七年级数学下册不等式及其解集检测题
【精选】人教版七年级下册数学第九章《不等式与不等式组》测试卷(含答案)
【精选】人教版七年级下册数学第九章《不等式与不等式组》测试卷(含答案)一、选择题(每题3分,共30分)1.下列各式中,是一元一次不等式的是( )A.x2≥0B.2x-1C.2y≤8D.1x-3x>02.已知a,b,c,d是实数,若a>b,c=d,则( )A.a+c>b+dB.a+b>c+dC.a+c>b-dD.a+b>c-d3.下列说法中正确的是( )A.y=3是不等式y+4<5的解B.y=3是不等式3y≤11的解集C.不等式2y<7的解集是y=3D.y=2是不等式3y≥6的解4.[2023·安徽]在数轴上表示不等式x-12<0的解集,正确的是( )A. B.C. D.5.在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围是( )A.-1<m<3B.1<m<3C.-3<m<1D.m>-16.(母题:教材P130习题T3)不等式组{2x>3x,x+4>2的整数解是( )A.0B.-1C.-2D.17.解不等式2x-12-5x+26-x≤-1,去分母,得( )A.3(2x-1)-5x+2-6x≤-6B.3(2x-1)-(5x+2)-6x≥-6C.3(2x-1)-(5x+2)-6x≤-6D.3(2x-1)-(5x+2)-x≤-18.已知关于x的不等式组{x-a≥b,2x-a≤2b+1的解集是3≤x≤5,则ba的值是( )A.-2B.-12C.-4D.29.春到人间,绿化争先.为增强师生的环境保护意识,提升学生的劳动实践能力,某学校开展了以“建绿色校园,树绿色理想”为主题的植树活动,决定用不超过4 200元购买甲、乙1 / 82 / 8两种树苗共100棵,已知甲种树苗每棵45元,乙种树苗每棵38元,则至少可以购买乙种树苗( )A.42棵B.43棵C.57棵D.58棵10.[2023·重庆八中期末](多选题)已知关于x 的不等式组{x -2(x -1)<3,2k +x 7≥x 有且只有两个整数解,则下列四个数中符合条件的整数k 的值有( )A.3B.4C.5D.6二、填空题(每题3分,共24分)11.(母题:教材P115练习T1)x 的12与5的差不小于3,用不等式可表示为 . 12.在2022卡塔尔世界杯期间,以吉祥物拉伊卜为主题元素的纪念品手办、毛绒公仔深得广大球迷喜爱.某官方授权网店销售的手办每个售价200元,毛绒公仔每个售价40元.小熙打算在该网店购买手办和毛绒公仔共10个送同学,总费用不超过1 500元,若设购买手办x 个,则可列不等式为 .13.不等式2x +3<-1的解集为 .14.[2023·清华附中期中]若关于x 的不等式组{2x -5<0,x -a >0有且仅有一个整数解x =2,则实数a 的取值范围是 .15.已知[x ]表示不超过x 的最大整数,例:[4.8]=4,[-0.8]=-1.现定义{x }=x -[x ],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}= .16.[2023·泸州]关于x ,y 的二元一次方程组{2x +3y =3+a ,x +2y =6的解满足x +y >2√2,写出a 的一个整数值为 .17.[2022·达州]关于x 的不等式组{-x +a <2,3x -12≤x +1恰有3个整数解,则a 的取值范围是 .18.为了响应国家低碳生活的号召,更多的市民放弃开车选择自行车出行,市场上的自行车销量也随之增加,某种品牌自行车专卖店抓住商机,搞促销活动对原进价为800元,标价为1 000元的某款自行车进行打折销售,若要保持利润率不低于5%,则这款自行车最多可打 折.。
人教版七年级下册数学不等式与不等式组试题带答案
2021年七年级下册数学不等式与不等式组试题一、选择题(每小题3分, 共30分) 1.下列说法中, 错误的是( ) A. x =1是不等式x <2的解 B. -2是不等式2x -1<0的一个解 C. 不等式-3x >9的解集是x =-3 D. 不等式x <10的整数解有无数个 2. 下列变形不正确的是( ) A. 由b>5得4a +b>4a +5 B. 由a>b 得b<a C. 由- x>2y 得x<-4y D. -5x>-a 得x>3. 不等式3x +2<2x +3的解集在数轴上表示正确的是( )4. 小明准备用22元钱买笔和笔记本, 已知每支笔3元, 每本笔记本2元, 他买了3本笔记本后, 用剩余的钱来买笔, 那么他最多可以买( )A. 3支笔B. 4支笔C. 5支笔D. 6支笔 5. 不等式组 的解集是( ) A. x >1 B. 1<x ≤2 C. x ≤2 D. 无解6.如果不等式组 的解集是x <2, 那么m 的取值范围是( )A. m =2B. m >2C. m <2D. m ≥2 7. 不等式组 的最小整数解是( )A. 1B. 2C. 3D. 48.小红读一本500页的书, 计划10天内读完, 前5天因种种原因只读了100页, 为了按计划读完, 则从第六天起平均每天至少要读( )姓名:学号:A. 50页B. 60页C. 80页D. 100页 9.已知不等式组 的解集中共有5个整数, 则a 的取值范围为( ) A. 7<a ≤8 B. 6<a ≤7 C. 7≤a <8 D. 7≤a ≤810.关于x 的不等式组 的解集为x<3, 那么m 的取值范围为( ) A. m =3 B. m >3 C. m <3 D. m ≥3 二、填空题(每小题4分, 共24分)11. 在下列各数: -2, -2.5, 0, 1, 6中, 不等式 x>1的解有6;不等式- x>1的解有 . 12.在实数范围内规定新运算“△”, 其规则是:a △b =2a -b.已知不等式x △k ≥1的解集在数轴上如图表示, 则k 的值是 .13. 若不等式组 的解集为3≤x ≤4, 则不等式ax +b <0的解集为 .14. 某种商品的进价为800元, 出售时标价为1 200元, 后来由于该商品积压, 商店准备打折销售, 但要保证利润率不低于5%, 则至多可打 折.15. 对于任意实数m, n, 定义一种运算m ※n =mn -m -n +3, 等式的右边是通常的加减和乘法运算. 例如:3※5=3×5-3-5+3=10.请根据上述定义解决问题:若a<2※x<7, 且解集中有两个整数解, 则a的取值范围是 .16.对一个实数x 按如图所示的程序进行操作, 规定:程序运行从“输入一个实数x ”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止, 那么x 的取值范围是 .三、解答题(共66分)17. (18分)解下列不等式, 并将其解集在数轴上表示出来. (1)8x -1≥6x +3; (2)2x -1<10x +16.(3)解不等式2(x +1)-1≥3x +2, 并把它的解集在数轴上表示出来.18. (8分)若代数式 的值不大于代数式5k +1的值, 求k 的取值范围.19.(8分)(呼和浩特中考)已知实数a是不等于3的常数, 解不等式组并依据a的取值情况写出其解集.20. (10分)定义新运算: 对于任意实数a, b, 都有a⊕b=a(a-b)+1, 等式右边是通常的加法、减法及乘法运算.比如: 2⊕5=2×(2-5)+1=2×(-3)+1=-6+1=-5.(1)求(-2)⊕3的值;(2)若3⊕x的值小于13, 求x的取值范围, 并在数轴上表示出来.21.(10分)某商店5月1日举行促销优惠活动, 当天到该商店购买商品有两种方案. 方案一: 用168元购买会员卡成为会员后, 凭会员卡购买商店内任何商品, 一律按商品价格的8折优惠;方案二: 若不购买会员卡, 则购买商店内任何商品, 一律按商品价格的9.5折优惠. 已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡, 所购买商品的价格为120元时, 实际应支付多少元?(2)请帮小敏算一算, 所购买商品的价格在什么范围内时, 采用方案一更合算?(2)若该商场把这100个球全部以零售价售出, 为使商场获得的利润不低于2 580元, 则采购员至少要购篮球多少个?该商场最多可盈利多少元?参考答案一、选择题(每小题3分, 共30分)1.下列说法中, 错误的是(C)A. x=1是不等式x<2的解B. -2是不等式2x-1<0的一个解C. 不等式-3x>9的解集是x=-3D. 不等式x<10的整数解有无数个2. 下列变形不正确的是(D)A. 由b>5得4a+b>4a+5B. 由a>b得b<aC. 由-x>2y得x<-4yD. -5x>-a得x>3. 不等式3x+2<2x+3的解集在数轴上表示正确的是(D)4. 小明准备用22元钱买笔和笔记本, 已知每支笔3元, 每本笔记本2元, 他买了3本笔记本后, 用剩余的钱来买笔, 那么他最多可以买(C)A. 3支笔B. 4支笔C. 5支笔D. 6支笔5. 不等式组的解集是(B)A. x>1B. 1<x≤2C. x≤2D. 无解6.如果不等式组的解集是x<2, 那么m的取值范围是(D)A. m=2B. m>2C. m<2D. m≥27. 不等式组的最小整数解是(C)A. 1B. 2C. 3D. 48.小红读一本500页的书, 计划10天内读完, 前5天因种种原因只读了100页, 为了按计划读完, 则从第六天起平均每天至少要读(C)A. 50页B. 60页C. 80页D. 100页9.已知不等式组的解集中共有5个整数, 则a的取值范围为(A)A. 7<a≤8B. 6<a≤7C. 7≤a<8D. 7≤a≤810.关于x的不等式组的解集为x<3, 那么m的取值范围为(D)A. m=3B. m>3C. m<3D. m≥3二、填空题(每小题4分, 共24分)11. 在下列各数: -2, -2.5, 0, 1, 6中, 不等式x>1的解有6;不等式-x>1的解有-2, -2.5.12.在实数范围内规定新运算“△”, 其规则是:a△b=2a-b.已知不等式x△k≥1的解集在数轴上如图表示, 则k的值是-3.13. 若不等式组的解集为3≤x≤4, 则不等式ax+b<0的解集为x>.14. 某种商品的进价为800元, 出售时标价为1 200元, 后来由于该商品积压, 商店准备打折销售, 但要保证利润率不低于5%, 则至多可打7折.15. 对于任意实数m, n, 定义一种运算m※n=mn-m-n+3, 等式的右边是通常的加减和乘法运算. 例如:3※5=3×5-3-5+3=10.请根据上述定义解决问题:若a<2※x<7, 且解集中有两个整数解, 则a的取值范围是4≤a<5.16.对一个实数x按如图所示的程序进行操作, 规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止, 那么x的取值范围是x>49.三、解答题(共66分)17. (18分)解下列不等式, 并将其解集在数轴上表示出来.(1)8x-1≥6x+3;解: 移项, 得8x -6x ≥3+1. 合并同类项, 得2x ≥4. 系数化为1, 得x ≥2.其解集在数轴上表示为:(2)2x -1<10x +16.解: 去分母, 得12x -6<10x +1. 移项, 得12x -10x <1+6. 合并同类项, 得2x <7. 系数化为1, 得x< .其解集在数轴上表示为:(3)解不等式2(x +1)-1≥3x +2, 并把它的解集在数轴上表示出来. 解: 去括号, 得2x +2-1≥3x +2. 移项, 得2x -3x ≥2-2+1. 合并同类项, 得-x ≥1. 系数化为1, 得x ≤-1.∴这个不等式的解集为x ≤-1, 在数轴上表示如下:18. (8分)若代数式 的值不大于代数式5k +1的值, 求k 的取值范围. 解:由题意, 得 3(2k +5)2≤5k +1. 解得k≥134.19.(8分)(呼和浩特中考)已知实数a 是不等于3的常数, 解不等式组 并依据a 的取值情况写出其解集. 解: 解不等式①, 得x ≤3. 解不等式②, 得x<a. ∵a 是不等于3的常数,∴当a>3时, 不等式组的解集为x ≤3; 当a<3时, 不等式组的解集为x<a.20. (10分)定义新运算: 对于任意实数a, b, 都有a⊕b=a(a-b)+1, 等式右边是通常的加法、减法及乘法运算.比如: 2⊕5=2×(2-5)+1=2×(-3)+1=-6+1=-5.(1)求(-2)⊕3的值;(2)若3⊕x的值小于13, 求x的取值范围, 并在数轴上表示出来.解: (1)(-2)⊕3=-2×(-2-3)+1=-2×(-5)+1=10+1=11.(2)∵3⊕x<13,∴3(3-x)+1<13.解得x>-1.解集在数轴表示为:21.(10分)某商店5月1日举行促销优惠活动, 当天到该商店购买商品有两种方案. 方案一: 用168元购买会员卡成为会员后, 凭会员卡购买商店内任何商品, 一律按商品价格的8折优惠;方案二: 若不购买会员卡, 则购买商店内任何商品, 一律按商品价格的9.5折优惠. 已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡, 所购买商品的价格为120元时, 实际应支付多少元?(2)请帮小敏算一算, 所购买商品的价格在什么范围内时, 采用方案一更合算?解: (1)120×0.95=114(元).答: 实际应支付114元.(2)设购买商品的价格为x元, 由题意得0. 8x+168<0.95x, 解得x>1 120.答:当购买商品的价格超过1 120元时, 采用方案一更合算.22. (12分)某体育厂家批发价(元/个) 商场零售价(元/个)用品商场采购(2)若该商场把这100个球全部以零售价售出, 为使商场获得的利润不低于2 580元, 则采购员至少要购篮球多少个?该商场最多可盈利多少元?解:(1)设采购员最多可购进篮球x个, 则排球是(100-x)个, 依题意, 得130x+100(100-x)≤11 815.解得x≤60.5.∵x是整数, ∴x最大取60.答: 该采购员最多可购进篮球60个.(2)设篮球x个, 则排球是(100-x)个, 则(160-130)x+(120-100)(100-x)≥2 580.解得x≥58.又由第(1)问得x≤60.5,∴正整数x的取值为58, 59, 60.即采购员至少要购篮球58个.∵篮球的利润大于排球的利润,∴这100个球中, 当篮球最多时, 商场可盈利最多, 故篮球60个, 排球40个, 此时商场可盈利(160-130)×60+(120-100)×40=1 800+800=2 600(元), 即该商场最多可盈利2 600元.。
人教版七年级数学下册第九章不等式与不等式组复习测试题含答案
七年级数学下册第九章不等式与不等式组复习测试题(含答案)一、选择题1..在下列各不等式中,错误的是( ) A .若,则B .若,则C .若,则D .若,则2.下列式子中,是不等式的有( ).①2x =7;②3x +4y ;③-3<2;④2a -3≥0;⑤x >1;⑥a -b >1. A .5个 B .4个 C .3个D .1个3.不等式组的解集是( ).A .x <-1B .x ≤2C .x >1D .x ≥24.给出四个命题:①若b a >,d c =,则bd ac >;②若bc ac >,则b a >;③若b a >,则22bc ac >;④若22bc ac >,则b a >.正确的有( ) A .1个 B .2个 C .3个 D .4个5.下图所表示的不等式组的解集为( )A .>3B .-2<X<3C .X>-2D .-2>X>36.若方程3m (x +1)+1=m (3-x )-5x 的解是负数,则m 的取值范围是( ). A .m >-1.25B .m <-1.25C .m >1.25D .m <1.257.某种出租车的收费标准:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( ). A .5千米B .7千米C .8千米D .15千米8.已知关于x 的不等式组只有3个整数解,则的取值范围是( ) A.B.C.D.9.某市自来水公司按如下标准收取水费:若每户每月用水不超过25m ,则每立方米收费5.1 元;若每户每月用水超过25m ,则超过部分每立方米收费2元,小颖家某月的水费不少于15元,那么她家这个月的用水量(吨数为整数)至少是( )A .210mB .29mC .28mD .26m 10.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计在2018-2019赛季全部32场比赛中最少得到48分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜x 场,要达到目标,x 应满足的关系式是( ) A .48)32(2≥-+x x B .48)32(2≥--x x C .48)32(2≤-+x x D .482≥x 二、填空题(每题3分,共30分)1.已知三角形的两边为3和4,则第三边a 的取值范围是________. 2.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为 .3.已知x =3是方程—2=x —1的解,那么不等式(2—)x <的解集是 .4.若不等式组的解集是x >3,则m 的取值范围是.0 2 4-25.小明用100元钱购得笔记本和钢笔共30件,已知每本笔记本2元,每只钢笔5元.那么小明最多能买只钢笔.6.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打.三、解答题1.解不等式:2.解不等式组,并把它的解集表示在数轴上:3.为何值时,代数式的值是非负数?4.已知:关于的方程的解是非正数,求的取值范围.5.某旅行社组团去北京观看某场足球比赛,入住某宾馆.已知该宾馆一楼房间比二楼房间少5间,该旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.你能根据以上信息确定宾馆一楼有多少房间吗?6.国庆节期间,电器市场火爆.某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:计划购进电视机和洗衣机共100台,商店最多可筹集资金161 800元.(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)7.某市白玉村水果喜获丰收,果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?参考答案一、选择题。
(完整版)初一数学下册不等式测试题(含答案) (一)
一、选择题1.不等式组26,x x x m -+<-⎧⎨>⎩的解集是4x >,那么m 的取值范围( )A .4m ≤B .4m ≥C .4m <D .4m =2.若关于x 的不等式组式020x a x b -≥⎧⎨-<⎩的整数解为x=1和x=2,则满足这个不等式组的整数a ,b 组成的有序数对(a ,b )共有( )对 A .0B .1C .3D .23.已知3a >-,关于x 的不等式组1212x ax x +<⎧⎨-≥+⎩无解,那么所有符合条件的整数a 的个数为( ) A .6个B .7个C .8个D .9个4.若关于x ,y 的二元一次方程组128x y a x y +=+⎧⎨+=⎩的解为正数,则满足条件的所有整数a 的和为( ) A .14B .15C .16D .175.如图,按下面的程序进行运算,规定程序运行到“判断结果是否大于30”为一次运算.若某运算进行了3次才停止,则x 的取值范围是( )A .393342x <≤B .513984x ≤≤ C .393342x ≤< D .513984x <≤ 6.若关于x 的不等式31x m 的正整数解是1,2,3,则整数m 的最大值是( ) A .10B .11C .12D .137.一个物体在天平上两次称重的情况如图所示,则这个物体的质量的取值范围在数轴上表示正确的是( )A .B .C .D .8.关于x 、y 的方程组731x y a x y a +=+⎧⎨-=+⎩的解恰好是第二象限内一个点的坐标(,)x y ,则a 的取值范围是( ) A .3a <B .2a <-C .23a -<<D .32a -≤≤9.已知关于x 的不等式(2)50a b x a b -+->的解集为107x <,则关于x 的不等式ax b a >-的解集为( ) A .3x <-B .5x >-C .25x <-D .25x >-10.若关于x 的不等式mx - n >0的解集是15x <,则关于x 的不等式()m n x n m >-+的解集是( )A .23x >-B .23x <-C .23x <D .23x >二、填空题11.对非负实数x “四舍五入”到个位的值记为x <>,即:当n 为非负整数时,如果1122n x n -<+,则x n <>=.如:0.480<>=, 3.54<>=.如果43x x <>=,则x =___________.12.已知不等式组32,152,33x a x x x +<⎧⎪⎨-<+⎪⎩有解但没有整数解,则a 的取值范围为________. 13.若不等式组01x a x a -⎧⎨-⎩-的解集中的任何一个x 的值均不在2≤x ≤5的范围内,则a 的取值范围为________.14.一年一度的“八中之星”校园民谣大赛是每年八中艺术节的重要活动之一,吸引了众多才华横溢的八中同学参赛.该比赛裁判小组由若干人组成,每名裁判员给选手的最高分不超过10分.今年大赛一名选手演唱后的得分情况是:全体裁判员所给分数的平均分是9.84分;如果只去掉一个最高分,则其余裁判员所给分数的平均分是9.82分;如果只去掉一个最低分,则其余裁判员所给分数的平均分是9.9分.那么,所有裁判员所给分数中的最低分最少可以是________分.15.某校七年级篮球联赛,每个班分别要比赛36场,积分规则是:胜1场计2分,负1场计1分.七(1)班和七(2)班为争夺一个出线名额,展开激烈竞争.目前七(1)班的战绩是17胜13负积47分,七(2)班的战绩是15胜16负积46分.则七(1)班在剩下的比赛中至少需胜_________场可确保出线.16.已知关于x ,y 的方程组24223x y kx y k +=⎧⎨+=-+⎩,的解满足x ﹣y >0,则k 的最大整数值是______________.17.已知关于x 的不等式ax +b >0的解集为13x <,则不等式bx +a <0的解集是______________.18.对于数x ,符号[]x 表示不超过x 的最大整数,暨[][]1x x x ≤<+,若关于x 的方程245x a ⎡⎤+=⎢⎥⎣⎦有正整数解,则a 的取值范围是________. 19.若关于x 的不等式组4x x m <⎧⎨<⎩的解集是4x <,则()1,2P m m +-在第_______________象限.20.不等式组280371x x -≤⎧⎨+≥⎩的所有正整数的和是 _____.三、解答题21.我们定义,关于同一个未知数的不等式A 和B ,若A 的解都是B 的解,则称A 与B 存在“雅含”关系,且A 不等式称为B 不等式的“子式”.如:0A x <,:1B x <,满足A 的解都是B 的解,所以A 与B 存在“雅含”关系,A 是B 的“子式”.(1)若关于x 的不等式:21A x +>,:3B x >,请问A 与B 是否存在“雅含”关系,若存在,请说明谁是谁的“子式”; (2)已知关于x 的不等式11:23x a C -+<,():233D x x --<,若C 与D 存在“雅含”关系,且C 是D 的“子式”,求a 的取值范围; (3)已知2m n k +=,3m n -=,12m ≥,1n <-,且k 为整数,关于x 的不等式:64P kx x +>+,():62142Q x x -≤+,请分析是否存在k ,使得P 与Q 存在“雅含”关系,且Q 是P 的“子式”,若存在,请求出k 的值,若不存在,请说明理由. 22.请阅读求绝对值不等式3x <和3x >的解的过程.对于绝对值不等式3x <,从图1的数轴上看:大于3-而小于3的数的绝对值小于3,所以3x <的解为33x -<<;对于绝对值不等式3x >,从图2的数轴上看:小于3-或大于3的数的绝对值大于3,所以3x >的解为3x <-或3x >.(1)求绝对值不等式32x ->的解(2)已知绝对值不等式21x a -<的解为3b x <<,求2a b -的值(3)已知关于x ,y 的二元一次方程组234461x y m x y m -=-⎧⎨+=-+⎩的解满足2x y +≤,其中m 是负整数,求m 的值.23.如图,数轴上两点A 、B 对应的数分别是-1,1,点P 是线段AB 上一动点,给出如下定义:如果在数轴上存在动点Q ,满足|PQ |=2,那么我们把这样的点Q 表示的数称为连动数,特别地,当点Q 表示的数是整数时我们称为连动整数.(1)在-2.5,0,2,3.5四个数中,连动数有 ;(直接写出结果)(2)若k 使得方程组321431x y k x y k +=+⎧⎨+=-⎩中的x ,y 均为连动数,求k 所有可能的取值;(3)若关于x 的不等式组263332x x x x a -⎧>-⎪⎪⎨+⎪≤-⎪⎩的解集中恰好有4个连动整数,求这4个连动整数的值及a 的取值范围.24.已知关于x 、y 的二元一次方程23,3 3.x y a x y a +=-⎧⎨-=-⎩①②(1)若方程组的解x 、y 满足0,1x y ≤<,求a 的取值范围; (2)求代数式638x y +-的值.25.定义:如果一个两位数a 的十位数字为m ,个位数字为n ,且m n ≠、0m ≠、0n ≠,那么这个两位数叫做“互异数”.将一个“互异数”的十位数字与个位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为()W a .例如:14a =,对调个位数字与十位数字得到新两位数41,新两位数与原两位数的和为411455,和与11的商为55115,所以(14)5W .根据以上定义,解答下列问题:(1)填空:①下列两位数:20,21,22中,“互异数”为________; ②计算:(36)W ________;(10)W mn ________;(m 、n 分别为一个两位数的十位数字与个位数字)(2)如果一个“互异数”b 的十位数字是x ,个位数字是y ,且()7W b ;另一个“互异数”c的十位数字是2x +,个位数字是21y -,且()13W c ,请求出“互异数”b 和c ;(3)如果一个“互异数”d 的十位数字是x ,个位数字是3x +,另一个“互异数”e 的十位数字是2x -,个位数字是3,且满足()()25W d W e ,请直接写出满足条件的所有x 的值________;(4)如果一个“互异数”f 的十位数字是4x +,个位数字是x ,且满足()W f t 的互异数有且仅有3个,则t 的取值范围________. 26.阅读理解:例1.解方程|x |=2,因为在数轴上到原点的距离为2的点对应的数为±2,所以方程|x |=2的解为x =±2.例2.解不等式|x ﹣1|>2,在数轴上找出|x ﹣1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为﹣1或3,所以方程|x ﹣1|=2的解为x =﹣1或x =3,因此不等式|x ﹣1|>2的解集为x <﹣1或x >3.参考阅读材料,解答下列问题: (1)方程|x ﹣2|=3的解为 ; (2)解不等式:|x ﹣2|≤1. (3)解不等式:|x ﹣4|+|x +2|>8.(4)对于任意数x ,若不等式|x +2|+|x ﹣4|>a 恒成立,求a 的取值范围. 27.如图,在平面直角坐标系中,////AB CD x 轴,////BC DE y 轴,且4cm,5cm,2cm AB CD OA DE ====,动点P 从点A 出发,以每秒1cm 的速度,沿ABC 路线向点C 运动;动点Q 从点O 出发,以每秒2cm 的速度,沿OED 路线向点D 运动.若,P Q 两点同时出发,其中一点到达终点时,运动停止.(Ⅰ)直接写出,,B C D 三个点的坐标;(Ⅱ)设两点运动的时间为t 秒,用含t 的式子表示运动过程中三角形OPQ 的面积; (Ⅲ)当三角形OPQ 的面积的范围小于16时,求运动的时间t 的范围.28.某市出租车的起步价是7元(起步价是指不超过3km 行程的出租车价格),超过3km 行程后,其中除3km 的行程按起步价计费外,超过部分按每千米1.6元计费(不足1km 按1km 计算).如果仅去程乘出租车而回程时不乘坐此车,并且去程超过3km ,那么顾客还需付回程的空驶费,超过3km 部分按每千米0.8元计算空驶费(即超过部分实际按每千米2.4元计费).如果往返都乘同一出租车并且中间等候时间不超过3分钟,则不收取空驶费而加收1.6元等候费.现设小文等4人从市中心A 处到相距km x (12x ≤)的B 处办事,在B 处停留的时间在3分钟以内,然后返回A 处.现在有两种往返方案: 方案一:去时4人同乘一辆出租车,返回都乘公交车(公交车票为每人2元); 方案二:4人乘同一辆出租车往返. 问选择哪种计费方式更省钱?(写出过程)29.定义一种新运算“a ※b ”:当a ≥b 时,a ※b =2a +b ;当a <b 时,a ※b =2a ﹣b . 例如:3※(﹣4)=2×3+(﹣4)=2,(﹣6)※12=2×(﹣6)﹣12=﹣24. (1)填空:(﹣2)※3= ;(2)若(3x ﹣4)※(2x +3)=2(3x ﹣4)+(2x +3),则x 的取值范围为 ; (3)已知(2x ﹣6)※(9﹣3x )<7,求x 的取值范围;(4)小明在计算(2x 2﹣2x +4)※(x 2+4x ﹣6)时随意取了一个x 的值进行计算,得出结果是0,小丽判断小明计算错了,小丽是如何判断的?请说明理由.30.若任意一个代数式,在给定的范围内求得的最大值和最小值恰好也在该范围内,则称这个代数式是这个范围的“湘一代数式”.例如:关于x 的代数式2x ,当-1≤x ≤ 1时,代数式2x 在x =±1时有最大值,最大值为1;在x =0时有最小值,最小值为0,此时最值1,0均在-1≤x ≤1这个范围内,则称代数式2x 是-1≤x ≤1的“湘一代数式”.(1)若关于x 的代数式x ,当13x ≤≤时,取得的最大值为 ,最小值为 ,所以代数式“是”或“不是”)13x ≤≤的“湘一代数式”. (2)若关于x 的代数式12ax -+是22x -≤≤的“湘一代数式”,求a 的最大值与最小值. (3)若关于x 的代数式2x -是4m x ≤≤的“湘一代数式”,求m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先求出不等式的解集,再根据不等式组的解集得出答案即可. 【详解】26x x x m -+<-⎧⎨>⎩①② 解不等式①,得:x 4>∵不等式组 26x x x m -+<-⎧⎨>⎩ 的解集是x 4>∴m 4≤ 故选择:A. 【点睛】本题考查了解一元一次不等式组,能根据不等式的解集和不等式组的解集得出关于m 的不等式是解此题的关键.2.D解析:D 【分析】首先解不等式组的解集即可利用a 、b 表示,根据不等式组的整数解仅为1,2即可确定a 、b 的范围,即可确定a 、b 的整数解,即可求解. 【详解】020x a x b -≥⎧⎨-<⎩①② 由①得:x a ≥ 由②得:2bx <不等式组的解集为:2b a x ≤< ∵整数解为为x=1和x=2 ∴01a <≤,232b<≤ 解得:01a <≤,46b <≤ ∴a =1,b=6,5∴整数a 、b 组成的有序数对(a ,b )共有2个 故选D 【点睛】本题考查一元一次不等式组的整数解,难度较大,熟练掌握一元一次不等式组相关知识点是解题关键.3.B解析:B 【分析】分别求得不等式组中每一个不等式的解集,再根据不等式组无解以及3a >-解答即可 【详解】解不等式1x a +<,得1x a <-, 解不等式212x x -≥+,解得3x ≥,关于x 的不等式组1212x ax x +<⎧⎨-≥+⎩无解,13a ∴-≤解得4a ≤又3a >-,且a 为整数,34a ∴-≤≤且为整数∴a 的值为2,1,0,1,2,3,4--共7个故选B 【点睛】本题考查了接一元一次不等式组,根据不等式的解集求参数的范围,求不等式组的整数解,掌握不等式组的解法是解题的关键.4.B解析:B 【分析】先将二元一次方程组128x y a x y +=+⎧⎨+=⎩的解用a 表示出来,然后再根据题意列出不等式组求出的取值范围,进而求出所有a 的整数值,最后求和即可. 【详解】解:解关于x ,y 的二元一次方程组128x y a x y +=+⎧⎨+=⎩,得267x a y a =-⎧⎨=-⎩,∵关于x ,y 的二元一次方程组128x y a x y +=+⎧⎨+=⎩的解为正数,∴26070a a ->⎧⎨->⎩, ∴3<a <7,∴满足条件的所有整数a 的和为4+5+6=15. 故选:B . 【点睛】本题考查了二元一次方程组的解法、一元一次不等式组等知识点,根据题意求得a 的取值范围是解答本题关键.5.D解析:D 【分析】根据程序运算进行了3次才停止,即可得出关于x 的一元一次不等式组,解之即可得出x 的取值范围. 【详解】解:根据题意可知:()()22333022233330x x ⎧--≤⎪⎨⎡⎤--->⎪⎣⎦⎩ , 解得:513984x <≤. 故选:D . 【点睛】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.6.D解析:D 【分析】 先解不等式得到x <()113m -,再根据正整数解是1,2,3得到3<()113m -≤4时,然后从不等式的解集中找出适合条件的最大整数即可. 【详解】解不等式31x m 得x <()113m -,关于x 的不等式31x m 的正整数解是1,2,3,∴ 3<()113m -≤4,解得10 < m ≤ 13, ∴整数m 的最大值为13.故选:D . 【点睛】本题考查了一元一次不等式的整数解,解决此类问题的关键在于正确解得不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式的最大整数解.7.C解析:C 【分析】根据已知可看出物体质量的取值范围,再在数轴上表示. 【详解】有已知可得,设物体的质量为xg ,则40<x <50 在数轴表示为故选C 【点睛】考核知识点:在数轴表示不等式组的解集.利用数轴表示不等式的解集是关键.8.B解析:B 【分析】先解不等式组求出x 、y ,然后根据第二象限内点坐标的特点列式求解即可. 【详解】解:解不等式组731x y a x y a +=+⎧⎨-=+⎩,得243x a y a =+⎧⎨=-+⎩∵点(,)x y 在第二象限∴24030a a +⎧⎨-+⎩<>,解得:2a <-. 故选B . 【点睛】本题主要考查了解二元一次方程组和解不等式组,根据点的特点列出不等式是解答本题的关键.9.C解析:C 【分析】先根据题意得:35b a =且20a b -<,可得0a <,即可求解. 【详解】解:∵(2)50a b x a b -+->, ∴(2)5-+>-a b x b a ,∵关于x 的不等式(2)50a b x a b -+->的解集为107x <, ∴51027b a a b -=- ,且20a b -< ,∴3572010b a a b -=- ,解得:35b a = , ∵20a b -<, ∴3205a a -< , ∴0a < , ∵ax b a >-, ∴35ax a a >- ,即25ax a >- , ∴25x <- .故选:C . 【点睛】本题主要考查了一元一次不等式的解集的定义,解不等式,不等式的性质,熟练掌握一元一次不等式的解集的定义,解不等式的基本步骤是解题的关键.10.B解析:B 【分析】先解不等式mx - n >0,根据解集15x <可判断m 、n 都是负数,且可得到m 、n 之间的数量关系,再解不等式()m n x n m >-+可求得 【详解】解不等式:mx - n >0mx >n∵不等式的解集为:15x <∴m <0 解得:x <n m∴15n m =,∴n <0,m=5n ∴m+n <0解不等式:()m n x n m >-+x <n m m n-+ 将m=5n 代入n m m n -+得:542563n m n n n m n n n n ---===-++ ∴x <23- 故选;B【点睛】本题考查解含有参数的不等式,解题关键在在系数化为1的过程中,若不等式两边同时乘除负数,则不等号需要变号.二、填空题11.0或或【分析】根据的定义可得一个关于的一元一次不等式组,解不等式组、结合为非负整数即可得.【详解】解:由题意得:,即,解不等式①得:,解不等式②得:,则不等式组的解集为,为非负实数解析:0或34或32 【分析】根据x <>的定义可得一个关于x 的一元一次不等式组,解不等式组、结合43x 为非负整数即可得.【详解】 解:由题意得:41413232x x x -<+≤, 即41324132x x x x ⎧-≤⎪⎪⎨⎪<+⎪⎩①②, 解不等式①得:32x ≤, 解不等式②得:32x >-,则不等式组的解集为3322x -<≤, x 为非负实数, 302x ∴≤≤, 4023x ∴≤≤, 43x 为非负整数, 403x ∴=或413x =或423x =, 解得0x =或34x =或32x =, 故答案为:0或34或32. 【点睛】本题考查了一元一次不等式组的应用,理解x <>的定义是解题关键.12.【分析】先求得不等式组的解集,根据解集没有整数解,建立起新的不等式组,解之即可【详解】∵,∴解①得,x <-a ,解②得,x >-1,∴不等式组的解集为:-1<x <-a ,∵不等式组有解但没有解析:01a ≤<【分析】先求得不等式组的解集,根据解集没有整数解,建立起新的不等式组,解之即可 【详解】∵32,152,33x a x x x +<⎧⎪⎨-<+⎪⎩①②, ∴解①得,x <-a ,解②得,x >-1,∴不等式组的解集为:-1<x <-a , ∵不等式组32,152,33x a x x x +<⎧⎪⎨-<+⎪⎩有解但没有整数解, ∴01a a-≤⎧⎨-<-⎩, ∴01a ≤<,故答案为:01a ≤<.【点睛】本题考查了一元一次不等式组的解法,能根据不等式组无整数解建立新不等式组并解之是解题的关键.13.a≤1或a≥5【分析】解不等式组,求出x 的范围,根据任何一个x 的值均不在2≤x≤5范围内列出不等式,解不等式得到答案.【详解】解:不等式组的解集为:a <x <a+1,∵任何一个x 的值均不在2解析:a ≤1或a ≥5【分析】解不等式组01x a x a ->⎧⎨-<⎩,求出x 的范围,根据任何一个x 的值均不在2≤x≤5范围内列出不等式,解不等式得到答案.【详解】解:不等式组01x a x a ->⎧⎨-<⎩的解集为:a <x <a+1, ∵任何一个x 的值均不在2≤x≤5范围内,∴x <2或x >5,∴a+1≤2或a≥5,解得,a≤1或a≥5,∴a 的取值范围是:a≤1或a≥5,故答案为:a≤1或a≥5.【点睛】本题考查的是不等式的解集的确定,根据不等式的解法正确解出不等式是解题的关键,根据题意列出新的不等式是本题的重点.14.36【分析】设裁判员有x 名,根据全体裁判员所给分数的平均分是9.84分可得总分为9.84x ,如果只去掉一个最高分,则其余裁判员所给分数的平均分是9.82分;如果只去掉一个最低分,则其余裁判员所给解析:36【分析】设裁判员有x 名,根据全体裁判员所给分数的平均分是9.84分可得总分为9.84x ,如果只去掉一个最高分,则其余裁判员所给分数的平均分是9.82分;如果只去掉一个最低分,则其余裁判员所给分数的平均分是9.9分,可求出最高分的代数式从而列出不等式,得到最高分就能求出最低分.【详解】设裁判员有x名,那么总分为9.84x;去掉最高分后的总分为9.82(x-1),由此可知最高分为9.84x-9.82(x-1)=0.02x+9.82;去掉最低分后的总分为9.9(x-1),由此可知最低分为9.84x-9.9(x-1)=9.9-0.06x.因为最高分不超过10,所以0.02x+9.82≤10,即0.02x≤0.18,所以x≤9.当x取7时,最低分有最小值,则最低分为9.9-0.06x=9.9-0.54=9.36.故答案是:9.36.【点睛】考查理解题意的能力,关键是表示出最高分的代数式,列出不等式求出最高分,然后求出最低分,根据平均分求出人数.15.4【分析】由题意可知,七(1)班还剩6场比赛,七(2)班还剩5场比赛,七(2)班最多能够得56分,七(1)班要想出线,得分必须超过56分,设七(1)班在剩下的比赛中需胜x场,由此列出不等式,解不解析:4【分析】由题意可知,七(1)班还剩6场比赛,七(2)班还剩5场比赛,七(2)班最多能够得56分,七(1)班要想出线,得分必须超过56分,设七(1)班在剩下的比赛中需胜x 场,由此列出不等式,解不等式即可求解.【详解】由题意可知,七(1)班还剩6场比赛,七(2)班还剩5场比赛,七(2)班最多能够得:46+2×5=56(分),七(1)班要想出线,得分必须超过56分,设七(1)班在剩下的比赛中需胜x场,则七(1)班的总得分为:[47+2x+(6-x)]分,∴47+2x+(6-x)>56,解得,x>3,∵x取整数,∴x最小为4,即七(1)班在剩下的比赛中至少需胜4场可确保出线.故答案为4.【点睛】本题考查了一元一次不等式的应用,根据题意得到七(1)班要想出线得分必须超过56分是解决问题的关键.16.0【分析】方程组两方程相减表示出,代入已知不等式即可求出的范围,进而确定出最大整数值即可.【详解】解:,②①得:,∵x ﹣y >0,∴,解得:,∴的最大整数值为0.故答案为:0.【解析:0【分析】方程组两方程相减表示出x y -,代入已知不等式即可求出k 的范围,进而确定出最大整数值即可.【详解】解:24223x y k x y k +=⎧⎨+=-+⎩①②, ②-①得:63x y k -=-+,∵x ﹣y >0,∴630k -+>, 解得:12k <, ∴k 的最大整数值为0.故答案为:0.【点睛】此题考查了解一元一次不等式以及解二元一次方程组,熟练掌握各自的解法是解本题的关键.17.【分析】根据已知不等式的解集确定出a 与b 的关系,用b 表示出a ,代入所求不等式求出解集即可.【详解】解:∵关于x 的不等式ax +b >0的解集为x <,∴−=且a <0,整理得:a =−3b ,b >0解析:3x <【分析】根据已知不等式的解集确定出a 与b 的关系,用b 表示出a ,代入所求不等式求出解集即可.【详解】解:∵关于x 的不等式ax +b >0的解集为x <13, ∴−b a =13且a <0, 整理得:a =−3b ,b >0,代入所求不等式得:bx −3b <0,解得:x <3.故答案为:x <3.【点睛】此题考查了解一元一次不等式,熟练掌握不等式的基本性质是解本题的关键.18.【分析】根据符号的定义,得到,求解不等式,得到,有正整数解,得到,求解即可.【详解】解:∵,可得到,求得有正整数解,可以得到,即,解得故答案为【点睛】此题考查了绝对值不等式以及对新解析:1212a -<<【分析】 根据符号的定义,得到2455x a+≤<,求解不等式,得到202252a x a -≤<-,有正整数解,得到2521a ->,求解即可.【详解】解:∵245x a ⎡⎤+=⎢⎥⎣⎦,可得到2455x a +≤<, 求得202252a x a -≤<-x 有正整数解,可以得到2521a ->,即12a <,解得1212a -<<故答案为1212a -<<【点睛】此题考查了绝对值不等式以及对新符号的理解,解题的关键的是根据符号定义以及方程求得不等式.19.四【分析】利用不等式组的解集“同小取小”得到m≥4,然后可得m+1>0,2-m <0,再根据点的坐标象限分布特征即可求解.【详解】解:∵关于x 的不等式组的解集是x <4,∴m≥4,∴m+解析:四【分析】利用不等式组的解集“同小取小”得到m ≥4,然后可得m +1>0,2-m <0,再根据点的坐标象限分布特征即可求解.【详解】解:∵关于x 的不等式组4x x m <⎧⎨<⎩的解集是x <4, ∴m ≥4,∴m +1>0,2-m <0,∴P (m +1,2-m )在第四象限.故答案为:四.【点睛】本题主要考查了不等式组的解集以及点的坐标,根据不等式组的解集求出m 的取值范围是解答本题的关键.20.10【分析】先求出不等式组的解集,再求出不等式组的正整数解,通过计算即可得到答案.【详解】解不等式①得:x≤4;解不等式②得:x≥﹣2,∴不等式组的解集为:﹣2≤x≤4,∴不等式组的解析:10【分析】先求出不等式组的解集,再求出不等式组的正整数解,通过计算即可得到答案.【详解】280371x x -≤⎧⎨+≥⎩①②解不等式①得:x ≤4;解不等式②得:x ≥﹣2,∴不等式组的解集为:﹣2≤x ≤4,∴不等式组的正整数解是1,2,3,4,∴所有正整数的和为123410+++=故答案为:10.【点睛】本题考查了一元一次不等式组的知识;解题的关键是熟练掌握一元一次不等式组的解法,从而完成求解.三、解答题21.(1)A 与B 存在“雅含”关系,B 是A 的“子式”;(2)12a ≤;(3)存在,0k =. 【分析】(1)根据“雅含”关系的定义即可判断;(2)先求出C D ,解集,根据“雅含”关系的定义得出2423a +≤,解不等式即可; (3)首先解关于m n ,的方程组即可求得m n ,的值,然后根据12m ≥,1n <-,且k 为整数即可得到一个关于k 的范围,从而求得k 的整数值.【详解】解:(1)不等式A :x +2>1的解集为1x >-,∵:3B x >∴A 与B 存在“雅含”关系,B 是A 的“子式”;(2)不等式:C 1123x a -+<,解得:253a x +<, 不等式D :()233x x --<,解得:2x <,∵C 与D 存在“雅含”关系,且C 是D 的“子式”, ∴2523a +≤,解得:12a ≤, (3)存在;由23m n k m n +=⎧⎨-=⎩解得:3363k m k n +⎧=⎪⎪⎨-⎪=⎪⎩, ∵12m ≥,1n <-,即:3132613k k +⎧≥⎪⎪⎨-⎪<-⎪⎩,解得:332k -≤<, ∵k 为整数,∴k 的值为10,1,2-,, 解不等式:64P kx x +>+得:()12k x ->-,解不等式():62142Q x x -≤+得:1x ≤,∵P 与Q 存在“雅含”关系,且Q 是P 的“子式”,∴不等式:64P kx x +>+的解集为:21x k -<-, ∴10k -<,且211k ->-, 解得:11k -<<,∴0k =.【点睛】本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小无解.22.(1)x >5或x <1;(2)9;(3)m =-3或m =-2或m =-1【分析】(1)由绝对值的几何意义即可得出答案;(2)由|21|x a -<知21a x a -<-<,据此得出1122a a x -+<<,再结合3b x <<可得出关于a 、b 的方程组,解之即可求出a 、b 的值,从而得出答案;(3)两个方程相加化简得出1x y m +=--,由||2x y +知22x y -+,据此得出212m ---,解之求出m 的取值范围,继而可得答案.【详解】解:(1)根据绝对值的定义得:32x ->或32x -<-,解得5x >或1x <;(2)|21|x a -<,21a x a ∴-<-<, 解得1122a a x -+<<, 解集为3b x <<, ∴12132a b a -⎧=⎪⎪⎨+⎪=⎪⎩, 解得52a b =⎧⎨=-⎩, 则2549a b -=+=;(3)两个方程相加,得:3333x y m +=--,1x y m ∴+=--,||2x y +,22x y ∴-+,212m ∴---,解得31m -,又m 是负整数,3m ∴=-或2m =-或1m =-.【点睛】本题主要考查解一元一次不等式,解题的关键是掌握绝对值的几何意义及解一元一次不等式和不等式组的能力.23.(1)-2.5,2;(2)k =-8或-6或-4;(3)2,1,-1,-2,532a -≤-< 【分析】(1)根据连动数的定义即可确定;(2)先表示出x ,y 的值,再根据连动数的范围求解即可;(3)求得不等式的解,根据连动整数的概念得到关于a 的不等式,解不等式即可求得.【详解】解:(1)∵点P 是线段AB 上一动点,点A 、点B 对应的数分别是-1,1,又∵|PQ |=2,∴连动数Q 的范围为:31-Q ≤≤-或13Q ≤≤,∴连动数有-2.5,2;(2)321431x y k x y k +=+⎧⎨+=-⎩①②, ②×3-①×4得:=7y k --,①×3-②×2得:5x k =+,要使x ,y 均为连动数,31x -≤≤-或13x ≤≤,解得86-≤≤-k 或42k -≤≤-31y -≤≤-或13y ≤≤,解得64-≤≤-k 或108-≤≤-k∴k =-8或-6或-4;(3)263332x x x x a -⎧>-⎪⎪⎨+⎪≤-⎪⎩解得: 323x x a <⎧⎨≥+⎩, ∵解集中恰好有4个解是连动整数,∴四个连动整数解为-2,-1,1,2,∴3232a -<+≤-, ∴532a -<≤- ∴a 的取值范围是532a -<≤-. 【点睛】本题考查了解一元一次不等式组的整数解,一元一次方程的解,根据新定义得到不等式组是解题的关键,24.(1)02a <≤;(2)-17【分析】(1)解方程组求出x 、y 的值,根据0,1x y ≤<列不等式组求出答案;(2)将两个方程相加,求得6x +3y =-9,即可得到答案.【详解】解:(1)解方程组得212x a y a=-⎧⎨=-⎩, ∵0,1x y ≤<,∴20121a a -≤⎧⎨-<⎩, 解得02a <≤;(2)由①+②得2x+y =-3,∴3(2x +y )=-9,即6x +3y =-9,∴638x y +-=-9-8=-17.【点睛】此题考查解二元一次方程组,解一元一次不等式组,已知式子的值求代数式的值,正确解方程组是解题的关键.25.(1)①21;②9,m +n ;(2)b =25,c =49;(3)3或4;(4)10<t ≤12【分析】(1)①由“互异数”的定义可得;②根据定义计算可得;(2)由W (b )=7,W (c )=13,列出二元一次方程组,即可求x 和y ;(3)根据题意W (d )+W (e )<25可列出不等式,即可求x 的值;(4)根据“互异数”f 的十位数字是x +4,个位数字是x ,分类讨论f ,根据满足W (f )<t 的互异数有且仅有3个,求出t 的取值范围.【详解】解:(1)①∵如果一个两位数a 的十位数字为m ,个位数字为n ,且m ≠n 、m ≠0、n ≠0,那么这个两位数叫做“互异数”,∴“互异数”为21,故答案为:21;②W (36)=(36+63)÷11=9,W (10m +n )=(10m +n +10n +m )÷11=m +n ;故答案为:9,m +n ;(2)∵W (10m +n )=(10m +n +10n +m )÷11=m +n ,且W (b )=7,∴x +y =7①,∵W (c )=13,∴x +2+2y -1=13②,联立①②解得25x y =⎧⎨=⎩, 故b =10×2+5=25,c =10×(2+2)+2×5-1=49;(3)∵W(d)+W(e)<25,∴x+x+3+(x-2+3)<25,解得x<7,∵x-2>0,x+3<9,∴2<x<6,∴2<x<6,且x为正整数,∴x=3,4,5,当x=5时e为33不是互异数,舍去,故答案为:3或4;(4)当x=0时,x+4=4,此时f为40不是互异数;当x=1时,x+4=5,此时f为51是互异数,W(f)=x+4+x=2x+4=6;当x=2时,x+4=6,此时f为62是互异数,W(f)=x+4+x=2x+4=8;当x=3时,x+4=7,此时f为73是互异数,W(f)=x+4+x=2x+4=10;当x=4时,x+4=8,此时f为84是互异数,W(f)=x+4+x=2x+4=12;∵满足W(f)<t的互异数有且仅有3个,∴10<t≤12,故答案为:10<t≤12.【点睛】本题以新定义为背景考查了一元一次不等式的应用和二元一次方程的应用,解题的关键是根据新定义列出方程和不等式.26.(1)x=-1或x=5;(2)1≤x≤3;(3)x>5或x<-3;(4)a≥6【分析】(1)利用在数轴上到2对应的点的距离等于3的点对应的数求解即可;(2)先求出|x-2|=3的解,再求|x-2|≤3的解集即可;(3)先在数轴上找出|x-4|+|x+2|=8的解,即可得出不等式|x-4|+|x+2|>8的解集;(4)原问题转化为:a大于或等于|x+2|+|x-4|最大值,进行分类讨论,即可解答.【详解】解:(1)∵在数轴上到2对应的点的距离等于3的点对应的数为-1或5,∴方程|x-2|=3的解为x=-1或x=5;(2)在数轴上找出|x-2|=1的解.∵在数轴上到2对应的点的距离等于1的点对应的数为1或3,∴方程|x-2|=1的解为x=1或x=3,∴不等式|x-2|≤1的解集为1≤x≤3.(3)在数轴上找出|x-4|+|x+2|=8的解.由绝对值的几何意义知,该方程就是求在数轴上到4和-2对应的点的距离之和等于8的点对应的x的值.∵在数轴上4和-2对应的点的距离为6,∴满足方程的x对应的点在4的右边或-2的左边.若x对应的点在4的右边,可得x=5;若x对应的点在-2的左边,可得x=-3,∴方程|x -4|+|x +2|=8的解是x =5或x =-3,∴不等式|x -4|+|x +2|>8的解集为x >5或x <-3.(4)原问题转化为:a 大于或等于|x +2|+|x -4|最大值.当x ≥4时,|x +2|+|x -4|=x +2+x -4=2x -2,当-2<x <4,|x +2|+|x -4|=x +2-x +4=6,当x ≤-2时,|x +2|+|x -4|=-x -2-x +4=-2x +2,即|x +2|+|x -4|的最大值为6.故a ≥6.【点睛】本题主要考查了绝对值,方程及不等式的知识,是一道材料分析题,通过阅读材料,同学们应当深刻理解绝对值得几何意义,结合数轴,通过数形结合对材料进行分析来解答题目.27.(Ⅰ)()()()4,5,4,2,8,2B C D ;(Ⅱ)当04t <<时,三角形OPQ 的面积为25cm t ;当45t ≤≤时,三角形OPQ 的面积为()2528cm t -;(Ⅲ)1605t <<或952t <≤. 【分析】(Ⅰ)先求出OE 的长,再根据,,OA AB DE 的长即可得;(Ⅱ)先分别求出点P 运动到点C 所需时间、点Q 运动到点D 所需时间,从而可得05t <≤,再分04t <<和45t ≤≤两种情况,分别利用三角形的面积公式、梯形的面积公式即可得;(Ⅲ)根据(Ⅱ)的结论,分04t <<和45t ≤≤两种情况,分别建立不等式,解不等式即可得.【详解】解:(Ⅰ)////AB CD x 轴,4cm AB CD ==,8cm OE AB CD ∴=+=,////BC DE y 轴,5cm,2cm OA DE ==,()()()4,5,4,2,8,2B C D ∴;(Ⅱ)∵点P 运动的路径长为437(cm)AB BC +=+=,所用时间为7秒;点Q 运动的路径长为8210(cm)OE DE +=+=,所用时间为1052=秒, ∴根据其中一点到达终点时运动停止可知,运动时间t 的取值范围为05t <≤, 点P 运动到点B 所用时间为4秒,点Q 运动到点E 所用时间为842=, 因此,分以下两种情况:①如图,当04t <<时,5cm,2cm OA OQ t ==,。
不等式及其解集练习题
9.1.1 不等式及其解集1.用 连接的式子叫做不等式;2.在下列各题中的空白处填上适当的不等号:⑴ -3 -2 ⑵ 34- 43 ⑶ ()21- -2; 3.用适当的符号表示下列关系:⑴ a -b 是负数 ,⑵ a 比1大 , ⑶ x 是非负数 ,⑷ m 不大于-5 , ⑸ x 的4倍大于3 ;4.正方形边长是xcm ,它的周长不超过160cm ,则用不等式来表示为 ;5.直接想出不等式的解集:⑴ x +3>6的解集 ,⑵ 2x <12的解集 ,⑶ x -5>0的解集 ,⑷ 0.5x >5的解集 ;6.含有 个未知数,未知数的次数是 的不等式叫做一元一次不等式;7.某班同学外出春游,要拍照合影留念,若一张彩色底片需要0.57元,冲印一张需0.35元,每人预定得到一张,出钱不超过0.45元,设合影的同学至少有x 人,则可列不等式 ;8.x 的3倍减去2的差不大于0,列出不等式是 ( ) A 、3x -2≤0 B 、3x -2≥0 C 、3x -2<0 D 、3x -2>09.当x = 3时,下列不等式成立的是 ( ) A 、x +3>5 B 、x +3>6 C 、x +3>7 D 、x +3>810.下列不等式一定成立的是 ( )A 、2x <6 B 、-x <0 C 、12+x >0 D 、x >011.下列解集中,不包括-4的是 ( )A 、x ≤-3 B 、x ≥-4 C 、x ≤-5 D 、x ≥-612.下列说法中,正确的有 ( )①4是不等式x +3>6的解,②x +3<6的解是x <2③3是不等式x +3≤6的解,④x >4是不等式x +3≥6的解的一部分A 、1个B 、2个C 、3个D 、4个13.图中表示的是不等式的解集,其中错误的是( )A 、x ≥-2B 、x <1 C、x ≠0D 、x <014.-3x ≤6的解集是 ( )15.恩格尔系数n 是指家庭日常饮食开支占家庭收入的比例,它反映了居民家庭的实际生活水平,各种类型家庭的n 值如下所示:如用含n 的不等式表示,则贫困家庭为 ;小康家庭为 ;最富裕国家为 ;当某一家庭n = 0.6时,表明该家庭的实际生活水平是 。
七年级数学下册《不等式及其解集》练习题及答案(人教版)
④设车重为yt,则y≤10
17.(1)解:0大于 表示为:
(2)x减去y不大于 表示为:
(3)a的 倍与 的和是非负数表示为:
(4)a的 与b的平方的和为正数
18.(1)解:由x+1<7−2x得:x<2
由−1+x<a得:x<a+1
由两个不等式的解集相同,得到a+1=2
解得:a=1;
A.27B.18C.15D.12
10.当x = 3时,下列不等式成立的是( )
A.x+3>5B.x+3>6C.x+3>7D.x+3>8
二、填空题
11.武汉市某一天的最低气温为-6℃,最高气温是5℃,如果设这天气温为t℃,那么t应满足条件______.
12.a与b的差是非负数,列出不等式为_______.
七年级数学下册 《不等式及其解集》练习题及答案(人教版)
班级姓名考号
一、单选题
1.若 是某不等式的解,则该不等式可以是()
A. B. C. D.
2.在数学表达式:-3<0,4x+3y>0,x=3 x≠5x+2>y+3中,是一元一次不等式的有().
A.1个B.2个C.3个D.4个
3.在数学表达式:(1)﹣3<0(2)3x+5>0(3)x2﹣6(4)x=﹣2(5)y≠0(6)x≥50中,不等式的个数是()
所以六(1)班学生数最多不超过 (人)
所以六(2)班学生数至少是 (人)
答:六(2)班的学生数至少是38人.
班级
人数
捐款总额(元)
人均捐款额(元)
(1)班
(2)班
合计
80
900
(完整)七年级下册数学不等式与不等式组试卷
一.选择题(每小题5分,共30分)1.下列各数是不等式3X+6>0的解的是()A.-1 B.-2 C.-3 D.-42.以下是各不等式的解集与其在数轴上的表示,正确的对应是( )A. B. C. D.0 1 0 1 0 1 0 1X≥1 X≤1 X>1 X>13.不等式组X>2的解集是()X<3A.X<3 B.X>2 C.2<X<3 D.无解4.如果不等式组x<8有解,那么x的取值范围是()x>mA.m>8B.m≥8C.m<8D.m≤85.课外阅读课上,老师将43本书分给各个小组,每组8本,还有剩余,每组9本,却又不够。
这个课外阅读小组共有()组A.4 B.5 C.6 D.76.已知△ABC的周长为18,BC=8,则这个三角形面积的最大值是( )A.10B.12C.24D.不能确定二.填空题.(每小题5分,共20分)7.已知0<X<兀,X是整数,则X的值是_____________.8.设求知数,列不等式:(1)一个工程队原定在10天内至少要挖土600立方米,在前两天一共完成了120立方米,由于整个工程调整工期,要求提前两天完成挖土任务,设经后 6 天内平均每天至少要挖土X立方米,则列出的不等式为____________.(2)一次智力测验,有20道选择题.评分标准是:对1题得5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答,至少答对几题,部分才不会低于60分?设小明至少答对的题数为X,则列出的不等式是___________.9.不等式1/X不是一元一次不等式,但是它的解集是存在的,它的解集是_____________.10.已知点A(1-a,a+2)在第二象限,则a的取值范围是_____________.三.解答题. (11题18分,12和13题各10分,14题12分)11.解不等式(组),并把解集在数轴上表示出来.(1) (X-1)/3-(X+4)/2>-2 (2) -3X-1>3 2X+1>3 (3) 2X-6<3X (X+2)/5-(X-1)/4≥012.小明要去福利院看望12个小朋友,打算用10元钱购买笔记本或圆珠笔,给每位小朋友一份礼物,已知每本笔记本0.9元,每支圆珠笔0.7元.问他最多能买多少本笔记本?13.利用不等式性质将1<X<2变为a<1-3x<b(a,b是常数)的形式。
人教版数学七年级下册同步训练: 9.1.1《不等式及其解集》
人教版数学七年级下册同步训练: 9.1.1《不等式及其解集》姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共30分)1. (2分)(2020·重庆模拟) 若关于x的不等式组所有整数解的和为2,且关于y的分式方程=1的解是正数,则符合条件的所有整数k的和是()A . 10B . 13C . 15D . 172. (2分)(2019·福田模拟) 对于任意实数m,n,定义一种运算m※n=mn﹣m﹣n+3,例如:2※5=2×5﹣2﹣5+3=6.请根据上述定义解决问题:若5<2※x<7的整数解为()A . 4B . 5C . 6D . 73. (2分) (2020七上·滨海月考) 如果a+b 0,并且ab 0,那么()A . a 0,b 0B . a 0,b 0C . a 0,b 0D . a 0,b 04. (2分) (2020七下·门头沟期末) 把不等式x ≤1 的解集表示在数轴上,正确的是()A .B .C .D .5. (2分)若a>b,则下列式子中一定成立的是()A . a﹣2<b﹣2B . >C . 2a>bD . 3﹣a>3﹣b6. (2分) (2017八下·宝安期中) 若x>y,则下列式子中错误的是()A . x-3>y-3B . x+3>y+3C . -3x>-3yD .7. (2分) (2020八上·哈尔滨月考) 若,则下列各式中一定不成立的是()A .B .C .D .8. (2分)下列不等关系中,正确的是()A . a不是负数可表示为a>0B . x不大于5可表示为x>5C . x与1的和是非负数可表示为x+1>0D . m与4的差是负数可表示为m-4<09. (2分)(2017·乐清模拟) 若a>b,则下列各式中一定成立的是()A . a+2<b+2B . a﹣2<b﹣2C . >D . ﹣2a>﹣2b10. (2分) (2020八上·下城期末) 设m,n是实数,a,b是正整数,若,则()A .B .C .D .11. (2分) (2020七下·许昌期末) 若是关于的一元一次不等式,则该不等式的解集是()A .B .C .D .12. (2分)下列不等式中,是一元一次不等式的是()A . 2x-1>0B . -1<2C . 3x-2y≤-1D . y2+3>513. (2分) (2018八上·宁波期中) 一元一次不等式x+1>2的解在数轴上表示为()A .B .C .D .14. (2分) (2020八下·西安月考) 下列不等式中,属于一元一次不等式的是()A . x(x-1)+2≤0B . 2(1-y)+y>2C . <1D . x-2y≥015. (2分) (2019七下·唐山期末) 如果不等式组无解,则b的取值范围是A .B .C .D .二、填空题 (共5题;共5分)16. (1分) (2017八上·秀洲月考) 用不等式表示“x与1的和为正数”:________。
人教版数学七年级下册:9.1.1 不等式及其解集 同步练习(附答案)
9.1.1 不等式及其解集1.数学表达式:①-5<7;②3y-6>0;③a=6;④x-2x;⑤a≠2;⑥7y-6>5y+2中,是不等式的有( )A.2个 B.3个 C.4个 D.5个2.选择适当的不等号填空:(1)2 3;(2)4;(3)若a为正方形的边长,则a 0;(4)若x≠y,则-x -y.3.如图,左边物体的质量为x g,右边物体的质量为50 g,用不等式表示下列数量关系是.4.用不等式表示:(1)数a小于2;(2)a与5的和是正数;(3)a与2的差是负数;(4)b的10倍大于27.5.下列各数中,是不等式3x-2>1的解的是( )A.1 B.2 C.0 D.-16.不等式的解集x>1在数轴上表示正确的是( )A B C D7.如图,数轴所表示的不等式的解集是 .8.把下列不等式的解集在数轴上表示出来.(1)x >-3; (2)x<-32.9.“满足x<3的每一个数都是不等式x +2<6的解,所以不等式x +2<6的解集是x<3”,这句话是否正确?请你判断,并说明理由.10.语句“x 的18与x 的和不超过5”可以表示为( ) A.x 8+x ≤5 B.x 8+x ≥5 C.8x +5≤5 D.x 8+x =5 11.下列哪个数是不等式2(x -1)+3<0的一个解?( )A .-3B .-12 C.13D .2 12.不等式x<4的非负整数解的个数有( )A .4个B .3个C .2个D .1个13.请写出满足下列条件的一个不等式.(1)0是这个不等式的一个解: ;(2)-2,-1,0,1都是不等式的解: ;(3)0不是这个不等式的解: ;(4)与x<-1的解集相同的不等式: .14.用不等式表示:(1)a 与3的和大于5;(2)x 的2倍与5的差小于1;(3)x 的13与x 的12的和是正数;(4)a 的20%与a 的和大于a 的3倍.15.已知一支圆珠笔1.5元,签字笔与圆珠笔相比每支贵2元.小华想要买x 支圆珠笔和10支签字笔.若付50元仍找回若干元,则如何用含x 的不等式来表示小华所需支付的金额与50元之间的关系?16.阅读下列材料,并回答下面的问题.你能比较2 0202 021和2 0212 020的大小吗?为了解决这个问题,先把问题一般化,比较n n +1和(n +1)n(n >0,且n 为整数)的大小.然后从分析n =1,n =2,n =3,…的简单情形入手,从中发现规律,经过归纳、猜想得出结论.(1)通过计算(可用计算器)比较下列①~⑦组两数的大小:(在横线上填上“>”“=”或“<”) ①12 21;②23 32;③34 43;④45 54;⑤56 65;⑥67 76;⑦78 87;(2)归纳第(1)问的结果,可以猜想出nn +1和(n +1)n 的大小关系; (3)根据以上结论,可以得出2 0202 021和2 0212 020的大小关系.参考答案:1.数学表达式:①-5<7;②3y-6>0;③a=6;④x-2x;⑤a≠2;⑥7y-6>5y+2中,是不等式的有(C)A.2个 B.3个 C.4个 D.5个2.选择适当的不等号填空:(1)2<3;(2)4;(3)若a为正方形的边长,则a>0;(4)若x≠y,则-x≠-y.3.如图,左边物体的质量为x g,右边物体的质量为50 g,用不等式表示下列数量关系是x>50.4.用不等式表示:(1)数a小于2;解:a<2.(2)a与5的和是正数;解:a+5>0.(3)a与2的差是负数;解:a-2<0.(4)b的10倍大于27.解:10b>27.5.下列各数中,是不等式3x-2>1的解的是(B)A.1 B.2 C.0 D.-16.不等式的解集x>1在数轴上表示正确的是(C)A B C D7.如图,数轴所表示的不等式的解集是x<3.8.把下列不等式的解集在数轴上表示出来.(1)x >-3;解:(2)x<-32. 解: 9.“满足x<3的每一个数都是不等式x +2<6的解,所以不等式x +2<6的解集是x<3”,这句话是否正确?请你判断,并说明理由.解:这句话不正确,因为满足x<3的数只是不等式x +2<6的部分解,如:x =3.1,x =3.2等都是不等式x +2<6的解,所以这句话不正确.10.语句“x 的18与x 的和不超过5”可以表示为(A) A.x 8+x ≤5 B.x 8+x ≥5 C.8x +5≤5 D.x 8+x =5 11.下列哪个数是不等式2(x -1)+3<0的一个解?(A)A .-3B .-12 C.13D .2 12.不等式x<4的非负整数解的个数有(A)A .4个B .3个C .2个D .1个13.请写出满足下列条件的一个不等式.(1)0是这个不等式的一个解:x <1;(2)-2,-1,0,1都是不等式的解:x <2;(3)0不是这个不等式的解:x >0;(4)与x<-1的解集相同的不等式:x +2<1.14.用不等式表示:(1)a 与3的和大于5;解:a +3>5.(2)x 的2倍与5的差小于1;解:2x -5<1.(3)x 的13与x 的12的和是正数; 解:13x +12x >0. (4)a 的20%与a 的和大于a 的3倍.解:20%a +a>3a.15.已知一支圆珠笔1.5元,签字笔与圆珠笔相比每支贵2元.小华想要买x 支圆珠笔和10支签字笔.若付50元仍找回若干元,则如何用含x 的不等式来表示小华所需支付的金额与50元之间的关系?解:列不等式为:1.5x +10×(1.5+2)<50.16.阅读下列材料,并回答下面的问题.你能比较2 0202 021和2 0212 020的大小吗?为了解决这个问题,先把问题一般化,比较n n +1和(n +1)n(n >0,且n 为整数)的大小.然后从分析n =1,n =2,n =3,…的简单情形入手,从中发现规律,经过归纳、猜想得出结论.(1)通过计算(可用计算器)比较下列①~⑦组两数的大小:(在横线上填上“>”“=”或“<”) ①12<21;②23<32;③34>43;④45>54;⑤56>65;⑥67>76;⑦78>87;(2)归纳第(1)问的结果,可以猜想出nn +1和(n +1)n 的大小关系; (3)根据以上结论,可以得出2 0202 021和2 0212 020的大小关系. 解:(2)当n =1或2时,nn +1<(n +1)n ; 当n >2时,nn +1>(n +1)n . (3)2 0202 021>2 0212 020.。
人教版初中七年级下册数学《不等式》检测练习题
第九章 不等式与不等式组测试1 不等式及其解集学习要求知道不等式的意义;知道不等式的解集的含义;会在数轴上表示解集.课堂学习检测一、填空题 1.用不等式表示: (1)m -3是正数______; (2)y +5是负数______; (3)x 不大于2______; (4)a 是非负数______;(5)a 的2倍比10大______; (6)y 的一半与6的和是负数______;(7)x 的3倍与5的和大于x 的31______; (8)m 的相反数是非正数______.2.画出数轴,在数轴上表示出下列不等式的解集: (1)⋅>213x (2)x ≥-4.(3)⋅≤51x(4)⋅-<312x 二、选择题3.下列不等式中,正确的是( ). (A)4385-<-(B)5172< (C)(-6.4)2<(-6.4)3(D)-|-27|<-(-3)34.“a 的2倍减去b 的差不大于-3”用不等式可表示为( ). (A)2a -b <-3 (B)2(a -b )<-3 (C)2a -b ≤-3(D)2(a -b )≤-35.如图,天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g)的取值范围在数轴上可表示为( ).三、解答题6.利用数轴求出不等式-2<x ≤4的整数解.综合、运用、诊断一、填空题7.用“<”或“>”填空: (1)-2.5______5.2;(2)114-______125-; (3)|-3|______-(-2.3); (4)a 2+1______0; (5)0______|x |+4; (6)a +2______a .8.“x 的23与5的差不小于-4的相反数”,用不等式表示为______. 二、选择题9.如果a 、b 表示两个负数,且a <b ,则( ). (A)1>ba (B)ba <1 (C)ba 11< (D)ab <110.如图,在数轴上表示的解集对应的是( ).(A)-2<x <4 (B)-2<x ≤4 (C)-2≤x <4(D)-2≤x ≤411.a 、b 是有理数,下列各式中成立的是( ).(A)若a >b ,则a 2>b 2 (B)若a 2>b 2,则a >b (C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b12.|a |+a 的值一定是( ).(A)大于零 (B)小于零(C)不大于零(D)不小于零三、判断题13.不等式5-x >2的解集有无数个. ( ) 14.不等式x >-1的整数解有无数个.( ) 15.不等式32421<<-x 的整数解有0,1,2,3,4. ( ) 16.若a >b >0>c ,则.0>cab( )四、解答题17.若a 是有理数,比较2a 和3a 的大小.拓展、探究、思考18.若不等式3x -a ≤0只有三个正整数解,求a 的取值范围.19.对于整数a ,b ,c ,d ,定义bd ac c d b a -=,已知3411<<d b,则b +d 的值为_________. 测试2 不等式的性质学习要求知道不等式的三条基本性质,并会用它们解简单的一元一次不等式.课堂学习检测一、填空题1.已知a <b ,用“<”或“>”填空: (1)a +3______b +3; (2)a -3______b -3; (3)3a ______3b ; (4)2a______2b ;(5)7a -______7b-; (6)5a +2______5b +2;(7)-2a -1______-2b -1; (8)4-3b ______6-3a . 2.用“<”或“>”填空: (1)若a -2>b -2,则a ______b ; (2)若33ba <,则a ______b ; (3)若-4a >-4b ,则a ______b ;(4)22ba -<-,则a ______b .3.不等式3x <2x -3变形成3x -2x <-3,是根据______.4.如果a 2x >a 2y (a ≠0).那么x ______y . 二、选择题5.若a >2,则下列各式中错误的是( ). (A)a -2>0(B)a +5>7(C)-a >-2(D)a -2>-46.已知a >b ,则下列结论中错误的是( ). (A)a -5>b -5(B)2a >2b(C)ac >bc(D)a -b >07.若a >b ,且c 为有理数,则( ). (A)ac >bc(B)ac <bc(C)ac 2>bc 2(D)ac 2≥bc 28.若由x <y 可得到ax >ay ,应满足的条件是( ). (A)a ≥0 (B)a ≤0(C)a >0(D)a <0三、解答题9.根据不等式的基本性质解下列不等式,并将解集表示在数轴上. (1)x -10<0.(2).62121+->x x(3)2x ≥5.(4).131-≥-x 10.用不等式表示下列语句并写出解集:(1)8与y 的2倍的和是正数;(2)a 的3倍与7的差是负数.综合、运用、诊断一、填空题11.已知b <a <2,用“<”或“>”填空:(1)(a -2)(b -2)______0;(2)(2-a )(2-b )______0;(3)(a -2)(a -b )______0.12.已知a <b <0.用“>”或“<”填空:(1)2a ______2b ; (2)a 2______b 2;(3)a 3______b 3;(4)a 2______b 3; (5)|a |______|b |;(6)m 2a ______m 2b (m ≠0).13.不等式4x -3<4的解集中,最大的整数x =______. 14.关于x 的不等式mx >n ,当m ______时,解集是m nx <;当m ______时,解集是mn x >. 二、选择题15.若0<a <b <1,则下列不等式中,正确的是( ).,11;11;1;1ba b a b a b a <><>④③②①(A)①③ (B)②③ (C)①④ (D)②④16.下列命题结论正确的是( ).①若a >b ,则-a <-b ;②若a >b ,则3-2a >3-2b ;③8|a |>5|a |. (A)①②③ (B)②③(C)③(D)以上答案均不对17.若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1(C)a <-1(D)a <1三、解答题18.当x 取什么值时,式子563-x 的值为(1)零;(2)正数;(3)小于1的数.拓展、探究、思考19.若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .20.解关于x 的不等式ax >b (a ≠0).测试3 解一元一次不等式学习要求会解一元一次不等式.课堂学习检测一、填空题1.用“>”或“<”填空: (1)若x ______0,y <0,则xy >0; (2)若ab >0,则b a ______0;若ab <0,则ab______0; (3)若a -b <0,则a ______b ; (4)当x >x +y ,则y ______0. 2.当a ______时,式子152-a 的值不大于-3. 3.不等式2x -3≤4x +5的负整数解为______. 二、选择题4.下列各式中,是一元一次不等式的是( ). (A)x 2+3x >1 (B)03<-yx (C)5511≤-x(D)31312->+x x5.关于x 的不等式2x -a ≤-1的解集如图所示,则a 的取值是( ).(A)0(B)-3(C)-2(D)-1三、解下列不等式,并把解集在数轴上表示出来 6.2(2x -3)<5(x -1).7.10-3(x +6)≤1.8.⋅-->+22531x x 9.⋅-≥--+612131y y y四、解答题 10.求不等式361633->---x x 的非负整数解.11.求不等式6)125(53)34(2+<-x x 的所有负整数解.综合、运用、诊断一、填空题12.若x 是非负数,则5231x-≤-的解集是______. 13.使不等式x -2≤3x +5成立的负整数是______.14.已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是______. 二、选择题15.下列各对不等式中,解集不相同的一对是(______).(A)72423xx +<-与-7(x -3)<2(4+2x ) (B)3921+<-x x 与3(x -1)<-2(x +9) (C)31222-≥+x x 与3(2+x )≥2(2x -1) (D)x x ->+414321与3x >-116.如果关于x 的方程5432bx a x +=+的解不是负值,那么a 与b 的关系是( ). (A)b a 53> (B)a b 53≥ (C)5a =3b (D)5a ≥3b三、解下列不等式 17.(1)3[x -2(x -7)]≤4x . (2).17)10(2383+-≤--y y y(3).151)13(21+<--y y y (4).15)2(22537313-+≤--+x x x(5)).1(32)]1(21[21-<---x x x x(6)⋅->+-+2503.0.02.003.05.09.04.0x x x 四、解答题18.x 取什么值时,代数式413--x 的值不小于8)1(32++x 的值.19.已知关于x 的方程3232xm x x -=--的解是非负数,m 是正整数,求m 的值.20.已知关于x ,y 的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围.21.已知方程组⎩⎨⎧-=++=+②①my x m y x 12,312的解满足x +y <0,求m 的取值范围.拓展、探究、思考一、填空题22.(1)已知x <a 的解集中的最大整数为3,则a 的取值范围是______;(2)已知x >a 的解集中最小整数为-2,则a 的取值范围是______. 二、解答题23.适当选择a 的取值范围,使1.7<x <a 的整数解:(1)x 只有一个整数解; (2)x 一个整数解也没有.24.当310)3(2k k -<-时,求关于x 的不等式k x x k ->-4)5(的解集.25.已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.参考答案 测试11.(1)m -3>0;(2)y +5<0;(3)x ≤2;(4)a ≥0;(5)2a >10; (6)2y +6<0;(7)3x +5>3x;(8)-m ≤0.2.3.D . 4.C . 5.A . 6.整数解为-1,0,1,2,3,4. 7.(1)>;(2)>;(3)>;(4)>;(5)<;(6)>. 8..4523≥-x 9.A . 10.B . 11.D . 12.D . 13.×. 14.√. 15.√. 16.×. 17.当a >0时,2a <3a ;当a =0时,2a =3a ;当a <0时,2a >3a .18.x ≤3a,且x 为正整数1,2,3. ∴9≤a <12. 19.+3或-3.测试21.(1)<;(2)<;(3)<;(4)<;(5)>;(6)<;(7)>;(8)<. 2.(1)>;(2)<;(3)<;(4)>.3.不等式两边加(或减)同一个数(或式子),不等号的方向不变. 4.>. 5.C . 6.C . 7.D . 8.D . 9.(1)x <10,解集表示为(2)x >6,解集表示为(3)x ≥2.5,解集表示为(4)x ≤3,解集表示为10.(1)8+2y >0,解集为y >-4. (2)3a -7<0,解集为37<a . 11.(1)>;(2)>;(3)<. 12.(1)<;(2)>;(3)<;(4)>;(5)>;(6)<. 13.1. 14.<0;>0. 15.B . 16.D . 17.C .18.(1)x =2;(2)x >2;(3)311<x . 19.∵-m 2-1<0,⋅--<∴12m nx20.当a >0时,a b x >;当a <0时,ab x <. 测试31.(1)<;(2)>;<;(3)<;(4)<. 2.≤-5. 3.-4,-3,-2,-1. 4.D . 5.D .6.x >-1,解集表示为7.x ≥-3,解集表示为8.x >6,解集表示为9.y ≤3,解集表示为10.413<x 非负整数解为0,1,2,3. 11.x >-8,负整数解为-7,-6,-5,-4,-3,-2,-1.12.0≤x ≤4. 13.-3,-2,-1. 14.a <4. 15.B . 16.D .17.(1)x ≥6. (2)625≤y . (3)y <5. (4)23-≥x . (5)x <-5. (6)x <9.18.57≤x . 19.m ≤2,m =1,2. 20.p >-6. 21.①+②;3(x +y )=2+2m .∵x +y <0.∴2+2m <0.∴m <-1.22.(1)3<a ≤4;(2)-3≤a <-2. 23.(1)2<a ≤3;(2)1.7<a ≤2.24.⋅-<4k k x 25.A -B =7x +7.当x <-1时,A <B ;当x =-1时,A =B ;当x >-1时,A >B .我爸爸告诉我,你现在翻的一页书都是将来要数的一张张钞票,所以不让你学习的人,就是在抢你的财富,不想要的都是傻子。
人教版七年级数学下册 第九章不等式与不等式组 达标检测卷(含详细解答)
人教版七年级数学下册 第九章 达标检测卷(考试时间:120分钟 满分:120分)班级:________ 姓名:________ 分数:________第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分)1.下列各式中,是一元一次不等式的是( )A .5+4>8B .2x -1C .2x ≤5D .1x-3x ≥0 2.将不等式3x -2<1的解集表示在数轴上,正确的是 ( )3.如果a<b ,那么下列不等式中一定成立的是 ( )A .a 2<abB .ab<b 2C .a 2<b 2D .a -2b<-b4.下列说法中正确的是 ( )A .y =3是不等式y +4<5的解B .y =3是不等式3y<11的解集C .不等式3y<11的解集是y =3D .y =2是不等式3y ≥6的解5.解不等式2x -12 -5x +26-x ≤-1,去分母,得( ) A .3(2x -1)-5x +2-6x ≤-6B .3(2x -1)-(5x +2)-6x ≥-6C .3(2x -1)-(5x +2)-6x ≤-6D .3(2x -1)-(5x +2)-x ≤-16.(雅安中考)不等式组⎩⎪⎨⎪⎧x -1≥0,1-12x <0 的最小整数解是 ( )A .1B .2C .3D .47.(椒江区期末)某校网课学习的要求是每周听课时长至少达到480分钟算合格.张飞前3天平均每天听课时长为90分钟,问张飞后2天平均每天听课时长不得少于多少分钟才能合格?设张飞后2天平均听课时长为x 分钟,以下所列不等式正确的是 ( )A .90×3+2x ≥480B .90×3+2x ≤480C .90×3+2x <480D .90×3+2x >4808.关于x 的方程4x -2m +1=5x -8的解是负数,则m 的取值范围是( )A .m >92B .m <0C .m <92D .m >0 9.(德州中考)若关于x 的不等式组⎩⎪⎨⎪⎧2-x 2>2x -43,-3x>-2x -a的解集是x<2,则a 的取值范围是 ( )A .a ≥2B .a<-2C .a>2D .a ≤210.★(合肥期末)某种品牌毛巾原零售价为每条8元,凡一次性购买三条及以上,可享受商家推出的两种优惠销售办法中的任意一种.第一种:三条按原价,其余享七折优惠;第二种:全部享原价的八折优惠.若想在购买相同数量的情况下,使第一种销售办法比第二种销售办法得到的优惠多,最少要购买毛巾( )A .8条B .9条C .10条D .11条第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共24分)11.x 的12与5的差不小于3,用不等式可表示为 . 12.若不等式(a -3)x<a -3的解集为x >1,则a 的取值范围是 .13.已知:2k -3x 2+2k >1是关于x 的一元一次不等式,则k = .14.(河南中考)已知关于x 的不等式组⎩⎪⎨⎪⎧x>a ,x>b , 其中a ,b 在数轴上的对应点如图所示,则这个不等式组的解集为 .15.定义新运算:对于任意实数a ,b ,都有a ⊕b =a(a -b)+1,其中等式右边是加法、减法及乘法运算.如:2⊕5=2×(2-5)+1=2×(-3)+1=-5.那么不等式3⊕x<13的解集为 .16.小华将若干个苹果放进若干个筐子里,若每个筐子放4个苹果,还剩20个苹果未放完;若每个筐子放8个苹果,则还有一个筐子没有放满,那么小华原来共有苹果 .个.17.若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -2m <0,x +m >2有解,则m 的取值范围是 . 18.★已知有理数x 满足:3x -12 -73 ≥x -5+2x 3,若|3-x|-|x +2|的最小值为a ,最大值为b ,则ab = .三、解答题(共66分)19.(6分)(1)解不等式:2x +42 <x +33-1;(2)解不等式组⎩⎪⎨⎪⎧x +13>0,①2(x +5)≥6(x -1),②并在数轴上表示其解集.20.(8分)当x 取哪些整数值时,不等式4(x +1)>2x -1与12 x ≤2-32x 成立?21.(8分)已知点A(m -1,4m +6)在第二象限.(1)求m 的取值范围;(2)我们把横纵坐标均为整数的点称为“整数点”,请写出符合条件的“整数点A ”.22.(8分)要使关于x 的方程3m -x 2 =x -2m 3+1的解满足关于x 的不等式组⎩⎪⎨⎪⎧2x +14<2-x 2,-x +2(2x -3)>-3,求m 的取值范围.23.(10分)阅读下列材料,并解答问题.例题:解不等式(3x -2)(2x +1)>0.解:由有理数的乘法法则“两数相乘,同号得正”,得①⎩⎪⎨⎪⎧3x -2>0,2x +1>0 或②⎩⎪⎨⎪⎧3x -2<0,2x +1<0.解不等式组①,得x >23; 解不等式组②,得x <-12. ∴原不等式的解集为x >23 或x <-12. 仿照上面的解法解下列不等式:(1)求不等式(2x +1)(x -1)≥0的解集;(2)求不等式-(x -3)(x +1)≥0的解集.24.(12分)(宁夏中考)在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A ,B 两种防疫物品.如果购买A 种物品60件,B 种物品45件,共需1 140元;如果购买A 种物品45件,B 种物品30件,共需840元.(1)求A,B两种防疫物品每件各多少元;(2)现要购买A,B两种防疫物品共600件,总费用不超过7 000元,那么A种防疫物品最多购买多少件?25.(14分)学校为了奖励九年级优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑3 000元,购买1台学习机800元.(1)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168 000元,则平板电脑最多购买多少台?(2)在(1)的条件下,购买学习机的台数不超过平板电脑台数的1.7倍,请问有哪几种购买方案?哪种方案最省钱?参考答案第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.下列各式中,是一元一次不等式的是 ( C)A .5+4>8B .2x -1C .2x ≤5D .1x -3x ≥0 2.将不等式3x -2<1的解集表示在数轴上,正确的是 ( D )3.如果a<b ,那么下列不等式中一定成立的是 (D ) A .a 2<ab B .ab<b 2 C .a 2<b 2 D .a -2b<-b4.下列说法中正确的是 (D ) A .y =3是不等式y +4<5的解B .y =3是不等式3y<11的解集C .不等式3y<11的解集是y =3D .y =2是不等式3y ≥6的解5.解不等式2x -12 -5x +26 -x ≤-1,去分母,得 (C ) A .3(2x -1)-5x +2-6x ≤-6B .3(2x -1)-(5x +2)-6x ≥-6C .3(2x -1)-(5x +2)-6x ≤-6D .3(2x -1)-(5x +2)-x ≤-1 6.(雅安中考)不等式组⎩⎪⎨⎪⎧x -1≥0,1-12x <0 的最小整数解是 ( C )A .1B .2C .3D .47.(椒江区期末)某校网课学习的要求是每周听课时长至少达到480分钟算合格.张飞前3天平均每天听课时长为90分钟,问张飞后2天平均每天听课时长不得少于多少分钟才能合格?设张飞后2天平均听课时长为x 分钟,以下所列不等式正确的是 ( A ) A .90×3+2x ≥480 B .90×3+2x ≤480 C .90×3+2x <480 D .90×3+2x >4808.关于x 的方程4x -2m +1=5x -8的解是负数,则m 的取值范围是( A ) A .m >92 B .m <0 C .m <92 D .m >09.(德州中考)若关于x 的不等式组⎩⎪⎨⎪⎧2-x 2>2x -43,-3x>-2x -a的解集是x<2,则a 的取值范围是 ( A ) A .a ≥2 B .a<-2 C .a>2 D .a ≤210.★(合肥期末)某种品牌毛巾原零售价为每条8元,凡一次性购买三条及以上,可享受商家推出的两种优惠销售办法中的任意一种.第一种:三条按原价,其余享七折优惠;第二种:全部享原价的八折优惠.若想在购买相同数量的情况下,使第一种销售办法比第二种销售办法得到的优惠多,最少要购买毛巾 ( C )A .8条B .9条C .10条D .11条第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共24分)11.x 的12 与5的差不小于3,用不等式可表示为__12 x -5≥3__.12.若不等式(a -3)x<a -3的解集为x >1,则a 的取值范围是__a<3__.13.已知:2k -3x2+2k>1是关于x 的一元一次不等式,则k =__-12__.14.(河南中考)已知关于x 的不等式组⎩⎪⎨⎪⎧x>a ,x>b ,其中a ,b 在数轴上的对应点如图所示,则这个不等式组的解集为__x>a__.15.定义新运算:对于任意实数a ,b ,都有a ⊕b =a(a -b)+1,其中等式右边是加法、减法及乘法运算.如:2⊕5=2×(2-5)+1=2×(-3)+1=-5.那么不等式3⊕x<13的解集为__x>-1__.16.小华将若干个苹果放进若干个筐子里,若每个筐子放4个苹果,还剩20个苹果未放完;若每个筐子放8个苹果,则还有一个筐子没有放满,那么小华原来共有苹果__44__个.17.若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -2m <0,x +m >2 有解,则m 的取值范围是__m >23__.18.★已知有理数x 满足:3x -12 -73 ≥x -5+2x3 ,若|3-x|-|x +2|的最小值为a ,最大值为b ,则ab =__5__. 三、解答题(共66分)19.(6分)(1)解不等式:2x +42 <x +33 -1;解:去分母,得3(2x +4)<2(x +3)-6, 去括号,得6x +12<2x +6-6, 移项,合并,得4x<-12, 系数化为1,得x<-3.(2)解不等式组⎩⎪⎨⎪⎧x +13>0,①2(x +5)≥6(x -1),② 并在数轴上表示其解集.解:解不等式①,得x>-1. 解不等式②,得x ≤4.∴不等式组的解集为-1<x ≤4. 其解集在数轴上表示如图所示.20.(8分)当x 取哪些整数值时,不等式4(x +1)>2x -1与12 x ≤2-32 x 成立?解:依题意,有⎩⎪⎨⎪⎧4(x +1)>2x -1,12x ≤2-32x ,解得-52 <x ≤1.∵x 取整数值, ∴x =-2,-1,0,1. 即当x 为-2,-1,0和1时,不等式4(x +1)>2x -1与12 x ≤2-32 x 成立.21.(8分)已知点A(m -1,4m +6)在第二象限. (1)求m 的取值范围;(2)我们把横纵坐标均为整数的点称为“整数点”,请写出符合条件的“整数点A ”.解:(1)由题意,得⎩⎪⎨⎪⎧m -1<0,①4m +6>0,②由①,得m<1,由②,得m>-32 ,∴m 的取值范围是-32 <m<1.(2)∵m 是整数, ∴m 取-1,0.∴符合条件的“整数点A ”有(-2,2),(-1,6).22.(8分)要使关于x 的方程3m -x 2 =x -2m3 +1的解满足关于x 的不等式组⎩⎪⎨⎪⎧2x +14<2-x 2,-x +2(2x -3)>-3,求m 的取值范围.解:解方程,得x =13m -65 .解不等式组,得1<x<74 ,∴1<13m -65 <74,∴1113 <m<5952.23.(10分)阅读下列材料,并解答问题. 例题:解不等式(3x -2)(2x +1)>0.解:由有理数的乘法法则“两数相乘,同号得正”,得①⎩⎪⎨⎪⎧3x -2>0,2x +1>0 或②⎩⎪⎨⎪⎧3x -2<0,2x +1<0.解不等式组①,得x >23 ;解不等式组②,得x <-12.∴原不等式的解集为x >23 或x <-12 .仿照上面的解法解下列不等式: (1)求不等式(2x +1)(x -1)≥0的解集; (2)求不等式-(x -3)(x +1)≥0的解集.解:(1)由有理数的乘法法则“两数相乘,同号得正”,得①⎩⎪⎨⎪⎧2x +1≥0,x -1≥0 或②⎩⎪⎨⎪⎧2x +1≤0,x -1≤0.解不等式组①,得x ≥1; 解不等式组②,得x ≤-12 ;∴原不等式的解集为x ≥1或x ≤-12.(2)由有理数的乘法法则“两数相乘,异号得负”可得①⎩⎪⎨⎪⎧x -3≥0,x +1≤0 或②⎩⎪⎨⎪⎧x -3≤0,x +1≥0. 解不等式组①,得无解; 解不等式组②,得-1≤x ≤3; ∴原不等式组的解集为-1≤x ≤3.24.(12分)(宁夏中考)在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A ,B 两种防疫物品.如果购买A 种物品60件,B 种物品45件,共需1 140元;如果购买A 种物品45件,B 种物品30件,共需840元.(1)求A ,B 两种防疫物品每件各多少元;(2)现要购买A ,B 两种防疫物品共600件,总费用不超过7 000元,那么A 种防疫物品最多购买多少件?解:(1)设A 种防疫物品每件x 元,B 种防疫物品每件y 元,依题意,得⎩⎪⎨⎪⎧60x +45y =1 140,45x +30y =840, 解得⎩⎪⎨⎪⎧x =16,y =4.答:A 种防疫物品每件16元,B 种防疫物品每件4元.(2)设购买A 种防疫物品m 件,则购买B 种防疫物品(600-m)件,依题意,得 16m +4(600-m)≤7 000, 解得m ≤38313 ,又∵m 为正整数, ∴m 的最大值为383.答:A 种防疫物品最多购买383件.25.(14分)学校为了奖励九年级优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑3 000元,购买1台学习机800元.(1)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168 000元,则平板电脑最多购买多少台?(2)在(1)的条件下,购买学习机的台数不超过平板电脑台数的1.7倍,请问有哪几种购买方案?哪种方案最省钱?解:(1)设购买平板电脑a台,则购买学习机(100-a)台,由题意,得3 000a+800(100-a)≤168 000.解得a≤40.答:平板电脑最多购买40台.(2)设购买平板电脑a台,则购买学习机(100-a)台.根据题意,得100-a≤1.7a,解得a≥37127.又∵a为正整数且a≤40,∴a=38,39,40,则学习机依次买:62台,61台,60台.因此该校有三种购买方案:答:购买平板电脑38台,学习机62台最省钱.。
人教版七年级数学下册《第9章 不等式与不等式组》测试题(有答案)
人教新版《第9章不等式与不等式组》单元测试题一.选择题1.“x为负数”的表达式是()A.x>0B.x<0C.x≥0D.x≤02.下列不等式组中无解的是()A.B.C.D.3.下列各项表示的是不等式的解集,其中错误的是()A.B.C.D.4.下列式子中,是一元一次不等式是()(1)x2+x<1,(2),(3)x﹣3>y+4,(4)2x+3<8.A.1个B.2个C.3个D.4个5.一次知识竞赛共有30道题,规定答对一道得4分,打错或不答得﹣1分,在这次竞赛中,小明获得优(90分或90分以上),则小明至少答对()道题.A.23B.24C.25D.266.下列说法中错误的是()A.m的2倍不小于n的,可表示为2m>B.x的与y的和是非负数,可表示为x+y≥0C.a是非负数,可表示为a≥0D.x是负数,可表示为x<07.下列不等式组中,是一元一次不等式组的是()A.B.C.D.8.若不等式组的整数解有5个,则a的取值范围()A.a<﹣3B.a>﹣4C.a>﹣3D.﹣4<a≤﹣3 9.下列命题错误的是()A.若a<b<0,则>B.若m﹣3n<0,则m<3nC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b10.已知y满足不等式﹣y>2+,化简|y+1|+|2y﹣1|的结果是()A.﹣3y B.3y C.y D.﹣y+2二.填空题11.同时满足2x﹣1<0和﹣3x<1的整数x为.12.如果代数式2x﹣的值大于x+的值,那么x.13.由2﹣a>0,得a>2;.14.已知线段AB=12cm,点P是线段AB的中点,点C在线段AB上,若AC 的长是xcm,且x满足6cm<x<12cm,则点C在点和之间.15.用不等式表示“x与3的和不小于x的2倍”为.16.已知一个球队共打了14场,恰好赢的场比平的场数和输的场数都要少,那么这个球队最多赢了场.17.写出一个解为x<5的不等式(要求x的系数不为1).18.某品牌袋装奶粉,袋上注有“净含量400g”“每百克中含有蛋白质≥18.9g”,那么这样的一袋奶粉中蛋白质的含量不少于g.19.写出一个不等式组,使它的解集为﹣1<x<2:.20.已知(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m=.三.解答题21.在数轴上表示不等式﹣3≤x<6的解集和x的下列值:﹣4,﹣2,0,,7,并利用数轴说明x的这些数值中,哪些满足不等式﹣3≤x<6,哪些不满足?22.求不等式组的整数解.23.解下列不等式,并将解集在数轴上表示出来.(1)2(x﹣6)+4<3x﹣5;(2)﹣1≤.24.解下列不等式(组).(1)≤2x;(2).25.若不等式组无解,那么不等式组有没有解?若有解,请求出不等式组的解集;若没有请说明理由?26.a克糖水中有b克糖(a>b>0),则糖的质量与糖水的质量比为;若再加c克糖(c>0),则糖的质量与糖水的质量比为.生活常识告诉我们:加的糖完全溶解后,糖水会更甜,请根据所列式子及这个生活常识提炼一个不等式.27.某工厂组织旅游活动.如果租用了54座的客车若干辆,恰好坐满;如果租用72座的客车则可少租2辆,并且有1辆车剩余了一半以下的座位.已知租用54座的客车每辆2000元,租用72座客车每辆3000元,怎样租车合算?参考答案一.选择题1.解:负数即为小于0的数,∴可表达为x<0,故选:B.2.解:A、无解,本选项符合题意;B、解集为﹣5<x<﹣2,本选项不合题意;C、解集为﹣2<x<5,本选项不合题意;D、解集为﹣5<x<2,本选项不合题意.故选:A.3.解:A、数轴表示的不等式的解集为:x≤2,所以正确;B、数轴表示的不等式的解集为:x>1,所以正确;C、数轴表示的不等式的解集为:x≠0,所以正确;D、数轴表示的不等式的解集为:x<1,所以不正确.故选:D.4.解:(1)不等式x2+x<1的未知数的最高次数是2,所以它不是一元一次不等式;(2)是分式不等式,所以它不是一元一次不等式;(3)不等式x﹣3>y+4中含有两个未知数,所以它不是一元一次不等式;(4)不等式2x+3<8中只有一个未知数x,且x的次数是1,所以它是一元一次不等式;综上所述,以上式子中是一元一次不等式的只有(4).故选:A.5.解:设在这次竞赛中小明答对x道题.依题意可得:4x﹣(30﹣x)≥90,解得:x≥24,∴小明至少答对24道题.故选:B.6.解:A、m的2倍不小于n的,可表示为2m≥,故A错.B、x的与y的和是非负数,可表示为x+y≥0,故B正确.C、a是非负数,可表示为a≥0,故C正确.D、x是负数,可表示为x<0,故D正确.故选:A.7.解:A、含有2个未知数,不是一元一次不等式组,故本选项错误;B、含有分式,不是一元一次不等式组,故本选项错误;C、符合一元一次不等式组的定义,故本选项正确;D、最高次数是2,不是一元一次不等式组,故本选项错误.故选:C.8.解:解不等式①得:x≥a,解不等式②得:x<2,∵不等式组的整数解有5个,∴整数解为﹣3,﹣2,﹣1,0,1,∴﹣4<a<﹣3;∵当a=﹣4时,不等式组的解集为﹣4≤x<2,此时不等式组有6个整数解,舍去,当a=﹣3时,不等式组的解集为﹣3≤a<2,此时有5个整数解,符合要求,∴a的取值范围﹣4<a≤﹣3.故选:D.9.解:A、两个同号的分子相等的分数,分母大的反而小,故该选项正确;B、根据不等式的基本性质1,在不等式的两边同加上3n,不等号的方向不变,故该选项正确;C、当c2=0时,则不等式不成立,故该选项错误;D、根据已知的不等式,知c2>0,则根据不等式的基本性质2,不等号的方向不变,故该选项正确.故选:C.10.解:﹣y>2+,去分母得,3+3y﹣6y>12+4+2y,解得,y<﹣.所以y+1<0,2y﹣1<0,|y+1|+|2y﹣1|=﹣y﹣1﹣2y+1=﹣3y.故选:A.二.填空题11.解:由题意可得不等式组,由(1)得<,由(2)得x>﹣,其解集是﹣<x<,∴同时满足2x﹣1<0和﹣3x<1的整数x=0.12.解:∵代数式2x﹣的值大于x+的值,∴2x﹣>x+,解得x>.故答案为:>.13.解:∵2﹣a>0,得a<2,故此解法错误.故答案为:错误.14.解:∵线段AB=12cm,点P是线段AB的中点,∴AP=12÷2=6cm,∵点C在线段AB上,若AC的长是xcm,且x满足6cm<x<12cm,∴点C在点P和B之间.故答案为:P,B.15.解:x与3的和不小于x的2倍,即x+3≥2x.故答案为:x+3≥2x.16.解:设赢了x场,∵这一球队共打了14场,而且恰好赢的场数比平的场数和输的场数都要少,∴有x<,∴可知这个球队最多赢了4场.17.解:由题意可得:2x<10.故填:2x<10.18.解:由题意,得这样的一袋奶粉中蛋白质的含量不少于:18.9×400÷100=75.6(g).故答案为75.6.19.解:.答案不唯一.20.解:根据题意|m|﹣3=1,m+4≠0解得|m|=4,m≠﹣4所以m=4三.解答题21.解:根据上图可知:x的下列值:﹣2,0,满足不等式;x的下列值:﹣4,7不满足不等式.22.解:,解①得:x<3,解②得:x≥,则不等式组的解集是:3.则不等式组的整数解是:2.23.解:(1)2(x﹣6)+4<3x﹣5,去括号得,2x﹣12+4<3x﹣5,移项、合并同类项得,﹣x<3,解得,x>﹣3.将不等式的解集在数轴上表示如下:;(2)﹣1≤,去分母得,3x﹣6≤2(7﹣x),去括号得,3x﹣6≤14﹣2x,移项、合并同类项得,5x≤20,解得,x≤4.将不等式的解集在数轴上表示如下:.24.解:(1)≤2x,5x﹣1≤4x,5x﹣4x≤1,x≤1;(2),解不等式①得:x>﹣1,解不等式②得:x≤2,故不等式组的解集为﹣1<x≤2.25.解:由已知条件知﹣a≥a,得a≤0;所以a+1<1﹣a,故不等式组,有解,解集为a+1<x<1﹣a.当a=0时,无解.26.解:根据题意,得a克糖水中有b克糖,则糖的质量与糖水的质量比为;若再加c克糖,则糖的质量与糖水的质量比为;根据加的糖完全溶解后,糖水会更甜,得.27.解:设单独租用54座客车需x辆.根据题意列一元一次不等式组可得:,解得8<x<10,由于车辆数必须为整数,所以x=9,54×9=486(人),∵≈37(元),≈41,∴租用54座的客车越多越省钱,∴当租用9辆54座的客车时,正好坐满,而且最省钱.。
七年级下册数学解不等式题及答案
人教版七下第九章过关测试(不等式与不等式组)一、选择题(共12小题)1. 下列说法,不一定成立的是( )A. 若a>b,则a+c>b+cB. 若a+c>b+c,则a>bC. 若a>b,则ac2>bc2D. 若ac2>bc2,则a>b2. 不等式组1≤x<2的解集在数轴上可表示为( )A. B.C. D.3. 若不等式组的解集为−1<x≤2,则以下数轴表示中正确的是( )A. B.C. D.4. 关于x的不等式−1<x≤a有3个整数解,则a的取值范围是( )A. 3≤a<4B. 3<a≤4C. 2≤a<3D. 2<a≤35. 已知导火线的燃烧速度是0.7cm/秒,爆破员点燃后跑开的速度为每秒5米,为了点火后跑到130米以外的安全地带,则导火线至少应有( )A. 18cmB. 19cmC. 20cmD. 21cm6. 一个不等式组中的两个不等式的解集在数轴上的表示如图所示,则这个不等式组的解集为( )A. −1≤x <2B. −1<x <2C. −1<x ≤2D. 无解7. 如果关于 x 的不等式组 {2x −a ≥0,3x −b ≤0的整数解仅有 x =2,x =3,那么适合这个不等式组的整数 a ,b 组成的有序数对 (a,b ) 共有 ( ) A. 3 个B. 4 个C. 5 个D. 6 个8. 已知关于 x 的不等式组 {x −a >−1,x −a <2的解集中任意一个 x 的值均不在 0≤x ≤4 的范围内,则 a 的取值范围是 ( ) A. a >5 或 a <−2 B. −2≤a ≤5 C. −2<a <5D. a ≥5 或 a ≤−29. 已知关于 x 的不等式组 {x <2,x >−1,x <a无解,则 a 的取值范围是 ( )A. a ≤−1B. −1<a <2C. a ≥0D. a ≤210. 一个多边形的内角和比它的外角和的 3 倍少 180∘,这个多边形的边数是( ) A. 5B. 6C. 7D. 811. 小辉只带了 2 元和 5 元两种面额的人民币,他买了一件物品只需付 27 元,如果不麻烦售货员找零钱,他有 ( )种不同的付款方法. A. 一种B. 两种C. 三种D. 四种12. 若关于 x ,y 的二元一次方程组 {2x +y =k −2,3x +2y =−4 的解满足 x +y >1,则实数 k 的取值范围是 ( )A. k <0B. k <−1C. k <−2D. k <−3二、填空题(共6小题)13. 不等式组 {x −1>2,2x <8 的解集是 .14. 如果 ∣x∣=113,则 x = .15. 铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过 160 cm ,某厂家生产符合该规定的行李箱,已知行李箱的高为 30 cm ,长与宽的比为 3:2,则该行李箱的长的最大值为 cm .16. 当 a ,b 满足条件 a >b >0 时,x 2a 2+y 2b 2=1 表示焦点在 x 轴上的椭圆.若x 2m+2+y 22m−6=1 表示焦点在 x 轴上的椭圆,则 m 的取值范围是 .17. 不等式组 {2x +7>3(x +1),23x −3x+46≤23的非负整数解有 个.18. 高斯函数 [x ] 也称为取整函数,即 [x ] 表示不超过 x 的最大整数.例如:[2.3]=2,[−1.5]=−2,则下列结论:① [−2.1]+[1]=−2;② [x ]+[−x ]=0;③若 [x +1]=3,则 x 的取值范围是 2≤x <3;④当 −1≤x <1 时,[x +1]+[−x +1] 的值为 0,1,2.其中正确的结论有 (写出所有正确结论的序号).三、解答题(共7小题)19. 解不等式组 {x +3>2, ⋯⋯①2x +1≤5. ⋯⋯②请结合解题过程,完成本题的解答. (Ⅰ)解不等式①,得 ; (Ⅱ)解不等式②,得 ;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为 .20. 按要求解下列不等式(组). (1)解关于 x 的不等式 1−2x−13≤1+x 2,并将解集用数轴表示出来.(2)解不等式组 {2(x +8)≤10−4(x −3),x −3x+12<1,将解集用数轴表示出来,并写出它的所有整数解.21. a 为何值时,方程组 {2x −3y =a +1 ⋯⋯①,x +2y =a ⋯⋯②. 的解满足 x ,y 均为正数?22. 某运输公司有A ,B 两种货车,3 辆A 货车与 2 辆B 货车一次可以运货 90吨,5 辆A 货车与 4 辆B 货车一次可以运货 160 吨. (1)请问 1 辆A 货车和 1 辆B 货车一次可以分别运货多少吨?(2)目前有 190 吨货物需要运输,该运输公司计划安排A ,B 两种货车将全部货物一次运完(A ,B 两种货车均满载),其中每辆A 货车一次运货花费 500 元,每辆B 货车一次运货花费 400 元.请你列出所有的运输方案,并指出哪种运输方案费用最少.23. 已知关于 x 的不等式组 {x −a ≥03−2x >−1 的整数解共有 5 个,求 a 的取值范围.24. 现规定一种新的运算“ ⋇ ”:a ⋇b =a b ,如 3⋇2=32=9,计算:(1)12⋇3; (2)[−3.5÷(−78)×(−34)]⋇(−2+4).25. 为了应对夏季台风等极端天气可能造成停电的不良影响,某区政府统一向一高科技企业采购新型环保发电机 2200 台,该企业按区政府的采购单要求,马上购买甲、乙两种专用包装箱对发电机进行装运发货.已知甲种包装箱每个 100 元,可装 8 台发电机;乙种包装箱每个 60 元,可装 4 台发电机,该企业购买甲、乙两种包装箱共花了 29000 元,这批发电机能被装下并按时发货.(1)求该企业购买的甲、乙两种专用包装箱各是多少个.(2)该企业准备派出A,B两种型号的货车共8辆来运送这批发电机,已知A型车每辆最多可同时装运甲种包装箱30个和乙种包装箱10个;B型车每辆最多可同时装运甲种包装箱20个和乙种包装箱50个.按规定,每辆车都必须同时装运甲、乙两种包装箱的发电机,求一次性运完这批发电机的所有车型安排方案.若A型车每辆的运费是500元,B型车每辆的运费是700元,请你通过计算说明,采用哪个方案才能使运费最少.答案1. C2. C3. B4. C【解析】∵ 不等式 −1<x ≤a 有 3 个整数解, ∴ 这 3 个整数解为 0,1,2,则 2≤a <3. 5. B 6. C【解析】由数轴知,这个不等式组的解集为 −1<x ≤2. 7. D【解析】由不等式组得:a2≤x ≤b3,∵ 整数解仅有 x =2,x =3, ∴{1<a2≤2,3≤b 3<4,解得 {2<a ≤4,9≤b <12.又 ∵a ,b 为整数,∴a =3或4,b =9或10或11, ∴(a,b ) 共有 6 种. 8. D【解析】解 {x −a >−1,x −a <2 得 a −1<x <a +2,由不等式组 {x −a >−1,x −a <2的解集中任意一个 x 的值均不在 0≤x ≤4 的范围内,得a +2≤0 或 a −1≥4,解得 a ≥5 或 a ≤−2. 9. A 10. C【解析】设这个多边形的边数为n,则(n−2)⋅180∘=360∘×3−180∘,解得n=7.11. C12. D【解析】可用代入消元法求出x=2k,y=−3k−2,再代入不等式.13. 3<x<414. ±11315. 78【解析】设长为3x,宽为2x.由题意,得5x+30≤160,解得x≤26.故行李箱的长的最大值为78.16. 3<m<8【解析】∵a>b>0,x 2a2+y2b2=1表示焦点在x轴上的椭圆,∴a2>b2>0,∵x 2m+2+y22m−6=1表示焦点在x轴上的椭圆,∴{2m−6>0,m+2>2m−6,解得3<m<8,∴m的取值范围是3<m<8.17. 4【解析】解不等式2x+7>3(x+1),得x<4,解不等式23x−3x+46≤23,得x≤8,则不等式组的解集为x<4.所以该不等式组的非负整数解为0,1,2,3,共4个.18. ①③ 【解析】①∵[−2.1]=−3,[1]=1, ∴[−2.1]+[1]=−2,正确.②令 x =2.3,得 [x ]=2,[−x ]=−3,此时 [x ]+[−x ]=−1,错误. ③若 [x +1]=3,则 3≤x +1<4,因此 x 的取值范围是 2≤x <3,正确. ④当 −1≤x <1 时,若 x =−1,则 [x +1]=0,[−x +1]=2,故 [x +1]+[−x +1]=2;若 x =0,则 [x +1]=1,[−x +1]=1,故 [x +1]+[−x +1]=2;若 x 为小数且小于 0,则 [x +1]=0,[−x +1]=1,[x +1]+[−x +1]=1;若 x 为小数且大于 0,则 [x +1]=1,[−x +1]=0,[x +1]+[−x +1]=1, ∴[x +1]+[−x +1] 的值为 1 或 2,错误.故答案为①③.19. x >−1; x ≤2;−1<x ≤2. 20. (1)1−2x −13≤1+x 2.6−2(2x −1)≤3(1+x ).6−4x +2≤3+3x.−4x −3x≤3−2−6.−7x≤−5.x≥57.将不等式的解集在数轴上表示如下:(2){2(x +8)≤10−4(x −3), ⋯⋯①x −3x +12<1. ⋯⋯②解①得:2x +16≤10−4x +12.x ≤1.解②得:2x −3x −1<2.−3<x.不等式组解集为−3<x ≤1.整数解为 −2,−1,0,1. 表示在数轴上如下:21. ② ×2− ① 得 7y =a −1, ② ×3+ ① ×2 得 7x =5a +2. x ,y 均为正数∴{a −1>0,5a +2>0.∴a >1 .22. (1) 设 1 辆A 货车一次可以运货 x 吨,1 辆B 货车一次可以运货 y 吨, 根据题意得:{3x +2y =90,5x +4y =160,解得:{x =20,y =15,答:1 辆A 货车一次可以运货 20 吨,1 辆B 货车一次可以运货 15 吨.(2) 设A 货车运输 m 吨,则B 货车运输 (190−m ) 吨,设总费用为 w 元, 则:w =500×m20+400×190−m 15=25m +80(190−m )3=25m −803m +152003=−53m +152003,因为 −53<0,所以 w 随 m 的增大而减小. 因为A ,B 两种货车均满载, 所以 m20,190−m 15都是整数,当 m =20 时,190−m 15 不是整数; 当 m =40 时,190−m 15=10; 当 m =60 时,190−m 15 不是整数; 当 m =80 时,190−m15 不是整数; 当 m =100 时,190−m 15=6; 当 m =120 时,190−m 15 不是整数; 当 m =140 时,190−m 15 不是整数; 当 m =160 时,190−m 15=2; 当 m =180 时,190−m 15不是整数;故符合题意的运输方案有三种:①A 货车 2 辆,B 货车 10 辆;②A 货车 5 辆,B 货车 6 辆;③A 货车 8 辆,B 货车 2 辆;因为 w 随 m 的增大而减小,所以费用越少,m 越大,故方案③费用最少.23. 原不等式组化为{x ≥a x <2 其整数解共有 5 个,所以 −4<a ≤−3 .24. (1) 12⋇3=(12)3=18. (2) [−3.5÷(−78)×(−34)]⋇(−2+4)=[−72×(−87)×(−34)]2=(−3)2=9.25. (1) 设该企业购买甲种专用包装箱 x 个,乙种专用包装箱 y 个, 依题意得:{8x +4y =2200,100x +60y =29000,解得{x =200,y =150.经检验符合题意,即:该企业购买的甲、乙两种专用包装箱各是 200 个、 150 个.(2) 设需A 型车 a 辆,则需B 型车 (8−a ) 辆,依题意得:{30a +20(8−a )≥200, ⋯⋯①10a +50(8−a )≥150. ⋯⋯②由 ① 得:a ≥4,由 ② 得:a ≤614,则 4≤a ≤614, ∵a 是整数,∴a =4,5,6,因此,共有 3 种派车方案,设运费为 W 元,则: 方案 1:A 型车 4 辆,B 型车 4 辆;运费 W 1=4×500+4×700=4800(元), 方案 2:A 型车 5 辆,B 型车 3 辆;运费 W 2=5×500+3×700=4600(元), 方案 3:A 型车 6 辆,B 型车 2 辆;运费 W 3=6×500+2×700=4400(元), ∵W 3<W 2<W 1,∴ 采用方案 3 能使运费最少,即需A 型车 6 辆,B 型车 2 辆,可使运费最少.。
初一数学不等式及其解集检测试题及答案
初一数学不等式及其解集检测试题及答案9.1.1 不等式及其解集(二)典型例题【例1】在数轴上表示下列不等式的解集:(1).x(2)x(3)x2.【解析】在数轴上比-3大的数应该在-3的右边,x-3说明-3也是解集中的一个元素,应该为实心点;x0,x2分别表示0,2不是x0,x2的解,应该为空心.【解答】如图9-2所示:图9-2【例2】求出适合下列不等式的x的整数解,并在数轴上表示出来.(1)2【解析】 22;13以几何上解释,就是表示未知x对应的点离开原点的距离不大于3,不小于1.【解答】 (1)图9-3由图9-3知,适合2(2)图9-4由图9-4知,适合-4(3)图9-5由图9-5知,适合13的整数解为-3,-2,-1,1,2,3. 【例3】某次数学测验中,共有20道选择题.评分办法是:每答对1道题得5分,答错1道题扣1分,不答不给分.若某学生只有1道题未答,那么他至少要答对多少道题,成绩才不会低于80分.请根据题意列出正确的不等式(不求解). 【解析】运用不等式解决实际问题时,关键是像列方程应用题那样,找出题中的不等关系,列出正确的不等式.本题可设至少答对x道题,可得5x分,由于有1道题未答,那么他答错的题的个数应为19-x,扣(19-x)分.由此他共得分5x-(19-x),不低于80分,即5x-(19-x)80.【解答】设至少答对x道题,由题意可列不等式得5x-(19-x)80总分100分时间40分钟成绩评定__________一、填空题(每题5分,共50分)课前热身1.如图9-6所示,表示该不等式的解集__________,x__________.图9-6答案:-12.正方形的边长为xcm,它的周长不超过160 cm,则用不等式表示为__________.课上作业3.已知-1答案:4.直接想出下列不等式的解集:(1)x-36的解集是__________;(2)2x12的解集是__________;(3)x-50的解集是__________;(4) x5的解集是__________.答案:(1)x9 (2)x6 (3)x5 (4)x105.不等式的解集在数轴上表示如图9-7所示,则该不等式可能是__________.图9-7答案:x16.ag糖水中含bg糖(a0),则糖的质量与糖水质量的比为__________,若再添加cg糖(c0),则糖的质量与糖水质量的比为__________,生活常识告诉我们:添加的糖完全溶解后,糖水会更甜,请根据所列的式子及生活常识提炼出一个不等式__________.答案:课下作业7.写出不等式x-50的一个整数解:__________.答案:答案不唯一,只要小于5均可8.一个不等式的解集如图9-8所示,则这个不等式的正整数解是__________.9.如果a+b0,且b0,那么a、b、-a、-b的大小关系为__________.答案:a-b10.用计算器探索:按一定规律排列的一组数: ,如果从中选出若干个数,使它们的和大于0.5,那么至少要选__________个数.答案:7二、选择题(每题5分,共10分)模拟在线11.(乌鲁木齐)图9-9表示了某个不等式的解集,该解集中所含的自然数解的个数是( )图9-9A.4B.5C.6D.7答案:C12.(2019广西)如图9-10所示,图中阴影部分表示x的取值范围,则下列表示中正确的是( )图9-10A.x2B.-3C.-32D.-3答案:B三、解答题(每题20分,共40分)13.用语言叙述下列各式:(1) x+51. (2)x-69.(3)2(8+y)0. (4)3a-70.答案:(1)x的与5的和大于1.(2).x与6的差不大于9.(3)y 与8的和的2倍不小于0.(4)a的3倍与7的差不大于0 14.若方程(m+2)x=2的解为x=2,想一想,不等式(m-2)x-3的解集是多少?试探究-2,-1,0,1,2这五个数中哪些数是该不等式的解.答案:m=-1,x-2,-1,0是该不等式的解。
七年级数学(下册)不等式及其解集练习题
七年级数学(下册)不等式及其解集练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列命题正确的是( )A .2x =是不等式34x +<的解B .2x =是不等式37x <的解C .不等式37x <的解集是2x =D .2x =是不等式39x ≥的解2.||3x ≤的整数解是( )A .0,1,2,3B .0,±1,2±,3±C .±1,2±,3±D .1-,2-,3-,0 3.解不等式组31x x ≤⎧⎨>-⎩①②时,不等式①、①的解集在同一数轴上表示正确的是( ) A . B .C .D .4.已知二次函数2y ax bx c =++,当11x -≤≤时,总有11y -≤≤,有如下几个结论:①当0b c ==时,1a ≤;①当1a =时,c 的最大值为0;①当2x =时,y 可以取到的最大值为7.上述结论中,所有正确结论的序号是( )A .①①B .①①C .①①D .①①①5.若()11a x a +>+的解集是1x <,则a 必须满足是( )A .0a <B .1a >-C .1a <-D .1a ≤二、填空题6.已知0a <,10b -<<,请将a ,ab ,2ab 从小到大依次排列________.7.一元一次不等式-x ≥2x +3的最大整数解是________.8.关于x 的某个不等式组的解集在数轴上表示如图所示,则这个不等式组的解集为______________.9.方程36x =的解有________个,不等式36x <的解有________个.10.判断正误:(1)由23a >,得32a >;( ) (2)由20a -<,得2a <;( )(3)由a b <,得22a b <;( )(4)由a b >,得a m b m +>+;( )(5)由a b >,得33a b ->-;( )(6)由112->-,得2a a ->-.( )三、解答题11.利用不等式的基本性质,把下列不等式化成“x >a ”或“x <a ”的形式,并将解集在数轴上表示出来.(1)3x <5x -4; (2)23x +2≤1; 12.已知方程组31313x y m x y m+=-+⎧⎨-=+⎩的解满足x 为非正数,y 为负数. (1)求m 的取值范围;(2)在(1)的条件下,若不等式(2m +1)x ﹣2m <1的解为x >1,请写出整数m 的值.13.用不等式表示(1)a 的34与一1的差是非正数. (2)a 的平方减去b 的立方大于a 与b 的和.(3)a 的23减去4的差不小于-6. (4)x 的2倍与y 的34和不大于5. (5)长方形的长与宽分别为4、3a -,它的周长大于20.14.一直关于x 的不等式()1a x 2->两边都除以1a -,得2x 1a <-.(1)求a 的取值范围;(2)试化简1a a 2-++.15.由于小于6的每一个数都是不等式12x -1<6的解,所以这个不等式的解集是x <6.这种说法对不对?参考答案:1.B【分析】对于A 、B 、D 选项,可分别把x 的值代入即可判断,C 选项解出不等式的解集,即可判断.【详解】解:因为当2x =是2354+=>,故A 选项说法错误;因为当2x =是3267⨯=<,故B 选项说法正确;解37x <得73x <,故C 选项说法错误; 因为当2x =是3269⨯=<,故B 选项说法错误;故选:B .【点睛】本题考查了不等式的解集和解不等式.满足不等式的所有未知数的值组成的集合叫不等式的解集. 2.B【分析】根据题意分类讨论,求得不等式的整数解即可.【详解】当0x ≥时,3x ≤,即03x ≤≤,则整数解为:0,1,2,3,当0x <时,3x -≤,即-<3≤0x ,则整数解为:1,2,3---,综上,整数解为0,±1,2±,3±.故选B .【点睛】本题考查了求一元一次不等式的整数解,分类讨论是解题的关键.3.B【分析】根据不等式组确定出解集,表示在数轴上即可.【详解】解:不等式组31x x ≤⎧⎨>-⎩①②的解集为13x -<≤, 表示在同一数轴如图所示:,故选:B .【点睛】此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.D【分析】①当0b c ==时,根据不等式的性质求解即可证明;①当1a =时,二次函数的对称轴为:2b x =-,分三种情况讨论:当12b -<-时;当112b -≤-≤时;当12b ->时;分别利用二次函数的的最值问题讨论证明即可得;①当1x =-,1x =,0x =,2x =时,分别求出相应的y 的值,然后将2x =时,y 的值变形为:()()4233y a bc a b c a b c c =++=+++-+-,将各个不等式代入即可得证.【详解】解:①当0b c ==时,2y ax =,∴211ax -≤≤,∵11x -≤≤,∴201x ≤≤,∴ 11a -≤≤,即1a ≤,正确;①当1a =时, 二次函数的对称轴为:212b b x =-=-⨯, 当12b -<-时,即2b >时, 函数在1x =-处取得最小值,即11b c -+=-,20c b =-+>,函数在1x =处取得最大值,即11b c ++=,2c b =-<-,二者矛盾,∴这种情况不存在;当112b-≤-≤时,即22b -≤≤时,204b ≤≤, 函数在2bx =-处取得最小值,即2122b b b c ⎛⎫⎛⎫-+⨯-+=- ⎪ ⎪⎝⎭⎝⎭,2104bc =-+≤,∴0c ≤, 当12b-=时,即2b =-时,22y x x =-,1x =时,1y =-;1x =-时,3y =,不符合题意,舍去; 当12b-=-时,即2b =时,22y x x =+,1x =时,3y =;1x =-时,1y =-,不符合题意,舍去;∴0c <, 当12b->时,即2b <-时,函数在1x =处取得最小值,即11b c ++=-,20c b =-->,函数在1x =-处取得最大值,即11b c -+=,2c b =<-,二者矛盾,∴这种情况不存在;∴综上可得:0c ≤;故①正确;①当1x =-时,y a b c =-+,且11a b c -≤-+≤;当1x =时,y a b c =++,且11a b c -≤++≤;当0x =时,y c =,且11c -≤≤;当2x =时,()()4233y a b c a b c a b c c =++=+++-+-,()333a b c -≤++≤,11a b c -≤++≤,333c -≤≤,∴7427a b c -≤++≤,∴当2x =时,y 可以取到的最大值为7;①正确;故选:D .【点睛】题目主要考查二次函数的基本性质及不等式的性质,熟练掌握不等式的性质是解题关键. 5.C【分析】由()1a b x a +>+的解集是1x <,可得0a b +<,再利用不等式的解集可得11a a b +=+,再利用两数相除,同号得正,可得10a +<,从而可得答案. 【详解】解: ()1a b x a +>+的解集是1x <,∴ 0a b +<,∴ 不等式的解集为:x <1,a a b++ ∴ 11a a b +=+, ①10a +<,①a <1,-故选:.C【点睛】本题考查的是利用不等式的基本性质解不等式,以及利用不等式的解集确定字母系数的范围,掌握不等式的基本性质是解题的关键.6.2a ab ab <<【分析】根据不等式的性质和乘法法则进行判断即可.【详解】解:∵a <0, b <0,∴ab >0,∵﹣1<b <0,∴0<b 2<1;两边同时乘a ,0>ab 2>a ,∴a <ab 2<ab .【点睛】本题考查了不等式的性质,明确(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变是解题关键.7.﹣1【详解】解不等式23x x -≥+得:1x ≤-,①小于或等于-1的最大整数是-1,①不等式23x x -≥+的最大整数解是-1.即答案为:-1.8.﹣1≤x ≤4【分析】根据在数轴上表示不等式组解集的方法求出不等式组的解集即可.【详解】解:①−1处为实心圆点,且折线向右,①x 1≥﹣;①4处为实心圆点折线向左,①x 4≤,①不等式组的解集为1x 4-≤≤.故答案为1x 4-≤≤..【点睛】本题考查的是在数轴上表示不等式组的解集,利用了数形结合的思想,解答此题的关键是熟知实心圆点与空心圆点的区别.9. 1 无数【分析】根据方程的解的定义,不等式的解的定义分析即可.方程的解是使方程左右两边相等的未知数的值,不等式的解集是不等式的解的集合,不等式的解往往有多个.【详解】一元一次方程36x =的解只有一个,是2x =,一元一次不等式36x <的解集是2x <,解有无数个,故答案为:1,无数【点睛】本题考查了方程的解和不等式的解集,理解不等式的解和解集的定义是解题的关键.10. 正确 正确 正确 正确 错误 错误【分析】根据不等式的性质解答即可.【详解】解:①2a >3,①不等式的两边都除以2得:a >32, ①(1)正确;①2-a <0,①-a <-2,①a >2,①(2)正确;①a b <,①不等式的两边都乘以2得:22a b <,①(3)正确;①a b >,①不等式的两边都加上m 得:a m b m +>+,①(4)正确;①a b >,①不等式的两边都乘以-3得:33a b -<-,①(5)错误; ①112->-, ①不等式的两边都乘以a 不能得到:2a a ->-, ①a 的正负不能确定,①(6)错误;【点睛】本题考查了不等式的基本性质的应用,注意:不等式的基本性质有①不等式的两边都加上或都减去同一个数或整式,不等式的符号不改变,①不等式的两边都乘以或都除以同一个正数,不等式的符号不改变,①不等式的两边都乘以或都除以同一个负数,不等式的符号要改变.11.(1)x >2;在数轴表示见解析(2)x ≤-32;在数轴表示见解析【分析】(1)两边都减去5x 再除以-2求出解集,利用数轴上数的大小关系表示出解集;(2)两边同时减去2再乘以32求出解集,利用数轴上数的大小关系表示出解集.(1)(1)两边都减去5x 得:-2x <-4,同时除以-2得x >2,数轴上表示为.(2)(2)两边同时减去2得:23x ≤-1,两边同时乘以32得:x ≤-32,在数轴上表示为 .【点睛】此题考查了解一元一次不等式,在数轴上表示不等式的解集,解题的关键是正确掌握不等式的性质求解.12.(1)﹣2<m ≤3;(2)﹣1【分析】(1)先求出二元一次方程组的解为324x m y m =-⎧⎨=--⎩,然后根据x 为非正数,y 为负数,即x ≤0,y <0,列出不等式求解即可;(2)先把原不等式移项得到(2m +1)x <2m +1.根据不等式(2m +1)x ﹣2m <1的解为x >1,可得2m +1<0,由此结合(1)所求进行求解即可.【详解】解:(1)解方程组31313x y m x y m +=-+⎧⎨-=+⎩①②用①+①得:4412x m =-,解得3x m =-①,把①代入①中得:313m y m --=+,解得24y m =--,①方程组的解为:324x m y m =-⎧⎨=--⎩. ①x 为非正数,y 为负数,即x ≤0,y <0,①30240m m -≤⎧⎨--⎩<. 解得﹣2<m ≤3;(2)(2m +1)x ﹣2m <1移项得:(2m +1)x <2m +1.①不等式(2m +1)x ﹣2m <1的解为x >1,①2m +1<0,解得m 12-<. 又①﹣2<m ≤3,①m 的取值范围是﹣2<m 12-<. 又①m 是整数,①m 的值为﹣1.【点睛】本题主要考查了解二元一次方程组,解一元一次不等式组,解一元一次不等式,解题的关键在于能够熟知相关求解方法.13.(1)()3104a --≤;(2)23a b a b ->+;(3)2463a -≥-;(4)3254x y +≤;(5)()24320a +-> 【分析】根据题意以及不等式的定义列不等式.【详解】(1)()3104a --≤; (2)23ab a b ->+;(3)2463a -≥-; (4)3254x y +≤; (5)()24320a +->.【点睛】本题考查列不等式,解题的关键是根据不等式的定义,找到题目中的不等关系进行列式. 14.(1)a 1>;(2)2a 1+.【分析】(1)根据不等式的基本性质,得到关于a 的不等式,即可求解;(2)根据求绝对值的法则以及a 的范围,即可得到答案.【详解】(1)① 关于x 的不等式()1a x 2->两边都除以1a -,得2x 1a<-, ① 1a 0-<,① a 1>; 2()由(1)得a 1>,①1a 0-<,a 20+>, ①1a a 2a 1a 22a 1-++=-++=+.【点睛】本题主要考查不等式的性质以及求绝对值的法则,熟练掌握不等式的性质是解题的关键.15.这种说法是错的.【详解】试题分析:由10是不等式1162x-<的解,但10大于6结合“不等式的解集是不等式所有解的集合”即可说明题中说法是错误的.试题解析:①当10x=时,11462x-=<,①10是不等式1162x-<的一个解,①10不在6x<的范围内,①不等式1162x-<的解集是6x<的说法是错误的.第11页共11页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学下册不等式及其解集检测题学习要求知道不等式的意义;知道不等式的解集的含义;会在数轴上表示解集.课堂学习检测一、填空题1.用不等式表示:(1)m -3是正数______; (2)y +5是负数______; (3)x 不大于2______; (4)a 是非负数______; (5)a 的2倍比10大______; (6)y 的一半与6的和是负数______; (7)x 的3倍与5的和大于x 的31______; (8)m 的相反数是非正数______.2.画出数轴,在数轴上表示出下列不等式的解集: (1)⋅>213x (2)x ≥-4.(3)⋅≤51x(4)⋅-<312x二、选择题3.下列不等式中,正确的是( ). (A)4385-<-(B)5172< (C)(-6.4)2<(-6.4)3 (D)-|-27|<-(-3)3 4.“a 的2倍减去b 的差不大于-3”用不等式可表示为( ). (A)2a -b <-3 (B)2(a -b )<-3 (C)2a -b ≤-3 (D)2(a -b )≤-35.如图,天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g)的取值范围在数轴上可表示为( ).三、解答题6.利用数轴求出不等式-2<x ≤4的整数解.综合、运用、诊断一、填空题7.用“<”或“>”填空: (1)-2.5______5.2;(2)114-______125-; (3)|-3|______-(-2.3);(4)a 2+1______0;(5)0______|x |+4; (6)a +2______a .8.“x 的23与5的差不小于-4的相反数”,用不等式表示为______. 二、选择题9.如果a 、b 表示两个负数,且a <b ,则( ). (A)1>ba (B)ba <1 (C)ba 11< (D)ab <110.如图,在数轴上表示的解集对应的是( ).(A)-2<x <4 (B)-2<x ≤4 (C)-2≤x <4 (D)-2≤x ≤4 11.a 、b 是有理数,下列各式中成立的是( ).(A)若a >b ,则a 2>b 2 (B)若a 2>b 2,则a >b (C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b 12.|a |+a 的值一定是( ).(A)大于零 (B)小于零 (C)不大于零 (D)不小于零 三、判断题13.不等式5-x >2的解集有无数个. ( ) 14.不等式x >-1的整数解有无数个. ( ) 15.不等式32421<<-x 的整数解有0,1,2,3,4. ( ) 16.若a >b >0>c ,则.0>cab( )四、解答题17.若a 是有理数,比较2a 和3a 的大小.拓展、探究、思考18.若不等式3x -a ≤0只有三个正整数解,求a 的取值范围.19.对于整数a ,b ,c ,d ,定义bd ac cdb a -=,已知3411<<db ,则b +d 的值为_________.测试2 不等式的性质学习要求知道不等式的三条基本性质,并会用它们解简单的一元一次不等式.课堂学习检测一、填空题1.已知a <b ,用“<”或“>”填空: (1)a +3______b +3; (2)a -3______b -3; (3)3a ______3b ;(4)2a______2b ; (5)7a -______7b -; (6)5a +2______5b +2; (7)-2a -1______-2b -1; (8)4-3b ______6-3a . 2.用“<”或“>”填空: (1)若a -2>b -2,则a ______b ; (2)若33ba <,则a ______b ; (3)若-4a >-4b ,则a ______b ;(4)22ba -<-,则a ______b .3.不等式3x <2x -3变形成3x -2x <-3,是根据______.4.如果a 2x >a 2y (a ≠0).那么x ______y . 二、选择题5.若a >2,则下列各式中错误的是( ). (A)a -2>0 (B)a +5>7 (C)-a >-2 (D)a -2>-4 6.已知a >b ,则下列结论中错误的是( ). (A)a -5>b -5 (B)2a >2b (C)ac >bc (D)a -b >0 7.若a >b ,且c 为有理数,则( ). (A)ac >bc (B)ac <bc (C)ac 2>bc 2 (D)ac 2≥bc 2 8.若由x <y 可得到ax >ay ,应满足的条件是( ). (A)a ≥0 (B)a ≤0 (C)a >0 (D)a <0 三、解答题9.根据不等式的基本性质解下列不等式,并将解集表示在数轴上. (1)x -10<0.(2).62121+->x x(3)2x ≥5.(4).131-≥-x 10.用不等式表示下列语句并写出解集:(1)8与y 的2倍的和是正数;(2)a 的3倍与7的差是负数.综合、运用、诊断一、填空题11.已知b <a <2,用“<”或“>”填空:(1)(a -2)(b -2)______0; (2)(2-a )(2-b )______0; (3)(a -2)(a -b )______0.12.已知a <b <0.用“>”或“<”填空:(1)2a ______2b ; (2)a 2______b 2; (3)a 3______b 3; (4)a 2______b 3; (5)|a |______|b |; (6)m 2a ______m 2b (m ≠0). 13.不等式4x -3<4的解集中,最大的整数x =______. 14.关于x 的不等式mx >n ,当m ______时,解集是m nx <;当m ______时,解集是mn x >. 二、选择题15.若0<a <b <1,则下列不等式中,正确的是( ).,11;11;1;1ba b a b a b a <><>④③②① (A)①③ (B)②③ (C)①④ (D)②④16.下列命题结论正确的是( ).①若a >b ,则-a <-b ;②若a >b ,则3-2a >3-2b ;③8|a |>5|a |. (A)①②③ (B)②③ (C)③ (D)以上答案均不对 17.若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <1 三、解答题18.当x 取什么值时,式子563-x 的值为(1)零;(2)正数;(3)小于1的数.拓展、探究、思考19.若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .20.解关于x 的不等式ax >b (a ≠0).测试3 解一元一次不等式学习要求会解一元一次不等式.课堂学习检测一、填空题1.用“>”或“<”填空:(1)若x ______0,y <0,则xy >0;(2)若ab >0,则b a ______0;若ab <0,则ab______0;(3)若a -b <0,则a ______b ; (4)当x >x +y ,则y ______0. 2.当a ______时,式子152-a 的值不大于-3. 3.不等式2x -3≤4x +5的负整数解为______. 二、选择题4.下列各式中,是一元一次不等式的是( ). (A)x 2+3x >1 (B)03<-yx (C)5511≤-x(D)31312->+x x5.关于x 的不等式2x -a ≤-1的解集如图所示,则a 的取值是( ).(A)0 (B)-3 (C)-2 (D)-1三、解下列不等式,并把解集在数轴上表示出来 6.2(2x -3)<5(x -1). 7.10-3(x +6)≤1. 8.⋅-->+22531x x 9.⋅-≥--+612131y y y四、解答题 10.求不等式361633->---x x 的非负整数解.11.求不等式6)125(53)34(2+<-x x 的所有负整数解.综合、运用、诊断一、填空题12.若x 是非负数,则5231x-≤-的解集是______. 13.使不等式x -2≤3x +5成立的负整数是______.14.已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是______. 二、选择题15.下列各对不等式中,解集不相同的一对是(______).(A)72423xx +<-与-7(x -3)<2(4+2x ) (B)3921+<-x x 与3(x -1)<-2(x +9) (C)31222-≥+x x 与3(2+x )≥2(2x -1) (D)x x ->+414321与3x >-116.如果关于x 的方程5432bx a x +=+的解不是负值,那么a 与b 的关系是( ). (A)b a 53> (B)a b 53≥ (C)5a =3b (D)5a ≥3b三、解下列不等式 17.(1)3[x -2(x -7)]≤4x . (2).17)10(2383+-≤--y y y(3).151)13(21+<--y y y (4).15)2(22537313-+≤--+x x x(5)).1(32)]1(21[21-<---x x x x(6)⋅->+-+2503.0.02.003.05.09.04.0x x x四、解答题18.x 取什么值时,代数式413--x 的值不小于8)1(32++x 的值.19.已知关于x 的方程3232x m x x -=--的解是非负数,m 是正整数,求m 的值.20.已知关于x ,y 的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围.21.已知方程组⎩⎨⎧-=++=+②①my x m y x 12,312的解满足x +y <0,求m 的取值范围.拓展、探究、思考一、填空题22.(1)已知x <a 的解集中的最大整数为3,则a 的取值范围是______;(2)已知x >a 的解集中最小整数为-2,则a 的取值范围是______. 二、解答题23.适当选择a 的取值范围,使1.7<x <a 的整数解:(1)x 只有一个整数解; (2)x 一个整数解也没有.24.当310)3(2k k -<-时,求关于x 的不等式k x x k ->-4)5(的解集.25.已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.参考答案测试11.(1)m -3>0;(2)y +5<0;(3)x ≤2;(4)a ≥0;(5)2a >10; (6)2y +6<0;(7)3x +5>3x;(8)-m ≤0. 2.3.D . 4.C . 5.A . 6.整数解为-1,0,1,2,3,4. 7.(1)>;(2)>;(3)>;(4)>;(5)<;(6)>. 8..4523≥-x 9.A . 10.B . 11.D . 12.D . 13.×. 14.√. 15.√. 16.×. 17.当a >0时,2a <3a ;当a =0时,2a =3a ;当a <0时,2a >3a . 18.x ≤3a,且x 为正整数1,2,3. ∴9≤a <12.19.+3或-3.测试21.(1)<;(2)<;(3)<;(4)<;(5)>;(6)<;(7)>;(8)<. 2.(1)>;(2)<;(3)<;(4)>.3.不等式两边加(或减)同一个数(或式子),不等号的方向不变. 4.>. 5.C . 6.C . 7.D . 8.D . 9.(1)x <10,解集表示为(2)x >6,解集表示为(3)x ≥2.5,解集表示为(4)x ≤3,解集表示为10.(1)8+2y >0,解集为y >-4. (2)3a -7<0,解集为37<a . 11.(1)>;(2)>;(3)<. 12.(1)<;(2)>;(3)<;(4)>;(5)>;(6)<. 13.1. 14.<0;>0. 15.B . 16.D . 17.C .18.(1)x =2;(2)x >2;(3)311<x . 19.∵-m 2-1<0,⋅--<∴12m nx 20.当a >0时,a b x >;当a <0时,ab x <. 测试31.(1)<;(2)>;<;(3)<;(4)<. 2.≤-5. 3.-4,-3,-2,-1. 4.D . 5.D . 6.x >-1,解集表示为7.x ≥-3,解集表示为8.x >6,解集表示为9.y ≤3,解集表示为10.413<x 非负整数解为0,1,2,3. 11.x >-8,负整数解为-7,-6,-5,-4,-3,-2,-1.12.0≤x ≤4. 13.-3,-2,-1. 14.a <4. 15.B . 16.D . 17.(1)x ≥6. (2)625≤y . (3)y <5. (4)23-≥x . (5)x <-5. (6)x <9.18.57≤x . 19.m ≤2,m =1,2. 20.p >-6. 21.①+②;3(x +y )=2+2m .∵x +y <0.∴2+2m <0.∴m <-1. 22.(1)3<a ≤4;(2)-3≤a <-2. 23.(1)2<a ≤3;(2)1.7<a ≤2. 24.⋅-<4k kx 25.A -B =7x +7.当x <-1时,A <B ;当x =-1时,A =B ;当x >-1时,A >B .七年级数学下册期末模拟题一 选择题(每小题3分,共12题,共计36分)1.下列计算正确的是( ) A.9 =±3 B.|﹣3|=﹣3 C.9 =3D.﹣32=92.如果c 为有理数,且c≠0,下列不等式中正确的是( ) A.3c >2c B.cc 23> C.3+c >2+c D.﹣3c <﹣2c3.下列说法不正确的是( )A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行4.若点P (﹣a ,4﹣a )是第二象限的点,则a 的取值范围是( ) A.a <4 B.a >4 C.a <0 D.0<a <45.对于图中标记的各角,下列条件能够推理得到a ∥b 的是( ) A.∠1=∠2 B.∠2=∠4 C.∠3=∠4D.∠1+∠4=180°6.如图,直线a ∥b ,直线c 与a 、b 相交,∠1=70°,则∠2的大小是( )A.20°B.50°C.70°D.110°7.某次考试中,某班级的数学成绩统计图如下.下列说法错误的是( )A.得分在70~80分之间的人数最多B.该班的总人数为40C.得分在90~100分之间的人数最少D.及格(≥60分)人数是268.若方程mx+ny=6的两个解是⎩⎨⎧==11y x ,⎩⎨⎧-==12y x ,则m ,n 的值为( ) A.4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣49.如果不等式组⎩⎨⎧<->-m x x x )1(312的解集是x <2,那么m 的取值范围是( )A.m=2B.m >2C.m <2D.m≥210.若(3x ﹣y+5)2+|2x ﹣y+3|=0,则x+y 的值为( ) A.2B.﹣3C.﹣1D.311.为了改善住房条件,小亮的父母考察了某小区的A 、B 两套楼房,A 套楼房在第3层楼,B 套楼房在第5层楼,B 套楼房的面积比A 套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A 套楼房的面积为x 平方米,B 套楼房的面积为y 平方米,根据以上信息列出了下列方程组.其中正确的是( )A.B.C.D.12.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高( )A.40%B.33.4%C.33.3%D.30%二 填空题(每小题3分,共6题,共计18分)13.小于17的所有正整数和是 .14..如图所示,若AB ∥DC ,∠1=39°,∠C 和∠D 互余,则∠D= ,∠B= .15.若关于x 、y 的二元一次方程组⎩⎨⎧=-=+k y x ky x 95的解也是二元一次方程2x+3y=6的解,则k ﹣21的算术平方根为 .16.将点A 先向下平移3个单位,再向右平移2个单位后得B (﹣2,5),则A 点关于y 轴的对称点坐标为 .17.若关于x 的不等式组⎩⎨⎧->->-22132x x a x 的解集中只有4个整数解,则a 取值范围是18.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A 处,并按A→B→C→D→A…的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是 .三 计算综合题(共7题,共计66分)19.(本小题8分)解下列方程组或不等式组:(1)⎪⎩⎪⎨⎧=-=-132353y x y x (2)⎩⎨⎧-≥-->-3219235x x x .20.(本小题8分)某校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后,随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.根据以上信息解决下列问题:(1)在统计表中,m=,n=,并补全直方图;(2)扇形统计图中“C组”所对应的圆心角的度数是度;(3)若该校共有964名学生,如果听写正确的个数少于24个定为不合格,请你估算这所学校本次比赛听写不合格的学生人数.21.(本小题10分)在平面直角坐标系中,三角形ABC的三个顶点的位置如图所示,点A′的坐标是(﹣2,2),现将三角形ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的三角形A′B′C′(不写画法),并写出点B′、C′的坐标;(2)求三角形ABC的面积.22.(本小题10分)已知:如图,B、E分别是AC、DF上一点,∠1=∠2,∠C=∠D.求证:∠A=∠F.23.(本小题8分)商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.如果用27元钱,最多可以购买该商品多少件?24.(本小题10分)已知2台大收割机和5台小收割机同时工作2h共收割小麦3.6hm2,3台大收割机和2台小收割机同时工作5h共收割小麦8hm2.求1台大收割机和1台小收割机每小时各收割小麦多少公顷(hm2)?(1)分析:如果设1台大收割机每小时各收割小麦x hm2,和1台小收割机每小时各收割小麦y hm2,则2台大收割机和5台小收割机同时工作1h共收割小麦hm2,3台大收割机和2台小收割机同时工作1h共收割小麦hm2(均用含x,y的代数式表示);(2)根据以上分析,结合题意,请你列出方程组,求出1台大收割机和1台小收割机每小时各收割小苗多少公顷(hm2)?25(本小题10分)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人?。