(a 2)2+(3a 3)2=7a 212,所以球的表面积是S =4πR 2=7πa 23.答案:B11.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)解析:由a ,b ,c 互不相等,结合图象可知 : 这三个数分别在区间(0,1),(1,10),(10,12)上, 不妨设a ∈(0,1),b ∈(1,10),c ∈(10,12), 由f (a )=f (b )得lg a +lg b =0,即lg ab =0,所以ab =1,所以abc ∈(10,12). 答案:C12.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1D.x 25-y 24=1 解析:设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),由题意知c =3,a 2+b 2=9, 设A (x 1,y 1),B (x 2,y 2)则有:⎩⎨⎧x 21a 2-y 21b2=1x 22a 2-y 22b 2=1,两式作差得:y 1-y 2x 1-x 2=b 2(x 1+x 2)a 2(y 1+y 1)=-12b 2-15a 2=4b 25a 2, 又AB 的斜率是-15-0-12-3=1,所以将4b 2=5a 2代入a 2+b 2=9得 a 2=4,b 2=5,所以双曲线标准方程是x 24-y 25=1.答案:B第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.设y =f (x )为区间[0,1]上的连续函数,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算积分10⎰f (x )d x .先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…,x N 和y 1,y 2,…,y N ,由此得到N 个点(x i ,y i )(i =1,2,…,N ).再数出其中满足y i ≤f (x i )(i =1,2,…,N )的点数N 1,那么由随机模拟方法可得积分10⎰f (x )d x 的近似值为________.解析:由均匀随机数产生的原理知:在区间[0,1]满足y i ≤f (x i )的点都落在了函数y =f (x )的下方, 又因为0≤f (x )≤1, 所以由⎩⎪⎨⎪⎧0≤x ≤10≤y ≤1y ≤f (x )围成的图形的面积是N 1N,由积分的几何意义知10⎰f (x )d x =N 1N.答案:N 1N14.正视图为一个三角形的几何体可以是________.(写出三种)解析:正视图是三角形的几何体,最容易想到的是三棱锥,其次是四棱锥、圆锥;对于五棱锥、六棱锥等,正视图也可以是三角形.答案:三棱锥、四棱锥、圆锥(其他正确答案同样给分)15.过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为________________.解析:设圆的标准方程为(x -a )2+(y -b )2=r 2,由题意知:⎩⎪⎨⎪⎧(4-a )2+(1-b )2=r 2b -1a -2=-1|a -b -1|2=r,解之得:a =3,b =0,r =2,所以圆的方程是:(x -3)2+y 2=2. 答案:(x -3)2+y 2=216.在△ABC 中,D 为边BC 上一点,BD =12CD ,∠ADB =120°,AD =2.若△ADC 的面积为3-3,则∠BAC =________.解析:由∠ADB =120°知∠ADC =60°,又因为AD =2,所以S △ADC =12AD ·DC sin60°=3-3,所以DC =2(3-1),又因为BD =12DC ,所以BD =3-1,过A 点作AE ⊥BC 于E 点,则S △ADC =12DC ·AE =3-3,所以AE =3,又在直角三角形AED 中,DE =1,所以BE =3,在直角三角形ABE 中,BE =AE ,所以△ABE 是等腰直角三角形,所以∠ABC =45°,在直角三角形AEC 中,EC =23-3, 所以tan ∠ACE =AE EC =323-3=2+3,所以∠ACE =75°,所以∠BAC =180°-75°-45°=60°. 答案:60°三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)设数列{a n }满足a 1=2,a n +1-a n =3·22n -1.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n . 解:(1)由已知得,当n ≥1时,a n +1=[(a n +1-a n )+(a n -a n -1)+…+(a 2-a 1)]+a 1=3(22n -1+22n -3+…+2)+2=22(n +1)-1,而a 1=2,所以数列{a n }的通项公式为a n =22n -1. (2)由b n =na n =n ·22n -1知S n =1·2+2·23+3·25+…+n ·22n -1①从而22·S n =1·23+2·25+3·27+…+n ·22n +1② ①-②得(1-22)S n =2+23+25+…+22n -1-n ·22n +1. 即S n =19[(3n -1)22n +1+2].18.(本小题满分12分)如图,已知四棱锥P -ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高,E 为AD 中点.(1)证明:PE ⊥BC ;(2)若∠APB =∠ADB =60°,求直线PA 与平面PEH 所成角的正弦值. 解:以H 为原点,HA ,HB ,HP 所在直线分别为x ,y ,z 轴,线段HA 的长为单位长,建立空间直角坐标系如图,则A (1,0,0),B (0,1,0).(1)证明:设C (m,0,0),P (0,0,n )(m <0,n >0), 则D (0,m,0),E (12,m2,0).可得PE =(12,m2,-n ),BC =(m ,-1,0).因为PE ·BC =m 2-m2+0=0, 所以PE ⊥BC .(2)由已知条件可得m =-33,n =1, 故C (-33,0,0),D (0,-33,0),E (12,-36,0),P (0,0,1). 设n =(x ,y ,z )为平面PEH 的法向量, 则⎩⎪⎨⎪⎧n ·HE =0,n ·HP =0,即⎩⎪⎨⎪⎧12x -36y =0,z =0.因此可以取n =(1,3,0).由PA =(1,0,-1),可得|cos 〈PA ,n 〉|=24, 所以直线PA 与平面PEH 所成角的正弦值为24. 19.(本小题满分12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:性别是否需要志愿者男 女 需要 40 30 不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关? (3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.附:P (K 2≥k )0.050 0.010 0.001 k3.8416.63510.828K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估计值为70500=14%.(2)K 2=500×(40×270-30×160)2200×300×70×430≈9.967.由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关. (3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法,比采用简单随机抽样方法更好.20.(本小题满分12分)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 1斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求E 的离心率;(2)设点P (0,-1)满足|PA |=|PB |,求E 的方程.解:(1)由椭圆定义知|AF 2|+|BF 2|+|AB |=4a ,又2|AB |=|AF 2|+|BF 2|,得|AB |=43a . l 的方程为y =x +c, 其中c =a 2-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y 2b 2=1.化简得(a 2+b 2)x 2+2a 2cx +a 2(c 2-b 2)=0, 则x 1+x 2=-2a 2c a 2+b 2,x 1x 2=a 2(c 2-b 2)a 2+b 2. 因为直线AB 斜率为1,所以|AB |=2|x 2-x 1|=2[(x 1+x 2)2-4x 1x 2]. 得43a =4ab 2a 2+b 2,故a 2=2b 2, 所以E 的离心率e =c a =a 2-b 2a =22. (2)设AB 的中点为N (x 0,y 0),由(1)知x 0=x 1+x 22=-a 2c a 2+b 2=-23c ,y 0=x 0+c =c 3. 由|PA |=|PB |得k PN =-1. 即y 0+1x 0=-1, 得c =3,从而a =32,b =3.故椭圆E 的方程为x 218+y 29=1. 21.(本小题满分12分)设函数f (x )=e x -1-x -ax 2.(1)若a =0,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围.解:(1)a =0时,f (x )=e x -1-x ,f ′(x )=e x -1.当x ∈(-∞,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.故f (x )在(-∞,0)单调减少,在(0,+∞)单调增加.(2)f ′(x )=e x -1-2ax .由(1)知e x ≥1+x ,当且仅当x =0时等号成立.故f ′(x )≥x -2ax =(1-2a )x ,从而当1-2a ≥0,即a ≤12时,f ′(x )≥0(x ≥0),而f (0)=0, 于是当x ≥0时,f (x )≥0.由e x >1+x (x ≠0)可得e -x >1-x (x ≠0),从而当a >12时,f ′(x )<e x -1+2a (e -x -1)=e -x (e x -1)(e x -2a ),故当x ∈(0,ln2a )时, f ′(x )<0,而f (0)=0,于是当x ∈(0,ln2a )时,f (x )<0,综合得a 的取值范围为(-∞,12]. 请考生在第22、23、24三题中任选一题做答.如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,已知圆上的弧AC =BD ,过C 点的圆的切线与BA 的延长线交于E 点,证明:(1)∠ACE =∠BCD ;(2)BC 2=BE ×CD .证明:(1)因为AC =BD ,所以∠BCD =∠ABC .又因为EC 与圆相切于点C ,故∠ACE =∠ABC ,所以∠ACE =∠BCD .(2)因为∠ECB =∠CDB ,∠EBC =∠BCD ,所以△BDC ∽△ECB ,故BC BE =CD BC ,即BC 2=BE ×CD .23.(本小题满分10分)选修4-4:坐标系与参数方程已知直线C 1:⎩⎪⎨⎪⎧ x =1+t cos α,y =t sin α,(t 为参数),圆C 2:⎩⎪⎨⎪⎧x =cos θy =sin θ,(θ为参数). (1)当α=π3时,求C 1与C 2的交点坐标; (2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.解:(1)当α=π3时,C 1的普通方程为y =3(x -1),C 2的普通方程为x 2+y 2=1. 联立方程组⎩⎪⎨⎪⎧y =3(x -1),x 2+y 2=1,解得C 1与C 2的交点为(1,0),(12,-32). (2)C 1的普通方程为x sin α-y cos α-sin α=0.A 点坐标为(sin 2α,-cos αsin α),故当α变化时,P 点轨迹的参数方程为 ⎩⎨⎧ x =12sin 2α,y =-12sin αcos α,(α为参数).P 点轨迹的普通方程为(x -14)2+y 2=116. 故P 点轨迹是圆心为(14,0),半径为14的圆.24.(本小题满分10分)选修4-5:不等式选讲设函数f (x )=|2x -4|+1.(1)画出函数y =f (x )的图象;(2)若不等式f (x )≤ax 的解集非空,求a 的取值范围.解:(1)由于f (x )=⎩⎪⎨⎪⎧-2x +5,x <2,2x -3,x ≥2,则函数y =f (x )的图象如图所示.(2)由函数y=f(x)与函数y=ax的图象可知,或a<-2时,函数y=f(x)与函数y=ax的图象有交点.当且仅当a≥12,+∞).故不等式f(x)≤ax的解集非空时,a的取值范围为(-∞,-2)∪[12毋意,毋必,毋固,毋我。
2010年高考试题——数学理(全国卷2)含解析(贵州、云南、甘肃、新疆、内蒙古、青海、西藏)
2010年普通高等学校招生全国统一考试(全国卷II )(数学理)【教师简评】按照“保持整体稳定,推动改革创新,立足基础考查,突出能力立意”命题指导思想,本套试卷的总体印象是:题目以常规题为主,难度较前两年困难,得高分需要扎扎实实的数学功底.1.纵观试题,小题起步较低,难度缓缓上升,除了选择题11、12、16题有一定的难度之外,其他题目难度都比较平和.2.解答题中三角函数题较去年容易,立体几何难度和去年持平,数列题的难度较去年有所提升,由去年常见的递推数列题型转变为今年的数列求极限、数列不等式的证明,不易拿满分,概率题由去年背景是“人员调配”问题,转变为今年的与物理相关的电路问题,更体现了学科之间的联系.两道压轴题以解析几何和导数知识命制,和去年比较更有利于分步得分.3.要求考生有比较强的计算能力,例如立体几何问题,题目不难,但需要一定的计算技巧和能力.不管题目难度如何变化,“夯实双基(基础知识、基本方法)”,对大多数考生来说,是以不变应万变的硬道理.(1)复数231i i -⎛⎫= ⎪+⎝⎭(A )34i -- (B )34i -+ (C )34i - (D )34i + (2).函数1ln(1)(1)2x y x +-=>的反函数是(A ) 211(0)x y ex +=-> (B )211(0)x y e x +=+> (C )211(R)x y e x +=-∈ (D )211(R)x y e x +=+∈(3).若变量,x y 满足约束条件1,,325x y x x y -⎧⎪⎨⎪+⎩≥≥≤,则2z x y =+的最大值为(A )1 (B )2 (C )3 (D )4 (4).如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++= (A )14 (B )21 (C )28 (D )35(5)不等式2601x x x --->的解集为 (A ){}2,3x x x -<或> (B ){}213x x x -<,或<< (C ) {}213x x x -<<,或> (D ){}2113x x x -<<,或<<(6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A )12种 (B )18种 (C )36种 (D )54种(7)为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像 (A )向左平移4π个长度单位 (B )向右平移4π个长度单位(C )向左平移2π个长度单位 (D )向右平移2π个长度单位(8)ABC V 中,点D 在AB 上,CD 平方ACB ∠.若CB a =uu r ,CA b =uu r,1a =,2b =,则CD =uu u r(A )1233a b +(B )2133a b + (C )3455a b + (D )4355a b +(9)已知正四棱锥S ABCD -中,SA =,那么当该棱锥的体积最大时,它的高为(A )1 (B (C )2 (D )3(10)若曲线12y x -=在点12,a a -⎛⎫ ⎪⎝⎭处的切线与两个坐标围成的三角形的面积为18,则a =(A )64 (B )32 (C )16 (D )8(11)与正方体1111ABCD A B C D -的三条棱AB 、1CC 、11A D 所在直线的距离相等的点 (A )有且只有1个 (B )有且只有2个 (C )有且只有3个 (D )有无数个(12)已知椭圆2222:1(0)x y C a b a b+=>>F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =u u u r u u u r,则k =(A )1 (B (C (D )2第Ⅱ卷注意事项:1.用0.5毫米的黑色字迹签字笔在答题卡上作答。
2010年高考新课标全国卷理科数学试题及答案
2010年高考新课标全国卷理科数学试题及答案2010年高考新课标全国卷理科数学试题及答案( 宁夏、吉林、黑龙江、海南)(新课标)理科数学本试卷分第I卷(选择题)和第II卷(非选择题)两部分,其中第II卷第(22)-(24)题为选考题,其他题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1、答题前,考生务必先将自己的姓名,准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2、选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚。
3、请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4、保持卷面清洁,不折叠,不破损。
5、做选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题号涂黑。
参考公式: 样本数据nx x x ,,21的标准差锥体体积公式(n s x x =++- 13V Sh = 其中x为样本平均数其中S 为底面面积,h 为高柱体体积公式球的表面积,体积公式V Sh=24S R π= 343V R π= 其中S为底面面积,h为高其中R 为球的半径第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{||2,}A x x x R =≤∈},{|4,}B x x Z =≤∈,则A B ⋂=(A)(0,2) (B)[0,2](C){0,2] (D){0,1,2} (2)已知复数23(13)i z i +=-,z 是z 的共轭复数,则z z •=A. 14B.12C.1D.2(3)曲线2xy x =+在点(-1,-1)处的切线方程为 (A )y=2x+1 (B)y=2x-1 C y=-2x-3 D.y=-2x-2(4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为 (5)已知命题1p :函数22xxy -=-在R 为增函数,P 0Poyx22p :函数22xxy -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p -∨和4q :()12p p ∧-中,真命题是(A )1q ,3q (B )2q ,3q (C )1q ,4q (D )2q ,4q(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为(A )100 (B )200 (C )300 (D )400(7)如果执行右面的框图,输入5N =,则输出的数等于(A )54 (B )45 (C )65 (D )56(8)设偶函数()f x 满足3()8(0)f x xx =-≥,则{|(2)0}x f x ->=(A) {|24}x x x <->或 (B) {|04}x x x <>或 (C) {|06}x x x <>或(D) {|22}x x x <->或(9)若4cos 5α=-,α是第三象限的角,则1tan 21tan2αα+=-(A)12-(B) 12(C) 2 (D) -2(10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为(A) 2a π (B) 273a π (C) 2113a π (D) 25a π(11)已知函数|lg |,010,()16,10.2x x f x x x <≤⎧⎪=⎨-+>⎪⎩若,,a b c 互不相等,且()()(),f a f b f c ==则abc 的取值范围是(A) (1,10)(B)(5,6)(C)(10,12)(D) (20,24)(12)已知双曲线E 的中心为原点,(3,0)F 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为(A) 22136x y -= (B) 22145x y -=(C)22163x y -= (D)22154x y -=第Ⅱ卷本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须做答,第(22)题~第(24)题为选考题,考试根据要求做答。
2010年全国统一高考数学试卷(理科)(新课标)及解析
2010年全国统一高考数学试卷(理科)(新课标)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={x∈R||x|≤2}},,则A∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}2.(5分)已知复数,是z的共轭复数,则=()A.B.C.1 D.23.(5分)曲线y=在点(﹣1,﹣1)处的切线方程为()A.y=2x+1 B.y=2x﹣1 C.y=﹣2x﹣3 D.y=﹣2x﹣24.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P 0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.5.(5分)已知命题p1:函数y=2x﹣2﹣x在R为增函数,p2:函数y=2x+2﹣x在R为减函数,则在命题q:p1∨p2,q2:p1∧p2,q3:(¬p1)∨1p2和q4:p1∧(¬p2)中,真命题是()A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q46.(5分)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X 的数学期望为()A.100 B.200 C.300 D.4007.(5分)如果执行右面的框图,输入N=5,则输出的数等于()A.B.C.D.8.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4} C.{x|x<0或x>6} D.{x|x<﹣2或x>2}9.(5分)若,α是第三象限的角,则=()A.B.C.2 D.﹣210.(5分)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B. C.D.5πa211.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)12.(5分)已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为()A. B. C. D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2,…x N和y1,y2,…y N,由此得到N个点(x i,y i)(i=1,2,…,N),再数出其中满足y i≤f(x i)(i=1,2,…,N)的点数N 1,那么由随机模拟方案可得积分的近似值为.14.(5分)正视图为一个三角形的几何体可以是(写出三种)15.(5分)过点A(4,1)的圆C与直线x﹣y=1相切于点B(2,1),则圆C的方程为.16.(5分)在△ABC中,D为边BC上一点,BD=DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=.三、解答题(共8小题,满分90分)17.(12分)设数列满足a1=2,a n+1﹣a n=3•22n﹣1(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.18.(12分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点(1)证明:PE⊥BC(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.19.(12分)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由.附:20.(12分)设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E的方程.21.(12分)设函数f(x)=e x﹣1﹣x﹣ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a的取值范围.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.2010年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•宁夏)已知集合A={x∈R||x|≤2}},,则A∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【分析】先化简集合A和B,注意集合B中的元素是整数,再根据两个集合的交集的意义求解.【解答】解:A={x∈R||x|≤2,}={x∈R|﹣2≤x≤2},故A∩B={0,1,2}.应选D.2.(5分)(2010•宁夏)已知复数,是z的共轭复数,则=()A.B.C.1 D.2【分析】因为,所以先求|z|再求的值.【解答】解:由可得.另解:故选A.3.(5分)(2010•宁夏)曲线y=在点(﹣1,﹣1)处的切线方程为()A.y=2x+1 B.y=2x﹣1 C.y=﹣2x﹣3 D.y=﹣2x﹣2【分析】欲求在点(﹣1,﹣1)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=﹣1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=,∴y′=,所以k=y′|x=﹣1=2,得切线的斜率为2,所以k=2;所以曲线y=f(x)在点(﹣1,﹣1)处的切线方程为:y+1=2×(x+1),即y=2x+1.故选A.4.(5分)(2010•新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P 0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故应选C.5.(5分)(2010•宁夏)已知命题p1:函数y=2x﹣2﹣x在R为增函数,p2:函数y=2x+2﹣x在R为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q4:p1∧(¬p2)中,真命题是()A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q4【分析】先判断命题p1是真命题,P2是假命题,故p1∨p2为真命题,(﹣p2)为真命题,p1∧(﹣p2)为真命题.【解答】解:易知p1是真命题,而对p2:y′=2x ln2﹣ln2=ln2(),当x∈[0,+∞)时,,又ln2>0,所以y′≥0,函数单调递增;同理得当x∈(﹣∞,0)时,函数单调递减,故p2是假命题.由此可知,q1真,q2假,q3假,q4真.故选C.6.(5分)(2010•宁夏)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.100 B.200 C.300 D.400【分析】首先分析题目已知某种种子每粒发芽的概率都为0.9,现播种了1000粒,即不发芽率为0.1,故没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).又没发芽的补种2个,故补种的种子数记为X=2ξ,根据二项分布的期望公式即可求出结果.【解答】解:由题意可知播种了1000粒,没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).而每粒需再补种2粒,补种的种子数记为X故X=2ξ,则EX=2Eξ=2×1000×0.1=200.故选B.7.(5分)(2010•新课标)如果执行右面的框图,输入N=5,则输出的数等于()A.B.C.D.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选D.8.(5分)(2010•新课标)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4} C.{x|x<0或x>6}D.{x|x<﹣2或x>2}【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f (|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x ﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.9.(5分)(2010•宁夏)若,α是第三象限的角,则=()A.B.C.2 D.﹣2【分析】将欲求式中的正切化成正余弦,还要注意条件中的角α与待求式中角的差别,注意消除它们之间的不同.【解答】解:由,α是第三象限的角,∴可得,则,应选A.10.(5分)(2010•宁夏)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B. C.D.5πa2【分析】由题意可知上下底面中心连线的中点就是球心,求出球的半径,即可求出球的表面积.【解答】解:根据题意条件可知三棱柱是棱长都为a的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为,球的表面积为,故选B.11.(5分)(2010•新课标)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选C.12.(5分)(2010•宁夏)已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为()A. B. C. D.【分析】已知条件易得直线l的斜率为1,设双曲线方程,及A,B 点坐标代入方程联立相减得x1+x2=﹣24,根据=,可求得a 和b的关系,再根据c=3,求得a和b,进而可得答案.【解答】解:由已知条件易得直线l的斜率为k=k PN=1,设双曲线方程为,A(x1,y1),B(x2,y2),则有,两式相减并结合x1+x2=﹣24,y1+y2=﹣30得=,从而==1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,故选B.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2010•宁夏)设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2,…x N和y1,y2,…y N,由此得到N个点(x i,y i)(i=1,2,…,N),再数出其中满足y i≤f(x i)(i=1,2,…,N)的点数N1,那么由随机模拟方案可得积分的近似值为.【分析】要求∫f(x)dx的近似值,利用几何概型求概率,结合点数比即可得.【解答】解:由题意可知得,故积分的近似值为.故答案为:.14.(5分)(2010•宁夏)正视图为一个三角形的几何体可以是三棱锥、三棱柱、圆锥(其他正确答案同样给分)(写出三种)【分析】三棱锥一个侧面的在正视图为一条线段的情形;圆锥;四棱锥有两个侧面在正视图为线段的情形,即可回答本题.【解答】解:正视图为一个三角形的几何体可以是三棱锥、三棱柱(放倒的情形)、圆锥、四棱锥等等.故答案为:三棱锥、圆锥、三棱柱.15.(5分)(2010•宁夏)过点A(4,1)的圆C与直线x﹣y=1相切于点B(2,1),则圆C的方程为(x﹣3)2+y2=2.【分析】设圆的标准方程,再用过点A(4,1),过B,两点坐标适合方程,圆和直线相切,圆心到直线的距离等于半径,求得圆的方程.【解答】解:设圆的方程为(x﹣a)2+(y﹣b)2=r2,则,解得,故所求圆的方程为(x﹣3)2+y2=2.故答案为:(x﹣3)2+y2=2.16.(5分)(2010•宁夏)在△ABC中,D为边BC上一点,BD=DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=60°.【分析】先根据三角形的面积公式利用△ADC的面积求得DC,进而根据三角形ABC的面积求得BD和BC,进而根据余弦定理求得AB.最后在三角形ABC中利用余弦定理求得cos∠BAC,求得∠BAC的值.【解答】解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°=,,则=.故∠BAC=60°.三、解答题(共8小题,满分90分)17.(12分)(2010•宁夏)设数列满足a1=2,a n+1﹣a n=3•22n﹣1(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.【分析】(Ⅰ)由题意得a n+1=[(a n+1﹣a n)+(a n﹣a n﹣1)+…+(a2﹣a1)]+a1=3(22n﹣1+22n﹣3+…+2)+2=22(n+1)﹣1.由此可知数列{a n}的通项公式为a n=22n﹣1.(Ⅱ)由b n=na n=n•22n﹣1知S n=1•2+2•23+3•25++n•22n﹣1,由此入手可知答案.【解答】解:(Ⅰ)由已知,当n≥1时,a n+1=[(a n+1﹣a n)+(a n﹣a n)+…+(a2﹣a1)]+a1﹣1=3(22n﹣1+22n﹣3+…+2)+2=3×+2=22(n+1)﹣1.而a1=2,所以数列{a n}的通项公式为a n=22n﹣1.(Ⅱ)由b n=na n=n•22n﹣1知S n=1•2+2•23+3•25+…+n•22n﹣1①从而22S n=1•23+2•25+…+n•22n+1②①﹣②得(1﹣22)•S n=2+23+25+…+22n﹣1﹣n•22n+1.即.18.(12分)(2010•宁夏)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点(1)证明:PE⊥BC(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.【分析】以H为原点,HA,HB,HP分别为x,y,z轴,线段HA的长为单位长,建立空间直角坐标系.(1)表示,,计算,就证明PE⊥BC.(2)∠APB=∠ADB=60°,求出C,P的坐标,再求平面PEH的法向量,求向量,然后求与面PEH的法向量的数量积,可求直线PA与平面PEH所成角的正弦值.【解答】解:以H为原点,HA,HB,HP分别为x,y,z轴,线段HA 的长为单位长,建立空间直角坐标系如图,则A(1,0,0),B(0,1,0)(Ⅰ)设C(m,0,0),P(0,0,n)(m<0,n>0)则.可得.因为所以PE⊥BC.(Ⅱ)由已知条件可得m=,n=1,故C(﹣),设=(x,y,z)为平面PEH的法向量则即因此可以取,由,可得所以直线PA与平面PEH所成角的正弦值为.19.(12分)(2010•新课标)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由.附:【分析】(1)由列联表可知调查的500位老年人中有40+30=70位需要志愿者提供帮助,两个数据求比值得到该地区老年人中需要帮助的老年人的比例的估算值.(2)根据列联表所给的数据,代入随机变量的观测值公式,得到观测值的结果,把观测值的结果与临界值进行比较,看出有多大把握说该地区的老年人是否需要帮助与性别有关.(3)从样本数据老年人中需要帮助的比例有明显差异,调查时,可以先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.【解答】解:(1)∵调查的500位老年人中有40+30=70位需要志愿者提供帮助,∴该地区老年人中需要帮助的老年人的比例的估算值为.(2)根据列联表所给的数据,代入随机变量的观测值公式,.∵9.967>6.635,∴有99%的把握认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.20.(12分)(2010•宁夏)设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E的方程.【分析】(I)根据椭圆的定义可知|AF2|+|BF2|+|AB|=4a,进而根据|AF2|,|AB|,|BF2|成等差数表示出|AB|,进而可知直线l的方程,设A(x1,y1),B(x2,y2),代入直线和椭圆方程,联立消去y,根据韦达定理表示出x1+x2和x1x2进而根据,求得a和b的关系,进而求得a和c的关系,离心率可得.(II)设AB的中点为N(x0,y0),根据(1)则可分别表示出x0和y0,根据|PA|=|PB|,推知直线PN的斜率,根据求得c,进而求得a和b,椭圆的方程可得.【解答】解:(I)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得,l的方程为y=x+c,其中.设A(x1,y1),B(x2,y2),则A、B两点坐标满足方程组化简的(a2+b2)x2+2a2cx+a2(c2﹣b2)=0则因为直线AB斜率为1,|AB|=|x 1﹣x2|=,得,故a2=2b2所以E的离心率(II)设AB的中点为N(x0,y0),由(I)知,.由|PA|=|PB|,得k PN=﹣1,即得c=3,从而故椭圆E的方程为.21.(12分)(2010•宁夏)设函数f(x)=e x﹣1﹣x﹣ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a的取值范围.【分析】(1)先对函数f(x)求导,导函数大于0时原函数单调递增,导函数小于0时原函数单调递减.(2)根据e x≥1+x可得不等式f′(x)≥x﹣2ax=(1﹣2a)x,从而可知当1﹣2a≥0,即时,f′(x)≥0判断出函数f(x)的单调性,得到答案.【解答】解:(1)a=0时,f(x)=e x﹣1﹣x,f′(x)=e x﹣1.当x∈(﹣∞,0)时,f'(x)<0;当x∈(0,+∞)时,f'(x)>0.故f(x)在(﹣∞,0)单调减少,在(0,+∞)单调增加(II)f′(x)=e x﹣1﹣2ax由(I)知e x≥1+x,当且仅当x=0时等号成立.故f′(x)≥x﹣2ax=(1﹣2a)x,从而当1﹣2a≥0,即时,f′(x)≥0(x≥0),而f(0)=0,于是当x≥0时,f(x)≥0.由e x>1+x(x≠0)可得e﹣x>1﹣x(x≠0).从而当时,f′(x)<e x﹣1+2a(e﹣x﹣1)=e﹣x(e x﹣1)(e x﹣2a),故当x∈(0,ln2a)时,f'(x)<0,而f(0)=0,于是当x∈(0,ln2a)时,f(x)<0.综合得a的取值范围为.22.(10分)(2010•新课标)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC 是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)23.(10分)(2010•新课标)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.24.(10分)(2010•新课标)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).。
2010年高考数学理科试题解析版(全国卷II)
2010年普通高等学校招生全国统一考试(全国卷II )(数学理)【教师简评】按照“保持整体稳定,推动改革创新,立足基础考查,突出能力立意”命题指导思想,本套试卷的总体印象是:题目以常规题为主,难度较前两年困难,得高分需要扎扎实实的数学功底.1.纵观试题,小题起步较低,难度缓缓上升,除了选择题11、12、16题有一定的难度之外,其他题目难度都比较平和.2.解答题中三角函数题较去年容易,立体几何难度和去年持平,数列题的难度较去年有所提升,由去年常见的递推数列题型转变为今年的数列求极限、数列不等式的证明,不易拿满分,概率题由去年背景是“人员调配”问题,转变为今年的与物理相关的电路问题,更体现了学科之间的联系.两道压轴题以解析几何和导数知识命制,和去年比较更有利于分步得分.3.要求考生有比较强的计算能力,例如立体几何问题,题目不难,但需要一定的计算技巧和能力.不管题目难度如何变化,“夯实双基(基础知识、基本方法)”,对大多数考生来说,是以不变应万变的硬道理.(1)复数231i i -⎛⎫= ⎪+⎝⎭(A )34i -- (B )34i -+ (C )34i - (D )34i + 【答案】A【命题意图】本试题主要考查复数的运算.【解析】231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. (2).函数1ln(1)(1)2x y x +-=>的反函数是(A ) 211(0)x y e x +=-> (B )211(0)x y e x +=+>(C )211(R )x y e x +=-∈ (D )211(R )x y ex +=+∈【答案】D【命题意图】本试题主要考察反函数的求法及指数函数与对数函数的互化。
【解析】由原函数解得,即,又;∴在反函数中,故选D.(3).若变量,x y 满足约束条件1,,325x y x x y -⎧⎪⎨⎪+⎩≥≥≤,则2z x y =+的最大值为(A )1 (B )2 (C )3 (D )4 【答案】C【命题意图】本试题主要考查简单的线性规划问题.【解析】可行域是由A (1,1),B(1,4),C(1,1)---构成的三角形,可知目标函数过C 时最大,最大值为3,故选C.(4).如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++= (A )14 (B )21 (C )28 (D )35 【答案】C【命题意图】本试题主要考查等差数列的基本公式和性质. 【解析】173454412747()312,4,7282a a a a a a a a a a a +++===∴+++===(5)不等式2601x x x --->的解集为(A ){}2,3x x x -<或> (B ){}213x x x -<,或<< (C ) {}213x x x -<<,或> (D ){}2113x x x -<<,或<<【答案】C【命题意图】本试题主要考察分式不等式与高次不等式的解法.【解析】利用数轴穿根法解得-2<x <1或x >3,故选C(6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A )12种 (B )18种 (C )36种 (D )54种【答案】B【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力.【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.(7)为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像(A )向左平移4π个长度单位 (B )向右平移4π个长度单位(C )向左平移2π个长度单位 (D )向右平移2π个长度单位【答案】B【命题意图】本试题主要考查三角函数图像的平移.【解析】s i n (2)6y x π=+=sin 2()12x π+,sin(2)3y x π=-=sin 2()6x π=-,所以将s i n (2)6y x π=+的图像向右平移4π个长度单位得到sin(2)3y x π=-的图像,故选B.(8)A B C V 中,点D 在A B 上,C D 平方A C B ∠.若CB a =u u r,C A b =uur ,1a =,2b =,则C D =uuu r(A )1233a b +(B )2133a b +(C )3455a b +(D )4355a b +【答案】B【命题意图】本试题主要考查向量的基本运算,考查角平分线定理. 【解析】因为C D 平分A C B ∠,由角平分线定理得A D C A 2=D BC B1=,所以D 为AB 的三等分点,且22A D A B (C B C A )33==- ,所以2121C D C A +A D C B C A a b 3333==+=+,故选B.(9)已知正四棱锥S A B C D -中,SA =,那么当该棱锥的体积最大时,它的高为(A )1 (B (C )2 (D )3【答案】C【命题意图】本试题主要考察椎体的体积,考察告辞函数的最值问题.【解析】设底面边长为a ,则高所以体积,设,则,当y 取最值时,,解得a=0或a=4时,体积最大,此时,故选C.(10)若曲线12y x -=在点12,a a -⎛⎫⎪⎝⎭处的切线与两个坐标围成的三角形的面积为18,则a = (A )64 (B )32 (C )16 (D )8 【答案】A【命题意图】本试题主要考查求导法则、导数的几何意义、切线的求法和三角形的面积公式,考查考生的计算能力.. 【解析】332211',22y xk a--=-∴=-,切线方程是13221()2y aax a ---=--,令0x =,1232y a-=,令0y =,3x a =,∴三角形的面积是121331822s a a -=⋅⋅=,解得64a =.故选A.(11)与正方体1111ABC D A B C D -的三条棱A B 、1C C 、11A D 所在直线的距离相等的点 (A )有且只有1个 (B )有且只有2个 (C )有且只有3个 (D )有无数个【答案】D【解析】直线上取一点,分别作垂直于于则分别作,垂足分别为M ,N ,Q ,连PM ,PN ,PQ ,由三垂线定理可得,PN ⊥PM ⊥;PQ ⊥AB ,由于正方体中各个表面、对等角全等,所以,∴PM=PN=PQ ,即P 到三条棱AB 、CC 1、A 1D 1.所在直线的距离相等所以有无穷多点满足条件,故选D.(12)已知椭圆2222:1(0)x y C a b ab+=>>的离心率为2,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =(A )1 (B (C (D )2【答案】B【命题意图】本试题主要考察椭圆的性质与第二定义.【解析】设直线l 为椭圆的有准线,e 为离心率,过A ,B 分别作AA 1,BB 1垂直于l ,A 1,B 为垂足,过B 作BE 垂直于AA 1与E ,由第二定义得,,由,得,∴即k=,故选B.第Ⅱ卷注意事项:1.用0.5毫米的黑色字迹签字笔在答题卡上作答。
2010年高考试题——数学理(全国卷Ⅰ)(河北、河南、山西、广西)
2010年普通高等学校招生全国统一考试理科数学(必修+选修II )本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 334V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k k n k n n P k C p p k n -=-=…一、选择题(1)复数3223i i+=- (A)i (B)i - (C)12-13i (D) 12+13i(2)记cos(80)k -︒=,那么tan100︒=A.kB. -k(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)1(4)已知各项均为正数的等比数列{n a }中,123a a a =5,789a a a =10,则456a a a =(A)(5)35(1(1+-的展开式中x 的系数是(A) -4 (B) -2 (C) 2 (D) 4(6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有(A) 30种 (B)35种 (C)42种 (D)48种(7)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为(A ) 3 (B )3 (C )23(D )3 (8)设a =3log 2,b =ln2,c =125-,则(A ) a<b<c (B )b<c<a (C ) c<a<b (D ) c<b<a(9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则P 到x 轴的距离为(10)已知函数f (x )=|lg x |.若0<a<b,且f (a )=f (b ),则a+2b 的取值范围是(A))+∞ (B))+∞ (C)(3,)+∞ (D)[3,)+∞(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB •的最小值为(A) 4- (B)3-+ (C) 4-+3-+(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(C)2010年普通高等学校招生全国统一考试理科数学(必修+选修II )第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2010年全国高考数学(理)试题及答案(新课标卷) 详解版
绝密★启用前2010年普通高等学校招生全国统一考试(课标版) 理科数学第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}2,RA x x x =≤∈,{}4,ZB x =≤∈,则A B =(A )()0,2 (B )[]0,2 (C ){}0,2 (D ){}0,1,2(2)已知复数1z=,z 是z 的共轭复数,则z z ⋅=(A )14(B )12(C )1 (D )2(3)曲线2xy x =+在点()1,1--处的切线方程为 (A )21y x =+ (B )21y x =- (C )23y x =-- (D )22y x =--(4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0P ,角速度为1,那么点P 到x 轴距离d 关于时间t的函数图像大致为(5)已知命题1p :函数22x x y -=-在R 为增函数, 2p :函数22x x y -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p -∨和4q :()12p p ∧-中,真命题是(A )1q ,3q (B )2q ,3q (C )1q ,4q (D )2q ,4q(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为 (A )100 (B )200 (C )300 (D )400 (7)如果执行右面的框图,输入5N=,则输出的数等于 (A )54(B )45(C )65 (D )56(8)设偶函数()f x 满足()()380f x x x =-≥,则(){}20x f x -=>(A ){}2x x x <-或>4 (B ){}0x x x <或>4 (C ){}0x x x <或>6 (D ){}2x x x <-或>2(9)若4cos 5α=-,α是第三象限的角,则1tan 21tan2αα+=-(A )12-(B )12(C )2 (D )2-(10)设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为 (A )2a π (B )273a π (C )2113a π (D )25a π (11)已知函数()lg ,010,16,02x x f x x x ⎧≤⎪=⎨-+⎪⎩<>1若a ,b ,c 互不相等,且()()()f a f b f c ==,则abc 的取值范围是 (A )()1,10 (B )()5,6 (C )()10,12 (D )()20,24(12)已知双曲线E 的中心为原点,F(3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N(-12,-15),则E 的方程为(A )22136x y -= (B ) 22145x y -= (C ) 22163x y -= (D )22154x y -= 第Ⅱ卷二、填空题:本大题共4小题,每小题5分。
2010年全国统一高考数学试卷(理科)(全国卷ii)含超详细答案[1]
2010年全国统一高考数学试卷(理科)(全国卷ii)含超详细答案[1]2010年全国统一高考数学试卷(理科)(新课标)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={x∈R||x|≤2}},,则A∩B=()A.(0,2)B.[0,2] C.{0,2} D.{0,1,2}2.(5分)已知复数,是z的共轭复数,则=()A.B.C.1 D.23.(5分)曲线y=在点(﹣1,﹣1)处的切线方程为()A.y=2x+1 B.y=2x﹣1 C.y=﹣2x﹣3 D.y=﹣2x﹣24.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.5.(5分)已知命题p1:函数y=2x﹣2﹣x在R为增函数,p2:函数y=2x+2﹣x在R为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q4:p1∧(¬p2)中,真命题是()A.q1,q3B.q2,q3C.q1,q4D.q2,q46.(5分)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.100 B.200 C.300 D.4007.(5分)如果执行右面的框图,输入N=5,则输出的数等于()A.B.C.D.8.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4} B.{x|x<0或x>4} C.{x|x<0或x>6} D.{x|x <﹣2或x>2}9.(5分)若,α是第三象限的角,则=()A.B.C.2 D.﹣210.(5分)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B. C.D.5πa2(1)证明:PE⊥BC(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.19.(12分)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:性别是否需要志愿男女需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由.附:P(k2>k)0.00.0100.001k 3.841 6.63510.82820.(12分)设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E的方程.21.(12分)设函数f(x)=e x﹣1﹣x﹣ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a的取值范围.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.2010年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•宁夏)已知集合A={x∈R||x|≤2}},,则A ∩B=()A.(0,2)B.[0,2] C.{0,2} D.{0,1,2}【分析】先化简集合A和B,注意集合B中的元素是整数,再根据两个集合的交集的意义求解.【解答】解:A={x∈R||x|≤2,}={x∈R|﹣2≤x≤2},故A∩B={0,1,2}.应选D.2.(5分)(2010•宁夏)已知复数,是z的共轭复数,则=()A.B.C.1 D.2【分析】因为,所以先求|z|再求的值.【解答】解:由可得.另解:故选A.3.(5分)(2010•宁夏)曲线y=在点(﹣1,﹣1)处的切线方程为()A.y=2x+1 B.y=2x﹣1 C.y=﹣2x﹣3 D.y=﹣2x﹣2【分析】欲求在点(﹣1,﹣1)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=﹣1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=,∴y′=,=2,得切线的斜率为2,所以k=2;所以k=y′|x=﹣1所以曲线y=f(x)在点(﹣1,﹣1)处的切线方程为:y+1=2×(x+1),即y=2x+1.故选A.4.(5分)(2010•新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故应选C.5.(5分)(2010•宁夏)已知命题p1:函数y=2x﹣2﹣x在R为增函数,p2:函数y=2x+2﹣x在R为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q4:p1∧(¬p2)中,真命题是()A.q1,q3B.q2,q3C.q1,q4D.q2,q4【分析】先判断命题p1是真命题,P2是假命题,故p1∨p2为真命题,(﹣p2)为真命题,p1∧(﹣p2)为真命题.【解答】解:易知p1是真命题,而对p2:y′=2x ln2﹣ln2=ln2(),当x∈[0,+∞)时,,又ln2>0,所以y′≥0,函数单调递增;同理得当x∈(﹣∞,0)时,函数单调递减,故p2是假命题.由此可知,q1真,q2假,q3假,q4真.故选C.6.(5分)(2010•宁夏)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.100 B.200 C.300 D.400【分析】首先分析题目已知某种种子每粒发芽的概率都为0.9,现播种了1000粒,即不发芽率为0.1,故没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).又没发芽的补种2个,故补种的种子数记为X=2ξ,根据二项分布的期望公式即可求出结果.【解答】解:由题意可知播种了1000粒,没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).而每粒需再补种2粒,补种的种子数记为X故X=2ξ,则EX=2Eξ=2×1000×0.1=200.故选B.7.(5分)(2010•新课标)如果执行右面的框图,输入N=5,则输出的数等于()A.B.C.D.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选D.8.(5分)(2010•新课标)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f (x﹣2)>0}=()A.{x|x<﹣2或x>4} B.{x|x<0或x>4} C.{x|x<0或x>6} D.{x|x <﹣2或x>2}【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.9.(5分)(2010•宁夏)若,α是第三象限的角,则=()A.B.C.2 D.﹣2【分析】将欲求式中的正切化成正余弦,还要注意条件中的角α与待求式中角的差别,注意消除它们之间的不同.【解答】解:由,α是第三象限的角,∴可得,则,应选A.10.(5分)(2010•宁夏)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B. C.D.5πa2【分析】由题意可知上下底面中心连线的中点就是球心,求出球的半径,即可求出球的表面积.【解答】解:根据题意条件可知三棱柱是棱长都为a的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为,球的表面积为,故选B.11.(5分)(2010•新课标)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc 的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选C.12.(5分)(2010•宁夏)已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为()A. B. C. D.【分析】已知条件易得直线l的斜率为1,设双曲线方程,及A,B点坐标代入方程联立相减得x1+x2=﹣24,根据=,可求得a和b的关系,再根据c=3,求得a和b,进而可得答案.【解答】解:由已知条件易得直线l的斜率为k=kPN=1,设双曲线方程为,A(x1,y1),B(x2,y2),则有,两式相减并结合x1+x2=﹣24,y1+y2=﹣30得=,从而==1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,故选B.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2010•宁夏)设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f (x)≤1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2, (x)N和y1,y2,…yN,由此得到N个点(xi ,yi)(i=1,2,…,N),再数出其中满足yi≤f(xi)(i=1,2,…,N)的点数N1,那么由随机模拟方案可得积分的近似值为.【分析】要求∫f(x)dx的近似值,利用几何概型求概率,结合点数比即可得.【解答】解:由题意可知得,故积分的近似值为.故答案为:.14.(5分)(2010•宁夏)正视图为一个三角形的几何体可以是三棱锥、三棱柱、圆锥(其他正确答案同样给分)(写出三种)【分析】三棱锥一个侧面的在正视图为一条线段的情形;圆锥;四棱锥有两个侧面在正视图为线段的情形,即可回答本题.【解答】解:正视图为一个三角形的几何体可以是三棱锥、三棱柱(放倒的情形)、圆锥、四棱锥等等.故答案为:三棱锥、圆锥、三棱柱.15.(5分)(2010•宁夏)过点A(4,1)的圆C与直线x﹣y=1相切于点B(2,1),则圆C的方程为(x﹣3)2+y2=2 .【分析】设圆的标准方程,再用过点A(4,1),过B,两点坐标适合方程,圆和直线相切,圆心到直线的距离等于半径,求得圆的方程.【解答】解:设圆的方程为(x﹣a)2+(y﹣b)2=r2,则,解得,故所求圆的方程为(x﹣3)2+y2=2.故答案为:(x﹣3)2+y2=2.16.(5分)(2010•宁夏)在△ABC中,D为边BC上一点,BD=DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC= 60°.【分析】先根据三角形的面积公式利用△ADC的面积求得DC,进而根据三角形ABC的面积求得BD和BC,进而根据余弦定理求得AB.最后在三角形ABC中利用余弦定理求得cos∠BAC,求得∠BAC的值.【解答】解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°=,,则=.故∠BAC=60°.三、解答题(共8小题,满分90分)17.(12分)(2010•宁夏)设数列满足a1=2,an+1﹣an=3•22n﹣1(1)求数列{an}的通项公式;(2)令bn =nan,求数列{bn}的前n项和Sn.【分析】(Ⅰ)由题意得an+1=[(an+1﹣an)+(an﹣an﹣1)+…+(a2﹣a1)]+a1=3(22n﹣1+22n﹣3+…+2)+2=22(n+1)﹣1.由此可知数列{an }的通项公式为an=22n﹣1.(Ⅱ)由bn =nan=n•22n﹣1知Sn=1•2+2•23+3•25++n•22n﹣1,由此入手可知答案.【解答】解:(Ⅰ)由已知,当n≥1时,an+1=[(an+1﹣an)+(an﹣an﹣1)+…+(a2﹣a1)]+a1=3(22n﹣1+22n﹣3+…+2)+2=3×+2=22(n+1)﹣1.而a1=2,所以数列{an }的通项公式为an=22n﹣1.(Ⅱ)由bn =nan=n•22n﹣1知Sn=1•2+2•23+3•25+…+n•22n﹣1①从而22Sn=1•23+2•25+…+n•22n+1②①﹣②得(1﹣22)•Sn=2+23+25+…+22n﹣1﹣n•22n+1.即.18.(12分)(2010•宁夏)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB ∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点(1)证明:PE⊥BC(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.【分析】以H为原点,HA,HB,HP分别为x,y,z轴,线段HA的长为单位长,建立空间直角坐标系.(1)表示,,计算,就证明PE⊥BC.(2)∠APB=∠ADB=60°,求出C,P的坐标,再求平面PEH的法向量,求向量,然后求与面PEH的法向量的数量积,可求直线PA与平面PEH所成角的正弦值.【解答】解:以H为原点,HA,HB,HP分别为x,y,z轴,线段HA的长为单位长,建立空间直角坐标系如图,则A(1,0,0),B(0,1,0)(Ⅰ)设C(m,0,0),P(0,0,n)(m<0,n>0)则.可得.因为所以PE⊥BC.(Ⅱ)由已知条件可得m=,n=1,故C(﹣),设=(x,y,z)为平面PEH的法向量则即因此可以取,由,可得所以直线PA与平面PEH 所成角的正弦值为.19.(12分)(2010•新课标)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:性别男女是否需要志愿需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由.附:0.00.0100.001P(k2>k)k 3.841 6.63510.828【分析】(1)由列联表可知调查的500位老年人中有40+30=70位需要志愿者提供帮助,两个数据求比值得到该地区老年人中需要帮助的老年人的比例的估算值.(2)根据列联表所给的数据,代入随机变量的观测值公式,得到观测值的结果,把观测值的结果与临界值进行比较,看出有多大把握说该地区的老年人是否需要帮助与性别有关.(3)从样本数据老年人中需要帮助的比例有明显差异,调查时,可以先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.【解答】解:(1)∵调查的500位老年人中有40+30=70位需要志愿者提供帮助,∴该地区老年人中需要帮助的老年人的比例的估算值为.(2)根据列联表所给的数据,代入随机变量的观测值公式,.∵9.967>6.635,∴有99%的把握认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.20.(12分)(2010•宁夏)设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E的方程.【分析】(I)根据椭圆的定义可知|AF2|+|BF2|+|AB|=4a,进而根据|AF2|,|AB|,|BF2|成等差数表示出|AB|,进而可知直线l的方程,设A(x1,y1),B(x2,y2),代入直线和椭圆方程,联立消去y,根据韦达定理表示出x1+x2和x1x2进而根据,求得a和b的关系,进而求得a和c的关系,离心率可得.(II)设AB的中点为N(x0,y),根据(1)则可分别表示出x和y,根据|PA|=|PB|,推知直线PN的斜率,根据求得c,进而求得a和b,椭圆的方程可得.【解答】解:(I)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得,l的方程为y=x+c,其中.设A(x1,y1),B(x2,y2),则A、B两点坐标满足方程组化简的(a2+b2)x2+2a2cx+a2(c2﹣b2)=0则因为直线AB斜率为1,|AB|=|x1﹣x2|=,得,故a2=2b2所以E的离心率(II)设AB的中点为N(x0,y),由(I)知,.由|PA|=|PB|,得kPN=﹣1,即得c=3,从而故椭圆E的方程为.21.(12分)(2010•宁夏)设函数f(x)=e x﹣1﹣x﹣ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a的取值范围.【分析】(1)先对函数f(x)求导,导函数大于0时原函数单调递增,导函数小于0时原函数单调递减.(2)根据e x≥1+x可得不等式f′(x)≥x﹣2ax=(1﹣2a)x,从而可知当1﹣2a≥0,即时,f′(x)≥0判断出函数f(x)的单调性,得到答案.【解答】解:(1)a=0时,f(x)=e x﹣1﹣x,f′(x)=e x﹣1.当x∈(﹣∞,0)时,f'(x)<0;当x∈(0,+∞)时,f'(x)>0.故f(x)在(﹣∞,0)单调减少,在(0,+∞)单调增加(II)f′(x)=e x﹣1﹣2ax由(I)知e x≥1+x,当且仅当x=0时等号成立.故f′(x)≥x﹣2ax=(1﹣2a)x,从而当1﹣2a≥0,即时,f′(x)≥0(x≥0),而f(0)=0,于是当x≥0时,f(x)≥0.由e x>1+x(x≠0)可得e﹣x>1﹣x(x≠0).从而当时,f′(x)<e x﹣1+2a(e﹣x﹣1)=e﹣x(e x﹣1)(e x﹣2a),故当x∈(0,ln2a)时,f'(x)<0,而f(0)=0,于是当x∈(0,ln2a)时,f(x)<0.综合得a的取值范围为.22.(10分)(2010•新课标)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)23.(10分)(2010•新课标)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.24.(10分)(2010•新课标)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).参与本试卷答题和审题的老师有:minqi5;qiss;yhx01248;caoqz;xiaolizi;豫汝王世崇;lily2011;wsj1012;xiexie;zhwsd;zlzhan;涨停(排名不分先后)菁优网2017年2月3日。
2010年全国统一高考数学试卷(理科)(新课标)
2010年全国统一高考数学试卷(理科)(新课标)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={x∈R||x|≤2}},,则A∩B=()A.(0,2) B.[0,2]C.{0,2}D.{0,1,2}2.(5分)已知复数,是z的共轭复数,则=()A.B.C.1 D.23.(5分)曲线y=在点(﹣1,﹣1)处的切线方程为()A.y=2x+1 B.y=2x﹣1 C.y=﹣2x﹣3 D.y=﹣2x﹣24.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.5.(5分)已知命题p1:函数y=2x﹣2﹣x在R为增函数,p2:函数y=2x+2﹣x在R为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q4:p1∧(¬p2)中,真命题是()A.q1,q3B.q2,q3C.q1,q4D.q2,q46.(5分)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.100 B.200 C.300 D.4007.(5分)如果执行右面的框图,输入N=5,则输出的数等于()A.B.C.D.8.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x <﹣2或x>2}9.(5分)若,α是第三象限的角,则=()A.B.C.2 D.﹣210.(5分)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B.C.D.5πa211.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6) C.(10,12)D.(20,24)12.(5分)已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2,…x N和y1,y2,…y N,由此得到N个点(x i,y i)(i=1,2,…,N),再数出其中满足y i≤f(x i)(i=1,2,…,N)的点数N1,那么由随机模拟方案可得积分的近似值为.14.(5分)正视图为一个三角形的几何体可以是(写出三种)15.(5分)过点A(4,1)的圆C与直线x﹣y=1相切于点B(2,1),则圆C的方程为.16.(5分)在△ABC中,D为边BC上一点,BD=DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=.三、解答题(共8小题,满分90分)17.(12分)设数列满足a1=2,a n+1﹣a n=3•22n﹣1(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.18.(12分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点(1)证明:PE⊥BC(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.19.(12分)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:性别是否需要志愿男女需要43不需要1627(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由.附:P(k2>k)0.00.0100.001k 3.841 6.63510.82820.(12分)设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E的方程.21.(12分)设函数f(x)=e x﹣1﹣x﹣ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a的取值范围.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.2010年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•宁夏)已知集合A={x∈R||x|≤2}},,则A∩B=()A.(0,2) B.[0,2]C.{0,2}D.{0,1,2}【分析】先化简集合A和B,注意集合B中的元素是整数,再根据两个集合的交集的意义求解.【解答】解:A={x∈R||x|≤2,}={x∈R|﹣2≤x≤2},故A∩B={0,1,2}.应选D.2.(5分)(2010•宁夏)已知复数,是z的共轭复数,则=()A.B.C.1 D.2【分析】因为,所以先求|z|再求的值.【解答】解:由可得.另解:故选A.3.(5分)(2010•宁夏)曲线y=在点(﹣1,﹣1)处的切线方程为()A.y=2x+1 B.y=2x﹣1 C.y=﹣2x﹣3 D.y=﹣2x﹣2【分析】欲求在点(﹣1,﹣1)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=﹣1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=,∴y′=,=2,得切线的斜率为2,所以k=2;所以k=y′|x=﹣1所以曲线y=f(x)在点(﹣1,﹣1)处的切线方程为:y+1=2×(x+1),即y=2x+1.故选A.4.(5分)(2010•新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故应选C.5.(5分)(2010•宁夏)已知命题p1:函数y=2x﹣2﹣x在R为增函数,p2:函数y=2x+2﹣x在R为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q4:p1∧(¬p2)中,真命题是()A.q1,q3B.q2,q3C.q1,q4D.q2,q4【分析】先判断命题p1是真命题,P2是假命题,故p1∨p2为真命题,(﹣p2)为真命题,p1∧(﹣p2)为真命题.【解答】解:易知p1是真命题,而对p2:y′=2x ln2﹣ln2=ln2(),当x∈[0,+∞)时,,又ln2>0,所以y′≥0,函数单调递增;同理得当x∈(﹣∞,0)时,函数单调递减,故p2是假命题.由此可知,q1真,q2假,q3假,q4真.故选C.6.(5分)(2010•宁夏)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.100 B.200 C.300 D.400【分析】首先分析题目已知某种种子每粒发芽的概率都为0.9,现播种了1000粒,即不发芽率为0.1,故没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).又没发芽的补种2个,故补种的种子数记为X=2ξ,根据二项分布的期望公式即可求出结果.【解答】解:由题意可知播种了1000粒,没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).而每粒需再补种2粒,补种的种子数记为X故X=2ξ,则EX=2Eξ=2×1000×0.1=200.故选B.7.(5分)(2010•新课标)如果执行右面的框图,输入N=5,则输出的数等于()A.B.C.D.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选D.8.(5分)(2010•新课标)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x ﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x <﹣2或x>2}【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x ﹣2|>2解得x>4,或x<0.应选:B.9.(5分)(2010•宁夏)若,α是第三象限的角,则=()A.B.C.2 D.﹣2【分析】将欲求式中的正切化成正余弦,还要注意条件中的角α与待求式中角的差别,注意消除它们之间的不同.【解答】解:由,α是第三象限的角,∴可得,则,应选A.10.(5分)(2010•宁夏)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B.C.D.5πa2【分析】由题意可知上下底面中心连线的中点就是球心,求出球的半径,即可求出球的表面积.【解答】解:根据题意条件可知三棱柱是棱长都为a的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为,球的表面积为,故选B.11.(5分)(2010•新课标)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6) C.(10,12)D.(20,24)【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选C.12.(5分)(2010•宁夏)已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为()A.B.C.D.【分析】已知条件易得直线l的斜率为1,设双曲线方程,及A,B点坐标代入方程联立相减得x1+x2=﹣24,根据=,可求得a和b的关系,再根据c=3,求得a和b,进而可得答案.【解答】解:由已知条件易得直线l的斜率为k=k PN=1,设双曲线方程为,A(x1,y1),B(x2,y2),则有,两式相减并结合x1+x2=﹣24,y1+y2=﹣30得=,从而==1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,故选B.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2010•宁夏)设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2,…x N和y1,y2,…y N,由此得到N个点(x i,y i)(i=1,2,…,N),再数出其中满足y i≤f(x i)(i=1,2,…,N)的点数N1,那么由随机模拟方案可得积分的近似值为.【分析】要求∫f(x)dx的近似值,利用几何概型求概率,结合点数比即可得.【解答】解:由题意可知得,故积分的近似值为.故答案为:.14.(5分)(2010•宁夏)正视图为一个三角形的几何体可以是三棱锥、三棱柱、圆锥(其他正确答案同样给分)(写出三种)【分析】三棱锥一个侧面的在正视图为一条线段的情形;圆锥;四棱锥有两个侧面在正视图为线段的情形,即可回答本题.【解答】解:正视图为一个三角形的几何体可以是三棱锥、三棱柱(放倒的情形)、圆锥、四棱锥等等.故答案为:三棱锥、圆锥、三棱柱.15.(5分)(2010•宁夏)过点A(4,1)的圆C与直线x﹣y=1相切于点B(2,1),则圆C的方程为(x﹣3)2+y2=2.【分析】设圆的标准方程,再用过点A(4,1),过B,两点坐标适合方程,圆和直线相切,圆心到直线的距离等于半径,求得圆的方程.【解答】解:设圆的方程为(x﹣a)2+(y﹣b)2=r2,则,解得,故所求圆的方程为(x﹣3)2+y2=2.故答案为:(x﹣3)2+y2=2.16.(5分)(2010•宁夏)在△ABC中,D为边BC上一点,BD=DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=60°.【分析】先根据三角形的面积公式利用△ADC的面积求得DC,进而根据三角形ABC 的面积求得BD和BC,进而根据余弦定理求得AB.最后在三角形ABC中利用余弦定理求得cos∠BAC,求得∠BAC的值.【解答】解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°=,,则=.故∠BAC=60°.三、解答题(共8小题,满分90分)17.(12分)(2010•宁夏)设数列满足a1=2,a n+1﹣a n=3•22n﹣1(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.【分析】(Ⅰ)由题意得a n=[(a n+1﹣a n)+(a n﹣a n﹣1)+…+(a2﹣a1)]+a1=3(22n+1﹣1+22n﹣3+…+2)+2=22(n+1)﹣1.由此可知数列{a n}的通项公式为a n=22n﹣1.(Ⅱ)由b n=na n=n•22n﹣1知S n=1•2+2•23+3•25++n•22n﹣1,由此入手可知答案.【解答】解:(Ⅰ)由已知,当n≥1时,a n=[(a n+1﹣a n)+(a n﹣a n﹣1)+…+(a2+1﹣a1)]+a1=3(22n﹣1+22n﹣3+…+2)+2=3×+2=22(n+1)﹣1.而a1=2,所以数列{a n}的通项公式为a n=22n﹣1.(Ⅱ)由b n=na n=n•22n﹣1知S n=1•2+2•23+3•25+…+n•22n﹣1①从而22S n=1•23+2•25+…+n•22n+1②①﹣②得(1﹣22)•S n=2+23+25+…+22n﹣1﹣n•22n+1.即.18.(12分)(2010•宁夏)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点(1)证明:PE⊥BC(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.【分析】以H为原点,HA,HB,HP分别为x,y,z轴,线段HA的长为单位长,建立空间直角坐标系.(1)表示,,计算,就证明PE⊥BC.(2)∠APB=∠ADB=60°,求出C,P的坐标,再求平面PEH的法向量,求向量,然后求与面PEH的法向量的数量积,可求直线PA与平面PEH所成角的正弦值.【解答】解:以H为原点,HA,HB,HP分别为x,y,z轴,线段HA的长为单位长,建立空间直角坐标系如图,则A(1,0,0),B(0,1,0)(Ⅰ)设C(m,0,0),P(0,0,n)(m<0,n>0)则.可得.因为所以PE⊥BC.(Ⅱ)由已知条件可得m=,n=1,故C(﹣),设=(x,y,z)为平面PEH的法向量则即因此可以取,由,可得所以直线PA与平面PEH所成角的正弦值为.19.(12分)(2010•新课标)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:性别是否需要志愿男女需要403 0不需要1602 7 0(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由.附:P(k2>k)0.00.0100.001k 3.841 6.63510.828【分析】(1)由列联表可知调查的500位老年人中有40+30=70位需要志愿者提供帮助,两个数据求比值得到该地区老年人中需要帮助的老年人的比例的估算值.(2)根据列联表所给的数据,代入随机变量的观测值公式,得到观测值的结果,把观测值的结果与临界值进行比较,看出有多大把握说该地区的老年人是否需要帮助与性别有关.(3)从样本数据老年人中需要帮助的比例有明显差异,调查时,可以先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.【解答】解:(1)∵调查的500位老年人中有40+30=70位需要志愿者提供帮助,∴该地区老年人中需要帮助的老年人的比例的估算值为.(2)根据列联表所给的数据,代入随机变量的观测值公式,.∵9.967>6.635,∴有99%的把握认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.20.(12分)(2010•宁夏)设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E的方程.【分析】(I)根据椭圆的定义可知|AF2|+|BF2|+|AB|=4a,进而根据|AF2|,|AB|,|BF2|成等差数表示出|AB|,进而可知直线l的方程,设A(x1,y1),B(x2,y2),代入直线和椭圆方程,联立消去y,根据韦达定理表示出x1+x2和x1x2进而根据,求得a和b的关系,进而求得a和c的关系,离心率可得.(II)设AB的中点为N(x0,y0),根据(1)则可分别表示出x0和y0,根据|PA|=|PB|,推知直线PN的斜率,根据求得c,进而求得a和b,椭圆的方程可得.【解答】解:(I)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得,l的方程为y=x+c,其中.设A(x1,y1),B(x2,y2),则A、B两点坐标满足方程组化简的(a2+b2)x2+2a2cx+a2(c2﹣b2)=0则因为直线AB斜率为1,|AB|=|x1﹣x2|=,得,故a2=2b2所以E的离心率(II)设AB的中点为N(x0,y0),由(I)知,.由|PA|=|PB|,得k PN=﹣1,即得c=3,从而故椭圆E的方程为.21.(12分)(2010•宁夏)设函数f(x)=e x﹣1﹣x﹣ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a的取值范围.【分析】(1)先对函数f(x)求导,导函数大于0时原函数单调递增,导函数小于0时原函数单调递减.(2)根据e x≥1+x可得不等式f′(x)≥x﹣2ax=(1﹣2a)x,从而可知当1﹣2a≥0,即时,f′(x)≥0判断出函数f(x)的单调性,得到答案.【解答】解:(1)a=0时,f(x)=e x﹣1﹣x,f′(x)=e x﹣1.当x∈(﹣∞,0)时,f'(x)<0;当x∈(0,+∞)时,f'(x)>0.故f(x)在(﹣∞,0)单调减少,在(0,+∞)单调增加(II)f′(x)=e x﹣1﹣2ax由(I)知e x≥1+x,当且仅当x=0时等号成立.故f′(x)≥x﹣2ax=(1﹣2a)x,从而当1﹣2a≥0,即时,f′(x)≥0(x≥0),而f(0)=0,于是当x≥0时,f(x)≥0.由e x>1+x(x≠0)可得e﹣x>1﹣x(x≠0).从而当时,f′(x)<e x﹣1+2a(e﹣x﹣1)=e﹣x(e x﹣1)(e x﹣2a),故当x∈(0,ln2a)时,f'(x)<0,而f(0)=0,于是当x∈(0,ln2a)时,f (x)<0.综合得a的取值范围为.22.(10分)(2010•新课标)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)23.(10分)(2010•新课标)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.24.(10分)(2010•新课标)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).。
2010年高考新课标全国卷理科数学试题(附答案)
2010年普通高等学校招生全国统一考试(新课标全国卷)理科数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{||2}A x R x =∈≤},{|4}B x Z x =∈≤,则A B ⋂=(A)(0,2) (B)[0,2] (C){0,2] (D){0,1,2} (2)已知复数23(13)iz i +=-,z 是z 的共轭复数,则z z ⋅= (A)14 (B)12(C) 1 (D)2 (3)曲线2xy x =+在点(1,1)--处的切线方程为(A)21y x =+ (B)21y x =- (C) 23y x =-- (D)22y x =-- (4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0(2,2)P -,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为tdπ42OA B C D(5)已知命题1p :函数22x x y -=-在R 为增函数, 2p :函数22x x y -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p ⌝∨和4q :()12p p ∧⌝中,真命题是(A )1q ,3q (B )2q ,3q (C )1q ,4q (D )2q ,4q(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为 (A)100 (B )200 (C)300 (D )400(7)如果执行右面的框图,输入5N =,则输出的数等于(A)54 (B )45(C)65 (D )56(8)设偶函数()f x 满足3()8(0)f x x x =-≥, 则{|(2)0}x f x ->=(A) {|24}x x x <->或 (B) {|04}x x x <>或 (C) {|06}x x x <>或 (D) {|22}x x x <->或(9)若4cos 5α=-,α是第三象限的角,则1tan21tan 2αα+=- (A) 12- (B) 12(C) 2 (D) 2-(10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为 (A) 2a π(B)273a π (C)2113a π (D) 25a π (11)已知函数|lg |,010,()16,10.2x x f x x x <≤⎧⎪=⎨-+>⎪⎩若,,a b c 互不相等,且()()(),f a f b f c ==则abc的取值范围是(A) (1,10) (B) (5,6)(C) (10,12)(D) (20,24)(12)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为(A)22136x y -= (B) 22145x y -= (C) 22163x y -= (D) 22154x y -=第Ⅱ卷本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须做答,第(22)题~第(24)题为选考题,考试根据要求做答。
2010年高考数学(理)试题及答案(新课标全国卷)
3 3 ,则 BAC=_______
三,解答题:解答应写出文字说明,正明过程和演算步骤 (17) (本小题满分 12 分)
2 n 1 设数列 an 满足 a1 2, an 1 an 32
(1) 求数列 an 的通项公式; (2) 令 bn nan ,求数列的前 n 项和 S n (18)(本小题满分 12 分) 如图,已知四棱锥 P-ABCD 的底面为等腰梯形, AB CD,AC BD,垂足为 H,PH 是四棱锥的高 ,E 为 AD 中点
即 (18)解:
。
1 Sn [(3n 1)22 n 1 2] 9
以 H 为原点, HA, HB, HP 分别为 x, y, z 轴,线段 HA 的长为单位长, 建立空间直角坐
[键入文字]
标系如图, 则 A(1,0,0), B(0,1,0) (Ⅰ)设 C (m,0,0), P(0,0, n)(m 0, n 0)
[键入文字]
(1) 证明:PE BC (2) 若 APB= ADB=60°,求直线 PA 与平面 PEH 所成角的正弦值
(19)(本小题 12 分) 为调查某地区老人是否需要志愿者提供帮助, 用简单随机抽样方法从该地区调查了 500 位老 年人,结果如下: 是否需要志愿 需要 不需要 性别 男 40 160 女 30 270
abc 的取值范围是
(A) (1,10) (B) (5, 6) (C) (10,12) (D) (20, 24)
(12)已知双曲线 E 的中心为原点, P(3, 0) 是 E 的焦点,过 F 的直线 l 与 E 相交于 A,B 两点,且 AB 的中点为 N (12, 15) ,则 E 的方程式为
则在命题 q1 : p1 p2 , q 2 : p1 p2 , q3 : p1 p2 和 q 4 : p1 p2 中,真命 题是 (A) q1 , q3 (B) q 2 , q3 (C) q1 , q 4 (D) q 2 , q 4
2010年高考新课标全国卷理科数学试题(附答案)
2010年普通高等学校招生全国统一考试(新课标全国卷)理科数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{||2}A x R x =∈≤},{|4}B x Z x =∈≤,则A B ⋂=(A)(0,2) (B)[0,2] (C ){0,2] (D ){0,1,2} (2)已知复数23(13)iz i +=-,z 是z 的共轭复数,则z z ⋅= (A)14 (B)12(C) 1 (D)2 (3)曲线2xy x =+在点(1,1)--处的切线方程为(A )21y x =+ (B)21y x =- (C ) 23y x =-- (D )22y x =-- (4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0(2,2)P -,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为tdπ2OA B C D(5)已知命题1p :函数22x x y -=-在R 为增函数, 2p :函数22x x y -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p ⌝∨和4q :()12p p ∧⌝中,真命题是 (A )1q ,3q (B )2q ,3q (C )1q ,4q (D )2q ,4q(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为 (A)100 (B )200 (C )300 (D )400(7)如果执行右面的框图,输入5N =,则输出的数等于(A)54 (B )45(C )65 (D )56(8)设偶函数()f x 满足3()8(0)f x x x =-≥, 则{|(2)0}x f x ->=(A ) {|24}x x x <->或 (B) {|04}x x x <>或 (C) {|06}x x x <>或 (D) {|22}x x x <->或(9)若4cos 5α=-,α是第三象限的角,则1tan 21tan2αα+=-(A) 12-(B)12(C) 2 (D) 2-(10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为(A) 2a π(B)273a π (C )2113a π (D) 25a π(11)已知函数|lg |,010,()16,10.2x x f x x x <≤⎧⎪=⎨-+>⎪⎩若,,a b c 互不相等,且()()(),f a f b f c ==则abc的取值范围是 (A) (1,10)(B ) (5,6)(C) (10,12)(D ) (20,24)(12)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为(A)22136x y -= (B) 22145x y -= (C )22163x y -= (D) 22154x y -=第Ⅱ卷本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须做答,第(22)题~第(24)题为选考题,考试根据要求做答。
2010年高考大纲全国卷 II文科数学试题及答案 (云南、贵州、甘肃、青海、新疆、内蒙古)
2010年高考大纲全国卷 II 理科数学试题及答案文科数学(必修+选修)(云南、贵州、甘肃、青海、新疆、内蒙古)一、选择题(1)设全集{}*U 6x N x =∈<,集合{}{}A 1,3B 3,5==,,则U ()AB =ð( )(A ){}1,4 (B ){}1,5 (C ){}2,4 (D ){}2,5【解析】 C :本题考查了集合的基本运算. 属于基础知识、基本运算的考查.∵ A={1,3}。
B={3,5},∴ {1,3,5}AB =,∴(){2,4}UC A B =故选 C .(2)不等式32x x -+<0的解集为(A ){}23x x -<< (B ){}2x x <- (C ){}23x x x <->或 (D ){}3x x >【解析】A :本题考查了不等式的解法∵302x x -<+,∴ 23x -<<,故选A (3)已知2sin 3α=,则cos(2)x α-=(A)3-B )19-(C )19(D)3【解析】B :本题考查了二倍角公式及诱导公式,∵ SINA=2/3,∴21cos(2)cos 2(12sin )9πααα-=-=--=-(4)函数y=1+ln(x-1)(x>1)的反函数是 (A )y=1x e +-1(x>0) (B) y=1x e-+1(x>0)(C) y=1x e+-1(x ∈R) (D )y=1x e -+1 (x ∈R)【解析】D :本题考查了函数的反函数及指数对数的互化,∵函数Y=1+LN (X-1)(X>1),∴ 11ln(1)1,1,1y x x y x ey e ---=--==+另法(一点定乾坤――反函数选择题最快捷的方法):原函数过点(11e -+,0),反函数必过点(0,11e -+),符合条件的只有选项D.(5)若变量x,y 满足约束条件1325x y x x y ≥-⎧⎪≥⎨⎪+≤⎩则z=2x+y 的最大值为(A )1 (B)2 (C)3 (D)4 【解析】C :本题考查了线性规划的知识。
2010年普通高等学校招生全国统一考试(全国新课标卷)数学试题 (理科)(解析版)
2010年普通高等学校招生全国统一考试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,其中第II 卷第(22)-(24)题为选考题,其他题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1、答题前,考生务必先将自己的姓名,准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2、选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚。
3、请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4、保持卷面清洁,不折叠,不破损。
5、做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。
参考公式:样本数据n x x x ,,21的标准差锥体体积公式s =13V Sh=其中x 为样本平均数其中S 为底面面积,h 为高柱体体积公式球的表面积,体积公式V Sh=24S R π=343V R π=其中S 为底面面积,h 为高其中R 为球的半径第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}2,R A x x x =≤∈,{}4,Z B x =≤∈,则A B = ()(A)()0,2(B)[]0,2(C){}0,2(D){}0,1,2【答案】D【解析】{22},{0,1,2,3,4}A B={0,1,2}A x x B =-≤≤=∴⋂,,选D 命题意图:考察集合的基本运算(2)已知复数z =,z 是z 的共轭复数,则z z ⋅=()(A)14(B)12(C)1(D)2【答案】A 命题意图:考察复数的四则运算【解析】2323244i iz ===-⨯4z =,14z z ⋅=(3)曲线2xy x =+在点()1,1--处的切线方程为()(A)21y x =+(B)21y x =-(C)23y x =--(D)22y x =--【答案】A【解析】''122,|2(2)x y k y x =-=∴==+ ,切线方程为[](1)2(1)y x --=--,即21y x =+.命题意图:考察导数的几何意义(4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0P ,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为()【答案】C【解析】当点P 在0P ,即0t =,P 到x。
2010年高考数学(理)试题(新课标)参考答案
1 2
3 。 2
(Ⅱ) C1 的普通方程为 x sin α − y cos α − sin α = 0。 A 点坐标为 sin
(
2
α − cos α sin α ) ,
故当 α 变化时,P 点轨迹的参数方程为:
1 2 sin α x = 2 (α为参数 ) 1 y = − sin α cos α 2
1 1 2 x− + y = 4 16 。 P 点轨迹的普通方程为
2
0 ,半径为 故 P 点轨迹是圆心为 ,
(24) 解:
1 4
1 的圆。 4
−2 x + 5,x < 2 f ( x) = 2 x − 3,x ≥ 2 则 函 数 (Ⅰ)由于
y = f ( x) 的图像如图所示。
3 3
3 ,0,0) 3
D(0, −
3 1 3 , 0), E ( , − , 0), P(0, 0,1) 3 2 6
设 n = ( x, y, x) 为平面 PEH 的法向量
则
n ⋅ HE = o, o, n ⋅ HP =
1 x− 3 y= 2 6 0 即 z=0
因此可以取 n = (1, 3, 0) , 由= PA (1, 0, −1) ,
(Ⅱ)由函数 y = f ( x) 与函数 y = ax 的图像可知,当且仅当
a≥
1 2 或 a < −2 时,函数
-5-
天骄文化培训学校
y = f ( x) 与函数 y = ax 的图像有交点。故不等式 f ( x) ≤ ax 的解集非空时,a 的取值范围
为
− 2) ( −∞,,
1 + ∞ 2 。
2010年全国统一高考数学试卷(理科)(新课标)79897
2010年全国统一高考数学试卷(理科)(新课标)一、选择题(共 小题,每小题 分,满分 分).( 分)已知集合 ∈ ≤ ,,则 ∩ ().( , ) . , . , . , , .( 分)已知复数,是 的共轭复数,则 () . . . ..( 分)曲线 在点(﹣ ,﹣ )处的切线方程为(). . ﹣ . ﹣ ﹣ . ﹣ ﹣.( 分)如图,质点 在半径为 的圆周上逆时针运动,其初始位置为 (,﹣),角速度为 ,那么点 到 轴距离 关于时间 的函数图象大致为(). .. ..( 分)已知命题 :函数 ﹣ ﹣ 在 为增函数, :函数 ﹣ 在 为减函数,则在命题 : ∨ , : ∧ , :(¬ )∨ 和 : ∧(¬ )中,真命题是(). , . , . , . ,.( 分)某种种子每粒发芽的概率都为 ,现播种了 粒,对于没有发芽的种子,每粒需再补种 粒,补种的种子数记为 ,则 的数学期望为(). . . ..( 分)如果执行右面的框图,输入 ,则输出的数等于(). . . ..( 分)设偶函数 ( )满足 ( ) ﹣ ( ≥ ),则 ( ﹣ )> (). <﹣ 或 > . < 或 >. < 或 > . <﹣ 或 >.( 分)若, 是第三象限的角,则 () . . . .﹣.( 分)设三棱柱的侧棱垂直于底面,所有棱长都为 ,顶点都在一个球面上,则该球的表面积为(). . . ..( 分)已知函数,若 , , 互不相等,且 ( ) ( ) ( ),则 的取值范围是() .( , ) .( , ) .( , ) .( , ) .( 分)已知双曲线 的中心为原点, ( , )是 的焦点,过 的直线 与 相交于 , 两点,且 的中点为 (﹣ ,﹣ ),则 的方程式为(). . . .二、填空题(共 小题,每小题 分,满分 分).( 分)设 ( )为区间 , 上的连续函数,且恒有 ≤ ( )≤ ,可以用随机模拟方法近似计算积分,先产生两组(每组 个)区间 , 上的均匀随机数 , , 和 , , ,由此得到 个点( , )( , , , ),再数出其中满足 ≤ ( )( , , , )的点数 ,那么由随机模拟方案可得积分的近似值为..( 分)正视图为一个三角形的几何体可以是(写出三种).( 分)过点 ( , )的圆 与直线 ﹣ 相切于点 ( ,),则圆 的方程为..( 分)在△ 中, 为边 上一点, ,∠ , ,若△ 的面积为,则∠ .三、解答题(共 小题,满分 分).( 分)设数列满足 , ﹣ ﹣( )求数列 的通项公式;( )令 ,求数列 的前 项和 ..( 分)如图,已知四棱锥 ﹣ 的底面为等腰梯形, ∥ , ⊥ ,垂足为 , 是四棱锥的高, 为 中点( )证明: ⊥( )若∠ ∠ ,求直线 与平面 所成角的正弦值..( 分)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了 位老年人,结果如表:性别是否需要志愿男女需要不需要( )估计该地区老年人中,需要志愿者提供帮助的老年人的比例;( )能否有 的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?( )根据( )的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由.附:( > ).( 分)设 , 分别是椭圆的左、右焦点,过 斜率为 的直线 与 相交于 , 两点,且 , , 成等差数列.( )求 的离心率;( )设点 ( ,﹣ )满足 ,求 的方程..( 分)设函数 ( ) ﹣ ﹣ ﹣ .( )若 ,求 ( )的单调区间;( )若当 ≥ 时 ( )≥ ,求 的取值范围..( 分)如图:已知圆上的弧,过 点的圆的切线与 的延长线交于 点,证明:( )∠ ∠ .( ) ..( 分)已知直线 ( 为参数), ( 为参数),( )当 时,求 与 的交点坐标;( )过坐标原点 做 的垂线,垂足为 , 为 中点,当 变化时,求 点的轨迹的参数方程,并指出它是什么曲线..( 分)设函数 ( ) ﹣ .( )画出函数 ( )的图象:( )若不等式 ( )≤ 的解集非空,求 的取值范围.年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题(共 小题,每小题 分,满分 分).( 分)( 宁夏)已知集合 ∈ ≤ ,,则 ∩ ().( , ) . , . , . , , 【分析】先化简集合 和 ,注意集合 中的元素是整数,再根据两个集合的交集的意义求解.【解答】解: ∈ ≤ , ∈ ﹣ ≤ ≤ ,故 ∩ , , .应选 ..( 分)( 宁夏)已知复数,是 的共轭复数,则 (). . . .【分析】因为,所以先求 再求的值.【解答】解:由可得.另解:故选 ..( 分)( 宁夏)曲线 在点(﹣ ,﹣ )处的切线方程为(). . ﹣ . ﹣ ﹣ . ﹣ ﹣【分析】欲求在点(﹣ ,﹣ )处的切线方程,只须求出其斜率的值即可,故先利用导数求出在 ﹣ 处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵ ,∴ ,所以,得切线的斜率为 ,所以 ;﹣所以曲线 ( )在点(﹣ ,﹣ )处的切线方程为:×( ),即 .故选 ..( 分)( 新课标)如图,质点 在半径为 的圆周上逆时针运动,其初始位置为 (,﹣),角速度为 ,那么点 到 轴距离 关于时间 的函数图象大致为(). .. .【分析】本题的求解可以利用排除法,根据某具体时刻点 的位置到到 轴距离来确定答案.【解答】解:通过分析可知当 时,点 到 轴距离 为,于是可以排除答案 , ,再根据当时,可知点 在 轴上此时点 到 轴距离 为 ,排除答案 ,故应选 ..( 分)( 宁夏)已知命题 :函数 ﹣ ﹣ 在 为增函数, :函数 ﹣ 在 为减函数,则在命题 : ∨ , : ∧ , :(¬ )∨ 和 : ∧(¬ )中,真命题是() . , . , . , . ,【分析】先判断命题 是真命题, 是假命题,故 ∨ 为真命题,(﹣ )为真命题, ∧(﹣ )为真命题.【解答】解:易知 是真命题,而对 : ﹣ (),当 ∈ , ∞)时,,又 > ,所以 ≥ ,函数单调递增;同理得当 ∈(﹣∞, )时,函数单调递减,故 是假命题.由此可知, 真, 假, 假, 真.故选 ..( 分)( 宁夏)某种种子每粒发芽的概率都为 ,现播种了 粒,对于没有发芽的种子,每粒需再补种 粒,补种的种子数记为 ,则 的数学期望为(). . . .【分析】首先分析题目已知某种种子每粒发芽的概率都为 ,现播种了 粒,即不发芽率为 ,故没有发芽的种子数 服从二项分布,即 ~ ( , ).又没发芽的补种 个,故补种的种子数记为 ,根据二项分布的期望公式即可求出结果.【解答】解:由题意可知播种了 粒,没有发芽的种子数 服从二项分布,即 ~ ( , ).而每粒需再补种 粒,补种的种子数记为故 ,则 × × .故选 ..( 分)( 新课标)如果执行右面的框图,输入 ,则输出的数等于(). . . .【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出 的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出 的值.∵ ﹣故选 ..( 分)( 新课标)设偶函数 ( )满足 ( ) ﹣ ( ≥ ),则 ( ﹣ )> (). <﹣ 或 > . < 或 > . < 或 > . <﹣ 或 > 【分析】由偶函数 ( )满足 ( ) ﹣ ( ≥ ),可得 ( ) ( ) ﹣ ,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数 ( )满足 ( ) ﹣ ( ≥ ),可得 ( ) ( ) ﹣ ,则 ( ﹣ ) ( ﹣ ) ﹣ ﹣ ,要使 ( ﹣ )> ,只需 ﹣ ﹣ > , ﹣ >解得 > ,或 < .应选: ..( 分)( 宁夏)若, 是第三象限的角,则 (). . . .﹣【分析】将欲求式中的正切化成正余弦,还要注意条件中的角 与待求式中角的差别,注意消除它们之间的不同.【解答】解:由, 是第三象限的角,∴可得,则,应选 ..( 分)( 宁夏)设三棱柱的侧棱垂直于底面,所有棱长都为 ,顶点都在一个球面上,则该球的表面积为(). . . .【分析】由题意可知上下底面中心连线的中点就是球心,求出球的半径,即可求出球的表面积.【解答】解:根据题意条件可知三棱柱是棱长都为 的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为,球的表面积为,故选 ..( 分)( 新课标)已知函数,若 , , 互不相等,且 ( ) ( ) ( ),则 的取值范围是().( , ) .( , ) .( , ) .( , )【分析】画出函数的图象,根据 ( ) ( ) ( ),不妨 < < ,求出 的范围即可.【解答】解:作出函数 ( )的图象如图,不妨设 < < ,则,则 ∈( , ).故选 ..( 分)( 宁夏)已知双曲线 的中心为原点, ( , )是 的焦点,过 的直线 与 相交于 , 两点,且 的中点为 (﹣ ,﹣ ),则 的方程式为(). . . .【分析】已知条件易得直线 的斜率为 ,设双曲线方程,及 , 点坐标代入方程联立相减得 ﹣ ,根据 ,可求得 和 的关系,再根据 ,求得 和 ,进而可得答案.【解答】解:由已知条件易得直线 的斜率为 ,设双曲线方程为,( , ), ( , ),则有,两式相减并结合 ﹣ , ﹣ 得,从而即 ,又 ,解得 , ,故选 .二、填空题(共 小题,每小题 分,满分 分).( 分)( 宁夏)设 ( )为区间 , 上的连续函数,且恒有 ≤ ( )≤ ,可以用随机模拟方法近似计算积分,先产生两组(每组 个)区间 , 上的均匀随机数 , , 和 , , ,由此得到 个点( , )( , , , ),再数出其中满足 ≤ ( )( , , , )的点数 ,那么由随机模拟方案可得积分的近似值为.【分析】要求 ( ) 的近似值,利用几何概型求概率,结合点数比即可得.【解答】解:由题意可知得,故积分的近似值为.故答案为:..( 分)( 宁夏)正视图为一个三角形的几何体可以是三棱锥、三棱柱、圆锥(其他正确答案同样给分)(写出三种)【分析】三棱锥一个侧面的在正视图为一条线段的情形;圆锥;四棱锥有两个侧面在正视图为线段的情形,即可回答本题.【解答】解:正视图为一个三角形的几何体可以是三棱锥、三棱柱(放倒的情形)、圆锥、四棱锥等等.故答案为:三棱锥、圆锥、三棱柱..( 分)( 宁夏)过点 ( , )的圆 与直线 ﹣ 相切于点 ( , ),则圆 的方程为( ﹣ ) .【分析】设圆的标准方程,再用过点 ( , ),过 ,两点坐标适合方程,圆和直线相切,圆心到直线的距离等于半径,求得圆的方程.【解答】解:设圆的方程为( ﹣ ) ( ﹣ ) ,则,解得,故所求圆的方程为( ﹣ ) .故答案为:( ﹣ ) ..( 分)( 宁夏)在△ 中, 为边 上一点, ,∠ , ,若△ 的面积为,则∠ .【分析】先根据三角形的面积公式利用△ 的面积求得 ,进而根据三角形 的面积求得 和 ,进而根据余弦定理求得 .最后在三角形 中利用余弦定理求得 ∠ ,求得∠ 的值.【解答】解:由△ 的面积为可得解得,则.﹣ ,,则 .故∠ .三、解答题(共 小题,满分 分).( 分)( 宁夏)设数列满足 , ﹣ ﹣( )求数列 的通项公式;( )令 ,求数列 的前 项和 .【分析】( )由题意得 ( ﹣ ) ( ﹣)﹣( ﹣ ) ( ﹣ ﹣ ) ( )﹣ .由此可知数列 的通项公式为 ﹣ .( )由 ﹣ 知 ﹣ ,由此入手可知答案.【解答】解:( )由已知,当 ≥ 时, ( ﹣ ) ( ﹣) ( ﹣ )﹣( ﹣ ﹣ ) × ( )﹣ .而 ,所以数列 的通项公式为 ﹣ .( )由 ﹣ 知 ﹣ ①从而 ②①﹣②得( ﹣ ) ﹣ ﹣ .即..( 分)( 宁夏)如图,已知四棱锥 ﹣ 的底面为等腰梯形, ∥ , ⊥ ,垂足为 , 是四棱锥的高, 为 中点( )证明: ⊥( )若∠ ∠ ,求直线 与平面 所成角的正弦值.【分析】以 为原点, , , 分别为 , , 轴,线段 的长为单位长,建立空间直角坐标系.( )表示,,计算,就证明 ⊥ .( )∠ ∠ ,求出 , 的坐标,再求平面 的法向量,求向量,然后求与面 的法向量的数量积,可求直线 与平面 所成角的正弦值.【解答】解:以 为原点, , , 分别为 , , 轴,线段 的长为单位长,建立空间直角坐标系如图,则 ( , , ), ( , , )( )设 ( , , ), ( , , )( < , > )则.可得.因为所以 ⊥ .( )由已知条件可得 , ,故 (﹣),设 ( , , )为平面 的法向量则即因此可以取,由,可得所以直线 与平面 所成角的正弦值为..( 分)( 新课标)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了 位老年人,结果如表:性别是否需要志愿男女需要不需要( )估计该地区老年人中,需要志愿者提供帮助的老年人的比例;( )能否有 的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?( )根据( )的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由.附:( > )【分析】( )由列联表可知调查的 位老年人中有 位需要志愿者提供帮助,两个数据求比值得到该地区老年人中需要帮助的老年人的比例的估算值.( )根据列联表所给的数据,代入随机变量的观测值公式,得到观测值的结果,把观测值的结果与临界值进行比较,看出有多大把握说该地区的老年人是否需要帮助与性别有关.( )从样本数据老年人中需要帮助的比例有明显差异,调查时,可以先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.【解答】解:( )∵调查的 位老年人中有 位需要志愿者提供帮助,∴该地区老年人中需要帮助的老年人的比例的估算值为.( )根据列联表所给的数据,代入随机变量的观测值公式,.∵ > ,∴有 的把握认为该地区的老年人是否需要帮助与性别有关.( )由( )的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好..( 分)( 宁夏)设 , 分别是椭圆的左、右焦点,过 斜率为 的直线 与 相交于 ,两点,且 , , 成等差数列.( )求 的离心率;( )设点 ( ,﹣ )满足 ,求 的方程.【分析】( )根据椭圆的定义可知 ,进而根据 , , 成等差数表示出 ,进而可知直线 的方程,设 ( , ), ( , ),代入直线和椭圆方程,联立消去 ,根据韦达定理表示出 和 进而根据,求得 和 的关系,进而求得 和 的关系,离心率可得.( )设 的中点为 ( , ),根据( )则可分别表示出 和 ,根据 ,推知直线 的斜率,根据求得 ,进而求得 和 ,椭圆的方程可得.【解答】解:( )由椭圆定义知 ,又 ,得, 的方程为 ,其中.设 ( , ), ( , ),则 、 两点坐标满足方程组化简的( ) ( ﹣ )则因为直线 斜率为 , ﹣ ,得,故所以 的离心率( )设 的中点为 ( , ),由( )知,.由 ,得 ﹣ ,即得 ,从而故椭圆 的方程为..( 分)( 宁夏)设函数 ( ) ﹣ ﹣ ﹣ .( )若 ,求 ( )的单调区间;( )若当 ≥ 时 ( )≥ ,求 的取值范围.【分析】( )先对函数 ( )求导,导函数大于 时原函数单调递增,导函数小于 时原函数单调递减.( )根据 ≥ 可得不等式 ( )≥ ﹣ ( ﹣ ) ,从而可知当 ﹣ ≥ ,即时, ( )≥ 判断出函数 ( )的单调性,得到答案.【解答】解:( ) 时, ( ) ﹣ ﹣ , ( ) ﹣ .当 ∈(﹣∞, )时, ( )< ;当 ∈( , ∞)时, ( )> .故 ( )在(﹣∞, )单调减少,在( , ∞)单调增加( ) ( ) ﹣ ﹣由( )知 ≥ ,当且仅当 时等号成立.故 ( )≥ ﹣ ( ﹣ ) ,从而当 ﹣ ≥ ,即时, ( )≥ ( ≥ ),而 ( ) ,于是当 ≥ 时, ( )≥ .由 > ( ≠ )可得 ﹣ > ﹣ ( ≠ ).从而当时, ( )< ﹣ ( ﹣ ﹣ ) ﹣ ( ﹣ )( ﹣ ),故当 ∈( , )时, ( )< ,而 ( ) ,于是当 ∈( , )时, ( )< .综合得 的取值范围为..( 分)( 新课标)如图:已知圆上的弧,过 点的圆的切线与 的延长线交于 点,证明:( )∠ ∠ .( ) .【分析】( )先根据题中条件: ,得∠ ∠ .再根据 是圆的切线,得到∠ ∠ ,从而即可得出结论.( )欲证 .即证.故只须证明△ ~△ 即可.【解答】解:( )因为,所以∠ ∠ .又因为 与圆相切于点 ,故∠ ∠所以∠ ∠ .( 分)( )因为∠ ∠ ,∠ ∠ ,所以△ ~△ ,故.即 × .( 分).( 分)( 新课标)已知直线 ( 为参数), ( 为参数),( )当 时,求 与 的交点坐标;( )过坐标原点 做 的垂线,垂足为 , 为 中点,当 变化时,求 点的轨迹的参数方程,并指出它是什么曲线.【分析】( )先消去参数将曲线 与 的参数方程化成普通方程,再联立方程组求出交点坐标即可,( )设 ( , ),利用中点坐标公式得 点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:( )当 时, 的普通方程为, 的普通方程为 .联立方程组,解得 与 的交点为( , ).( ) 的普通方程为 ﹣ ﹣ ①.则 的方程为 ②,联立①②可得 , ﹣ ;点坐标为( ,﹣ ),故当 变化时, 点轨迹的参数方程为:,点轨迹的普通方程.故 点轨迹是圆心为,半径为的圆..( 分)( 新课标)设函数 ( ) ﹣ .( )画出函数 ( )的图象:( )若不等式 ( )≤ 的解集非空,求 的取值范围.【分析】( )先讨论 的范围,将函数 ( )写成分段函数,然后根据分段函数分段画出函数的图象即可;( )根据函数 ( )与函数 的图象可知先寻找满足 ( )≤ 的零界情况,从而求出 的范围.【解答】解:( )由于 ( ) ,函数 ( )的图象如图所示.( )由函数 ( )与函数 的图象可知,极小值在点( , )当且仅当 <﹣ 或 ≥时,函数 ( )与函数 的图象有交点.故不等式 ( )≤ 的解集非空时,的取值范围为(﹣∞,﹣ )∪ , ∞).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年普通高等学校招生全国统一考试理科数学第I 卷一、选择题1、复数=+-2)13(ii ( ) (A )i 43-- (B )i 43+- (C )i 43- (D )i 43+2、函数)1.(2)1ln(1>-+=x x y 的反函数是( )(A ))0(112>-=+x e y x (B ))0(112>+=+x e y x (C ))(112R x e y x ∈-=+ (D ))(112R x e y x ∈+=+3、若变量x 、y 满足约束条件⎪⎩⎪⎨⎧≤+≥-≥5231y x x y x ,则y x z +=2的最大值为( )(A )1 (B )2 (C )3 (D )44、如果等差数列}{n a 中,12543=++a a a ,那么=+++721a a a ( ) (A )14 (B )21 (C )28 (D )355、不等式0162>---x x x 的解集为( ) (A )}3,2|{>-<x x x 或 (B )}31,2|{<<-<x x x 或 (C )}3,12|{><<-x x x 或 (D )}31,12|{<<<<-x x x 或6、将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有( )(A )12种 (B )18种 (C )36种 (D )54种7、为了得到函数)32sin(π-=x y 的图像,只需把函数)62sin(π+=x y 的图像( )(A )向左平移4π个长度单位 (B )向右平移4π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2π个长度单位8、在ABC ∆中,点D 在AB 上,CD 平分ACB ∠,若=,=,1a =,2b =,则=( ) (A )1233a b + (B )2133a b + (C )3455a b + (D )4355a b +9、已知正四棱锥ABCD S -中,32=SA ,那么当该棱锥的体积最大时,它的高为( )(A )1 (B (C )2 (D )310、若曲线21-=xy 在点),(21-aa 处的切线与两个坐标围成的三角形的面积为18,则=a ( )(A )64 (B )32 (C )16 (D )811、与正方体1111D C B A ABCD -的三条棱AB 、1CC 、11D A 所在直线的距离相等的点 (A )有且只有1个 (B )有且只有2个 (C )有且只有3个 (D )有无数个12、已知椭圆C :)0,0(12222>>=-b a by a x 的离心率为23,过右焦点F 且斜率为)0(>k k 的直线与C 相交于A 、B 两点.若3=,则=k ( )(A )1 (B (C (D )2第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.13、已知α是第二象限的角,34)2tan(-=+απ,则=αtan .14、若9)(xa x -的展开式中3x 的系数是84-,则=a .15、已知抛物线C :)0(22>=p px y 的准线为l ,过)0,1(M 且斜率为3的直线与l 相交于点A ,与C 的一个交点为B .若=,则=p .16、已知球O 的半径为4,圆M 与圆N 为该球的两个小圆,AB 为圆M 与圆N 的公共弦,4=AB .若3==ON OM ,则两圆圆心的距离=MN .三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17、(本小题满分10分)在ABC ∆中,D 为边BC 上的一点,33=BD ,135sin =B ,53cos =∠ADC ,求AD .18、(本小题满分12分)已知数列}{n a 的前n 项和n n n n S 3)(2⋅+=. (Ⅰ)求nnn S a ∞→lim;(Ⅱ)证明:nn n a a a 32122221>+++ . 19、(本小题满分12分)如图,直三棱柱111C B A ABC -中,BC AC =,AB AA =1, D 为1BB 的中点,E 为1AB 上的一点,13EB AE =.(Ⅰ)证明:DE 为异面直线1AB 与CD 的公垂线; (Ⅱ)设异面直线1AB 与CD 的夹角为045, 求二面角111B AC A --的大小.20、(本小题满分12分)如图,由M 到N 的电路中有4个元件,分别标为1T ,2T ,3T ,4T ,电源能通过1T ,2T ,3T 的概率都是P ,电源能通过4T 的概率是0.9,电源能否通过各元件相互独立。
已知1T ,2T ,3T 中至少有一个能通过电流的概率为0.999.(Ⅰ)求P ;(Ⅱ)求电流能在M 与N 之间通过的 概率. (Ⅲ)ξ表示1T ,2T ,3T ,4T 中能通过电流的元件个数,求ξ的期望.21、(本小题满分12分)己知斜率为1的直线l 与双曲线C :)0,0(12222>>=-b a by a x 相交于B 、D 两点,且BD 的中点为)3,1(M .(Ⅰ)求C 的离心率;(Ⅱ)设C 的右顶点为A ,右焦点为F ,17||||=⋅BF DF ,证明:过A 、B 、D 三点的圆与x 轴相切.22、(本小题满分12分) 设函数xex f --=1)(.(Ⅰ)证明:当1->x 时,1)(+≥x xx f ; (Ⅱ)设当0≥x 时,1)(+≤ax xx f ,求a 的取值范围.参考答案一、选择题二、填空题 13、-2114、1 15、2 16、3 三、解答题17、解: 由053cos >=∠ADC ,知2π<B ,由已知得1312cos =B ,54sin =∠ADC , 从而B ADC B ADC B ADC BAD sin cos cos sin )sin(sin ∠-∠=-∠=∠653313553131254=⨯-⨯=,由正弦定理得BADBDB AD ∠=sin sin , 所以25653313533sin sin =⨯=∠⋅=BADB BD AD . 18、解: (Ⅰ)1limlim n n n n n nn a S S S S -→∞→∞-=1lim(1)n n n S S -→∞=-11lim n n n S S -→∞-,1111lim lim 133n n n n S n S n -→∞→∞-=⋅=+,所以2lim3n n na S →∞=.(Ⅱ)当1n =时,112631a S ==>; 当1n >时,1222212n a a a n +++112122212n n S S a S S n ---=+++22122222122)1)1(1()3121()2111(nS n S S n n S S n n n >+⋅--+⋅-+⋅-=- nn nn n 3322>⋅+=,所以,当1≥n 时,n n n a a a 32122221>+++ . 19、解:(Ⅰ)连接1A B ,记1A B 与1AB 的交点为F. 因为面11AA B B 为正方形,故11A B AB ⊥,且1AF FB =. 又13AE EB =,所以1FE EB =,又D 为1BB 的中点,故//DE BF ,1DE AB ⊥.作CG AB ⊥,G 为垂足,由AC BC =知,G 为AB 中点.又由底面ABC ⊥面11AA B B ,得CG ⊥面11AA B B .连接DG ,则1//DG AB , 故DE DG ⊥,由三垂线定理,得DE CD ⊥. 所以DE 为异面直线1AB 与CD 的公垂线.(Ⅱ)因为1//DG AB ,故CDG ∠为异面直线1AB 与CD 的夹角,45CDG ∠=. 设2AB =,则1AB DG CG AC ==作111B H AC ⊥,H 为垂足.因为底面111A B C ⊥面11AAC C ,故1B H ⊥面11AAC C ,又作1HK AC ⊥,K 为垂足,连接1B K ,由三垂线定理,得11B K AC ⊥,因此1B K H ∠为二面角111A AC B --的平面角.111B H ==,1HC ==,1AC ==111AA HC HK AC ⨯==,14tan 11==∠HK H B KH B ,所以二面角111B AC A --的大小为14arctan .(20)解: 记1A 表示事件:电流能通过1T ,4,3,2,1=i ,A 表示事件:1T ,2T ,3T 中至少有一个能通过电流,B 表示事件:电流能在M 与N 之间通过,(Ⅰ)123123A A A A A A A =,,,相互独立,3123123P()()()()()(1)A P A A A P A P A P A p ===-,又 P()1P(A)=10.9990.001A =--=, 故 3(1)0.0010.9p p -==,, (Ⅱ)32143144A A A A A A A A B ++=,)()()()(32143144A A A A P A A A P A P B P ++=)()()()()()()()(32143144A P A P A P A P A p A P A P A P ++=9991.09.09.01.01.09.09.01.09.0=⨯⨯⨯+⨯⨯+=.(Ⅲ)由于电流能通过各元件的概率都是0.9,且电流能否通过各元件相互独立, 故~(4,0.9)B ξ,40.9 3.6E ξ=⨯=.(21)解:(Ⅰ)由题设知,l 的方程为:2y x =+.代入C 的方程,并化简,得2222222()440b a x a x a a b ----=.设11(,)B x y 、22(,)D x y ,则22221212222244,a a a b x x x x b a b a ++=⋅=---,① 由(1,3)M 为BD 的中点知1212x x +=,故2221412a b a⨯=-,即223b a =,②故2c a ==,所以C 的离心率2ce a==. (Ⅱ)由①、②知,C 的方程为:22233x y a -=,2121243(,0),(2,0),2,02a A a F a x x x x ++==-<,故不妨设12,x a x a ≤-≥.12BF a x ===-,22FD x a ===-,12(2)(2)BF FD a x x a ⋅=--2121242()x x a x x a =-++-2548a a =++.又17BF FD ⋅=,故254817a a ++=,解得1,a =或95a =-(舍去).故126BD x =-=.连接MA ,则由(1,0),(1,3)A M 知3MA =,从而MA MB MD ==,且MA x ⊥轴,因此以M 为圆心,MA 为半径的圆经过A 、B 、D 三点,且在点A处于x 轴相切. 所以过A 、B 、D 三点的圆与x 轴相切. (22)解:(Ⅰ)证明:当1->x 时,1)(+≥x x x f 当且仅当1+≥x e x;令1)(--=x e x g x ,则1)(-='x e x g , 当0≥x 时,0)(≥'x g )(x g 在),0[+∞上是增函数;当0≤x 时,0)(≤'x g )(x g 在]0,(-∞上是减函数; 于是()g x 在0x =处达到最小值,因而当x R ∈时,()(0)g x g ≥,即1xe x ≥+. 所以当1x >-时,()1x f x x ≥+. (Ⅱ)由题设0x ≥,此时()0f x ≥.当0a <时,若1x a >-,则01x ax <+,()1xf x ax ≤+不成立;。