广东省梅州市丰顺县2018-2019学年九年级上期末统一考试数学试题(解析版)
2018-2019学年九年级(上)期末数学试卷5套及答案解析
2018-2019学年九年级(上)期末数学试卷一、选择题(每小题3分,共30分) 2018.11.61.某几何体的主视图和左视图如图所示,则该几何体可能是()A.长方体B.圆锥C.正方体D.球2.关于的一元二次方程的一个根是,则的值为()A. B. C. D.3.已知为矩形的对角线,则图中与一定不相等的是()A. B.C. D.4.一个三角形三遍的长分别为,,,另一个与它相似的三角形的最长边是,则该三角形的最短边是()A. B. C. D.5.下列各点不在反比例函数上的是()A. B. C. D.6.如图,在的正方形网格中,连接两格点,,线段与网格线的交点为点,则为()A. B. C. D.7.小敏不慎将一块矩形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的矩形玻璃,他带了两块碎玻璃,其编号应该是()A.①②B.?①③C.③④D.‚②④8.如图所示电路,任意闭合两个开关,能使灯亮起来的概率是()A. B. C. D.9.如图,是三个反比例函数,,在轴上方的图象,由此观察得到、、的大小关系为()A. B.C. D.10.如图,矩形的周长是,以,为边向外作正方形和正方形,若正方形和的面积之和为,那么矩形的面积是()A. B. C. D.二、填空题(每小题4分,共20分)11.方程的二次项系数是________.12.如图所示,此时的影子是在________下(太阳光或灯光)的影子,理由是________.13.在平面直角坐标系中,直线与反比例函数的图象的一个交点,则的值为________.14.小明和小花在玩纸牌游戏,有两组牌,每组各有两张,分别标有数字,,每天每次从每组中抽出一张,两张牌的数字之积为的概率为________.15.如图,在平行四边形中,交于交于,,,则的长为________.三、解答题(满分50分)16.如图,已知,利用尺规作出一个新三角形,使新三角形与对应线段比为(不写作法,保留作图痕迹).17.一只不透明的袋子中装有个质地,大小均相同的小球,这些小球分别标有,,,,甲,乙两人每次同时从袋中各随机取出个小球,并计算两个小球数字之和.记录后将小球放回袋中搅匀.进行重复实验,实验数据如表:解答下列问题:如果实验继续进行下去,根据上表提供数据,出现和为的频率将稳定在它的概率附近,估计出现和为的概率是.如果摸出这两个小球上数字之和为的概率是,那么的值可以取吗?请用列表或画树状图的方法说明理由.18.如图所示,某小区计划在一块长米,宽米的矩形荒地上建造一个花园,使得花园所占面积为荒地面积的一半,其中花园每个角上的扇形都相同,则每个扇形的半径是多少?(精确到 . )19.已知,如图,,,.请你添加一个条件,使相似于,你添加的条件是________;若,,在的条件下,求的长度.20.如图,已知平行四边形中,对角线,交于点,是延长线上的点,且是等边三角形.(1)求证:四边形是菱形;(2)若,求证:四边形是正方形.21.如图,在平面直角坐标系中,一次函数与轴轴分别交于点,与反比例函数在第一象限交于点.写出点,,的坐标.过轴上的点作平行于轴的直线分别与直线和反比例函数交于点,求的面积.22.对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.已知:如图,四边形是“等对角四边形”,,,.则________度,________度.在探究“等对角四边形”性质时:小红画了一个“等对角四边形 ”(如图),其中,,此时她发现成立.请你证明此结论;已知:在“等对角四边形 ”中,,,,.求对角线的长.答案1. 【答案】A【解析】根据常见几何体的三视图确定即可得.【解答】解:、长方体的主视图和左视图均为矩形,符合题意;、圆锥的主视图和左视图均为等腰三角形,不符合题意;、正方体的主视图和左视图均为正方形,不符合题意;、球的主视图和左视图均为圆,不符合题意;故选:.2. 【答案】B【解析】根据一元二次方程的解的定义把代入方法得到关于的一次方程,然后解一次方程即可.【解答】解:把代入方程得,解得.故选.3. 【答案】D【解析】根据矩形的性质,逐一进行判断即可求解.【解答】解:、对顶角相等,一定相等,故不符合题意;、不确定,可能相等,也可能不相等,故不符合题意;、不确定,可能相等,也可能不相等,故不符合题意;、一定不相等,因为,,故符合题意.故选:.4. 【答案】B【解析】首先设与它相似的三角形的最短边的长为,然后根据相似三角形的对应边成比例,即可得方程,解此方程即可求得答案.【解答】解:设与它相似的三角形的最短边的长为,∵一个三角形三边的长分别为,,,另一个与它相似的三角形的最长边是,∴,解得:.故选.5. 【答案】C【解析】分别把各点坐标代入反比例函数的解析式进行检验即可.【解答】解:、∵ 时,,∴此点在反比例函数的图象上,故本选项不符合题意;、∵ 时,,∴此点在反比例函数的图象上,故本选项不符合题意;、∵ 时,,∴此点不在反比例函数的图象上,故本选项符合题意;、∵ 时,,∴此点在反比例函数的图象上,故本选项不符合题意.故选.6. 【答案】C【解析】构建如图所示的图形,利用平行线分线段成比例得到.【解答】解:如图,∵ ,∴.故选.7. 【答案】B【解析】确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.【解答】解:∵只有①③两块角的两边互相平行,且中间部分相联,角的两边的延长线的交点就是平行四边形的顶点,∴带①③两块碎玻璃,就可以确定平行四边形的大小.故选.8. 【答案】C【解析】先根据题意画出树状图,得出共有种情况,再根据能使灯亮起来的情况有种,即可得出能使灯亮起来的概率.【解答】解:根据题意画树状图如下:∵共有种情况,能使灯亮起来的情况有种,∴能使灯亮起来的概率是,故选:.9. 【答案】C【解析】根据反比例函数图象上点的坐标特点可得,进而可分析、、的大小关系.【解答】解:读图可知:三个反比例函数的图象在第二象限;故;,在第一象限;且,的图象距原点较远,故有:;综合可得:.故选:.10. 【答案】B【解析】设,,根据题意列出方程,,利用完全平方公式即可求出的值.【解答】解:设,,∵正方形和的面积之和为∴ ,∵矩形的周长是∴ ,∵ ,∴ ,∴ ,∴矩形的面积为:故选11. 【答案】【解析】先找出方程的二次项,再找出项的系数即可.【解答】解:方程的二次项系数是,故答案为:.12. 【答案】太阳光,通过作图发现相应的直线是平行关系【解析】连接两个实物顶点与像的对应顶点,得到的两条直线平行可得为太阳光下的投影.【解答】解:此时的影子是在太阳光下(太阳光或灯光)的影子,理由是:通过作图发现相应的直线是平行关系.13. 【答案】【解析】将代入中求出值,进而即可得出点的坐标,由点的坐标利用反比例函数图象上点的坐标特征即可求出值,此题得解.【解答】解:当时,,∴点的坐标为.∵点在反比例函数的图象上,∴ .故答案为:.14. 【答案】【解析】先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:画树形图得:由树状图可知共有种可能,两张牌的和为的有种,所以概率,故答案为:.15. 【答案】【解析】由于,所以,又因为,所以,所以,从而可求出的长度.【解答】解:∵ ,∴ ,∵ ,∴ ,∴∴,,∴故答案为:16. 【答案】解:如图,即为所求作三角形.【解析】平面内任取一点,作射线、、,再射线上分别截取、、,顺次连接、、即可得.【解答】解:如图,即为所求作三角形.17. 【答案】; 假设,则(和为),所以,的值不能为.【解析】利用频率估计概率结合表格中数据得出答案即可;; 假设,根据题意先列出树状图,得出和为的概率,再与进行比较,即可得出答案.【解答】解:根据随着实验的次数不断增加,出现“和为 ”的频率是,故出现“和为 ”的概率是;; 假设,则(和为),所以,的值不能为.18. 【答案】每个扇形的半径大约是 . .【解析】根据个扇形的面积是长方形荒地面积的一半即可得出关于的一元二次方程,解之即可得出结论.【解答】解:根据题意得:,解得: . , . (舍去).19. 【答案】; ∵ ,,,∴,即,解得.【解析】根据相似三角形的判定定理即可得出结论;; 根据相似三角形的性质即可得出结论.【解答】解: ∵ ,,∴ ,∴可以添加的条件是.; ∵ ,,,∴,即,解得.20. 【答案】证明:(1)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ (三线合一),即,∴四边形是菱形(对角线互相垂直的平行四边形是菱形).; (2)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ 平分(三线合一),∴,又∵∴ ,∴ (三角形的一一个外角等于和它外角不相邻的两内角之和),∵四边形是菱形,∴ ,∴平行四边形是正方形.【解析】(1)根据对角线互相垂直的平行四边形是菱形.由题意易得,∴ ,∴ ,∴四边形是菱形;; (2)根据有一个角是的菱形是正方形.由题意易得,∵四边形是菱形,∴ ,∴四边形是正方形.【解答】证明:(1)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ (三线合一),即,∴四边形是菱形(对角线互相垂直的平行四边形是菱形).; (2)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ 平分(三线合一),∴,又∵∴ ,∴ (三角形的一一个外角等于和它外角不相邻的两内角之和),∵四边形是菱形,∴ ,∴平行四边形是正方形.21. 【答案】解:当时,,∴点的坐标为;当时,,∴点的坐标为;联立两函数解析式成方程组,,解得:或,∴点的坐标为.; 当时,,∴点的坐标为;当时,,∴点的坐标为.∴,,∴.【解析】分别将、代入中求出与之对应的、的值,由此即可得出点、的坐标,再联立两函数解析式成方程组,解之取其正值即可得出点的坐标;; 将分别代入一次函数和反比例函数解析式中求出值,由此即可得出点、的坐标,进而即可得出的长度,由点、的坐标即可得出线段的长度,再利用三角形的面积公式即可求出的面积.【解答】解:当时,,∴点的坐标为;当时,,∴点的坐标为;联立两函数解析式成方程组,,解得:或,∴点的坐标为.; 当时,,∴点的坐标为;当时,,∴点的坐标为.∴,,∴.22. 【答案】,【解析】过点于点,交于点点作于,则即的最小再根据,分可知是等腰角三角形,由锐角角函数的定义即可出的长.【解答】解:过点作于,于点,点作于,则即为的最值,∵,,平分,等腰角三角形,故的最小值为.。
2018-2019第一学期九年级数学期末考试试卷(有答案)
2018~2019学年度第一学期九年级数学期末教学质量检测试卷查考答案及评分标准1.C ; 2.B ; 3.B ; 4.C ; 5.D ; 6.C ; 7.D ; 8.B ; 9.C ;10.A.11.m=1; 12.3π;13.25°;14.65; 15.2+; 16.-1或2或1; 17.50°;18.②④.19.(1)x 1=-2+,x 2=-2-. (2)x 1=2,x 2=-1.20.解:(1)小明小军共有20种等可能的结果;(5分)(2) 在20种结果中,两支笔颜色相同的结果有8种,∴小明获胜的概率为P =208=52,小军获胜的概率为P =2012=53.(10分)21.解:(1)如图1,C 1(1,﹣2);(3分)(2)如图2,C 2(﹣1,1);(6分)(3)如图3,B 3(﹣3,﹣4).(10分)22. (1)证明:∵ED =EC ,∴∠EDC =∠C ,∵∠EDC =∠B ,∴∠B =∠C ,∴AB =AC.(5分)(2)如图所示,连接BD ,∵AB 为直径,∴BD ⊥AC ,设CD =a ,由(1)知AC =AB =4,则AD =4-a ,在Rt △ABD 中,由勾股定理可得BD 2=AB 2-AD 2=42-(4-a)2.在Rt △CBD 中,由勾股定理可得BD 2=BC 2-CD 2=(2)2-a 2.∴42-(4-a)2=(2)2-a 2,整理得a =23,即CD =23.(10分)23.证明:(1)如图所示,连接AC ,AC ′,∵四边形ABCD 为矩形,∴∠ABC =90°,即AB ⊥CC ′,∵将矩形ABCD 绕点A 顺时针旋转,得到矩形AB ′C ′D ′,∴AC =AC ′,∴BC =BC ′.(6分)(2)∵四边形ABCD 为矩形,∴AD =BC ,∠D =∠ABC ′=90°,将矩形ABCD 绕点A 顺时针旋转,得到矩形AB ′C ′D ′,∴AD =AD ′,∵BC =BC ′,∴BC ′=AD ′,在△AD ′E 与△C ′BE 中, AD ′=BC ′,∠AED ′=∠BEC ′,∴△AD ′E ≌△C ′BE ,∴BE =D ′E ,设AE =x ,则D ′E =2-x ,在Rt △AD ′E 中,∠D ′=90°,由勾股定理,得x 2-(2-x)2=1,解得x =45,∴AE =45. (12分)24.(1)设2014至2016年该市投入科研经费的年平均增长率为x ,根据题意,得:500(1+x)2=720,解得x 1=0.2=20%,x 2=-2.2(舍)答:2014至2016年该市投入科研经费的年平均增长率为20%.(6分)(2)根据题意,得720a -720×100%≤15%,解得a ≤828,又∵该市计划2017年投入的科研经费比2016年有所增加,故a 的取值范围为720<a ≤828.(12分)25.(1)证明:如图所示,连接OC ,∵直线y =33x +2与y 轴相交于点E ,∴点E 的坐标为(0,2),即OE =2.又∵点B的坐标为(0,4),∴OB =4,∴BE =OE =2,又∵OA 是⊙P 的直径,∴∠ACO =90°,即OC ⊥AB ,∴OE =CE.(6分)(2)直线CD 是⊙P 的切线.证明:连接PC ,PE ,由(1)可知OE =CE.在△POE 和△PCE 中, OE =CE ,PE =PE ,∴△POE ≌△PCE ,∴∠POE =∠PCE.又∵x 轴⊥y 轴,∴∠POE =∠PCE =90°,∴PC ⊥CE ,即PC ⊥CD.又∵直线CD 经过半径PC 的外端点C ,∴直线CD 是⊙P 的切线.∵对y =33x +2,当y =0时,x =-6,即OD =6,在Rt △DOE 中,DE ===4,∴CD =DE +EC =DE +OE=4+2=6.设⊙P 的半径为r ,则在Rt △PCD 中,由勾股定理知PC 2+CD 2=PD 2,即 r 2+(6)2=(6+r)2,解得r =6,即⊙P 半径的值为6.(12分)26..解:(1)∵点A (4,0)在抛物线y 1=-x 2+413x +c 上, ∴-42+413×4+c =0,解得c =3,∴抛物线解析式为y 1=-x 2+413x +3, 第26题解图∵点B 是抛物线y 1与y 轴的交点,∴点B 的坐标为(0,3).(4分)(2)根据图可知,当x >4或x <0时,y 1<y 2;(8分)(3)取AB 的中点为C ,∵点A (4,0),点B (0,3),∴点C (2,23),过点C 作CE ⊥AB ,交x 轴于E ,交y 轴于F .在Rt △ABO 中,AO =4,BO =3,∴AB =5,∵C 是AB 的中点,∴AC =25,∵∠ACE =∠AOB =90°,∠EAC =∠BAO , ∴△AEC ∽△ABO ,∴AB AE =AO AC ,即5AE =2,解得AE =825,∴OE =OA -AE =4-825=87,此时点P 与点E 重合,坐标为(87,0).∵∠FBC =∠ABO ,∠FCB =∠AOB , ∴△ABO ∽△FBC ,∴AB BF =BO BC ,即53+OF =2,解得OF =67,∴此时点P 的坐标为(0,-67).(14分)。
2018-2019学年九年级上期末数学试卷(含答案解析)
2018-2019学年九年级上期末数学试卷(含答案解析)一、选择题(共16小题,每小题3分,满分48分)1.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0B.=2C.x2+2x=x2﹣1D.3(x+1)2=2(x+1)2.抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)3.下列图形是中心对称图形的是()A.B.C.D.4.下列说法中,正确的是()A.不可能事件发生的概率是0B.打开电视机正在播放动画片,是必然事件C.随机事件发生的概率是D.对“梦想的声音”节目收视率的调查,宜采用普查5.如图,A,B,C三点在⊙O上,且∠BOC=100°,则∠A的度数为()A.40°B.50°C.80°D.100°6.下列图象中是反比例函数y=﹣图象的是()A.B.C.D.7.如图,二次函数y=ax2+bx+c的图象与x轴交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2B.x>4C.﹣2<x<4D.x>08.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为()A.B.C.D.9.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.10.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是()A.50°B.60°C.70°D.80°11.边长为a的正三角形的内切圆的半径为()A.a B.a C.a D.a12.反比例函数y1=(x>0)的图象与一次函数y2=﹣x+b的图象交于A,B两点,其中A(1,2),当y2>y1时,x的取值范围是()A.x<1B.1<x<2C.x>2D.x<1或x>213.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S =4:25,则DE:EC=()△ABFA.2:5B.2:3C.3:5D.3:214.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件.如果全组共有x名同学,则根据题意列出的方程是()A.x(x+1)=182B.x(x+1)=182×C.x(x﹣1)=182D.x(x﹣1)=182×215.如图,在平面直角坐标系中,已知点A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣1,2)B.(﹣9,18)C.(﹣9,18)或(9,﹣18)D.(﹣1,2)或(1,﹣2)16.二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A.函数有最小值B.当﹣1<x<2时,y>0C.a+b+c<0D.当x<,y随x的增大而减小二、填空题(共4小题,每小题3分,满分12分)17.关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范围是.18.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是.19.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.20.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2016的坐标为.三、解答题(共6小题,满分60分)21.(8分)已知一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,求m的值.22.(10分)在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果,节目组规定:每位选手至少获得两位评委的“通过”才能晋级(1)请用树形图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.23.(10分)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E 作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP.24.(10分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?25.(10分)如图,点A(3,5)关于原点O的对称点为点C,分别过点A,C作y轴的平行线,与反比例函数y=(0<k<15)的图象交于点B,D,连接AD,BC,AD与x轴交于点E(﹣2,0).(1)求k的值;(2)直接写出阴影部分面积之和.26.(12分)如图,已知抛物线y=ax2+bx﹣3与x轴的一个交点为A(﹣1,0),另一个交点为B,与y轴的交点为C,其顶点为D,对称轴为直线x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ACM是以AC为一腰的等腰三角形时,求点M的坐标.2018-2019学年九年级上期末数学试卷(含答案解析)一、选择题(共16小题,每小题3分,满分48分)1.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0B.=2C.x2+2x=x2﹣1D.3(x+1)2=2(x+1)【分析】根据一元二次方程的定义解答,一元二次方程必须满足四个条件:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、ax2+bx+c=0当a=0时,不是一元二次方程,故A错误;B、+=2不是整式方程,故B错误;C、x2+2x=x2﹣1是一元一次方程,故C错误;D、3(x+1)2=2(x+1)是一元二次方程,故D正确;故选:D.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【分析】根据抛物线的顶点式解析式写出顶点坐标即可.【解答】解:y=(x﹣1)2+2的顶点坐标为(1,2).故选:A.【点评】本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.3.下列图形是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、该图形是中心对称图形,正确,B、该图形不是中心对称图形,错误;C、该图形不是中心对称图形,错误;D、该图形是轴对称图形,错误;故选:A.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.4.下列说法中,正确的是()A.不可能事件发生的概率是0B.打开电视机正在播放动画片,是必然事件C.随机事件发生的概率是D.对“梦想的声音”节目收视率的调查,宜采用普查【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、不可能事件发生的概率是0,故A符合题意;B、打开电视机正在播放动画片,是随机事件,故B不符合题意;C、随机事件发生的概率是0<P<1,故C不符合题意;D、对“梦想的声音”节目收视率的调查,宜采用抽样调查,故D不符合题意;故选:A.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.如图,A,B,C三点在⊙O上,且∠BOC=100°,则∠A的度数为()A.40°B.50°C.80°D.100°【分析】在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,由此可得出答案.【解答】解:由题意得∠A=∠BOC=×100°=50°.故选:B.【点评】本题考查了圆周角定理,属于基础题,掌握圆周角定理的内容是解答本题的关键.6.下列图象中是反比例函数y=﹣图象的是()A.B.C.D.【分析】利用反比例函数图象是双曲线进而判断得出即可.【解答】解:反比例函数y=﹣图象的是C.故选:C.【点评】此题主要考查了反比例函数的图象,正确掌握反比例函数图象的形状是解题关键.7.如图,二次函数y=ax2+bx+c的图象与x轴交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2B.x>4C.﹣2<x<4D.x>0【分析】由抛物线与x轴的交点坐标,结合图象即可解决问题.【解答】解:∵二次函数y=ax2+bx+c的图象与x轴交于(﹣2,0)和(4,0)两点,函数开口向下,∴函数值y>0时,自变量x的取值范围是﹣2<x<4,故选:C.【点评】本题考查抛物线与x轴的交点,解题的关键是学会根据图象确定自变量的取值范围,属于中考常考题型.8.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为()A.B.C.D.【分析】由在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,直接利用概率公式求解即可求得答案.【解答】解:∵在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,∴从中随机摸出一个小球,其标号小于4的概率为:.故选:C.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.9.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.故选:C.【点评】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.10.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是()A.50°B.60°C.70°D.80°【分析】根据旋转的性质可知,∠BCB′=∠ACA′=20°,又因为AC⊥A′B′,则∠BAC的度数可求.【解答】解:∵△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置∴∠BCB′=∠ACA′=20°∵AC⊥A′B′,∴∠BAC=∠A′=90°﹣20°=70°.故选:C.【点评】本题考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.11.边长为a的正三角形的内切圆的半径为()A.a B.a C.a D.a【分析】根据等边三角形的三线合一,可以构造一个由其内切圆的半径、外接圆的半径和半边组成的30°的直角三角形,利用锐角三角函数关系求出内切圆半径即可.【解答】解:∵内切圆的半径、外接圆的半径和半边组成一个30°的直角三角形,则∠OBD=30°,BD=,∴tan∠BOD==,∴内切圆半径OD=×=a.故选:D.【点评】此题主要考查了三角形的内切圆,注意:根据等边三角形的三线合一,可以发现其内切圆的半径、外接圆的半径和半边正好组成了一个30°的直角三角形.12.反比例函数y1=(x>0)的图象与一次函数y2=﹣x+b的图象交于A,B两点,其中A(1,2),当y2>y1时,x的取值范围是()A.x<1B.1<x<2C.x>2D.x<1或x>2【分析】根据函数解析式画出函数的大致图象,根据图象作出选择.【解答】解:根据双曲线关于直线y=x对称易求B(2,1).依题意得:如图所示,当1<x<2时,y2>y1.故选:B.【点评】本题考查了反比例函数与一次函数的交点问题.此题利用了双曲线的对称性求得点B的坐标是解题的关键.13.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S △ABF=4:25,则DE:EC=()A.2:5B.2:3C.3:5D.3:2【分析】先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF:S△ABF=4:25即可得出其相似比,由相似三角形的性质即可求出DE:AB的值,由AB=CD即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF :S△ABF=4:25,∴DE:AB=2:5,∵AB=CD,∴DE:EC=2:3.故选:B.【点评】本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.14.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件.如果全组共有x名同学,则根据题意列出的方程是()A.x(x+1)=182B.x(x+1)=182×C.x(x﹣1)=182D.x(x﹣1)=182×2【分析】先求每名同学赠的标本,再求x名同学赠的标本,而已知全组共互赠了182件,故根据等量关系可得到方程.【解答】解:设全组有x名同学,则每名同学所赠的标本为:(x﹣1)件,那么x名同学共赠:x(x﹣1)件,所以,x(x﹣1)=182.故选:C.【点评】本题考查一元二次方程的实际运用:要全面、系统地弄清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.15.如图,在平面直角坐标系中,已知点A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣1,2)B.(﹣9,18)C.(﹣9,18)或(9,﹣18)D.(﹣1,2)或(1,﹣2)【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k解答.【解答】解:∵点A(﹣3,6),以原点O为位似中心,相似比为,把△ABO缩小,∴点A的对应点A′的坐标是(﹣1,2)或(1,﹣2),故选:D.【点评】本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.16.二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A.函数有最小值B.当﹣1<x<2时,y>0C.a+b+c<0D.当x<,y随x的增大而减小【分析】A、观察可判断函数有最小值;B、由抛物线可知当﹣1<x<2时,可判断函数值的符号;C、观察当x=1时,函数值的符号,可判断a+b+c的符号;D、由抛物线对称轴和开口方向可知y随x的增大而减小,可判断结论.【解答】解:A、由图象可知函数有最小值,故正确;B、由抛物线可知当﹣1<x<2时,y<0,故错误;C、当x=1时,y<0,即a+b+c<0,故正确;D、由图象可知在对称轴的左侧y随x的增大而减小,故正确.故选:B.【点评】本题考查了二次函数图象的性质与解析式的系数的关系.关键是熟悉各项系数与抛物线的各性质的联系.二、填空题(共4小题,每小题3分,满分12分)17.关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范围是k≥﹣6.【分析】由于k的取值不确定,故应分k=0(此时方程化简为一元一次方程)和k≠0(此时方程为二元一次方程)两种情况进行解答.【解答】解:当k=0时,﹣4x﹣=0,解得x=﹣,当k≠0时,方程kx2﹣4x﹣=0是一元二次方程,根据题意可得:△=16﹣4k×(﹣)≥0,解得k≥﹣6,k≠0,综上k≥﹣6,故答案为k≥﹣6.【点评】本题考查的是根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.同时解答此题时要注意分k=0和k≠0两种情况进行讨论.18.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是6.【分析】连接AO,得到直角三角形,再求出OD的长,就可以利用勾股定理求解.【解答】解:连接AO,∵半径是5,CD=1,∴OD=5﹣1=4,根据勾股定理,AD===3,∴AB=3×2=6,因此弦AB的长是6.【点评】解答此题不仅要用到垂径定理,还要作出辅助线AO,这是解题的关键.19.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为2.【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【解答】解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线上,∴四边形AEOD的面积为1,∵点B在双曲线y=上,且AB∥x轴,∴四边形BEOC的面积为3,∴矩形ABCD的面积为3﹣1=2.故答案为:2.【点评】本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x 轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.20.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2016的坐标为(10080,4).【分析】根据图形和旋转规律可得出B n点坐标的变换规律,结合三角形的周长,即可得出结论.【解答】解:在直角三角形OAB中,OA=,OB=4,由勾股定理可得:AB=,△OAB的周长为:OA+OB+AB=+4+=10,研究三角形旋转可知,当n为偶数时B n在最高点,当n为奇数时B n在x轴上,横坐标规律为:,∵2016为偶数,∴B2016(×10,4).故答案为:(10080,4).【点评】本题考查的坐标与图形的变换,解题的关键是在变换中找到规律,结合图形得出结论.三、解答题(共6小题,满分60分)21.(8分)已知一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,求m的值.【分析】由于一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,那么把x=0代入方程即可得到关于m的方程,解这个方程即可求出m的值.【解答】解:∵一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,∴把x=0代入方程中得m2+3m﹣4=0,∴m1=﹣4,m2=1.由于在一元二次方程中m﹣1≠0,故m≠1,∴m=﹣4【点评】此题主要考查了方程解的定义和解一元二次方程,此类题型的特点是,利用方程解的定义找到所求字母的方程,再解此方程即可解决问题.22.(10分)在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果,节目组规定:每位选手至少获得两位评委的“通过”才能晋级(1)请用树形图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.【分析】(1)利用树状图列举出所有可能即可,注意不重不漏的表示出所有结果;(2)列举出所有情况,让至少有两位评委给出“通过”的结论的情况数除以总情况数即为所求的概率.【解答】解:(1)画出树状图来说明评委给出A选手的所有可能结果:;(2)∵由上可知评委给出A选手所有可能的结果有8种.并且它们是等可能的,对于A选手,晋级的可能有4种情况,∴对于A选手,晋级的概率是:.【点评】本题主要考查了树状图法求概率.树状图法可以不重不漏地列举出所有可能发生的情况,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.(10分)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E 作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP.【分析】(1)连接OE,如图,利用圆周角定理得到∠CED=90°,即∠CEO+∠OED=90°,加上∠C=∠CEO,∠PED=∠C.则∠PED+∠OED=90°,即∠OEP=90°,然后根据切线的性质定理可判定PE是⊙O的切线;(2)利用圆周角定理得到∠AEB=90°,再利用AE∥CD得到∠EFD=90°,接着利用等角的余角相等可判断∠FED=∠C,所以∠PED=∠FED.【解答】证明:(1)连接OE,如图,∵CD为直径,∴∠CED=90°,即∠CEO+∠OED=90°,∵OC=OE,∴∠C=∠CEO,∴∠C+∠OED=90°,∵∠PED=∠C.∴∠PED+∠OED=90°,即∠OEP=90°,∴OE⊥PE,∴PE是⊙O的切线;(2)∵AB为直径,∴∠AEB=90°,而AE∥CD,∴∠EFD=90°,∴∠FED+∠EDF=90°,而∠C+∠EDC=90°,∴∠FED=∠C,∴∠PED=∠FED,∴ED平分∠BEP.【点评】本题考查了切线的性质:经过半径的外端且垂直于这条半径的直线是圆的切线.当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线.也考查了圆周角定理.24.(10分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?【分析】(1)设每绿地面积的年平均增长率为x,就可以表示出2014年的绿地面积,根据2014年的绿地面积达到82.8公顷建立方程求出x的值即可;(2)根据(1)求出的年增长率就可以求出结论.【解答】解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36公顷,答:2015年该镇绿地面积不能达到100公顷.【点评】本题考查了增长率问题的数量关系的运用,运用增长率的数量关系建立一元二次方程的运用,一元二次方程的解法的运用,解答时求出平均增长率是关键.25.(10分)如图,点A(3,5)关于原点O的对称点为点C,分别过点A,C作y轴的平行线,与反比例函数y=(0<k<15)的图象交于点B,D,连接AD,BC,AD与x轴交于点E(﹣2,0).(1)求k的值;(2)直接写出阴影部分面积之和.【分析】(1)根据点A和点E的坐标求得直线AE的解析式,然后设出点D的纵坐标,代入直线AE的解析式即可求得点D的坐标,从而求得k值;(2)根据中心对称的性质得到阴影部分的面积等于平行四边形CDGF的面积即可.【解答】解:(1)∵A(3,5)、E(﹣2,0),∴设直线AE的解析式为y=kx+b,则,解得:,∴直线AE的解析式为y=x+2,∵点A(3,5)关于原点O的对称点为点C,∴点C的坐标为(﹣3,﹣5),∵CD∥y轴,∴设点D的坐标为(﹣3,a),∴a=﹣3+2=﹣1,∴点D的坐标为(﹣3,﹣1),∵反比例函数y=(0<k<15)的图象经过点D,∴k=﹣3×(﹣1)=3;(2)如图:∵点A和点C关于原点对称,∴阴影部分的面积等于平行四边形CDGF的面积,3=12.∴S阴影=4×【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是能够确定点D的坐标,难度不大.26.(12分)如图,已知抛物线y=ax2+bx﹣3与x轴的一个交点为A(﹣1,0),另一个交点为B,与y轴的交点为C,其顶点为D,对称轴为直线x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ACM是以AC为一腰的等腰三角形时,求点M的坐标.【分析】(1)利用对称性可得B(3,0),则利用交点式得抛物线解析式为y=a(x+1)(x ﹣3)=ax2﹣2ax﹣3a,所以﹣3a=3,解得a=1,于是得到抛物线解析式为y=x2﹣2x﹣3;(2)分类讨论:当AC=AM时,易得点M1(0,3),如图;②当CM=CA时,先计算出AC=,再以C点为圆心,CA为半径画弧交y轴于M2,M3,如图,易得M2(0,﹣3),M3(0,﹣﹣3).【解答】解:(1)∵点A(﹣1,0)和点B关于直线x=1对称,∴B(3,0),∴抛物线解析式为y=a(x+1)(x﹣3)=ax2﹣2ax﹣3a,∴﹣3a=3,解得a=1,∴抛物线解析式为y=x2﹣2x﹣3;(2)当AC=AM时,点M1与点C关于x轴对称,则M1(0,3),如图;②当CM=CA时,AC==,以C点为圆心,CA为半径画弧交y轴于M2,M3,如图,则OM2=﹣1,OM3=OC+CM3=3+,则M2(0,﹣3),M3(0,﹣﹣3).综上所述,满足条件的点M的坐标为(0,3),(0,﹣3),(0,﹣﹣3).【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.解决(2)小题的关键是利用等腰三角形的性质画出点M的坐标.。
广东省梅州市九年级上学期期末数学试卷
广东省梅州市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题:相信你一定能选对! (共10题;共20分)1. (2分) (2017八下·邵阳期末) 下列图案中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .2. (2分)(2019·玉林) 如图,AB∥EF∥DC,AD∥BC,EF与AC交于点G,则是相似三角形共有()A . 3对B . 5对C . 6对D . 8对3. (2分) (2018九上·东湖期中) 如图,点C是⊙O的劣弧AB上一点,∠AOB=96°,则∠ACB的度数为()A . 192°B . 120°C . 132°D . l504. (2分)下列说法错误的是()A . 必然事件发生的概率是1.B . 不可能事件发生的概率是0.5.C . 不确定事件发生的概率是0.D . 随机事件发生的概率介于0和1之间.5. (2分)若同一个圆的内接正三角形、正方形、正六边形的边长分别记作a3 , a4 , a6 ,则a3:a4:a6等于()A . 1::B . 1:2:3C . 3:2:1D . ::16. (2分)一元二次方程x2+2x+3=0的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 无实数根D . 无法确定7. (2分)(2018·内江) 如图,在平面直角坐标系中,的顶点在第一象限,点,的坐标分别为、,,,直线交轴于点,若与关于点成中心对称,则点的坐标为()A .B .C .D .8. (2分) (2016九上·岳池期中) 二次函数y=ax2+bx+c(a≠0)对于x的任何值都恒为负值的条件是()A . a>0,△>0B . a>0,△<0C . a<0,△>0D . a<0,△<09. (2分)如图,矩形AOBC中,点A的坐标为(0,8),点D的纵坐标为3,若将矩形沿直线AD折叠,则顶点C恰好落在边OB上E处,那么图中阴影部分的面积为()A . 30B . 32C . 34D . 1610. (2分)如图,直线y=x+2与双曲线y=在第二象限有两个交点,那么m的取值范围在数轴上表示为()A .B .C .D .二、填空题。
2018-2019学年九年级上期末数学试卷(含答案解析)
2018-2019学年九年级上期末数学试卷(含答案解析)一、选择题(本大题共16个小题,1-10题每小题3分,11-16每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的图形是天气预报使用的图标,其中是中心对称图形的是()A.B.C.D.2.图中的两个三角形相似,且AB=2,A′B′=1,则△A′B′C′与△ABC的相似比是()A.1:2B.2:1C.3:1D.1:33.抛物线y=﹣2(x+3)2+1对称轴是()A.直线x=3B.直线x=1C.直线x=﹣1D.直线x=﹣34.在下图中,反比例函数的图象大致是()A.B.C.D.5.连续四次抛掷一枚硬币都是正面朝上,则“第五次抛掷正面朝上”是()A.必然事件B.不可能事件C.随机事件D.概率为1的事件6.如图,在正三角形网格中,菱形M经过旋转变换能得到菱形N,下列四个点中能作为旋转中心的是()A.点A B.点B C.点C D.点D7.已知A(﹣1,y1),B(2,y2)是抛物线y=﹣(x+2)2+3上的两点,则y1,y2的大小关系为()A.y1>y2B.y1<y2C.y1≥y2D.y1≤y8.如果圆O是△ABC的外接圆,AC=BC,那么下列四个选项中,直线l必过圆心O的是()A.l⊥AC B.l平分AB C.l平分∠C D.l平分9.当k=﹣2时,下列双曲线中,在每一个象限内,y随x增大而减小的是()A.y=﹣B.y=C.y=D.y=10.起重机的滑轮装置如图所示,已知滑轮半径是10cm,当物体向上提升3πcm时,滑轮的一条半径OA绕轴心旋转的角度为()A.108°B.60°C.54°D.27°11.(2分)将方程x2﹣6x+3=0左边配成完全平方式,得到的方程是()A.(x﹣3)2=﹣3B.(x﹣3)2=6C.(x﹣3)2=3D.(x﹣3)2=1212.(2分)如图,⊙O中,弦AB⊥AC,OE⊥AB,垂足为E,OF⊥AC,垂足为F,若AB+AC=10,则四边形OEAF的周长为()A.10.B.9C.8D.713.(2分)在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:根据以上数据,估算袋中的白棋子数量为()A.60枚B.50枚C.40枚D.30枚14.(2分)如图,已知△ABC在平面直角坐标系中,点A的坐标为(0,3),若以点B 为位似中心,在平面直角坐标系内画出△A′BC′,使得△A′BC′与△ABC位似,且相似比为2:1,则点C′的坐标为()A.(0,0)B.(0,1)C.(1,﹣1)D.(1,0)15.(2分)在正六边形ABCDEF的中,若BE=10,则这个正六边形外接圆半径是()A.B.5C.D.516.(2分)如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b二、填空题(本大题共3个小题,19小题4分,17、18每小题3分,共计10分.)17.若3是一元二次方程x2+bx+3=0的一个根,则常数b的值为.18.抛物线y=ax2经过点(3,5),则a=.19.(4分)参加一次足球联赛的每两队之间都进行一场比赛,共要比赛28场,设有x 个队参赛,根据题意列出的方程是.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤) 20.(9分)若点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,求a,b的值.21.(9分)小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数y(度)是镜片焦距x(厘米)(x>0)的反比例函数,调查数据如表:(1)求y与x的函数表达式;(2)若小明所戴近视眼镜镜片的度数为500度,求该镜片的焦距.22.(9分)在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机从箱子里取出1个球,则取出黄球的概率是多少?(2)随机从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示出所有可能出现的结果,并求两次取出的都是白色球的概率.23.(9分)已知关于x的一元二次方程x2﹣6x+k+3=0有两个不相等的实数根(1)求k的取值范围;(2)若k为大于3的整数,且该方程的根都是整数,求k的值.24.(10分)如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE•DF.25.(10分)如图,P是⊙O的切线FA上的点,点A为切点,连接OP,OP的垂直平分线FE交OA于点E,连接EP,过点P作PC⊥EP(1)已知OA=8,AP=4,求OE的长(2)求证:PC与⊙O相切.26.(12分)某造纸厂生产甲、乙两种生活用纸的相关信息如下表,其中x(吨)表示甲、乙两种生活用纸的月产量,请根据表中的信息解答后面的问题:(1)设该造纸厂每月生产甲、乙两种生活用纸的利润分别为y1元和y2元,分别求出y1和y2与x的函数关系式(注:利润=总收入﹣总支出);(2)若某月要生产甲、乙两种生活用纸共300吨,求该月生产甲、乙两种生活用纸各多少吨,获得的总利润最大?最大利润是多少?2018-2019学年九年级上期末数学试卷(含答案解析)参考答案与试题解析一、选择题(本大题共16个小题,1-10题每小题3分,11-16每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的图形是天气预报使用的图标,其中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.【点评】本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.图中的两个三角形相似,且AB=2,A′B′=1,则△A′B′C′与△ABC的相似比是()A.1:2B.2:1C.3:1D.1:3【分析】根据相似三角形相似比等于对应边的比解答.【解答】解:∵AB=2,A′B′=1,∴△A′B′C′与△ABC的相似比=A′B′:AB=1:2.故选:A.【点评】本题考查了相似三角形的性质,求两三角形的相似比时要注意两个相似三角形的先后顺序.3.抛物线y=﹣2(x+3)2+1对称轴是()A.直线x=3B.直线x=1C.直线x=﹣1D.直线x=﹣3【分析】根据抛物线的顶点式方程y=﹣2(x+3)2+1可以直接写出它的对称轴直线方程.【解答】解:∵抛物线y=﹣2(x+3)2+1的对称轴直线是该图象的顶点坐标的横坐标,∴抛物线的对称轴是直线x=﹣3;故选:D.【点评】本题考查了二次函数的性质.抛物线的顶点式方程为y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.4.在下图中,反比例函数的图象大致是()A.B.C.D.【分析】由于y=,比例系数4>0,根据反比例函数的性质,可得图象在第一和第三象限.【解答】解:∵k=4,可根据k>0,反比例函数图象在第一、三象限;∴在每个象限内,y随x的增大而减小.故选:D.【点评】本题考查了反比例函数图象的性质:①k<0,反比例函数图象在第二、四象限,在每个象限内,y随x的增大而增大;②k>0,反比例函数图象在第一、三象限,在每个象限内,y随x的增大而减小.5.连续四次抛掷一枚硬币都是正面朝上,则“第五次抛掷正面朝上”是()A.必然事件B.不可能事件C.随机事件D.概率为1的事件【分析】根据随机事件的定义即可判断.【解答】解:“第五次抛掷正面朝上”是随机事件.故选:C.【点评】本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.如图,在正三角形网格中,菱形M经过旋转变换能得到菱形N,下列四个点中能作为旋转中心的是()A.点A B.点B C.点C D.点D【分析】直接利用旋转的性质结合等边三角形的性质进而分析得出答案【解答】解:如图所示:菱形M绕点D经过顺时针旋转60°变换能得到菱形N,故选:D.【点评】此题主要考查了旋转的性质以及等边三角形的性质,正确把握旋转的性质是解题关键.7.已知A(﹣1,y1),B(2,y2)是抛物线y=﹣(x+2)2+3上的两点,则y1,y2的大小关系为()A.y1>y2B.y1<y2C.y1≥y2D.y1≤y【分析】抛物线的对称轴为直线x=﹣2,根据二次函数的性质,抛物线开口向下,在对称轴的右侧y随x的增大而减小,即可判定.【解答】解:∵y=﹣(x+2)2+3,∴抛物线的对称轴为直线x=﹣2,抛物线开口向下,∴当x>﹣2,y随x的增大而减小,∵﹣2<﹣1<2,所以y1>y2.故选:A.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.8.如果圆O是△ABC的外接圆,AC=BC,那么下列四个选项中,直线l必过圆心O的是()A.l⊥AC B.l平分AB C.l平分∠C D.l平分【分析】根据等腰三角形三线合一的性质即可得出结论.【解答】解:∵圆O是△ABC的外接圆,∴点O在三边的垂直平分线上.∵AC=BC,∴当l平分∠C时,l也是AB边的垂直平分线.故选:C.【点评】本题考查的是三角形的外接圆与外心,熟知三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心是解答此题的关键.9.当k=﹣2时,下列双曲线中,在每一个象限内,y随x增大而减小的是()A.y=﹣B.y=C.y=D.y=【分析】利用反比例函数的性质可解.【解答】解:当k=﹣2时,y=﹣的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第二、第四象限,在每一象限内y 随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第一、第三象限,在每一象限内y 随x的增大而减小;故选:D.【点评】本题考查了反比例函数的性质,熟练掌握反比例函数的性质是本题的关键.10.起重机的滑轮装置如图所示,已知滑轮半径是10cm,当物体向上提升3πcm时,滑轮的一条半径OA绕轴心旋转的角度为()A.108°B.60°C.54°D.27°【分析】本题实质上还是一道利用弧长公式计算的题.【解答】解:,解得n=54度.故选:C.【点评】本题是一道弧长公式的实际应用题,学生平时学习要紧密联系实际,学以致用,不可死学.11.(2分)将方程x2﹣6x+3=0左边配成完全平方式,得到的方程是()A.(x﹣3)2=﹣3B.(x﹣3)2=6C.(x﹣3)2=3D.(x﹣3)2=12【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:移项,得x2﹣6x=﹣3,等式两边同时加上一次项系数一半的平方(﹣3)2,得x2﹣6x+(﹣3)2=﹣3+(﹣3)2,即(x﹣3)2=6.故选:B.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.12.(2分)如图,⊙O中,弦AB⊥AC,OE⊥AB,垂足为E,OF⊥AC,垂足为F,若AB+AC=10,则四边形OEAF的周长为()A.10.B.9C.8D.7【分析】先判断出四边形OEAF的形状,再根据垂径定理得出AF+AE的长,进而可得出结论.【解答】解:∵AB⊥AC,OE⊥AB,OF⊥AC,∴四边形OEAF是矩形,∴四边形OEAF的周长=2(AF+AE)=2×(AB+AC)=10.故选:A.【点评】本题考查的是垂径定理,熟知垂直于弦的直径平分线是解答此题的关键.13.(2分)在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:根据以上数据,估算袋中的白棋子数量为()A.60枚B.50枚C.40枚D.30枚【分析】利用已知提供的数据求出黑棋子的比例,进而假设出白棋子个数,列出方程,解方程即可得出白棋子个数.【解答】解:根据试验提供的数据得出:黑棋子的比例为:(1+3+0+2+3+4+2+1+1+3)÷100=20%,所以白棋子比例为:1﹣20%=80%,设白棋子有x枚,由题意,得=80%,x=0.8(x+10),x=0.8x+8,0.2x=8,所以x=40,经检验,x=40是原方程的解,即袋中的白棋子数量约40颗.故选:C.【点评】此题主要考查了利用频率估计概率,根据试验次数得出黑棋子的比例,从而得出白棋子个数是解决问题的关键.14.(2分)如图,已知△ABC在平面直角坐标系中,点A的坐标为(0,3),若以点B 为位似中心,在平面直角坐标系内画出△A′BC′,使得△A′BC′与△ABC位似,且相似比为2:1,则点C′的坐标为()A.(0,0)B.(0,1)C.(1,﹣1)D.(1,0)【分析】利用位似图形的性质结合位似比得出△BA′C′,进而得出C′点坐标.【解答】解:如图所示:△A′BC′与△ABC位似,相似比为2:1,点C′的坐标为:(1,0).故选:D.【点评】此题主要考查了位似变换以及坐标与图形的性质,正确得出对应点位置是解题关键.15.(2分)在正六边形ABCDEF的中,若BE=10,则这个正六边形外接圆半径是()A.B.5C.D.5【分析】根据正六边形的性质解答即可.【解答】解:因为正六边形ABCDEF的中,BE=10,所以这个正六边形外接圆半径是,故选:B.【点评】此题考查了正六边形的性质.此题难度适中,注意掌握数形结合思想的应用.16.(2分)如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b【分析】根据对折表示出小长方形的长和宽,再根据相似多边形的对应边成比例列式计算即可得解.【解答】解:对折两次后的小长方形的长为b,宽为a,∵小长方形与原长方形相似,∴=,∴a=2b.故选:B.【点评】本题考查了相似多边形对应边成比例的性质,准确表示出小长方形的长和宽是解题的关键.二、填空题(本大题共3个小题,19小题4分,17、18每小题3分,共计10分.)17.若3是一元二次方程x2+bx+3=0的一个根,则常数b的值为﹣4.【分析】已知了一元二次方程的一个实数根,可将其代入该方程中,即可求出b的值.【解答】解:∵3是一元二次方程x2+bx+3=0的一个根,∴32+3b+3=0,∴b=﹣4.故答案为﹣4.【点评】此题主要考查了一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.将方程的根代入方程即可得到关于b的一元一次方程,解此一元一次方程即可.18.抛物线y=ax2经过点(3,5),则a=.【分析】此题考查了待定系数法,把点代入即可求得.【解答】解:把点(3,5)代入y=ax2中,得:9a=5,解得a=.【点评】本题考查了点与函数的关系,考查了用待定系数法,难度不大.19.(4分)参加一次足球联赛的每两队之间都进行一场比赛,共要比赛28场,设有x个队参赛,根据题意列出的方程是x(x﹣1)=28.【分析】设有x个队参赛,根据参加一次足球联赛的每两队之间都进行一场比赛,共要比赛28场,可列出方程.【解答】解:设有x个队参赛,x(x﹣1)=28.故答案为:x(x﹣1)=28.【点评】本题考查由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(9分)若点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,求a,b的值.【分析】根据关于原点对称的点的坐标特点进行解答即可.【解答】解:∵点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,∴a﹣2=﹣(﹣1),3=﹣(2b+2),解得a=3,b=﹣.【点评】本题考查的是关于原点对称的点的坐标特点,即关于原点对称的点的坐标,横、纵坐标均互为相反数.21.(9分)小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数y(度)是镜片焦距x(厘米)(x>0)的反比例函数,调查数据如表:(1)求y与x的函数表达式;(2)若小明所戴近视眼镜镜片的度数为500度,求该镜片的焦距.【分析】(1)根据图表可以得到眼镜片的度数与焦距的积是一个常数,因而眼镜片度数与镜片焦距成反比例函数关系,即可求解;(2)在解析式中,令y=500,求出x的值即可.【解答】解:(1)根据题意得:与x之积恒为10000,则函数的解析式是y=;(2)令y=500,则500=,解得:x=20.即该镜片的焦距是20cm.【点评】考查了反比例函数的应用,正确理解反比例函数的特点,两个变量的乘积是常数,是解决本题的关键.22.(9分)在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机从箱子里取出1个球,则取出黄球的概率是多少?(2)随机从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示出所有可能出现的结果,并求两次取出的都是白色球的概率.【分析】(1)由在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出白颜色球的情况,再利用概率公式即可求得答案.【解答】解:(1)∵在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,∴随机地从箱子里取出1个球,则取出黄球的概率是:;(2)画树状图得:由树形图可知所有可能的情况有9种,其中两次取出的都是白色球有1种,所以两次取出的都是白色球的概率=.【点评】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于放回实验.23.(9分)已知关于x的一元二次方程x2﹣6x+k+3=0有两个不相等的实数根(1)求k的取值范围;(2)若k为大于3的整数,且该方程的根都是整数,求k的值.【分析】(1)根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k 的不等式,求出不等式的解集即可得到k的范围;(2)找出k范围中的整数解确定出k的值,再将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值.【解答】解:(1)△=(﹣6)2﹣4(k+3)=36﹣4k﹣12=﹣4k+24,∵原方程有两个不相等的实数根,∴﹣4k+24>0.解得k<6;(2)∵k<6且k为大于3的整数,∴k=4或5.①当k=4时,方程x2﹣6x+7=0的根不是整数.∴k=4不符合题意;②当k=5时,方程x2﹣6x+8=0根为x1=2,x2=4均为整数.∴k=5符合题意.综上所述,k的值是5.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.也考查了一元二次方程的解法.24.(10分)如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE•DF.【分析】(1)根据题意可得∠B+∠A=90°,∠A+∠F=90°,则∠B=∠F,从而得出△ADF∽△EDB;(2)由(1)得∠B=∠F,再CD是Rt△ABC斜边AB上的中线,得出CD=DB,根据等边对等角得∠DCE=∠F,则可证明△CDE∽△FDC,从而得出=,化为乘积式即可CD2=DF•DE.【解答】证明:(1)在Rt△ABC中,∠B+∠A=90°∵DF⊥AB∴∠BDE=∠ADF=90°∴∠B=∠F,∴△ADF∽△EDB;(2)由(1)可知△ADF∽△EDB ∴∠B=∠F,∵CD是Rt△ABC斜边AB上的中线∴CD=AD=DB,∴∠DCE=∠B,∴∠DCE=∠F,∴△CDE∽△FDC,∴=,∴CD2=DF•DE.【点评】本题考查了相似三角形的判定和性质,以及直角三角形斜边上的中线等于斜边的一半.25.(10分)如图,P是⊙O的切线FA上的点,点A为切点,连接OP,OP的垂直平分线FE交OA于点E,连接EP,过点P作PC⊥EP(1)已知OA=8,AP=4,求OE的长(2)求证:PC与⊙O相切.【分析】(1)由AP是⊙O的切线,得到∠OAP=90°,根据勾股定理列方程即可得到结论;(2)过O作OG⊥PC于G,根据余角的性质得到∠OPE+∠OPC=90°=∠AOP+∠OPA,等量代换得到∠OPC=∠OPA,推出△AOP≌△GOP,根据全等三角形的性质得到OG=OA,即可得到结论.【解答】(1)解:∵AP是⊙O的切线,∴PE2﹣AE2=AP2,∵OA=8,AP=4,∵OP的垂直平分线FE交OA于点E,∴OE=PE,∴OE2﹣(8﹣OE)2=42,∴OE=5;(2)证明:过O作OG⊥PC于G,∵CE垂直平分OP,∴∠AOP=∠OPE,∴∠OPE+∠OPC=90°=∠AOP+∠OPA,∴∠OPC=∠OPA,在△AOP与△POG中,,∴△AOP≌△GOP(AAS),∴OG=OA,∴PC与⊙O相切.【点评】本题考查了切线的判定和性质.全等三角形的判定和性质,线段垂直平分线的性质,正确的作出辅助线构造全等三角形的是解题的关键.26.(12分)某造纸厂生产甲、乙两种生活用纸的相关信息如下表,其中x(吨)表示甲、乙两种生活用纸的月产量,请根据表中的信息解答后面的问题:(1)设该造纸厂每月生产甲、乙两种生活用纸的利润分别为y1元和y2元,分别求出y1和y2与x的函数关系式(注:利润=总收入﹣总支出);(2)若某月要生产甲、乙两种生活用纸共300吨,求该月生产甲、乙两种生活用纸各多少吨,获得的总利润最大?最大利润是多少?【分析】(1)根据:总利润=每吨净利润﹣每月设备管理、维护费,分别列出函数解析式即可;(2)设该月生产乙种生活用纸m吨,则生产甲种生活用纸(300﹣m)吨,总利润为W 元,由(1)中函数关系式将甲、乙两种生活用纸的利润y1+y2列出W关于m的函数关系式,配方可得函数的最值情况.【解答】解:(1)依题意得:y1=(4800﹣2200﹣200)x﹣20000=2400x﹣20000y2=(7000﹣10x﹣1600﹣400)x=﹣10x2+5000x;(2)设该月生产乙种生活用纸m吨,则生产甲种生活用纸(300﹣m)吨,总利润为W 元,依题意得:W=2400(300﹣m)﹣20000﹣10m2+5000m=720000﹣2400 m﹣20000﹣10 m2+5000m=﹣10 m2+2600 m+700000∵W=﹣10(m﹣130)2+869000.∵﹣10<0∴当m=130时,W最大=869000即生产甲、乙生活用纸分别为170吨和130吨时总利润最大,最大利润为869000元.【点评】本题主要考查二次函数的实际应用能力,弄清题意抓住相等关系列出函数关系式是解题的关键.。
2018-2019学年九年级第一学期数学期末考试广东期卷
九年级数学 第1页(共4页)图2A B CD 图3 2018-2019九年级第一学期数学期末考试广东卷第一部分(选择题,共36分)一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.矩形具有而菱形不具有的性质是A .对角线互相平分B .对角线互相垂直C .对角线相等D .是中心对称图形2.关于二次函数322+-=x y ,下列说法中正确..的是 A .它的开口方向是向上 B .当x <–1时,y 随x 的增大而增大C .它的顶点坐标是(–2,3)D .当x = 0时,y 有最小值是33.sin60°的值是 A .21 B .23 C .1 D 4.图15.用配方法解方程642=+x x ,下列配方正确的是A .()2242=+x B .()1022=+x C .()822=+x D .()622=+x6.图2是我们学过的反比例函数图象,它的函数解析式可能是A .x y 2-=B .x y 2=C .2x y -=D .2x y -=7.如图3,已知∠BAD =∠CAD ,则下列条件中不一定能....使 △ABD ≌△ACD 的是A .∠B =∠C B .∠BDA =∠CDAC .AB =ACD .BD =CD 8.过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为 A .91 B .31 C .21 D .32A .B .C .九年级数学 第2页(共4页)甲小刚 图7 AB C D EF 图5 O 9.如图4,已知A 是反比例函数xy 3=(x > 0)图象上的一个 动点,B 是x 轴上的一动点,且AO=AB .那么当点A 在图象上自左向右运动时,△AOB 的面积A .增大B .减小C .不变D .无法确定10.如图5,已知AD 是△ABC 的高,EF 是△ABC 的中位线,则下列结论中错误..的是 A .EF ⊥AD B .EF=21BC C .DF=21AC D .DF=21AB11.某公司今年产值200万元,现计划扩大生产,使今后两年的产值都比前一年增长一个相同的百分数,这样三年(包括今年)的总产值就达到了1400万元.设这个百分数为x ,则可列方程为A .()140012002=+x B .()140012003=+x C .()200114002=-x D .()()1400120012002002=++++x x 12.如图6,已知抛物线5621+-=x x :y l 与x 轴分别交于A 、B 两点,顶点为M .将抛物线l 1沿x 轴翻折后再向左平移得到抛物线l 2.若抛物线l 2过点B ,与x 轴的另一个交点为C ,顶点为N ,则四边形AMCN 的面积为A .32B .16C .50D .40 第二部分(非选择题,共64分)二、填空题(每小题3分,共12分。
2018-2019学年九年级第一学期数学期末考试卷与答案详解
2018-2019学年度第一学期期末教学质量监测九年级数学试卷一、选择题(每小题3分,共30分)1.如图的几何体是由六个同样大小的正方体搭成的,2.其左视图是( )A .B .C .D .2.关于x 的一元二次方程0102=-+bx x 的一个根为2,则b 的值为( )A.1B.2C.3D.73.点(4,﹣3)是反比例函数x k y =的图象上的一点,则k=( ) A .-12 B .12 C . D .14.下列关于x 的一元二次方程有实数根的是( )A . x 2+2=0B .2x 2+x+1=0C .x 2﹣x+3=0D . x 2﹣2x ﹣1=05.一个口袋中有2个红球,3个白球,这些球除色外都相同,从口袋中随机摸出一个球,这个球是白球的概率是( )A .B .C .D .6.顺次连结下列四边形的四边中点所得图形一定是菱形的是( )A . 平行四边形B .菱形C .矩形D . 梯形 7.反比例函数xk y =与一次函数k kx y +=,其中0≠k ,则他们的图象可能是( ) A . B . C . D .8.下列命题中,假命题的是( )A .分别有一个角是 110的两个等腰三角形相似B .如果两个三角形相似,则他们的面积比等于相似比C .若5x=8y ,则58=y x D .有一个角相等的两个菱形相似9.在同一时刻的太阳光下,小刚的影子比小红的影子长,那么,在晚上同一路灯下,( )A .小刚的影子比小红的长B .小刚的影子比小红的影子短C .小刚跟小红的影子一样长D .不能够确定谁的影子长10.如图,在□ABCD 中,BE 平分∠ABC ,CF 平分∠BCD ,E 、F 在AD 上,BE 与CF 相交于点G ,若AB=7,BC=10,则△EFG 与△BCG 的面积之比为( )A .4:25B .49:100C .7:10D .2:5二.填空题:(每小题4分,共24分)11.如果x:y=2:3,那么yy x + .12.由于某型病毒的影响,某地区猪肉价格连续两个月大幅下降.由原来每斤20元下调到每斤13元,设平均每个月下调的百分率为x ,则根据题意可列方程为 .13.某养殖户在池塘中放养了鲤鱼1000条,鲢鱼若干,在一次随机捕捞中,共抓到鲤鱼200条,鲢鱼500条,估计池塘中原来放养了鲢鱼 条. 14.函数422)1(--+=m m x m y 是y 关于x 的反比例函数,则m= .15.在矩形ABCD 中,AB =6,BC=8,△ABD 绕B 点顺时针旋转 90到△BEF ,连接DF ,则DF= .16. 如图,菱形ABCD 中,AB=4,∠A BC=60°,点E 、F 、G分别为线段BC ,CD ,BD 上的任意一点,则EG+FG 的最小值为 .三、解答题(一)(每小题6分,共18分)17.解方程:x 2+8x ﹣9=018.如图,在△ABC中,D、E分别在AB与AC上,且AD=5,DB=7,AE=6,EC=4,△ADE与△ACB相似吗?请说明理由.19.在一次朋友聚餐中,有A、B、C、D四种素菜可供选择,小明从中选择一种,小莉也从中选择一种(与小明选择的不相同),请利用列表或树状图的方法求出A与B两种素菜被选中的概率.四、解答题(二)(每小题7分,共21分)20.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.21.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,过点C 作CE∥BD,过点D 作DE∥AC,CE 与DE 相交于点E .(1)求证:四边形CODE 是矩形.(2)若AB=5,AC=6,求四边形CODE 的周长.22.某服装店销售一种服装,每件进货价为40元,当以每件80元销售的时候,每天可以售出50件,为了增加利润,减少库存,服装店准备适当降价。
2018-2019学年度九年级(上)期末数学试卷(含答案)
2018—2019学年度九年级第一学期期末教学质量检测数 学 试 卷考试时间:120分钟;满分:120分.选择题答题卡一、选择题(本大题共16个小题,1—10小题,每小题3分;11—16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列方程是一元二次方程的是( ) A .x 2﹣y =1 B .x 2+2x ﹣3=0 C .x 2+x1=3 D .x ﹣5y =6 2.方程x 2-2x -3=0经过配方法化为(x +a )2=b 的形式,正确的是( ) A .()412=-xB .()412=+xC .()1612=-xD .()1612=+x3.有两个事件,事件A :367人中至少有2人生日相同;事件B :抛掷一枚均匀的骰子,朝上的面的点数为偶数.下列说法正确的是( ) A .事件A 、B 都是随机事件 B .事件A 、B 都是必然事件C .事件A 是随机事件,事件B 是必然事件D .事件A 是必然事件,事件B 是随机事件4.如图,有一电路AB 是由图示的开关控制,闭合a ,b ,c ,d ,e 五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是( )A .15B .25C .35D .455.下列关系式中,属于二次函数的是(x 是自变量)( ) A .y =31x 2B .y =12-xC .y =21xD .y =ax 2+bx +c6.下列关于二次函数y =-12x 2图象的说法:①图象是一条抛物线;②开口向下;③对称轴是y 轴;④顶点坐标为(0,0).其中正确的有( )A .1个B .2个C .3个D .4个7.二次函数图象上部分点的坐标对应值列表如下:则该函数图象的对称轴是( )A .直线x =-3B .直线x =-2C .直线x =-1D .直线x =08.已知⊙O 的直径是10,圆心O 到直线l 的距离是5,则直线l 和⊙O的位置关系是( )A .相离B .相交C .相切D .外切9.已知:如图,AB 是⊙O 的直径,C ,D 是BE ︵的三等分点,∠AOE =60°,则∠COE 等于 ( )A .40°B .60°C .80°D .120°10.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r ,扇形的圆心角等于120°,则围成的圆锥模型的高为( )A .r B .C D .3r 11.已知反比例函数y =x6-,下列结论中不正确的是() A .图象必经过点(-3,2) B .图象位于第二、四象限 C .若x <-2,则0<y <3D .在每一个象限内,y 随x 值的增大而减小 12.如图所示,反比例函数y =xk(k ≠0,x >0)的图象经过矩形OABC 的对角线AC 的中点D .若矩形OABC 的面积为8,则k 的值为( ) A .2 B .22 C .23 D .25AOBEDC (9题图) (10题图)13.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图,有下列5个结论:①abc <0;②3a+c>0;③4a +2b +c >0;④2a+b =0;⑤b 2>4ac .其中正确的结论有( )A .1个B .2个C .3个D .4个14.如图,如果正方形ABCD 旋转后能与正方形CDEF 重合,那么图形所在平面内,可作为旋转中心的点的个数是( )A .1个B .2个C .3个D .4个(13题图) 15.如图所示,长为8cm ,宽为6cm 的矩形中,截去一个矩形(图中阴影部分),如果剩下矩形与原矩形相似,那么剩下矩形的面积是( )A .28cm 2B .27cm 2C .21cm 2D .20cm 216.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,AC =43,BC 的中点为D .将△ABC 绕点C 顺时针旋转任意一个角度得到△FEC ,EF 的中点为G ,连接DG .在旋转过程中,DG 的最大值是 ( )A .4 3B .6C .2+2 3D .8二、填空题(本大题共有3个小题,共12分,17~18小题各3分,19小题有2个空,每空3分.把答案写在题中横线上)17.关于x 的一元二次方程ax 2+bx +1=0有两个相等的实数根,写出一组满足条件的实数a ,b 的值:a = ,b = .18.如图,已知⊙P 的半径为2,圆心P 在抛物线y =21x 2﹣1上运动,当⊙P 与x 轴相切时,圆心P 的坐标为 .19.如图,P A ,PB 分别切⊙O 于A ,B ,并与⊙O 的切线,分别相交于C ,D ,已知△PCD 的周长等于8cm ,则P A =__________ cm ;已知⊙O 的直径是6cm ,PO =______cm .三、解答题(本大题有7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分10分) 选择适当的方法解下列方程(1)(3x -1)2=(x -1)2(2)3x (x -1)=2-2x21.(本小题满分8分)定义新运算:对于任意实数m ,n 都有m ☆n =m 2n +n ,等式右边是常用的加法、乘法及乘方运算.例如:-3☆2=(-3)2×2+2=20.根据以上知识解决问题:若2☆a 的值小于0,请判断方程:2x 2-bx +a =0的根的情况.22.(本小题满分9分)在围棋盒中有x 颗黑色棋子和y 颗白色棋子,从盒中随机取出一个棋子,它是黑色棋子的概率是83. (1)试写出y 与x 的函数解析式;(2)若往盒子中再放入10颗黑色棋子,则取得黑色棋子的概率变为21,求x 与y 的值.ABCD E F(14题图)(15题图)ABCD EF G(16题图) (18题图)(19题图)(22题图)(26题图)(23题图)ADE23.(本小题满分9分)如图,一次函数y =kx +b 与反比例函数y =xm(x <0)的图象相交于点A 、点B ,与x 轴交于点C ,其中点A (-1,3)和点B (-3,n ).(1)填空:m =_________,n =__________. (2)求一次函数的解析式和△AOB 的面积. (3)根据图象回答:当x 为何值时,kx +b ≥xm(请直接写出答案)____________24.(本小题满分9分)如图,△BAD 是由△BEC 在平面内绕点B 旋转60°而得,且AB ⊥BC ,BE =CE ,连接DE . (1)求证:△BDE ≌△BCE ;(2)试判断四边形ABED 的形状,并说明理由.25.(本小题满分10分)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC =∠D =60°. (1)求∠ABC 的度数; (2)求证:AE 是⊙O 的切线; (3)当BC =4时,求劣弧AC 的长.26.(本小题满分11分) 如图,已知抛物线y =41x 2+bx +4与x 轴相交于A 、B 两点,与y 轴相交于点C ,若已知A 点的坐标为A (-2,0). (1)求抛物线的解析式及它的对称轴;(2)求点C 的坐标,连接AC 、BC 并求线段BC 所在直线的解析式;(3)在抛物线的对称轴上是否存在点Q ,使△ACQ 为等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.ABCDOE(25题图)18—19学年度九年级(上)期末考试数学答案二、填空题17.1 2; 18.(6,2)或(﹣6,2); 19.4,5. 三、解答题20.解:∵2☆a 的值小于0,∴22·a +a =5a <0.解得a <0. ………………………3分在方程2x 2-bx +a =0中,Δ=(-b )2-8a ≥-8a >0,………………………6分 ∴方程2x 2-bx +a =0有两个不相等的实数根.………………………………8分 21.解:(1)由题意得x x +y =38,得y =53x …………………………………………4分(2)由题意得x +10x +y +10=12,结合y =53x ,联立方程组可求得⎩⎪⎨⎪⎧x =15,y =25………9分22.解:(1)∵反比例函数y =xm过点A (﹣1,3),B (﹣3,n ) ∴m =3×(﹣1)=﹣3,m =﹣3n∴n =1…………………………………………………………………………………2分 故答案为﹣3,1(2)设一次函数解析式y =kx +b ,且过(﹣1,3),B (﹣3,1)∴⎩⎨⎧+-=+-=b k b k 31,3解得:⎩⎨⎧==41b k ∴解析式y =x +4………………………………………………………………………5分 ∵一次函数图象与x 轴交点为C∴0=x +4 ∴x =﹣4 ∴C (﹣4,0) ∵S △AOB =S △AOC ﹣S △BOC ∴S △AOB =21×4×3﹣21×4×1=4…………………………………………………………7分 (3)∵kx +b ≥xm∴一次函数图象在反比例函数图象上方 ∴﹣3≤x ≤﹣1…………………………………………………………………………9分 故答案为﹣3≤x ≤﹣123.解:(1)证明:∵△BAD 是由△BEC 在平面内绕点B 旋转60°而得,∴DB =CB ,∠ABD =∠EBC ,∠ABE =60°. ……………………………………2分 ∵AB ⊥BC ,∴∠ABC =90°.∴∠DBE =∠CBE =30°. ……………………………3分在△BDE 和△BCE 中,⎩⎪⎨⎪⎧DB =CB ,∠DBE =∠CBE ,BE =BE ,∴△BDE ≌△BCE (SAS ).……………………………………………………………5分 (2)四边形ABED 为菱形.……………………………………………………………6分 理由如下:由(1)得△BDE ≌△BCE ,∵△BAD 是由△BEC 旋转而得,∴△BAD ≌△BE C. ∴BA =BE ,AD =EC =E D. 又∵BE =CE ,∴BA =BE =AD =E D.∴四边形ABED 为菱形.……………………………………………………………9分 24.25.解:(1)∵∠ABC 与∠D 都是弧AC 所对的圆周角,∴∠B =∠D =60°. ……2分(2)∵AB 是⊙O 的直径,∴∠ACB =90°.又∠B =60°∴∠BAC =30°. ∴∠BAE =∠BAC +∠EAC =30°+60°=90°,即BA ⊥AE .∴AE 是⊙O 的切线. ……………………………………………6分 (3)如图,连接OC ,∵∠ABC =60°,∴∠AOC =120°.∴劣弧AC 的长为1804120⋅π=38π.……………………………10分 26.解:(1)因为抛物线过点A ,所以将A (-2,0)代入 y =41-x 2+bx +4得:0=41-×(-2)2+b ×(-2)+4,解得b =23,所以,抛物线解析式为:y =-41x 2+23x +4,……………………………………2分由上得:y =-41 (x -3)2+425,对称轴是x =3;………4分 (2)C (0,4);………………………………………5分 由A 点坐标和对称轴可求出B 点坐标为:B (8,0) 由B 、C 两点的坐标可求出:y =−21x +4.……………7分 (3)Q 1(3,0),Q 2(3,4+11),Q 3(3,4-11).………………………11分 如求Q 2,由A ,C 两点的坐标,可求出AC =25, (由于5>2,25>4)以C 为圆心,AC 为半径画弧交对称轴于E ,过C 点 作CD ⊥对称轴于点D ,CE = AC =25,CD =3, 则DE =11,所以,E 点的坐标为(3,4+11)。
2018-2019学年九年级(上)期末数学试卷(含解析)
2018-2019学年九年级(上)期末数学试卷含答案一、选择题(每题3分,共24分)1.若反比例函数的图象经过点(3,﹣2),则该反比例函数的表达式为()A.y=B.y=﹣C.y=D.y=﹣2.已知一个扇形的半径是1,圆心角是120°,则这个扇形的弧长是()A.B.πC.D.3.如图,为了测量某棵树的高度,小刚用长为2m的竹竿作测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距6m,与树距15m,那么这颗树的高度为()A.5m B.7m C.7.5m D.21m4.如图,AB是⊙O的直径,点C,D在⊙O上.若∠ABD=55°,则∠BCD的度数为()A.25°B.30°C.35°D.40°5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,一元二次方程ax2+bx+c=0(a≠0)的根的判别式为△=b2﹣4ac,则下列四个选项正确的是()A.b<0,c<0,△>0 B.b>0,c>0,△>0C.b>0,c<0,△>0 D.b<0,c>0,△<06.如图,⊙O的半径为4,将⊙O的一部分沿着AB翻折,劣弧恰好经过圆心O,则折痕AB的长为()A.3 B.2C.6 D.47.如图,在由边长为1的小正方形组成的网格中,点A,B,C都在小正方形的顶点上,则cos∠A的值为()A.B.2 C.D.8.如图,在Rt△ABC中,∠A=90°,AB=AC=4.点E为Rt△ABC边上一点,点E以每秒1个单位的速度从点C出发,沿着C→A→B的路径运动到点B为止.连接CE,以点C为圆心,CE长为半径作⊙C,⊙C与线段BC交于点D,设扇形DCE面积为S,点E的运动时间为t,则在以下四个函数图象中,最符合扇形面积S关于运动时间t的变化趋势的是()A.B.C.D.二、填空题(共8小题,每小题3分,满分24分)9.请写出一个顶点在x轴上的二次函数解析式:.10.已知点(x1,y1),(x2,y2)在反比例函数y=上,当y1<y2<0时,x1,x2的大小关系是.11.如图,角α的一边在x轴上,另一边为射线OP,点P(2,2),则tanα= .12.如图,点D为△ABC的AB边上一点,AD=2,DB=3.若∠B=∠ACD,则AC= .13.如图,AC,AD是正六边形的两条对角线,在不添加任何其他线段的情况下,请写出两个关于图中角度的正确结论:(1);(2).14.二次函数y=﹣x2+bx+c的部分图象如图所示,由图象可知,不等式﹣x2+bx+c<0的解集为.15.已知⊙O的半径为1,其内接△ABC的边AB=,则∠C的度数为.16.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作已知角的角平分线.已知:如图,∠BA C.求作:∠BAC的角平分线AP.小霞的作法如下:(1)如图,在平面内任取一点O;(2)以点O为圆心,AO为半径作圆,交射线AB于点D,交射线AC于点E;(3)连接DE,过点O作射线OP垂直于线段DE,交⊙O于点P;(4)过点P作射线AP.所以射线AP为所求.老师说:“小霞的作法正确.”请回答:小霞的作图依据是.三、解答题(共9小题,满分52分)17.(5分)计算:cos30°•tan60°﹣4sin30°+tan45°.18.(5分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)交于点A(﹣,﹣2),B(1,a).(1)分被求出反比例函数和一次函数的表达式;(2)根据函数图象,直接写出不等式kx+b>的解集.19.(5分)如图,△ABC内接于⊙O,若⊙O的半径为6,∠B=60°,求AC的长.20.(5分)如图,建筑物的高CD为17.32米,在其楼顶C,测得旗杆底部B的俯角α为60°,旗杆顶部A的仰角β为20°,请你计算旗杆的高度.(sin20°≈0.342,tan20°≈0.364,cos20°≈0.940,≈1.732,结果精确到0.1米)21.(5分)如图,李师傅想用长为80米的棚栏,再借助教学楼的外墙围成一个矩形的活动区ABC D.已知教学楼外墙长50米,设矩形ABCD的边长AB为x(米),面积为S(平方米).(1)请写出活动区面积S与x之间的关系式,并指出x的取值范围;(2)当AB为多少米时,活动区的面积最大?最大面积是多少?22.(5分)如图,ABC是等腰三角形,AB=AC,以AC为直径的⊙O与BC交于D,DE⊥AB,垂足为点E,ED的延长线与AC的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为2,BE=1,求cos∠A的值.23.(7分)在平面直角坐标系xOy中,二次函数y=ax2﹣2ax+1(a>0)的对称轴为x=b,点A(﹣2,m)在直线y=﹣x+3上.(1)求m,b的值;(2)若点D(3,2)在二次函数y=ax2﹣2ax+1(a>0)上,求a的值;(3)当二次函数y=ax2﹣2ax+1(a>0)与直线y=﹣x+3相交于两点时,设左侧的交点为P(x1,y1),若﹣3<x1<﹣1,求a的取值范围.24.(7分)如图1,在矩形ABCD中,点E为AD边中点,点F为BC边中点;点G,H为AB边三等分点,I,J为CD边三等分点.小瑞分别用不同的方式连接矩形对边上的点,如图2,图3所示,那么图2中四边形GKLH的面积与图3中四边形KPOL 的面积相等吗?(1)小瑞的探究过程如下:在图2中,小瑞发现,S四边形GKLH= S四边形ABCD;在图3中,小瑞对四边形KPOL面积的探究如下,请你将小瑞的思路填写完整;设S△DEP=a,S△AKG=b.∵EC∥AF.∴△DEP∽△DAK,且相似比为1:2,得到S△DAK=4a.∵GD∥BI,∴△AGK∽△ABM,且相似比为1:3,得到S△ABM=9b又∵S△DAG=4a+b=S四边形ABCD,S△ABF=9b+a=S四边形ABC D.∴S四边形ABCD=24a+6b=36b+4a.∴a= b,S四边形ABCD= b,S四边形KPOL= b.∴S四边形KPOL= S四边形ABCD,则S四边形KPOL S四边形GKLH(填写“>”“<”或“═”).(2)小瑞又按照图4的方式连接矩形ABCD对边上的点,则S四边形ANML= S四.边形ABC D25.(8分)点P的“d值”定义如下:若点Q为圆上任意一点,线段PQ长度的最大值与最小值之差即为点P的“d值”,记为d P.特别的,当点P,Q重合时,线段PQ的长度为0.当⊙O的半径为2时:(1)若点C(﹣,0),D(3,4),则d c= ,d p= ;(2)若在直线y=2x+2上存在点P,使得d P=2,求出点P的横坐标;(3)直线y=﹣x+b(b>0)与x轴,y轴分别交于点A,B.若线段AB上存在点P,使得2≤d P<3,请你直接写出b的取值范围.参考答案与试题解析一、选择题(每题3分,共24分)1.若反比例函数的图象经过点(3,﹣2),则该反比例函数的表达式为()A.y=B.y=﹣C.y=D.y=﹣【分析】函数经过一定点,将此点坐标代入函数解析式y=(k≠0)即可求得k的值.【解答】解:设反比例函数的解析式为y=(k≠0),函数的图象经过点(3,﹣2),∴﹣2=,得k=﹣6,∴反比例函数解析式为y=﹣.故选:B.【点评】本题考查了待定系数法求反比例函数解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.2.已知一个扇形的半径是1,圆心角是120°,则这个扇形的弧长是()A.B.πC.D.【分析】根据弧长公式l=进行解答即可.【解答】解:根据弧长的公式l=,得到:=π.故选:D.【点评】本题考查了弧长的计算,熟记弧长公式即可解答该题.3.如图,为了测量某棵树的高度,小刚用长为2m的竹竿作测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距6m,与树距15m,那么这颗树的高度为()A.5m B.7m C.7.5m D.21m【分析】先判定△OAB和△OCD相似,再根据相似三角形对应边成比例列式求解即可.【解答】解:如图,∵AB⊥OD,CD⊥OD,∴AB∥CD,∴△OAB∽△OCD,∴=,∵AB=2m,OB=6m,OD=6+15=21m,∴=,解得CD=7m.这颗树的高度为7m,故选:B.【点评】本题考查了相似三角形的应用,读懂题目信息,确定出相似三角形是解题的关键.4.如图,AB是⊙O的直径,点C,D在⊙O上.若∠ABD=55°,则∠BCD的度数为()A.25°B.30°C.35°D.40°【分析】先根据圆周角定理求出∠ADB的度数,再由直角三角形的性质求出∠A的度数,进而可得出结论.【解答】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°.∵∠ABD=55°,∴∠DAB=90°﹣55°=35°,∴∠BCD=∠DAB=35°.故选:C.【点评】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,一元二次方程ax2+bx+c=0(a≠0)的根的判别式为△=b2﹣4ac,则下列四个选项正确的是()A.b<0,c<0,△>0 B.b>0,c>0,△>0C.b>0,c<0,△>0 D.b<0,c>0,△<0【分析】根据抛物线的性质即可求出答案.【解答】解:由图象与y轴的交点位置可知:c<0,由图象与x轴的交点个数可知:△>0,由图象的开口方向与对称轴可知:a>0,>0,从而可知:b<0,故选:A.【点评】本题考查二次函数的性质,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.6.如图,⊙O的半径为4,将⊙O的一部分沿着AB翻折,劣弧恰好经过圆心O,则折痕AB的长为()A.3 B.2C.6 D.4【分析】过O作垂直于AB的半径OC,设交点为D,根据折叠的性质可求出OD的长;连接OA,根据勾股定理可求出AD的长,由垂径定理知AB=2AD,即可求出AB的长度.【解答】解:过O作OC⊥AB于D,交⊙O于C,连接OA,Rt△OAD中,OD=CD=OC=2,OA=4,根据勾股定理,得:AD==2,由垂径定理得,AB=2AD=4,故选:D.【点评】本题考查的是翻转变换的性质、矩形的性质,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.7.如图,在由边长为1的小正方形组成的网格中,点A,B,C都在小正方形的顶点上,则cos∠A的值为()A.B.2 C.D.【分析】过B作BD⊥AC于D,根据勾股定理得到AB的长,然后由锐角三角函数定义解答即可.【解答】解:如图,过B作BD⊥AC于D,则点D为格点,AD=,由勾股定理知:AB2=32+12=10,∴AB=,∴Rt△ADB中,cos∠A===,故选:C.【点评】本题考查了锐角三角函数的定义,锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cos A.8.如图,在Rt△ABC中,∠A=90°,AB=AC=4.点E为Rt△ABC边上一点,点E以每秒1个单位的速度从点C出发,沿着C→A→B的路径运动到点B为止.连接CE,以点C为圆心,CE长为半径作⊙C,⊙C与线段BC交于点D,设扇形DCE面积为S,点E的运动时间为t,则在以下四个函数图象中,最符合扇形面积S关于运动时间t的变化趋势的是()A.B.C.D.【分析】根据Rt△ABC中,∠A=90°,AB=AC=4,点E以每秒1个单位的速度从点C 出发,沿着C→A→B的路径运动到点B为止,可得函数图象先上升再下降,根据当0≤t≤4时,扇形面积S=,可得前半段函数图象为开口向上的抛物线的一部分,故B选项错误;根据当4<t≤8时,随着t的增大,扇形的半径增大,而扇形的圆心角减小,可得后半段函数图象不是抛物线,故C选项错误;再根据当t=8时,点E、D重合,扇形的面积为0,故D选项错误;运用排除法即可得到结论.【解答】解:∵Rt△ABC中,∠A=90°,AB=AC=4,点E以每秒1个单位的速度从点C 出发,∴当0≤t≤4时,扇形面积S=,∴前半段函数图象为开口向上的抛物线的一部分,故B选项错误;当4<t≤8时,随着t的增大,扇形的半径增大,而扇形的圆心角减小,∴后半段函数图象不是抛物线,故C选项错误;∵当t=8时,点E、D重合,∴扇形的面积为0,故D选项错误;故选:A.【点评】本题主要考查了动点问题的函数图象,用图象解决问题时,要理清图象的含义即会识图.函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.二、填空题(共8小题,每小题3分,满分24分)9.请写出一个顶点在x轴上的二次函数解析式:y=2(x+1)2(答案不唯一).【分析】顶点在x轴上的函数是y=a(x﹣h)2的形式,举一例即可.【解答】解:顶点在x轴上时,顶点纵坐标为0,即k=0,例如y=2(x+1)2.(答案不唯一)【点评】顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),此题考查了其中一种函数,要充分理解各函数的关系.10.已知点(x1,y1),(x2,y2)在反比例函数y=上,当y1<y2<0时,x1,x2的大小关系是x1>x2.【分析】先根据反比例函数y=中k=2可知此函数的图象在一、三象限,再根据y1<y2<0,可知A、B两点均在第三象限,故可判断出x1,x2的大小关系.【解答】解:∵反比例函数y=中k=2>0,∴此函数的图象在一、三象限,∵y1<y2<0,∴A、B两点均在第三象限,∵在第三象限内y随x的增大而减小,∴x1>x2.故答案为x1>x2.【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键.11.如图,角α的一边在x轴上,另一边为射线OP,点P(2,2),则tanα= .【分析】如图作PE⊥x轴于E.根据tanα=计算即可.【解答】解:如图作PE⊥x轴于E.∵P(2,2),∴OE=2,PE=2,∴tanα===.故答案为.【点评】本题考查解直角三角形、锐角三角函数等知识,解题的关键是熟练掌握三角函数的定义,属于中考常考题型.12.如图,点D为△ABC的AB边上一点,AD=2,DB=3.若∠B=∠ACD,则AC= .【分析】由∠B=∠ACD、∠A=∠A,可证出△ACD∽△ABC,根据相似三角形的性质可得出=,代入数据即可求出AC的值.【解答】解:∵∠B=∠ACD,∠A=∠A,∴△ACD∽△ABC,∴=,即=,∴AC=或AC=﹣(不合题意,舍去).故答案为:.【点评】本题考查了相似三角形的判定与性质,根据相似三角形的性质找出关于AC的方程是解题的关键.13.如图,AC,AD是正六边形的两条对角线,在不添加任何其他线段的情况下,请写出两个关于图中角度的正确结论:(1)∠BAC=∠BCA;(2)∠DAF=∠ADE.【分析】根据正六边形的特点可得到:因为图形是正六边形,所以AB=BC,所以三角形ABC是等腰三角形,根据等腰三角形的性质可得∠BAC=∠BC A.因为EF∥AD,AF=ED,所以四边形ADEF是等腰梯形,根据等腰梯形的性质可得∠DAF=∠ADE.【解答】解:由分析可知,两个关于图中角度的正确结论:(1)∠BAC=∠BCA;(2)∠DAF=∠ADE.故答案为:∠BAC=∠BCA;∠DAF=∠ADE.【点评】考查了多边形内角与外角,要结合题目中所提供的已知条件,特别是该图形为正六边形,得出结论.14.二次函数y=﹣x2+bx+c的部分图象如图所示,由图象可知,不等式﹣x2+bx+c<0的解集为x<﹣1或x>5 .【分析】先利用抛物线的对称性得到抛物线与x轴的另一个交点坐标为(﹣1,0),然后写出抛物线在x轴下方所对应的自变量的范围即可.【解答】解:抛物线的对称轴为直线x=2,而抛物线与x轴的一个交点坐标为(5,0),所以抛物线与x轴的另一个交点坐标为(﹣1,0),所以不等式﹣x2+bx+c<0的解集为x<﹣1或x>5.故答案为x<﹣1或x>5.【点评】本题考查了二次函数与不等式(组):利用两个函数图在直角标中的上下位置系自变量的取范,可作图利用点直观解也可把个函数解析式列成不式求解.15.已知⊙O的半径为1,其内接△ABC的边AB=,则∠C的度数为45°或135°.【分析】过圆心作AB的垂线,在构建的直角三角形中,易求得圆心角∠AOB的度数,由此可求出∠C的度数.(注意∠C所对的弧可能是优弧,也可能是劣弧)【解答】解:如图,连接OA、OB,过O作OD⊥AB于D.在Rt△OAD中,AD=,OA=1,∴sin∠AOD=,∴∠AOD=45°,∠AOB=135°.点C的位置有两种情况:①当点C在如图位置时,∠C=∠AOB=45°;②当点C在E点位置时,∠C=∠E=180°﹣45°=135°.故答案为:45°或135°.【点评】本题主要考查了垂径定理以及解直角三角形的应用.注意点C的位置有两种情况,不要漏解.16.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作已知角的角平分线.已知:如图,∠BA C.求作:∠BAC的角平分线AP.小霞的作法如下:(1)如图,在平面内任取一点O;(2)以点O为圆心,AO为半径作圆,交射线AB于点D,交射线AC于点E;(3)连接DE,过点O作射线OP垂直于线段DE,交⊙O于点P;(4)过点P作射线AP.所以射线AP为所求.老师说:“小霞的作法正确.”请回答:小霞的作图依据是(1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;(2)同弧或等弧所对的圆周角相等;(3)角平分线的定义.【分析】根据作图的依据解答即可.【解答】解:小霞的作图依据是(1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;(2)同弧或等弧所对的圆周角相等;(3)角平分线的定义;故答案为:(1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;(2)同弧或等弧所对的圆周角相等;(3)角平分线的定义【点评】此题考查作图﹣复杂作图问题,关键是根据作图的依据解答.三、解答题(共9小题,满分52分)17.(5分)计算:cos30°•tan60°﹣4sin30°+tan45°.【分析】根据特殊角的三角函数值,即可解答.【解答】解:原式=×﹣4×+1=﹣2+1=.【点评】考查了特殊角的三角函数值,属于识记性题目,基础题.18.(5分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)交于点A(﹣,﹣2),B(1,a).(1)分被求出反比例函数和一次函数的表达式;(2)根据函数图象,直接写出不等式kx+b>的解集.【分析】(1)首先由A(﹣,﹣2)在反比例函数y=的图象上,求得反比例函数的解析式,即可求得点B的坐标,再利用待定系数法即可解决问题;(2)观察图形,一次函数的值大于反比例函数的值,一次函数在反比例函数上面的部分.【解答】解:(1)∵点A(﹣,﹣2)在函数y=上,∴m=﹣×(﹣2)=3,∴y=,∵点B(1,a)在y=上,∴a=3,∵直线y=kx+b经过A(﹣,﹣2),B(1,3),∴,解得,∴直线解析式为y=2x+1.(2)观察图象可知,不等式kx+b>的解集为:﹣<x<0或x>1.【点评】此题考查了反比例函数与一次函数的交点问题,由函数图象比较函数大小,能够数形结合是解题的关键.19.(5分)如图,△ABC内接于⊙O,若⊙O的半径为6,∠B=60°,求AC的长.【分析】如图,作直径AD,连接C D.利用圆周角定理得到△ACD是含30度角的直角三角形,由该三角形的性质和勾股定理求得AC的长度即可.【解答】解:如图,作直径AD,连接C D.∴∠ACD=90°.∵∠B=60°,∴∠D=∠B=60°.∵⊙O的半径为6,∴AD=12.在Rt△ACD中,∠CAD=30°,∴CD=6.∴AC=6.【点评】本题考查了圆周角定理.注意题中辅助线的作法.20.(5分)如图,建筑物的高CD为17.32米,在其楼顶C,测得旗杆底部B的俯角α为60°,旗杆顶部A的仰角β为20°,请你计算旗杆的高度.(sin20°≈0.342,tan20°≈0.364,cos20°≈0.940,≈1.732,结果精确到0.1米)【分析】首先根据题意分析图形;本题涉及到两个直角三角形,借助公共边CE等价转换,解这两个三角形可得AE、BE的值,再利用AB=AE+BE,进而可求出答案.【解答】解:根据题意,再Rt△BCE中,∠BEC=90°,tanα=,∴CE=≈=10米,再Rt△ACE中,∠AEC=90°,tanβ=,∴AE=CE•tan20°≈10×0.364=3.64米,∴AB=AE+BE=17.32+3.64=20.96≈21.0米,答:旗杆的高约为21.0米.【点评】本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.21.(5分)如图,李师傅想用长为80米的棚栏,再借助教学楼的外墙围成一个矩形的活动区ABC D.已知教学楼外墙长50米,设矩形ABCD的边长AB为x(米),面积为S(平方米).(1)请写出活动区面积S与x之间的关系式,并指出x的取值范围;(2)当AB为多少米时,活动区的面积最大?最大面积是多少?【分析】(1)设矩形的边AB为x米,则边BC为80﹣2x米,根据矩形面积公式“面积=长×宽”列出函数的关系式.(2)将所得函数解析式配方成顶点式即可得.【解答】解:(1)根据题意知AB=x,BC=80﹣2x,∴S=x(80﹣2x)=﹣2x2+80x,又∵x>0,0<80﹣2x≤50,解得15≤x<40,∴S=﹣2x2+80x(15≤x<40);(2)∵S=﹣2x2+80x=﹣2(x﹣20)2+800,∴当x=20时,S最大值为800,答:当AB为20米时,活动区的面积最大,最大面积是800平方米.【点评】本题考查二次函数的应用,解题的关键是学会构建二次函数,学会利用二次函数的性质解决问题.22.(5分)如图,ABC是等腰三角形,AB=AC,以AC为直径的⊙O与BC交于D,DE⊥AB,垂足为点E,ED的延长线与AC的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为2,BE=1,求cos∠A的值.【分析】(1)连接OD,AD,由AC为圆的直径,利用直径所对的圆周角为直角及垂直的定义得到AD垂直于BC,利用三线合一得到D为BC中点,再由O为AC的中点,得到OD为三角形ABC的中位线,利用中位线性质得到OD与AB平行,进而得到OD垂直于DE,即可得证;(2)由半径的长求出AB与AC的长,根据BE的长,由AB﹣BE求出AE的长,由平行得相似,相似得比例,设CF=x,根据题意列出关于x的方程,求出方程的解得到x的值,即可确定出所求.【解答】(1)证明:连接OD,AD,∵AC为圆的直径,∴∠ADC=90°,AD⊥BC,∵AB=AC,∴点D为BC的中点,∵点O为AC的中点,∴OD∥AB,∵DE⊥AB,∠AED=90°,∴∠ODE=90°,∴OD⊥DE,则DE为圆O的切线;(2)解:∵r=2,∴AB=AC=2r=4,∵BE=1,∴AE=AB﹣BE=3,∵OD∥AB,∴△FOD∽△FAE,∴==,设CF=x,则有OF=x+2,AF=x+4,∴=,解得:x=2,∴AF=6,在Rt△AEF中,∠AEF=90°,则cosA==.【点评】此题考查了相似三角形的判定与性质,等腰三角形的性质,圆周角定理,以及解直角三角形,熟练掌握相似三角形的判定与性质是解本题的关键.23.(7分)在平面直角坐标系xOy中,二次函数y=ax2﹣2ax+1(a>0)的对称轴为x=b,点A(﹣2,m)在直线y=﹣x+3上.(1)求m,b的值;(2)若点D(3,2)在二次函数y=ax2﹣2ax+1(a>0)上,求a的值;(3)当二次函数y=ax2﹣2ax+1(a>0)与直线y=﹣x+3相交于两点时,设左侧的交点为P(x1,y1),若﹣3<x1<﹣1,求a的取值范围.【分析】(1)根据二次函数的性质,可得b==1.将A(﹣2,m)代入y=﹣x+3,即可求出m=2+3=5;(2)将D(3,2)代入y=ax2﹣2ax+1,即可求出a的值;(3)把x=﹣3代入y=﹣x+3,求出y=6,把(﹣3,6)代入y=ax2﹣2ax+1,求出a=.再把x=﹣1代入y=﹣x+3,求出y=4,把(﹣1,4)代入y=ax2﹣2ax+1,求出a=1.进而得出a 的取值范围.【解答】解:(1)∵二次函数y=ax2﹣2ax+1(a>0)的对称轴为x=b,∴b==1.∵点A(﹣2,m)在直线y=﹣x+3上,∴m=2+3=5;(2)∵点D(3,2)在二次函数y=ax2﹣2ax+1(a>0)上,∴2=a×32﹣2a×3+1,∴a=;(3)∵当x=﹣3时,y=﹣x+3=6,∴当(﹣3,6)在y=ax2﹣2ax+1(a>0)上时,6=a×(﹣3)2﹣2a×(﹣3)+1,∴a=.又∵当x=﹣1时,y=﹣x+3=4,∴当(﹣1,4)在y=ax2﹣2ax+1(a>0)上时,4=a×(﹣1)2﹣2a×(﹣1)+1,∴a=1.∴<a<1.【点评】本题考查了二次函数、一次函数的性质,函数图象上点的坐标特征,掌握点在直线上,则点的坐标满足函数的解析式是解题的关键.24.(7分)如图1,在矩形ABCD中,点E为AD边中点,点F为BC边中点;点G,H为AB边三等分点,I,J为CD边三等分点.小瑞分别用不同的方式连接矩形对边上的点,如图2,图3所示,那么图2中四边形GKLH的面积与图3中四边形KPOL 的面积相等吗?(1)小瑞的探究过程如下:在图2中,小瑞发现,S四边形GKLH= S四边形ABCD;在图3中,小瑞对四边形KPOL面积的探究如下,请你将小瑞的思路填写完整;设S△DEP=a,S△AKG=b.∵EC∥AF.∴△DEP∽△DAK,且相似比为1:2,得到S△DAK=4a.∵GD∥BI,∴△AGK∽△ABM,且相似比为1:3,得到S△ABM=9b又∵S△DAG=4a+b=S四边形ABCD,S△ABF=9b+a=S四边形ABC D.∴S四边形ABCD=24a+6b=36b+4a.∴a= b,S四边形ABCD= 42 b,S四边形KPOL= 6 b.∴S四边形KPOL= S四边形ABCD,则S四边形KPOL<S四边形GKLH(填写“>”“<”或“═”).(2)小瑞又按照图4的方式连接矩形ABCD对边上的点,则S四边形ANML= S四边.形ABC D【分析】(1)根据平行线的性质、相似三角形的性质即可解决问题;(2)如图4中,延长CE交BA的延长线于T,连接DN,设S△AGL=a,S△AEN=b.想办法证明S四边形ANML=4b,S四边形ABCD=20b,即可解决问题;【解答】解:(1)小瑞的探究过程如下:在图2中,小瑞发现,S四边形GKLH=S四边形ABCD;在图3中,小瑞对四边形KPOL面积的探究如下,请你将小瑞的思路填写完整;设S△DEP=a,S△AKG=b.∵EC∥AF.∴△DEP∽△DAK,且相似比为1:2,得到S△DAK=4a.∵GD∥BI,∴△AGK∽△ABM,且相似比为1:3,得到S△ABM=9b又∵S△DAG=4a+b=S四边形ABCD,S△ABF=9b+a=S四边形ABC D.∴S 四边形ABCD =24a +6b =36b +4a .∴a =b ,S 四边形ABCD =42b ,四边形KPOL =6b .∴S 四边形KPOL =S 四边形ABCD ,则S 四边形KPOL <S 四边形GKLH .故答案为,,42,6,,<.(2)如图4中,延长CE 交BA 的延长线于T ,连接DN ,设S △AGL =a ,S △AEN =b .∵GL ∥PH ,∴△△AGL ∽△AHP ,相似比为1:2,得到S △AHP =4a ,∵AT ∥CD ,∴∠T =∠ECD ,∵∠AET =∠CED ,AE =ED ,∴△AET ≌△DEC ,∴AT =CD ,∵AT ∥CJ ,∴==,∴=,可得S △DNJ =b ,∴S △ABF =4a +b =S 四边形ABCD ,S △ADJ =b =S 四边形ABCD ,∴16a+b=20b,∴a=b,∴S四边形ANML=(20b﹣8a﹣b)=4b,∴S四边形ABCD=20b,∴S四边形ANML=S四边形ABC D.故答案为.【点评】本题考查相似形综合题、矩形的性质、平行线的性质、相似三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.25.(8分)点P的“d值”定义如下:若点Q为圆上任意一点,线段PQ长度的最大值与最小值之差即为点P的“d值”,记为d P.特别的,当点P,Q重合时,线段PQ的长度为0.当⊙O的半径为2时:(1)若点C(﹣,0),D(3,4),则d c= 1 ,d p= 4 ;(2)若在直线y=2x+2上存在点P,使得d P=2,求出点P的横坐标;(3)直线y=﹣x+b(b>0)与x轴,y轴分别交于点A,B.若线段AB上存在点P,使得2≤d P<3,请你直接写出b的取值范围.【分析】(1)圆内的点的d值=这个点到圆心距离的2倍,圆上或圆外的点的d值=圆的直径,由此即可解决问题;(2)根据题意,满足d p=2的点位于⊙O内部,且在以O为圆心半径为1的圆上,可以假设P(a,2a+2),根据PO=1,构建方程即可解决问题;(3)根据题意,满足2≤d P<3的点位于点O为圆心外径为,内径为1的圆环内,分不清楚两圆与线段AB相切时b的值即可解决问题;【解答】解:(1)根据题意可得圆内的点的d值=这个点到圆心距离的2倍,圆上或圆外的点的d值=圆的直径,所以d c=1,d p=4;故答案为1,4;(2)根据题意,满足d p=2的点位于⊙O内部,且在以O为圆心半径为1的圆上,∵点P在直线y=2x+2上,∴可以假设P(a,2a+2),∵PO=1,∴a2+(2a+2)2=1,解得a=﹣1或﹣,∴满足条件的点P的横坐标为﹣1或﹣.(3)根据题意,满足2≤d P<3的点位于点O为圆心外径为,内径为1的圆环内,当线段与外环相切时,可得b=,当线段于内环相切时,可得b=,所以满足条件的b的值:≤b<.【点评】本题考查一次函数、圆、点P的“d值”定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用此时解决问题,学会利用特殊位置、寻找特殊点解决问题,所以中考压轴题.。
2019学年广东省九年级上学期期末考试数学试卷【含答案及解析】(1)
2019学年广东省九年级上学期期末考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 下列图案中,既是轴对称图形又是中心对称图形的是()2. 圆内接四边形ABCD,∠A,∠B,∠C的度数之比为3:4:6,则∠D的度数为()A.60° B.80° C.100° D.120°3. 已知三角形的面积一定,则它的底边a上的高h与底边a之间的函数关系的图象大致是( )A. B. C. D.4. 下列一元二次方程中,有两个不相等实数根的方程是()A. B. C. D.5. 小明制作了十张卡片,上面分别标有1~10这十个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是()A. B. C. D.6. 如图,DC 是⊙O的直径,弦AB⊥CD于F,连结BC,DB,则下列结论错误的是()A.弧AD=弧BD B.AF=BF C.OF=CF D.∠DBC=90°7. 已知一元二次方程有一个根为2,则另一根为()A.2 B.3 C.4 D.88. 下列命题:①圆的切线垂直于经过切点的半径;②掷一枚有正反面的均匀硬币,正面和反面朝上的概率都是0.5;③相等的圆心角所对的弧相等;④某种彩票的中奖率为,佳佳买张彩票一定能中奖.其中,正确的命题是 ( )A.①②B.①②③C. ①②④D.①②③④9. 将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为( )A.y=3(x-2)2-1 B.y=3(x-2)2+1 C.y=3(x+2)2-1 D.y=3(x+2)2+110. 把一副三角板如图1放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边,.把三角板DCE绕着点C顺时针旋转15°得到△(如图2),此时AB 与交于点O,则线段的长度为()图1 图2A. B. C. D.4二、填空题11. 在平面直角坐标系中,点P(2,-3)关于原点对称点P′的坐标是.12. 已知x=-1是关于x的方程的一个根,则a= .13. 如图,已知OA,OB是⊙O的两条半径,且OA⊥OB,点C在圆周上(与点A、B不重合),则∠ACB的度数为.14. 小明第一次抛一枚质地均匀的硬币时,正面向上,他第二次再抛这枚硬币时,正面向上的概率是15. 如图所示的曲线是一个反比例函数图象的一支,点A在此曲线上,则该反比例函数的解析式为______________.16. 如图是抛物线的图象的一部分,请你根据图象写出方程的两根是。
广东省梅州市丰顺县2018-2019学年九年级上期末统一考试数学试题(无答案)
2018-2019学年第一学期期末统一考试九年级数学试卷一、选择题(本大题10小题,每小题3分,共30分,在每小题列出的四个选项中,只有一个是 正确的,请把答题卡上对应题目所选的选项涂黑)1.下列四个几何体中,左视图为圆的几何体是2.将一元二次方程x x 3742=+化成一般式后,一次项系数和一次项系数分别为A.4,-3B.4,7C.4,3D.x x 342-,3.在综合实践活动中,小明、小亮、小颖、小静四位同学用投掷图钉的方法估计针尖朝上的概率,他们的实验次数分别为20次、50次、150次、200次,其中哪位同学的实验相对科学A.小明B.小亮C.小颖D.小静4.如图,用放大镜将图形放大,应属何种变换A.相似变换B.平移变换C.旋转变换D.对称变换5.如图所示的三个矩形中,其中相似图形是A.甲与乙B.乙与丙C.甲与丙D.以上都不对6.平行投影为一点的几何图形不可能是A.点B.线段C.射线D.三角形7.如图,已知某广场菱形ABCD 花坛的周长是24米,∠BAD=60°,则花坛对角线BD 的长等于A.米36B.米6C.米33D.米38.如图,AB ∥CD ∥EF,则图中相似三角形的对数为A.4对B.3对C.2对D.1对9.如图,点A 为反比例函数xy 4-=图象上一点,过A 作AB ⊥x 轴于点B,连接OM,则△ABO 的面积为A.4B.-2C.2D.无法确定10.如图,已知矩形ABCD 中,R 、P 分别是DC 、BC 上的点,E.F 分别是AP 、BP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是A.线段EF 的长逐渐增大B.线段EF 的长逐渐减小C.线段EF 的长不改变D.线段EF 的长不能确定二、填空题(本大题共6小题,每小题4分,满分24分,请将下列各题的正确答案填写在答题卡相应的位置上)11.方程92=x 的解为_______. 12.若,b a 53=则=ab ______. 13.在一次摸球试验中,袋中共有红球白球50个,在10次摸球实验中,有4次摸到红球,则摸到红球的概率是________.14.若函数xm y 2-=的图象在每个象限内y 的值随x 的值增大而增大,则m 的取值范围是___________. 15.如图所示,这些图形的正投影图形分别是______.16.如图,将平行四边形ABCD 的边DC 延长到E,使CE=CD,连接AE 交BC 于F ,∠AFC=n ∠D,当=n ______时,四边形ABEC 是矩形.三、解答题(一)(本大题3小题,每小题6分,共18分)17.解方程:022=+x x18.已知反比例函数xk y =的图象经过点(2,-4). (1)求k 的值;(2)函数的图象在那几个象限?y 随x 的增大怎样变化? (3)点()531621,,-⎪⎭⎫ ⎝⎛-在这个函数的图象上吗?19.把下图中左边的图形,加以放大后画出与它们相似的图形:四、解答题(二)(本大题3小题,每小题7分,共21分)20.如图,春节到了,小明亲手制作了3张一样的卡片,在每张卡片上分别写上“新”“年”“好”三个字,并随机放入一个不透明的信封中,然后让小芳分三次从信封中摸3张卡片(每次摸1张,摸出不放回):(1)小芳第一次抽取的卡片是“新”字的概率是多少?(2)请通过画树状图或列表,求小芳先后抽取的3张卡片分别是“新年好”的概率.21.如图,菱形ABCD 的对角线AC 、BD 相交于点O,AC=6,BD=8,且DE ∥AC,AE ∥BD,求OE 的长.22.关于x 的方程()01222=+--k x k x 有两个实数根.21x x 、(1)求k 的取值范围;(2)若,21211x x x x -=+求k 的值。
广东梅州丰顺实验中学18-19学度初三上第二次质检试卷-数学
广东梅州丰顺实验中学18-19学度初三上第二次质检试卷-数学九年级数学〔上〕第二次质检试卷(有答案)班别:座号:姓名:评分:【一】选择题〔本大题共5×3分=15分、每题给出四个答案,其中只有一个是正确〕、 1、6的相反数是〔〕(A)-6 (B)16(C)±2、下面是空心圆柱的主视图,正确的选项是〔〕3、如图,一只蚂蚁以均匀的速度沿台阶12A A A A A→→→→爬行,那么蚂蚁爬行高度h 随时间t 变化的图象大致是()4、以下四个多边形:①等边三角形;②正方形;③梯形;④正六边形.其中,是轴对称图形的个数有〔〕A.1个B.2个C.3个D.4个5、函数1k y kx y x=-=-与在同一坐标系下的大致图像可能是〔〕【二】填空题〔本大题共8小题,每题3分,共24分、请你把答案填在横线的上方〕、6、函数y =x 的取值范围是。
7、假设等腰三角形的一个顶角为150°,腰长20,那么腰上的高为。
8、假设反比例函数2321(21)k k y k x --=-的图象位于【二】四象限,那么k=_______。
9、如图,△ABC 的顶点基本上正方形网格中的格点,那么sin ∠ABC 等于。
10、排水公司为了不让水资源被生活废水和生产废水所污染,在大道旁修建一个污水处理厂,7月份净化污水3000吨,9月份增加到3630吨,设这两个月净化污水量每月平均增长率为x ,那么方程可列为。
11、一个暗箱里放有a 个除颜色外完全相同的球,这a 个球中红球只有3个、假设每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱、通过大量重复摸球试验后发明,摸到红球的频率稳定在20%附近,那么能够推算出a 的值大约是。
12、在函数xk y 22--=〔k 为常数〕的图象上有三个点〔-2,1y 〕,(-1,2y ),〔21,3y 〕,函数值1y ,2y ,3y 的大小为。
13、假设“!”是一种数学运算符号,同时1!1=,12!2⨯=,123!3⨯⨯=,1234!4⨯⨯⨯=,…,那么!2011!2012的值为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省梅州市丰顺县2018-2019学年九年级上期末统一考试数学试题一、选择题(本大题共10小题,共30.0分)1.下列四个几何体中,左视图为圆的几何体是()A. B. C. D.【答案】C【解析】解:A、三棱锥的左视图是三角形,故选项错误;B、圆柱的左视图是长方形,故选项错误;C、球的左视图是圆,故选项正确;D、三棱柱的左视图是长方形,故选项错误.故选:C.左视图是从左边看所得到的图形,依此即可求解.此题主要考查了左视图,关键是掌握左视图所看的位置.2.将一元二次方程4x2+7=3x化成一般式后,二次项系数和一次项系数分别为()A. 4,3B. 4,7C. 4,−3D. 4x2,−3x【答案】C【解析】解:4x2+7=3x,4x2−3x+7=0,二次项系数和一次项系数分别为4、−3,故选:C.一元二次方程的一部形式是ax2+bx+c=0,先化成一部形式,再求出二次项系数和一次项系数即可.本题考查了一元二次方程的一部形式的应用,能把方程化成一部形式是解此题的关键,注意:说系数带着前面的符号.3.在综合实践活动中,小明、小亮、小颖、小静四位同学用投掷图钉的方法估计针尖朝上的概率,他们的实验次数分别为20次、50次、150次、200次.其中哪位同学的实验相对科学()A. 小明B. 小亮C. 小颖D. 小静【答案】D【解析】解:根据模拟实验的定义可知,实验相对科学的是次数最多的小静.故选:D.大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.考查了利用频率估计概率,用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.4.如图,用放大镜将图形放大,应属何种变换()A. 相似变换B. 平移变换C. 旋转变换D. 对称变换【答案】A【解析】解:由一个图形到另一个图形,在改变的过程中形状不变,大小产生变化,属于相似变化.故选:A.根据轴对称变换、平移变换、旋转变换、相似变换的概念并结合图形,得出正确结果.本题主要考查相似变换的定义,即图形的形状相同,但大小不一定相同的变换是相似变换.比较容易选错的答案是位似变换.5.如图所示的三个矩形中,其中相似形是()A. 甲与乙B. 乙与丙C. 甲与丙D. 以上都不对【答案】B【解析】解:因为43≠21,故甲与乙不相似;因为21=42,故乙与丙相似;因为43≠42,故甲与丙不相似.故选:B.根据矩形相似的条件,判断对应边的比是否相等就可以.本题考查相似多边形的判定,对应边的比相等,对应角相等.6.平行投影为一点的几何图形不可能是()A. 点B. 线段C. 射线D. 三角形【答案】D【解析】解:根据平行投影特点可知三角形不可能为一点.故选:D.点无论在什么情况下,其投影都为一点;当线段、射线与光线平行时,其投影都为一点;故答案为D.本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应视其外在形状,及其与光线的夹角而定.7.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60∘,则花坛对角线BD的长等于()A. 6√3米B. 6米C. 3√3米D. 3米【答案】B【解析】解:∵四边形ABCD是菱形,且周长为24米,∴AB=AD=6米,∵∠BAD=60∘,∴△ABD是等边三角形,∴BD=AB=6米.故选:B.由四边形ABCD是菱形,∠BAD=60∘,易得△ABD是等边三角形,继而求得答案.此题考查了菱形的性质以及等边三角形的判定与性质.注意证得△ABD是等边三角形是解此题的关键.8.如图,AB//CD//EF,则图中相似三角形的对数为()A. 4对B. 3对C. 2对D. 1对【答案】B【解析】解:∵AB//CD//EF,∴△ACD∽△AEF,△ECD∽△EAB,△ADB∽△FDE.∴图中共有3对相似三角形.故选:B.由AB//CD//EF,根据平行于三角形一边的直线与三角形另两边或另两边的延长线所构成的三角形相似,可得△ACD∽△AEF,△ECD∽△EAB,△ADB∽△FDE.所以图中共有3对相似三角形.此题考查了相似三角形的判定:平行于三角形一边的直线与三角形另两边或另两边的延长线所构成的三角形相似.解题的关键是注意识图,注意做到不重不漏.9.如图,点A为反比例函数y=−4图象上一点,过A作AB⊥xx轴于点B,连接OA,则△ABO的面积为()A. 4B. −2C. 2D. 无法确定【答案】C×|−4|=2.【解析】解:△ABO的面积是:12故选:C.根据过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三|k|.即可求解.角形面积S是个定值,即S=12本题主要考查了反比例函数y=k中k的几何意义,即过双曲线上任意一点引x轴、y轴x|k|,是经常考查的一个知识点;这里体现了数形结合的思想,垂线,所得三角形面积为12做此类题一定要正确理解k的几何意义.10.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A. 线段EF的长逐渐增大B. 线段EF的长逐渐减小C. 线段EF的长不改变D. 线段EF的长不能确定【答案】C【解析】解:连接AR.因为E、F分别是AP、RP的中点,则EF为△APR的中位线,AR,为定值.所以EF=12所以线段EF的长不改变.故选:C.因为R不动,所以AR不变.根据中位线定理,EF不变.本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.二、填空题(本大题共6小题,共24.0分)11.方程x2=9的解为______.【答案】±3【解析】解:∵x2=9,∴x=±3.此题直接用开平方法求解即可.解决本题的关键是理解平方根的定义,注意一个正数的平方根有两个,这两个数互为相反数.12.若3a=5b,则ba=______.【答案】35【解析】解:3a=5b,b a =35.故答案为:35.根据比例的性质求出即可.本题考查了比例的性质的应用,能熟练地运用比例的性质进行变形是解此题的关键,注意:如果ab =cd,那么ad=bc.13.在一次摸球试验中,袋中共有红球白球50个,在10次摸球实验中,有4次摸到红球,则摸到红球的概率是______.【答案】0.4【解析】解:∵在一次摸球试验中,袋中共有红球白球50个,在10次摸球实验中,有4次摸到红球,∴摸到红球的频率为:410=0.4,故摸到红球的概率是:0.4.故答案为:0.4.利用已知得出摸到红球的频率进而估计概率即可.此题主要考查了利用频率估计概率,注意大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.14.若函数y=m−2x的图象在每个象限内y的值随x值的增大而增大,则m的取值范围为______.【答案】m<2【解析】解:∵函数y=m−2x的图象在每个象限内y的值随x值的增大而增大,∴m−2<0,解得m<2.故答案为m<2.先根据反比例函数的性质列出关于m的不等式,求出m的取值范围即可.(k≠0)中,当k<0时,双曲线本题考查的是反比例函数的性质,熟知反比例函数y=kx的两支分别位于第二、四象限,在每一象限内y随x的增大而增大是解答此题的关键.15.如图所示,这些图形的正投影图形分别是______.【答案】圆和矩形【解析】解:如图所示,这两个图形的正投影分别是圆和矩形,故答案为:圆和矩形.根据正投影的概念求解可得.本题主要考查平行投影,解题的关键是掌握在平行投影中,投影线垂直于投影面产生的投影叫做正投影.16.如图,将平行四边形ABCD的边DC延长到E,使CE=CD,连接AE交BC于F,∠AFC=n∠D,当n=______时,四边形ABEC是矩形.【答案】2【解析】解:当∠AFC=2∠D时,四边形ABEC是矩形.∵四边形ABCD是平行四边形,∴BC//AD,∠BCE=∠D,由题意易得AB//EC,AB//EC,∴四边形ABEC是平行四边形.∵∠AFC=∠FEC+∠BCE,∴当∠AFC=2∠D时,则有∠FEC=∠FCE,∴FC=FE,∴四边形ABEC是矩形,故答案为:2.首先根据四边形ABCD是平行四边形,得到四边形ABEC是平行四边形,然后证得FC= FE,利用对角线互相相等的四边形是矩形判定四边形ABEC是矩形.此题考查了平行四边形的性质以及矩形的判定.此题难度适中,注意掌握数形结合思想的应用,解题的关键是了解矩形的判定定理.三、解答题(本大题共9小题,共66.0分)17.解方程:2x2+x=0.【答案】解:x(2x+1)=0,∴x=0,x=−12【解析】利用提取公因式即可求出x的解本题考查一元二次方程的解法,对于形如ax2+bx=0的一元二次方程,可利用提取公因式求解.18.已知反比例函数y=k的图象经过点A(2,−4).x(1)求k的值;(2)函数的图象在那几个象限?y随x的增大怎样变化?(3)画出函数的图象;,−16)、C(−3,5)在这个函数的图象上吗?(4)点B(12的图象经过点A(2,−4),【答案】解:(1)∵反比例函数y=kx∴k=2×(−4)=−8;(2)∵k=−8<0,∴图象位于二、四象限,在每个象限内y随x的增大而增大;(3)图象为:×(−16)=−8、(4)∵12−3×5=−15≠−8,∴B(1,−16)在反比例函数的图象上,C(−3,5)不在反比例函数的图象上.2【解析】(1)将已知点的坐标代入反比例函数的解析式即可求得k值;(2)根据确定的k的符号判断其所在的象限和增减性;(3)利用描点作图法作出图象即可;(4)满足函数关系式即在,否则不在.本题考查了反比例函数的图象及性质,解题的关键是正确的求得反比例函数的解析式,难度不大.19.把图1的图形,加以放大后在图2中画出与它们相似的图形:【答案】解:如图2所示,即为所求.【解析】直接利用相似图形的性质画出形状相同的图形即可.此题主要考查了相似变换,正确利用相似图形的定义分析是解题关键.20.如图,羊年春节到了,小明亲手制作了3张一样的卡片,在每张卡片上分别写上“新”“年”“好”三个字,并随机放入一个不透明的信封中,然后让小芳分三次从信封中摸3张卡片(每次摸1张,摸出不放回).(1)小芳第一次抽取的卡片是“新”字的概率是多少?(2)请通过画树状图或列表,求小芳先后抽取的3张卡片分别是“新年好”的概率.【答案】解:(1)∵共有3张大小相同的卡片,在每张卡片上分别写上“新”、“年”、“好”三个字,∴小芳第一次抽取的卡片是“新”字的概率是:1;3(2)画树状图得:∵共有6种等可能的结果,小芳先后抽取的3张卡片恰好是“新年好”的有1种情况,∴小芳先后抽取的3张卡片恰好是“新年好”的概率为:16.【解析】(1)由共有3张大小相同的卡片,在每张卡片上分别写上“新”、“年”、“好”三个字,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小芳先后抽取的3张卡片恰好是“新年好”的情况,再利用概率公式即可求得答案.此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21.如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,且DE//AC,AE//BD.求OE的长.【答案】证明:∵四边形ABCD为菱形,∴AC⊥BD,OA=12AC=3,OD=12BD=4,∴∠AOD=90∘,∴AD=√OA2+OD2=√32+42=5.∵DE//AC,AE//BD,∴四边形AODE为平行四边形,∴四边形AODE是矩形,∴OE=AD=5.【解析】根据菱形的性质得出AC⊥BD,再根据平行四边形的判定定理得四边形AODE 为平行四边形,由矩形的判定定理得出四边形AODE是矩形,则该矩形的对角线相等,即AD=OE.本题考查了矩形的判定以及菱形的性质,还考查了平行四边形的判定,掌握平行四边形的判定方法是解题的关键.22.关于x的方程x2−2(k−1)x+k2=0有两个实数根x1、x2.(1)求k的取值范围;(2)若x1+x2=1−x1x2,求k的值.【答案】解:(1)∵关于x的方程x2−2(k−1)x+k2=0有两个实数根x1、x2,∴△≥0,即[−2(k−1)]2−4k2≥0,解得k≤12;(2)由根与系数关系可得x1+x2=2(k−1),x1x2=k2,∵x1+x2=1−x1x2,∴2(k−1)=1−k2,解得k=1或k=−3,∵k≤12,∴k=−3.【解析】(1)由方程根的情况,根据根的判别式可得到关于k的不等式,则可求得k的取值范围;(2)利用根与系数的关系可求得两根之和与两根之积,代入所给等式,则可得到关于k 的方程,可求得k的值.本题主要考查根的判别式及根与系数的关系,掌握根的个数与根的判别式的关系是解题的关键.23.如图,在梯形ABCD中,AD//BC,∠BAD=90∘,且对角线BD⊥DC,试问:①△ABD与△DCB相似吗?请说明理由;②若AD=2,BC=8,请求出BD的长.【答案】解:①∵BD⊥DC(已知),∴∠BDC=90∘(垂直性质),而∠BAD=90∘(已知),∴∠BDC=∠BAD(等量代换),又∵AD//BC(已知),∴∠ADB=∠CBD(两直线平行,内错角相等).∴△ABD∽△DCB(如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似).②∵△ABD∽△DCB,∴ADDB =DBBC,而AD=2,BC=8,∴2DB =DB8,∴DB2=16,∴BD=4.【解析】(1)根据已知及相似三角形的判定方法进行分析即可.(2)根据相似三角形的性质进行分析,从而不难求得BD的长.此题考查了相似三角形的判定和性质;判定为①有两个对应角相等的三角形相似,②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似;性质为相似三角形的对应角相等,对应边的比相等.24.在国家政策的调控下,某市的商品房成交均价由今年5月份的每平方米10000元下降到7月份的每平方米8100元.(1)求6、7两月平均每月降价的百分率;(2)如果房价继续回落,按此降价的百分率,请你预测到9月份该市的商品房成交均价是否会跌破每平方米6500元?请说明理由.【答案】(1)设6、7两月平均每月降价的百分率为x,根据题意得10000(1−x)2=8100,即(1−x)2=0.81,解得x=10%或1.9(舍去).(2)∵8100(1−0.1)2=6561>6500(元).∴不会跌破6500元.【解析】(1)根据每次的均价等于上一次的价格乘以(1−x)(x为平均每次下调的百分率),可列出一个一元二次方程,解此方程可得平均每次下调的百分率;(2)求出9月份该市的商品房成交均价,即可判断.本题主要考查一元二次方程在实际中的应用:列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.25.如图,平面直角坐标系中,直线y=2x+2与x轴,y轴分别交于A,B两点,与反比例函数y=kx(x>0)的图象交于点M(a,4).(1)求反比例函数y=kx(x>0)的表达式;(2)若点C在反比例函数y=kx(x>0)的图象上,点D在x轴上,当四边形ABCD是平行四边形时,求点D的坐标.【答案】解:(1)∵点M(a,4)在直线y=2x+2上,∴4=2a+2,解得a=1,∴M(1,4),将其代入y=kx得到:k=xy=1×4=4,∴反比例函数y=kx (x>0)的表达式为y=4x;(2)∵平面直角坐标系中,直线y=2x+2与x轴,y轴分别交于A,B两点,∴当x=0时,y=2.当y=0时,x=−1,∴B(0,2),A(−1,0).∵BC//AD,∴点C的纵坐标也等于2,且点C在反比例函数图象上,,得将y=2代入y=4x2=4,x解得x=2,∴C(2,2).∵四边形ABCD是平行四边形,∴BC//AD且BD=AD,由B(0,2),C(2,2)两点的坐标知,BC//AD.又BC=2,∴AD=2,∵A(−1,0),点D在点A的右侧,∴点D的坐标是(1,0).【解析】(1)将点M的坐标代入一次函数解析式求得a的值;然后将点M的坐标代入反比例函数解析式,求得k的值即可;(2)根据平行四边形的性质得到BC//AD且BD=AD,结合图形与坐标的性质求得点D的坐标.考查了反比例函数与一次函数交点问题.熟练掌握平行四边形的性质和函数图象上点的坐标特征是解决问题的关键,难度适中.。