5学年上学期高二期末考试数学(理)试题(附答案)(2)
2023-2024学年湖南师大附中高二数学上学期期末考试卷附答案解析
2023-2024学年湖南师大附中高二数学上学期期末考试卷时量:120分钟满分:150分一、选择题:本大题共8个小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1.设复数z 满足=1i z -,z 在复平面内对应的点为(x,y),则A.22+11()x y +=B.22(1)1x y -+=C.22(1)1y x +-=D.22(+1)1y x +=2.直线() 2140x m y +++=与直线 320mx y +-=平行,则m =A.2B.2或3-C.3-D.2-或3-3.已知角α的终边与单位圆的交于点1,2P y ⎛⎫- ⎪⎝⎭,则sin tan αα⋅=()A.3-B.3±C.32-D.32±4.随着新一轮科技革命和产业变革持续推进,以数字化、网络化、智能化以及融合化为主要特征的新型基础设施建设越来越受到关注.5G 基站建设就是“新基建”的众多工程之一,截至2020年底,我国已累计开通5G 基站超70万个,未来将进一步完善基础网络体系,稳步推进5G 网络建设,实现主要城区及部分重点乡镇5G 网络覆盖.2021年1月计划新建设5万个5G 基站,以后每个月比上一个月多建设1万个,预计我国累计开通500万个5G 基站时要到()A.2022年12月B.2023年2月C.2023年4月D.2023年6月5.已知(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则|a0|+|a1|+…+|a5|=()A.1B.243C.121D.1226.设椭圆E 的两焦点分别为1F ,2F ,以1F 为圆心,12F F 为半径的圆与E 交于P ,Q 两点,若12PF F ∆为直角三角形,则E 的离心率为A.1C.17.如图,在平行四边形ABCD 中,点E 是CD 的中点,点F 为线段BD 上的一动点,若()0,0AF x AE yDC x y =+>>,则22341x y -+的最大值为()A.12B.34C.1D.28.已知当e x ≥时,不等式11e ln ax x a xx +-≥恒成立,则正实数a 的最小值为()A.1B.1eC.eD.21e二、多选题:本大题共4个小题,每小题5分,满分20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.4个班分别从3个景点选择一处游览,不同的选法的种数是43;B.从1,2,3,4,5选择2个数(可重复)组成两位偶数一共有10个;C.两个口袋分别装有2个和3个小球,从两个口袋分别各取1个球,一共有5种取法;D.从1,3,5,7,10选择2个不相同的数作为分子分母组成分数,一共可以组成10个分数;10.设等比数列{}n a 的公比为q,其前n 项和为n S ,前n 项积为nT,并且满足条件11a >,781a a ⋅>,87101a a -<-,则下列结论正确的是()A.01q <<B.791a a ⋅>C.n S 的最大值为9S D.n T 的最大值为7T 11.已知函数()sin cos f x x x x x=+-的定义域为[)2,2ππ-,则()A.()f x 为奇函数B.()f x 在[)0,p 上单调递增C.()f x 有且仅有4个极值点D.()f x 恰有4个极大值点12.下列有关正方体的说法,正确的有()A.正方体的内切球、棱切球、外接球的半径之比为B.若正方体1111ABCD A B C D -的棱长为1,Q 为正方体侧面11BCC B 上的一个动点,,E F 为线段1AC 的两个三等分点,则QE QF+的最小值为C.若正方体8个顶点到某个平面的距离为公差为1的等差数列,则正方体的棱长为D.若正方体ABCD A B C D -''''的棱长为3,点P 在棱CC '上,且2PC PC =',则三棱锥B D AP '-'的外接球表面积为99π4三、填空题:本大题共4小题,每小题5分,共20分.13.已知函数()2ln 2f x x x ax =++,若()e 0f '=,则=a .14.若直线10x ay a +--=与圆22:(2)4C x y -+=交于,A B 两点,当AB 最小时,劣弧 AB 的长为.15.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若()2cos sin cos a c B A A -=,a =且cos sin B C =-,则bc =.16.如图,椭圆22221(0)x y a b a b +=>>与双曲线22221(0,0)x y m n m n -=>>有公共焦点()()12,0,,0(0)F c F c c ->,椭圆的离心率为1e ,双曲线的离心率为2e ,点P 为两曲线的一个公共点,且1260,F PF I ∠=为12F PF △的内心,1,,F I G 三点共线,且0,GP IP x ⋅=轴上点,A B 满足,AI IP BG GP λμ==,则12e e 的最小值为;22λμ+的最小值为.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数()()2cos cos sin f x x x x x=-+.(1)求函数()f x 的单调递减区间和最小正周期;(2)若当ππ,62x ⎡⎤∈⎢⎥⎣⎦时,不等式()f x m ≥有解,求实数m 的取值范围.18.用总长为52m3的钢条制作一个长方体容器的框架,如果所制容器底面一边比另一边的长多1m ,那么高为多少时容器的容积最大?最大容积是多少?19.在如图所示的试验装置中,两个正方形框架,ABCD ABEF 的边长都是1,且它们所在的平面互相垂直.活动弹子,M N 分别在正方形对角线AC 和BF 上移动,且CM 和BN的长度保持相等,记(0CM BN t t ==<<.(1)求MN 长的最小值;(2)当MN 的长最小时,求二面角A MN B --的正弦值.20.已知数列{}n a 的首项11a =,且满足13,,4,.nn n a n a a n ++⎧=⎨⎩为奇数为偶数(1)记2n n b a =,证明:{}1n b +为等比数列;(2)求数列{}n a 的通项公式及其前21n -项和21n S -.21.阅读材料并解决如下问题:Bézier 曲线是计算机图形学及其相关领域中重要的参数曲线之一.法国数学家DeCasteljau 对Bézier 曲线进行了图形化应用的测试,提出了DeCasteljau 算法:已知三个定点,根据对应的一定比例,使用递推画法,可以画出抛物线.反之,已知抛物线上三点的切线,也有相应边成比例的结论.已知抛物线2Γ:2(0)y px p =>上的动点到焦点距离的最小值为12.(1)求Γ的方程及其焦点坐标和准线方程;(2)如图,,,A B C 是Γ上的三点,过三点的三条切线分别两两交于点,,D E F ,若//AC DF ,求BD BF的值.22.设()()e e 21x x f x ax =--且()0f x ≥恒成立.(1)求实数a 的值;(2)证明:()f x 存在唯一的极大值点0x ,且()220e2--<<f x .1.C【分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x,y)和点(0,1)之间的距离为1,可选正确答案C.【详解】,(1),z x yi z i x y i =+-=+-1,z i -=则22(1)1y x +-=.故选C.【点睛】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.2.B【分析】两直线平行,斜率相等;按10m +=,0m =和10,0m m +≠≠三类求解.【详解】当10m +=即1m =-时,两直线为240x +=,320x y -+-=,两直线不平行,不符合题意;当0m =时,两直线为240x y ++=,320y -=两直线不平行,不符合题意;当10,0m m +≠≠即1,0m m ≠-≠时,直线2(1)40x m y +++=的斜率为21m -+,直线320mx y +-=的斜率为3m -,因为两直线平行,所以213mm -=-+,解得2m =或3-,故选B.【点睛】本题考查直线平行的斜率关系,注意斜率不存在和斜率为零的情况.3.C【详解】分析:首先求出点P 的坐标,再利用三角函数的定义得出cos ,sin αα的值,进而由同角三角函数基本关系式求出结果即可.详解:∵点1,2P y ⎛⎫- ⎪⎝⎭在单位圆上,2y ∴=±,则由三角函数的定义可得得1cos ,22αα=-=±则23sin 34sin ·tan .1cos 22αααα===--点睛:此题考查了三角函数的定义以及同角三角函数基本关系式的应用,求出y 的值是解题的关键.4.B【分析】每个月开通5G 基站的个数是以5为首项,1为公差的等差数列,设预计我国累计开通500万个5G 基站需要n 个月,结合等差数列的前n 项和公式列得关于n 的方程,解之即可.【详解】每个月开通5G 基站的个数是以5为首项,1为公差的等差数列,设预计我国累计开通500万个5G 基站需要n 个月,则(1)70515002n n n -++⨯=,化简整理得,298600n n +-=,解得25.17n ≈或34.17-(舍负),所以预计我国累计开通500万个5G 基站需要25个月,也就是到2023年2月.故选:B.5.B【分析】运用赋值法建立方程组,解之可得选项.【详解】令x=1,得a5+a4+a3+a2+a1+a0=1①,令x=-1,得-a5+a4-a3+a2-a1+a0=-243②,①+②,得2(a4+a2+a0)=-242,即a4+a2+a0=-121.,①-②,得2(a5+a3+a1)=244,即a5+a3+a1=122.所以|a0|+|a1|+…+|a5|=122+121=243.故选:B.【点睛】方法点睛:对形如()(),nax b a b R +∈的式子求其展开式的各项系数之和,常用赋值法,只需令1x =即可;对形如()(),nax by a b R +∈的式子求其展开式中各项系数之和,只需令1x y ==即可.6.B【分析】由12PF F ∆为直角三角形,得01290PF F ∠=,可得122,PF c PF ==,利用椭圆的定义和离心率的概念,即可求解.【详解】如图所示,因为12PF F ∆为直角三角形,所以01290PF F ∠=,所以122,PF c PF ==,则22c a +=,解得1ce a ==,故选B【点睛】本题主要考查了椭圆的标准方程及其简单的几何性质的应用,其中解答中合理利用椭圆的定义和离心率的概念求解是解答的关键,着重考查了运算与求解能力,属于基础题.7.A【分析】设BD、AE 交于O,根据题意可得AOB EOD ∽△△,所以32AE AO=,进而可得32AF x AO y AB=+ ,根据O、F、B 三点共线,可得x,y 的关系,代入所求,即可基本不等式,即可得答案.【详解】设BD、AE 交于O,因为DE AB ∕∕,所以AOB EOD ∽△△,所以2AO ABOE DE ==,所以2AO OE =,则32AE AO= ,所以32AF x AO y ABx AE yDC ++== ,因为O、F、B 三点共线,所以312x y +=,即232x y -=,所以222322141414x y y y y y -==+++,因为0,0x y >>,所以144y y +≥,当且仅当14y y =,即12y =时等号成立,此时13x =,所以223221141424x y y y -=≤=++,故选:A8.B【分析】原不等式可变形为11e ln e ln a a x xx x -≤-,令()ln f x x x =-则()1e a x f f x ⎛⎫≤ ⎪⎝⎭对于e x ≥恒成立,利用导数判断()ln f x x x=-的单调性可得1e axx ≤,转化为1ln a x x ≥,令()[)()ln e,h x x x x =∈+∞,利用导数求()h x最小值可得1ln x x 的最大值即可求解.【详解】由题意,原不等式可变形为11e ln a xx a x x -≤-,即11e ln e ln a a x x x x -≤-,设()ln f x x x=-,则当e x ≥时,()1e a x f f x ⎛⎫≤ ⎪⎝⎭恒成立,因为()111x f x x x -'=-=,所以函数()f x 在()0,1上单调递减,在()1,+∞上单调递增,因为e x ≥,0a >所以1e 1x>,1ax >,因为()f x 在()1,+∞上单调递增,所以要使()1e a x f f x ⎛⎫≤ ⎪⎝⎭,只需1e a xx ≤,两边取对数,得1ln a x x ≤,因为e x ≥,所以1ln a x x ≥;令()[)()ln e,h x x x x =∈+∞,因为()ln 10h x x '=+>,所以()h x 在[)e,+∞上单调递增,所以()()min e eh x h ==,所以110ln e x x <≤,则1e a ≥,故正实数a 的最小值为1e ,故选:B.9.AB【分析】计算4个班分别从3个景点选择一处游览,共有几种选法,判断A;计算出从1,2,3,4,5选择2个数(可重复)组成两位偶数一共有几个,判断B;根据分步乘法原理计算两个口袋分别装有2个和3个小球,从两个口袋分别各取1个球,有几种取法,判断C;考虑1作分子情况和不选1时的情况,计算出分数的个数,判断D.【详解】A,4个班分别从3个景点选择一处游览,每一个班都有3种选择,分4步完成,故有433333⨯⨯⨯=种选法,A 正确;B,从1,2,3,4,5选择2个数(可重复)组成两位偶数,先确定个位数字有2种可能,再确定十位数字有5种可能,故共有2510⨯=个偶数,B 正确;C,两个口袋分别装有2个和3个小球,从两个口袋分别各取1个球,共有236⨯=种取法,C 错误;D,从1,3,5,7,10选择2个不相同的数作为分子分母组成分数,若选1作分子,则分母有4种可能,此时有4个分数,不选1时,共有24A 12=个分数,故共有41216+=个分数,故D 错误,故选:AB 10.AD【分析】根据题意71a >,81a <,再利用等比数列的定义以及性质逐一判断即可.【详解】因为11a >,781a a ⋅>,8711a a -<-,所以71a >,81a <,所以01q <<,故A 正确.27981a a a =<⋅,故B 错误;因为11a >,01q <<,所以数列{}n a 为递减数列,所以n S 无最大值,故C 错误;又71a >,81a <,所以n T 的最大值为7T ,故D 正确.故选:AD【点睛】本题考查了等比数列的性质、定义,考查了基本知识的掌握情况,属于基础题.11.BC【分析】由函数的定义域不关于原点对称,可知函数是非奇非偶函数,求出函数的导数,利用导数分析函数的单调性与极值.【详解】因为()f x 的定义域为[)22ππ-,,定义域不关于原点对称,所以()f x 是非奇非偶函数,又()()1cos cos sin 1sin f x x x x x x x'+--+==,当[)0,x Îp 时,()0f x ¢>,则()f x 在[)0,p 上单调递增,显然()00f '≠,令()0f x '=,得1sin x x =-,分别作出sin y x =,y1x =-在区间[)22ππ-,上的图象,由图可知,这两个函数的图象在区间[)22ππ-,上共有4个公共点,且两图象在这些公共点上都不相切,故()f x 在区间[)22ππ-,上的极值点的个数为4,且()f x 只有2个极大值点,故选:BC.12.ABD【分析】设正方体棱长为a ,分别求出正方体的内切球、棱切球、外接球的半径判断A;利用补体法,把QE QF+转为1QE QF +,当1E Q F 、、共线的时候1QE QF EF +=最小,利用余弦定理求出1EF 判断B;利用已知条件确定棱长与8个顶点到某个平面的距离的关系,利用等体积法求出棱长判断C;利用坐标法求出球心坐标,进而求出球的半径,从而求出外接球表面积判断D.【详解】对于选项A,设正方体边长为a ,则其内切球、棱切球、外接球半径分别为12a ,故比值为,故A 正确;对于选项B,如图1QE QF QE QF +=+,当1E QF 、、共线的时候1QE QF EF +=最小,在1AC M 中,22211111||1cos 23C A C M AM AC M C A C M+-∠==,由余弦定理得22211111111112cos 9EF C E C F C E C F AC M =+-∠=,所以1EF =,所以QE QF +有最小值,故B 正确;对于选项C,因为点1111,,,,,,,A B C D A B C D 到某个平面的距离成等差数列,且公差为1.不妨设平面α为符合题意的平面,α过点C ,延长1111,,D C A B AB 分别交平面α于点,,E F G ,则点1111,,,,,,,C C B B D D A A 与平面α的距离分别应为0,1,2,3,4,5,6,7,因为11,,,D E A F DC AG 互相平行,所以它们与平面α所成角相等,故由比例关系得1111::::::1:2:3:4:5:6:7C E BG B F DC D E AG A F =.设正方体的棱长为4a ,则11,2,3C E a BG a B F a ===,用几何方法可解得,,EF EC CF ===,由余弦定理可得222cos 2CE EF CF CEF CE EF +-∠==⋅,sin CEF∠==,故21sin2ECFS EF EC CEF=⋅⋅⋅∠=,由1CC⊥平面1111DCBA,知1CC为四面体1C EC F-的底面1EC F上的高,所以由11C ECF C EC FV V--=,算得点1C到平面α的距离,12121EC FECFS CCd aS⋅===,因为1d=,所以121a=,从而可得4a=,所以正方体的棱长为4a=C错误;对于选项D,以D为坐标原点,,,DA DC DD'所在直线分别为,,x y z轴建立如图所示的空间直角坐标系,则()()()()0,0,3,0,3,2,3,3,3,3,0,0D P B A'',设三棱锥B D AP'-'的外接球球心为(),,N x y z,由2222||ND NP NB NA===''得,222222222222(3)(3)(2)(3)(3)(3)(3)x y z x y z x y z x y z++-=+-+-=-+-+-=-++,解得75,44x z y===,所以三棱锥B D AP '-'的外接球半径3114R ==,所以三棱锥B D AP '-'的外接球表面积为2994ππ4S R ==,D 正确.故选:ABD.【点睛】方法点睛:几何体外接球半径的求法主要有:①直接法:确定球心位置,求出半径;②补形法:把几何体补成常见几何体,如正方体,长方体等;③向量坐标法:建立坐标系,设出球心,利用半径相等可得球心坐标,进而可求半径.13.1e -##1e--【分析】利用导数的运算法则及求导公式求出导数,再由给定的导数值求出a .【详解】函数()2ln 2f x x x ax =++,求导得()1ln 2f x x ax =++',于是(e)2e 20f a =+=',所以1a e =-.故答案为:1e-14.π【分析】先求出直线10x ay a +--=过定点的坐标,再求出圆22:(2)4C x y -+=的圆心和半径,当MC AB ⊥时AB 取得最小值,最后求出劣弧 AB 的长.【详解】直线10x ay a +--=可化为()()110x a y -+-=,则当10x -=且10y -=,即1x =且1y =时,等式恒成立,所以直线恒过定点()1,1M ,圆C 的圆心为()2,0C ,半径2r =,当MC AB ⊥时,AB取得最小值,且最小值为==,此时弦长AB 所对的圆心角为π2,所以劣弧 AB 的长为π2π2⨯=.故答案为:π【分析】利用正弦定理、诱导公式、和角公式、差角公式、二倍角公式分析运算即可得解.【详解】解:由题意,()2cos sin cos a c B A A-=,则由正弦定理可得()sin 2sin cos sin cos A C B A A A-=,∵0πA <<,∴sin 0A ≠,∴sin 2sin cos A C B A -=,又∵πA B C ++=,则()πA B C =-+,()sin sin A B C =+∴()sin 2sin cos B C C B A+-=,∴()sin B C A -=.又由πcos sin cos 2⎛⎫=-=+ ⎪⎝⎭B C C ,可得:π0π2<<<<C B ,则πππ22<+<C ,∴π2B C=+,即π2B C -=,则()sin 1B C -=,1A =,即cos 2A =,由0πA <<解得:π4A =,∴由π23π4B C B C ⎧-=⎪⎪⎨⎪+=⎪⎩解得:5π8=B ,π8C =.∴由正弦定理可得:π5ππsin sin sin488==b c ,解得:5π2sin 8=b ,π2sin 8=c ,∴5πππππ2sin 2sin 4sin cos 2sin 88884=⋅===bc .16.21【分析】根据椭圆和双曲线的定义可得12,PF m a PF a m=+=-,进而根据余弦定理,结合离心率公式可得2221314e e +=,即可利用基本不等式求解空1,根据内心的性质,结合椭圆定义和双曲线定义可得1e λ=,2e μ=,进而根据基本不等式乘“1”法即可求解.【详解】由题意得椭圆与双曲线的焦距为122F F c=,椭圆的长轴长为2a ,双曲线的实轴长为2m ,不妨设点P 在双曲线的右支上,由双曲线的定义:122PF PF m-=,由椭圆的定义:122PF PF a+=,可得:12,PF m a PF a m=+=-,又1260F PF ∠=,由余弦定理得:22221212124PF PF PF PF F F c +-⋅==,即()()222()()4,m a a m m a a m c ++--+⋅-=整理得:22234a m c +=,所以:2222221231344a m c c e e +=⇒+=;则1222121213,2e e e e e e +≥≥,当且仅当2212132e e ==时取等号.I 为12F PF △的内心,所以1IF 为12PF F ∠的角平分线,由于111112111211sin 2211sin 22PF I AF IPF IF PF F S PI S IA AF IF PF F ∠==∠ ,则有11PF IP AF AI =,同理:22PF IP AF AI=,所以1212PF PF IP AF AF AI==,所以12121212IPPF PF a AIAF AF c e +===+,即1AI e IP=,因为AI IP λ=,所以||||||AI IP λ= ,故1e λ=,I 为12F PF △的内心,1,,F I G 三点共线,即1F G 为1PF B ∠的角平分线,延长射线1F P ,连接2F G ,由G 点向112,,F P F B F P 作垂线,垂足分别为,,E D H ,1260,0F PF GP IP ∠=⋅=,260F PB BPE ∠∠∴== ,即BP 为2EPF ∠的角平分线.GH GE GD ∴==,即2F G 为2PF B ∠的角平分线,则有2121GBBF BF PG PF PF ==,又21BF BF ≠,所以1221222BGBF BF c e PGPF PF m-===-,即2BG e GP= ,因为BG GP μ=,所以||||BG GP μ= ,故2e μ=,所以()22222222221212121222222212212133113113134214442e e e e e e e e e e e e e e λμ⎛⎫⎛⎫⎛⎫+=+=++=+++≥+⋅=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当2241221222133334e e e e e e +=⇒==时,等号成立,所以22λμ+的最小值为312+.故答案为:32,312+【点睛】方法点睛:圆锥曲线中的范围或最值问题,可根据题意构造关于参数的目标函数,然后根据题目中给出的范围或由判别式得到的范围求解,解题中注意函数单调性和基本不等式的作用.17.(1)()π5ππ,π36k k k ⎡⎤++∈⎢⎥⎣⎦Z ,π;(2)(],2-∞.【分析】(1)利用二倍角正弦、余弦公式和辅助角公式对函数进行化简,利用正弦定理函数的性质可得出函数()f x 的单调递减区间,利用正弦函数的周期公式即可求出函数()f x 的最小正周期;(2)根据题意可知m 小于等于()f x 的最大值,结合正弦函数的定义域求出的最大值,即可知m 的取值范围.【详解】(1)()()222cos 3sin cos sin 23sin cos cos sin f x x x x x x x x x=-+=-+π3sin2cos22sin 26x x x ⎛⎫=-=- ⎪⎝⎭.所以函数()f x 的最小正周期πT =.由ππ3π2π22π,262k x k k +≤-≤+∈Z ,解得π5πππ,36k x k k +≤≤+∈Z .所以函数()f x 的单调递减区间为()π5ππ,π36k k k ⎡⎤++∈⎢⎥⎣⎦Z .(2)由题意可知,即max ()m f x ≤.因为ππ,62x ⎡⎤∈⎢⎥⎣⎦,所以ππ5π2666x ≤-≤.故当ππ262x -=,即π3x =时,()f x 取得最大值,且最大值为π23f ⎛⎫= ⎪⎝⎭.所以2m ≤,实数m 的取值范围为(],2-∞.18.当长方体容器的高为4m 3时,容积最大,最大容积为38m3.【分析】设底面的一边的长为m x ,求出另一边的长为()1m x +,以及高,表示出体积,利用导数求出最大值即可.【详解】设底面的一边的长为m x ,另一边的长为()1m x +.因为钢条长为52m3,所以,长方体容器的高为()52441103243x x x --+=-.设容器的容积为V ,则()()32104105122,03333V V x x x x x x x x ⎛⎫==+-=-++<<⎪⎝⎭,()28106033V x x x =-++=',解得59x =-(舍去),1x =,当()0,1x ∈时,()0V x '>,()V x 在()0,1单调递增;当51,3x ⎛⎫∈ ⎪⎝⎭时,()0V x '<,()V x 在51,3⎛⎫ ⎪⎝⎭单调递减;因此,1x =是函数()V x 在50,3⎛⎫⎪⎝⎭内的极大值点,也是最大值点.此时长方体容器的高为4m 3.所以,当长方体容器的高为4m 3时,容积最大,最大容积为38m 3.19.(1)22(2)【分析】(1)根据条件,建立空间直角坐标系,求出,0,122M ⎛⎫- ⎪ ⎪⎝⎭,,022N t ⎛⎫ ⎪ ⎪⎝⎭,再利用空间两点间的距离公式,即可求出结果;(2)根据(1)结果,得到1111,0,,,,02222M N ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,再求出平面AMN 和BMN 的法向量,再利用两平面夹角的向量法,即可求出结果.【详解】(1)因为面ABCD ⊥面ABEF ,又面ABCD ⋂面ABEF AB =,CB AB ⊥,CB ⊂面ABCD ,所以CB ⊥面ABEF ,又AB BE ⊥,如图,以B 为原点,,,BA BE BC 所在直线分别为x 轴、y 轴、z轴建立空间直角坐标系,因为两个正方形的边长为1,则()()1,0,0,0,0,0,(0,0,1)A B C ,又CM BN t ==,则CM ==-,得到,0,1M ⎫⎪⎪⎝⎭,同理可得,0N ⎫⎪⎪⎝⎭,所以MN =又0t <<t =时,MN 的长最小,最小值为22.(2)由(1)知,MN 的长最小时,M N 、分别为正方形对角线AC 和BF 的中点,可得1111,0,,,,02222M N ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,设平面AMN 的一个法向量为()111,,m x y z =r,又1111,0,,0,,2222MA MN ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,由1111110,22110,22m MA x z m MN y z ⎧⋅=-=⎪⎪⎨⎪⋅=-=⎪⎩ ,取11x =,可得()1,1,1m = ,设平面BMN 的一个法向量为(,,)n a b c = ,又11(,0,)22BM = ,110,,22⎛⎫=- ⎪⎝⎭ MN ,由110,22110,22n BM a n MN b c ⎧⋅=+=⎪⎪⎨⎪⋅=-=⎪⎩,取1a =-,可得()1,1,1n =- ,则1cos ,||||3m n m n m n ⋅==⋅,所以sin ,3m n == ,因此,二面角A MN B --的正弦值为3.20.(1)证明见解析(2)-1222544,54 1.n n n n a n -⎧⨯-⎪=⎨⎪⨯-⎩为奇数为偶数,1212574533n n S n --=⨯--.【分析】(1)先求出 n b 的递推关系式,利用等比数列的定义可证结论;(2)利用分组求和的方法可求答案.【详解】(1)因为13,,4,,nn n a n a a n ++⎧=⎨⎩为奇数为偶数且2n n b a =,则()()12122121134343n n n n n n b a a a a b +++++===+=+=+,可得()1141n n b b ++=+.且12134b a a ==+=,所以{}1n b +是以5为首项,4为公比的等比数列.(2)由(1)可得1154n n b -+=⨯,所以1541n n b -=⨯-,即12541n n a -=⨯-.又因为2213n n a a -=+,则12123544n n n a a --=-=⨯-.所以数列{}n a 的通项公式为1222544,,541,.n n n n a n --⎧⨯-⎪=⎨⎪⨯-⎩为奇数为偶数又1112125445411045n n n n n a a ----+=⨯-+⨯-=⨯-,所以()()()2112342122n n n nS a a a a a a a --=++++++- ()()()()0111104510451045541n n --=⨯-+⨯-++⨯--⨯- ()()0111104445541n n n --=⨯+++--⨯- 1114257105541451433n n n n n ---=⨯--⨯+=⨯---.所以数列{}n a的前21n -项的和1212574533n n S n --=⨯--.21.(1)抛物线Γ的标准方程为22y x =,其焦点坐标为1,02⎛⎫⎪⎝⎭,准线方程为12x =-(2)1【分析】(1)根据题意可得122p =,求出p ,即可得Γ的方程及其焦点坐标和准线方程;(2)设()()()322312123445566,,,,,,,,,,222y y y A y B y Cy D x y E x y F x y ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,抛物线22y x =上过点A 的切线方程为()2112y x t y y -=-,联立方程,根据Δ0=求出t ,进而可求得抛物线上过点A 的切线方程,同理可求得抛物线上过点,B C 的切线方程,两两联立,可以求得交点,,D E F 的纵坐标,再分别求出,,AD EF DBDE FC BF,再根据//AC DF 即可得解.【详解】(1)因为抛物线22(0)y px p =>上的点到焦点距离的最小值为12,转化为到准线距离的最小值为12,所以122p =,所以1p =,因此抛物线Γ的标准方程为22y x =,其焦点坐标为1,02⎛⎫⎪⎝⎭,准线方程为12x =-;(2)设()()()322312123445566,,,,,,,,,,222y y y A y B y Cy D x y E x y F x y ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则抛物线22y x =上过点A 的切线方程为()2112y x t y y -=-,将切线方程与抛物线方程联立,得:联立()211222y x t y y y x ⎧-=-⎪⎨⎪=⎩,消去x ,整理得2211220y ty ty y -+-=,所以()()2222211111Δ(2)4248440t ty y t ty y t y =---=-+=-=,从而有1t y =,所以抛物线上过点A 的切线方程为2112y x y y =-,同理可得抛物线上过点,B C 的切线方程分别为223223,22y y x y y x y y =-=-,两两联立,可以求得交点,,D E F 的纵坐标分别为132312456,,222y y y y y y y y y +++===,则121141213124523222y y y AD y y y y y y y y DE y y y y +---===++---,同理可得12122323,EF y y DB y y FCy y BFy y --==--,即AD EF DB DEFCBF==,当//AC DF 时,ADCF DE FE=,故EFFC FCEF=,即EF FC=,因此1BDEF BFFC==.【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22.(1)12(2)证明见解析【分析】(1)将问题转化为()e 21,x x ax x ϕ=--∈R,()0x ϕ≥恒成立,利用导数求解()x ϕ的单调性,即可求解()ln222ln210a a a a ϕ=--≥,构造函数()22ln21(0)g a a a a a =-->,继续利用导数求解函数的单调性得最值即可求解,(2)利用导数求解函数的单调性,结合零点存在性定理,即可求证.【详解】(1)由条件知()()e e 210x x f x ax =--≥恒成立,e 0,e 210x x ax >∴--≥ 恒成立,令()e 21,x x ax x ϕ=--∈R,则()0x ϕ≥恒成立,()e 2x x aϕ∴-'=,①当0a ≤时,()()0,x x ϕϕ'>在R 上单调递增,又()00ϕ=,∴当0x <时,()0x ϕ<,与()0x ϕ≥矛盾,不合题意;②当0a >时,()x ϕ在(),ln2a ∞-单调递减,在()ln2,a ∞+单调递增,∴当ln2=x a 时,()x ϕ有极小值,也为最小值,且最小值为()ln222ln21a a a a ϕ=--,又()0x ϕ≥恒成立,22ln210a a a ∴--≥,令()22ln21(0)g a a a a a =-->,则()22ln222ln2g a a a-=-'=-,令()2ln20g a a ='->,解得102a <<,()g a ∴在10,2⎛⎫ ⎪⎝⎭单调递增,在1,2∞⎛⎫+ ⎪⎝⎭单调递减,()102g a g ⎛⎫∴≤= ⎪⎝⎭,所以由()22ln210g a a a a =--≥,解得12a =,综上,实数a 的值为12.(2)由题可得()()e 2e 2x x f x x '=--,令()2e 2xh x x =--,则()2e 1xh x ='-,由()0h x '=得1ln2x =,在1,ln 2∞⎛⎫- ⎪⎝⎭上,()0h x '<,在1ln ,2∞⎛⎫+⎪⎝⎭上,()0h x '>,所以()h x 在1,ln 2∞⎛⎫- ⎪⎝⎭单调递减,在1ln ,2∞⎛⎫+ ⎪⎝⎭单调递增,又()()()1ln 22211200,ln 2e ln 2ln210,22e 22022e h h h -⎛⎫==--=--=---= ⎪⎝⎭,()12ln 02h h ⎛⎫∴-< ⎪⎝⎭,由零点存在定理及()h x 的单调性知,方程()0h x =在12,ln 2⎛⎫- ⎪⎝⎭有唯一根,设为0x 且002e 20xx --=,从而()h x 有两个零点0x 和0,且在区间()0,x ∞-上,()0f x '>,在区间()0,0x 上,()0f x '<,在区间()0,∞+上,()0f x '>,所以()f x 在()0,x ∞-单调递增,在()0,0x 单调递减,在()0,∞+单调递增,从而()f x 存在唯一的极大值点0x ,由002e 20x x --=得0002e ,12x x x +=≠-,()()()()022000000000222111ee 1122224424x x x x x xf x x x x x -++-++⎛⎫⎛⎫∴=--=--=-+≤== ⎪ ⎪⎝⎭⎝⎭,等号不成立,所以()202f x -<,又()012ln ,2x f x -<<在()0,x ∞-单调递增,所以()()()2242202e e 21e e ef x f -----⎡⎤>-=---=+>⎣⎦,综上可知,()f x 存在唯一的极大值点0x ,且()220e2f x --<<成立.【点睛】方法点睛:利用导数证明或判定不等式问题:1.通常要构造新函数,利用导数研究函数的单调性与极值(最值),从而得出不等关系;2.利用可分离变量,构造新函数,直接把问题转化为函数的最值问题,从而判定不等关系;3.适当放缩构造法:根据已知条件适当放缩或利用常见放缩结论,从而判定不等关系;4.构造“形似”函数,变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.。
贵州省贵阳市高二数学上学期期末试卷 理(含解析)
贵州省贵阳市2014-2015学年高二上学期期末数学试卷(理科)一、选择题(每小题4分,共40分)1.(4分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样2.(4分)“xy=0”是“x2+y2=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(4分)把二进制1011(2)化为十进制数,则此数为()A.8 B.10 C.11 D.164.(4分)已知命题p:∃x∈R,x﹣2>lgx,命题q:∀x∈R,x2>0,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∨(¬q)是假命题D.命题p∧(¬q)是真命题5.(4分)抛物线y2=4x的焦点到双曲线的渐近线的距离是()A.B.C.1 D.6.(4分)如图是1,2两组各7名同学体重(单位:kg)数据的茎叶图,设1,2两组数据的平均数依次为和,标准差依次为s1和s2,那么()(注:标准差s=,其中为x1,x2,…,x n的平均数)A.>,s1>s2B.>,s1<s2C.<,s1>s2D.<,s1<s27.(4分)已知两点F1(﹣1,0)、F2(1,0),且|F1F2|是|PF1|与|PF2|的等差中项,则动点P的轨迹方程是()A.B.C.D.8.(4分)已知回归直线通过样本点的中心,若x与y之间的一组数据:x 0 1 2 3y 1.1 3.1 4.9 6.9则y与x的线性回归方程=x+所表示的直线必过点()A.(,4)B.(1,2)C.(2,2)D.(,0)9.(4分)执行如图所示的程序框图,输出的S值为()A.162 B.200 C.242 D.28810.(4分)已知曲线C的方程是(x﹣)2+(y﹣)2=8,若点P,Q在曲线C上,则|PQ|的最大值是()A.6B.8C.8 D.6二、填空题(每小题4分,共20分)11.(4分)双曲线的离心率为.12.(4分)已知抛物线y2=ax过点,那么点A到此抛物线的焦点的距离为.13.(4分)下列四个结论,其中正确的有.①在频率分布直方图中,中位数左边和右边的直方图的面积相等;②如果一组数据中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变;③一个样本的方差是s2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组样本数据的总和等于60;④数据a1,a2,a3,…,a n的方差为δ2,则数据2a1,2a2,2a3,…,2a n的方差为4δ2.14.(4分)已知椭圆的焦点为F1、F2,P为椭圆上一点∠F1PF2=90°,则△PF1F2的面积是.15.(4分)地面上有两个同心圆(如图),其半径分别为3、2,1若向图中最大内投点且点投到图中阴影区域内的概率为,则两直线所夹锐角的弧度数为.三、解答题(本题共5小题,共40分)16.(8分)某校在自主招生考试成绩中随机抽取100名学生的笔试成绩,被抽取学生的成绩均不低于160分,且低于185分,如图是按成绩分组得到的频率分布图的一部分(每一组均包括左端点数据),且第三组、第四组、第五组的频数之比一次为3:2:1.(1)请完成频率分布直方图;(2)为了能选拔出最优秀的学生,该校决定在笔试成绩较高的第三组、第四组、第五组中用分层抽样方法抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.17.(8分)甲袋中有1只白球,2只红球,3只黑球;乙袋中有2只白球,3只红球,1只黑球.现从两袋中各取一个球.(1)求取得一个白球一个红球的概率;(2)求取得两球颜色相同的概率.18.(8分)如图,60°的二面角的棱上有A,B两点,线段AC,BD分别在这个二面角的两个半平面内,且AC⊥AB,BD⊥AB,已知AB=4,AC=6,BD=8.(1)用向量、、表示;(2)求||的值.19.(8分)如图,在四棱锥S﹣ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=.(1)求四棱锥S﹣ABCD的体积;(2)求面SCD与面SAB所成二面角的余弦值.20.(8分)椭圆+=1(a>b>0)的一个顶点为A(0,3),离心率e=.(1)求椭圆方程;(2)若直线l:y=kx﹣3与椭圆交于不同的两点M,N.若满足|AM|=|AN|,求直线l的方程.贵州省贵阳市2014-2015学年高二上学期期末数学试卷(理科)参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样考点:分层抽样方法.专题:阅读型.分析:若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.解答:解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.点评:本小题考查抽样方法,主要考查抽样方法,属基本题.2.(4分)“xy=0”是“x2+y2=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:计算题.分析:因为x2+y2=0,可得x,y=0,再根据充要条件的定义进行判断;解答:解:∵xy=0,或者x=0,或y=0或x=y=0;∵x2+y2=0,可得x=y=0,∵“x2+y2=0”⇒“xy=0”;∴“xy=0”是“x2+y2=0”的必要不充分条件,故选B;点评:此题主要考查充分条件和必要条件的定义,是一道基础题,考查的知识点比较单一.3.(4分)把二进制1011(2)化为十进制数,则此数为()A.8 B.10 C.11 D.16考点:循环结构.专题:计算题.分析:将二进制数转化为十进制数,可以用每个数位上的数字乘以对应的权重,累加后,即可得到答案.解答:解:将二进制数1100化为十进制数为:1100(2)=1×23+1×2+1=11.故选C.点评:本题考查的知识点是不同进制之间的转换,其中其它进制转为十进制方法均为累加数字×权重,十进制转换为其它进制均采用除K求余法.4.(4分)已知命题p:∃x∈R,x﹣2>lgx,命题q:∀x∈R,x2>0,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∨(¬q)是假命题D.命题p∧(¬q)是真命题考点:复合命题的真假.专题:计算题.分析:由题设条件,先判断出命题p:∃x∈R,x﹣2>lgx是真命题,命题q:∀x∈R,x2>0是假命题,再判断复合命题的真假.解答:解:当x=10时,10﹣2=8>lg10=1,故命题p:∃x∈R,x﹣2>lgx是真命题;当x=0时,x2=0,故命题q:∀x∈R,x2>0是假命题,∴题pVq是真命题,命题p∧q是假命题,命题pV(¬q)是真命题,命题p∧(¬q)是真命题,故选D.点评:本题考查复合命题真假的判断,是基础题.解题时要认真审题,仔细解答.5.(4分)抛物线y2=4x的焦点到双曲线的渐近线的距离是()A.B.C.1 D.考点:抛物线的简单性质;双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据抛物线的标准方程,算出抛物线的焦点F(1,0).由双曲线标准方程,算出它的渐近线方程为y=±x,化成一般式得:,再用点到直线的距离公式即可算出所求距离.解答:解:∵抛物线方程为y2=4x∴2p=4,可得=1,抛物线的焦点F(1,0)又∵双曲线的方程为∴a2=1且b2=3,可得a=1且b=,双曲线的渐近线方程为y=±,即y=±x,化成一般式得:.因此,抛物线y2=4x的焦点到双曲线渐近线的距离为d==故选:B点评:本题给出抛物线方程与双曲线方程,求抛物线的焦点到双曲线的渐近线的距离,着重考查了抛物线、双曲线的标准方程与简单几何性质等知识,属于基础题.6.(4分)如图是1,2两组各7名同学体重(单位:kg)数据的茎叶图,设1,2两组数据的平均数依次为和,标准差依次为s1和s2,那么()(注:标准差s=,其中为x1,x2,…,x n的平均数)A.>,s1>s2B.>,s1<s2C.<,s1>s2D.<,s1<s2考点:茎叶图;众数、中位数、平均数.专题:概率与统计.分析:根据茎叶图中的数据,求出两组的平均数与标准差即可.解答:解:根据茎叶图中的数据,得;1组的平均数是=(53+56+57+58+61+70+72)=61,方差是=[(53﹣61)2+(56﹣61)2+(57﹣61)2+(58﹣61)2+(61﹣61)2+(70﹣61)2+(72﹣61)2]=,标准差是s1=;2组的平均数是=(54+56+58+60+61+72+73)=62,方差是=[(54﹣62)2+(56﹣62)2+(58﹣62)2+(60﹣62)2+(61﹣62)2+(72﹣62)2+(73﹣62)2]=,标准差是s2=;∴<,s1<s2.故选:D.点评:本题考查了利用茎叶图中的数据,求平均数与方差、标准差的应用问题,是基础题目.7.(4分)已知两点F1(﹣1,0)、F2(1,0),且|F1F2|是|PF1|与|PF2|的等差中项,则动点P的轨迹方程是()A.B.C.D.考点:椭圆的定义.专题:计算题.分析:根据|F1F2|是|PF1|与|PF2|的等差中项,得到2|F1F2|=|PF1|+|PF2|,即|PF1|+|PF2|=4,得到点P在以F1,F2为焦点的椭圆上,已知a,c的值,做出b的值,写出椭圆的方程.解答:解:∵F1(﹣1,0)、F2(1,0),∴|F1F2|=2,∵|F1F2|是|PF1|与|PF2|的等差中项,∴2|F1F2|=|PF1|+|PF2|,即|PF1|+|PF2|=4,∴点P在以F1,F2为焦点的椭圆上,∵2a=4,a=2c=1∴b2=3,∴椭圆的方程是故选C.点评:本题考查椭圆的方程,解题的关键是看清点所满足的条件,本题是用定义法来求得轨迹,还有直接法和相关点法可以应用.8.(4分)已知回归直线通过样本点的中心,若x与y之间的一组数据:x 0 1 2 3y 1.1 3.1 4.9 6.9则y与x的线性回归方程=x+所表示的直线必过点()A.(,4)B.(1,2)C.(2,2)D.(,0)考点:线性回归方程.专题:计算题;概率与统计.分析:求出x、y的平均值,回归直线方程一定过样本的中心点(,),代入可得答案.解答:解:回归直线方程一定过样本的中心点(,),==,==4,∴样本中心点是(,4),则y与x的线性回归方程y=bx+a必过点(,4),故选:A.点评:本题考查平均值的计算方法,回归直线的性质:回归直线方程一定过样本的中心点(,).9.(4分)执行如图所示的程序框图,输出的S值为()A.162 B.200 C.242 D.288考点:程序框图.专题:图表型;算法和程序框图.分析:根据所给数值执行循环语句,然后判定是否满足判断框中的条件,一旦满足条件就退出循环,输出结果.解答:解:模拟执行程序框图,可得k=1,S=0S=2,k=3不满足条件k≥20,S=8,k=5不满足条件k≥20,S=18,k=7不满足条件k≥20,S=32,k=9不满足条件k≥20,S=50,k=11不满足条件k≥20,S=72,k=13不满足条件k≥20,S=98,k=15不满足条件k≥20,S=128,k=17不满足条件k≥20,S=162,k=19不满足条件k≥20,S=200,k=21满足条件k≥20,退出循环,输出S的值为200.故选:B.点评:本题主要考查了循环结构,是直到型循环,先执行循环,直到满足条件退出循环,属于基础题.10.(4分)已知曲线C的方程是(x﹣)2+(y﹣)2=8,若点P,Q在曲线C上,则|PQ|的最大值是()A.6B.8C.8 D.6考点:曲线与方程;两点间距离公式的应用.专题:计算题;直线与圆.分析:先分类讨论化简方程,再根据方程对应的曲线,即可得到结论.解答:解:当x>0,y>0时,方程是(x﹣1)2+(y﹣1)2=8;当 x>0,y<0 时,方程是(x﹣1)2+(y+1)2=8;当 x<0,y>0 时,方程是(x+1)2+(y﹣1)2=8;当 x<0,y<0 时,方程是(x+1)2+(y+1)2=8曲线C既是中心对称图形,又是轴对称图形,对称中心为(0,0),对称轴为x,y轴,点P,Q在曲线C上,当且仅当P,Q与圆弧所在圆心共线时取得最大值,|PQ|的最大值是圆心距加两个半径,即6,故选:A.点评:本题考查曲线与方程的概念,体现分类讨论、数形结合的数学思想,属于中档题.二、填空题(每小题4分,共20分)11.(4分)双曲线的离心率为.考点:双曲线的简单性质.专题:计算题.分析:根据事务性的方程可得a,b,c的数值,进而求出双曲线的离心率.解答:解:因为双曲线的方程为,所以a2=4,a=2,b2=5,所以c2=9,c=3,所以离心率e=.故答案为.点评:本题主要考查双曲线的有关数值之间的关系,以及离心率的公式.12.(4分)已知抛物线y2=ax过点,那么点A到此抛物线的焦点的距离为.考点:抛物线的简单性质.专题:计算题.分析:先确定抛物线的标准方程,求出抛物线的焦点坐标,利用两点间的距离公式,即可得到结论.解答:解:∵抛物线y2=ax过点,∴1=∴a=4∴抛物线方程为y2=4x,焦点为(1,0)∴点A到此抛物线的焦点的距离为=故答案为:点评:本题考查抛物线的标准方程,考查抛物线的性质,考查距离公式的运用,属于中档题.13.(4分)下列四个结论,其中正确的有①②③④.①在频率分布直方图中,中位数左边和右边的直方图的面积相等;②如果一组数据中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变;③一个样本的方差是s2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组样本数据的总和等于60;④数据a1,a2,a3,…,a n的方差为δ2,则数据2a1,2a2,2a3,…,2a n的方差为4δ2.考点:极差、方差与标准差;频率分布直方图.专题:概率与统计.分析:根据频率分布直方图中平均数、中位数以及样本的平均数与方差的关系,对每一个命题进行分析判断即可.解答:解:对于①,频率分布直方图中,中位数左边和右边的直方图面积相等,都等于,∴①正确;对于②,一组数据中每个数减去同一个非零常数a,这一组数的平均数变为﹣a,方差s2不改变,∴②正确;对于③,一个样本的方差是s2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],∴这组样本数据的平均数是3,数据总和为3×20=60,∴③正确;对于④,数据a1,a2,a3,…,a n的方差为δ2,则数据2a1,2a2,2a3,…,2a n的方差为(2δ)2=4δ2,∴④正确;综上,正确的命题序号是①②③④.故答案为:①②③④.(填对一个给一分).点评:本题考查了频率分布直方图的应用问题,也考查了中位数、平均数与方差的应用问题,是基础题目.14.(4分)已知椭圆的焦点为F1、F2,P为椭圆上一点∠F1PF2=90°,则△PF1F2的面积是9.考点:椭圆的简单性质.专题:计算题.分析:根据椭圆的方程求得c,得到|F1F2|,设出|PF1|=t1,|PF2|=t2,利用勾股定理以及椭圆的定义,可求得t1t2的值,即可求出三角形面积.解答:解:∵椭圆的a=5,b=3;∴c=4,设|PF1|=t1,|PF2|=t2,则根据椭圆的定义得t1+t2=10,∵∠F1PF2=90°,根据勾股定理得①t12+t22=82②,由①2﹣②得t1t2=18,∴.故答案为:9.点评:本题主要考查了椭圆的标准方程、椭圆的简单性质.解答的关键是通过勾股定理解三角形,考查计算能力、数形结合思想.15.(4分)地面上有两个同心圆(如图),其半径分别为3、2,1若向图中最大内投点且点投到图中阴影区域内的概率为,则两直线所夹锐角的弧度数为.考点:几何概型.专题:计算题.分析:本题考查的知识点是几何概型的意义,关键是要找出:“两直线所夹锐角”对应图形的面积,及整个图形的面积,然后再结合几何概型的计算公式进行求解.解答:解:设两直线所夹锐角弧度为α,则有:,解得:α=.故答案为:.点评:本题考查的知识点是几何概型的意义,几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=求解.三、解答题(本题共5小题,共40分)16.(8分)某校在自主招生考试成绩中随机抽取100名学生的笔试成绩,被抽取学生的成绩均不低于160分,且低于185分,如图是按成绩分组得到的频率分布图的一部分(每一组均包括左端点数据),且第三组、第四组、第五组的频数之比一次为3:2:1.(1)请完成频率分布直方图;(2)为了能选拔出最优秀的学生,该校决定在笔试成绩较高的第三组、第四组、第五组中用分层抽样方法抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.考点:分层抽样方法;频率分布直方图.专题:概率与统计.分析:(1)求出对应的频数和频率,即可请完成频率分布直方图;(2)根据分层抽样的定义建立比例关系即可.解答:解:(1)由题意值第1,2组的频数分别为100×0.01×5=5,100×0.07×5=35,故第3,4,5组的频数之和为100﹣5﹣35=60,从而可得其频数分别为30,20,10,其频率依次是0.3,0.2,0.1,其频率分布直方图如图:;(2)由第3,4,5组共60人,用分层抽样抽取6人,故第3,4,5组中抽取的学生人数依次是第3组:,第4组:,第5组:.点评:本题主要考查抽样和统计的知识,比较基础.17.(8分)甲袋中有1只白球,2只红球,3只黑球;乙袋中有2只白球,3只红球,1只黑球.现从两袋中各取一个球.(1)求取得一个白球一个红球的概率;(2)求取得两球颜色相同的概率.考点:列举法计算基本事件数及事件发生的概率;古典概型及其概率计算公式.专题:概率与统计.分析:(1)先求出取出两球的种数,再根据分类和分步计数原理求出一个白球一个红球的种数,根据概率公式计算即可.(2)分为同是红色,白色,黑色,根据分类和分步计数原理即可求出取得两球颜色相同的种数,根据概率公式计算即可.解答:解:(1)两袋中各取一个球,共有6×6=36种取法,其中一个白球一个红球,分为甲袋区取的为白球乙袋红球,甲袋红球乙袋白球,故有1×3+2×2=7种,故取得一个白球一个红球的概率P=;(2)取得两球颜色相同有1×2+2×3+3×1=11种,故取得两球颜色相同的概率P=.点评:本题考查了类和分步计数原理及其概率的求法,关键是求出满足条件的种数,是基础题.18.(8分)如图,60°的二面角的棱上有A,B两点,线段AC,BD分别在这个二面角的两个半平面内,且AC⊥AB,BD⊥AB,已知AB=4,AC=6,BD=8.(1)用向量、、表示;(2)求||的值.考点:平面向量数量积的运算.专题:平面向量及应用.分析:(1)利用向量的多边形法则即可得出;(2)由AC⊥AB,BD⊥A B,可得==0,利用数量积的运算性质展开可得==++代入即可得出.解答:解:(1)=++;(2)∵AC⊥AB,BD⊥AB,∴==0,∴==++=62+42+82+2×6×8×cos(180°﹣60°)=36+16+64﹣48=68.∴=.点评:本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系、二面角,考查了推理能力与计算能力,属于中档题.19.(8分)如图,在四棱锥S﹣ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=.(1)求四棱锥S﹣ABCD的体积;(2)求面SCD与面SAB所成二面角的余弦值.考点:棱柱、棱锥、棱台的体积;直线与平面所成的角.专题:综合题;空间位置关系与距离;空间角.分析:(1)四棱锥S﹣ABCD的体积=;(2)以点A为原点建立如图所示的空间直角坐标系,求出平面SCD的法向量,利用向量的夹角公式求面SCD与面SAB所成二面角的余弦值.解答:解:(1)∵底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=,∴四棱锥S﹣ABCD的体积==;(2)以点A为原点建立如图所示的空间直角坐标系,则A(0,0,0),B(0,1,0),C(1,1,0),D(0.5,0,0,),S(0,0,1),则=(1,1,﹣1),=(0.5,0,﹣1).设平面SCD的法向量是=(x,y,z),则令z=1,则x=2,y=﹣1.于是=(2,﹣1,1).设平面SCD与平面SAB所成的二面角为α,∵=(0.5,0,0),∴|cosα|==∴平面SCD与平面SAB所成二面角的余弦值为.点评:本题考查四棱锥S﹣ABCD的体积、平面SCD与平面SAB所成二面角的余弦值,考查学生的计算能力,正确求平面SCD的法向量是关键.20.(8分)椭圆+=1(a>b>0)的一个顶点为A(0,3),离心率e=.(1)求椭圆方程;(2)若直线l:y=kx﹣3与椭圆交于不同的两点M,N.若满足|AM|=|AN|,求直线l的方程.考点:椭圆的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(1)由椭圆的离心率公式和a,b,c的关系,解方程可得a=5,b=3,即可得到椭圆方程;(2)联立直线方程和椭圆方程,运用韦达定理,求得线段MN的中点P的坐标,再由|AM|=|AN|知点A在线段MN的垂直平分线上,运用直线垂直的条件:斜率之积为﹣1,即可得到k,进而得到直线方程.解答:解:(1)由一个顶点为A(0,3),离心率e=,可得b=3,=,a2﹣b2=c2,解得a=5,c=4,即有椭圆方程为+=1;(2)由|AM|=|AN|知点A在线段MN的垂直平分线上,由,消去y得(9+25k2)x2﹣150kx=0,由k≠0,得方程的△=(﹣150k)2>0,即方程有两个不相等的实数根.设M(x1,y1)、N(x2,y2),线段MN的中点P(x0,y0),则x1+x2=,∴x0==,∴y0=kx0﹣3=﹣,即P(,﹣),∵k≠0,∴直线AP的斜率为k1=﹣=﹣,由AP⊥MN,得﹣=﹣,∴25k2=7,解得:k=±,即有直线l的方程为y=±x﹣3.点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率的运用和方程的运用.联立直线方程,运用韦达定理,同时考查直线垂直的条件:斜率之积为﹣1,考查运算能力,属于中档题.。
河北省唐山市2022-2023学年高二上学期期末数学试题(答案版)
唐山市2022~2023学年度高二年级第一学期学业水平调研考试数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线2330x y +-=的一个方向向量是()A.()2,3- B.()2,3 C.()3,2- D.()3,2【答案】C 【解析】【分析】当直线的斜率存在时,由直线的方向向量为(,)n x y = ,则yk x=代入计算即可.【详解】因为2330x y +-=,所以23k =-,设直线的方向向量为(,)n x y = ,则23yk x=-=,取3x =,则=2y -,所以直线的一个方向向量为(3,2)n =-.故选:C.2.在等差数列{}n a 中,11a =,923a =-,则5a =()A.-11B.-8C.19D.16【答案】A 【解析】【分析】代入等差数列通项公式求出公差,再代入公式即可求得.【详解】因为数列{}n a 为等差数列,11a =,923a =-,所以91823a a d =+=-,解得3d =-,则51411211a a d =+=-=-.故选:A3.已知向量()0,1,1a =- ,()1,2,b y = ,3a b ⋅=-,则a 与b 的夹角为()A.30︒ B.60︒C.120︒D.150︒【答案】D 【解析】【分析】根据题意,先得到b的坐标,然后根据空间向量数量积的坐标运算即可得到结果.【详解】根据题意可得,0231a b y y ⋅=-+=-⇒=-,即()1,2,1b =-则cos ,2a b a b a b⋅<>==-,且[],0,πa b <>∈r r ,所以a 与b的夹角为150︒故选:D4.在正方体1111ABCD A B C D -中,E 为11C D 的中点,则异面直线1B C 与DE 所成角的余弦值为()A.5B.105-C.4D.4-【答案】A 【解析】【分析】设出正方体的棱长,建立空间直角坐标系,得到各点坐标,表达出1B C 和DE,即可得出异面直线1B C 与DE 所成角的余弦值.【详解】由题意在正方体1111ABCD A B C D -中,E 为11C D 的中点,设正方体的棱长为2a ,建立空间直角坐标系如下图所示,则()10,0,0A ,()12,0,0B a ,()2,2,2C a a a ,()12,2,0C a a ,()0,2,2D a a ,(),2,0E a a ∴()10,2,2B C a a = ,(),0,2DE a a =-,设异面直线1B C 与DE 所成角为θ,1110cos 5B C D B EC DEθ==⋅ ,∴异面直线1B C 与DE 所成角的余弦值为105,故选:A.5.F 为抛物线C :24x y =的焦点,点A 在C 上,点()0,5B ,若AF BF =,则ABF △的面积为()A. B. C.4D.8【答案】B 【解析】【分析】求出焦点F 的坐标,根据两点间距离公式求得BF ,即AF 的长度,根据抛物线定义可求得A 点坐标,进而可求出面积.【详解】解:因为抛物线C :24x y =,所以()0,1F ,准线为:1y =-因为()0,5B ,所以4BF AF ==,设()11,A x y ,根据抛物线定义可知:114y +=,解得13y =,所以()A ±,所以111422ABF S BF x =⋅⋅=⨯⨯= .故选:B6.设直线210x y --=与x 轴的交点为椭圆()222210x y a b a b+=>>的右焦点2F ,过左焦点1F 且垂直x 轴的直线与椭圆交于M ,132F M =,则椭圆的离心率为()A.33B.22C.12D.32【答案】C 【解析】【分析】根据题意可得()21,0F 以及2132b F M a =±=,再结合椭圆,,a bc 的关系,列出方程即可得到结果.【详解】根据题意可得,直线210x y --=与x 轴的交点为()1,0,即()21,0F ,所以1c =,且过左焦点1F 且垂直x 轴的直线与椭圆交于M ,将x c =-代入椭圆方程可得,2by a=±,即2132b F M a =±=,所以232b a =所以2222132c ba abc =⎧⎪⎪=⎨⎪=+⎪⎩,解得21a b c =⎧⎪=⎨⎪=⎩12c e a ==故选:C7.已知圆O :2216x y +=和点(P ,若过点P 的5条弦的长度构成一个递增的等比数列,则该数列公比的取值范围是()A.(B.(]1,2C.( D.(]0,2【答案】A 【解析】【详解】圆半径4r =,OP r ==,则点P 在圆内,则过点P 的弦长[]2,8d Î=,(乱码,查看原文亦是乱码)故所求公比的取值范围是(乱码,查看原文亦是乱码)1,纟çúçú棼,即(.故选:A8.已知数列{}n a 满足11a =,()121n n n a a a ++=,令1n n n b a a +=,则数列{}n b 的前2022项和2022S =()A.40444045B.20224045C.40434045D.20244045【答案】B 【解析】【分析】化简()121n n n a a a ++=,得1112n na a +-=,可得1n a ⎧⎫⎨⎬⎩⎭是等差数列,求出通项公式,再用裂项相消的方法求数列{}n b 的前2022项和即可.【详解】因为数列{}n a 满足()121n n n a a a ++=,即112n n n n a a a a ++⋅+=,即1112n na a +-=,111a =,所以数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,2为公差的等差数列,所以121n n a =-,则121n a n =-,因为1n n n b a a +=,则()()1111(212122121n b n n n n ==-+-+-,数列{}n b 的前2022项和2022111111112022(1(1233522022122022122202214045S =-+-++-=-=⨯-⨯+⨯+ .故选:B【点睛】易错点睛:裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.已知直线l :y x =+,圆O :222(0)x y r r +=>,且圆O 上至少有三个点到直线l 的距离都等于1,则r 的值可以是()A.1 B.2C.3D.4【答案】CD 【解析】【分析】根据圆的对称性,结合圆心到直线距离列式求解即可.【详解】圆O 到直线的距离2d ==,由圆O 上至少有三个点到直线l 的距离都等于1得13r d r -侈.故选:CD.10.将数列{}n 中的各项依次按第一个括号1个数,第二个括号2个数,第三个括号3个数,第四个括号4个数,…,进行排列:()1,()2,3,()4,5,6,()7,8,9,10,…,则()A.第8个括号内的第一个数是29B.前9个括号内共有45个数C.第10个括号内的数的和比第8个括号内的数的和大136D.2022在第64个括号内【答案】ABD 【解析】【分析】第n 个括号有n 个数,则括号里数的数量满足等差数列,且括号里的数同为等差数列,根据等差数列的通项公式及求和公式逐个判断即可.【详解】对A ,第n 个括号有n 个数,则前7个括号内共有()177282+´=个数,故第8个括号内的第一个数是29,A 对;对B ,前9个括号内共有()199452+⨯=个数,B 对;对C ,由AB 得,第10个括号内的数的和为()4655105052+´=,第8个括号内的数的和为()293682602+´=,故第10个括号内的数的和比第8个括号内的数的和大505260245-=,C 错;对D ,设2022在第()*k k ∈N 个括号内,则有()()()1111202222k k k k +--+<£,解得64k =,D 对.故选:ABD.11.已知双曲线C :2213y x -=的左,右焦点分别为1F ,2F ,P 是C 的右支上一点,则()A.若120PF PF ⋅≤ ,则P 到x 轴的最大距离为32B.存在点P ,满足124PF PF =C.P 到双曲线的两条渐近线的距离之积为34D.12PF F △内切圆半径r 的取值范围是0r <<【答案】ACD 【解析】【分析】利用数量积坐标运算表示120PF PF ⋅≤,解不等式求点P 的纵坐标范围,判断A ,结合双曲线定义判断B ,利用点到直线的距离公式求P 到双曲线的两条渐近线的距离之积判断C ,根据直线与双曲线的位置关系确定12PF F ∠的范围,结合内切圆的性质判断D.【详解】设双曲线的实半轴为a ,虚半轴为b ,半焦距为c ,则双曲线2213y x -=的焦点1F 的坐标为()2,0-,2F 的坐标为()2,0,1,2a b c ===,渐近线方程为y =,设点P 的坐标为(),m n ,则m 1≥,2213n m -=,对于A ,因为()()122,,2,PF m n PF m n =---=--,所以()()222122240PF PF m m n m n ⋅=---+=+≤- 所以221403n n ++-≤,所以3322n -≤≤,所以P 到x 轴的最大距离为32,A 正确;对于B ,由已知124PF PF =,122PF PF -=,所以223PF =,又21PF c a ≥-=,矛盾,B 错误,对于C ,点P223344m n -==,C 正确;对于D ,因为12,,P F F 三点不共线,所以直线1PF 的斜率不为0,可设直线1PF 的方程为()2y k x =+,0k ≠,联立()22132y x y k x ⎧-=⎪⎨⎪=+⎩,消y ,得()222234430k x k x k ----=,方程()222234430kxk x k ----=的判别式()()422216434336360k k k k ∆=----=+>,由已知224303k k--<-,所以23k <,又0k ≠,故0k <<或0k <<,设12PF F △的内切圆的圆心为E ,12PF F △的内切圆与x 轴相切于点M ,因为122PF PF -=,所以122MF MF -=,又124MF MF +=,所以13MF =,设122PF F θ∠=,则π023θ<<,又12PF F △内切圆半径1tan 3tan r MF θθ==,所以0r <<D 正确.故选:ACD.【点睛】本题为双曲线的综合性问题,考查双曲线的定义,直线与双曲线的位置关系,双曲线的性质,难度较大.12.已知正方体1111ABCD A B C D -的棱长为2,点P 在正方形ABCD 内运动(含边界),则()A.存在点P ,使得11D P BC ⊥B.若15D P =BP 的最小值为221C.若11D P B D ⊥,则P 2D.若1A P BD ⊥,直线1A P 与直线1BD 所成角的余弦值的最大值为33【答案】BD 【解析】【分析】A 选项,建立适当空间直角坐标系,利用向量垂直的坐标运算判定即可;B 选项,找出动点P 在正方体底面ABCD 内的运动轨迹,利用点到圆上点的最值求解即可;C 选项,根据立体几何中线面垂直推出线线垂直,可找出动点P 在正方体底面ABCD 内的运动轨迹是线段AC ,即可求解;D 选项:建立适当空间直角坐标系,利用1A P BD ⊥可得出点(),2,0P x x -,再利用空间向量的坐标表示求解即可.【详解】对于A 选项:如图1,以D 为坐标原点建立空间直角坐标系,则()2,2,0B ,()10,2,2C ,()10,0,2D ,设(),,0P x y ,[],0,2x y ∈,则()1,,2D P x y =- ,()12,0,2BC =-,若11D P BC ⊥,则11240D P BC x ×=--=,解得2x =-,不合题意,错误;对于B 选项:如图2,若15D P =DP ,则点P 在以D 为圆心,DP 为半径的圆上,此时点P 的轨迹为 FPE ,又15D P =,12DD =,2211541DP D P DD \=-=-,min 221BP BD DP \=-=,故正确;对于C 选项:如图3,连接1AD ,AC ,BD ,1CD ,11B D ,ABCD 为正方形,则AC BD ⊥,又1DD ⊥Q 平面ABCD ,AC ⊂平面ABCD ,1AC DD ∴⊥,1BD DD D = ,1,BD DD ⊂平面11BDD B ,AC ∴⊥平面11BDD B ,1B D ⊂平面11BDD B ,1AC B D ∴⊥,同理可证:11AD B D ⊥,又1AC AD A =I ,1,AC AD ⊂平面1ACD ,1B D ∴⊥平面1ACD ,平面1ACD ⋂平面ABCD AC =,故点P 在正方体底面ABCD 内的运动轨迹是线段AC ,又正方体1111ABCD A B C D -的棱长为2,AC ∴=,故错误;对于D 选项:如图4,以D 为坐标原点建立空间直角坐标系,连接AC ,BD ,1BD ,1A P ,则()2,2,0B ,()12,0,2A ,()10,0,2D ,()0,0,0D ,设(),,0P x y ,[],0,2x y ∈,则()1-2,,2A P x y =- ,()2,2,0BD =--,当1A P BD ⊥,有()122202240A P BD x y x y ×=---+=--+=,则2y x =-,此时(),2,0P x x -,又()12,2,2A P x x =--- ,()12,2,2BD =--,111111cos ,A P BD A P BD A P BD ×\<>==×当2x =时,11cos,A P BD <> 有最大值,此时11cos ,A P BD <>=.故答案选:BD.【点睛】关键点点睛:立体几何中线面垂直的判定定理,动点在立体几何中的轨迹问题,以及利用空间向量法解决立体几何的问题,属于难题.三、填空题:本题共4小题,每小题5分,共20分.13.已知正项等比数列{}n a ,若1234a a +=,343a a +=,则4a =______.【答案】2【解析】【分析】由等比数列基本量列方程求得基本量,即可得结果.【详解】由题意,设等比数列的公比()0q q >,则()121314a a a q +=+=,()234113a a a q q +=+=,两式相除得,242q q =⇒=,∴31411,24a a a q ===.故答案为:2.14.正四面体ABCD 中,若M 是棱CD 的中点,AP AM λ= ,1166AB BP AC AD +=+,则λ=______.【答案】13【解析】【分析】根据空间向量线性运算得到1166AC AM AD λλ+= ,证明出共线定理的推论,由,,M C D 三点共线,得到11166λλ+=,求出13λ=.【详解】因为AB BP AP +=,所以1166AP AC AD =+ ,即1166AC A AM D λ+= ,1166AC AM AD λλ+=,下面证明:已知OB xOA yOC =+,若,,A B C 三点共线,则1x y +=,因为,,A B C 三点共线,所以存在非零实数t ,使得AB t AC =,即()OB OA t OC OA -=- ,整理得()1OB tOC t OA =+- ,故1x t =-,y t =,所以1x y +=,因为,,M C D 三点共线,故11166λλ+=,解得:13λ=.故答案为:1315.已知圆1O :221x y +=,圆2O :22(3)(4)100x y -+-=,过圆2O 上的任意一点P 作圆1O 的两条切线,切点为A ,B ,则四边形1PAO B 面积的最大值为______.【答案】【解析】【分析】根据题意分析可得四边形1PAO B面积112△PAO B PAO S S ==,结合圆的性质求1PO 的最大值即可.【详解】圆1O :221x y +=的圆心()10,0O ,半径11r =,圆2O :22(3)(4)100x y -+-=的圆心()23,4O ,半径210r =,四边形1PAO B面积1111222△PAO B PAO S S PA AO PA ==⨯⨯⨯===,∵11221015PO O O r ≤+=+=,∴四边形1PAO B=.故答案为:.16.设双曲线C :()222210,0x y a b a b-=>>的右焦点为F ,点()0,P b ,直线20x y m ++=与C 交于M ,N 两点.若0FM FN FP ++=,则C 的离心率为______.【答案】233【解析】【分析】设()()1122,,,M x y N x y ,(),0F c ,根据0FM FN FP ++=,得到F 为MNP △的重心,利用重心的坐标式得到12123x x cy y b+=⎧⎨+=-⎩,再利用点差法和222c a b =+得到,,a b c 关系求解即可.【详解】设()()1122,,,M x y N x y ,(),0F c ,因为0FM FN FP ++=,所以F 为MNP △的重心,则1212303x x c y y b +⎧=⎪⎪⎨++⎪=⎪⎩,即12123x x c y y b +=⎧⎨+=-⎩,①因为()()1122,,,M x y N x y 在双曲线C :()222210,0x ya b a b-=>>上,所以22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减得:22221212220x x y y a b ---=,化简得:()()()()12121212220x x x x y y y y a b +-+--=,即()()()()12121222120x x y y y y a b x x ++⋅--=⋅-,②将①代入②得:()()22320b c a b--⋅-=,即()222322bc a c b ==-,解得:2c b =,所以a ==,则233c e a ==,即C 的离心率为233.故答案为:3.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知圆心为()3,3C 的圆经过点()1,5A .(1)求圆C 的方程;(2)过点()1,5B -作直线l 与圆C 交于E ,F 两点.若4EF =,求直线l 的方程.【答案】(1)22(3)(3)8x y -+-=(2)1x =或158550x y --=.【解析】【分析】(1)直接将点A 的坐标代入圆的方程,即可得到结果;(2)根据截得的弦长,分l 的斜率不存在与l 的斜率存在分别讨论,结合点到直线的距离公式,列出方程,即可得到结果.【小问1详解】设所求圆C 的方程为222(3)(3)x y r -+-=,因为点()1,5A 在圆C 上,则222(13)(53)r -+-=,解得28r =,所以圆C 的方程为22(3)(3)8x y -+-=.【小问2详解】因为直线l 被圆C 截得的弦长为4,所以圆心到直线l的距离2d ==.当l 的斜率不存在时,直线l 方程为1x =,符合题意.当l 的斜率存在时,设直线l 方程为()51y k x +=-,即50kx y k ---=.则2d =,解得158k =.此时直线l 方程为155(1)8y x +=-,即158550x y --=.综上所述,直线l 的方程为1x =或158550x y --=.18.如图,在直三棱柱111ABC A B C -中,M ,N 分别为AC ,1BB 的中点.(1)证明://MN 平面11A B C ;(2)若CB ⊥平面11ABB A ,2AB BC ==,14BB =,求点A 到平面11A B C 的距离.【答案】(1)证明见解析(2)5【解析】【分析】(1)要证明//MN 平面11A B C ,通过证明平面MHN ∥平面11A B C 即可证得;(2)根据已知条件可以以B 为原点建立空间直角坐标系,求出平面11A B C 的法向量,以及一个方向向量,代入公式计算即可.【小问1详解】证明:取1AA 的中点H ,连接MH ,HN .因为M 为AC 的中点,所以1MH A C ∥.因为MH ⊄平面11A B C ,1AC ⊂平面11A B C ,所以MH ∥平面11A B C .因为H ,N 分别为1AA ,1BB 的中点,所以11HN A B ∥,因为HN ⊄平面11A B C ,11A B ⊂平面11A B C ,所以HN ∥平面11A B C .因为,,MH HN H MH HN ⋂=⊂面MHN ,所以平面MHN ∥平面11A B C .因为MN ⊂平面MHN ,所以//MN 平面11A B C .【小问2详解】因为CB ⊥平面11ABB A ,AB ⊂平面11ABB A ,所以CB AB ⊥.因为三棱柱111ABC A B C -是直三棱柱,所以1BB BC ⊥,1BB AB ⊥.以BA ,1BB ,BC 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系B xyz -,则()0,0,0B ,()2,0,0A ,()10,4,0B ,()12,4,0A ,()0,0,2C ,()10,4,0AA = ,()10,4,2CB =- ,()112,0,0B A =.设平面11A B C 的法向量为(),,n x y z =.由11100CB n B A n ⎧⋅=⎪⎨⋅=⎪⎩,得42020y z x -=⎧⎨=⎩,取()0,1,2n = .所以点A 到平面11A B C 的距离1455AA n d n⋅==.19.已知抛物线C :24y x =的焦点为F ,O 为坐标原点,A ,B 为C 上异于O 的两点,OA OB ⊥.(1)证明:直线AB 过定点;(2)求4AF BF +的最小值.【答案】(1)证明见解析(2)21【解析】【分析】(1)设()11,A x y ,()22,B x y ,直线AB 的方程为x m ty -=,联立抛物线方程,由垂直斜率关系及韦达定理可求得参数m ,进而确定定点;(2)由抛物线定义结合基本不等式求最值.【小问1详解】设()11,A x y ,()22,B x y ,直线AB 的方程为x m ty -=,将直线AB 的方程代入24y x =,得2440y ty m --=.由OA OB ⊥,得121212441y y x x y y ⋅=-=⋅,即1216y y =-,所以416m -=-,4m =,故直线AB :4x ty -=,恒过定点()4,0.【小问2详解】抛物线准线为=1x -,由抛物线的定义,()()121144x x AF BF =++++221254y y =++12521y y ≥+=,当且仅当221248y y ==时等号成立,所以4AF BF +的最小值为21.20.已知数列{}n a 满足11a =,11,2,n n n a n a a n ++⎧=⎨⎩为奇数为偶数.(1)记2n n b a =,写出1b ,2b ,3b ,4b ,并猜想数列{}n b 的通项公式;(2)证明(1)中你的猜想;(3)若数列{}n a 的前n 项和为n S ,求2n S .【答案】(1)12b =,25b =,311b =,423b =,猜想1321n n b -=⨯-(2)证明见解析(3)123236n n S n +=⨯--【解析】【分析】(1)根据{}n a 的递推关系式及首项,写出2348,,,,a a a a L ,进而求得1b ,2b ,3b ,4b ,根据推导过程及各项即可猜想其通项公式;(2)因为2n n b a =,所以找到22n a +和2n a 的关系,即1n b +与n b 的关系,对式子进行配凑,可发现{}1n b +是以3为首项,2为公比的等比数列,即可得{}n b 的通项公式;(3)根据2122n n a a +=,可得2112n n a b --=,将2n S 写为()()1321242n n a a a a a a -+++++++ ,再将2112n n a b --=,2n n a b =代入,可得()211123n n n S b b a b b -=+++++ ,将1321n n b -=⨯-代入,再利用等比数列的求和公式即可得2n S .【小问1详解】由题知11,2,n n n a n a a n ++⎧=⎨⎩为奇数为偶数,因为11a =,所以12112b a a ==+=,3224a a ==,24315b a a ==+=,54210a a ==,536111b a a +===,76222a a ==,748123b a a +===,综上:12b =,25b =,311b =,423b =,猜想1321n n b -=⨯-.【小问2详解】由题意,知2122n n a a +=,22211n n a a ++=+,代入得22221n n a a +=+,于是222122n n a a ++=+,即()1121n n b b ++=+,因为113b +=,所以{}1n b +是以3为首项,2为公比的等比数列,故1321n n b -=⨯-.【小问3详解】因为()()2112112122n n n n a a a b ---+-===,()()21321242n n n S a a a a a a -=+++++++()()112112222n n a b b b b b b -=++++++++ ()11213n n b b b b a -=+++++ ()()1012332323232111n n n --=⨯+⨯++⨯+⨯---+ ()()1012332323232111n n n --=⨯+⨯++⨯+⨯---+ ()()11311122332n n n --⎛⎫ ⎪=+⨯ ⎪⎝⎭----13236n n +=⨯--.21.在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60ABC ∠=︒,PB PD =,PA AC ⊥.(1)证明:PA ⊥平面ABCD ;(2)若PA =PC 上是否存在点M ,使直线AM 与平面PBC 所成角的正弦值为154?若存在,求出点M 的位置;若不存在,请说明理由.【答案】(1)证明见解析(2)不存在,理由见解析【解析】【分析】(1)由线线垂直证BD ⊥平面PAO ,再依次证PA BD ⊥、PA ⊥平面ABCD ;(2)以A 为坐标原点,分别以AH ,AD ,AP 所在直线为x 轴,y 轴,z 轴,建立如图的空间直角坐标系A xyz -,设()01PM PC λλ=≤≤,由向量法建立线面角正弦值的方程,从解的情况即可判断.【小问1详解】证明:连接BD 交AC 于O ,连接PO .因为底面ABCD 是边长为2的菱形,所以BD AO ⊥,因为O 是BD 中点,PB PD =,所以BD PO ⊥.因为AO PO O = ,AO PO ⊂、平面PAO ,所以BD ⊥平面PAO ,因为PA ⊂平面PAO ,所以PA BD ⊥.因为PA AC ⊥,BD AC O ⋂=,BD AC ⊂、平面ABCD ,所以PA ⊥平面ABCD .【小问2详解】如图,取线段BC 的中点H ,连接AH ,易知AH AD ⊥.以A 为坐标原点,分别以AH ,AD ,AP 所在直线为x 轴,y 轴,z 轴,建立如图的空间直角坐标系A xyz -,则()0,0,0A,)1,0B-,)C,(P .()0,2,0BC =uu u r,PC = .设()01PM PC λλ=≤≤,则有(),,,,M M Mx y z λ=,解得),Mλ-,进而),AM λ=.设平面PBC 的法向量为(),,m x y z =.由00m BC m PC ⎧⋅=⎪⎨⋅=⎪⎩,得200y y =⎧⎪+=,取()1,0,1m = .设直线AM 与平面PBC 所成的角为θ,则154sin cos ,m AM AM m m AMθ==⋅===⋅,化简得,2353070λλ-+=,此方程无解,所以满足条件的点P 不存在.22.已知点()4,0A ,()10B ,,动点P 满足6AB AP PB ⋅=.(1)求动点P 的轨迹C 的方程;(2)设点10,2E ⎛⎫ ⎪⎝⎭,斜率为k 的直线l 与曲线C 交于M ,N 两点.若EM EN =,求k 的取值范围.【答案】(1)22143x y +=(2)1122k -<<【解析】【分析】(1)设动点(),P x y ,分别表示出,,AB AP PB,然后代入计算,化简即可得到结果;(2)根据题意,分0k =与0k ≠两种情况讨论,当0k ≠时,设直线l :y kx m =+,联立直线与椭圆方程,结合韦达定理表示出MN 的中点Q 的坐标,再由条件列出方程,即可得到结果.【小问1详解】设动点(),P x y ,则()3,0AB =- ,()4,AP x y =-,()1,PB x y =--,由已知,得3(4)x --=,化简,得223412x y +=,故动点P 的轨迹C 的方程是22143x y +=.【小问2详解】当0k ≠时,设直线l :y kx m =+,将y kx m =+代入22143x y+=,整理,得()2223484120kxkmx m +++-=,设()11,M x y ,()22,N x y ,()()2222644412340k m m k∆=-⨯-⨯+>,整理,得22430k m +->,①设MN 的中点为Q ,1224234x x km k +=-+,()12122232234k x x m y y mk +++==+,所以2243,3434km m Q k k ⎛⎫-⎪++⎝⎭,由EM EN =,得EQ MN ⊥,即直线EQ 的斜率为1k-,所以22131234434m k km k k-+=-+,化简,得()21432m k =-+,②将②代入①式,解得1122k -<<且0k ≠.当0k =时,显然存在直线l ,满足题设.综上,可知k 的取值范围是1122k -<<.。
2022-2023学年四川省泸县第五中学高二上学期期末考数学(理)试卷带讲解
12.数学美的表现形式不同于自然美或艺术美那样直观,它蕴藏于特有的抽象概念,公式符号,推理论证,思维方法等之中,揭示了规律性,是一种科学的真实美.平面直角坐标系中,曲线 : 就是一条形状优美的曲线,对于此曲线,给出如下结论:
【详解】∵直线方程 可整理为
∴定点为
∵点A在直线 上
∴
∴ ,当且仅当 时取等号
故答案为:
16.过点 作抛物线 的两条切线,切点分别为 和 ,又直线 经过拋物线 的焦点 ,那么 的最小值为_________.
16
【分析】设 ,写出以 为切点的切线方程,由判别式求出切线斜率,得到以 为切点的切线方程,同理求出以 为切点的切线方程,结合 在两条切线上得直线 的方程,联立直线 与抛物线方程,根据根与系数的关系,结合抛物线定义得出结果.
【考点】圆的方程,点到直线的距离公式
【名师点睛】直线与圆的位置关系有三种情况:相交、相切和相离.已知直线与圆的位置关系时,常用几何法将位置关系转化为圆心到直线的距离d与半径r的大小关系,以此来确定参数的值或取值范围.
9.已知 , ,若不等式 恒成立,则正数 的最小值是()
A. 2B. 4
C. 6D. 8
第八组[190,195].如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数
相同,第六组的人数为4人.
(Ⅰ)求第七组的频率;
(Ⅱ)估计该校的800名男生的身高的中位数以及身高在180cm以上(含180cm)的人数;
2022-2023学年内蒙古乌兰察布市化德县高二年级上册学期期末数学(理)试题【含答案】
2022-2023学年内蒙古乌兰察布市化德县高二上学期期末数学(理)试题一、单选题1.等差数列{an }中,a 4+a 8=10,a 10=6,则公差d 等于( )A .B .C .2D .-141212【答案】A【分析】由条件,可得,又可得答案.486210a a a +==65a =106410a a d =+=【详解】等差数列中,,则{}n a 486210aa a +==65a =,所以,则1064546a a d d =+=+=41d =14d =故选:A2.在中,角、、对的边分别为、、.若,,等于ABC A B C a b c 4a =5b =c =C ( )A .B .C .D .120906045【答案】A【分析】利用余弦定理求出的值,结合角的取值范围可求得角的值.cos C C C 【详解】由余弦定理可得,,故.2221cos 22a b c C ab +-==-0180C << 120C = 故选:A.3.下列是全称命题且是真命题的是( )A .∀x ∈R ,x 2>0B .∀x ∈Q ,x 2∈Q C .∃x 0∈Z ,x >1D .∀x ,y ∈R ,x 2+y 2>02【答案】B【详解】主要考查全称量词和全称命题的概念.解:A 、B 、D 中命题均为全称命题,但A 、D 中命题是假命题.故选B .4.不等式<2的解集为( )22221x x x x --++A .{x |x ≠-2}B .RC .∅D .{x |x <-2或x >2}【答案】A【分析】根据分母大于零恒成立,即可容易将分式不等式转化为一元二次不等式,求解即可.【详解】∵x 2+x +1>0恒成立,∴原不等式⇔x 2-2x -2<2x 2+2x +2⇔x 2+4x +4>0⇔(x +2)2>0,∴x ≠-2.∴不等式的解集为{x |x ≠-2}.故选:.A 【点睛】本题考查分式不等式的求解,注意分母恒为正数,是本题的关键,属基础题.5.焦点在x 轴上,右焦点到短轴端点的距离为2,到左顶点的距离为3的椭圆的标准方程是( )A .+=1B .+y 2=124x 23y 24x C .+=1D .x 2+=124y 23x 24y 【答案】A【分析】设出椭圆的标准方程,由题意可得,解得a ,c ,利用b 2=a 2﹣c 2得到b 2,从而得23a a c =⎧⎨+=⎩到标准方程.【详解】设椭圆的方程为(a>b>0),由右焦点到短轴端点的距离为2知a=2, 右焦点到22221x y a b +=左顶点的距离为3知a+c=3,解得a =2,c =1,∴b 2=a 2﹣c 2=3,因此椭圆的方程为+=1.24x 23y 故选:A.【点睛】本题考查椭圆的标准方程,属基础题.6.已知抛物线的准线与圆相切,则p 的值为22(0)y px p =>22(3)16x y -+=A .B .1C .2D .412【答案】C【详解】抛物线y 2=2px (p >0)的准线方程为x=-,2p因为抛物线y 2=2px (p >0)的准线与圆(x-3)2+y 2=16相切,所以3+=4,p=2;2p故选C .7.椭圆的左右焦点为,,P 为椭圆上第一象限内任意一点,关于P 的对称点为22143x y +=1F 2F 1F M ,关于的对称点为N ,则的周长为( ).2F 1MF NA .6B .8C .10D .12【答案】D【分析】根据对称关系可知为的中位线,再利用椭圆定义可得,从而可2PF 1F MN △24,22a c ==得的周长.1MF N 【详解】因为关于的对称点为,关于的对称点为,1F P M 2F N 所以为△的中位线,2PF 1F MN 所以,11212222()228MF MN PF PF PF PF a +=+=+=⨯=,11224F N F F c ===4=所以的周长为.1MF N 8412+=故选:D.8.设F 为双曲线C :(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆22221x y a b -=x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为A BC .2D 【答案】A【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率.【详解】设与轴交于点,由对称性可知轴,PQ x A PQ x ⊥又,为以为直径的圆的半径,||PQ OF c == ||,2cPA PA ∴=∴OF 为圆心.A ∴||2c OA =,又点在圆上,,22c c P ⎛⎫∴ ⎪⎝⎭P 222x y a +=,即.22244c c a∴+=22222,22cc a e a=∴==,故选A .e ∴=【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.9.已知函数,若等比数列满足,则22()()1f x x R x =∈+{}n a 120191a a =( )1232019()()()()f a f a f a f a +++=A .2019B .C .2D .2019212【答案】A【分析】由已知可得,根据等比数列的性质可得1()2f x f x ⎛⎫+= ⎪⎝⎭,即可得出所求.212019220181009101110101a a a a a a a ===== 【详解】,,22()()1f x x R x =∈+ 2222212222()211111x f x f x xxx x ⎛⎫∴+=+=+= ⎪+++⎝⎭⎛⎫+ ⎪⎝⎭是等比数列,,{}n a 212019220181009101110101a a a a a a a ∴===== 则.()12320191010()()()()21009201812019f a f a f a f a f a +++=⨯+=+=【点睛】关键点睛:本题考查函数和等比数列的性质的应用,解题的关键是得出,1()2f x f x ⎛⎫+= ⎪⎝⎭结合等比数列的性质解决问题.10.已知数列,满足,,其中是等差数列,且,则{}n a {}n b e nbn a =*n ∈N {}n b 252018e a a -⋅=( )122022b b b +++= A .2022B .-2022C .D .1011ln 2022【答案】B【分析】根据条件,可以推出.然后,根据等差数列的性质,可得结果;也可以直接根520182b b +=-据前n 项和公式求和.【详解】解法1:由已知,得,则,5201852018252018e e =e =e b b b b a a +-⋅=⋅520182b b +=-根据等差数列的性质有,120222202110111012520182b b b b b b b b +=+==+=+=- 所以,有()()()()2122022120222021101121012085110112022b b b b b b b b b b b +++++=+==++-++ 解法2:由已知,得,则,5201852018252018e e =e =e b b b b a a +-⋅=⋅520182b b +=-根据等差数列的性质有,12022520182b b b b +=+=-所以,.()120221220222022202220222b b b b b S ++++===- 故选:B.11.已知,,且,则的最小值为( )0x >0y >2x y +=19x y +A .8B .6C .4D .2【答案】A【分析】利用乘“1”法及及基本不等式计算可得.【详解】解:因为,,且,0x >0y >2x y +=所以,()1911919110108222y x x y x y x y x y ⎛⎫⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭当且仅当,即,时,等号成立,即的最小值为.9y x xy =12x =32y =19x y +812.在中,角的对边分别为,面积为,若,且ABC A B C ,,a b c ,,S cos cos 2a B b A bc +=,则()cos S A =A =A .B .C .D .6π4π3π23π【答案】C【分析】根据正弦定理以及三角形的面积公式进行求解即可.【详解】解:,cos cos 2a B b A bc += 由正弦定理得,∴sin cos sin cos 2sin A B B A b C +=即,sin()sin 2sin A B C b C +==由,sin 0C >得,,21b =12b=,,cos SA ∴1cos sin 2S A bc A==即,即,sin A A =sin tan cos A A A ==3A π=故选:.C 13.若等差数列和等比数列满足,,则( ).{}n a {}n b 111a b ==-448a b ==22a b =A .2B .1C .3D .4【答案】B【分析】根据条件求出等差数列的公差和等比数列的公比,然后求出、即可.2a 2b 【详解】因为等差数列满足,,所以,,{}n a 11a =-4138a a d =+=3d =22a=因为等比数列满足,,所以,{}n b 11b =-3418b b q ==22,2q b =-=所以,22212a b ==故选:B.14.已知,则的最小值是( ).110220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩22x y +A .1B .2C .5D .6【答案】C【分析】作出约束条件所表示的可行域,利用两点间的距离的几何意义,即可得到答案.【详解】不等式组表示的区域如图,由于的几何意义是可行域中的点与原点的距离的平方;22x y +(),x y 由图形知点B 与原点O 的距离最小,联立方程得的最小值是,110x x y =⎧⎨-+=⎩()1,2B 22x y +5故选:C .15.已知双曲线的两条渐近线互相垂直,则( ).()222:104x y C b b -=>b =A .1B .2C .3D .4【答案】B【分析】求出双曲线的渐近线方程,然后由垂直可得答案.【详解】双曲线的渐近线方程为,()222:104x y C b b -=>2b y x=±因为双曲线的两条渐近线互相垂直,()222:104x y C b b -=>所以,解得或(舍去),122b b ⎛⎫⋅-=- ⎪⎝⎭2b =2b =-故选:B16.已知P 是抛物线上一点,F 为抛物线的焦点,则点P 到点的距离与点P 到直线24y x =()1,1A -的距离之和的最小值为( ).=1x -A B C .2D 【答案】D【分析】先求出抛物线的焦点坐标、准线方程,再由抛物线的定义可得,再求出PA PF AF+≥的值即可.AF【详解】由抛物线可得,直线是其准线,24y x =()1,0F =1x -由抛物线定义可得P 到直线的距离等于=1x -PF,当三点共线时等号成立,=,,P A F 故选:D.二、解答题17.已知是等比数列,.{}n a 11a =48a =(1)求的通项公式;{}n a (2)若等差数列满足,,求的前n 项和.{}n b 23b a =45b a ={}n b n S 【答案】(1)12n n a -=(2)235n S n n=-【分析】(1)由求出,进而得出的通项公式;3418a a q ==q {}n a (2)由解出首项和公差,再由求和公式计算即可.114316b d b d +=⎧⎨+=⎩【详解】(1)设公比为,因为,所以q3418,2a a q q ===11122n n n a --=⨯=(2)设公差为,因为,所以,解得d 242424,216b b ====114316b d b d +=⎧⎨+=⎩12,6b d =-=故221(1)233352n n n S nb d n n n n n -=+=-+-=-18.已知在中,角对应的边分别为,.ABC ∆、、A B C a b c 、、sin sin sin sin b B a C a A c C +=+(1)求角;B (2)若,.1c =ABC ∆C 【答案】(1)(2)3B π=3C π=【解析】(1)利用正弦定理和余弦定理化简即得B 的大小;(2)sin sin sin sin b B a C a A c C +=+先根据a=1,即得C.ABC ∆【详解】(1)由及正弦定理sin sin sin sin b B a C a A c C +=+可得222b ac a c +=+由余弦定理可得222221cos 222a c b b ac b B ac ac +-+-===又因为,所以.()0,B π∈3B π=(2)因为11sin 22ABC S ac B a ∆===所以. 1a =又因为,1,3a c B π===所以是等边三角形,所以ABC ∆3C π=【点睛】本题主要考查正弦定理和余弦定理解三角形,意在考查学生对这些知识的理解掌握水平.19.已知空间三点,,(0,2,3)A (2,1,6)B -(1,1,5)C -(1)求以为边的平行四边形的面积;,AB AC(2)若向量分别与垂直,且|的坐标.a ,AB AC a a【答案】(1)2)或()1,1,1a =()1,1,1---【详解】(1)∵=(-2,-1,3),=(1,-3,2),∴||=,||=,cos ∠BAC==,∴∠BAC =60°,∴S=||·||sin ∠BAC =7.(2)设向量=(x,y,z ),则由·=0, ·=0,| |=,得a aa a ∴或∴=(1,1,1)或(-1,-1,-1).a【点睛】本题主要考查向量模的坐标表示、向量垂直的坐标表示以及向量夹交余弦公式的应用,属于中档题. 利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行;(2)两向量垂直.20.已知抛物线.24y x =(1)求过点与抛物线有且只有一个公共点的直线方程;()0,1P (2)过焦点,,求的长.F M N MN 【答案】(1),,;(2).0x =1y =1y x =+163【解析】(1)分类讨论,再设出直线方程与抛物线方程联立,即可得到结论;(2)先求出直线方程,联立方程组,求出点,的坐标,根据两点之间的距离公式即可求出.M N 【详解】解:(1)由题意,斜率不存在时,直线满足题意,0x =斜率存在时,设方程为,代入,可得,1y kx =+24y x =22(24)10k x k x +-+=当时,,满足题意,0k =1y =当时,,,直线方程为,0k ≠22(24)40k k ∆=--=1k ∴=10x y -+=综上,直线的方程为或或;l 0x =1y =10x y -+=(2)抛物线的焦点坐标为,24y x =(1,0)则过焦点,F1)y x =-联立,解得或21)4y x y x ⎧=-⎪⎨=⎪⎩13x y ⎧=⎪⎪⎨⎪=⎪⎩3x y =⎧⎪⎨=⎪⎩不妨令,,(3,M 1,3N ⎛ ⎝.163=【点睛】本题主要考查直线与抛物线的位置关系,考查分类讨论的数学思想,考查学生的计算能力,属于基础题.21.已知数列满足,.{}n a 11a =()13462,n n a a n n n *-=-+≥∈N (1)设,求证:是等比数列.2n n b a n=-{}n b (2)求数列的前n 项和.{}n a n S 【答案】(1)证明见解析;(2)2312n n S n n -=+-【分析】(1)利用等比数列的定义进行证明;(2)先求出数列的通项公式,利用分组求和的方法求和.{}n a 【详解】(1)证明:因为,所以1346n n a a n -=-+,()1111234623663213n n n n n n b a n a n n a n a n b ----=-=-+-=-+=--=⎡⎤⎣⎦因为,所以是公比为3,首项为的等比数列.11b =-{}n b 1-(2)由(1)知,所以,123n n n b a n -=-=-123n n a n -=-所以()()012121233333n n S n -=++++-++++ .()21133122132n n n n n n +--=⨯-=+--22.设,分别是椭圆:的左、右焦点,过点的直线交椭圆于两1F 2F E 22221(0)x y a b a b +=>>1F E ,A B 点,113AF BF =(1)若的周长为16,求;24,AB ABF =∆2AF (2)若,求椭圆的离心率.23cos 5AF B ∠=E【答案】(1);(2.5【详解】试题分析:(1)由题意可以求得,而的周长113,4AF F B AB ==113,1AF F B ==2ABF ∆为,再由椭圆定义可得.故.(2)设出1612416,28a AF AF a =+==212835AF a AF =-=-=,则且.根据椭圆定义以及余弦定理可以表示出的关系1F B k =0k >13,4AF k AB k ==,a k ,从而,,则,故()(3)0a k a k +-=3a k =2123,5AF k AF BF k ===22222||||BF F A AB =+,为等腰直角三角形.从而,所以椭圆的离心率12F A F A ⊥12AF F ∆c =E c e a ==(1)由,得.因为的周长为,所以由椭圆定义可得113,4AF F B AB ==113,1AF F B ==2ABF ∆16.故.12416,28a AF AF a =+==212835AF a AF =-=-=(2)设,则且.由椭圆定义可得.1F B k =0k >13,4AF k AB k ==2223,2AF a k BF a k =-=-在中,由余弦定理可得,即2ABF ∆22222222||||2cos AB AF BF AF BF AF B =+-⋅∠,化简可得,而,故2226(4)(23)(2)(23)(2)5k a k a k a k a k =-+---⋅-()(3)0a k a k +-=0a k +>.于是有.因此,可得,故为3a k =2123,5AF k AF BF k ===22222||||BF F A AB =+12F A F A ⊥12AF F ∆等腰直角三角形.从而,所以椭圆的离心率c =E c e a ==【解析】1.椭圆的定义;2.椭圆的离心率求解.。
2020-2021学年河南省平顶山市高二上学期期末考试数学(理科)试卷及答案
2020-2021学年河南省平顶山市高二上学期期末考试数学(理科)试卷及答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}03M x x =<≤,321xN x x ⎧⎫=≤⎨⎬-⎩⎭,则M N ⋂=()A.(0,1]B.(1,2)C.(0,2]D.(0,1)2.已知{}n a 是公差为2的等差数列,35a =,则1a =()A.10B.7C.6D.13.抛物线22y x =的焦点到准线的距离为()A.18 B.14 C.12 D.14.已知双曲线22221(0,0)x y a b a b -=>>的一条渐近线的倾斜角为30°,且焦距为4,则双曲线的方程为()A.221x y -= B.2212y x -= C.2213x y -= D.2213y x -=5.在正方体1111ABCD A B C D -中,点E 是线段1CC 的中点,则1A E =()A.112AB AD AA ++ B.112AB AD AA +- C.112AB AD AA -+D.112AB AD AA +- 6.设直线l 的方向向量是a ,平面α的法向量是n ,则“l //α”是“a n ⊥ ”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知0a >,0b >,2a b +=,则2aa b +()A.有最小值2B.有最大值2C.有最小值3D.有最大值38.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若3a =,5b =,2cos c a A =,则cos A =() A.13 B.24 C.33 D.639.数列{}n a 满足11a =,23a =,且11202()n n n a a a n +-++=≥,则{}n a 的前2020项和为()A.8080B.4040C.-4040D.010.已知双曲线22:143x y C -=的两个焦点分别为1F ,2F ,双曲线C 上一点P 在x 轴上的射影为Q ,且1212PQ F F PF PF ⋅=⋅,则12PF PF +=()A.B. C.10D.2011.在直三棱柱111ABC A B C -中,底面是等腰直角三角形,90ACB ∠=︒,侧棱13AA =,点D ,E 分别是1CC ,1A B 的中点,点E 在平面ABD 上的射影是ABD △的重心G ,则点1A 到平面ABD 的距离为()C.23312.已知抛物线22(0)y px p =>的焦点为F ,过点F 的直线分别交抛物线于A ,B 两点,若4AF =,1BF =,则p =()A.165 B.2C.85D.1二、填空题:本题共4小题,每小题5分,共20分.13.已知变量x ,y 满足约束条件3,3,50,y x x y ≤⎧⎪≤⎨⎪+-≥⎩则23z x y =-的最大值为______.14.已知等比数列{}n a 的前n 项和13n n S λ+=+,则1a λ+=______.15.点P 为椭圆C 上一动点,过点P 作以椭圆短轴为直径的圆的两条切线,切点分别为M ,N ,若60MPN ∠=︒,则椭圆C 的离心率的取值范围是______.16.已知平面四边形ABCD 为凸四边形(四个内角均小于180°),且1AB =,4BC =,5CD =,2DA =,则平面四边形ABCD 面积的最大值为______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.设命题:p 方程22137x y a a +=-+表示双曲线;命题:q 不等式10a x -<对01x <≤恒成立.(Ⅰ)若命题p q ∨为真,求实数a 的取值范围;(Ⅱ)若命题p q ∨为真,命题p q ∧为假,求实数a 的取值范围.18.已知等比数列{}n a 的公比不为1,且11a =,32a 是23a 与4a 的等差中项.(Ⅰ)求{}n a 的通项公式;(Ⅱ)若数列{}n b 满足()()1211n n n n a b a a +=++,求数列{}n b 的前n 项和n T .19.如图所示,在多面体BC ADE -中,ADE △为正三角形,平面ABCD ⊥平面ADE ,且BC //AD ,60BAD ∠=︒,30CDA ∠=︒,2AB BC ==.(Ⅰ)求证:AD CE ⊥;(Ⅱ)求直线CD 与平面BCE 所成角的正弦值.20.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,cossin 2A b a B =.(Ⅰ)求A ;(Ⅱ)若D 在边BC 上,AD 是BAC ∠的角平分线,3AD =,求ABC △面积的最小值.21.某厂家拟进行某产品的促销活动,根据市场情况,该产品的月销量(即月产量)m 万件与月促销费用x 万元(0)x ≥满足102k m x =-+(k 为常数),如果不搞促销活动,则该产品的月销量是2万件.已知生产该产品每月固定投入为8万元,每生产一万件该产品需要再投入5万元,厂家将每件产品的销售价格定为9.66m m+元,设该产品的月利润为y 万元.注:利润=销售收入-生产投入-促销费用.(Ⅰ)将y 表示为x 的函数;(Ⅱ)月促销费用为多少万元时,该产品的月利润最大?22.已知椭圆2222:1(0)x y C a b a b+=>>的左、右两个焦点分别是1F ,2F ,焦距为2,点M 在椭圆上且满足212MF F F ⊥,123MF MF =.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)点O 为坐标原点,直线l 与椭圆C 交于A ,B 两点,且OA OB ⊥,证明2211||||OA OB +为定值,并求出该定值.数学试题(理科)参考答案1-10DDBCB ACDBB11-12AC 13.014.315.,12⎫⎪⎪⎣⎭16.17.解析(Ⅰ)当命题p 为真时,由题意()()370a a -+<,解得73a -<<.当命题q 为真时,由题意可得min1a x ⎫⎛< ⎪⎝⎭,由此可得1a <.若命题p q ∨为真命题,则73a -<<或1a <,即(,3)a ∈-∞.(Ⅱ)命题p q ∨为真,命题p q ∧为假,则p ,q 一真一假.p 真q 假时,73,1,a a -<<⎧⎨≥⎩13a ∴≤<,p 假q 真时,731,a a , a ≤-≥⎧⎨<⎩或7a ∴≤-,综上,(,7][1,3)a ∈-∞-⋃.18.解(Ⅰ)设数列{}n a 的公比为q ,由条件知32443a a a =+,即2311143a q a q a q =+,整理可得2430q q -+=,解得3q =(1q =舍去),所以11133n n n a a --=⋅=.(Ⅱ)()()()()111122*********3131n n n n n n n n n a b a a ---+⋅===-++++++,所以01121111111313131313131n n n T -⎫⎫⎫⎛⎛⎛=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪++++++⎝⎝⎝⎭⎭⎭011113131231n n =-=-+++.19.解(Ⅰ)如图,过B 作BF AD ⊥于F ,过C 作CG AD ⊥于G ,连接GE .可得BF //CG ,又因为BC //AD ,在Rt ABF △中,因为60BAD ∠=︒,2AB =,所以1AF =,BF =,所以BF CG ==,2FG BC ==,在Rt CDG △中,30CDG ∠=︒,3GD ==.所以AG GD =,因为ADE △为正三角形,所以GE AD ⊥,因为CG EG G ⋂=,所以AD ⊥平面CGE ,所以AD CE ⊥.(Ⅱ)由(Ⅰ)可知GE ,GD ,GC 两两互相垂直,以G 为坐标原点,GE ,GD ,GC所在直线为x ,y ,z 轴建立空间坐标系,如图所示.则(C,(0,B -,(0,3,0)D,()E ,所以(CE = ,(0,2,0)CB =-,(0,3,CD = ,设平面BCE 的法向量为(,,)n x y z = ,所以0,20,y ⎧-=⎪⎨-=⎪⎩取1x =,可得(1,0,3)n = ,所以cos,20||||CD nCD nCD n⋅〈〉===-,所以直线CD与平面BCE所成角的正弦值为20.20.解(Ⅰ)由正弦定理及条件得sin cos sin sin2AB A B=,因为(0,)Bπ∈,sin0B≠,所以cos sin2sin cos222A A AA==,又(0,)Aπ∈,cos02A≠,所以1sin22A=,从而3Aπ=.(Ⅱ)因为ABC△的面积等于ABD△和ACD△的面积之和,得111sin sin sin22222BAC BACbc BAC c AD b AD∠∠∠=⋅+⋅,又因为3BACπ∠=,233AD=,所以32()bc b c=+,所以32()bc b c=+≥,得169bc≥(当且仅当43b c==时等号成立)所以ABC△的面积1343sin249S bc A bc==≥.所以ABC△面积的最小值为439.21.解(Ⅰ)由题意知当0x=时,2m=,则2102k=-,解得16k=,16102mx=-+.利润9.6685 1.6my m m x m xm+=⨯---=+-,又因为16102mx=-+,所以161.611.62y m x xx=+-=--+,[0,)x∈+∞.(Ⅱ)由(Ⅰ)知1613.6(2)2y xx=--++,因为0x≥时,22x+≥,因为16(2)82xx++≥=+,当且仅当2x=时等号成立.所以13.68 5.6y≤-=,故月促销费用为2万元时,该产品的月利润最大,最大为5.6万元.22.解(Ⅰ)依题意1222F F c ==,所以1c =.由123MF MF =,122MF MF a +=,得132MF a =,212MF a =,于是122F F ====,所以a =,所以2221b a c =-=,因此椭圆C 的方程为2212x y +=.(Ⅱ)当直线l 的斜率存在时,设直线:AB y kx m =+,()11,A x y ,()22,B x y ,由2222,x y y kx m⎧+=⎨=+⎩消去y 得()222124220k x kmx m +++-=,由题意,0∆>,则12221224,1222,12km x x k m x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩因为OA OB ⊥,所以12120x x y y +=,即()()12120x x kx m kx m +++=,整理得()22321m k =+.而22222222211||||||||||||||||||OA OB AB OA OB OA OB OA OB ++==,设h 为原点到直线l 的距离,则OA OB AB h =⋅,所以222111||||OA OB h+=,而h =22221113||||2k OA OB m ++==.当直线l 的斜率不存在时,设()11,A x y ,则有1OA k =±,不妨设1OA k =,则11x y =,代入椭圆方程得2123x =,所以224||||3OA OB ==,所以22113||||2OA OB +=.综上22113||||2OA OB +=.。
(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)
(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)题号一二三四总分得分一、单选题(本大题共8小题,共40.0分)1.直线y=kx+b经过第二、三、四象限,则斜率k和在y轴上的截距b满足的条件为()A. k>0,b>0B. k<0,b<0C. k>0,b<0D. k<0,b>02.已知F为双曲线C:的左焦点,P,Q为C上的点.若PQ的长等于虚轴长的2倍,点A(5,0)在线段PQ上,则△PQF的周长为()A. 11B. 22C. 33D. 443.“a=2”是“l1:ax+4y-1=0与l2:x+ay+3=0平行”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.已知抛物线x2=2py和-y2=1的公切线PQ(P是PQ与抛物线的切点,未必是PQ与双曲线的切点)与抛物线的准线交于Q,F(0,),若|PQ|=|PF|,则抛物线的方程是()A. x2=4yB. x2=2yC. x2=6yD. x2=2y5.已知m,n是两条不重合的直线,α,β是不重合的平面,则下列说法正确的是()A. 若m⊥α,n∥β,α⊥β,则m⊥nB. 若m⊥n,m⊥α,n∥β,则α⊥βC. 若m∥n,m∥α,n∥β,则α∥βD. 若m⊥α,n⊥α,则m∥n6.直线l:y=x与圆x2+y2-2x-6y=0相交于A,B两点,则|AB|=()A. 2B. 4C. 4D. 87.椭圆5x2+ky2=5的一个焦点为(0,2),那么k的值为()A. B. 2 C. D. 18.直线y=-2x-3与曲线的公共点的个数为()A. 1B. 2C. 3D. 4二、多选题(本大题共4小题,共20.0分)9.矩形ABCD中,AB=4,BC=3,将△ABD沿BD折起,使A到A′的位置,A′在平面BCD的射影E恰落在CD上,则()A. 三棱锥A′-BCD的外接球直径为5B. 平面A′BD⊥平面A′BCC. 平面A′BD⊥平面A′CDD. A′D与BC所成角为60°10.设O为坐标原点,F1,F2是双曲线-=1(a>0,b>0)的左、右焦点.在双曲线的右支上存在点P满足∠F1PF2=60°,且线段PF1的中点B在y轴上,则()A. 双曲线的离心率为B. 双曲线的方程可以是-y2=1C. |OP|=aD. △PF1F2的面积为11.在平行六面体ABCD-A1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,若平行六面体的各棱长均相等,∠A1AB=∠A1AD,则有()A. A1M∥B1QB. AA1⊥PQC. A1M∥面D1PQB1D. PQ⊥面A1ACC112.已知抛物线C:y2=4x的焦点为F,准线为l,过点F的直线与抛物线交于两点P(x1,y1),Q(x2,y2),点P在l上的射影为P1,则()A. |PQ|的最小值为4B. 已知曲线C上的两点S,T到点F的距离之和为10,则线段ST的中点横坐标是(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)4C. 设M(0,1),则|PM|+|PP1|≥D. 过M(0,1)与抛物线C有且仅有一个公共点的直线至多有2条三、单空题(本大题共4小题,共20.0分)13.已知A(0,1),B(1,0),C(t,0),点D在直线AC上,若|AD|≤|BD|恒成立,则t的取值范围是______.14.直线2x+y-1=0的倾斜角是______.15.湖面上漂着一个小球,湖水结冰后将球取出,冰面上留下一个直径为12cm,深为2cm的空穴,则该球的半径为______ cm,表面积是______ .16.已知双曲线C:的右焦点为F,O为坐标原点.过F的直线交双曲线右支于A,B两点,连结AO并延长交双曲线C于点P.若|AF|=2|BF|,且∠PFB=60°,则该双曲线的离心率为______ .四、解答题(本大题共6小题,共70.0分)17.已知圆的圆心在直线上,且与轴交于两点,.(I)求圆的方程;(II)过点的直线与圆交于两点,且,求直线的方程.18.已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).(1)证明:不论m为何值时,直线l恒过定点;(2)求直线l被圆C截得的弦长最小时的方程.19.如图,为圆的直径,点.在圆上,且,矩形所在的平面和圆所在的平面互相垂直,且,.(1)设的中点为,求证:平面;(2)求四棱锥的体积.20.在平面直角坐标系中,直线l与抛物线y2=2x相交于A,B两点.求证:“如果直线l过(3,0),那么=3”是真命题.(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)21.如图,四棱锥中,底面是菱形,其对角线的交点为,且.(1)求证:平面;(2)设,,是侧棱上的一点,且∥平面,求三棱锥的体积.22.(本题满分16分)已知椭圆的两焦点分别为 , 是椭圆在第一象限内的一点,并满足,过作倾斜角互补的两条直线分别交椭圆于两点.(1)求点坐标;(2)当直线经过点时,求直线的方程;(3)求证直线的斜率为定值.(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)1.【答案】B【解析】解:要使直线y=kx+b经过第二、三、四象限,则斜率k和在y轴上的截距b 满足的条件,故选:B.由题意利用确定直线的位置的几何要素,得出结论.本题主要考查确定直线的位置的几何要素,属于基础题.2.【答案】D【解析】由双曲线C的方程,知a=3,b=4,c=5,∴点A(5,0)是双曲线C的右焦点,且|PQ|=|QA|+|PA|=4b=16,由双曲线定义,|PF|-|PA|=6,|QF|-|QA|=6.∴|PF|+|QF|=12+|PA|+|QA|=28,因此△PQF的周长为|PF|+|QF|+|PQ|=28+16=44,选D.3.【答案】A【解析】解:若a=2.则两条直线的方程为2x+4y-1=0与x+2y+3=0满足两直线平行,即充分性成立.当a=0时,两直线等价为4y-1=0与x+3=0不满足两直线平行,故a≠0,若“l1:ax+4y-1=0与l2:x+ay+3=0平行”,则,解得a=2或a=-2,即必要性不成立.故“a=2”是“l1:ax+4y-1=0与l2:x+ay+3=0平行”的充分不必要条件,故选:A(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)根据直线平行的等价条件,利用充分条件和必要条件的定义即可得到结论.本题主要考查充分条件和必要条件的判断,根据直线平行的等价条件是解决本题的关键.4.【答案】B【解析】解:如图过P作PE⊥抛物线的准线于E,根据抛物线的定义可知,PE=PF∵|PQ|=|PF|,在Rt△PQE中,sin,∴,即直线PQ的斜率为,故设PQ的方程为:y=x+m(m<0)由消去y得.则△1=8m2-24=0,解得m=-,即PQ:y=由得,△2=8p2-8p=0,得p=.则抛物线的方程是x2=2y.故选:B.如图过P作PE⊥抛物线的准线于E,根据抛物线的定义可知,PE=PF可得直线PQ的斜率为,故设PQ的方程为:y=x+m(m<0)再依据直线PQ与抛物线、双曲线相切求得p.本题考查了抛物线、双曲线的切线,充分利用圆锥曲线的定义及平面几何的知识是关键,属于中档题.5.【答案】D【解析】解:当m⊥α,n∥β,α⊥β时,直线m与n可能异面不垂直,故选项A错误;当m⊥n,m⊥α,n∥β时,比如n平行于α与β的交线,且满足m⊥n,m⊥α,但α与β可能不垂直,故选项B错误;当m∥n,m∥α,n∥β时,比如m与n都平行于α与β的交线,且满足m∥n,m∥α,但α与β不平行,故选项C错误;垂直于同一个平面的两条直线平行,故选项D正确.故选:D.直接利用空间中线、面之间的关系进行分析判断即可.本题考查了空间中线面位置关系的判断,此类问题一般都是从反例的角度进行考虑,属于基础题.6.【答案】C【解析】【分析】本题主要考查直线和圆的位置关系的应用,掌握直线和圆相交的弦长公式是解决本题的关键,属于基础题.根据直线和圆相交的弦长公式进行求解即可.【解答】解:圆的标准方程为(x-1)2+(y-3)2=10,圆心坐标为(1,3),半径R=,则圆心到直线x-y=0的距离d=,则|AB|===4.故选C.7.【答案】D【解析】【分析】本题考查椭圆的简单性质,是基础题.把椭圆化为标准方程后,找出a与b的值,然后根据a2=b2+c2,表示出c,并根据焦点坐标求出c的值,两者相等即可列出关于k的方程,求出方程的解即可得到k的值.【解答】解:把椭圆方程化为标准方程得:x2+=1,因为焦点坐标为(0,2),所以长半轴在y轴上,(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)则c==2,解得k=1.故选D.8.【答案】B【解析】解:当x≥0时,曲线的方程为,一条渐近线方程为:y=-x,当x<0时,曲线的方程为,∴曲线的图象为右图,在同一坐标系中作出直线y=-2x-3的图象,可得直线与曲线交点个数为2个.故选:B.分x大于等于0,和x小于0两种情况去绝对值符号,可得当x≥0时,曲线为焦点在y轴上的双曲线,当x<0时,曲线为焦点在y轴上的椭圆,在同一坐标系中作出直线y=-2x-3与曲线的图象,就可找到交点个数.本题主要考查图象法求直线与曲线交点个数,关键是去绝对值符号,化简曲线方程.9.【答案】AB【解析】解:对于A,取BD中点E,连接A′E,CE,则A′E=BE=DE=CE==.∴三棱锥A′-BCD的外接球直径为5,故A正确;对于B,∵DA′⊥BA′,BC⊥CD,A′F⊥平面BCD,∴BC⊥A′F,又A′F∩CD=F,A′F、CD⊂平面A′CD,∴BC⊥平面A′CD,∵A′D⊂平面A′CD,∴DA′⊥BC,∵BC∩BA′=B,∴DA′⊥平面A′BC,∵DA′⊂平面A′BD,∴平面A′BD⊥平面A′BC,故B正确;对于C,BC⊥A′C,∴A′B与A′C不垂直,∴平面A′BD与平面A′CD不垂直,故C错误;对于D,∵DA∥BC,∴∠ADA′是A′D与BC所成角(或所成角的补角),∵A′C==,∴A′F=,DF==,AF==,AA′==3,∴cos∠ADA′==0,∴∠ADA′=90°,∴A′D与BC所成角为90°,故D错误.故选:AB.对于A,取BD中点E,连接A′E,CE,推导出A′E=BE=DE=CE=,从而三棱锥A′-BCD 的外接球直径为5;对于B,推导出DA′⊥BA′,BC⊥CD,A′F⊥平面BCD,BC⊥A′F,BC⊥平面A′CD,DA′⊥BC,DA′⊥平面A′BC,从而平面A′BD⊥平面A′BC;对于C,A′B与A′C不垂直,从而平面A′BD与平面A′CD不垂直;对于D,由DA∥BC,得∠ADA′是A′D与BC所成角(或所成角的补角),推导出A′D与BC所成角为90°.本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力等数学核心素养,是中档题.10.【答案】AC【解析】解:如图,F1(-c,0),F2(c,0),∵B为线段PF1的中点,O为F1F2的中点,∴OB∥PF2,∴∠PF2F1=90°,由双曲线定义可得,|PF1|-|PF2|=2a,设|PF1|=2m(m>0),则|PF2|=m,,∴2m-m=2a,即a=,又,∴c=,则e=,故A正确;,则b=,双曲线的渐近线方程为y=,选项B的渐近线方程为y=,故B错误;对于C,∵O为F1F2的中点,∴,(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)则,即=,即,①而|PF1|-|PF2|=2a,两边平方并整理得,,②联立①②可得,,,即|PO|=,故C正确;=,故D错误.故选:AC.由已知可得∠PF2F1=90°,设|PF1|=2m(m>0),再由已知结合双曲线定义可得a,b,c 与m的关系,即可求得双曲线的离心率及渐近线方程,从而判断A与B;由O为F1F2的中点,得,两边平方后结合双曲线定义联立求得|PO|判断C;进一步求出△PF1F2的面积判断D.本题考查双曲线的几何性质,考查运算求解能力,是中档题.11.【答案】BCD【解析】解:连接MP,可得MP AD A1D1,可得四边形MPA1D1是平行四边形∴A1M∥D1P,又A1M⊄平面DCC1D1,D1P⊂平面DCC1D1,A1M∥平面DCC1D1,连接DB,由三角形中位线定理可得:PQ DB,DB D1B1,可得四边形PQB1D1为梯形,QB1与PD1不平行,因此A1M与B1Q不平行,又A1M∥D1P,A1M⊄平面D1PQB1,D1P⊂平面D1PQB1,∴A1M∥平面D1PQB1.故A不正确,C正确;连接AC,由题意四边形ABCD是菱形,∴AC⊥BD,∵P,Q分别为棱CD,BC的中点,∴PQ∥BD,∴PQ⊥AC,∵平行六面体的所有棱长都相等,且∠A1AB=∠A1AD,∴直线AA1在平面ABCD内的射影是AC,且BD⊥AC,∴AA1⊥BD,∴AA1⊥PQ,故B正确;∵AA1∩AC=A,∴PQ⊥面A1ACC1,故D正确.故选:BCD.连接MP,推导出四边形MPA1D1是平行四边形,从而A1M∥D1P,连接DB,推导出四边形PQB1D1为梯形,A1M与B1Q不平行,推民出A1M∥平面D1PQB1;连接AC,推导出四边形ABCD是菱形,AC⊥BD,从而PQ⊥AC,由平行六面体的所有棱长都相等,且∠A1AB=∠A1AD,推志出AA1⊥PQ,从而PQ⊥面A1ACC1.本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.12.【答案】ABC【解析】解:对于A,设直线PQ的方程为x=ty+1,联立解方程组,可得y2-4ty-4=0,x1x2==1,|PQ|=x1+x2+p=x1+x2+2+2=4,故A正确;对于B,根据抛物线的定义可得,|SF|+|TF'|=x S+x T+p=10,则x S+x T=8,则线段ST的中点横坐标是=4,故B成立;对于C,M(0,1),|PM|+|PP1|=|MP|+|PF|≥|MF|=,所以C正确;对于D,过M(0,1)相切的直线有2条,与x轴平行且与抛物线相交且有一个交点的直线有一条,所以最多有三条.所以D不正确;故选:ABC.设出直线方程与抛物线联立,利用弦长公式判断A,结合抛物线的定义,判断B;利用抛物线的性质判断C;直线与抛物线的切线情况判断D.考查抛物线的性质,抛物线与直线的位置关系的应用,是中档题.13.【答案】(-∞,0]【解析】解:设D(x,y),由D在AC上,得+y=1,即x+ty-t=0,由|AD|≤|BD|得≤•,化为(x-2)2+(y+1)2≥4,依题意,线段AD与圆(x-2)2+(y+1)2=4至多有一个公共点,(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)∴≥2,解得:t≤0,则t的取值范围为(-∞,0],故答案为:(-∞,0].先设出D(x,y),得到AD的方程为:x+ty-t=0,由|AD|≤|BD|得到圆的方程,结合点到直线的距离公式,解不等式即可得到所求范围.本题考查直线与圆的方程,考查点到直线距离公式的运用,考查学生分析解决问题的能力,属于中档题.14.【答案】π-arctan【解析】解:直线2x+y-1=0的斜率为,设直线2x+y-1=0的倾斜角为θ(0≤θ<π),则tan,∴θ=.故答案为:π-arctan.由直线方程求直线的斜率,再由斜率等于倾斜角的正切值求解.本题考查由直线方程求直线的斜率,考查直线的斜率与倾斜角的关系,是基础题.15.【答案】10;400π【解析】解:设球的半径为r,依题意可知36+(r-2)2=r2,解得r=10,∴球的表面积为4πr2=400π故答案为10,400π先设出球的半径,进而根据球的半径,球面上的弦构成的直角三角形,根据勾股定理建立等式,求得r,最后根据球的表面积公式求得球的表面积.本题主要考查了球面上的勾股定理和球的面积公式.属基础题.16.【答案】【解析】【分析】本题考查双曲线的定义以及几何性质的应用,余弦定理的应用,考查转化思想以及计算能力.属于中档题.设双曲线C的左焦点为F',连结AF',BF',设|BF|=t,则|AF|=2t,推出∠F'AB=60°.在△F'AB 中,由余弦定理求解.结合双曲线的定义,求出,.在△F'AF中,由余弦定理推出a,c关系,得到离心率即可.【解答】解:设双曲线C的左焦点为F',连结AF',BF',设|BF|=t,则|AF|=2t,所以|AF'|=2a+2t,|BF'|=2a+t.由对称性可知,四边形AF'PF为平行四边形,故∠F'AB=60°.在△F'AB中,由余弦定理得(2a+t)2=(2a+2t)2+(3t)2-2×(2a+2t)×3t×cos60°,解得.故,.在△F'AF中,由余弦定理得,,解得:.故答案为:.17.【答案】解:(I)因为圆与轴交于两点,,所以圆心在直线上,由,得,即圆心的坐标为.半径,所以圆的方程为;(II)若直线的斜率不存在,则直线的方程为,此时可得,不符合题意;(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)当直线的斜率存在时,设直线的方程为:,即,过点作于点,则D为线段MN中点,∴,∴,即点C到直线l的距离,解得或k=-3;综上,直线的方程为x-3y+3=0或3x+y-11=0.【解析】本题考查圆的标准方程,直线与圆的位置关系,属于中档题.(I)根据题意,即可得解;(II)分类讨论,进行求解即可.18.【答案】(1)证明:将直线化为直线束方程:x+y-4+(2x+y-7)=0.联立方程x+y-4=0与2x+y-7=0,得点(3,1);将点(3,1)代入直线方程,不论m为何值时都满足方程,所以直线l恒过定点(3,1);(2)解:当直线l过圆心与定点(3,1)时,弦长最大,代入圆心坐标得m=.当直线l垂直于圆心与定点(3,1)所在直线时弦长最短,斜率为2,代入方程得m=此时直线l方程为2x-y-5=0,圆心到直线的距离为,所以最短弦长为.【解析】(1)通过直线l转化为直线系,求出直线恒过的定点;(2)说明直线l被圆C截得的弦长最小时,圆心与定点连线与直线l垂直,求出斜率即可求出m的值,再由勾股定理即可得到最短弦长.本题考查直线系方程的应用,考查直线与圆的位置关系,考查平面几何知识的运用,考查计算能力,属于中档题.19.【答案】(1)证明详见解析;(2).【解析】试题分析:(1)要证平面,根据直线与平面平行的判定定理可知只需证与平面内一直线平行即可,设的中点为,则为平行四边形,则,又平面,不在平面内,满足定理所需条件;(2)过点作于,根据面面垂直的性质可知平面,即正的高,然后根据三棱锥的体积公式进行求解即可.试题解析:(1)设的中点为,则又,∴∴为平行四边形∴又平面,平面∴平面(2)过点作于平面平面,∴平面,即正的高∴∴∴.考点:1.空间中的平行关系;2.空间中的垂直关系;3.棱锥的体积计算.20.【答案】证明:设过点T(3,0)的直线l交抛物线y2=2x于点A(x1,y1)、B(x2,y2).当直线l的钭率不存在时,直线l的方程为x=3,(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)此时,直线l与抛物线相交于点A(3,)、B(3,-).∴=3当直线l的钭率存在时,设直线l的方程为y=k(x-3),其中k≠0,由得ky2-2y-6k=0⇒y1y2=-6,又∵x1=y12,x2=y22,∴x1x2=9,∴=x1x2+y1y2=3,综上所述,命题“如果直线l过点T(3,0),那么=3”是真命题;综上,命题成立.【解析】设出A,B两点的坐标根据向量的点乘运算求证即可得到:“如果直线l过(3,0),那么=3”是真命题.本题考查了真假命题的证明,抛物线的简单性质,向量数量积,是抛物线与平面向量的综合应用,难度中档.21.【答案】(1)证明:∵底面是菱形,∴.又平面.又又平面.(2)连接,∵SB平面,平面,平面平面,SB∥平面APC,∴SB∥OP.又∵是的中点,∴是的中点.由题意知△ABD为正三角形..由(1)知平面,∴.又,∴在Rt△SOD中,.∴到面的距离为.【解析】主要考查了线面垂直的判定和三棱锥的体积.(1)要证明线面垂直,证明SO与平面ABCD中两条相交直线垂直即可,应用已知条件与等腰三角形的三线合一即可得到证明;(2)由SB∥平面APC的性质定理证明得SB∥OP,由(1)得高为PO,利用三棱锥的体积公式即可求出结果.22.【答案】(1)(2)(3),证明略.【解析】解:(1)设P((x,y),由题意可得,解得,∴P.(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)(2)∵,两条直线PA,PB倾斜角互补,∴k PA+k PB=0,解得k PB=1.因此直线PA,PB,的方程分别为,,化为,.联立,解得(舍去),,即A.同理解得B.∴k AB= = ,∴直线AB的方程为,化为.(3)S设A(x 1,y 1),B(x 2,y 2),设直线PA的方程为:,则直线PB 的方程为.联立,解得A.同理B,∴k AB= = .即直线AB的斜率为定值.。
2022-2023学年北京市西城区高二上学期期末考试数学试题(解析版)
2022-2023学年北京市西城区高二上学期期末考试数学试题一、单选题1.直线的倾斜角等于( ) 0x y +=A . B . C . D .45 90 120 135 【答案】D【分析】由得.0x y +==-+y x【详解】由得,则倾斜角为. 0x y +==-+y x 1-135 故选:D2.抛物线的准线方程为( ) 24x y =A . B . C . D .1x ==1x -1y =1y =-【答案】D【分析】根据抛物线方程求出,进而可得焦点坐标以及准线方程. 2p =【详解】由可得,所以焦点坐标为,准线方程为:, 24x y =2p =()0,11y =-故选:D.3.在空间直角坐标系中,点,则( ) O xyz -()()1,3,0,0,3,1A B -A .直线坐标平面 B .直线坐标平面 AB xOy AB ⊥xOy C .直线坐标平面 D .直线坐标平面AB xOz AB ⊥xOz 【答案】C【分析】求出及三个坐标平面的法向量,根据与法向量的关系判断.ABAB【详解】,坐标平面的一个法向量是,坐标平面的一个法向量是(1,0,1)AB =--xOy (0,0,1)xOz ,坐标平面的一个法向量是,这三个法向量与都不平行,(0,1,0)yOz (1,0,0)AB但,点均不在坐标平面上,因此与坐标平面平行,(0,1,0)0AB ⋅=,A B xOz AB xOz 故选:C .4.在的展开式中,的系数为( ) 4(21)x +2x A .6 B .12C .24D .36【答案】C【分析】先求二项式展开式的通项公式,然后根据通项公式计算求解即可.【详解】展开式的通项公式, 4(21)x +444144C (2)12C k kk k k kk T x x---+=⋅=令,得,42k -=2k =所以在的展开式中,的系数为,4(21)x +2x 42242C 4624-=⨯=故选:C5.在长方体中,,则二面角的余弦值为( ) 1111ABCD A B C D -13,2,1AB BC AA ===1D BC D --ABCD【答案】D【分析】画出长方体,为二面角所成的平面角,求出1111ABCD A B C D -1D CD ∠1D BC D --的值即可得出答案.1cosD CD ∠【详解】长方体中,,,1111ABCD A B C D -13,2,1AB BC AA ===1CD ∴=,平面,平面,,BC CD ∴⊥BC ⊥ 11DCC D 1CD ⊂11DCC D 1BC CD ∴⊥又平面平面,1D BCBCD BC =为二面角所成的平面角,∴1D CD ∠1D BC D --11cos CD D CD CD ∠===所以二面角1D BC D --故选:D.6.若直线与圆相离,则实数的取值范围是( ) 340x y m ++=22(1)1x y ++=m A . B . ()(),82,∞∞--⋃+()(),28,∞∞--⋃+C . D .()(),22,∞∞--⋃+()(),88,∞∞--⋃+【答案】B【分析】根据直线与圆相离则圆心到直线的距离大于圆的半径即可求解.【详解】因为直线与圆相离,所以圆心到直线的距离,(1,0)-340x y m ++=1d r =解得或, 2m <-8m >故选:B.7.2名辅导教师与3名获奖学生站成一排照相,要求2名教师分别站在两侧,则不同的站法共有( ) A .种 B .种C .种D .种33A 332A 5353A A -35A 【答案】B【分析】先排好教师再排学生即可.【详解】2名教师排在两边有种排法,3名学生排在中间有 种排法,22A 2=33A 所以共有 种排法; 332A 故选:B.8.设,则“”是“直线与直线平行”的( ) a R ∈1a =1:20l ax y +=()2140+++=:l x a y A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】计算直线平行等价于或,根据范围大小关系得到答案.1a =2a =-【详解】直线与直线平行,则,或, 1:20l ax y +=()2140+++=:l x a y ()12a a +=1a =2a =-验证均不重合,满足.故“”是“直线与直线平行”的充分不必要条件. 1a =1:20l ax y +=()2140+++=:l x a y 故选:A.【点睛】本题考查了充分不必要条件,意在考查学生的计算能力和推断能力.9.如图是一个椭圆形拱桥,当水面在处时,在如图所示的截面里,桥洞与其倒影恰好构成一个椭l 圆.此时拱顶离水面,水面宽,那么当水位上升时,水面宽度为( )2m 6m 1mA .BC .D 【答案】A【分析】根据题意可得桥洞与其倒影恰好构成的椭圆方程为:,求直线被椭圆所截22194x y +=1y =得的弦长,代入椭圆方程即可求解.【详解】以图中水面所在的直线为轴,水面的垂直平分线所在直线为轴,建立平面直角坐标x y 系,根据已知条件可知:桥洞与其倒影恰好构成的椭圆方程为:,22194x y +=当水位上升时,水面的宽度也即当时,直线被椭圆所截的弦长. 1m 1y =1y =把代入椭圆方程可得: 1y =x =所以当水位上升时,水面的宽度为, 1m 故选:.A 10.设点,,直线,于点,则的最大值为( ) ()1,0A ()2,3N -:210l x ay a ++-=AM l ⊥M MNA B .6C .4D .1【答案】B【分析】依题意可得直线的方程,再联立直线的方程,消后可得到的轨迹方程为AM l a M ,则所求的最大值为圆心到点的距离加上半径,由此即可求解.()()22111x y -++=MN ()2,3N -【详解】依题意可得直线的方程为,AM ()1y a x =-联立,消整理得,()2101x ay a y a x ++-=⎧⎨=-⎩a ()()22111x y -++=所以点的轨迹是以为圆心,1为半径的圆, M ()1,1-故的最大值为,MN 16=故选:B .二、填空题11.设,则过线段的中点,且与垂直的直线方程为__________. ()()3,2,1,4A B --AB AB 【答案】2310x y --=【分析】求出线段的中点坐标和斜率,利用点斜式写出直线方程.AB【详解】因为,所以线段的中点,且.()()3,2,1,4A B --AB ()1,1C --()423132AB k --==---所以与垂直的直线的斜率为, AB 112332ABk k =-=-=-所以过线段的中点,与垂直的直线方程为,即. AB AB ()2113y x +=+2310x y --=故答案为:2310x y --=12.在的展开式中,常数项为_____.61x x ⎛⎫+ ⎪⎝⎭【答案】20【分析】根据展开式的通项公式求解即可.【详解】在的展开式的通项公式为,61x x ⎛⎫+ ⎪⎝⎭6621661kk k k k k T C x C x x --+⎛⎫== ⎪⎝⎭所以令,解得,620k -=3k =所以常数项为3620C =故答案为:.2013.设为抛物线的焦点,点在抛物线上,点,且,则F 2:4C y x =A C ()3,0B AF BF =AB =__________.【答案】【分析】由题意可设,且满足,因为,由两点间的距离公式代入可求(),A x y 24y x ==2AF BF =出,即可求出.()1,2A ±AB 【详解】由题意可得,,,设, ()1,0F 2BF =(),A x y 且满足,此时, 24y x =0x >则,2AF ===解得:,此时,所以, 1x =2y =±()1,2A ±故AB ==故答案为:14.记双曲线的离心率为e ,写出满足条件“直线与C 无公共点”的e 2222:1(0,0)x y C a b a b -=>>2y x =的一个值______________.【答案】2(满足1e <≤【分析】根据题干信息,只需双曲线渐近线中即可求得满足要求的e 值. by x a =±02b a<≤【详解】解:,所以C 的渐近线方程为,2222:1(0,0)x y C a b a b -=>>b y x a=±结合渐近线的特点,只需,即,02b a <≤224b a ≤可满足条件“直线与C 无公共点”2y x =所以===c e a又因为,所以, 1e >1e <≤故答案为:2(满足 1e <≤15.如图,在正方体中,为棱的中点,是正方形内部(含1111ABCD A B C D -2,AB E =1DD F 11CDD C 边界)的一个动点,且平面.给出下列四个结论:1//B F 1A BE①动点的轨迹是一段圆弧;F ②存在符合条件的点,使得; F 11B F A B ⊥③三棱锥的体积的最大值为;11B D EF -23④设直线与平面所成角为,则的取值范围是. 1B F 11CDD C θtan θ2,⎡⎣其中所有正确结论的序号是__________. 【答案】②③④【分析】对于①,利用线线平行可证得平面平面,进而知动点的轨迹; 1//A BE 1MNB F 对于②,利用垂直的性质的可判断; 对于③,利用三棱锥的体积公式可求得;对于④,利用线面角的定义结合三角形可求解;【详解】对于①,分别取和的中点,连接,,,1CC 11D C ,N M MN 1MB 1NB 由正方体性质知,,平面,平面,所以1//MN A B 11//NB EA 1,MN NB ⊂/1A BE 11,A B EA ⊂1A BE 平面,又平面,,所以平面平面,1,//MN NB 1A BE 1,MN NB ⊂1MNB 1MN NB N = 1//A BE 1MNB 当在上运动时,有平面,故动点的轨迹是线段,故①错误; F MN 1//B F 1A BE F MN 对于②,当为线段中点时,,, F MN 11MB NB = 1B F MN ∴⊥又,,故②正确;1//MN A B 11B F A B ∴⊥对于③,三棱锥的体积,11B D EF -11111233D EF D EF V S B C S =⋅=又所以三棱锥的体积的最大值为,故③正确;1max 12112D EF S =⨯⨯=23对于④,连接,则与平面所成角,则, 11,B F C F 1B F 11CDD C 11FC Bθ=∠12tan C Fθ=,所以的取值范围是,故④正确; 11C F≤tan θ2,⎡⎣故正确结论的序号是①③④, 故答案为:②③④三、解答题16.从4男3女共7名志愿者中,选出3人参加社区义务劳动. (1)共有多少种不同的选择方法?(2)若要求选中的3人性别不能都相同,求共有多少种不同的选择方法? 【答案】(1)35 (2)30【分析】(1)7名志愿者中选出3人共有种;37C(2)选中的3人性别不能都相同,即为1男2女或2男1女,即.12214343C C C C +【详解】(1)7名志愿者中选出3人共有种; 37765C 353´´==!(2)选中的3人性别不能都相同,即为1男2女或2男1女,则有12214343C C C C 436330+=´+´=种.17.如图,在四棱锥中,平面,底面为正方形,为线段的中P ABCD -PA ⊥ABCD ABCD E AB 点,.2PA AB ==(1)求证:;BC PE ⊥(2)求平面与平面夹角的余弦值. PAB PBD 【答案】(1)证明见解析【分析】(1)根据线面垂直的性质定理可得,再根据底面是正方形可证明线面垂直,即可PA BC ⊥得;(2)建立空间直角坐标系,利用空间向量求得平面与平面的法向量,即可BC PE ⊥PAB PBD 求得二面角的余弦值【详解】(1)由平面,根据线面垂直的性质定理可知, PA ⊥ABCD PA BC ⊥又因为底面为正方形,所以,ABCD AB BC ⊥又因为,且PA,BA 含于平面PAB,所以平面;PA BA A = BC ⊥PAB 为线段的中点,平面, E AB PE ⊂PAB 所以,BC PE ⊥(2)根据题意可知,以A 点为坐标原点,分别以AB 、AD 、AP 所在直线为轴、轴、轴建立x y z 空间直角坐标系,如下图所示:则;(0,0,0),(2,0,0),(0,2,0),(0,0,2)A B D P 则,(2,0,2),(0,2,2)PB PD =-=-设平面的一个法向量为,PBD (,,)n x y z =得,令可得,,即;·220·220n PB x z n PD y z ⎧=-=⎪⎨=-=⎪⎩ 1z =1,1x y ==(1,1,1)n = 易知,是平面的一个法向量, (0,2,0)AD =PAB 设平面与平面的夹角为,PAB PBD θ则cos cos ,n AD n AD n AD θ==== 所以,平面与平面PAB PBD 18.在平面直角坐标系中,,曲线是由满足直线与的斜率之积等于定值()()1,0,1,0A B -C PA PB 的点组成的集合.()λλ∈R P (1)若曲线是一个圆(或圆的一部分),求的值;C λ(2)若曲线是一个双曲线(或双曲线的一部分),且该双曲线的离心率,求的取值范围. C e ≥λ【答案】(1)1-(2) [)1+∞,【分析】(1)由题意知,的斜率存在,设代入斜率公式,再由斜率之积为定值,化,PA PB (),P x y 简满足圆的条件即可求得的值.λ(2)由题意知,的斜率存在,设代入斜率公式,再由斜率之积为定值,化简满足双,PA PB (),Px y 曲线的条件及离心率的取值范围.e ≥λ【详解】(1)设且,,由题意知,的斜率存在, (),P x y 1x ≠±()()1,0,1,0A B -,PA PB 则即, ()0011PA PBy y k k x x λ--⋅=⋅=---()()211y x x λ=-+可化为,()()2211y x x x λλλ=+-=-()1x ≠±因为曲线是一个圆(或圆的一部分),所以,C ()()2211y x x x λλλ=+-=-可化为,220x y λλ-++=所以解得.140λλ-=⎧⎨->⎩1λ=-(2)设且,,由题意知,的斜率存在, (),P x y 1x ≠±()()1,0,1,0A B -,PA PB 则即, ()0011PA PBy y k k x x λ--⋅=⋅=---()()211y x x λ=-+可化为,()()2211y x x x λλλ=+-=-()1x ≠±因为曲线是一个双曲线(或双曲线的一部分),所以,C ()()2211y x x x λλλ=+-=-可化为,()210yx λλ-=≠所以, 222221,,1a b c a b λλ===+=+因为 ce a=≥所以,22211c e a λ+==≥1λ≥所以的取值范围为. λ[)1+∞,19.已知椭圆的一个焦点为,其长轴长是短轴长的2倍.2222:1(0)x y C a b a b +=>>)F(1)求椭圆的方程;C (2)记斜率为1且过点的直线为,判断椭圆上是否存在关于直线对称的两点?若存在,F l C l ,A B 求直线的方程;若不存在,说明理由.AB 【答案】(1)2214x y +=(2)不存在【分析】(1)由及,根据,解得,写出方程.c 2a b =222a b c =+,a b(2)先假设存在,设出直线的方程,与椭圆方程联立,求得中点坐标,代入,求得,验证AB l m ,得结论不存在关于直线对称的两点.Δ0<l 【详解】(1)2222244()c a b a b a c ==∴==-24,2,1a a b ∴===椭圆的方程 C 2214x y +=(2)假设存在关于对称的两点l ,A B的方程为:l y x = AB y x m =-+直线与椭圆的方程联立得 AB C 2214y x m x y =-+⎧⎪⎨+=⎪⎩2258440x mx m -+-=设1122(,),(,)A x y B x y 则, 12121282,()255m m x x y y x x m +=+=-++=的中点代入AB 4(,55mm y x =解得 m =此时,216800m ∆=-+<所以椭圆上不存在关于直线对称的两点.C l ,A B 20.如图,在四棱柱中,平面,1111ABCD A B C D -1AA ⊥1,,ABCD AB CD AD CD ==∥为线段的中点,再从下列两个条件中选择一个作为已知.12,AA AB E ==1AA 条件①:;条件②:AD BE ⊥BC =(1)求直线与所成角的余弦值;CE 11B D (2)求点到平面的距离;1C BCE (3)已知点在线段上,直线与平面的长. M 1CC EM 11BCCB CM 【答案】(3)的长为或. CM 1232【分析】选①或②,都能得到,,后如图以为原点建立空间直角坐标系.则可利用向量DA AB ⊥A 方法求线线角,点面距离,面面角解决问题.【详解】(1)若选择①,因平面ABCD ,平面ABCD ,则,1AA ⊥DA ⊂1DA AA ⊥又,平面,平面,,则AD BE ⊥1AA ⊂11ABB A EB ⊂11ABB A 1∩AA EB E =DA ⊥平面,又平面,则;11ABB A AB ⊂11ABB A DA AB ⊥若选择②,做,交AB 于F ,又,则四边形DCFA 是平行四边形,则CF AD ∥AB CD ,又,则.1CD CF AD AF ====2AB =1FB =则在中,,得,又,则.CFB 222CF FB BC +=CF AB ⊥CF AD ∥AD AB ⊥故,则如图建立以A 为原点的空间直角坐标系.11,,DA AA DA AB AA AB ⊥⊥⊥则,()()()()11110001102022,,,,,,,,,,,C E D B 得,则直线与所成角的余弦值为: ()()11111120,,,,,CE B D =--=-CE 11B D(2)因,()()()()1020110001112,,,,,,,,,,,B C E C 则. ()()()1110111002,,,,,,,,CB CE CC =-=--=设平面的法向量为,则, BCE ()111,,x n y z = 111110000x y z n CE x y n CB ⎧--+=⋅=⎧⎪⇒⎨⎨-+=⋅=⎩⎪⎩ 取,则求点到平面的距离()1,1,2n = 1C BCE d (3)因点在线段上,则设,其中. M 1CC ()11,,M t []0,2t ∈又,则.又, ()0,0,1E ()111,,EM t =-()()11,1,00,0,2CB CC =-= ,设平面法向量为,则, 11BCC B ()222,,m x y z = 222100200x y m CB z m CC ⎧-+=⎧⋅=⎪⇒⎨⎨=⋅=⎪⎩⎩取,则直线与平面所成角的正弦值为: ()1,1,0m =u r EM 11BCC B或.12EM mtEM m⋅==⇒=⋅32t=得线段的长为或.CM123221.已知椭圆的焦点在轴上,且离心率为.22:116x yCt t+=+-x12(1)求实数的值;t(2)若过点可作两条互相垂直的直线,且均与椭圆相切.证明:动点组成的集合(),P m n12,l l12,l l C P是一个圆.【答案】(1)3t=(2)见解析【分析】(1)根据椭圆的离心率即可求解,(2)联立直线与椭圆的方程,根据相切得判别式为0,进而代入切线中的,化简k k,km n b¢=-+=即可求解.【详解】(1)椭圆的焦点在轴上,且离心率为,所以,解22:116x yCt t+=+-x12()216114t tet+--==+得,3t=(2)当时,椭圆方程为,3t=22143x y+=设与椭圆相切,且斜率存在的直线方程为,y k x b'=+所以,()222223484120143y k x bk x k bx bx y''=+⎧⎪⇒+++-=⎨+=⎪⎩'由于相切,所以,化简得—①,()()()222=84344120k b k b¢¢D-+->22430k b¢-+=设过点且斜率为的直线方程为,即,(),P m n0k'≠()y k x m n¢=-+y kx km n=-+所以将代入①得,k k,km n b¢=-+=()22430k km n--++=化简得—②,22224230k n kmn k m -+-+=将代入②得,化简得—③, 1k -22221114230n mn m k k k æöç÷-+--+=ç÷èø22224230n k kmn m k ---+=由②③相加得, ()()()2222227117k k m n m n +=++Þ+=当其中一条切线无斜率时,此时,也满足,12,l l (2P ,±227m n +=综上可知:动点组成的集合是一个圆,且圆的方程为(),P m n 227m n +=【点睛】根据直线与曲线相切,转化成判别式为0,进而得到等量关系式,可将关系式进行适当的变形,根据弦长公式,或者利用向量共线等方式,化简运算即可求解.。
人教版高二(理科)第一学期期末考试数学试题-含答案
2015~2016学年度第一学期期末考试试卷 高二(理) 数学 座位号第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分)1、向量(1,2,2),(2,4,4)a b =-=--,则a b 与 ( ) A 、相交 B 、垂直 C 、平行 D 、以上都不对2、如果双曲线的半实轴长为2,焦距为6,那么该双曲线的离心率是 ( )A 、32B 、62C 、32D 、23、已知命题:,sin 1,p x R x ∀∈≤则p ⌝是 ( ) A 、,sin 1x R x ∃∈≥ B 、,sin 1x R x ∀∈≥ C 、,sin 1x R x ∃∈> D 、,sin 1x R x ∀∈>4、若向量)0,2,1(=a ,)1,0,2(-=b ,则( )A 0120,cos >=<b aB b a ⊥C b a //D ||||b a =5、若原命题“0,0,0a b ab >>>若则”,则其逆命题、否命题、逆否命题中( ) A 、都真 B 、都假 C 、否命题真 D 、逆否命题真6、 “2320x x -+≠”是“1x ≠” 的( )条件 ( ) A 、充分不必要 B 、必要不充分 C 、充要 D 、既不充分也不必要 7、若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是( )A 、-9<m <25B 、8<m <25C 、16<m <25D 、m >88、已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是( )A .1203622=+y x (x ≠0)B .1362022=+y x (x ≠0)C .120622=+y x (x ≠0)D .162022=+y x (x ≠0)9、一位运动员投掷铅球的成绩是14m ,当铅球运行的水平距离是6m 时,达到最大高度4m .若铅球运行的路线是抛物线,则铅球出手时距地面的高度是( ) A . 1.75m B . 1.85mC . 2.15mD . 2.25m 10、设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分也不必要条件 11.抛物线281x y -=的准线方程是 ( ) A . 321=x B . 2=y C . 321=y D . 2-=y12. 若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( ) A .不等边锐角三角形 B .直角三角形C .钝角三角形D .等边三角形第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13、经过点(1,3)A -,并且对称轴都在坐标轴上的等轴双曲线的方程为 。
应县第一中学校高二数学上学期期末考试试题理含解析
14.已知p:(x-m)2〉3(x-m)是q:x2+3x-4<0的必要不充分条件,则实数m的取值范围为________.
【答案】{m|m≥1或m≤-7}
【解析】
由命题p中的不等式(x-m)2〉3(x-m)变形,得(x-m)(x-m-3)>0,解得x〉m+3或x〈m;
【详解】双曲线 : 的右焦点为 , 由 ,可得直线 的方程为 , , 设直线 与双曲线相切,且切点为左支上一点, 联立 ,可得 ,
由 , 解得 (4舍去),
可得 到直线 的距离为 ,
即有 的面积Байду номын сангаас最小值为 .
故答案为: .
【点睛】本题考查三角形的面积的最小值的求法,注意运用联立直线方程和双曲线方程,运用判别式为0,考查化简整理的运算能力,属于中档题.
【详解】(Ⅰ)当 t=1 时,
≤3 在[1,+∞)上恒成立,故命题 q 为真命题.
(Ⅱ)若 p∨q 为假命题,则 p,q 都是假命题.
当 p 为假命题时,Δ= -4<0,解得-1〈t〈1;
当 q 为真命题时, ≤4 -1,即 -1≥0,解得 t≤ 或 t≥
∴当 q 为假命题时,
∴t 的取值范围是 .
所以圆心到直线的距离
可解得 ,所以切线方程为
当在x轴与y轴上的截距不为0时,设切线方程为
所以 ,解得 或 (舍),即切线方程为
所以共有3条切线方程
所以选C
【点睛】本题考查了点到直线距离 简单应用,直线与圆的位置关系,属于基础题.
6.给出下列两个命题,命题 “ "是“ ”的充分不必要条件;命题q:函数 是奇函数,则下列命题是真命题的是( )
2021-2022学年陕西省渭南市白水县高二上学期期末数学(理)试题(解析版)
2021-2022学年陕西省渭南市白水县高二上学期期末数学(理)试题一、单选题1.在等比数列{}n a 中,66a =,99a =,则3a 等于( ) A .2 B .4 C .169D .32【答案】B【分析】由等比数列的性质进行求解即可.【详解】由等比数列的性质,2639a a a =⋅,∴3369a =,∴34a =. 故选:B.2.若,,a b c R ∈且a b >,则下列不等式中一定成立的是( ) A .ac bc > B .2()0a b c ->C .11a b<D .22a b -<-【答案】D【分析】根据不等式的性质即可判断. 【详解】对于A ,若0c ≤,则不等式不成立; 对于B ,若0c ,则不等式不成立; 对于C ,若,a b 均为负值,则不等式不成立;对于D ,不等号的两边同乘负值,不等号的方向改变,故正确; 故选:D【点睛】本题主要考查不等式的性质,需熟练掌握性质,属于基础题.3.设双曲线2222:1(0,0)x y C a b a b-=>>的实轴长与焦距分别为2,4,则双曲线C 的渐近线方程为( )A .y =B .13y x =±C .y =D .3y x =±【答案】C【分析】由已知可求出,,a b c ,即可得出渐近线方程.【详解】因为22,24a c ==,所以1,2,a c b ===C 的渐近线方程为y =. 故选:C.4.已知命题p :∀x 1,x 2∈R,(f(x 2)-f(x 1))(x 2-x 1)≥0,则⌝p 是 A .∃x 1,x 2∈R,(f(x 2)-f(x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R,(f(x 2)-f(x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R,(f(x 2)-f(x 1))(x 2-x 1)<0D .∀x 1,x 2∈R,(f(x 2)-f(x 1))(x 2-x 1)<0 【答案】C【详解】全称命题的的否定是存在性命题,因为,命题p :∀x 1,x 2∈R,(f(x 2)-f(x 1))(x 2-x 1)≥0,所以,⌝p 是∃x 1,x 2∈R,(f(x 2)-f(x 1))(x 2-x 1)<0,故选C. 【解析】全称命题与存在性命题.点评:简单题,全称命题的的否定是存在性命题.5.设0a >,m =n ). A .m n < B .m n =C .m n >D .m ,n 的大小不定【答案】A【分析】利用作差法即可比较大小.【详解】由已知m =225m a =++n 225n a =++又因为0,0m n >>,且220n m ->,所以n m >. 故选:A6.已知点,,,O A B C 为空间不共面的四点,且向量a OA OB OC =++,向量b OA OB OC =+-,则与,a b 不能构成空间基底的向量是( ) A .OA B .OB C .OC D .OA 或OB【答案】C【分析】利用空间向量的基底的意义即可得出. 【详解】111()()()222OC a b OA OB OC OA OB OC =-=++-+-,∴OC 与a 、b 不能构成空间基底;故选:C .7.在ABC 中,若()()3a b c b c a bc +++-=,且sin 2sin cos A B C =,则ABC 是( ). A .直角三角形 B .等边三角形 C .钝角三角形D .等腰直角三角形【答案】B【分析】将()()3a b c b c a bc +++-=化简并结合余弦定理可得A 的值,再对sin 2sin cos A B C =结合正余弦定理化简可得边长关系,进行判定三角形形状.【详解】由()()3a b c b c a bc +++-=,得22()3b c a bc +-=,整理得222b c a bc +-=,则2221cos 22b c a A bc +-==, 因为()0,πA ∈,所以π3A =, 又由sin 2sin cos A B C =,得22222a b c a b ab+-=⋅化简得b c =,所以ABC 为等边三角形, 故选:B8.若x ,y 满足约束条件1121x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则2z x y =+的最大值是( ).A .2B .3C .8D .12【答案】C【分析】画出可行域及目标函数,利用几何意义求出最值.【详解】画出可行域,如图所示,当2z x y =+经过点A 时,取得最大值,联立121x y x y -=-⎧⎨-=⎩,解得:23x y =⎧⎨=⎩,故()2,3A ,此时2268z x y =+=+=, 故2z x y =+的最大值为8. 故选:C9.在正四面体-P ABC 中,棱长为1,且D 为棱AB 的中点,则PD PC ⋅的值为( ).A .14-B .18-C .12-D .12【答案】D【分析】在正四面体-P ABC 中,由中点性质可得()12PD PA PB =+,则PD PC ⋅可代换为()12P PA B C P ⋅+,由向量的数量积公式即可求解. 【详解】如图,因为D 为棱AB 的中点,所以()12PD PA PB =+, ()()1122PD PC P P C P A PB PA P C PC B ⋅=⋅⋅⋅+=+, 由正四面体得性质,PA 与PC 的夹角为60°,同理PB 与PC 的夹角为60°,1PA PB PC ===,111cos602PA PC P PB C ⋅⋅==⨯⨯︒=, 故21211122PC PD ⎛⎫⋅=⨯+= ⎪⎝⎭,故选:D.10.命题p :若1y x <<,01a <<,则11x y a a<,命题q :若1y x <<,a<0,则a a x y <.在命题①p 且q ②p 或q ③非p ④非q 中,真命题是( ) A .①③ B .①④C .②③D .②④【答案】C【分析】先判断命题,p q 的真假,再根据或、且、非命题的真值表判断真假求解即可. 【详解】命题p 中,01a <<,则指数函数1y x a =单调递增,111x yy x a a <<⇒>,所以p 为假命题,命题q 中,a<0则幂函数y a x =在(0,)+∞上单调递减,由1y x <<,知a a x y <, 所以q 为真命题,所以①p 且q 为假命题 ,②p 或q 为真命题,③非p 为真命题,④非q 为假命题. 故选:C11.设椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,P 是C 上的点,212PF F F ⊥,1260F PF ∠=︒,则C 的离心率为( ).A .33B .13C .12D .36【答案】A【分析】()20F c ,,把x c =代入椭圆方程解得y ,可得p y ﹐在12Rt PF F △中,由1260PF F ∠=︒建立等式进而得出结论. 【详解】如图所示,由()20F c ,,212PF F F ⊥,把x c =代入椭圆方程可得 22221c y a b += ,解得 2b y a=±, 取 2P b y a=在12Rt PF F △中,22b PF a =,由1260F PF ∠=︒,∴212b PF a=,由椭圆定义可得22212232b b b PF PF a a a a +=+==,得2223a b =, ∴222212c a b b =-=,则有22223a c =,2213c a =则C 的离心率3c e a ==. 故选:A.12.对于正项数列{}n a ,定义12323nn a a a na G n++++=为数列{}n a 的“匀称值”.已知数列{}n a 的“匀称值”为2n G n =+,则该数列中的9a 等于( ) A .83B .125C .2110D .199【答案】D【分析】由已知得12323(2)n a a a na n n +++⋯+=+,由此推导出21n n a n+=,从而能求出9a . 【详解】解:12323nn a a a na G n+++⋯+=,数列{}n a 的“匀称值”为2n G n =+,12323(2)n a a a na n n ∴+++⋯+=+,①2n ∴时,123123(1)(1)(1)n a a a n a n n -+++⋯+-=-+,②①-②,得21n na n =+,21n n a n+∴=,2n , 当1n =时,113a G ==满足上式,21n n a n+∴=, ∴9199a =. 故选:D二、填空题13.已知向量()2,1,3a =-,()4,2,b x =-,()1,,2c x =-,若()a b c +⊥,则x =____________. 【答案】4-【分析】首先求出a b +的坐标,再根据向量垂直得到()0a b c +⋅=,即可得到方程,解得即可; 【详解】解:因为向量()2,1,3a =-,()4,2,b x =-,()1,,2c x =-,所以向量()2,1,3a b x +=-+,因为()a b c +⊥,所以()0a b c +⋅=,即()()211230x x -⨯+⨯-++=,解得4x =- 故答案为:4-14.已知不等式210ax bx --≥的解集是11|23⎧⎫-≤≤-⎨⎬⎩⎭x x ,则不等式20x bx a --< 的解集是________.【答案】{|23}x x <<【分析】根据给定的解集求出a ,b 的值,再代入解不等式即可作答.【详解】依题意,12-,13-是方程210ax bx --=的两个根,且a<0,于是得11()()23111()()23b aa ⎧-+-=⎪⎪⎨⎪-⨯-=-⎪⎩,解得:6,5ab =-=,因此,不等式20x bx a --<为:2560x x -+<,解得23x <<, 所以不等式20x bx a --< 的解集是{|23}x x <<. 故答案为:{|23}x x <<15.若a ,b ,c 均为实数,试从①2b ac =;②b ③a bb c=中选出“a ,b ,c 成等比数列”的必要条件的序号______. 【答案】①③【分析】依次判断“a ,b ,c 成等比数列”是否能推出序号中的条件即可.【详解】设1p 为“2b ac =”,2p 为“b ,3p 为“a bb c=”, q 为“a ,b ,c 成等比数列”,由于a ,b ,c 成等比数列,故0a ≠,0b ≠,0c ≠, 若i q p ⇒(1i =,2,3),则i p 是q 的必要条件,对于①,由等比中项的定义,“a ,b ,c 成等比数列”⇒“2b ac =”, ∴“2b ac =”是“a ,b ,c 成等比数列”的必要条件,故①正确; 对于②,令1a =,2b =-,4c =,则a ,b ,c 成等比数列,此时“a ,b ,c 成等比数列”“b ,∴“b 不是“a ,b ,c 成等比数列”的必要条件,故②错误; 对于③,由等比数列的定义,“a ,b ,c 成等比数列”⇒b c a b =⇔a b b c=, ∴“a ,b ,c 成等比数列”⇒“a bb c=”, ∴“a bb c=”是“a ,b ,c 成等比数列”的必要条件,故③正确. 综上所述,“a ,b ,c 成等比数列”的必要条件的序号为:①③. 故答案为:①③.16.已知抛物线()2:20C x py p =>的焦点为F ,抛物线C 的准线与y 轴交于点A ,点)0My 在抛物线C 上,074y MF =,则MAF △的面积为______.【分析】由抛物线的性质以及07||4y MF =,可得p 的值,进而解出三角形MFA △的面积. 【详解】解:由抛物线的定义及其性质可知,007||24y p MF y =+=,023py ∴=,∴2223p p =⨯, 32p ∴=,即23x y =, 3(0,)4A ∴-,M 1),3(0,)4F ,∴1322MFAS=⨯,三、解答题 17.求解下列问题: (1)解不等式3521x x->+; (2)已知1a >,0b >,2a b +=,求141a b+-的最小值. 【答案】(1)()(),17,∞∞--⋃+ (2)9【分析】(1)根据分式不等式的求法求得正确答案. (2)利用基本不等式求得正确答案. 【详解】(1)不等式3521x x->+可化简为701x x ->+, 即()()710x x -+>,解得1x <-或7x >. 故原不等式的解集为()(),17,∞∞--⋃+.(2)∵2a b +=,∴()11a b -+=,且10a ->,0b >,∴()()4114141559111a b a b a b a b a b -⎛⎫+=-++=++≥+=⎡⎤ ⎪⎣⎦---⎝⎭, 当且仅当()411a ba b-=-,即43a =,23b =时等号成立.故141a b+-的最小值为9.18.在ABC sin sin 2C c A =.(1)求角A 的大小;(2)若a =b =ABC 的面积. 【答案】(1)π6A =【分析】(1)根据题意,结合正弦定理和二倍角的正弦公式即可求解;(2)结合(1)的结论,利用余弦定理求出5c =或1c =,然后利用三角形面积公式即可求解.【详解】(1sin sin 2C c A =,sin 2sin sin cos A C C A A =,因为,(0,π)A C ∈,所以sin 0A ≠,sin 0C ≠,则有cos A = 又0πA <<,所以π6A =.(2)因为a =b =,由(1)知:π6A =, 在ABC 中,由余弦定理可得:2222cos a b c bc A =+-,即(2222c =+-⨯, 化简得2650c c -+=,解得5c =或1c =(经检验符合题意),当1c =时,111sin 1222ABC S bc A ==⨯⨯=△当5c =时,111sin 5222ABC S bc A ==⨯⨯=△19.已知数列{}n a 满足11a =,1431n n a a n +=+-,n n b a n =+. (1)证明:数列{}n b 为等比数列; (2)求数列{}n a 的前n 项和. 【答案】(1)见证明;(2)()221141322n n n --- 【分析】(1)利用等比数列的定义可以证明;(2)由(1)可求n b 的通项公式,结合n n b a n =+可得n a ,结合通项公式公式特点选择分组求和法进行求和.【详解】证明:(1)∵n n b a n =+,∴111n n b a n ++=++. 又∵1431n n a a n +=+-,∴()1143111n n n n n n a n n b a n b a n a n+++-++++==++()44n n a n a n +==+. 又∵111112b a =+=+=,∴数列{}n b 是首项为2,公比为4的等比数列.解:(2)由(1)求解知,124n n b -=⨯,∴124n n n a b n n -=-=⨯-,∴()()211221412(1444)(123)142n n n n n n S a a a n --+=++⋯+=++++-++++=--()221141322n n n =---. 【点睛】本题主要考查等比数列的证明和数列求和,一般地,数列求和时要根据数列通项公式的特征来选择合适的方法,侧重考查数学运算的核心素养.20.已知过抛物线()2:20C y px p =>的焦点,C 于()11,A x y ,()()2212,B x y x x <两点,16AB =.(1)求抛物线C 的方程;(2)O 为坐标原点,D 为C 上一点,若OD OA OB λ=+,求λ的值. 【答案】(1)212y x =;(2)0λ=或53λ=.【分析】(1)设直线AB 的方程2p y x⎫=-⎪⎭,与抛物线联立,由于直线AB 过焦点,故121622A p px x B =++=+,代入即得解;(2)设()33,D x y ,由OD OA OB λ=+,可得)331931x y λλ=+⎧⎪⎨=-⎪⎩,代入抛物线方程即得解【详解】(1)直线AB 的方程可表示为2p y x ⎫=-⎪⎭,与抛物线方程22y px =联立可得方程组222y pxp y x ⎧=⎪⎨⎫=-⎪⎪⎭⎩, 消去y 得22122030x px p -+=,解得16px =,232p x =.由于直线AB 过焦点,故121622A p p x x B =++=+, 得31626p p p ++=,解得6p , 所以抛物线C 的方程为212y x =.(2)由(1)知()1,23A -,()9,63B .设()33,D x y ,由OD OA OB λ=+,得()()()33,1,239,63x y λ=-+,所以()33192331x y λλ=+⎧⎪⎨=-⎪⎩. 因为点D 在C 上,所以()()212311291λλ-=+,化简得2350λλ-=,解得0λ=或53λ=. 21.在如图所示的几何体中,四边形ABCD 为矩形,AF ⊥平面ABCD ,EF AB ∥,2AD =,21AB AF EF ===,点P 为DF 的中点,请用空间向量知识解答下列问题:(1)求证:BF ∥平面APC ;(2)求直线DE 与平面APC 所成角的正弦值.【答案】(1)证明见解析(2)102163【分析】(1)证明BF ⊥平面APC 的法向量m 即可求解;(2)根据线面角的正弦公式带入即可求解.【详解】(1)证明:易知AB ,AD ,AF 两两相互垂直,∴以A 为坐标原点,AB ,AD ,AF 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则()0,0,0A ,()1,0,0B ,()1,2,0C ,()0,2,0D ,1,0,12E ⎛⎫ ⎪⎝⎭,()0,0,1F ,10,1,2P ⎛⎫ ⎪⎝⎭, ∴()1,0,1BF =-,10,1,2AP ⎛⎫= ⎪⎝⎭,()1,2,0AC =, 设平面APC 的一个法向量为(),,m x y z =,则00m AP m AC ⎧⋅=⎪⎨⋅=⎪⎩, 即10220y z x y ⎧+=⎪⎨⎪+=⎩,取1y =,解得212x y z =-⎧⎪=⎨⎪=-⎩. 故平面APC 的法向量为()2,1,2m =--,易知0BF m ⋅=,则BF m ⊥,又BF 平面APC ,∴BF ∥平面APC .(2)1,2,12DE ⎛⎫=- ⎪⎝⎭, 设直线DE 与平面APC 所成角为θ, 则51021sin cos ,2194DE mDE m DE m θ-⋅====⋅⋅故直线DE 与平面APC 1021. 22.已知1F ,2F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,M 为C 上的动点,其中M 到1F的最短距离为1,且当12MF F △的面积最大时,12MF F △恰好为等边三角形.(1)求椭圆C 的标准方程;(2)斜率为k 的动直线l 过点2F ,且与椭圆C 交于A ,B 两点,线段AB 的垂直平分线交x 轴于点P ,那么,2||PF AB 是否为定值?若是,请证明你的结论;若不是,请说明理由. 【答案】(1)22143x y +=;(2)2||PF AB 为定值,证明见解析 【分析】(1)当点M 在椭圆的左顶点时,M 到1F 的距离最短,可得1a c -=,当点M 在椭圆的上顶点(或下顶点)时,12MF F △的面积最大,此时12MF F △为等边三角形,可得2a c =,从而可求出,,a b c ,即可求出椭圆C 的标准方程;(2)易知直线l 的斜率存在,设其方程为(1)y k x =-,联立22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩,得到关于x 的一元二次方程,结合韦达定理,可求得AB 的中点的坐标,从而可得到线段AB 的垂直平分线的方程,令0y =,可求出点P 的坐标,从而可得到2PF 的表达式,然后根据弦长公式AB =,可求出AB 的表达式,从而可求得2||PF AB 为定值,经验证当0k =时,2||PF AB 为相同的定值. 【详解】(1)由题意,当点M 在椭圆的左顶点时,M 到1F 的距离最短,则1a c -=,当点M 在椭圆的上顶点(或下顶点)时,12MF F △的面积最大,此时12MF F △为等边三角形,则2a c =,联立22212a c a c a b c ⎧-=⎪=⎨⎪=+⎩,解得2,1,a c b ===故椭圆C 的方程为22143x y +=. (2)2||PF AB 为定值. 证明:由题意可知,动直线l 的斜率存在,设其方程为(1)y k x =-,联立22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩,得()()2222348430k x k x k +-+-=. 设()11,A x y ,()22,B x y ,则2122834k x x k +=+,()21224334k x x k -=+, 设AB 的中点为()00,Q x y ,则212024234x x k x k +==+,()0023134k y k x k -=-=+.当0k ≠时,线段AB 的垂直平分线的方程为2223143434k k y x k k k ⎛⎫--=-- ⎪++⎝⎭, 令0y =,得2234k x k =+,即22,034k P k ⎛⎫ ⎪+⎝⎭, 所以()222223113434k k PF k k +=-=++.AB()2212134k k +=+. 所以()()2222231134||412134k PF k AB k k ++==++. 当0k =时,l 的方程为0y =, 此时,24AB a ==,21PF c ==,21||4PF AB =. 综上,2||PF AB 为定值. 【点睛】方法点睛:求定值问题,常见的方法:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.。
西城区2023-2024学年第一学期期末高二数学试题及答案
北京市西城区2023—2024学年度第一学期期末试卷高二数学 2024.1本试卷共5页,共150分.考试时长120分钟.考生务必将答案写在答题卡上,在试卷上作答无效.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.直线3410x y -+=不经过( )A.第一象限B.第二象限C.第三象限D.第四象限2.抛物线26x y =的焦点到其准线的距离等于( ) A.32B.3C.6D.8 3.在空间直角坐标系O xyz -中,点()4,2,8A -到平面xOz 的距离与其到平面yOz 的距离的比值等于( ) A.14 B.12C.2D.4 4.在312x x ⎛⎫+ ⎪⎝⎭的展开式中,x 的系数为( ) A.3 B.6 C.9 D.125.在正四面体ABCD 中,棱AB 与底面BCD 所成角的正弦值为( )C.136.已知直线,a b 和平面α,且b α⊂,则“直线a ∥直线b ”是“直线a ∥平面α”的( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.设,A B 为双曲线2222:1(0,0)x y E a b a b-=>>的左、右顶点,M 为双曲线E 上一点,且AMB 为等腰三角形,顶角为120,则双曲线E 的一条渐近线方程是( )A.y x =B.2y x =C.y =D.y =8.在正方体的8个顶点中任选3个,则这3个顶点恰好不在同一个表面正方形中的选法有( )A.12种B.24种C.32种D.36种9.如图,在长方体1111ABCD A B C D -中,13,4,AB BC CC E ===为棱11B C 的中点,P 为四边形11BCC B 内(含边界)的一个动点.且DP BE ⊥,则动点P 的轨迹长度为( )A.5B.C.10.在直角坐标系xOy 内,圆22:(2)(2)1C x y -+-=,若直线:0l x y m ++=绕原点O 顺时针旋转90后与圆C 存在公共点,则实数m 的取值范围是( )A.⎡⎣B.44⎡--⎣C.22⎡--+⎣D.2⎡-+⎣第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.过点()2,3A -且与直线30x y ++=平行的直线方程为__________.12.在4(21)x +的展开式中,所有项的系数和等于__________.(用数字作答)13.两个顶点朝下竖直放置的圆锥形容器盛有体积相同的同种液体(示意图如图所示),液体表面圆的半径分别为3,6,则窄口容器与宽口容器的液体高度的比值等于__________.14.若方程22124x y m m+=+-m 的取值范围是__________;若此方程表示的曲线为椭圆,则实数m 的取值范围是__________.15.如图,在正方体1111ABCD A B C D -中,2,AB E =为棱1BB 的中点,F 为棱1CC (含端点)上的一个动点.给出下列四个结论:①存在符合条件的点F ,使得1B F ∥平面1A ED ;①不存在符合条件的点F ,使得BF DE ⊥;①异面直线1A D 与1EC 所成角的余弦值为5; ①三棱锥1F A DE -的体积的取值范围是2,23⎡⎤⎢⎥⎣⎦. 其中所有正确结论的序号是__________.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.从6男4女共10名志愿者中,选出3人参加社会实践活动.(1)共有多少种不同的选择方法?(2)若要求选出的3名志愿者中有2男1女,且他们分别从事经济、文化和民生方面的问卷调查工作,求共有多少种不同的选派方法?17.(本小题15分)如图,在直三棱柱111ABC A B C -中,1,3,4BA BC BC AB AA ⊥===.(1)证明:直线1AB ⊥平面1A BC ;(2)求二面角1B CA A --的余弦值.18.(本小题15分)已知C 经过点()1,3A 和()5,1B ,且圆心C 在直线10x y -+=上.(1)求C 的方程;(2)设动直线l 与C 相切于点M ,点()8,0N .若点P 在直线l 上,且PM PN =,求动点P的轨迹方程.19.(本小题15分)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为),四个顶点构成的四边形面积等于12.设圆22(1)25x y -+=的圆心为,M P 为此圆上一点.(1)求椭圆C 的离心率;(2)记线段MP 与椭圆C 的交点为Q ,求PQ 的取值范围.20.(本小题15分)如图,在四棱锥P ABCD -中,AD ⊥平面,PAB AB ∥,DC E 为棱PB 的中点,平面DCE 与棱PA 相交于点F ,且22PA AB AD CD ====,再从下列两个条件中选择一个作为已知. 条件①:PB BD =;条件①:PA BC ⊥.(1)求证:AB ∥EF ;(2)求点P 到平面DCEF 的距离;(3)已知点M 在棱PC 上,直线BM 与平面DCEF 所成角的正弦值为23,求PM PC的值.设椭圆2222:1(0)x y C a b a b+=>>左、右焦点分别为12,F F ,过1F 的直线与椭圆C 相交于,A B 两点.已知椭圆C 的离心率为21,2ABF 的周长为8. (1)求椭圆C 的方程;(2)判断x 轴上是否存在一点M ,对于任一条与两坐标轴都不垂直的弦AB ,使得1MF 为AMB 的一条内角平分线?若存在,求点M 的坐标;若不存在,说明理由.北京市西城区2023—2024学年度第一学期期末试卷高二数学参考答案 2024.1一、选择题:本大题共10小题,每小题4分,共40分1.D2.B3.B4.D5.B6.D7.A8.C9.B 10.A二、填空题:本大题共5小题,每小题5分,共25分11.10x y ++= 12.81 13.414.()(),24,∞∞−−⋃+;()()2,11,4−⋃ 15.①②④注:第14题第一问3分,第二问2分;第15题全部选对得5分,有两个选对且无错选得3分,有一个选对且无错选得2分,其他得0分.三、解答题:本大题共6小题,共85分.其他正确解答过程,请参照评分标准给分. 16.(本小题10分)解:(1)从6男4女共10名志愿者中,选出3人参加社会实践活动,选择方法数为310C 120=种.(2)从10名志愿者中选2男1女,选择方法数共有2164C C 60=种,故从10名志愿者中选2男1女,且分别从事经济、文化和民生方面的问卷调查工作的选派方法数为213643C C A 360=种.17.(本小题15分)解:(1)在直三棱柱111ABC A B C −中,因为1AA ⊥.平面,ABC BC ⊂平面ABC ,所以1AA BC ⊥.又因为1,BA BC BA AA A ⊥⋂=,所以BC ⊥平面11AA B B ,所以1BC AB ⊥.由14AB AA ==,得四边形11AA B B 为正方形.所以11AB A B ⊥.又因为1BC A B B ⋂=,所以1AB ⊥平面1A BC .(2)因为1BB ⊥平面,ABC BA BC ⊥,所以1,,BA BC BB 两两互相垂直,故以B 为原点,1,,BA BC BB 的方向分别为x 轴、y .轴、z 轴正方向,建立如图所示的空间直角坐标系.则()()()()114,0,0,0,3,0,4,0,4,0,0,4A C A B .所以()()14,3,0,0,0,4AC AA =−=.设平面1A AC 的法向量为(),,m x y z =,则10,0,m AC m AA ⎧⋅=⎪⎨⋅=⎪⎩即430,40.x y z −+=⎧⎨=⎩ 令3x =,则4,0y z ==.于是()3,4,0m =.由(1)可知:()14,0,4AB =−是平面1A BC 的一个法向量.因为11112cos ,1042||AB mAB m AB m ⋅−===−⨯, 由图可知二面角1B CA A −−的平面角为锐角,所以二面角1B CA A −−的余弦值为10. 18.(本小题15分)解:(1)由题意,设C 的圆心(),1C a a +,半径为r , 则222222(1)(31),(5)(11).a a r a a r ⎧−+−−=⎨−+−−=⎩ 解得:5,5.a r =⎧⎨=⎩所以C 的方程为22(5)(6)25x y −+−=.(2)由平面几何,知PMC 为直角三角形,且PM MC ⊥,所以222||||||PM MC PC +=.由PM PN =,得222||||||PN MC PC +=.设(),P x y ,则2222(8)25(5)(6)x y x y −++=−+−.即36140x y −−=,经检验符合题意.所以动点P 的轨迹方程为36140x y −−=.19.(本小题15分)解:(1)由题意,得222212,c ab a b c ===+,所以3,2a b ==,所以椭圆C 的离心率c e a ==. (2)由题意,得5PQ MP MQ MQ =−=−.设()11,Q x y ,则2211194x y +=.所以MQ ===. 因为[]13,3x ∈−,所以当195x =时,min ||MQ =;当13x =−时,max ||4MQ =.所以PQ 的取值范围为1,5⎡−⎢⎣⎦. 20.(本小题15分)解:选择条件①:(1)因为AB ∥,DC AB ⊄平面,DCEF DC ⊂平面DCEF ,所以AB ∥平面DCEF .又因为AB ⊂平面PAB ,平面PAB ⋂平面DCEF EF =,所以AB ∥EF .(2)因为AD ⊥平面PAB ,所以,AD PA AD AB ⊥⊥.又因为,22PB BD PA AB AD CD ====,所以PAB DAB ≅.因此90PAB DAB ∠∠==,即,,AB AD AP 两两垂直.如图,以A 为原点,,,AB AD AP 的方向分别为x 轴,y 轴,z 轴正方向,建立空间直角坐标系,所以()()()()0,2,0,1,2,0,0,0,2,2,0,0D C P B .由(1),得AB ∥EF ,且E 为棱PB 的中点,所以点F 为棱PA 的中点.()()1,0,1,0,0,1E F ,故()()()0,0,1,0,2,1,1,0,0FP DF CD ==−=−.设平面DCEF 的一个法向量为(),,n x y z =,则20,0,DF n y z CD n x ⎧⋅=−+=⎪⎨⋅=−=⎪⎩ 取1y =,则0,2x z ==,即()0,1,2n =.所以点P 到平面DCEF 的距离255FP n d n ⋅==. (3)设[],0,1PM PCλλ=∈, 则()()1,2,2,2,2PM PC λλλλλ==−=−.所以()2,2,22BM BP PM λλλ=+=−−.设直线BM 与平面DCEF 所成角为θ,所以||sin |cos ,|||||BM n BMn BM n θ⋅=<>== 23=. 化简,得29610λλ−+=,解得13λ=, 即13PM PC =. 选择条件②:(1)与上述解法相同,略.(2)因为AD ⊥平面PAB ,所以,AD PA AD AB ⊥⊥,又因为,PA BC BC ⊥与AD 相交,所以PA ⊥平面ABCD . 所以PA AB ⊥.即,,AB AD AP 两两垂直.以下与上述解法相同,略.21.(本小题15分)解:(1)由题意,得22248,1,2,a c a abc =⎧⎪⎪=⎨⎪=+⎪⎩ 解得2,1.a b c =⎧⎪=⎨⎪=⎩所以椭圆C 的方程为22143x y +=. (2)假设x 轴上存在一点()0,0M x 符合题意.由题意,设直线()()()()1122:10,,,,AB y k x k A x y B x y =+≠.联立方程()221,1,43y k x x y ⎧=+⎪⎨+=⎪⎩消去y , 得()22223484120k x k x k +++−=. 所以221212228412,3434k k x x x x k k−+=−=++. 由题意,知直线AM 的斜率存在,且为()11101010AM k x y k x x x x +−==−−, 同理,直线BM 的斜率为()22202010BM k x y k x x x x +−==−−. 所以()()12102011AM BM k x k x k k x x x x +++=+−− ()()()()12120120102022k x x x x x x x x x x x x ⎡⎤++−+−⎣⎦=−−. 因为1MF 为AMB 的一条内角平分线,所以0AM BM k k +=.所以()()1212010220k x x x x x x x x ⎡⎤++−+−=⎣⎦.因为上式要对任意非零的实数k 都成立, 所以2220022241288220343434k k k x x k k k−⨯−+⨯−=+++, 解得04x =−.故x 轴上存在一点()4,0M −,对于任一条与两坐标轴都不垂直的弦AB ,使得1MF 为AMB 的一条内角平分线.。
2022-2023学年北京市东城区高二上学期期末考试数学试题(解析版)
2022-2023学年北京市东城区高二上学期期末考试数学试题一、单选题1.已知向量()8,2,1a =-,()4,1,b k =-,且//a b ,那么实数k 的值为( ) A .12B .12-C .2-D .2【答案】B【分析】根据平行关系可知b a λ=,由向量坐标运算可构造方程求得结果.【详解】//a b ,()b a λλ∴=∈R ,4812k λλλ-=⎧⎪∴=-⎨⎪=⎩,解得:12k =-.故选:B.2.已知直线0x y --=的倾斜角为( )度 A .45 B .135 C .60 D .90【答案】A【分析】根据给定的直线方程,求出其斜率,再求出倾斜角作答.【详解】直线0x y --=的斜率为1,所以直线0x y --=的倾斜角为45度. 故选:A3.抛物线22y x =-的准线方程是( ) A .12y =B .1y =-C .12x =D .1x =【答案】C【分析】根据抛物线方程可直接求得结果. 【详解】由抛物线方程可知其准线方程为:2142x -=-=. 故选:C.4.2021年9月17日,北京2022年冬奥会和冬残奥会主题口号正式对外发布——“一起向未来”(英文为:“Together for a Shared Future ”),这是中国向世界发出的诚挚邀约,传递出14亿中国人民的美好期待.“一起向未来”的英文表达是:“Together for a Shared Future ”,其字母出现频数统计如下表:合计频数为24,那么字母“e ”出现的频率是( )A .18B .16C .112 D .14【答案】B【分析】用字母“e ”出现的频数除以总数就是所求频率.【详解】由图中表格可知,字母“e ”出现的频数为4,合计总频数为24,所以字母“e ”出现的频率为41246=. 故选:B5.设n S 为数列{}n a 的前n 项和,已知13a =,12nn n S S +=+,那么3a =( )A .4B .5C .7D .9【答案】A【分析】由332a S S =-可直接求得结果.【详解】由12n n n S S +=+得:12n n n S S +-=,233224a S S ∴=-==.故选:A.6.已知在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,那么直线1A C 与平面11AA D D 所成角的正弦值为( )A 6B 35C 3D 6【答案】A【分析】由长方体性质易知1CA D ∠为1A C 与面11AA D D 所成的角,进而求其正弦值即可. 【详解】根据长方体性质知:CD ⊥面11AA D D , 故1CA D ∠为1A C 与面11AA D D 所成的角, 222112,11126AA AB AD CA ===⇒=++所以116sin 6A CA D CD C =∠=. 故选: A7.如图,点O 是正方形ABCD 两条对角线的交点.从这个正方形的四个顶点中随机选取两个,那么这两个点关于点O 对称的概率为( )A .15B .14C .13D .12【答案】C【分析】先求出事件的基本总数,再求出满足条件的基本事件数,利用古典概型计算即可.【详解】从四个顶点选两个的情况数为:24C 6=,选的两个点关于中心O 对称的情况有:,A C 与,B D 两种, 所以所求概率为:2163P ==, 故选:C. 8.圆心为1,2,半径3r =的圆的标准方程为( )A .()()22129x y -++= B .()()22129x y ++-= C .()()22123x y -++= D .()()22123x y ++-=【答案】B【分析】根据圆的标准方程的形式,由题中条件,可直接得出结果. 【详解】根据题意,圆心为1,2,半径3r =圆的标准方程为()()22129x y ++-=;故选:B .9.已知正四棱锥P ABCD -的高为4,棱AB 的长为2,点H 为侧棱PC 上一动点,那么HBD △面积的最小值为( )A .2B .32C .23D .423【答案】D【分析】根据正四棱锥的性质得到PO ⊥平面ABCD ,OH BD ⊥,然后根据4PO =,2OC =,得到OH 的范围,最后根据三角形面积公式求面积的最小值即可.【详解】取BD 中点O ,连接OH 、PO 、OC ,因为四棱锥P ABCD -为正四棱锥,所以PO ⊥平面ABCD ,DH BH =, 因为O 为BD 中点,所以OH BD ⊥, 因为OC ⊂平面ABCD ,所以PO OC ⊥,因为2AB =,4PO =,所以22BD =2OC = 在直角三角形POC 中,当OH PC ⊥时,OH 2424342⨯=+,当点H 和点P 重合时,OH 最大,最大为4,所以4,43OH ⎡⎤∈⎢⎥⎣⎦,12222HBD S OH OH =⨯=,所以当43OH =时,HBD △42.故选:D.10.抛掷一枚质地均匀的骰子两次,将第一次得到的点数记为x ,第二次得到的点数记为y ,那么事件“216x y +≤”的概率为( ) A .19B .536 C .16D .13【答案】C【分析】由已知先列举出事件总数,然后解出不等式,找出满足条件的事件数,结合古典概率计算即可.【详解】由题意第一次得到的点数记为x ,第二次得到的点数记为y , 记为(),x y ,则它的所有可能情况为:()()()()()()1,1,1,2,1,3,1,4,1,5,1,6,()()()()()()2,1,2,2,2,3,2,4,2,5,2,6, ()()()()()()3,1,3,2,3,3,3,4,3,5,3,6,()()()()()()4,1,4,2,4,3,4,4,4,5,4,6, ()()()()()()5,1,5,2,5,3,5,4,5,5,5,6,()()()()()()6,1,6,2,6,3,6,4,6,5,6,6共36种,由216x y +≤,即422x y +≤,由2x y =在R 单调递增, 所以4x y +≤,所以满足条件的(),x y 有:()()()1,1,1,2,1,3,()()2,1,2,2,()3,1共6种,所以事件“216x y +≤”的概率为:61366P ==, 故选:C.11.地震预警是指在破坏性地震发生以后,在某些区域可以利用“电磁波”抢在“地震波”之前发出避险警报信息,以减小相关预警区域的灾害损失.根据Rydelek 和Pujol 提出的双台子台阵方法,在一次地震发生后,通过两个地震台站的位置和其接收到的信息,可以把震中的位置限制在双曲线的一支上,这两个地震台站的位置就是该双曲线的两个焦点.在一次地震预警中,两地震台A 站和B 站相距10km .根据它们收到的信息,可知震中到B 站与震中到A 站的距离之差为6km .据此可以判断,震中到地震台B 站的距离至少为( ) A .8km B .6kmC .4kmD .2km【答案】A【分析】设震中为P ,根据双曲线的定义以及||||||10PA PB AB +≥=可求出结果.【详解】设震中为P ,依题意有||||6PB PA -=<||10AB =,所以点P 的轨迹是以,A B 为焦点的双曲线靠近A 的一支,因为||||||10PA PB AB +≥=,当且仅当,,A P B 三点共线时,取等号, 所以||6||10PB PB -+≥,所以||8PB ≥, 所以震中到地震台B 站的距离至少为8km . 故选:A12.对于数列{}n a ,若存在正数M ,使得对一切正整数n ,都有n a M ≤,则称数列{}n a 是有界的.若这样的正数M 不存在,则称数列{}n a 是无界的.记数列{}n a 的前n 项和为n S ,下列结论正确的是( ) A .若1n a n=,则数列{}n a 是无界的 B .若sin n a n n =,则数列{}n a 是有界的 C .若()1nn a =-,则数列{}n S 是有界的 D .若212n a n =+,则数列{}n S 是有界的 【答案】C【分析】根据1n a ≤可知A 错误;由sin n a n n =可知n a 不存在最大值,即数列{}n a 无界;分别在n 为偶数和n 为奇数的情况下得到n S ,由此可确定1n S ≤,知C 正确;采用放缩法可求得22221n S n n ⎛⎫≤-+ ⎪+⎝⎭,由21,213n n ⎡⎫-∈+∞⎪⎢+⎣⎭可知D 错误.【详解】对于A ,111n a n n==≤恒成立,∴存在正数1M =,使得n a M ≤恒成立,∴数列{}n a 是有界的,A 错误;对于B ,sin sin n a n n n n ==,sin 1n ≤,n a n ∴≤,即随着n 的增大,不存在正数M ,使得n a M ≤恒成立,∴数列{}n a 是无界的,B 错误;对于C ,当n 为偶数时,0n S =;当n 为奇数时,1n S =-;1n S ∴≤,∴存在正数1M =,使得n S M ≤恒成立,∴数列{}n S 是有界的,C 正确;对于D ,()()22144114421212121n n n n n n ⎛⎫=≤=- ⎪-+-+⎝⎭, 2221111111121241233352121n S n n n n n ⎛⎫∴=++++⋅⋅⋅≤+-+-+⋅⋅⋅+- ⎪-+⎝⎭ 182241222212121n n n n n n n ⎛⎫⎛⎫=+-=+=-+ ⎪⎪+++⎝⎭⎝⎭;221y x x =-+在()0,∞+上单调递增,21,213n n ⎡⎫∴-∈+∞⎪⎢+⎣⎭, ∴不存在正数M ,使得n S M ≤恒成立,∴数列{}n S 是无界的,D 错误.故选:C.【点睛】关键点点睛:本题考查数列中的新定义问题,解题关键是理解数列有界的本质是对于数列中的最值的求解,进而可以通过对于数列单调性的分析来确定数列是否有界.二、填空题13.已知空间向量()1,1,0a =-,(),1,1m b =-,若a b ⊥,则实数m =_____. 【答案】1【分析】根据空间向量数量积的坐标表示公式进行求解即可. 【详解】因为a b ⊥,所以0101a b m m ⋅=⇒-=⇒=, 故答案为:114.在等差数列{}n a 中,12a =,426a a =+,则n a =______. 【答案】*31,(N )n n -∈【分析】利用已知条件求出公差,利用等差数列通项公式求解即可. 【详解】设等差数列的公差为d , 由12a =,426a a =+,所以11633a a d d d +=+⇒=+,所以*1(1)2(1)331,(N )n a n a n d n n +-=+⨯=-∈=-,故答案为:*31,(N )n n -∈.15.两条直线1:3420l x y --=与2:3480l x y -+=之间的距离是______. 【答案】2【分析】根据平行直线间距离公式可直接求得结果. 【详解】由平行直线间距离公式可得:12,l l 之间的距离2d ==.故答案为:2.16.试写出一个中心为坐标原点,焦点在坐标轴上,渐近线方程为2y x =±的双曲线方程___________.【答案】2214y x -=(或其它以2y x =±为渐近线的双曲线方程)【分析】根据题意写出一个即可.【详解】中心为坐标原点,焦点在坐标轴上,渐近线方程为2y x =±的双曲线方程为()2204y x λλ-=≠ 故答案为:2214y x -=(或其它以2y x =±为渐近线的双曲线方程)17.已知点P 是曲线221ax by +=(其中a ,b 为常数)上的一点,设M ,N 是直线y x =上任意两个不同的点,且MN t =.则下列结论正确的是______. ①当0ab >时,方程221ax by +=表示椭圆; ②当0ab <时,方程221ax by +=表示双曲线; ③当124a =,18=b ,且4t =时,使得MNP △是等腰直角三角形的点P 有6个;④当124a =,18=b ,且04t <<时,使得MNP △是等腰直角三角形的点P 有8个.【答案】②③④【分析】对①②,根据方程221ax by +=表示的曲线可以是圆,椭圆,双曲线,直线判断;对③④,求出点P 到直线y x =的距离d 的取值范围,对点P 是否为直角顶点进行分类讨论,确定d ,t 的等量关系,综合可得出结论.【详解】方程221ax by +=中当0a b =>时可表示圆,当0ab <时,221ax by +=表示双曲线,故①错误,②正确;在③④中:椭圆方程为221248x y +=,椭圆与直线l 均关于原点对称,设点,)P θθ,则点P 到直线l 的距离为π4sin [0,4].3d θ⎛⎫===-∈ ⎪⎝⎭ 对③:4t =时,(1)若P 为直角顶点,如图1,则||4MN t ==,4d =,满足MNP △为等腰直角三角形的点P 有四个,图1(2)若P 不是直角顶点,如图2,则||4MN t ==,4d =,满足PMN 是等腰直角三角形的非直角顶点P 有两个,图2故4t =时,使得MNP △是等腰直角三角形的点P 有6个,③正确; 对④:04t <<时,(1)若P 为直角顶点,如图1,则||MN t =,42td =<,满足MNP △为等腰直角三角形的点P 有四个.. (2)若P 不是直角顶点,如图3,则||MN t =,4d t =<,满足MNP △是等腰直角三角形的非直角顶点P 有四个,图3故04t <<时,使得MNP △是等腰直角三角形的点P 有8个,④正确; 故答案为:②③④.【点睛】椭圆的参数方程是cos ,sin x a y b θθ==,对于有关椭圆上点的横纵坐标问题的题目可以转化为三角函数问题求解,比如求23z x y =+的最大值,求点到直线的距离范围等问题都可以使用椭圆的参数方程来解决.三、双空题18.某单位组织知识竞赛,按照比赛规则,每位参赛者从5道备选题中随机抽取3道题作答.假设在5道备选题中,甲答对每道题的概率都是23,且每道题答对与否互不影响,则甲恰好答对其中两道题的概率为______;若乙能答对其中3道题且另外两道题不能答对,则乙恰好答对两道题的概率为______. 【答案】4935【分析】(1)甲能够答对X 道题目,则2~(3,)3X B ,根据二项分布的概率即可进一步求解;(2)设乙能够答对Y 道题目,根据超几何分布即可求出答案. 【详解】解设甲能够答对X 道题目,2~(3,)3X B ,所以()2322242C 1339P X ⎛⎫⎛⎫==-= ⎪⎪⎝⎭⎝⎭, 解设乙能够答对Y 道题目,则()123235C C 32C 5P Y ⋅===. 故答案为:49;35.四、解答题19.某超市有A ,B ,C 三个收银台,顾客甲、乙两人结账时,选择不同收银台的概率如下表所示,且两人选择哪个收银台相互独立.(1)求a ,b 的值;(2)求甲、乙两人在结账时都选择C 收银台的概率; (3)求甲、乙两人在结账时至少一人选择C 收银台的概率. 【答案】(1)0.4a =,0.4b =(2)0.12(3)0.58【分析】(1)根据甲在三个收银台结账的概率和为1求a 值,同理求b 的值;(2)“甲选择C 收银台”与“乙选择C 收银台”是相互独立事件,利用独立事件的概率公式求解;(3)利用对立事件求解.【详解】(1)由表可知,甲选择A 收银台的概率为10.20.40.4a =--=,乙选择B 收银台的概率为10.30.30.4b =--=(2)设事件A 为“甲选择C 收银台”,事件B 为“乙选择C 收银台”,事件C 为“甲,乙两人在结账时都选择C 收银台”.根据题意,()0.4,()0.3P A P B ==,事件,A B 相互独立.所以()()0.40.30.12P C P AB ==⨯=.(3)设事件D 为“甲,乙两人在结账时至少一人选择C 收银台”,()1()10.60.70.58P D P AB =-=-⨯=.20.在四棱雉P ABCD -中,底面ABCD 是正方形,Q 为棱PD 的中点,PA AD ⊥,2PA AB ==,再从下列两个条件中任选一个作为已知,求解下列问题.条件①:平面PAD ⊥平面ABCD ;条件②:PA AB ⊥.(1)求证:PA ⊥平面ABCD ;(2)求平面ACQ 与平面ABCD 夹角的余弦值;(3)求点B 到平面ACQ 的距离.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)证明见解析;323【分析】(1)条件①利用面面垂直的性质定理可证得;条件②利用线面垂直的判定定理可证得;(2)建立空间直角坐标系,利用空间向量法求面面夹角;(3)利用空间向量求点到面的距离.【详解】(1)条件①:平面PAD ⊥平面ABCD证明:因为平面PAD ⊥平面ABCD ,PA AD ⊥,PA ⊂平面PAD ,平面PAD ⋂平面ABCD AD =,所以PA ⊥平面ABCD .条件②:PA AB ⊥证明:因为PA AD ⊥,PA AB ⊥,且,AB AD ⊂平面ABCD ,AB AD A ⋂=,所以PA ⊥平面ABCD .(2)由(1)知PA ⊥平面ABCD ,AB AD ⊥,,,AB AD AP 两两垂直,以A 为原点,,,AB AD AP 分别所在的直线为,,x y z 轴,建立如图空间直角坐标系,则()002P ,,,()0,0,0A ,()0,1,1Q ,()2,2,0C , 所以()2,2,0AC =,()0,1,1AQ =由(1)知平面ABCD 的法向量()0,0,2AP =,设平面ACQ 的法向量为(),,n x y z =,则2200n AC x y n AQ y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩, 即00x y y z +=⎧⎨+=⎩,令1y =,则()1,1,1n =--, 设平面ACQ 与平面ABCD 夹角的为θ,则cos cos ,2AP nAP n AP n θ⋅-====⨯⋅所以平面ACQ 与平面ABCD (3)由已知得()2,0,0B ,()2,0,0AB =,所以点B 到平面ACQ 的距离为23AB nn -⋅==21.已知圆22:2440C x y x y +-+-=,圆()()221:314C x y -+-=及点()3,1P .(1)判断圆C 和圆1C 的位置关系;(2)求经过点P 且与圆C 相切的直线方程.【答案】(1)相交(2)1y =或125410x y +-=【分析】(1)根据两圆方程可确定圆心和半径,由圆心距与两圆半径之间的关系可确定两圆位置关系;(2)易知切线斜率存在,则可设其为()13y k x -=-,利用圆心到直线距离等于半径可构造方程求得k ,进而得到切线方程.【详解】(1)圆C 方程可整理为:()()22129x y -++=,则圆心()1,2C -,半径3r =; 由圆1C 方程可知:圆心()13,1C ,半径12r =; ()()221132113CC =-+--15r r +=,11r r -=,1112r r CC r r ∴-<<+,∴圆C 和圆1C 相交.(2)当过()3,1P 的直线斜率不存在,即为3x =时,其与圆C 不相切,∴可设所求切线方程为:()13y k x -=-,即310kx y k --+=,∴圆心C 到切线的距离23231kd k -=+,即()229932k k +=-, 解得:0k =或125k =-, ∴切线方程为:1y =或()12135y x -=--,即1y =或125410x y +-=.22.已知椭圆()2222:10x y E a b a b +=>>()0,1A . (1)求椭圆E 的方程;(2)若过点A 的直线l 与椭圆E 的另一个交点为B,且AB =B 的坐标. 【答案】(1)2212x y += (2)41,33⎛⎫±- ⎪⎝⎭【分析】(1)根据椭圆中,,a b c 的关系求解即可;(2)先利用AB =B 的轨迹方程,然后求点B 的轨迹方程与椭圆2212x y +=的交点即可,求值的时候一定要注意变量范围. 【详解】(1)由题可知c a 1b =,又因为222a b c =+,解得211a b c =⎧⎪=⎨⎪=⎩所以椭圆E 的方程为2212x y += (2)设(),B x y,因为AB =()223219x y +-=, 则点B 为椭圆2212x y +=与圆()223219x y +-=的交点, 联立()2222321912x y x y ⎧+-=⎪⎪⎨⎪+=⎪⎩,解得13y =-或53y =-(舍去,因为11y -≤≤) 所以有4313x y ⎧=⎪⎪⎨⎪=-⎪⎩或4313x y ⎧=-⎪⎪⎨⎪=-⎪⎩,故点B 的坐标为41,33⎛⎫±- ⎪⎝⎭ 23.已知无穷数列{}n y 满足公式112,02122,12n n n n n y y y y y +⎧≤<⎪⎪=⎨⎪-≤≤⎪⎩,设()101y a a =≤≤. (1)若14a =,求3y 的值; (2)若30=y ,求a 的值;(3)给定整数()3M M ≥,是否存在这样的实数a ,使数列{}n y 满足:①数列{}n y 的前M 项都不为零;②数列{}n y 中从第1M +项起,每一项都是零.若存在,请将所有这样的实数a 从小到大排列形成数列{}n a ,并写出数列{}n a 的通项公式;若不存在,请说明理由.【答案】(1)31y = (2)10,1,2=a (3)存在这样的a ,2121,1,2,3,,22---==M n M n a n ,理由见解析【分析】(1)根据1y ,求出23,y y ;(2)30=y ,(i )当2102≤<y 时,可得20y =,由1y 的范围可得与2y 的关系可得a ; (ii )当2112≤<y 时,由3222=-y y 得2y ,再分1102≤<y 、1112≤≤y 根据2y 与1y 可得答案 (3)存在这样的a ,根据10,0+=≠M M y y 和(2)可知111,2-==M M y y ,分2102-≤<M y 、2112-≤≤M y 讨论,根据1-M y 与2-M y 关系类推,可得答案.,【详解】(1)因为114==y a ,所以213212,2212===-=y y y y ; (2)因为30=y ,(i )当2102≤<y 时,322y y =,所以20y =, 此时,若1102≤<y ,则211,02===y y a y ; 若1112≤≤y ,则211,122=-==y y a y . (ii )当2112≤<y 时,3222=-y y ,所以21y =, 此时,若1102≤<y ,则21111,0,222⎡⎫==∉⎪⎢⎭=⎣y y a y ; 若1112≤≤y ,则2111,222=-==y y a y . 综上所述,10,1,2=a ; (3)存在这样的a ,因为10,0+=≠M M y y ,由(2)可知111,2-==M M y y , (i )当2102-≤<M y 时,122--=M M y y ,所以214-=M y , (ii )当2112-≤≤M y 时,1222--=-M M y y ,所以234-=M y ,以此类推,()111111113521,,,,2222--------==M M M M M M M y y , 所以数列{}n a 的通项公式为2121,1,2,3,,22---==M n M n a n .【点睛】关键点点睛:解答本题的关键是由递推关系可得数列的结果,寻找规律,本题考查数列的递推关系的应用,考查了学生推理能力、运算能力.。
2022-2023学年四川省内江市高二上学期期末考试数学(理)试题(解析版)
2022-2023学年四川省内江市高二上学期期末考试数学(理)试题一、单选题1.某个年级有男生180人,女生160人,用分层抽样的方法从该年级全体学生中抽取一个容量为68的样本,则此样本中女生人数为( ) A .40 B .36 C .34 D .32【答案】D【分析】根据分层抽样的性质计算即可. 【详解】由题意得:样本中女生人数为1606832180160⨯=+.故选:D2.已知向量()3,2,4m =-,()1,3,2n =--,则m n +=( ) A .22 B .8 C .3 D .9【答案】C【分析】由向量的运算结合模长公式计算即可. 【详解】()()()3,2,41,3,22,1,2m n +=-+--=-- ()()2222123m n +=-+-+=故选:C3.如图所示的算法流程图中,第3个输出的数是( )A .2B .32C .1D .52【答案】A【分析】模拟执行程序即得.【详解】模拟执行程序,1,1A N ==,输出1,2N =;满足条件,131+=22A =,输出32,3N =;满足条件,31+=222A =,输出2,4N =;所以第3个输出的数是2. 故选:A.4.一个四棱锥的三视图如图所示,则该几何体的体积为( )A .8B .83C .43D .323【答案】B【分析】把三视图转换为几何体,根据锥体体积公式即可求出几何体的体积. 【详解】根据几何体的三视图可知几何体为四棱锥P ABCD -, 如图所示:PD ⊥平面ABCD ,且底面为正方形,2PD AD == 所以该几何体的体积为:1822233V =⨯⨯⨯=故选:B5.经过两点(4,21)A y +,(2,3)B -的直线的倾斜角为3π4,则y =( ) A .1- B .3-C .0D .2【答案】B【分析】先由直线的倾斜角求得直线的斜率,再运用两点的斜率进行求解.【详解】由于直线AB 的倾斜角为3π4, 则该直线的斜率为3πtan14k ==-, 又因为(4,21)A y +,(2,3)B -, 所以()213142y k ++==--,解得=3y -.故选:B.6.为促进学生对航天科普知识的了解,进一步感受航天精神的深厚内涵,并从中汲取不畏艰难、奋发图强、勇于攀登的精神动力,某校特举办以《发扬航天精神,筑梦星辰大海》为题的航天科普知识讲座.现随机抽取10名学生,让他们在讲座前和讲座后各回答一份航天科普知识问卷,这10名学生在讲座前和讲座后问卷答题的正确率如下图,下列叙述正确的是( )A .讲座前问卷答题的正确率的中位数小于70%B .讲座后问卷答题的正确率的平均数大于85%C .讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D .讲座前问卷答题的正确率的极差小于讲座后正确率的极差 【答案】B【分析】根据题意以及表格,可分别计算中位数、平均数、极差等判断、排除选项是否正确,从而得出答案.【详解】讲座前问卷答题的正确率分别为:60%,60%,65%,65%,70%,75%,80%,85%,90%,95%,中位数为70%75%72.5%70%2+=> ,故A 错误; 讲座后问卷答题的正确率的平均数为0.80.8540.920.951289.5%85%10+⨯+⨯++⨯=> ,故B 正确;由图知讲座前问卷答题的正确率的波动性大于讲座后正确率的波动性,即讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,故C 错误;讲座后问卷答题的正确率的极差为100%-80%=20%,讲座前正确率的极差为95%-60%=35%,20%<35%,故D 错误. 故选:B.7.两条平行直线230x y -+=和340ax y -+=间的距离为d ,则a ,d 分别为( )A .6a =,d =B .6a =-,d =C .6a =-,d =D .6a =,d =【答案】D【分析】根据两直线平行的性质可得参数a ,再利用平行线间距离公式可得d . 【详解】由直线230x y -+=与直线340ax y -+=平行, 得()()2310a ⨯---⨯=,解得6a =,所以两直线分别为230x y -+=和6340x y -+=,即6390x y -+=和6340x y -+=,所以两直线间距离d = 故选:D.8.若连续抛掷两次质地均匀的骰子,得到的点数分别为m ,n ,则满足2225+<m n 的概率是( ) A .12B .1336 C .49D .512【答案】B【分析】利用列举法列出所有可能结果,再根据古典概型的概率公式计算可得.【详解】解:设连续投掷两次骰子,得到的点数依次为m 、n ,两次抛掷得到的结果可以用(,)m n 表示,则结果有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), (2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6), (4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6), (6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36种.其中满足2225+<m n 有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2),共13种,所以满足2225+<m n 的概率1336P =. 故选:B9.已知三条不同的直线l ,m ,n 和两个不同的平面α,β,则下列四个命题中错误的是( ) A .若m ⊥α,n ⊥α,则m //n B .若α⊥β,l ⊂α,则l ⊥β C .若l ⊥α,m α⊂,则l ⊥m D .若l //α,l ⊥β,则α⊥β【答案】B【分析】根据线面垂直的性质定理可知A 正确;根据面面垂直的性质定理可知B 不正确; 根据线面垂直的定义可知C 正确;根据面面垂直的判定可知D 正确.【详解】对A ,根据线面垂直的性质,垂直于同一平面的两条直线互相平行可知A 正确; 对B ,根据面面垂直的性质定理可知,若α⊥β,l ⊂α,且l 垂直于两平面的交线,则l ⊥β,所以B 错误;对C ,根据线面垂直的定义可知,C 正确;对D ,因为l //α,由线面平行的性质可知在平面α内存在直线//m l ,又l ⊥β,所以m β⊥,而m α⊂,所以α⊥β,D 正确. 故选:B .10.数学家欧拉在1765年提出定理:三角形的外心,重心,垂心依次位于同一直线上,这条直线后人称之为三角形的欧拉线.已知ABC ∆的顶点(0,0),(0,2),( 6.0)A B C -,则其欧拉线的一般式方程为( ) A .31x y += B .31x y -= C .30x y += D .30x y -=【答案】C【分析】根据题意得出ABC 为直角三角形,利用给定题意得出欧拉线,最后点斜式求出方程即可. 【详解】显然ABC 为直角三角形,且BC 为斜边, 所以其欧拉线方程为斜边上的中线, 设BC 的中点为D ,由(0,2),( 6.0)B C -, 所以()3,1D -,由101303AD k -==--- 所以AD 的方程为13y x =-,所以欧拉线的一般式方程为30x y +=. 故选:C.11.已知P 是直线l :x +y -7=0上任意一点,过点P 作两条直线与圆C :()2214x y ++=相切,切点分别为A ,B .则|AB |的最小值为( )A .14B .142C .23D .3【答案】A【分析】根据直线与圆相切的几何性质可知,当||PC 取得最小值时,cos ACP ∠最大,||AB 的值最小,当PC l ⊥时,||PC 取得最小值,进而可求此时||14AB =【详解】圆C 是以(1,0)C -为圆心,2为半径的圆,由题可知,当ACP ∠最小时,||AB 的值最小. ||2cos ||||AC ACP PC PC ∠==,当||PC 取得最小值时,cos ACP ∠最大,ACP ∠最小,点C 到直线l 的距离|8|422d -==,故当||42PC =时,cos ACP ∠最大,且最大值为24,此时||||14sin 2||44AB AB ACP AC ∠===,则||14AB =.故选:A12.如图所示,在长方体1111ABCD A B C D -中,111BB B D =,点E 是棱1CC 上的一个动点,平面1BED 交棱1AA 于点F ,下列命题错误的是( )A .四棱锥11B BED F -的体积恒为定值 B .存在点E ,使得1B D ⊥平面1BD EC .存在唯一的点E ,使得截面四边形1BED F 的周长取得最小值D .对于棱1CC 上任意一点E ,在棱AD 上均有相应的点G ,使得CG ∥平面1EBD 【答案】D【分析】由111111B BED F E BB D F BB D V V V ---=+结合线面平行的定义,即可判断选项A ,由线面垂直的判定定理即可判断选项B ,由面面平行的性质和对称性,即可判断选项C ,由特殊位置即可判断选项D.【详解】对A ,111111B BED F E BB D F BB D V V V ---=+,又11//CC BB ,1CC ⊄平面11BB D ,1BB ⊂平面11BB D ,所以1//CC 平面11BB D ,同理1//AA 平面11BB D ,所以点E ,F 到平面11BB D 的距离为定值,则四棱锥11B BED F -的体积为定值,故选项A 正确;对于B ,因为111BB B D =,可得对角面11BB D D 为正方形,所以11B D BD ⊥,由DC ⊥平面11BCC B ,BE ⊂平面11BCC B ,所以DC BE ⊥,若1BE B C ⊥,则1B CDC C =,1,B C DC ⊂平面1B DC ,所以BE ⊥平面1B DC ,由1B D ⊂平面1B DC ,所以1B D BE ⊥,又11,,BD BE B BD BE ⋂=⊂平面1BD E ,所以1B D ⊥平面1BD E ,故B 正确;对于C ,由面面平行的性质定理可得,四边形1BED F 为平行四边形,由对称性可得,当四边形为菱形时,周长取得最小值,即存在唯一的点E ,使得截面四边形1BED F 的周长取得最小值,故选项C 正确.对于D ,当E 点在C 处时,对于AD 上任意的点G ,直线CG 与平面1EBD 均相交,故选项D 错误. 故选:D二、填空题13.已知x 、y 满足约束条件202020x y x y -≤⎧⎪-≤⎨⎪+-≥⎩则2z x y =+的最大值是________.【答案】6【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】解:由约束条件作出可行域如图:将目标函数2z x y =+转化为2y x z =-+表示为斜率为2-,纵截距为z 的直线, 当直线2y x z =-+过点B 时,z 取得最大值, 显然点()2,2B ,则max 2226z =⨯+=.故答案为:6.14.直线l 与圆22(1)(1)1x y ++-=相交于,A B 两点,且()0,1A .若AB l 的斜率为_________. 【答案】1±【分析】设直线方程,结合弦长求得圆心到直线的距离,利用点到直线的距离公式列出等式,即可求得答案.【详解】根据题意,直线l 与圆 22(1)(1)1x y ++-= 相交于,A B 两点,且()0,1A , 当直线斜率不存在时,直线0x = 即y 轴,显然与圆相切,不符合题意; 故直线斜率存在,设直线l 的方程为1y kx =+ ,即10kx y -+= , 因为圆22(1)(1)1x y ++-=的圆心为(1,1) ,半径为1r = ,又弦长||AB =所以圆心到直线的距离为d ===,=1k =±, 故答案为:1±.15.已知E 是正方体1111ABCD A B C D -的棱1DD 的中点,过A 、C 、E 三点作平面α与平面1111D C B A 相交,交线为l ,则直线l 与1BC 所成角的余弦值为______. 【答案】12【分析】由面面平行的性质与异面直线所成的角的求法求解即可 【详解】因为过,,A C E 三点的平面α与平面1111D C B A 相交于l , 平面α与平面ABCD 相交于AC ,平面1111D C B A 与平面ABCD 平行, 所以//l AC ,又11//A C AC ,故11//AC l所以直线l 与1BC 所成的角就是直线11A C 与1BC 所成的角, 也即是11AC B ∠(或补角) 又易知11A C B △为等边三角形,所以直线l 与1BC 所成角的余弦值为1cos602︒=, 故答案为:1216.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(),P x y ,则PAB 面积的最大值是_________. 【答案】52【详解】试题分析:易知A (0,0),B (1,3)两直线互相垂直,故222221510222PA PB PA PB AB S PA PB ++==∴=≤=为所求.【解析】基本不等式.三、解答题17.一汽车销售公司对开业4年来某种型号的汽车“五-”优惠金额与销售量之间的关系进行分析研究并做了记录,得到如下资料. 日期第一年 第二年 第三年 第四年优惠金额x (千元) 10 11 13 12 销售量y (辆) 22243127(1)求出y 关于x 的线性回归方程ˆˆˆyb x a =+; (2)若第5年优惠金额8.5千元,估计第5年的销售量y(辆)的值.参考公式:()()()11211ˆˆˆ,()n ei i i i i i pz nzlii i x x y y x y nxybay bx xx xn x ====---===---∑∑∑∑ 【答案】(1)ˆ38.5y x =-;(2)第5年优惠金额为8.5千元时,销售量估计为17辆【分析】(1)先由题中数据求出x y ,,再根据()()()()1122211,ˆˆˆˆn niii ii i nn iii i x x y y x y nxyb ay bx x x x n x ====---===---∑∑∑∑求出ˆb和ˆa ,即可得出回归方程; (2)将8.5x =代入回归方程,即可求出预测值.【详解】(1)由题中数据可得11.5,26x y ==,442111211,534i i i i i x y x ====∑∑∴()414222141211411.526153534411.554ˆi i i i i x y xybx x ==--⨯⨯====-⨯-∑∑,故26311ˆ.58.5ˆay bx =-=-⨯=-,∴38.5ˆy x =- (2)由(1)得,当8.5x =时,ˆ17y=,∴第5年优惠金额为8.5千元时,销售量估计为17辆. 【点睛】本题主要考查线性回归分析,熟记最小二乘法求ˆb和ˆa 即可,属于常考题型. 18.已知圆C 经过(6,1),(3,2)A B -两点,且圆心C 在直线230x y +-=上. (1)求经过点A ,并且在两坐标轴上的截距相等的直线的方程; (2)求圆C 的标准方程;(3)斜率为34-的直线l 过点B 且与圆C 相交于,E F 两点,求||EF .【答案】(1)60x y -=或+7=0x y -; (2)22(5)(1)5x y -++=; (3)2.【分析】(1)根据给定条件,利用直线方程的截距式,分类求解作答. (2)设出圆心坐标,由已知求出圆心及半径作答. (3)求出直线l 的方程,利用弦长公式计算作答.【详解】(1)经过点A ,在两坐标轴上的截距相等的直线,当直线过原点时,直线的方程为60x y -=, 当直线不过原点时,设直线的方程为=x y a +,将点(6,1)A 代入解得=7a ,即直线的方程为+7=0x y -, 所以所求直线的方程为60x y -=或+7=0x y -.(2)因圆心C 在直线230x y +-=上,则设圆心(32,)C b b -, 又圆C 经过(6,1),(3,2)A B -两点,于是得圆C 的半径||||r AC BC ==,1b =-,圆心(5,1)C -,圆C的半径r = 所以圆C 的标准方程为22(5)(1)5x y -++=.(3)依题意,直线l 的方程为32(3)4y x +=--,即3410x y +-=, 圆心(5,1)C -到直线的距离为|1541|25d --==, 所以22||22542EF r d =-=-=.19.直四棱柱1111ABCD A B C D -,底面ABCD 是平行四边形,60ACB ∠=︒,13,1,27,,AB BC AC E F ===分别是棱1,A C AB 的中点.(1)求证:EF 平面1A AD : (2)求三棱锥1F ACA -的体积.【答案】(1)见解析2【分析】(1)取1A D 的中点M ,连结,ME MA ,证明四边形AFEM 为平行四边形,则AM EF ∥,再根据线面平行的判定定理即可得证;(2)利用余弦定理求出AC ,再利用勾股定理求出1AA ,再根据11F ACA A AFC V V --=结合棱锥的体积公式即可得出答案.【详解】(1)证明:取1A D 的中点M ,连结,ME MA ,在1A DC 中,,M E 分别为11,A D AC 的中点, 所以ME DC ∥且12ME DC =, 底面ABCD 是平行四边形,F 是棱AB 的中点,所以AF DC 且12AF DC =, 所以ME AF ∥且ME AF =,所以四边形AFEM 为平行四边形,所以,EF AM EF ⊄∥平面1,A AD AM⊂平面1A AD ,所以EF 平面1A AD ;(2)在ABC 中,60,3,1ACB AB BC ∠===, 由余弦定理有2222cos AB AC BC AC BC ACB ∠=+-⨯⨯,解得2AC =,则1312sin6022ABC S =⨯⨯⨯=, 因为F 为AB 的中点,所以1324ACF ABC S S ==, 由已知直四棱柱1111ABCD A B C D -,可得1190,2,27A AC AC AC ∠===, 可得128426A A =-=,1111132263342F ACA A AFC AFC V V S AA --==⋅=⨯⨯=. 20.某校从参加高一年级期中考试的学生中抽出40名学生,将其数学成绩(均为整数)分成六段[)40,50,[)50,60,,[]90,100后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)根据频率分布直方图估计这次数学考试成绩的平均分;(3)若将分数从高分到低分排列,取前15%的同学评定为“优秀”档次,用样本估计总体的方法,估计本次期中数学考试“优秀”档次的分数线.【答案】(1)答案见解析(2)71(3)86【分析】(1)根据所有频率和为1求第四小组的频率,计算第四小组的对应的矩形的高,补全频率分布直方图;(2)根据在频率分布直方图中,由每个小矩形底边中点的横坐标与小矩形的面积的乘积之和,求出平均分;(3)由频率分布直方图可知:成绩在区间[]90,100占5%,区间[)80,90占25%,由此即可估计“优秀”档次的分数线.【详解】(1)由频率分布直方图可知,第1,2,3,5,6小组的频率分别为:0.1,0.15,0.15,0.25,0.05,所以第四小组的频率为:10.10.150.150.250.050.3-----=,∴在频率分布直方图中第四小组对应的矩形的高为0.03,补全频率分布直方图对应图形如图所示:(2)由频率分布直方图可得平均分为:0.1450.15550.15650.3750.25850.059571⨯+⨯+⨯+⨯+⨯+⨯=;(3)由频率分布直方图可知:成绩在区间[]90,100占5%,区间[)80,90占25%,则估计本次期中数学考试“优秀”档次的分数线为:0.158010860.25+⨯=.21.如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,2AB =,1AF =,M 是线段EF 的中点.(1)求证:平面ACEF ⊥平面BDF ;(2)求证:DM ⊥平面BEF ;(3)求二面角A DF B --的大小.【答案】(1)见解析(2)见解析(3)60【分析】(1)建立空间直角坐标系,利用0AM BD =,0AM DF =,可得AM ⊥平面BDF ,进而可得面面垂直.(2)由2AB 1AF =,得3==DF DE DM EF ⊥,连BM ,得DM BM ⊥,由此能证明DM ⊥平面BEF .(3)由(1)得,(0AM =,1-,1)是平面BDF 的一个法向量.(1,1,0)DC =--是平面ADF 的一个法向量,cos AM <,1222DC >==⨯即可. 【详解】(1)四边形ACEF 是矩形,FA AC ∴⊥,平面ACEF ABCD ⊥,平面ACEF 平面ABCD AC =,AF ⊂平面ACEFAF ∴⊥平面ABCD .设AC DB O ⋂=,则OM ⊥平面ABCD建立如图的直角坐标系,则各点的坐标分别为:(0O ,0,0),(0A ,1,0),(1B -,0,0),(0C ,1-,0),(1D ,0,0),(0E ,1-,1),(0F ,1,1),(0M ,0,1).(2BD =,0,0),(1DF =-,1,1),(0AM =,1-,1),∴0AM BD =,0110AM DF =-+=, AM BD ∴⊥,AM DF ⊥,BD DF D =,,BD DF ⊂平面BDF ,AM ∴⊥平面BDF ,AM ⊂平面ACEF ,所以平面ACEF ⊥平面BDF(2)由2AB =,1AF =,得3==DF DE ,M 是线段EF 的中点,DM EF ,连接BM ,由于2222,,DM OM OD MB OM OB OB OD =+=+=,得2BM DM ==,又2BD =,222DM BM BD += DM BM ∴⊥,又BM EF M =,,MB EF ⊂平面BEF , DM ∴⊥平面BEF .(3)由(1)得,(0AM =,1-,1)是平面BDF 的一个法向量.又AF ⊥平面ABCD 得AF CD ⊥,又CD DA ⊥ ,故(1,1,0)DC =--是平面ADF 的一个法向量, 故cos AM <,11222DC >==⨯ 二面角A DF B --为锐角,∴二面角A DF B --为60.22.已知圆22:(3)9M x y -+=.设()2,0D ,过点D 作斜率非0的直线1l ,交圆M 于P 、Q 两点.(1)过点D 作与直线1l 垂直的直线2l ,交圆M 于EF 两点,记四边形EPFQ 的面积为S ,求S 的最大值;(2)设()6,0B ,过原点O 的直线OP 与BQ 相交于点N ,试讨论点N 是否在定直线上,若是,求出该直线方程;若不是,说明理由.【答案】(1)17;(2)点N 在定直线6x =-上.【分析】(1)由题意设出直线1l ,2l 方程,利用点到直线的距离公式,弦长公式以及基本不等式即可解决问题;(2)利用圆与直线的方程,写出韦达定理,求出直线OP 与直线BQ 的方程,且交于点N ,联立方程求解点N 即可证明结论.【详解】(1)由圆22:(3)9M x y -+=知,圆心为()3,0M ,半径3r =,因为直线1l 过点()2,0D 且斜率非0,所以设直线1l 方程为:()02y k x -=-,即20kx y k --=,则点M 到直线1l的距离为:1d =所以PQ == 由12l l ⊥,且直线2l 过点D ,所以设直线2l 方程为:()102y x k -=--,即20x ky +-=, 则点M 到直线2l的距离为:2d =所以EF ====故1122S EF PQ =⋅⋅=⋅2=()2217122171k k +=⨯=+,当且仅当2289981k k k +=+⇒=±时取等号,所以四边形EPFQ 的面积S 的最大值为17.(2)点N 在定直线6x =-上.证明:设()()1122,,,P x y Q x y ,直线PQ 过点D ,则设直线PQ 方程为:2x my =+,联立()22239x my x y =+⎧⎪⎨-+=⎪⎩,消去x 整理得: ()221280m y my +--=,12122228,11m y y y y m m -+==++, 所以()1212121244y y m my y y y y y +=-⇒=-+, 由111100OP y y k x x -==-, 所以直线OP 的方程为:11y y x x =, 2222066BQ y y k x x -==--, 所以直线BQ 的方程为:()2266y y x x =--, 因为直线OP 与直线BQ 交于点N , 所以联立()112266y y x x y y x x ⎧=⎪⎪⎨⎪=-⎪-⎩, 所以()12121266N x y x x y y x =-- ()()()12121262226my y my y y my +=+-+-⎡⎤⎣⎦ 12212212161224my y y my y y my y y +=+-+ 12221362my y y y y +=+ ()()122213462y y y y y ⨯-⨯++=+ 12212212112126126622y y y y y y y y y --+--===-++, 所以6N x =-,所以点N 在定直线6x =-上.。
山东省德州市某重点中学2021-2022学年高二上学期期末考试数学理试题 Word版含答案
高二上学期期末考试数学试题(理)留意事项:1.答卷前,考生务必用钢笔或签字笔将自己的班别、姓名、考号填写在答题纸和答题卡的相应位置处。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
3.非选择题答案必需写在答题纸相应位置处,不按要求作答的答案无效。
4.考生必需保持答题卡的洁净,考试结束后,将答题卡和答题纸一并收回。
第I卷(选择题共50分)一、选择题(本大题共10小题,每小题5分,共50分)1. 数列0,1,0,-1,0,1,0,-1,…的一个通项公式a n可以等于()A. (-1)n+12 B. cosnπ2 C. cosn+12π D. cosn+22π2. 设a<b<0,则下列不等式中不成立的是()A. 1a>1b B.1a-b>1a C. |a|>-b D. -a>-b3. 有一长为1的斜坡,它的倾斜角为20°,现高不变,将倾斜角改为10°,则斜坡长为()A.1 B.2sin 10°C.2cos 10°D.cos 20°4. 等差数列{a n}前n项和为S n,若a1=-11,a4+a6=-6,则当S n取最小值时,n等于()A. 6B. 7C. 8D. 95. 一个等比数列的前三项的积为3,最终三项的积为9,且全部项的积为729,则该数列的项数是()A. 13B. 12C. 11D. 106. 双曲线C:x2a2-y2b2=1的焦距为10,点P(2,1)在C的渐近线上,则C的方程为()A. x280-y220=1 B.x220-y280=1 C.x220-y25=1 D.x25-y220=17. 若a>0,b>0,且ln(a+b)=0,则1a+1b的最小值是()A.14 B. 1 C. 4 D. 88. 如图所示,平行六面体ABCD—A1B1C1D1中,M为A1C1与B1D1的交点.若AB→=a,AD→=b,AA1→=c,则下列向量中与BM→相等的向量是 ()A.-12a+12b+c B.12a+12b+cC.-12a-12b+c D.12a-12b+c9. 数列}{na的前n项和为nS,511=a,且对任意正整数m,n,都有nmnmaaa⋅=+,若tSn<恒成立,则实数t的最小值为()A.4B.34C.43D.4110.过双曲线2222100x y(a,b)a b-=>>的左焦点0F(c,)-作圆222x y a+=的切线,切点为E,延长FE交抛物线24y cx=于点P,O为原点,若12OE(OF OP)=+,则双曲线离心率为()A.152+B.333+C.52D.132+第Ⅱ卷(非选择题共100分)二、填空题(本大题共5小题,每小题5分,共25分)11. 若点P到直线y=-3的距离等于它到点(0,3)的距离,则点P的轨迹方程是_________.12.推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin21°+sin22°+sin23°+…+sin288°+sin289°=________________.13. 已知△ABC的面积为32,AC=3,∠ABC=π3,则△ABC的周长等于_________________.14. 若x<m-1或x>m+1是x2-2x-3>0的必要不充分条件,则实数m的取值范围是_______.15. 已知变量x ,y 满足条件⎩⎨⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是_____________________. 三、解答题(本大题共6小题,共75分) 16. (本小题满分12分)设p :关于x 的不等式 a x >1的解集是 {x |x <0} ;q :函数y =ax 2-x +a 的定义域为R . 若 p ∨q 是真命题,p ∧q 是假命题,求实数a 的取值范围.17. (本小题满分12分)已知△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c . (1) 若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值; (2) 若sin C +sin(B -A )=sin 2A ,试推断△ABC 的外形.18.(本小题满分12分)已知数列{a n }的各项均为正数,前n 项和为S n ,且 S n =a n (a n +1)2, n ∈N *.(1) 求证:数列{a n }是等差数列;(2) 设b n =12S n ,T n =b 1+b 2+…+b n ,求T n .19.(本小题满分12分)某市近郊有一块大约500500m m ⨯的接近正方形的荒地,地方政府预备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地外形相同),塑胶运动场地占地面积为S 平方米.(1) 分别用x 表示y 和S 的函数关系式,并给出定义域;(2) 怎样设计能使S 取得最大值,并求出最大值.20. (本小题满分13分)已知四边形ABCD 是菱形,060BAD ∠=,四边形BDEF 是矩形 ,平面BDEF ⊥平面ABCD ,G H 、分别是CE CF 、的中点. (1) 求证 : 平面//AEF 平面BDGH ; (2) 若平面BDGH 与平面ABCD 所成的角为060,求直线CF 与平面BDGH 所成的角的正弦值.21.(本小题满分14分)已知椭圆C 的中心在原点,焦点在x 轴上,离心率为12,短轴长为3. (1) 求椭圆C 的标准方程;(2) 直线x =2与椭圆C 交于P 、Q 两点,A 、B 是椭圆O 上位于直线PQ 两侧的动点,且直线AB的斜率为12。
陕西省西安中学2019_2020学年高二数学上学期期末考试试题理(含解析)
西安中学2019-2020学年度第一学期期末考试高二数学(理)一、选择题(共12小题;共60分) 1.抛物线y =4x 2的焦点坐标是( ) A. (0,1)B. (1,0)C. 1(0,)16D.1(,0)16【答案】C 【解析】 【分析】将抛物线方程化为标准形式,即可得到焦点坐标.【详解】抛物线24y x =的标准方程为214x y =,即18p =,开口向上,焦点在y 轴的正半轴上,故焦点坐标为10,16⎛⎫⎪⎝⎭.故选:C.【点睛】本题考查抛物线的标准方程,把抛物线方程化为标准形式是解题的关键,属于基础题.2.已知(2,1,2),(4,2,)a b x =-=-v v ,且//a b r r ,则x=( )A. 5B. 4C. -4D. -5【答案】C 【解析】 【分析】由向量平行,坐标对应成比例可求得x. 【详解】由题意可知,因为//a b rr,所以21242x-==-,所以x=-4,选C. 【点睛】本题考查空间向量平行的坐标关系,两向量平行,坐标对应成比例. 3.给出下列命题:①若空间向量,a b r r 满足a b =r r ,则a b =r r ;②空间任意两个单位向量必相等;③对于非零向量c r,由a c b c ⋅=⋅r r rr,则a b =rr;④在向量的数量积运算中()()a b c a b c ⋅⋅=⋅⋅r r r r r r.其中假.命题的个数是( ) A 1 B. 2C. 3D. 4【答案】D 【解析】 【分析】结合向量的性质,对四个命题逐个分析,可选出答案.【详解】对于①,空间向量,a b rr 的方向不一定相同,即a b =rr不一定成立,故①错误; 对于②,单位向量的方向不一定相同,故②错误;对于③,取()0,0,0a =r ,()1,0,0b =r ,()0,1,0c =r ,满足0a c b c ⋅=⋅=r r rr ,且0c ≠r r ,但是a b ≠r r ,故③错误;对于④,因为a b ⋅r r 和b c ⋅r r 都是常数,所以()a b c ⋅⋅r r r 和()a b c ⋅⋅r r r 表示两个向量,若a r 和c r 方向不同,则()a b c ⋅⋅r r r 和()a b c ⋅⋅r r r不相等,故④错误.故选:D.【点睛】本题考查向量的概念与性质,考查向量的数量积,考查学生的推理论证能力,属于基础题.4.下列命题,正确的是( )A. 命题“0x R ∃∈,使得2010x -<”的否定是“x R ∀∈,均有210x ->”B. 命题“存在四边相等的空间四边形不是正方形”,该命题是假命题C. 命题“若22x y =,则x y =”的逆否命题是真命题D. 命题“若3x =,则2230x x --=”的否命题是“若3x ≠,则2230x x --≠” 【答案】D 【解析】对于选项A,正确的是“,x R ∀∈ 均有210x -≥”; 对于选项B,命题是真命题,存在四边相等的空间四边形不是正方形,比如正四面体,选项B 错; 对于选项C,由于原命题为假命题,所以其逆否命题为假命题,选项C 错; 对于选项D,从否命题的形式上看,是正确的.故选D. 点睛:本题以命题的真假判断应用为载体, 考查了四种命题, 特称命题等知识点,属于中档题. 解题时要认真审题, 仔细解答.5.过抛物线26y x =的焦点F 作直线交抛物线于()11,A x y ,()22,B x y 两点,如果126x x +=,那么||AB =( )A. 10B. 9C. 6D. 4【答案】B 【解析】 【分析】依据抛物线的定义,可以求出点A ,B 到准线距离,即可求得AB 的长. 【详解】抛物线26y x =的准线方程是32x =-,所以132AF x =+, 232BF x =+,1239AB AF BF x x =+=++=,故选B . 【点睛】本题主要考查抛物线定义的应用以及过焦点弦的弦长求法.6.设,a b r r 是非零向量,则“存在实数λ,使得λa b =r r”是“a b a b +=+r r r r ”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B 【解析】 【分析】由题意结合向量共线的性质分类讨论充分性和必要性是否成立即可. 【详解】存在实数λ,使得λa b =r r,说明向量,a b r r 共线,当,a b r r同向时,a b a b +=+r r r r 成立, 当,a b r r反向时,a b a b +=+r r r r 不成立,所以,充分性不成立.当a b a b +=+r r r r 成立时,有,a b r r 同向,存在实数λ,使得λa b =r r成立,必要性成立,即“存在实数λ,使得λa b =r r”是“a b a b +=+r r r r ”的必要而不充分条件.故选B .【点睛】本题主要考查向量共线的充分条件与必要条件,向量的运算法则等知识,意在考查学生的转化能力和计算求解能力.7.椭圆221102x y m m +=--的焦距为4,则m 等于( )A. 4B. 8C. 4或8D. 12【答案】C 【解析】 【分析】分焦点在x 轴上和y 轴上两种情况讨论,分别求出2a 、2b 的表达式,结合2224a b c +==可求出答案.【详解】因为221102x ym m +=--为椭圆,所以10020102m m m m ->⎧⎪->⎨⎪-≠-⎩,即()()2,66,10m ∈U , 若椭圆的焦点在x 轴上,则210a m =-,22b m =-,故()21021224c m m m =---=-=,解得4m =,符合题意;若椭圆的焦点在y 轴上,则22a m =-,210b m =-,故()22102124c m m m =---=-=,解得8m =,符合题意.故选:C.【点睛】本题考查椭圆的性质,考查学生的计算求解能力,属于基础题.8.(2016新课标全国Ⅱ理科)已知F 1,F 2是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为B.32D. 2【答案】A【解析】试题分析:由已知可得,故选A.考点:1、双曲线及其方程;2、双曲线的离心率.【方法点晴】本题考查双曲线及其方程、双曲线的离心率.,涉及方程思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 由已知可得,利用双曲线的定义和双曲线的通径公式,可以降低计算量,提高解题速度.9.已知点A(0,1,0),B(-1,0,-1),C(2,1,1),点P(x,0,z),若PA⊥平面ABC ,则点P 的坐标为( ) A. (1,0,-2) B. (1,0,2) C. (-1,0,2) D. (2,0,-1)【答案】C 【解析】 【分析】利用PA u u u r ⊥AB u u u r ,PA u u u r ⊥AC u u ur ⇔0PA AB PA AC ⋅=⋅=u u u r u u u r u u u r u u u r .即可得出.【详解】∵()111AB =---u u u r ,,,()201AC =u u u r ,,,()1PA x z =--u u u r,,. ∵PA u u u r ⊥AB u u u r ,PA u u u r ⊥AC u u u r ,∴0PA AB PA AC ⋅=⋅=u u u r u u u r u u u r u u u r.∴1020x z x z -+=⎧⎨--=⎩,解得12x z =⎧⎨=-⎩.∴P (-1,0,2) . 故选C .【点睛】本题考查向量数量积与垂直的关系,考查运算能力,属于基础题.10.已知12,F F 是椭圆()222210x y a b a b+=>>的两焦点,P 是椭圆上任意一点,过一焦点引12F PF ∠的外角平分线的垂线,垂足为Q ,则动点Q 的轨迹为( ▲ )A. 圆B. 椭圆C. 双曲线D. 抛物线【答案】A 【解析】【详解】不妨设过焦点1F 引12F PF ∠的外角平分线的垂线,垂足为Q ,延长F 1Q 交F 2P 与M 点,连OQ ,则21211()=22OQ F M F P PF a ==+,所以动点Q 的轨迹为圆,选A. 11.如图所示,直三棱柱111ABC A B C -的侧棱长为3,底面边长11111A C B C ==,且11190A C B ∠=o,D 点在棱1AA 上且12AD DA =,P 点在棱1C C 上,则1PD PB ⋅u u u r u u u r的最小值为( )A.52B. 14-C.14D. 52-【答案】B 【解析】 【分析】由题易知1,,AC BC CC 两两垂直,以C 为坐标原点,建立如图所示空间直角坐标系,设()03PC a a =≤≤,可知()0,0,P a ,进而可得1,PD PB u u u r u u u r的坐标,然后求得1PD PB ⋅u u u r u u u r 的表达式,求出最小值即可.【详解】由题意可知,1,,AC BC CC 两两垂直,以C 为坐标原点,建立如图所示的空间直角坐标系,则()10,1,3B ,()1,0,2D ,设()03PC a a =≤≤,则()0,0,P a ,所以()1,0,2P a D =-u u u r ,()10,1,3a PB =-u u u r,则()()2151 002324a a aPD PB⎛⎫=++--=--⎪⎝⋅⎭u u u r u u u r,当52a=时,1PD PB⋅u u u r u u u r取得最小值14-.故选:B.【点睛】本题考查两个向量的数量积的应用,考查向量的坐标运算,考查学生的计算求解能力,属于中档题.12.已知椭圆2222:1(0)x yE a ba b+=>>的右焦点为F.短轴的一个端点为M,直线:340l x y-=交椭圆E于,A B两点.若4AF BF+=,点M到直线l的距离不小于45,则椭圆E的离心率的取值范围是()A.3B.3(0,]4C.3D.3[,1)4【答案】A【解析】试题分析:设1F是椭圆的左焦点,由于直线:340l x y-=过原点,因此,A B两点关于原点对称,从而1AF BF是平行四边形,所以14BF BF AF BF+=+=,即24a=,2a=,设(0,)M b,则45bd=,所以4455b≥,1b≥,即12b≤<,又22224c a b b=-=-,所以03c<≤3ca<≤.故选A.考点:椭圆的几何性质.【名师点睛】本题考查椭圆的离心率的范围,因此要求得,a c关系或范围,解题的关键是利用对称性得出AF BF +就是2a ,从而得2a =,于是只有由点到直线的距离得出b 的范围,就得出c 的取值范围,从而得出结论.在涉及到椭圆上的点到焦点的距离时,需要联想到椭圆的定义.二、填空题(共4小题;共20分)13.O 为空间中任意一点,A ,B ,C 三点不共线,且3148OP OA OB OC t =++u u u r u u u r u u u r u u u r,若P ,A ,B ,C 四点共面,则实数t =______.【答案】18【解析】 【分析】根据四点共面的充要条件即可求出t 的值.【详解】P ,A ,B ,C 四点共面,且3148OP OA OB OC t =++u u u r u u u r u u u r u u u r,31148t ++=,解得18t =. 故答案为: 18【点睛】本题考查四点共面,掌握向量共面的充要条件是解题的关键,属于基础题.14.设P 是椭圆221169x y +=上一点,12,F F 分别是椭圆的左、右焦点,若12||.||12PF PF =,则12F PF ∠的大小_____. 【答案】60o 【解析】 【分析】1PF m =,2PF n =,利用椭圆的定义、结合余弦定理、已知条件,可得22122812282m n a mn m n mncos F PF+==⎧⎪=⎨⎪=+-∠⎩,解得121cos 2F PF ∠=,从而可得结果.【详解】椭圆221 169xy+=,可得28a=,设1PF m=,2PF n=,可得2221228124282m n amnc m n mncos F PF+==⎧⎪=⎨⎪==+-∠⎩,化简可得:121cos2F PF∠=,1260F PF∴∠=o,故答案为60o.【点睛】本题主要考查椭圆的定义以及余弦定理的应用,属于中档题.对余弦定理一定要熟记两种形式:(1)2222cosa b c bc A=+-;(2)222cos2b c aAbc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60o o o等特殊角的三角函数值,以便在解题中直接应用.15.如图,二面角lαβ--等于120︒,A、B是棱l上两点,AC、BD分别在半平面α、β内,AC l⊥,BD l⊥,且1AB AC BD===,则CD的长等于______.【答案】2【解析】【分析】由已知中二面角α﹣l﹣β等于120°,A、B是棱l上两点,AC、BD分别在半平面α、β内,AC⊥l,BD⊥l,且AB=AC=BD=1,由22()CD CA AB BD=++u u u r u u u r u u u r u u u r,结合向量数量积的运算,即可求出CD的长.【详解】∵A、B是棱l上两点,AC、BD分别在半平面α、β内,AC⊥l,BD⊥l,又∵二面角α﹣l ﹣β的平面角θ等于120°,且AB =AC =BD =1,∴0CA AB AB BD ⋅=⋅=u u u r u u u r u u u r u u u r ,CA DB =u u u r u u u r <,>60°,1160CA BD cos ⋅=⨯⨯︒u u u r u u u r∴22()CD CA AB BD =++u u u r u u u r u u u r u u u r2222422=CA AB BD CA AB AB BD CA BD =+++⋅+⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ||2CD =u u u r故答案为2.【点睛】本题考查的知识点是与二面角有关的立体几何综合题,其中利用22()CD CA AB BD =++u u u r u u u r u u u r u u u r ,结合向量数量积的运算,是解答本题的关键.16.已知双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为1F ,2F ,实轴长为6,渐近线方程为13y x =±,动点M 在双曲线左支上,点N 为圆22:(1E x y ++=上一点,则2||||MN MF +的最小值为_______【答案】9 【解析】 【分析】求得双曲线的a ,b ,可得双曲线方程,求得焦点坐标,运用双曲线的定义和三点共线取得最小值,连接1EF ,交双曲线于M ,圆于N ,计算可得所求最小值. 【详解】解:由题意可得26a =,即3a =,渐近线方程为13y x =±,即有13b a =,即1b =,可得双曲线方程为2219x y -=,焦点为1(F 0),2F ,0),由双曲线的定义可得211||2||6||MF a MF MF =+=+,由圆22:(1E x y +=可得(0,E ,半径1r =, 21||||6||||MN MF MN MF +=++,连接1EF ,交双曲线于M ,圆于N ,可得1||||MN MF +取得最小值,且为1||6104EF =+=, 则则2||||MN MF +的最小值为6419+-=. 故答案为:9.【点睛】本题考查双曲线的定义、方程和性质,考查圆的方程的运用,以及三点共线取得最值,考查数形结合思想和运算能力,属于中档题. 三、解答题(共12小题;共70分) 17.根据下列条件求曲线的标准方程: (1)准线方程为32y =-的抛物线; (2)焦点在坐标轴上,且过点(3,27-、()62,7--的双曲线.【答案】(1)26x y =;(2)2212575y x -=【解析】 【分析】(1)设抛物线的标准方程为22(0)x py p =>,利用准线方程为32y =-,可求出p 的值,即可求出抛物线的标准方程;(2)设所求双曲线的方程为221(0)mx ny mn +=<,将点(3,27-、()62,7--代入方程,可求出,m n ,进而可求出双曲线的标准方程. 【详解】(1)设抛物线的标准方程为22(0)x py p =>. 其准线方程为32y =-,所以有322p -=-,故3p =. 因此抛物线的标准方程为26x y =.(2)设所求双曲线的方程为221(0)mx ny mn +=<,因为点()3,27-、()62,7--在双曲线上,所以点的坐标满足方程,由此得928172491m n m n +=⎧⎨+=⎩,解得175125m n ⎧=-⎪⎪⎨⎪=⎪⎩,因此所求双曲线的方程为2212575y x -=.【点睛】本题考查抛物线与双曲线的标准方程的求法,考查学生的计算求解能力,属于基础题.18.如图,在正方体1111ABCD A B C D -中,E 为棱1DD 的中点.求证:(1)1BD ⊥平面1AB C ; (2)平面EAC ⊥平面1AB C .【答案】(1)证明见解析;(2)证明见解析 【解析】 【分析】(1)以D 为原点,建立如图所示的空间直角坐标系D xyz -,求出平面1AB C 的法向量m u r ,通过证明1//BD m u u u u r u r,可得出1BD ⊥平面1AB C ;(2)结合(1),平面1AB C 的法向量是m u r ,然后求出平面EAC 的法向量n r,进而可证明m n ⊥u r r,从而可知平面EAC ⊥平面1AB C .【详解】(1)以D 为原点,建立如图所示的空间直角坐标系D xyz -,设正方体1111ABCD A B C D -的棱长为2,则()0,0,1E ,()2,0,0A ,()0,2,0C ,()12,2,2B ,()2,2,0B ,()10,0,2D ,所以()2,2,0AC =-u u u r,()2,0,1AE =-u u u r ,()10,2,2AB =u u u r ,()12,2,2BD =--u u u u r , 设平面1AB C 的法向量(),,m x y z =u r,则1220220m AC x y m AB y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩u u u r r u u u r r ,取1x =,得()1,1,1m =-u r . 因为12BD m =-u u u u r u r ,所以1//BD m u u u u r u r,所以1BD ⊥平面1AB C ;(2)设平面AEC 的法向量(),,n x y z '''=r,则20220n AE x z n AC x y ⎧''⋅=-+=⎪⎨''⋅=-+=⎪⎩r u u u r r u u u r ,取1x '=,得()1,1,2n =r , 1120m n ⋅=+-=Q u r r, ∴平面EAC ⊥平面1AB C.【点睛】本题考查线面垂直、面面垂直的证明,利用空间向量法是解决本题的较好方法,考查学生的计算求解能力与推理论证能力,属于基础题.19.如图,在直三棱柱111ABC A B C -中,已知12AA =,1AC BC ==,且AC BC ⊥,M 是11A B 的中点.(1)求证:1//CB 平面1AC M ;(2)设AC 与平面1AC M 的夹角为θ,求sin θ. 【答案】(1)证明见解析;(2)23【解析】 【分析】(1)易知1,,CA CB CC 两两垂直,以C 为坐标原点,建立如图所示的空间直角坐标系C xyz -,求得平面1AC M 的法向量n r,从而可证明1n CB ⊥u u u r r ,又1CB ⊄平面1AC M ,即可证明1//CB 平面1AC M ;(2)由(1)可得AC u u u r 及平面1AC M 的法向量为n r ,设AC u u u r 和n r的夹角为α,可得sin cos A nnC AC θα==⋅⋅u u u r r u u u r r ,求解即可.【详解】(1)由题易知,1,,CA CB CC 两两垂直,以C 为坐标原点,建立如图所示的空间直角坐标系C xyz -,则()0,0,0C ,()10,0,2C ,()1,0,0A ,()10,1,2B ,()11,0,2A , M Q 是11A B 的中点,11,,222M ⎛⎫∴⎪⎝⎭. 由此可得,11,,222AM ⎛⎫=- ⎪⎝⎭u u u u r ,111,,022C M ⎛⎫= ⎪⎝⎭u u u u r ,()10,1,2CB =u u u r,设向量(),,n x y z =r为平面1AC M 的一个法向量,则1112211222n C M x yn AM x y z⎧⋅=+=⎪⎪⎨⎪⋅=-++=⎪⎩u u u u rru u u u rr,取2x=,得2y=-,1z=,()2,2,1n∴=-r为平面1AC M的一个法向量.1·2021120n CB=⨯-⨯+⨯=u u u rrQ,1n CB∴⊥u u u rr,1CB⊄Q平面1AC M,1//CB∴平面1AC M.(2)()1,0,0AC=-u u u r,平面1AC M的一个法向量为()2,2,1n=-r,AC与平面1AC M的夹角为θ,设AC u u u r和n r的夹角为α,则()222212sin cos312(2)1ACACnnθα⨯-====⨯+-⋅+⋅u u u r ru u u r r.【点睛】本题考查线面平行的证明,考查线面角的求法,利用空间向量法是解决本题的较好方法,考查学生的计算求解能力与推理论证能力,属于中档题.20.一个圆经过点()2,0F,且和直线20x+=相切.(1)求动圆圆心的轨迹C的方程;(2)已知点()1,0B-,设不垂直于x轴的直线l与轨迹C交于不同的两点P Q、,若x轴是PBQ∠的角平分线,证明直线l过定点.【答案】(1)28y x=;(2)证明见解析【解析】【分析】(1)圆心到定点()2,0F 与到定直线2x =-的距离相等,可知圆心的轨迹是以点F 为焦点的抛物线,求出方程即可;(2)易知直线l 斜率存在且不为零,可设直线():0l my x n m =+≠,设()11,P x y ,()22,Q x y ,联立直线l 与抛物线方程,可得关于y 的一元二次方程,由x 轴是PBQ ∠的角平分线,可得121211y y x x -=++,整理可求得128y y =-,再结合韦达定理128y y n =,从而可求得n 的值,进而可求得直线l 过定点.【详解】(1)由题意,圆心到定点()2,0F 与到定直线2x =-的距离相等, 根据抛物线的定义可知,圆心的轨迹是以点F 为焦点的抛物线,其方程为28y x =. (2)由题可知,直线l 与C 有两个交点且不垂于于x 轴,所以直线l 斜率存在且不为零,设直线():0l my x n m =+≠,()11,P x y ,()22,Q x y ,联立28my x n y x=+⎧⎨=⎩,可得2880y my n -+=,则264320m n ∆=->,且1280y y m +=≠,128y y n =,又2118y x =,2228y x =,x 轴是PBQ ∠的角平分线,所以12122212121188y y y y x x y y --=⇒=++++,整理可得128y y =-, 所以1288y y n ==-,即1n =-,此时满足>0∆,故l :1my x =-, 所以,直线PQ 过定点()1,0.【点睛】本题考查抛物线的定义,考查直线与抛物线位置关系的应用,考查直线恒过定点问题,考查学生的计算求解能力,属于中档题.21.如图,正三角形ABE 与菱形ABCD 所在的平面互相垂直,2AB =,60ABC ∠=o ,M 是AB 的中点.(1)求证:EM AD ⊥;(2)求二面角A BE C --的余弦值;(3)在线段EC 上是否存在点P ,使得直线AP 与平面ABE 所成的角为45o ,若存在,求出EPEC的值;若不存在,说明理由. 【答案】(1)证明见解析;(2)5 ;(3) 在线段EC 上存在点P ,理由见解析. 【解析】 【分析】(1)推导出EM AB ⊥,从而EM ⊥平面ABCD ,由此能证明EM AD ⊥.(2)推导出EM MC ⊥,MC AB ⊥,从而MB 、MC 、ME 两两垂直,建立空间直角坐标系M xyz -,利用向量法能求出二面角A BE C --的余弦值.(3)求出AP u u u r和平面ABE 的法向量,利用向量法能示出在线段EC 上存在点P ,使得直线AP 与平面ABE 所成的角为45o ,且23EP EC =. 【详解】证明:(Ⅰ)EA EB =Q ,M 是AB 的中点,EM AB ∴⊥,Q 平面ABE ⊥平面ABCD ,平面ABE I 平面ABCD AB =,EA ⊂平面ABE ,EM ∴⊥平面ABCD ,AD ⊂平面ABCD ,.EM AD ∴⊥解:(2) EM ⊥Q 平面ABCD ,EM MC ∴⊥,ABC QV 是正三角形,.MC AB MB ∴⊥∴、MC 、ME 两两垂直.建立如图所示空间直角坐标系.)M xyz -则(0,M 0,0),(1,A -0,0),(1,B 0,0),()C ,(0,E 0,()BC =-u u u r ,(1,BE =-u u u r,设(,m x =ry ,)z 是平面BCE 的一个法向量,则0m BC x m BE x ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩u u u v r u u u v r , 令1z =,得)m =r,y Q 轴与平面ABE 垂直,(0,n ∴=r1,0)是平面ABE的一个法向量.cos ,5m n m n m n ⋅===⋅r rr rr r ,∴二面角A BE C --(3)假设在线段EC 上存在点P ,使得直线AP 与平面ABE 所成的角为45o .(1,AE =u u u r0,(EC =u u u r ,设(),EP EC λ==u u u r u u u r,()001λ≤≤,则()AP AE EP =+=u u u r u u u r u u u r,Q 直线AP 与平面ABE 所成的角为45o ,sin 45,2AP n cos AP n AP n ⋅∴====⋅ou u u r ru u u r r u u u r r , 由01λ≤≤,解得23λ=, ∴在线段EC 上存在点P ,使得直线AP 与平面ABE 所成的角为45o ,且2.3EP EC =【点睛】本题考查线线垂直的证明,考查二面角的余弦值的求法,考查满足条件的点是否存在的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力、运算求解能力、推理论证能力,考查化归与转化思想、函数与方程思想、数形结合思想,考查创新意识、应用意识,是中档题.22.已知()13,0F -是椭圆C :()222210x y a b a b+=>>的左焦点,O 为坐标原点,22,2P -⎭为椭圆上的点. (1)求椭圆C 的标准方程;(2)若点,A B 都在椭圆C 上,且AB 中点M 在线段OP (不包括端点)上,求AOB V 面积的最大值,及此时直线AB 的方程.【答案】(1)2214x y +=;(2)AOB V 面积的最大值为1, 此时直线AB 的方程为112y x =- 【解析】 【分析】(1)依题意可得222221123a ba b ⎧+=⎪⎨⎪-=⎩,求出,a b ,即可得到椭圆C 的标准方程; (2)设()11,A x y ,()22,B x y ,()00,M x y ,易知直线AB 的斜率存在,设为k ,将,A B 两点坐标分别代入椭圆方程,所得两式相减,可得到004x y k +⋅=,进而可求出k 的值,从而设出直线AB 的方程,并与椭圆方程联立,得到关于x 的一元二次方程,分别表示出弦长AB 及点O 到直线AB 的距离d ,从而可求得AOB V 面积的表达式,进而求出最大值,并求得此时直线的方程.【详解】(1)依题意可得222221123a ba b ⎧+=⎪⎨⎪-=⎩, 即42230b b +-=,解得21b =,则24a =.故椭圆C 的标准方程为2214x y +=;(2)设()11,A x y ,()22,B x y ,()00,M x y , 依题意可知,直线AB 的斜率存在,设为k ,则221122221414x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,所以2222121204x x y y -+-=,即()()()()1212121204x x x x y y y y -++-+=,又1202x x x +=,1202y y y +=,2121y y k x x -=-,所以0004x y k +⋅=,又直线OP :12y x =-,M 在线段OP 上,所以0012y x =-,所以12k =.设直线AB 的方程为12y x m =+, 联立方程221214y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩,可得222220x mx m ++-=,,122x x m +=-,21222x x m =-,且12002x x ∆>⎧⎪⎨<<+⎪⎩,即()()22024220m m m ⎧∆=--><-<⎪⎨⎪⎩,解得0m <<,21 所以12x x -====,122AB x x =-== 又点O 到直线AB的距离d ==所以221121222OAB m m S AB d -+=⨯⨯==≤=V , 当且仅当222m m -=,即1(1m m =-=舍去)时,等号成立,此时直线方程为112y x =-. 所以AOB V 面积的最大值为1,此时直线AB 的方程为112y x =-. 【点睛】本题考查椭圆方程的求法,考查三角形面积,考查直线与椭圆位置关系的应用,考查学生的计算求解能力,属于难题.。
浙江省杭州2023-2024学年高二上学期期末考试数学试题含答案
杭州2023学年第一学期高二年级期末数学试卷(答案在最后)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线24x y =的准线方程为()A. 1x =-B. 1x = C. 1y =- D. 1y =【答案】C 【解析】【分析】根据抛物线标准方程即可求解.【详解】由题知,抛物线方程为24x y =,则其准线方程为1y =-.故选:C2.圆2240x y x +-=上的点到直线3490x y -+=的距离的最小值为()A.1 B.2C.4D.5【答案】A 【解析】【分析】求出圆的圆心和半径,利用点到直线的距离以及半径关系,求解即可.【详解】由2240x y x +-=,得22(2)4x y -+=,圆心为(2,0),半径2r =,圆心到直线3490x y -+=的距离3d ==,故圆上的点到直线3490x y -+=的距离的最小值为1d r -=.故选:A3.设平面α内不共线的三点A ,B ,C 以及平面外一点P ,若平面α内存在一点D 满足()2PD xPA x =+- 3PB xPC +,则x 的值为()A.0B.19-C.13-D.23-【答案】C【解析】【分析】由空间向量共面定理构造方程求得结果.【详解】 空间A B C D 、、、四点共面,但任意三点不共线,231x x x ∴+-+=,解得:13x=-.故选:C4.已知ABC 的三个顶点分别为()1,0,0A ,()0,2,0B ,()2,0,2C ,则BC 边上的中线长为()A.1B.C.D.2【答案】B 【解析】【分析】利用中点坐标公式与空间两点的距离公式即可得解.【详解】因为()0,2,0B ,()2,0,2C ,所以BC 的中点为()1,1,1,又()1,0,0A ,则BC =.故选:B.5.设{}n a 是公差为d 的等差数列,n S 是其前n 项和,且10a <,48S S =,则()A.0d <B.70a = C.120S = D.7n S S ≥【答案】C 【解析】【分析】根据等差数列的通项公式和前n 项求和公式,结合选项计算依次判断即可.【详解】A :由48S S =,得1143874822a d a d ⨯⨯+=+,则1112a d =-,又10a <,所以11102a d =-<,得0d >,故A 错误;B :7111166022a a d d d d =+=-+=>,故B 错误;C :121121111121266022S a d d d ⨯=+=-⨯+=,故C 正确;D :7177711135()()22222S a a d d d -=+=-+=,21(1)1222n n n n nS na d d --=+=,由21235n n -≥-,得15n ≤≤或7n ≥,即当15n ≤≤或7n ≥时,有7n S S ≥,故D 错误.故选:C6.用数学归纳法证明:()111212322n n f n +=++++≥ (*n ∈N )的过程中,从n k =到1n k =+时,()1f k +比()f k 共增加了()A.1项B.21k -项C.12k +项D.2k 项【答案】D 【解析】【分析】分别计算出()1f k +和()f k 的项数,进而作差即得结论.【详解】因为()1111232n f n =++++ ,所以()1111232k f k =++++ ,共2k 项,则()11111112321221k k k f k +++++++++=+ 共12k +项,所以()1f k +比()f k 共增加了1222k k k +-=项,故选:D7.若数列{}n a 满足递推关系式122nn n a a a +=+,且12a =,则2024a =()A.11012B.22023C.11011D.22021【答案】A 【解析】【分析】利用取倒数法可得11112n n a a +-=,结合等差数列的定义和通项公式即可求解.【详解】因为122n n n a a a +=+,所以1211122n n n n a a a a ++==+,所以11112n n a a +-=,又12a =,所以1112=a ,故数列1{}na 是以12为首项,以12为公差的等差数列,则1111(1)222n n n a =+-=,得2n a n=,所以20242120241012a ==.故选:A8.设双曲线Γ的中心为O ,右焦点为F ,点B 满足2FB OF =,若在双曲线Γ的右支上存在一点A ,使得OA OF =,且3OAB OBA ∠≥∠,则Γ的离心率的取值范围是()A.22,77⎡⎤-⎢⎥⎣⎦ B.21,7⎛⎤+ ⎥ ⎝⎦C.31,7⎛⎤+ ⎥ ⎝⎦D.33,77⎡⎤-+⎢⎥⎣⎦【答案】B 【解析】【分析】因为OA OF =,所以A 是以O 为圆心,为OF 半径的圆O 与Γ的交点,根据条件结合双曲线的定义得27480e e --≤求解即可.【详解】不妨设A 在第一象限.因为OA OF =,所以A 是以O 为圆心,为OF 半径的圆O 与Γ的交点.设Γ的左焦点为X ,则4XOA OAB OBA OBA ∠=∠+∠≥∠,122AFO XOA OBA ∠=∠≥∠,即A FAB FB ≥∠∠,FA BF ≤在圆O 上上取一点C ,使FC B F =,则FC FA ≥由双曲线的定义知2CX FC a -≤(a 是实半轴长),即()222224FC aC c C X F +≥=-(c 是半焦距),由2FB OF = ,得212c FB FO ==,得22222242c c c Xa C ⎛⎫+≥=⎭⎛⎫⎪⎝ ⎪⎭-⎝2274202a ac c +-≥,又离心率ce a =,所以27480e e --≤,又1e >,所以21,7e ⎛⎤⎝∈⎥⎦,故选:B二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知()f x ,()g x 在R 上连续且可导,且()00'≠f x ,下列关于导数与极限的说法中正确的是()A.()()()000Δ0ΔlimΔx f x x f x f x x→--'= B.()()()Δ0ΔΔlim2Δh f t h f t h f t h→+--'=C.()()()000Δ03Δlim3Δx f x x f x f x x→+-'= D.()()()()()()000Δ0000Δlim Δx g x x g x g x f x x f x f x →'+-='+-【答案】BCD 【解析】【分析】利用导数的定义逐个求解.【详解】()()()()()000000limlimx x f x x f x f x x f x f x xx∆→∆→+⎡⎤-∆--∆-'=-=-∆-∆⎣⎦,故A 错;()()()()()02limlim22h h f t h f t h f t h f t f t hh∆→∆→+∆--∆+∆-'==∆∆,故B 对;()()()00003lim3x f x x f x f x x∆→+∆-'=∆,由导数的定义知C 对;()()()()()()()()()()0000000000000limlimlim x x x g x x g x g x x g x g x x f x x f x f x x f x f x x ∆→∆→∆→+∆-'+∆-∆==+∆-'+∆-∆,故D 对;故选:BCD10.已知等差数列{}n a 的前n 项和为n S ,正项等比数列{}n b 的前n 项积为n T ,则()A.数列n S n ⎧⎫⎨⎬⎩⎭是等差数列 B.数列{}3na 是等比数列C.数列{}ln n T 是等差数列D.数列2n n T T +⎧⎫⎨⎬⎩⎭是等比数列【答案】ABD 【解析】【分析】根据等差数列与等比数列的定义及等差数列前n 项和公式为计算即可.【详解】设{}n a 的公差为d ,{}n b 的公比为q ,则2112222n n S d d d d S n a n n a n ⎛⎫⎛⎫=+-⇒=+- ⎪ ⎪⎝⎭⎝⎭,所以()1212n n S S d n n n --=≥-是常数,故A 正确;易知()1133323nn n n a a a d a n ---==≥是常数,故B 正确;由()1ln ln ln 2n n n T T b n --=≥不是常数,故C 错误;()221212n n n n n nT T b q n T T b +++-÷==≥是常数,故D 正确.故选:ABD11.已知O 为抛物线()2:20C y px p =>的顶点,直线l 交抛物线于,M N 两点,过点,M N 分别向准线2px =-作垂线,垂足分别为,P Q ,则下列说法正确的是()A.若直线l 过焦点F ,则以MN 为直径的圆与y 轴相切B.若直线l 过焦点F ,则PF QF⊥C.若,M N 两点的纵坐标之积为28p -,则直线l 过定点()4,0pD.若OM ON ⊥,则直线l 恒过点()2,0p 【答案】BCD 【解析】【分析】根据抛物线的焦半径公式结合条件判断AB ,设直线l 方程为x my b =+,与抛物线方程联立,利用韦达定理结合条件判断CD.【详解】设()()1122,,,M x y N x y ,选项A :MN 中点H 即以MN 为直径的圆的圆心横坐标为122x x +,则由抛物线的定义可知12MN MP NQ x x p =+=++,所以梯形PMNQ 的中位线122x x pGH ++=,所以点H 到y 轴的距离为1222x x p GH +-=不等于半径1222x x pMN ++=,A 说法错误;选项B :由抛物线的定义可知MP MF =,NF NQ =,又根据平行线的性质可得1MPF PFO MFP ∠=∠=∠=∠,2NQF QFO NFQ ∠=∠=∠=∠,因为()212π∠+∠=,所以π122∠+∠=,即PF QF ⊥,B 说法正确;选项C :由题意可知直线l 斜率不为0,设直线l 方程为x my b =+,联立22x my b y px=+⎧⎨=⎩得2220y pmy pb --=,22480p m pb ∆=+>,所以122y y pb =-,由21228y y pb p =-=-解得4b p =,满足0∆>,所以直线:4l x my p =+过定点()4,0p ,C 说法正确;选项D :因为OM ON ⊥,所以由0OM ON ⋅= 可得12110x x y y +=,所以221212022y y y y p p⋅+=①,将122y y pb =-,代入①得2b p =,满足0∆>,所以直线:2l x my p =+过定点()2,0p ,D 说法正确;故选:BCD12.布达佩斯的伊帕姆维泽蒂博物馆收藏的达·芬奇方砖是在正六边形上画了具有视觉效果的正方体图案(如图1),把三片这样的达·芬奇方砖拼成图2的组合,这个组合再转化成图3所示的几何体,若图3中每个正方体的棱长为1,则()A.122QC AD AB AA =+- B.若M 为线段CQ 上的一个动点,则BM BD ⋅的最小值为1C.点F 到直线CQ 的距离是3D.异面直线CQ 与1AD 【答案】ABD 【解析】【分析】根据空间向量线性运算法则判断A ,以1A 为坐标原点,1A F 所在直线为x 轴,11A B 所在直线为y 轴建立空间直角坐标系,利用空间向量法计算B 、C 、D .【详解】因为()1112222CQ CB BQ AD BA AD AA AB AB AD AA =+=-+=-+-=--+,所以()112222QC CQ AB AD AA AD AB AA =-=---+=+-,故A 正确;如图以1A为坐标原点,建立空间直角坐标系,则()0,1,1B -,()11,0,0D -,()1,0,1D --,()0,1,1Q -,()1,1,1C --,()0,0,1A -,()1,0,0F ,()1,1,0BD =-- ,()1,2,2CQ =- ,()11,0,1AD =- ,()2,1,1CF =-,对于B :因为M 为线段CQ 上的一个动点,设CM CQ λ=,[]0,1λ∈,则()()()1,0,01,2,21,2,2BM BC CM λλλλ=+=-+-=--,所以()121BM BD λλλ⋅=--+=+,所以当0λ=时()min1BM BD ⋅= ,故B 正确;对于C :CF ==63CF CQ CQ ⨯+-⨯-+⨯⋅==,所以点F到直线CQ的距离d ==,故C 错误;对于D:因为111cos ,6CQ AD CQ AD CQ AD ⋅===⋅ ,所以1sin ,6CQ AD ==,所以1tan ,CQ AD =,即异面直线CQ 与1AD ,故D 正确;故选:ABD .第Ⅱ卷(非选择题)三、填空题:本题共4小题,每小题5分,共20分.13.已知()sin exf x =,则()f x '=_____________.【答案】sin e cos x x ⋅【解析】【分析】利用复合函数求导函数方法求解即可.【详解】由()()()sin sin sin c e e e sin os x x x x x x f '=⋅=⋅''=,故答案为:sin e cos x x⋅14.若平面内两定点A ,B 间的距离为3,动点P 满足2PA PB=,则△PAB 面积的最大值为_____________.【答案】3【解析】【分析】首先求点P 的轨迹方程,再利用数形结合求PAB 面积的最大值.【详解】以AB 所在直线为x 轴,以线段AB 的中垂线为y 轴建立平面直角坐标系,设33(,),(,0),(,0)22P x y A B -,因为2PA PB=,即2PA PB =,=,整理为:22542x y ⎛⎫-+= ⎪⎝⎭,则点P 的轨迹是以点5,02⎛⎫⎪⎝⎭为圆心,半径为2的圆,所以点P 到AB 距离的最大值是2,所以PAB 面积的最大值是13232⨯⨯=.故答案为:315.已知点P 是抛物线24y x =上动点,F 是抛物线的焦点,点A 的坐标为()1,0-,则PFPA的最小值为________.【答案】2【解析】【分析】过P 做准线的垂线,根据定义可得PF PM =,将所求PFPA最小,转化为sin PM PAM PA =∠的最小,结合图像分析出,当PA 与抛物线相切时,PAM ∠最小,联立直线与抛物线方程,根据判别式求出PA 斜率k ,进而可得PAM ∠的值,代入所求即可。
2022-2023学年四川省凉山州宁南中学高二年级上册学期期末考试数学(理)试题【含答案】
2022-2023学年四川省凉山州宁南中学高二上学期期末考试数学(理)试题一、单选题1.某单位职工老年人有30人,中年人有50人,青年人有20人,为了了解职工的建康状况,用分层抽样的方法从中抽取10人进行体检,则应抽查的老年人的人数为 A .3 B .5 C .2 D .1【答案】A【分析】先由题意确定抽样比,进而可求出结果. 【详解】由题意该单位共有职工305020100++=人, 用分层抽样的方法从中抽取10人进行体检,抽样比为10110010=, 所以应抽查的老年人的人数为130310⨯=. 故选A【点睛】本题主要考查分层抽样,会由题意求抽样比即可,属于基础题型. 2.已知,a b R ,则“220a b +=”是“0ab =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【分析】根据充分条件和必要条件的定义进行判断即可. 【详解】若220a b +=,则0a b ,则0ab =成立. 而当0a =且1b =时,满足0ab =,但220a b +=不成立; ∴“220a b +=”是“0ab =”的充分不必要条件.故选:A .3.下列说法中错误的是( )A .对于命题p :存在0x ∈R ,使得20010x x ++<,则p ⌝:任意R x ∈,均有210x x ++≥B .两个变量线性相关性越强,则相关系数r 就越接近1C .在线性回归方程20.5y x =-中,当变量x 每增加一个单位时,y 平均减少0.5个单位D .某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的方差不变 【答案】D【分析】A 选项,存在量词命题的否定是全称量词命题,把存在改为任意,把结论否定; B 选项,相关系数r 就越接近1,则两个变量线性相关性越强; C 选项,根据线性回归方程的解析式中x 的系数得到结论; D 选项,计算出添加新数据4后的方程,作出判断.【详解】存在0x ∈R ,使得20010x x ++<,的否定是:任意R x ∈,均有210x x ++≥,A 正确;两个变量线性相关性越强,则相关系数r 就越接近1,B 正确;在线性回归方程20.5y x =-中x 的系数为0.5-,当变量x 每增加一个单位时,y 平均减少0.5个单位,C 正确;某7个数1234567,,,,,,x x x x x x x 的平均数为4,方差为2,则()72142714i i x =-=⨯=∑,现加入一个新数据4,则平均数不变,仍为4,此时这8个数的方差变为()21444784+-=,故D 错误. 故选:D4.如图的程序框图的算法思路源于欧几里得在公元前300年左右提出的“辗转相除法”.执行该程序框图,若输入1813,333m n ==,则输出m 的值为( )A .4B .37C .148D .333【答案】B【分析】利用辗转相除法求1813和333的最大公约数.【详解】题中程序框图为辗转相除法求1813和333的最大公约数.因为181********=⨯+,333148237=⨯+,1483740=⨯+, 所以1813和333的最大公约数为37. 故选:B.5.圆x 2+y 2-2x -3=0与圆x 2+y 2-4x +2y +3=0的位置关系是( ) A .相离 B .内含 C .相切 D .相交【答案】D【分析】求出圆心和半径,再根据两个圆的圆心距与半径之差和半径和的关系,可得两个圆相交. 【详解】由于圆x 2+y 2﹣2x ﹣3=0的圆心为(1,0),半径等于2,而圆x 2+y 2﹣4x +2y +3=0即(x ﹣2)2+(y +1)2=2,表示以(2,﹣1的圆.22 故两个圆相交, 故选D .【点睛】本题主要考查圆的标准方程,两个圆的位置关系的判定方法,属于中档题. 6.已知抛物线24y x =上一点M 到x 轴的距离是2,则点M 到焦点F 的距离为( )A B .2C .D .3【答案】B【分析】有题意可知()1,2M ±,由焦点(1,0)F 则可求出点M 到焦点F 的距离. 【详解】M 到x 轴的距离是2,可得()1,2M ±,焦点(1,0)F 则点M 到焦点的距离为2. 故选:B.7.已知1F ,2F 为双曲线2214xy -=的两个焦点,点P 在双曲线上且满足1290F PF ∠=︒,那么点P 到x 轴的距离为( )A B C D 【答案】D【解析】设12||,||()PF x PF y x y ==>,由双曲线的性质可得x y -的值,再由1290F PF ∠=︒,根据勾股定理可得22xy +的值,进而求得xy ,最后利用等面积法,即可求解【详解】设12||,||()PF x PF y x y ==>,1F ,2F 为双曲线的两个焦点,设焦距为2c ,c ∴=P 在双曲线上,4x y ∴-=,1290F PF ∠=︒,2220x y ∴+=,2222()4xy x y x y ∴=+--=,2xy ∴=,12F PF ∴的面积为112xy =,利用等面积法,设12F PF △的高为h ,则h 为点P 到x 轴的距离,则12512h c h ⋅⋅==,55h ∴=故选:D【点睛】本题考查双曲线的性质,难度不大.8.椭圆221925x y +=上的点A 到一个焦点F 的距离为2,B 是AF 的中点,则点B 到椭圆中心O 的距离为. A .2 B .4 C .6 D .8【答案】B【分析】由三角形的中位线的性质得12OB AF =',再由椭圆的定义得108AF AF =-=',由此可求得答案.【详解】∵椭圆方程为221925x y +=,∴225a =,得5a =, ∵AFF '中,B 、O 分别为AF 和FF '的中点,∴12OB AF =',∵点A 在椭圆上,得210AF AF a +==', ∴108AF AF =-=', 由此得118422OB AF =⨯'==,故选:B .9.已知直线y=x+m 和圆x2+y2=1交于A 、B 两点,O 为坐标原点,若3AO AB 2⋅=,则实数m=( )A .1±B .C .D .12±【答案】C【分析】联立221y x mx y =+⎧⎨+=⎩,得2x 2+2mx +m 2﹣1=0,由此利用根的判别式、韦达定理、向量的数量积能求出m .【详解】联立221y x mx y =+⎧⎨+=⎩ ,得2x 2+2mx+m 2-1=0, ∵直线y=x+m 和圆x 2+y 2=1交于A 、B 两点,O 为坐标原点,∴△=4m 2+8m 2-8=12m 2-8>0,解得m 或m <设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-m ,21212m x x -= , y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2,AO =(-x 1,-y 1),AB =(x 2-x 1,y 2-y 1), ∵21123,2AO AB AO AB x x x ⋅=∴⋅=-+y 12-y 1y 2=1221122m m ----+m 2-m 2=2-m 2=32,解得m= 故选C .【点睛】本题考查根的判别式、韦达定理、向量的数量积的应用,考查了运算能力,是中档题. 10.已知0a >,0b >,直线1l :(1)10a x y -+-=,2l :210x by ++=,且12l l ⊥,则21a b+的最小值为( ) A .2 B .4 C .8 D .9【答案】C【分析】由12l l ⊥,可求得21a b +=,再由()2121424b aa b a b a b a b⎛⎫+=++=++ ⎪⎝⎭,利用基本不等式求出最小值即可.【详解】因为12l l ⊥,所以()11120a b -⨯+⨯=,即21a b +=,因为0a >,0b >,所以()2121422248b a a b a b a b a b ⎛⎫+=++=+++≥+ ⎪⎝⎭,当且仅当4b a a b =,即11,24a b ==时等号成立,所以21a b+的最小值为8.故选:C.【点睛】本题考查垂直直线的性质,考查利用基本不等式求最值,考查学生的计算求解能力,属于中档题.11.已知O 为坐标原点,1F ,2F 是双曲线C :22221x y a b -=(0a >,0b >)的左、右焦点,双曲线C 上一点P 满足12PF PF ⊥,且2122PF PF a ⋅=,则双曲线C 的离心率为AB .2CD 【答案】D【详解】设P 为双曲线右支上一点,1PF =m ,2 PF =n ,|F 1F 2|=2c , 由双曲线的定义可得m −n =2a , 点P 满足12PF PF ⊥,可得m 2+n 2=4c 2, 即有(m −n )2+2mn =4c 2, 又mn =2a 2, 可得4a 2+4a 2=4c 2,即有c ,则离心率e 故选D .12.已知圆224410M x y x y +---=:,直线:34110l x y P ++=,为l 上的动点,过点P 作圆M 的切线PA PB ,,切点为A B ,,当四边形PAMB 面积最小时,直线AB 的方程为( ) A .3450x y +-= B .3450x y --= C .3450x y ++= D .3450x y -+=【答案】A【分析】由题意可判断直线与圆相离,根据圆的知识可知,四点,,,A P B M 共圆,且AB MP ⊥,根据 46PAM PM AB S PA ⋅==△可知,当直线MP l ⊥时,PM AB ⋅最小,求出以 MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程.【详解】解:圆的方程可化为()()22229x y -+-=,点M 到直线l 的距离为52d ==>,所以直线 l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14462PAM PM AB S PA AM PA ⋅==⨯⨯⨯=△,而 PA =当直线MP l ⊥时,min 5MP =, min 4PA =,此时PM AB ⋅最小.∴()4:223MP y x -=-,即 4233y x =-,由423334110y x x y ⎧=-⎪⎨⎪++=⎩,解得12x y =-⎧⎨=-⎩.所以以MP 为直径的圆的方程为()()()()21220x x y y -+++-=, 即2260x x y -+-=,两圆的方程相减可得:3450x y +-=,即为直线AB 的方程. 故选:A .【点睛】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题.二、填空题13.某校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的的频率分布直方图,根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数为:_____.【答案】140【分析】求出这200名学生中每周的自习时间不少于22.5小时的频率,即可求得答案. 【详解】由频率分布直方图得:这200名学生中每周的自习时间不少于22.5小时的频率为: (0.020.10) 2.50.71+⨯-=,这200名学生中每周的自习时间不少于22.5小时的人数为:2000.7140⨯=, 故答案为:140.14.从800名同学中,用系统抽样的方法抽取一个20人的样本,将这800名同学按1800进行随机编号,若第一组抽取的号码为3,则第五组抽取的号码为__________. 【答案】163【分析】根据系统抽样的知识求得正确答案. 【详解】组距为8004020=,所以第五组抽取的号码是()35140163+-⨯=. 故答案为:16315.抛物线2:12C y x =-的焦点为F ,P 为抛物线C 上一动点,定点(5,2)A -,则PA PF +的最小值为___________. 【答案】8【分析】根据抛物线的定义,将||PF 转化为P 到准线的距离,再结合图形可求出结果. 【详解】由212y x =-,得(3,0)F -,准线方程为:3x =,过P 作准线3x =的垂线,垂足为M ,则PA PF +||||PA PM =+||3(5)8AM ≥=--=, 当且仅当,,A P M 三点共线时,等号成立. 故答案为:816.数学中有许多美丽的曲线,它蕴藏于特有的抽象概念,公式符号,推理论证,思维方法等之中,揭示了规律性,是一种科学的真实美.如曲线22:C x y x y +=+,(如图所示),给出下列三个结论①曲线C 关于直线y x =对称;②曲线C 2;③曲线C 围成的图形的面积是2π+. 其中,正确结论的序号是_________. 【答案】①③【分析】根据点的对称性可判断①,由曲线方程知曲线关于原点,x ,y 轴对称,当0x ≥,0y ≥时,可得220x y x y +--=,可得22111222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,所以可得曲线为11,22C ⎛⎫ ⎪⎝⎭为圆心,22r为半径的半圆,由此可作出曲线C 的图象,从而通过运算可判断命题②③的真假.【详解】设点(),A x y 在曲线C 上,则22x y x y +=+,(),A x y 关于直线y x =对称的点(),A y x ',将(),A y x '代入曲线C 中得22y x y x +=+,因此(),A y x '在曲线C 上,故①正确,曲线22:||||C x y x y +=+可知曲线C 关于原点,x ,y 轴对称,当0x ≥,0y ≥时,可得220x y x y +--=,可得22111222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,所以可得曲线为11,22C ⎛⎫ ⎪⎝⎭为圆心,22r为半径的半圆,曲线上任意点到原点的距离的最大值为OC r +=C,故命题②错误;根据对称性可知曲线C 围成的图形的面积为4的正方形的面积,即214π2π2⨯⨯⨯=+⎝⎭,故命题③正确; 故答案为:①③三、解答题17.已知直线:(1)20()l a x y a a R ++--=∈.(1)若直线l 在两坐标轴上的截距相等,求直线l 的方程; (2)当()0,0O 点到直线l 距离最大时,求直线l 的方程. 【答案】(1)0x y -+=或20x y +-=(2)20x y +-=【解析】(1)先求出直线l 在两坐标轴上的截距,根据题意,列出方程,解方程即可;(2)根据直线的点斜式方程可以确定直线恒过的定点,然后根据直线l 与AO 垂直时,()0,0O 点到直线l 距离最大,最后求出a 的值,进而求出直线的方程. 【详解】(1)直线:(1)20l a x y a ++--=,取0x =,2y a =+ 取0y =,21a x a +=+即221a a a ++=+,解得2a =-或0a =, 故直线方程为0x y -+=或20x y +-=(2):(1)20l a x y a ++--=变换得到(1)20a x x y -++-=, 故过定点()1,1A当直线l 与AO 垂直时,距离最大. 1OA k =,故1k =-,解得0a =,故所求直线方程为20x y +-=【点睛】本题考查了直线的截距的定义,考查了直线过定点的判断,考查了已知点到直线的距离的最大值求参数问题,考查了数学运算能力. 18.已知命题[]:0,2p x ∈; 命题:23q m x m <≤+. (1)若p 是q 的充分条件,求m 的取值范围;(2)当1m =时,已知p q ∧是假命题,p q ∨是真命题,求x 的取值范围. 【答案】(1)102m -≤<;(2)[](]0,12,5⋃.【分析】(1)解不等式组0232m m <⎧⎨+≥⎩即得解;(2)由题得p 、q 一真一假,分两种情况讨论得解.【详解】(1)解:由题意知p 是q 的充分条件,即p 集合包含于q 集合,有[](]010,2,2302322m m m m m <⎧⊆+⇒⇒-≤<⎨+≥⎩; (2)解:当1m =时,有(]:1,5q x ∈, 由题意知,p 、q 一真一假,当p 真q 假时,020115x x x x ≤≤⎧⇒≤≤⎨≤>⎩或, 当p 假q 真时,022515x x x x ⎧⇒<≤⎨<≤⎩或, 综上,x 的取值范围为[](]0,12,5⋃19.已知某绿豆新品种发芽的适宜温度在6℃~22℃之间,一农学实验室研究人员为研究温度x (℃)与绿豆新品种发芽数y (颗)之间的关系,每组选取了成熟种子50颗,分别在对应的8℃~14℃的温度环境下进行实验,得到如下散点图:(1)由折线统计图看出,可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明; (2)建立y 关于x 的回归方程,并预测在19℃的温度下,种子发芽的颗数. 参考数据:24y =,()()7170i i i x xy y =--=∑,()721176i i y y=-=∑778.77.参考公式:相关系数()()()()12211niii nniii i x x y y r x x y y ===--=--∑∑∑y bx a =+中斜率和截距的最小二乘估计公式分别为()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =-.【答案】(1)答案见解析; (2)44.【分析】(1)直接套公式求出系数r ,即可判断;(2)套公式求出回归方程,把19x =代入,即可求解.【详解】(1)由题意可知:()1891011121314117x =++++++=. ()()()()()()()()27222222218119111011111112111311141128ii x x =-=-+-+-+-+-+-+-=∑.又()721176i i y y=-=∑,所以相关系数()()()()122110.99717628niii nni i i i x x y y r x xy y===--==≈⨯--∑∑∑.因为相关系数0.998r ≈,所以y 与x 的线性相关性较高,可以利用线性回归模型拟合y 与x 的关系.(2)由(1)知11x =,24y =,()27128i i x x=-=∑,()()7170i i i x x y y =--=∑.所以()()()121702.528niii ni i x x y y b x x==--===-∑∑, 所以24 2.511 3.5a y bx =-=-⨯=-. 所以y 与x 的回归直线为 2.5 3.5y x =-.当19x =时, 2.519 3.544y =⨯-=.即在19℃的温度下,种子发芽的颗数为44.20.圆心在()300x y x -=>上的圆C 与x 轴相切,且被直线0x y -=截得的弦长为 (1)求圆C 的方程;(2)求过点()2,3P --且与该圆相切的直线方程. 【答案】(1)()()22139x y -+-= (2)2x =-和3460x y --=【分析】(1)设圆心()(),30C a a a >,求出圆心到直线的距离d ,由勾股定理计算弦长求得参数,得圆标准方程;(2)分类讨论,斜率不存在的直线直接验证,斜率存在的直线设出直线方程(用点斜式),由圆心到切线距离等于半径求得参数值,得直线方程.【详解】(1)设圆心()(),30C a a a >,则3ra =C 到直线0x y -=的距离为d ==22227r d d =+=+⎝⎭22927a a =+∴21a =∴1a =∴圆C 的方程为()()22139x y -+-=(2)①当切线l 斜率不存在时,l :2x =-满足题意 ②设l :()32y k x +=+,即230kx y k -+-= 圆心到直线l 的距离为3d '=,∴34k =综上得过P 与圆C 相切的直线方程为2x =-和3460x y --=21.已知抛物线C 的顶点是坐标原点O ,而焦点是双曲线2241x y -=的右顶点. (1)求抛物线C 的方程;(2)若直线:2l y x =-与抛物线相交于A 、B 两点,则直线OA 与OB 的斜率之积是否为定值,若是,求出定值;若不是,说明理由. 【答案】(1)22y x = (2)是定值,1-【分析】(1)将双曲线的方程化为标准形式,求得右顶点坐标,根据抛物线的焦点与双曲线的右顶点重合得到抛物线的方程;(2)联立直线与抛物线方程,结合韦达定理求得弦长及两点连线的斜率公式即可求解.【详解】(1)双曲线2241x y -=化为标准形式:22114x y -=,211,42a a ==,右顶点A 1,02⎛⎫ ⎪⎝⎭,设抛物线的方程为22y px =,焦点坐标为,02p F ⎛⎫⎪⎝⎭,由于抛物线的焦点是双曲线的右顶点,所以1p =, 所以抛物线C 的方程22y x =;(2)联立222y xy x ⎧=⎨=-⎩,整理得2240y y --=,设()()1122,,,A x y B x y ,则12124,2,y y y y =-+=, ()()()121212121121224122242442OA OB y y y y y y k k x x y y y y y y -∴⋅=⋅==+++++++==--⨯, 综上,抛物线C 的方程22y x =,OA ,OB 斜率的乘积为-1.22.已知椭圆22221(0)x y a b a b +=>>的左、右两个焦点1F ,2F,离心率e =2.(1)求椭圆的方程;(2)如图,点A 为椭圆上一动点(非长轴端点),2AF 的延长线与椭圆交于B 点,AO 的延长线与椭圆交于C 点,求ABC 面积的最大值.【答案】(1)椭圆的标准方程为2212x y += (2)ABC ∆2【详解】试题分析:(1) 由题意得1b =,再由22222c e a b c a a ===+=1c = ⇒标准方程为2212x y +=;(2)①当AB 的斜率不存在时,不妨取222,1,,1,A B C ⎛⎛⎛- ⎝⎭⎝⎭⎝⎭12222ABC S ∆=⨯ ②当AB 的斜率存在时,设AB 的方程为()1y k x =-,联立方程组()22112y k x x y ⎧=-⎪⎨+=⎪⎩ ⇒ ()222222121222422214220,2121k k k x k x k x x x x k k -+-+-=+=⋅=++ ⇒ 2212221k AB k +=+又直线0kx y k --=的距离2211k k d k k -=++⇒点C 到直线AB 的距离为2221k d k =+ ⇒ ()22222211111222222222141421ABCk k S AB d ABC k k k ∆⎛⎫+=⋅=⋅=-∆ ⎪++⎝⎭+面2试题解析:(1) 由题意得22b =,解得1b =, ∵2222c e a b c a ===+,∴2a =1c =, 故椭圆的标准方程为2212x y +=(2)①当直线AB 的斜率不存在时,不妨取 222,1,,1,A B C ⎛⎛⎛- ⎝⎭⎝⎭⎝⎭, 故12222ABC S ∆=⨯②当直线AB 的斜率存在时,设直线AB 的方程为 ()1y k x =-, 联立方程组()22112y k x x y ⎧=-⎪⎨+=⎪⎩,化简得()2222214220k x k x k +-+-=,设()()221122121222422,,,,,2121k k A x y B x y x x x x k k -+=⋅=++AB==点O 到直线0kx y k --=的距离d ==因为O 是线段AC 的中点,所以点C 到直线AB 的距离为2d∴2211122221ABCk S AB d k ∆⎛⎫+=⋅=⋅ ⎪+⎝⎭==综上,ABC ∆【点睛】本题主要考查椭圆的标准方程及其性质、点到直线的距离、弦长公式和三角形面积公式等知识,涉及函数与方程思想、数形结合思想分类与整合、转化与化归等思想,并考查运算求解能力和逻辑推理能力,属于较难题型. 第一小题由题意由方程思想建立方程组求得标准方程为22x y 12+=;(2)利用分类与整合思想分当AB 的斜率不存在与存在两种情况求解,在斜率存在时,由舍而不求法求得2121224k x x ,x x 2k 1+=⋅=⇒+ AB =,再求得点C到直线AB 的距离为2d⇒2ΔABC211k 1S AB 2d ABC 222k 1⎛⎫+=⋅=⋅= ⎪+⎝⎭面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山西省运城市夏县中学14—15学年上学期高二期末考试数学(理)试题本试题满分100分,考试时间90分钟。
答案一律写在答卷页上一、选择题(本大题共12小题,每小题3分,共36分)1.已知命题p :“任意x ∈R 时,都有x 2-x +14>0”;命题q :“存在x ∈R ,使sin x +cos x=2成立”.则下列判断正确的是( )A .命题q 为假命题B .命题P 为真命题C .p ∧q 为真命题D . p ∨q 是真命题 2.已知a ,b ∈R ,则“ln a >ln b ”是“(13)a <(13)b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3. 抛物线24(0)y ax a =<的焦点坐标是 ( )A 、(a , 0)B 、(-a , 0)C 、(0, a )D 、(0, -a ) 4. 如图:在平行六面体1111D C B A ABCD -中,M 为11C A 与11D B 的交点。
若=,=,AA =1则下列向量中与BM 相等的向量是( )(A ) c b a ++-2121 (B )c b a ++2121 (C )c b a +--2121 (D )c b a +-21215. 已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是 ( )(A )1203622=+y x (x ≠0) (B )1362022=+y x (x ≠0) (C )120622=+y x (x ≠0) (D )162022=+y x (x ≠0) 6.在正方体ABCD -A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的余弦值为( ) A.24 B.23 C.33 D.327. 过抛物线 y 2 = 4x 的焦点作直线交抛物线于A (x 1, y 1)B (x 2, y 2)两点,如果21x x +=6,那么AB = ( )(A )6 (B )8 (C )9 (D )10C18.设[]0,απ∈,则方程22sin cos 1x y αα+=不能表示的曲线为 A .椭圆B .双曲线C .抛物线D .圆9.下列说法中错误..的个数为 ①一个命题的逆命题为真,它的否命题也一定为真;②若一个命题的否命题为假,则它本身一定为真;③12x y >⎧⎨>⎩是32x y xy +>⎧⎨>⎩的充要条件;④=a b =是等价的;⑤“3x ≠”是“3x ≠”成立的充分条件。
A .2B .3C .4D .510. 若直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点,那么k 的取值范围是( )A 、(315,315-) B 、(315,0) C 、(0,315-) D 、(1,315--)11.在抛物线x y 42-=上求一点P ,使其到焦点F 的距离与到()1,2-A 的距离之和最小,则该点坐标为 ( ) (A )⎪⎭⎫⎝⎛1,41 (B )⎪⎭⎫⎝⎛-1,41 (C )()22,2-- (D )()22,2- 12.已知点F 1、F 2分别是椭圆22221x y a b+=的左、右焦点,过F 1且垂直于x 轴的直线与椭圆交于A 、B 两点,若△ABF 2为正三角形,则该椭圆的离心率e 为 ( )(A )12 (B ) (C )13(D15. 如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是___________。
16.有下列命题:①双曲线x 225-y 29=1与椭圆x 235+y 2=1有相同的焦点; ②“-12<x <0”是“2x 2-5x -3<0”的必要不充分条件; ③若a 与b 共线,则a ,b 所在直线平行; ④若a ,b ,c 三向量两两共面,则a ,b ,c 三向量一定也共面; ⑤∀x ∈R ,x 2-3x +3≠0.其中正确的命题有________.(把你认为正确的命题的序号填在横线上)三、解答题(本大题共4小题,共48分.解答应写出文字说明,证明过程或演算步骤.) 17.(本题满分10分)设p :方程210x mx ++=有两个不等的负根,q :方程244(2)10x m x +-+=无实根,若p 或q 为真,p 且q 为假,求m 的取值范围.18.(本小题满分12分)已知直线l 交抛物线:C 22y px =)0(>p 于A,B 两点,且90AOB ∠=︒, 其中,点O 为坐标原点,点A 的坐标为(1,2).19.(本小题满分12分)如图,在底面是正方形的四棱锥P ABCD -中,1PA AB ==,PB PD =E 在PD 上,且:2:1PE ED =.(Ⅰ)求证:PA ⊥平面ABCD ; (Ⅱ)求二面角D AC E --的余弦值; (Ⅲ)在棱PC 上是否存在一点F ,使得//BF 平面ACE .CDPAEB20. (本小题满分14分)椭圆C 的中心为坐标原点O ,点12,A A 分别是椭圆的左、右顶点,B 为椭圆的上顶点,一个焦点为F ,.点M 是椭圆C 上在第一象限内的一个动点,直线1A M 与y 轴交于点P ,直线2A M 与y 轴交于点Q . (I )求椭圆C 的标准方程;(II )若把直线12,MA MA 的斜率分别记作12,k k ,求证:1214k k =-; (III) 是否存在点M 使1||||2PB BQ =,若存在,求出点M 的坐标,若不存在,说明理由.参考答案一、选择题(本大题共12小题,每小题3分,共36分)二、填空题(本大题共4个小题,每小题4分,满分16分)三、解答题(本大题共4小题,共48分.解答应写出文字说明,证明过程或演算步骤.) 17、(本小题满分10分)解:若方程210x mx ++=有两个不等的负根,则212400m x x m ⎧∆=->⎨+=-<⎩, ……2分所以2m >,即:2p m >. ………………………………3分 若方程244(2)10x m x +-+=无实根,则216(2)160m ∆=--<, ……5分即13m <<, 所以:13p m <<. ……………………………………6分 因为p q ∨为真,则,p q 至少一个为真,又p q ∧为假,则,p q 至少一个为假. 所以,p q 一真一假,即“p 真q 假”或“p 假q 真”. ……………………8分 所以213m m m >⎧⎨≤≥⎩或或213m m ≤⎧⎨<<⎩ ………………………10分18. (本小题满分12分)解: (I )因为点()2,1A 在抛物线px y 22=上,所以p 222=, ---------2分 解得2=p , ---------3分 故抛物线C 的方程为x y 42=. ----------4分(II )设点B 的坐标为()00,y x ,由题意可知00≠x ,直线OA 的斜率2=OA k ,直线OB 的斜率0x y k OB =, 因为90AOB ∠=︒,所以120-==⋅x y k k OB OA , ---------6分 又因为点()00,y x B 在抛物线x y 42=上,19.(本小题满分12分)解:(Ⅰ)正方形ABCD 边长为1,1PA =,PB PD ==,所以90PAB PAD ∠=∠=,即PA AB ⊥,PA AD ⊥,因为AB AD A = ,所以PA ⊥平面ABCD . ………………4分 (Ⅱ)如图,以A 为坐标原点,直线AB ,AD ,AP 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则(110)AC = ,,,21(0)33AE = ,,.由(Ⅰ)知AP为平面ACD 的法向量,(001)AP =,,,设平面ACE 的法向量为()n a b c =,,, 由n AC ⊥,n AE ⊥ , 得021033a b b c +=⎧⎪⎨+=⎪⎩,, 令6c =,则3b =-,3a =,所以(336)n =-,,, ………………6分所以cos n AP AP n n AP⋅<>==,,即所求二面角的余弦值为3………………8分 (Ⅲ)设([01])PF PC λλ=∈ ,,则(111)()PF λλλλ=-=-,,,,,(11)BF BP PF λλλ=+=--,,,若//BF 平面ACE ,则BF n ⊥ ,即0BF n ⋅=,(11)(336)0λλλ--⋅-=,,,,,解得12λ=, ………………10分 所以存在满足题意的点,当F 是棱PC 的中点时,//BF 平面ACE . …………12分20.(本小题满分14分)解: (I )由题意,可设椭圆C 的方程为()012222>>=+b a b y a x ,则3=c ,23=a c ,所以2=a ,1222=-=c a b , ----------2分所以椭圆C 的方程为1422=+y x . ---------4分(II )由椭圆C 的方程可知,点1A 的坐标为()0,2-,点2A 的坐标为()0,2,设动点M 的坐标为()00,y x ,由题意可知200<<x , 直线1MA 的斜率01002y k x =>+,直线2MA 的斜率02002y k x =>-, 所以4202021-=⋅x yk k , ----------6分因为点()00,y x M 在椭圆1422=+y x 上,所以142020=+y x ,即412020x y -=,所以.41441202021-=--=⋅x x k k ---------8分(III )设直线1MA 的方程为()12y k x =+,令0=x ,得12y k =,所以点P 的坐标为()10,2k , -------9分 设直线2MA 的方程为()22y k x =-,令0=x ,得22y k =-,所以点Q 的坐标为()20,2k -, -------10分 由椭圆方程可知,点B 的坐标为()1,0,由BQ PB 21=,得121|12||21|2k k -=--, 由题意,可得12112(21)2k k -=--整理得12423k k -=, --------11分与1214k k =-联立,消1k 可得2222310k k ++=, 解得21k =-或212k =- , ------12分所以直线2MA 的直线方程为)2(--=x y 或1(2)2y x =--,因为1(2)2y x =--与椭圆交于上顶点,不符合题意.把(2)y x =--代入椭圆方程,得2516120x x -+=, 解得65x =或2, ---------13分 因为002x <<,所以点M 的坐标为⎪⎭⎫⎝⎛54,56. --------14分 说明:解答题有其它正确解法的请酌情给分.。