初中数学圆知识点总结

合集下载

初中数学圆知识点总结

初中数学圆知识点总结

初中数学圆知识点总结圆是初中数学中的重要内容,它在几何和代数中都有着广泛的应用。

下面我们来详细总结一下初中数学中圆的相关知识点。

一、圆的定义圆是平面内到定点的距离等于定长的点的集合。

这个定点称为圆心,定长称为半径。

二、圆的相关概念1、弦:连接圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径,直径是圆中最长的弦。

2、弧:圆上任意两点间的部分叫做弧。

大于半圆的弧称为优弧,小于半圆的弧称为劣弧。

3、圆心角:顶点在圆心的角叫做圆心角。

4、圆周角:顶点在圆上,并且两边都与圆相交的角叫做圆周角。

三、圆的性质1、圆是轴对称图形,其对称轴是任意一条通过圆心的直线。

2、圆是中心对称图形,其对称中心是圆心。

3、同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。

4、同圆或等圆中,如果两条弦所对的圆心角相等,那么这两条弦相等。

5、在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

6、半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

四、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。

推论:1、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

2、弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

3、平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

五、圆周角定理1、一条弧所对的圆周角等于它所对的圆心角的一半。

2、同弧或等弧所对的圆周角相等。

3、半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

六、圆内接四边形如果一个四边形的四个顶点都在同一个圆上,那么这个四边形叫做圆内接四边形,这个圆叫做这个四边形的外接圆。

圆内接四边形的性质:圆内接四边形的对角互补。

七、点与圆的位置关系设圆的半径为 r,点到圆心的距离为 d,则有:1、点在圆外⇔ d > r2、点在圆上⇔ d = r3、点在圆内⇔ d < r八、直线与圆的位置关系直线与圆有三种位置关系:相交、相切、相离。

初中数学 圆知识点归纳

初中数学 圆知识点归纳

《圆》整章知识点复习《圆》章节知识点复习名词解释:1.弦——连接圆上任意两点的线段叫做弦。

2.弧——圆上任意两点间的部分叫做圆弧,简称弧。

3.半圆——圆的任意一条直径的两个端点把圆分成两条弧,第一条弧都叫做半圆。

4.等圆——能够重合的两个圆叫做等圆。

5.等弧——在同圆或等圆中,能够互相重合的弧叫做等弧。

6.圆心角——顶点在圆心的角叫做圆心角。

7.圆周角——顶点在圆上,且两边都与圆相交的角叫做圆周角。

8.圆内接多边形——如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。

9.外心——外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形外心。

10.内心——三角形三条角平分线的交点,叫做三角形的内心。

11.内切圆——与三角形各边相切的圆叫做三角形的内切圆。

12.割线——直线和圆有两个公共点(直线和圆相交),这条直线叫做圆的割线。

13.切线——直线和圆只有一个公共点(直线和圆相切),这条直线叫做圆的切线,这个点叫做切点。

14.切线长——经边圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长。

15.圆心距——两个圆圆心的距离叫做圆心距。

16.中心——正多边形的外接圆的圆心叫做这个正多边形的中心。

17.中心角——正多边形每一边所对的圆心角叫做正多边形的中心角。

18.边心距——中心到正多边形的一边的距离叫做正多边形的边心距。

19.扇形——由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形。

20.母线——连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线。

一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);(补充)3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

初二数学圆的知识点归纳总结

初二数学圆的知识点归纳总结

初二数学圆的知识点归纳总结在初中数学中,圆是一个重要的几何概念,它是指平面上所有到定点的距离都相等的点的集合。

在学习圆的知识时,我们需要掌握圆的基本性质、公式和相关定理。

本文将对初二数学圆的知识点进行归纳总结,帮助大家更好地理解和掌握这一内容。

一、圆的基本性质1. 圆的定义:圆是指平面上到定点O的距离等于r的点的集合,O 为圆心,r为半径。

2. 圆的元素:圆心、半径、直径、弦、弧、切线等。

3. 圆的稳定性:圆心和半径确定一个圆,改变圆心或半径会得到不同的圆。

二、圆的公式1. 圆的周长公式:圆的周长C等于2πr,其中r为半径。

2. 圆的面积公式:圆的面积A等于πr²,其中r为半径。

3. 圆心角的弧度制:圆心角的弧度等于弧长与半径的比值。

三、圆的相关定理1. 同一个圆或等圆的弧长的度数是相等的。

2. 在同一个圆或等圆中,以圆心为顶点的角都是直角,其对应的弧都是半圆。

3. 圆内接四边形的两个对角和为180°。

4. 在一个圆中,半径垂直于弦,且七分弦等分圆的弧。

四、圆的常见问题类型1. 求圆的面积和周长:根据给定的半径或直径,应用相应的公式计算出圆的面积和周长。

2. 求圆的弧长:根据给定的半径或角度,利用弧长公式计算出圆的弧长。

3. 利用圆的性质解决几何问题:如证明两个三角形相似或全等、证明线段平行或垂直等等。

五、例题解析1. 已知圆的直径长为10cm,求其周长和面积。

解答:半径r = 直径/2 = 10/2 = 5cm,根据周长公式C = 2πr,将r = 5代入得到C = 2π * 5 = 10π cm,所以周长为10π cm。

根据面积公式A = πr²,将r = 5代入得到A = π * 5² = 25π cm²,所以面积为25π cm²。

2. 圆O的半径r = 8cm,弧AB所对的圆心角θ为60°,求弧AB的弧长。

解答:由弧长公式L = θ/360° * 2πr,将θ = 60°,r = 8代入,得到L = 60/360° * 2π * 8 = 4π cm,所以弧AB的弧长为4π cm。

圆的知识点初三

圆的知识点初三

圆的知识点初三圆是初中数学中重要的几何图形之一,它具有许多独特的性质和特点。

本文将从圆的定义、圆的元素、圆的性质和圆的应用等方面进行探讨。

一、圆的定义和元素圆是平面上的一个几何图形,它由平面上距离某一点固定距离的所有点组成。

这个固定距离叫做圆的半径,记作r。

圆心是到圆上任意一点的距离都等于半径的点。

圆的元素有圆心、半径、直径和弧长等。

圆心是圆的中心点,通常用字母O表示。

半径是圆心到圆上任意一点的距离,用字母r表示。

直径是通过圆心的一条线段,它的两个端点在圆上,直径的长度等于半径的两倍,即d=2r。

弧长是圆上两点之间的弧所对应的弧长,用字母l表示。

二、圆的性质1. 圆的任意两点之间的距离都等于半径的长度,即圆上任意两点之间的距离是固定的。

2. 圆的直径是圆的特殊性质之一,它等于半径的两倍。

直径是圆的最长的线段,且通过圆心。

3. 圆的弧长是圆的另一个重要性质,弧长与圆心角的大小成正比。

当圆心角为360度时,弧长等于圆的周长。

4. 圆的周长是圆上所有点到圆心的距离之和,也称为圆的周长。

周长的计算公式为C=2πr,其中π≈3.14。

5. 圆的面积是圆所包围的平面区域的大小,面积的计算公式为A=πr^2,其中^2表示半径的平方。

三、圆的应用圆在生活中有着广泛的应用。

以下列举几个常见的例子:1. 圆形的轮胎和车轮:汽车、自行车等的轮胎和车轮都是圆形的,这是因为圆形的轮胎和车轮能更好地保证车辆的稳定性和平衡性。

2. 圆形的钟表和计时器:钟表和计时器通常都是圆形的,因为圆形的刻度能更直观地显示时间的流逝。

3. 圆形的光学器件:如镜片和透镜等,它们的表面通常是圆形的,这是因为圆形的表面能更好地聚焦光线。

4. 圆形的篮球场和足球场:篮球场和足球场的形状通常是圆形的,这是为了保证比赛的公平性和平衡性,使运动员能够更好地进行比赛。

圆是初中数学中的重要知识点之一。

通过对圆的定义、元素、性质和应用的了解,我们可以更好地理解和应用圆的相关概念,为日常生活和学习中的问题提供解决方案。

(word完整版)初中数学圆知识点总结,推荐文档

(word完整版)初中数学圆知识点总结,推荐文档

A图5圆的总结一 集合:圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的内部:可以看作是到定点的距离小于定长的点的集合二 轨迹:1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆;2、到线段两端点距离相等的点的轨迹是:线段的中垂线;3、到角两边距离相等的点的轨迹是:角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线三 位置关系:1点与圆的位置关系:点在圆内 d<r 点C 在圆内 点在圆上 d=r 点B 在圆上 点在此圆外 d>r 点A 在圆外2 直线与圆的位置关系:直线与圆相离 d>r 无交点 直线与圆相切 d=r 有一个交点 直线与圆相交 d<r 3 圆与圆的位置关系:外离(图1) 无交点外切(图2) 相交(图3) 内切(图4) 内含(图5) 无交点DBB ABA四 垂径定理:垂径定理:垂直于弦的直径平分弦且平分弦所对的弧 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB ⊥CD ③CE=DE ④⑤ 推论2:圆的两条平行弦所夹的弧相等。

即:在⊙O 中,∵AB ∥CD五 圆心角定理六 圆周角定理圆周角定理:同一条弧所对的圆周角等于它所对的圆心的角的一半即:∵∠AOB 和∠ACB 是 所对的圆心角和圆周角 ∴∠AOB=2∠ACB圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧即:在⊙O 中,∵∠C 、∠D 都是所对的圆周角∴∠C=∠D推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径即:在⊙O 中,∵AB 是直径 或∵∠C=90° ∴∠C=90° ∴AB 是直径推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形»»BC BD =»»AC AD =P即:在△ABC 中,∵OC=OA=OB∴△ABC 是直角三角形或∠C=90° 注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。

初中数学圆知识点总结归纳

初中数学圆知识点总结归纳

初中数学圆知识点总结归纳一、圆的基本性质圆的定义:平面内到定点距离等于定长的所有点组成的图形叫做圆。

其中定点称为圆心,定长称为半径。

圆的基本性质:(1)圆是中心对称图形,对称中心为圆心。

(2)圆是轴对称图形,对称轴为经过圆心的任意一条直线。

(3)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

(4)圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

(5)弦心距定理:在同圆或等圆中,弦心距等于所对弧的半径的一半。

二、圆的几何表示圆的方程:在平面直角坐标系中,以圆心为坐标原点,以半径为r的圆的方程为x^2 + y^2 = r^2。

圆的标准方程:以圆心为坐标原点,以半径为r,且经过点P(x0, y0)的圆的方程为(x - x0)^2 + (y - y0)^2 = r^2。

圆的参数方程:以x为参数,描述圆的方程为x = x0 + rcos(θ),y = y0 + rsin(θ),其中θ为参数。

三、与圆相关的定理和性质切线判定定理:经过半径的外端点并且垂直于这条半径的直线是圆的切线。

切线性质定理:圆的切线上的任一点到圆心的距离等于半径。

切线长定理:经过圆外一点引两条切线,它们的切线长相等。

相交弦定理:经过圆内一点引两条弦,它们的交点与该点的距离乘积等于常数。

切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的乘积相等。

圆幂定理:对于同圆或等圆中的两个相等的非零实数,有:(ab)(cd) = (ac)(bd) - (ad)(b*c)。

弦中点定理:经过弦的两个端点的直径垂直于这条弦。

相交弦定理:两弦交于圆内一点,各弦被这点所平分。

余弦定理:对于任何三角形ABC,有c^2 = a^2 + b^2 - 2ab*cos(C)。

正弦定理:对于任何三角形ABC,有a/sin(A) = b/sin(B) = c/sin(C)。

初中数学圆的知识点总结

初中数学圆的知识点总结

初中数学圆的知识点总结初中数学圆的知识点总结【一】一、圆1、圆的有关性质在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O 叫圆心,线段OA叫半径。

由圆的意义可知:圆上各点到定点〔圆心O〕的间隔等于定长的点都在圆上。

就是说:圆是到定点的间隔等于定长的点的集合,圆的内部可以看作是到圆。

心的间隔小于半径的点的集合。

圆的外部可以看作是到圆心的间隔大于半径的点的集合。

连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。

圆上任意两点间的局部叫圆弧,简称弧。

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。

由弦及其所对的弧组成的圆形叫弓形。

圆心一样,半径不相等的两个圆叫同心圆。

可以重合的两个圆叫等圆。

同圆或等圆的半径相等。

在同圆或等圆中,可以互相重合的弧叫等弧。

二、过三点的圆l、过三点的圆过三点的圆的作法:利用中垂线找圆心定理不在同一直线上的三个点确定一个圆。

经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。

2、反证法反证法的三个步骤:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾得出假设不正确,从而肯定命题的结论正确。

例如:求证三角形中最多只有一个角是钝角。

证明:设有两个以上是钝角那么两个钝角之和》180°与三角形内角和等于180°矛盾。

不可能有二个以上是钝角。

即最多只能有一个是钝角。

三、垂直于弦的直径圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推理1:平分弦〔不是直径〕的直径垂直于弦,并且平分弦所对两条弧。

弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。

推理2:圆两条平行弦所夹的弧相等。

四、圆心角、弧、弦、弦心距之间的关系圆是以圆心为对称中心的中心对称图形。

初中数学共圆知识点总结

初中数学共圆知识点总结

初中数学共圆知识点总结一、圆的基本概念1. 圆的定义:圆是平面内到定点的距离等于定长的点的集合。

2. 圆的元素:圆心、半径、直径、弧、弦、切线等。

3. 圆的性质:在同一个平面内,到一个定点的距离相等的所有点构成的集合就是一个圆。

二、圆的三要素1. 圆心:圆上所有点到定点O的距离都相等的这个定点O叫做圆心。

2. 半径:定点O到圆周上某一点的距离叫做半径,通常用r表示。

3. 直径:穿过圆心且两端在圆上的线段叫做直径,直径的长度等于半径的两倍。

三、圆的常见定理1. 圆的同位角定理:同位角相等。

2. 圆的交角定理:同弧或同圆周角的交角相等。

3. 切线定理:切线与半径垂直,切点到圆心的距离等于半径。

4. 弧长定理:圆的弧长等于圆心角的度数乘以π/180再乘以半径的长度。

5. 圆内接四边形的性质:内接四边形的对角线相互垂直,相交于一点。

对角线相等,且相等于两两相对的两条边的和。

6. 圆的切线性质:切线到圆的切点的两条半径是平分切线的外角。

四、圆的重要定理1. 圆的周长和面积计算公式- 圆的周长:C=2πr(r为半径)- 圆的面积:S=πr²(r为半径)2. 圆锥的体积计算- 圆锥的体积:V=1/3*πr²h(r为底面半径,h为高)五、圆的应用1. 圆的绘制:使用圆规和圆规尺绘制圆。

2. 圆的运用:如汽车的方向盘、水管的弯曲、计算机的图标等都需要用到圆的相关知识。

六、共圆定理1. 共圆的条件:三个或更多的点在同一个圆周上,这些点被称作共圆点。

若三个或更多的点在同一个圆周上,这些点满足同一条件,或者是同种东西的属性,或者是满足某种规律2. 共圆的判定及应用:当三个或更多点在同一个圆周上,可以利用共圆的性质(比如相等角、相等弧等)来解决实际问题。

七、圆中的其他定理1. 钩定理:相等的圆周角所对应的弧相等2. 等角定理:等角所对应的弧相等3. 等弧定理:等弧所对应的角相等八、共圆的应用1. 共圆的应用:在几何题中,常用共圆的性质来解题,例如,利用共圆相交弦的性质解题。

初中数学圆的方程知识点

初中数学圆的方程知识点

初中数学圆的方程知识点
1、圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的'标准方程是(xa)^2+(yb)^2=r^2。

特殊地,以原点为圆心,半径为r(r0)的圆的标准方程为x^2+y^2=r^2。

2、圆的一般方程:方程x^2+y^2+Dx+Ey+F=0可变形为(x+D/2)^2+(y+E/2)^2=(D^2+E^24F)/4.故有:
(1)、当D^2+E^24F0时,方程表示以(D/2,E/2)为圆心,以(√D^2+E^24F)/2为半径的圆;
(2)、当D^2+E^24F=0时,方程表示一个点(D/2,E/2);
(3)、当D^2+E^24F0时,方程不表示任何图形。

3、圆的参数方程:以点O(a,b)为圆心,以r为半径的圆的参数方程是x=a+r*cosθ, y=b+r*sinθ, (其中θ为参数) 圆的端点式:若已知两点A(a1,b1),B(a2,b2),则以线段AB 为直径的圆的方程为 (xa1)(xa2)+(yb1)(yb2)=0
圆的离心率e=0,在圆上任意一点的曲率半径都是r。

经过圆x^2+y^2=r^2上一点M(a0,b0)的切线方程为a0*x+b0*y=r^2
在圆(x^2+y^2=r^2)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为 a0*x+b0*y=r^2 圆的方程学问在学校数学逇学习中涉及到的并不是许多,同学们把握基础就好。

第1页。

新人教版初中数学——圆的性质及与圆有关的位置关系-知识点归纳及中考典型题解析

新人教版初中数学——圆的性质及与圆有关的位置关系-知识点归纳及中考典型题解析

人教版初中数学——圆的性质及与圆有关的位置关系知识点归纳及中考典型例题解析一、圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.2.注意(1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;(2)3点确定一个圆,经过1点或2点的圆有无数个.(3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.二、垂径定理及其推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.三、圆心角、弧、弦的关系1.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.四、圆周角定理及其推论1.定理一条弧所对的圆周角等于它所对的圆心角的一半.2.推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.(2)直径所对的圆周角是直角.圆内接四边形的对角互补.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.五、与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r⇔点在⊙O外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.六、切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.七、三角形与圆1.三角形的外接圆相关概念经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.考向一圆的基本认识1.在一个圆中可以画出无数条弦和直径.2.直径是弦,但弦不一定是直径.3.在同一个圆中,直径是最长的弦.4.半圆是弧,但弧不一定是半圆.弧有长度和度数,规定半圆的度数为180°,劣弧的度数小于180°,优弧的度数大于180°.5.在同圆或等圆中能够互相重合的弧是等弧,度数或长度相等的弧不一定是等弧.典例1下列命题中正确的有①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个【答案】A【解析】①弦是圆上任意两点之间所连线段,所以①错误;②半径不是弦,所以②错误;③直径是最长的弦,正确;④只有180°的弧才是半圆,所以④错误,故选A.1.把圆的半径缩小到原来的14,那么圆的面积缩小到原来的A.12B.14C.18D.1162.半径为5的圆的一条弦长不可能是A.3 B.5 C.10 D.12考向二垂径定理1.垂径定理中的“弦”为直径时,结论仍然成立.2.垂径定理是证明线段相等、弧相等的重要依据,同时也为圆的计算和作图问题提供了理论依据.典例2如图,已知⊙O的半径为6 cm,两弦AB与CD垂直相交于点E,若CE=3 cm,DE=9 cm,则AB=A3cm B.3cm C.3D.3【答案】D【解析】如图,连接OA,∵⊙O的半径为6 cm,CE+DE=12 cm,∴CD是⊙O的直径,∵CD⊥AB,∴AE=BE,OE=3,OA=6,∴AE=2233OA OE-=,∴AB=2AE=63,故选D.典例3如图,将半径为2 cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为A.2 cm B.3cmC.23cm D.25cm【答案】C【解析】在图中构建直角三角形,先根据勾股定理得AD的长,再根据垂径定理得AB的长.作OD⊥AB于D,连接OA.根据题意得OD=12OA=1cm,再根据勾股定理得:AD3,根据垂径定理得AB3.故选C.3.如图,⊙O的直径为10,圆心O到弦AB的距离OM的长为4,则弦AB的长是A.3 B.6 C.4 D.84.如图,某菜农在蔬菜基地搭建了一个横截面为圆弧形的蔬菜大棚,大棚的跨度弦AB的长为8515米,大棚顶点C离地面的高度为2.3米.(1)求该圆弧形所在圆的半径;(2)若该菜农的身高为1.70米,则他在不弯腰的情况下,横向活动的范围有几米?考向三弧、弦、圆心角、圆周角1.圆心角的度数等于它所对弧的度数,把顶点在圆心的周角等分成360份,每一份的圆心角是1°的角,1°的圆心角对着1°的弧.2.圆周角要具备两个特征:①顶点在圆上;②角的两边都和圆相交,二者缺一不可.典例4如图,在⊙O中∠O=50°,则∠A的度数为A.50°B.20°C.30°D.25°【答案】D【解析】∠A=12BOC=12×50°=25°.故选D.典例5如图,AB是⊙O的直径,△ACD内接于⊙O,延长AB,CD相交于点E,若∠CAD=35°,∠CDA=40°,则∠E的度数是A.20°B.25°C.30°D.35°【答案】B【解析】如图,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,由三角形内角和定理得,∠ACD=180°﹣∠CAD﹣∠CDA=105°,∴∠ABD=180°﹣∠ACD=75°,∴∠BAD=90°﹣∠ABD=15°,∴∠E=∠CDA﹣∠DAB=25°,故选B.5.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则BC的长为A.103πB.109πC.59πD.518π6.如图,AB是⊙O的直径,=BC CD DE,∠COD=38°,则∠AEO的度数是A.52°B.57°C.66°D.78°考向四点、直线与圆的位置关系1.点和圆的位置关系:①在圆上;②在圆内;③在圆外.2.直线和圆的位置关系:相交、相切、相离.典例6已知⊙O的半径是5,点A到圆心O的距离是7,则点A与⊙O的位置关系是A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.点A与圆心O重合【答案】C【解析】∵O的半径是5,点A到圆心O的距离是7,即点A到圆心O的距离大于圆的半径,∴点A在⊙O外.故选C.【点睛】直接根据点与圆的位置关系的判定方法进行判断.典例7在△ABC中,AB=AC=2,∠A=150°,那么半径长为1的⊙B和直线AC的位置关系是A.相离B.相切C.相交D.无法确定【答案】B【解析】过B作BD⊥AC交CA的延长线于D,∵∠BAC=150,∴∠DAB=30°,∴BD=11222AB=⨯=1,即B到直线AC的距离等于⊙B的半径,∴半径长为1的⊙B和直线AC的位置关系是相切,故选B.【点睛】本题考查了直线与圆的位置关系的应用,过B作BD⊥AC交CA的延长线于D,求出BD和⊙B的半径比较即可,主要考查学生的推理能力.7.如图,⊙O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,AM=3.8cm,则点A与⊙O的位置关系是A.在⊙O内B.在⊙O上C.在⊙O外D.以上都有可能8.如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,则l沿OC 所在直线向下平移__________cm时与⊙O相切.考向五切线的性质与判定有圆的切线时,常常连接圆心和切点得切线垂直半径,这是圆中作辅助线的一种方法.典例8如图,⊙O以AB为直径,PB切⊙O于B,近接AP,交⊙O于C,若∠PBC=50°,∠ABC=A.30°B.40°C.50°D.60°【答案】B【解析】∵⊙O以AB为直径,PB切⊙O于B,∴∠PBA=90°,∵∠PBC=50°,∴∠ABC=40°.故选B.典例9如图,Rt△ABC中,∠C=90°,AB=5,AC=3,点E在中线AD上,以E为圆心的⊙E分别与AB、BC相切,则⊙E的半径为A.78B.67C.56D.1【答案】B【解析】作EH⊥AC于H,EF⊥BC于F,EG⊥AB于G,连接EB,EC,设⊙E的半径为r,如图,∵∠C=90°,AB=5,AC=3,∴BC22AB AC-,而AD为中线,∴DC=2,∵以E为圆心的⊙E分别与AB、BC相切,∴EG=EF=r,∴HC=r,AH=3–r,∵EH∥BC,∴△AEH∽△ADC,∴EH∶CD=AH∶AC,即EH=233r-(),∵S △ABE +S △BCE +S △ACE =S △ABC , ∴()1112154333422232r r r ⨯⨯+⨯⨯+⨯⨯-=⨯⨯,∴67r =.故选B .9.已知四边形ABCD 是梯形,且AD ∥BC ,AD <BC ,又⊙O 与AB 、AD 、CD 分别相切于点E 、F 、G ,圆心O 在BC 上,则AB +CD 与BC 的大小关系是 A .大于 B .等于C .小于D .不能确定10.如图,以等腰△ABC 的腰AB 为⊙O 的直径交底边BC 于D ,DE AC ⊥于E .求证:(1)DB DC =; (2)DE 为⊙O 的切线.1.下列关于圆的叙述正确的有①圆内接四边形的对角互补; ②相等的圆周角所对的弧相等;③正多边形内切圆的半径与正多边形的半径相等; ④同圆中的平行弦所夹的弧相等.A .1个B .2个C .3个D .4个2.如图,AB 是⊙O 的直径,C 是⊙O 上一点(A 、B 除外),∠AOD =136°,则∠C 的度数是A .44°B .22°C .46°D .36°3.如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD ,已知DE =6,∠BAC +∠EAD =180°,则弦BC 的长等于A .41B .34C .8D .64.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,则圆心坐标是A .点(1,0)B .点(2,1)C .点(2,0)D .点(2.5,1)5.如图,O 的直径8AB =,30CBD ∠=︒,则CD 的长为A .2B .3C .4D .36.如图,一圆内切四边形ABCD ,且BC =10,AD =7,则四边形的周长为A .32B .34C .36D .387.已知在⊙O 中,AB =BC ,且34AB AMC =∶∶,则∠AOC =__________.8.如图,A 、B 、C 、D 都在⊙O 上,∠B =130°,则∠AOC 的度数是__________.9.如图,PA 、PB 分别切⊙O 于A 、B ,并与圆O 的切线DC 分别相交于D 、C .已知△PCD 的周长等于14 cm ,则PA =__________cm .10.如图,在⊙O 的内接四边形ABCD 中,AB AD =,120C ∠=︒,点E 在弧AD 上.若AE 恰好为⊙O的内接正十边形的一边,DE 的度数为__________.11.如图,半圆O 的直径是AB ,弦AC 与弦BD 交于点E ,且OD ⊥AC ,若∠DEF =60°,则tan ∠ABD =__________.12.如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为弧BF的中点,过点C作AF的垂线,交AF 的延长线于点E,交AB的延长线于点D.(1)求证:DE是⊙O的切线;(2)如果半径的长为3,tan D=34,求AE的长.13.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.14.如图1,⊙O是△ABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B,连接AD.(1)求证:CD是⊙O的切线;(2)若AD⊥CD,CD=2,AD=4,求直径AB的长;(3)如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出AC、EC、BC之间的数量关系并证明.1.如图,在O 中,AB 所对的圆周角50ACB ∠=︒,若P 为AB 上一点,55AOP ∠=︒,则POB ∠的度数为A .30°B .45°C .55°D .60°2.如图,AD 是O 的直径,AB CD =,若40AOB ∠=︒,则圆周角BPC ∠的度数是A .40︒B .50︒C .60︒D .70︒3.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A .25B .4C .213D .4.84.如图,PA 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,下列结论不一定成立的是A .PA =PB B .∠BPD =∠APDC .AB ⊥PDD .AB 平分PD5.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于A .55°B .70°C .110°D .125°6.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,若∠C =40°,则∠B 的度数为A .60°B .50°C .40°D .30°7.如图,AB 是⊙O 的直径,点C 、D 是圆上两点,且∠AOC =126°,则∠CDB =A .54°B .64°C .27°D .37°8.如图,AB 为O 的直径,BC 为O 的切线,弦AD ∥OC ,直线CD 交的BA 延长线于点E ,连接BD .下列结论:①CD 是O 的切线;②CO DB ⊥;③EDA EBD △∽△;④ED BC BO BE ⋅=⋅.其中正确结论的个数有A .4个B .3个C .2个D .1个9.如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD =__________.10.如图,△ABC 内接于⊙O ,∠CAB =30°,∠CBA =45°,CD ⊥AB 于点D ,若⊙O 的半径为2,则CD 的长为__________.11.如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=45,求tan∠BAD的值.12.如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是BD上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.(1)求证:△ADF≌△BDG;(2)填空:①若AB=4,且点E是BD的中点,则DF的长为__________;②取AE的中点H,当∠EAB的度数为__________时,四边形OBEH为菱形.1.【答案】D【解析】设原来的圆的半径为r ,则面积S 1=πr 2, ∴半径缩小到原来的14后所得新圆的面积22211π()π416S r r ==, ∴22211π116π16rS S r ==,故选D . 2.【答案】D【解析】∵圆的半径为5,∴圆的直径为10,又∵直径是圆中最长的弦,∴圆中任意一条弦的长度10l ≤,故选D . 3.【答案】B【解析】如图,连接OA ,∵O 的直径为10,5OA ∴=,∵圆心O 到弦AB 的距离OM 的长为4, 由垂径定理知,点M 是AB 的中点,12AM AB =, 由勾股定理可得,3AM =,所以6AB =.故选B .4.【解析】(1)如图所示:CO ⊥AB 于点D ,设圆弧形所在圆的半径为xm ,根据题意可得:DO 2+BD 2=BO 2, 则(x –2.3)2+851×12)2=x 2,解得x =3. 变式训练答:圆弧形所在圆的半径为3米;(2)如图所示:当MN =1.7米,则过点N 作NF ⊥CO 于点F ,可得:DF =1.7米,则FO =2.4米,NO =3米,故FN =223 2.4-=1.8(米), 故该菜农身高1.70米,则他在不弯腰的情况下,横向活动的范围有3.6米. 5.【答案】B【解析】根据题意可知:∠OAC =∠OCA =50°,则∠BOC =2∠OAC =100°,则弧BC 的长度为:100π210π1809⨯=,故选B .6.【答案】B【解析】∵=BC CD DE =,∴∠BOC =∠DOE =∠COD =38°, ∴∠BOE =∠BOC +∠DOE +∠COD =114°,∴∠AOE =180°–∠BOE =66°, ∵OA =OE ,∴∠AEO =(180°–∠AOE )÷2=57°,故选B . 7.【答案】A【解析】如图,连接OA ,则在直角△OMA 中,根据勾股定理得到OA =223 3.823.445+=<. ∴点A 与⊙O 的位置关系是:点A 在⊙O 内.故选A .8.【答案】2【解析】连接OA .∵直线和圆相切时,OH =5,又∵在直角三角形OHA 中,HA =AB ÷2=4,OA =5,∴OH =3. ∴需要平移5–3=2(cm ).故答案为:2.【点睛】本题考查垂径定理及直线和圆的位置关系.注意:直线和圆相切,应满足d =R . 9.【答案】B【解析】如图,连接OF ,OA ,OE ,作AH ⊥BC 于H .∵AD 是切线,∴OF ⊥AD ,易证四边形AHOF 是矩形,∴AH =OF =OE , ∵S △AOB =12•OB •AH =12•AB •OE ,∴OB =AB ,同理可证:CD =CO , ∴AB +CD =BC ,故选B .【点睛】本题考查了切线的性质,切线垂直于过切点的半径,正确作出辅助线是关键. 10.【解析】(1)如图,连AD ,∵AB 是直径,∴90ADB ∠=︒,AD BC ⊥, 又AB AC =,∴D 为BC 中点,DB DC =; (2)连OD ,∵D 为BC 中点,OA OB =, ∴OD 为ABC △中位线,OD AC ∥, 又DE AC ⊥于,E ∴90ODE DEC ∠=∠=︒, ∴DE 为⊙O 的切线.1.【答案】B【解析】①圆内接四边形的对角互补;正确;②相等的圆周角所对的弧相等;错误;③正多边形内切圆的半径与正多边形的半径相等;错误;④同圆中的平行弦所夹的弧相等;正确; 正确的有2个,故选B . 2.【答案】B【解析】∵∠AOD =136°,∴∠BOD =44°,∴∠C =22°,故选B . 3.【答案】C【解析】如图,延长CA ,交⊙A 于点F ,考点冲关∵∠BAC+∠BAF=180°,∠BAC+∠EAD=180°,∴∠BAF=∠DAE,∴BF=DE=6,∵CF是直径,∴∠ABF=90°,CF=2×5=10,∴BC=228CF BF-=.故选C.4.【答案】C【解析】根据勾股定理可知A、B、C点到(2,0)的距离均为5,然后可知圆心为(2,0)或者通过AB、BC的垂直平分线求解也可以.故选C.5.【答案】C【解析】如图,作直径DE,连接CE,则∠DCE=90°,∵∠DBC=30°,∴∠DEC=∠DBC=30°,∵DE=AB=8,∴12DC DE==4,故选C.6.【答案】B【解析】由题意可得圆外切四边形的两组对边和相等,所以四边形的周长=2×(7+10)=34.故选B.7.【答案】144°【解析】根据AB=BC可得:弧AB的度数和弧BC的度数相等,则弧AMC的度数为:(360°÷10)×4=144°,则∠AOC =144°. 8.【答案】100°【解析】∵∠B =130°,∴∠D =180°-130°=50°,∴∠AOC =2∠D =100°.故答案为100°. 9.【答案】7【解析】如图,设DC 与⊙O 的切点为E ;∵PA 、PB 分别是⊙O 的切线,且切点为A 、B ,∴PA =PB ; 同理,可得:DE =DA ,CE =CB ;则△PCD 的周长=PD +DE +CE +PC =PD +DA +PC +CB =PA +PB =14(cm ); ∴PA =PB =7cm ,故答案是:7. 10.【答案】84︒【解析】如图,连接BD ,OA ,OE ,OD ,∵四边形ABCD 是圆的内接四边形,∴180BAD C ∠+∠=︒, ∵120C ∠=︒,∴60BAD ∠=︒,∵AB AD =,∴ABD △是正三角形,∴60ABD ∠=︒,2120AOD ABD ∠=∠=︒, ∵AE 恰好是⊙的内接正十边形的一边,∴3603610AOE ︒∠==︒, ∴1203684DOE ∠=︒-︒=︒,∴DE 的度数为84°.故答案为:84°.113【解析】∵OD ⊥AC ,∠DEF =60°, ∴∠D =30°,∵OD=OB,∴∠ABD=∠D=30°,∴tan∠ABD=33,故答案为:33.12.【解析】(1)连接OC,如图.∵点C为弧BF的中点,∴弧BC=弧CF,∴∠BAC=∠FAC.∵OA=OC,∴∠OCA=∠OAC,∴∠OCA=∠FAC,∴OC∥AE.∵AE⊥DE,∴OC⊥DE,∴DE是⊙O的切线;(2)在Rt△OCD中,∵tan D=34OCCD=,OC=3,∴CD=4,∴OD=22OC CD+=5,∴AD=OD+AO=8.在Rt△ADE中,∵sin D=35OC AEOD AD==,∴AE=245.13.【解析】(1)直线DE与⊙O相切,理由如下:如图,连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°–90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8–x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8–x)2=22+x2,解得:x=4.75,则DE=4.75.14.【解析】(1)如图1,连接OC.∵OB=OC,∴∠OCB=∠B,∵∠DCA=∠B,∴∠DCA=∠OCB,∵AB是直径,∴∠ACB=90°,∴∠DCA+∠ACO=∠OCB+∠ACO=90°,即∠DCO=90°,∴CD是⊙O的切线.(2)∵AD⊥CD,CD=2,AD=4.∴222425AC=+=由(1)可知∠DCA=∠B,∠D=∠ACB=90°,∴△ADC∽△ACB,∴AD ACAC AB=2525=,∴AB=5.(3)2AC BC EC=+,如图2,连接BE,在AC上截取AF=BC,连接EF.∵AB 是直径,∠DAB =45°, ∴∠AEB =90°,∴△AEB 是等腰直角三角形, ∴AE =BE ,又∵∠EAC =∠EBC ,∴△ECB ≌△EFA ,∴EF =EC , ∵∠ACE =∠ABE =45°, ∴△FEC 是等腰直角三角形, ∴2FC EC =,∴2AC AF FC BC EC =+=.1.【答案】B【解析】∵∠ACB =50°,∴∠AOB =2∠ACB =100°,∵∠AOP =55°,∴∠POB =45°,故选B . 2.【答案】B【解析】∵AB CD =,40AOB ∠=︒,∴40COD AOB ∠=∠=︒, ∵180AOB BOC COD ∠+∠+∠=︒,∴100BOC ∠=︒, ∴1502BPC BOC ∠=∠=︒,故选B . 3.【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴22221086BC AB AC =--=,∵OD AC ⊥,∴142CD AD AC ===, 直通中考在Rt CBD △中,2246213BD =+=.故选C .4.【答案】D【解析】∵PA ,PB 是⊙O 的切线,∴PA =PB ,所以A 成立;∠BPD =∠APD ,所以B 成立; ∴AB ⊥PD ,所以C 成立;∵PA ,PB 是⊙O 的切线,∴AB ⊥PD ,且AC =BC ,只有当AD ∥PB ,BD ∥PA 时,AB 平分PD ,所以D 不一定成立,故选D . 5.【答案】B【解析】如图,连接OA ,OB ,∵PA ,PB 是⊙O 的切线,∴PA ⊥OA ,PB ⊥OB ,∵∠ACB =55°,∴∠AOB =110°, ∴∠APB =360°-90°-90°-110°=70°.故选B .6.【答案】B【解析】∵AC 是⊙O 的切线,∴AB ⊥AC ,且∠C =40°,∴∠ABC =50°,故选B . 7.【答案】C【解析】∵∠AOC =126°,∴∠BOC =180°-∠AOC =54°,∵∠CDB =12∠BOC =27°.故选C . 8.【答案】A【解析】如图,连接DO .∵AB 为O 的直径,BC 为O 的切线,∴90CBO ∠=︒,∵AD OC ∥,∴DAO COB ∠=∠,ADO COD ∠=∠. 又∵OA OD =,∴DAO ADO ∠=∠,∴COD COB ∠=∠.在COD △和COB △中,CO CO COD COB OD OB =⎧⎪∠=∠⎨⎪=⎩,∴COD COB △≌△,∴90CDO CBO ∠=∠=︒.又∵点D 在O 上,∴CD 是O 的切线,故①正确,∵COD COB △≌△,∴CD CB =,∵OD OB =,∴CO 垂直平分DB ,即CO DB ⊥,故②正确; ∵AB 为O 的直径,DC 为O 的切线,∴90EDO ADB ∠=∠=︒,∴90EDA ADO BDO ADO ∠+∠=∠+∠=︒,∴ADE BDO ∠=∠, ∵OD OB =,∴ODB OBD ∠=∠,∴EDA DBE ∠=∠, ∵E E ∠=∠,∴EDA EBD △∽△,故③正确;∵90EDO EBC ∠=∠=︒,E E ∠=∠,∴EOD ECB △∽△, ∴ED ODBE BC=,∵OD OB =, ∴ED BC BO BE ⋅=⋅,故④正确,故选A . 9.【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1. 10.【答案】2【解析】如图,连接CO 并延长交⊙O 于E ,连接BE ,则∠E =∠A =30°,∠EBC =90°,∵⊙O 的半径为2,∴CE =4,∴BC =12CE =2, ∵CD ⊥AB ,∠CBA =45°,∴CD =22BC =2,故答案为:2. 11.【解析】(1)∵AB =AC ,∴AB AC =,∠ABC =∠ACB ,∴∠ABC =∠ADB ,∠ABC =(180°-∠BAC )=90°-∠BAC ,∵BD⊥AC,∴∠ADB=90°-∠CAD,∴12∠BAC=∠CAD,∴∠BAC=2∠CAD.(2)∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=12∠BDC=12∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=45,设AE=x,CE=10-x,由AB2-AE2=BC2-CE2,得100-x2=80-(10-x)2,解得x=6,∴AE=6,BE=8,CE=4,∴DE=648AE CEBE⋅⨯==3,∴BD=BE+DE=3+8=11,如图,作DH⊥AB,垂足为H,∵12AB·DH=12BD·AE,∴DH=11633105 BD AEAB⋅⨯==,∴BH2244 5BD DH-=,∴AH=AB-BH=10-446 55=,∴tan∠BAD=331162 DHAH==.12.【解析】(1)∵BA=BC,∠ABC=90°,∴∠BAC=45°,∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∴∠DAF+∠BGD=∠DBG+∠BGD=90°,∴∠DAF=∠DBG,∵∠ABD+∠BAC=90°,∴∠ABD=∠BAC=45°,∴AD=BD,∴△ADF≌△BDG.(2)①如图2,过F作FH⊥AB于H,∵点E是BD的中点,∴∠BAE=∠DAE,∵FD⊥AD,FH⊥AB,∴FH=FD,∵FHBF=sin∠ABD=sin45°2,∴22FDBF=BF2FD,∵AB=4,∴BD=4cos45°2,即BF+FD22+1)FD2,∴FD=2221=4-22,故答案为:4-22.②连接OH,EH,∵点H是AE的中点,∴OH⊥AE,∵∠AEB=90°,∴BE⊥AE,∴BE∥OH,∵四边形OBEH为菱形,∴BE=OH=OB=12 AB,∴sin∠EAB=BEAB=12,∴∠EAB=30°.故答案为:30°.31。

圆的综合知识点总结(初中数学)

圆的综合知识点总结(初中数学)

圆的基本概念和性质要点一、圆的定义及性质1.圆的定义(1)动态:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.(2)静态:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.要点诠释:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.2.圆的性质①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心;②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.要点诠释:①圆有无数条对称轴;②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”.3.两圆的性质两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).要点二、与圆有关的概念1.弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.2. 弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧:在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.垂径定理知识点一、垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即⎩⎨⎧⇒⎭⎬⎫平分弦所对的弧平分弦垂直于弦直径(2)这里的直径也可以是半径,也可以是过圆心的直线或线段. 知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. 要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)弧、弦、圆心角、圆周角要点一、弧、弦、圆心角的关系1.圆心角定义:如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.2.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意定理中不能忽视“同圆或等圆”这一前提.要点二、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.4.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).5.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。

九年级圆知识点总结归纳完整版

九年级圆知识点总结归纳完整版

九年级圆知识点总结归纳完整版圆是初中数学中一个重要的几何概念,它有着广泛的应用。

本文将对九年级圆的相关知识点进行总结和归纳,帮助同学们更好地理解和掌握这一内容。

一、圆的定义圆是平面上的一个几何图形,由与其内部距离相等的所有点组成。

其中,距离圆心最远的点称为圆上的点,这个距离称为半径,用字母r表示。

圆上的任意两点之间的距离称为弦,圆的直径是一条穿过圆心并且与圆上的两点相接的弦,直径的长度是半径的两倍。

二、圆的性质1. 圆的周长公式:C = 2πr,其中C是圆的周长,r是圆的半径,π是一个无理数,近似值为3.14或22/7。

周长是圆上一周的长度,也可以说是圆的边界长度。

2. 圆的面积公式:A = πr²,其中A是圆的面积。

面积是圆所包围的平面区域的大小。

3. 切线的性质:切线是与圆只有一个交点的直线。

圆与切线相切时,切线与半径的夹角是直角。

4. 弦的性质:圆的直径是最长的弦,且直径平分圆。

如果两弦在圆内或圆上的交点连线通过圆心,则交线垂直于这两条弦。

三、圆的定位1. 圆的内切和外切:当一个圆与一个三角形的三条边都相切时,该圆称为三角形的内切圆;当一个圆与一个三角形的每条边的延长线相切时,该圆称为三角形的外切圆。

2. 圆的相似:两个圆的半径之比等于两个圆的周长之比,它们是相似的。

四、圆的推理与证明1. 直径在同一直线上的圆是同心圆:当两个圆的直径重合时,它们是同心圆。

2. 圆内接四边形的性质:一个四边形能够内切于一个圆的充要条件是,这个四边形的对角线互相垂直。

3. 正多边形外接圆的性质:一个正n边形可以内切与一个圆的充要条件是,这个正n边形的对角线互相垂直。

五、圆的应用1. 圆与三角形的应用:可以利用圆的性质来解决三角形的推理证明题,如证明三角形内切圆的性质、利用相似三角形证明圆的性质等。

2. 圆的平移、旋转和镜像:圆可以通过平移、旋转和镜像等变换来进行操作,这在解决几何问题时有着重要的作用。

初中数学圆的知识点及解题技巧

初中数学圆的知识点及解题技巧

初中数学圆的知识点及解题技巧初中数学圆的知识点及解题技巧圆是初中数学中比较重要的一个知识点,也是中考、高考中常出现的题型。

在掌握圆的基本定义和性质之后,还需要掌握圆的重要应用,例如圆的切线和割线等。

下面我们来介绍一下初中数学圆的知识点及解题技巧。

一、圆的基本定义圆是一个平面上所有到一个固定点的距离都相等的点构成的图形。

这个固定点叫作圆心,图形中半径是连接圆心和圆上任意一点的线段,在圆上的点与圆心之间的距离都相等。

二、圆的基本性质1. 圆的直径是圆上任意两点之间的最长距离,也是圆上截取的任何弦中最长的一条。

2. 半径相等的圆互相重合,半径不等的圆不能重合。

3. 圆上的弧度等于它所对的圆心角的度数,也就是说,圆上的角都是弧度制的度数。

4. 在同一圆周上的两个弧所对的圆心角相等。

三、圆的常见元素及解题技巧1. 弦和弧弦是连接圆上任意两点的线段,它截取了圆的一段弧。

弧与弦的关系是:它们所对的圆心角相等。

如果弦把一条弧分成了两段,则这条弧就叫做弦所对的弧。

2. 圆心角以圆心为顶点的角叫作圆心角,它所对的弧叫做圆心角所对的弧。

在同一圆周上,圆心角相等的两个弧所对应的圆弧角度相等。

3. 切线和割线切线和割线是圆和直线的关系。

切线是与圆相切的直线,它在切点处与圆的切点的交点垂直于半径。

而割线则是与圆交于两个不同点的直线,它截取了圆的两段弧。

4. 弧长和扇形弧是圆上的一段弯曲的线段,它所对应的圆心角叫做弧度。

弧分为弧度和弧长两个概念,所以我们经常说到“圆心角的弧度制度数”和“弧长”两个概念。

一个扇形是由一个半径和弧组成,它是一个圆的一部分。

解题技巧:1. 确定中心点和半径,计算圆的周长、面积和弧长。

2. 确定圆心角的度数和弧度制,计算弧长。

3. 确定弦或弦所对的角度数,计算该弦所对应的弧长。

4. 利用切线和割线所对应的角度来计算角度或者其所对应的弧度。

5. 利用圆与线段之间的距离公式来计算圆与线段之间的距离。

四、解题策略和技巧1. 熟记圆的基本定义和性质。

初中数学圆的知识点(通用4篇)

初中数学圆的知识点(通用4篇)

初中数学圆的知识点〔通用4篇〕篇1:初中数学圆知识点 1.圆的定义(1)在一个平面内,线段OA绕它的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆。

固定的端点O 叫做圆心,线段OA叫做半径,如右图所示。

(2)圆可以看作是平面内到定点的间隔等于定长的点的集合,定点为圆心,定长为圆的半径。

说明:圆的位置由圆心确定,圆的大小由半径确定,半径相等的两个圆为等圆。

2.圆的有关概念(1)弦:连结圆上任意两点的线段。

(如右图中的CD)。

(2)直径:经过圆心的弦(如右图中的AB)。

直径等于半径的2倍。

(3)弧:圆上任意两点间的局部叫做圆弧。

(如右图中的CD、CAD)其中大于半圆的弧叫做优弧,如CAD,小于半圆的弧叫做劣弧。

(4)圆心角:如右图中∠COD就是圆心角。

3.圆心角、弧、弦、弦心距之间的关系。

(1)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦的弦心距相等。

(2)推论:在同圆或等圆中,假如两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

4.过三点的圆。

(1)定理:不在同一条直线上的三点确定一个圆。

(2)三角形的外接圆圆心(外心)是三边垂直平分线的交点。

5.垂径定理。

垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论:(1)①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;③平分弦所对的一条弦的直径,垂直平分弦,并且平分弦所对的另一条弧。

(2)圆的两条平行弦所夹的弧相等。

6.与圆相关的角(1)与圆相关的角的定义①圆心角:顶点在圆心的角叫做圆心角②圆周角:顶点在圆上且两边都和圆相交的角叫做圆周角。

③弦切角:顶点在圆上,一边和圆相交,另一连轴和圆相切的角叫做弦切角。

(2)与圆相关的角的性质AB①圆心角的度数等于它所对的弦的度数;②一条弧所对的圆周角等于它所对的圆心角的一半; ③同弧或等弧所对的圆周角相等; ④半圆(或直径)所对的圆周角相等; ⑤弦切角等于它所夹的弧所对的圆周角;⑥两个弦切角所夹的弧相等,那么这两个弦切角也相等;⑦圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

初中数学圆知识点总结

初中数学圆知识点总结

初中数学圆知识点总结初中数学圆知识点总结1.点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为d,则①点在圆上<===>d=r;②点在圆内<===>dd>r.二.圆的对称性:1.与圆相关的概念:④同心圆:圆心相同,半径不等的两个圆叫做同心圆。

⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。

⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。

⑦圆心角:顶点在圆心的角叫做圆心角.⑧弦心距:从圆心到弦的距离叫做弦心距.2.圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。

3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。

上述五个条件中的任何两个条件都可推出其他三个结论。

4.定理:在同圆或等圆中,相等的圆心角所对弧相等、所对的弦相等、所对的弦心距相等。

推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.三.圆周角和圆心角的关系:1.圆周角的定义:顶点在圆上,并且两边都与圆相交的角,叫做圆周角.2.圆周角定理;一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对圆周角相等;反之,在同圆或等圆中,相等圆周角所对弧也相等;推论2:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径;四.确定圆的条件:1.理解确定一个圆必须的具备两个条件:经过一点可以作无数个圆,经过两点也可以作无数个圆,其圆心在这个两点线段的垂直平分线上.2.定理:不在同一直线上的三个点确定一个圆.3.三角形的外接圆、三角形的外心、圆的内接三角形的概念:(1)三角形的外接圆和圆的内接三角形:经过一个三角形三个顶点的圆叫做这个三角形的外接圆,这个三角形叫做圆的内接三角形.(2)三角形的外心:三角形外接圆的圆心叫做这个三角形的外心.(3)三角形的外心的性质:三角形外心到三顶点的距离相等.初中数学圆知识点学习技巧一.1、弧长公式n°的圆心角所对的弧长l的计算公式为L=nπr/1802、扇形面积公式,其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长.S=﹙n/360﹚πR2=1/2×lR3、圆锥的侧面积,其中l是圆锥的母线长,r是圆锥的地面半径.S=1/2×l×2πr=πrl4.圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。

初中数学九年级上圆的知识点

初中数学九年级上圆的知识点

初中数学九年级上圆的知识点圆是初中数学九年级上的一个重要知识点,下面将从圆的定义、圆的性质、圆的相关定理以及圆的应用等方面进行论述。

一、圆的定义圆是平面上的重要几何图形之一,是由与一个定点距离相等的所有点构成的集合。

这个定点称为圆心,距离称为半径,用字母r表示。

圆通常用圆的轮廓线表示,在数学表达中用字母O表示。

二、圆的性质1. 圆的任意两点到圆心的距离相等。

这意味着圆上的每一个点到圆心的距离都相等,即圆的半径。

2. 圆的直径是圆上任意两点之间的最长距离。

直径的长度是半径的两倍。

3. 圆的弦是圆上任意两点之间的线段。

弦不一定通过圆心,可以在圆内或圆外。

4. 圆上的切线垂直于半径。

切线是与圆相切的线,与圆的切点处的半径垂直。

三、圆的相关定理1. 弧与角的关系圆上的弧对应的圆心角是两个端点在圆心所对应的角,它们的度数相等。

2. 弧长与圆周角的关系圆的弧长是圆心角所对应的弧所在圆的一部分的长度,弧长等于这个圆心角所对应的圆周角度数的比值。

3. 弦长与弦心角的关系弦上的弦长是弦心角所对应的弦所在圆的一部分的长度,弦长等于这个弦心角所对应的圆周角度数的比值的2倍。

4. 割线定理割线是两个切点之间的线段,割线上的两个切线段长度乘积等于这条割线与这两个切点之间的弦段长度乘积。

四、圆的应用1. 圆的测量圆的周长等于圆周上的任意一段弧长,即C=πd或C=2πr,其中d为直径,r为半径。

圆的面积等于圆内所包围的面积,即S=πr²。

2. 圆的位置关系两个圆之间的位置关系可以分为外切、内切、相交、相离四种情况,通过判断两个圆心的距离与两个圆的半径之间的关系可以确定两个圆的位置关系。

3. 圆的轴对称与旋转对称圆具有轴对称性和旋转对称性,利用这个特性可以解决一些与圆相关的问题。

综上所述,圆是初中数学九年级上的重要知识点,通过对圆的定义、性质、相关定理和应用进行论述,可以帮助同学们更好地理解和掌握圆的知识,提高数学学科的学习成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A图5圆的总结一 集合:圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的内部:可以看作是到定点的距离小于定长的点的集合二 轨迹:1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆;2、到线段两端点距离相等的点的轨迹是:线段的中垂线;3、到角两边距离相等的点的轨迹是:角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线三 位置关系:1点与圆的位置关系:点在圆内 d<r 点C 在圆内 点在圆上 d=r 点B 在圆上 点在此圆外 d>r 点A 在圆外2 直线与圆的位置关系:直线与圆相离 d>r 无交点 直线与圆相切 d=r 有一个交点 直线与圆相交 d<r 3 圆与圆的位置关系:外离(图1) 无交点 外切(图2) 相交(图3) 内切(图4) 内含(图5) 无交点D B四 垂径定理:垂径定理:垂直于弦的直径平分弦且平分弦所对的弧 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB ⊥CD ③CE=DE ④⑤推论2:圆的两条平行弦所夹的弧相等。

即:在⊙O 中,∵AB ∥CD五 圆心角定理六 圆周角定理圆周角定理:同一条弧所对的圆周角等于它所对的圆心的角的一半 即:∵∠AOB 和∠ACB 是 所对的圆心角和圆周角 ∴∠AOB=2∠ACB 圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧即:在⊙O 中,∵∠C 、∠D 都是所对的圆周角 ∴∠C=∠D推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,BC BD =AC AD =BAOP所对的弦是直径即:在⊙O 中,∵AB 是直径 或∵∠C=90° ∴∠C=90°∴AB 是直径推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形即:在△ABC 中,∵OC=OA=OB ∴△ABC 是直角三角形或∠C=90° 注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。

七 圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。

即:在⊙O 中,∵四边形ABCD 是内接四边形 ∴∠C+∠BAD=180° B+∠D=180° ∠DAE=∠C八 切线的性质与判定定理(1)判定定理:过半径外端且垂直于半径的直线是切线 两个条件:过半径外端且垂直半径,二者缺一不可 即:∵MN ⊥OA 且MN 过半径OA 外端 ∴MN 是⊙O 的切线(2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点 推论2:过切点垂直于切线的直线必过圆心 以上三个定理及推论也称二推一定理:即:过圆心过切点垂直切线中知道其中两个条件推出最后一个条件 ∵MN 是切线 ∴MN ⊥OA切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。

即:∵PA 、PB 是的两条切线 ∴PA=PBlOPO平分∠BPA九圆内正多边形的计算(1)正三角形在⊙O中△ABC是正三角形,有关计算在Rt△BOD中进行,OD:BD:OB=(2)正四边形同理,四边形的有关计算在Rt△OAE中进行,OE:AE:OA=(3)正六边形同理,六边形的有关计算在Rt△OAB中进行,AB:OB:OA=十、圆的有关概念1、三角形的外接圆、外心。

→用到:线段的垂直平分线及性质2、三角形的内切圆、内心。

→用到:角的平分线及性质3、圆的对称性。

→⎩⎨⎧中心对称轴对称十一、圆的有关线的长和面积。

1、圆的周长、弧长C=2πr, l=θR2、圆的面积、扇形面积、圆锥的侧面积和全面积S圆=πr2,S扇形=lr21S圆锥=母线底面圆lrπ2+rπ底面圆3、求面积的方法直接法→由面积公式直接得到间接法→即:割补法(和差法)→进行等量代换1::21:1:1::2十二、侧面展开图:①圆柱侧面展开图是形,它的长是底面的,高是这个圆柱的;②圆锥侧面展开图是形,它的半径是这个圆锥的,它的弧长是这个圆锥的底面的。

十三、正多边形计算的解题思路:正多边形−−−→连 OAB转 化等腰三角形OD−−−−→作垂线转 化直角三角形。

可将正多边形的中心与一边组成等腰三角形,再用解直角三角形的知识进行求解。

圆一、精心选一选,相信自己的判断!(每小题4分,共40分)1.如图,把自行车的两个车轮看成同一平面内的两个圆,则它们的位置关系是()A.外离B.外切C.相交D.内切 2.如图,在⊙O 中,∠ABC =50°,则∠AOC 等于() A .50° B .80° C .90° D .100°3.如图,AB 是⊙O 的直径,∠ABC =30°,则∠BAC =()A .90°B .60°C .45°D .30°() 4.如图,⊙O 的直径CD ⊥AB ,∠AOC =50°,则∠CDB 大小为 ( ) A .25°B .30°C .40°D .50°5.已知⊙O 的直径为12cm ,圆心到直线L 的距离为6cm ,则直线L 与⊙O 的公共点的个数为() A .2 B .1 C .0 D .不确定6.已知⊙O 1与⊙O 2的半径分别为3cm 和7cm ,两圆的圆心距O 1O 2 =10cm ,则两圆的位置关系是() A .外切 B .内切 C .相交 D .相离7.下列命题错误..的是() A .经过不在同一直线上的三个点一定可以作圆 B .三角形的外心到三角形各顶点的距离相等C .平分弦的直径垂直于弦,并且平分弦所对的两条弧D .经过切点且垂直于切线的直线必经过圆心 8.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定() A .与x 轴相离、与y 轴相切 B .与x 轴、y 轴都相离 C .与x 轴相切、与y 轴相离 D .与x 轴、y 轴都相切第1题图 A B O C第2题图 第3题图 12A H B O C第4题 A B O C D9已知两圆的半径R 、r 分别为方程0652=+-x x 的两根,两圆的圆心距为1,两圆的位置关系是( )A .外离B .内切C .相交D .外切 10.同圆的内接正方形和外切正方形的周长之比为() A . 2 ∶1B .2∶1C .1∶2D .1∶ 211.在Rt △AB C 中,∠C=90°,AC=12,BC=5,将△ABC 绕边AC 所在直线旋转一周得到圆锥,则该圆锥的侧面积是( ) A .25π B .65π C .90π D .130π12.如图,Rt △AB C 中,∠ACB=90°,∠C AB =30°,BC =2,O 、H 分别为边AB 、AC 的中点,将△ABC 绕点B 顺时针旋转120°到△A 1BC 1的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为() A .73 π-783B .43 π+783C .πD .43π+ 3二、细心填一填,试自己的身手!(本大题共6小题,每小题4分,共24分) 13.如图,PA 、PB 分别切⊙O 于点A 、B ,点E 是⊙O 上一点,且60=∠AEB ,则=∠P _____度.14. 在⊙O 中,弦AB 的长为8厘米,圆心O 到AB 的距离为3厘米,则⊙O 的半径 为_______________ . 15.已知在⊙O 中,半径r =13,弦AB ∥CD ,且AB=24,CD =10,则AB 与CD 的距离为__________. 16.一个定滑轮起重装置的滑轮的半径是10cm ,当重物上升10cm 时,滑轮的一条半径OA 绕轴心O 按逆时针方向旋转的角度为_______ (假设绳索与滑轮之间没有滑动)17.如图,在边长为3cm 的正方形中,⊙P 与⊙Q 相外切,且⊙P 分别与DA 、DC 边相切,⊙Q 分别与BA 、BC 边相切,则圆心距PQ 为______________.18.如图,⊙O 的半径为3cm ,B 为⊙O 外一点,OB 交⊙O 于点A ,AB =OA ,动点P 从点A 出发,以πcm/s 的速度在⊙O 上按逆时针方向运动一周回到点A 立即停止.当点P 运动的时间为_________s 时,BP 与⊙O 相切.三、用心做一做,显显自己的能力!(本大题共7小题,满分66分)19.(本题满分8分)如图,圆柱形水管内原有积水的水平面宽CD=20cm ,水深GF=2cm.若水面上升2cm (EG=2cm ),则此时水面宽AB 为多少?20.(本题满分8分)如图,PA ,PB 是⊙O 的切线,点A ,B 为切点,AC 是⊙O 的直径,∠ACB =70°.求∠P 的度数.B A O P第13题图17题图 第18题图CA DQPOADBCH21.(本题满分8分)如图,线段AB 经过圆心O ,交⊙O 于点A 、C ,点D 在⊙O 上,连接AD 、BD ,∠A =∠B =30°,BD 是⊙O 的切线吗?请说明理由.22.如图所示,是⨀O 的一条弦,,垂足为,交⨀O 于点,点在⨀O 上. (1)若,求的度数; (2)若,,求的长.(10分)23.如图,、是⨀O 的两条弦,延长、交于点,连结、交于点.,24. (12分)如图,在△ABC 中,AB =AC ,D 是BC 中点,AE 平分∠BAD 交BC 于点E ,点O 是AB 上一点,⊙O 过A 、E 两点, 交AD 于点G ,交AB 于点F . (1)求证:BC 与⊙O 相切;(2)当∠BAC =120°时,求∠EFG 的度数25.(本题满分12分)已知:如图△ABC 内接于⊙O ,OH ⊥AC 于H ,过A 点的切线与OC 的延长线交于点D ,∠B =30°,OH=5 3 .请求出:(1)∠AOC 的度数;(2)劣弧AC 的长(结果保留π); (3)线段AD 的长(结果保留根号).E B CA O A BDC OE BAC D EGOF 第24题图26.(本题满分12分)如图,在平面直角坐标系中,⊙M与x轴交于A、B两点,AC是⊙M的直径,过点C的直线交x轴于点D,连接BC,已知点M的坐标为(0, 3 ),直线CD的函数解析式为y= Array- 3 x+5 3 .⑴求点D的坐标和BC的长;⑵求点C的坐标和⊙M的半径;⑶求证:CD是⊙M的切线.初中数学圆知识点总结1、圆是定点的距离等于定长的点的集合2、圆的内部可以看作是圆心的距离小于半径的点的集合3、圆的外部可以看作是圆心的距离大于半径的点的集合4、同圆或等圆的半径相等5、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆6、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线7、到已知角的两边距离相等的点的轨迹,是这个角的平分线8、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线9、定理不在同一直线上的三点确定一个圆。

相关文档
最新文档