北师大版数学九年级下册第一章 1.1(2)锐角三角函数(导学案)

合集下载

北师大版数学九年级下册1.1《锐角三角函数》教学设计1

北师大版数学九年级下册1.1《锐角三角函数》教学设计1

北师大版数学九年级下册1.1《锐角三角函数》教学设计1一. 教材分析《锐角三角函数》是北师大版数学九年级下册第一章第一节的内容。

本节课的主要内容是引导学生通过锐角三角函数的定义,了解正弦、余弦、正切函数的概念,并会进行简单的计算。

这一节内容是初中数学的重要内容,也是高中数学的基础。

在教材中,通过大量的实例,让学生感受三角函数在实际问题中的应用,从而培养学生的数学应用能力。

二. 学情分析九年级的学生已经具备了一定的数学基础,对函数的概念有一定的了解。

但是,对于三角函数的定义和应用,可能还比较陌生。

因此,在教学过程中,需要引导学生通过实例,理解三角函数的概念,并能够运用三角函数解决实际问题。

三. 教学目标1.理解锐角三角函数的定义,掌握正弦、余弦、正切函数的概念。

2.能够运用三角函数解决实际问题。

3.培养学生的数学应用能力。

四. 教学重难点1.重点:锐角三角函数的定义,正弦、余弦、正切函数的概念。

2.难点:运用三角函数解决实际问题。

五. 教学方法1.实例教学:通过实际问题,引导学生理解三角函数的定义和应用。

2.小组讨论:让学生在小组内讨论,共同解决问题,培养学生的合作能力。

3.练习巩固:通过大量的练习,让学生巩固所学知识,提高解题能力。

六. 教学准备1.教材:北师大版数学九年级下册。

2.课件:相关的教学课件。

3.练习题:相关的练习题。

七. 教学过程1.导入(5分钟)通过一个实际问题,引入三角函数的概念。

例如,一个直角三角形,一个锐角为30度,斜边长为1,求这个三角形的两条直角边的长度。

让学生思考,如何解决这个问题。

2.呈现(10分钟)通过多媒体课件,呈现三角函数的定义和概念。

引导学生理解,三角函数是描述直角三角形中,角度和边长之间关系的一种数学工具。

讲解正弦、余弦、正切函数的定义,并通过动画演示,让学生直观地理解这三个函数的定义。

3.操练(10分钟)让学生进行一些相关的练习题,巩固所学的知识。

教师可以通过多媒体课件,展示解题过程,引导学生正确解题。

北师大版数学九年级下册1.1《锐角三角函数》教案1

北师大版数学九年级下册1.1《锐角三角函数》教案1

北师大版数学九年级下册1.1《锐角三角函数》教案1一. 教材分析北师大版数学九年级下册1.1《锐角三角函数》是学生在初中阶段学习三角函数的起点,起着承前启后的作用。

本节课主要介绍了锐角三角函数的定义及概念,通过生活中的实例让学生感受锐角三角函数在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。

教材以实例引入,引导学生探究锐角三角函数的定义,并通过自主学习、合作交流的方式,让学生掌握锐角三角函数的基本概念和性质。

二. 学情分析九年级的学生已经具备了一定的函数知识,对函数的概念有一定的理解。

但是,对于锐角三角函数的理解还需要通过具体的实例和生活情境来引导学生。

学生在学习过程中,需要通过合作交流、自主探究的方式,掌握锐角三角函数的定义和性质。

此外,学生还需要在学习过程中,培养运用数学知识解决实际问题的能力。

三. 教学目标1.理解锐角三角函数的定义,掌握锐角三角函数的基本概念和性质。

2.能够运用锐角三角函数解决实际问题,提高运用数学知识解决实际问题的能力。

3.培养学生的合作交流、自主探究能力,提高学生的数学素养。

四. 教学重难点1.教学重点:锐角三角函数的定义及概念。

2.教学难点:锐角三角函数的性质和运用。

五. 教学方法1.实例引入:通过生活中的实例,引导学生感受锐角三角函数在实际生活中的应用。

2.自主学习:引导学生通过自主学习,掌握锐角三角函数的定义和性质。

3.合作交流:学生进行合作交流,分享学习心得和解决问题的方法。

4.实践操作:让学生通过实际操作,加深对锐角三角函数的理解。

六. 教学准备1.教学课件:制作精美的教学课件,辅助讲解和展示。

2.实例素材:收集生活中的实例,用于引导学生感受锐角三角函数的应用。

3.练习题库:准备一定数量的练习题,用于巩固所学知识。

七. 教学过程导入(5分钟)1.利用实例引入:展示一些生活中的实例,如测量国旗的高度、计算房屋的面积等,引导学生感受锐角三角函数在实际生活中的应用。

北师大版九年级下册第一章直角三角形的边角关系锐角三角函数教案

北师大版九年级下册第一章直角三角形的边角关系锐角三角函数教案

1、1、1锐角三角函数一、教材依据本节为九年级(下)第一章《直角三角形的边角关系》的第一节《从梯子的倾斜程度谈起》第一课时、直角三角形的边角关系是现实世界中应用最广泛的关系之一,锐角三角函数在解决现实问题中有着重要的应用。

通过本节的学习,学生将进一步感受数形结合的思想,体会数形结合的方法。

也将为学生学习正弦、余弦等三角函数知识及进一步学习其他数学知识奠定了基础。

二、设计思路从新课标中让我们明白:“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。

教学应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验、学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者、"基于课标,我运用导学稿,采纳自主探究、合作交流等形式完成了本节课的教学、三、教学准备(一)学生知识状况分析本节课从生活实例出发,让学生观察多种梯子倾斜的情况,关于梯子的倾斜问题学生在生活中也有一定的生活经验,能够特别容易通过观察分析出简单的梯子倾斜情况,但关于倾斜角度特别接近的情况,就需要通过本节课的学习利用直角三角形三边的关系来判断、(二)教学任务分析教学目标知识与技能1。

经历探究直角三角形中边角关系的过程。

理解正切的意义和与现实生活的联系。

2、能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算。

过程与方法1。

经历观察、猜想等数学活动过程,发展合情推理能力,能有条理地,清楚地阐述自己的观点。

2、体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题,提高解决实际问题的能力。

3、体会解决问题的策略的多样性,发展实践能力和创新精神。

情感态度与价值观1。

积极参与数学活动,对数学产生好奇心和求知欲、2。

形成实事求是的态度以及独立考虑的习惯。

教学重点1、从现实情境中探究直角三角形的边角关系。

新版北师大版数学九年级下册教案(全)

新版北师大版数学九年级下册教案(全)

第一章 直角三角形的边角关系第1课时§1.1.1 锐角三角函数教学目标1、 经历探索直角三角形中边角关系的过程2、 理解锐角三角函数(正切、正弦、余弦)的意义,并能够举例说明3、 能够运用三角函数表示直角三角形中两边的比4、 能够根据直角三角形中的边角关系,进行简单的计算 教学重点和难点重点:理解正切函数的定义 难点:理解正切函数的定义 教学过程设计➢ 从学生原有的认知结构提出问题直角三角形是特殊的三角形,无论是边,还是角,它都有其它三角形所没有的性质。

这一章,我们继续学习直角三角形的边角关系。

➢ 师生共同研究形成概念1、 梯子的倾斜程度在很多建筑物里,为了达到美观等目的,往往都有部分设计成倾斜的。

这就涉及到倾斜角的问题。

用倾斜角刻画倾斜程度是非常自然的。

但在很多实现问题中,人们无法测得倾斜角,这时通常采用一个比值来刻画倾斜程度,这个比值就是我们这节课所要学习的——倾斜角的正切。

1) (重点讲解)如果梯子的长度不变,那么墙高与地面的比值越大,则梯子越陡; 2) 如果墙的高度不变,那么底边与梯子的长度的比值越小,则梯子越陡; 3) 如果底边的长度相同,那么墙的高与梯子的高的比值越大,则梯子越陡;通过对以上问题的讨论,引导学生总结刻画梯子倾斜程度的几种方法,以便为后面引入正切、正弦、余弦的概念奠定基础。

2、 想一想(比值不变)☆ 想一想 书本P 2 想一想 通过对前面的问题的讨论,学生已经知道可以用倾斜角的对边与邻边之比来刻画梯子的倾斜程度。

当倾斜角确定时,其对边与邻边的比值随之确定。

这一比值只与倾斜角的大小有关,而与直角三角形的大小无关。

3、 正切函数 (1) 明确各边的名称 (2) 的邻边的对边A A A ∠∠=tan(3) 明确要求:1)必须是直角三角形;2)是∠A 的对边与∠A 的邻边的比值。

☆ 巩固练习a 、 如图,在△ACB 中,∠C = 90°, 1) tanA = ;tanB = ;2) 若AC = 4,BC = 3,则tanA = ;tanB ABCAB C∠A 的对边∠A 的邻边斜边ABC= ;3) 若AC = 8,AB = 10,则tanA = ;tanB = ; b 、 如图,在△ACB 中,tanA = 。

北师大版数学九年级下册1.1《锐角三角函数》教案

北师大版数学九年级下册1.1《锐角三角函数》教案
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“锐角三角函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解锐角三角函数的基本概念。锐角三角函数是描述直角三角形中角度与边长关系的数学工具。它们在解决实际问题中具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。通过测量树的影子长度和角度,我们可以利用锐角三角函数计算出树的高度,展示其在实际中的应用。
其次,学生在小组讨论环节表现积极,但部分学生在分析问题和解决问题时仍显得不够自信。在今后的教学中,我要更加关注这部分学生的需求,多给予鼓励和指导,提高他们的自信心和解决问题的能力。
此外,实践活动环节,学生对实验操作表现出浓厚兴趣,但也有一ቤተ መጻሕፍቲ ባይዱ小组在操作过程中出现了一些错误。我觉得在下次实验操作前,可以提前进行一次简短的模拟演示,让学生更清楚地了解操作步骤和注意事项,从而提高实验的成功率。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了锐角三角函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对锐角三角函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.增强学生的数据分析观念:通过解决直角三角形计算问题,引导学生对数据进行整理、分析和处理,培养学生数据分析的思维方式和方法,提高解决实际问题的能力。

北师大版九年级数学第一章三角函数全章导学案

北师大版九年级数学第一章三角函数全章导学案

3
35
A4
C
(1)
C
A
(2)
4.三角形在正方形网格纸中的位置如图所示,则 sin α的值是﹙ ﹚
3
A. 4
4
B
.3
3
C .5
4
D
.5
5.如图,在直角△ ABC中,∠ C= 90o,若 AB= 5, AC=4,则
A
sinA =( )
2
6.在△ ABC中,∠C=90°,BC=2,sinA= 3,则边 AC的长是 ( )
斜边
c
把∠ A 的对边与邻边的比叫做∠ A 的正切,记作 tanA ,即 tanA= A的对边 = a . A的邻边 b
例如,当∠ A=30°时,我们有 cosA=cos30°=

当∠ A=45°时,我们有 tanA=tan45 °=

锐角 A 的正弦、余弦、正切都叫做∠ A 的锐角三角函数.
对于锐角 A 的每一个确定的值, sinA 有唯一确定的值与它对应, 所以 sinA
B
2.难点:理解正弦的意义,并用它来表示两边的 比。
一、预习案
A
C
B
1、如图在 Rt△ABC 中,∠ C=90°,∠ A=30 °,
BC=10m, ?求 AB
A
C
2、如图在 Rt△ABC 中,∠ C=90°,∠ A=30 °,
AB=20m, ?求 BC
3、归纳直角三角形中存在的边角关系:
二、探究案
1.为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,
AB A ' B '
结论:这就是说,在直角三角形中,当锐角 形的大小如何, ?∠A 的对边与斜边的比

北师大版九年级数学下册:第一章 1.1.1《锐角三角函数》精品教学设计

北师大版九年级数学下册:第一章 1.1.1《锐角三角函数》精品教学设计

北师大版九年级数学下册:第一章 1.1.1《锐角三角函数》精品教学设计一. 教材分析北师大版九年级数学下册第一章《锐角三角函数》是整个初中数学的重要内容,也是学生首次接触三角函数的概念。

本节内容主要包括锐角三角函数的定义、各锐角三角函数值的变化规律以及特殊角的三角函数值。

通过本节的学习,使学生了解三角函数的概念,会运用特殊角的三角函数值进行计算,为后续学习三角函数的图像和性质打下基础。

二. 学情分析九年级的学生已经具备了一定的几何知识,对直角三角形有一定的了解。

但对于三角函数的概念和各锐角三角函数值的变化规律,学生可能较为陌生。

因此,在教学过程中,需要引导学生从实际问题中抽象出三角函数的概念,并通过大量的例子让学生感受各锐角三角函数值的变化规律。

三. 教学目标1.理解三角函数的概念,掌握特殊角的三角函数值。

2.能够运用三角函数的概念和特殊角的三角函数值解决实际问题。

3.培养学生的抽象思维能力和数学运算能力。

四. 教学重难点1.三角函数的概念。

2.各锐角三角函数值的变化规律。

3.特殊角的三角函数值。

五. 教学方法1.情境教学法:通过生活实例引入三角函数的概念,让学生感受数学与生活的联系。

2.观察发现法:引导学生观察特殊角的三角函数值,发现变化规律。

3.练习法:通过大量的练习,巩固所学知识。

六. 教学准备1.准备相关的生活实例和图片。

2.准备特殊角的三角函数值表格。

3.准备练习题。

七. 教学过程1.导入(5分钟)利用生活实例,如建筑设计中的角度计算,引入三角函数的概念。

引导学生从实际问题中抽象出三角函数的概念,理解三角函数的定义。

2.呈现(10分钟)展示特殊角的三角函数值表格,引导学生观察并发现各锐角三角函数值的变化规律。

通过观察发现法,让学生自主探索并总结出变化规律。

3.操练(10分钟)让学生进行特殊角的三角函数值计算练习,巩固所学知识。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)利用练习题,让学生运用三角函数的概念和特殊角的三角函数值解决实际问题。

北师大版数学九年级下册1.1锐角三角函数优秀教学案例

北师大版数学九年级下册1.1锐角三角函数优秀教学案例
2.要求学生对自己的学习过程进行反思,总结收获和不足,提高自我认知。
3.教师对学生的作业进行批改,关注学生的个体差异,给予不同层次的学生充分的关爱和支持。
五、案例亮点
1.生活情境的引入:本节课通过展示实际生活中的图片和视频,如建筑设计、航海导航等,引导学生关注锐角三角函数在实际中的应用,使学生感受到数学与实际的联系,增强了学生学习的兴趣和积极性。
3.创设有利于学生自主探索的情境,如提供实验器材,让学生通过实际操作,观察和记录实验数据,从而引导学生发现锐角三角函数的性质。
(二)讲授新知
1.教师通过讲解,介绍锐角三角函数的概念,让学生理解正弦、余弦、正切函数的定义及它们之间的关系。
2.结合生活实例,讲解锐角三角函数在实际中的应用,让学生感受数学与实际的联系。
2.评价学生运用锐角三角函数解决实际问题的能力。
3.评价学生在课堂活动中的参与度、合作意识及创新精神。
4.关注学生的情感态度,评价学生在学习过程中的积极性和进步。
三、教学策略
(一)情景创设
1.生活情境:通过展示实际生活中的图片或视频,如建筑设计、航海导航等,让学生了解锐角三角函数在实际中的应用,激发学生的学习兴趣。
2.采用实验、观察、讨论、交流等教学方法,提高学生的参与度。
3.利用生活实例,让学生感受数学与实际的联系,提高学生的应用能力。
4.关注学生的个体差异,给予不同层次的学生充分的关爱和支持。
五、教学过程
1.创设情境,引入新课:通过生活实例,引导学生关注锐角三角函数在实际生活中的应用。
2.自主探究,合作交流:让学生通过观察、实验、猜测、验证、推理等数学活动,自主探索锐角三角函数的性质。
3.培养学生关爱他人、乐于助人的品质,弘扬团结协作的精神。

北师大版九年级数学下册:1.1《锐角三角函数》教学设计

北师大版九年级数学下册:1.1《锐角三角函数》教学设计

北师大版九年级数学下册:1.1《锐角三角函数》教学设计一. 教材分析《锐角三角函数》是北师大版九年级数学下册第一章的第一节内容。

本节主要介绍正弦、余弦、正切三个锐角三角函数的定义及它们之间的关系。

通过本节的学习,学生能够理解锐角三角函数的概念,掌握正弦、余弦、正切函数的定义及它们之间的关系,为后续解决三角形及三角恒等式等问题打下基础。

二. 学情分析九年级的学生已经学习了初中阶段的代数和几何知识,具备一定的逻辑思维能力和空间想象能力。

但是,对于锐角三角函数这一概念,学生可能较为抽象,难以理解。

因此,在教学过程中,需要结合具体实例和实际问题,引导学生理解和掌握锐角三角函数的概念和性质。

三. 教学目标1.了解锐角三角函数的概念,掌握正弦、余弦、正切函数的定义及它们之间的关系。

2.能够运用锐角三角函数解决一些实际问题,提高解决问题的能力。

3.培养学生的合作交流能力和创新思维能力。

四. 教学重难点1.重点:锐角三角函数的概念,正弦、余弦、正切函数的定义及它们之间的关系。

2.难点:理解锐角三角函数的概念,掌握正弦、余弦、正切函数的定义及它们之间的关系。

五. 教学方法1.情境教学法:通过生活中的实例和实际问题,引导学生理解和掌握锐角三角函数的概念和性质。

2.合作学习法:引导学生分组讨论和交流,培养学生的合作交流能力。

3.启发式教学法:教师提问,引导学生思考和探索,激发学生的创新思维。

六. 教学准备1.课件:制作课件,包括锐角三角函数的定义、性质、实际问题等内容。

2.教学素材:准备一些与锐角三角函数相关的实际问题,用于课堂练习和巩固。

3.板书设计:设计板书,突出锐角三角函数的重点知识。

七. 教学过程1.导入(5分钟)利用课件展示一些与三角形相关的实际问题,引导学生思考和探索,激发学生的学习兴趣。

2.呈现(15分钟)介绍锐角三角函数的概念,讲解正弦、余弦、正切函数的定义及它们之间的关系。

通过具体实例和实际问题,帮助学生理解和掌握锐角三角函数的概念和性质。

2024北师大版数学九年级下册1.1.1《锐角三角函数》教学设计

2024北师大版数学九年级下册1.1.1《锐角三角函数》教学设计

2024北师大版数学九年级下册1.1.1《锐角三角函数》教学设计一. 教材分析《锐角三角函数》是北师大版数学九年级下册第1.1.1节的内容。

本节内容主要介绍了锐角三角函数的定义及应用。

学生通过学习本节内容,能够理解锐角三角函数的概念,掌握正弦、余弦、正切函数的定义及性质,并能运用锐角三角函数解决实际问题。

二. 学情分析学生在学习本节内容前,已经学习了锐角三角形的性质,对锐角有一定的理解。

但是,对于锐角三角函数的定义和应用,可能还存在一定的困难。

因此,教师在教学过程中需要注重引导学生理解锐角三角函数的概念,并通过实例让学生体会锐角三角函数在实际问题中的应用。

三. 教学目标1.了解锐角三角函数的定义及性质。

2.能够运用锐角三角函数解决实际问题。

3.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.重点:锐角三角函数的定义及性质。

2.难点:运用锐角三角函数解决实际问题。

五. 教学方法1.讲授法:教师通过讲解,引导学生理解锐角三角函数的概念和性质。

2.案例分析法:教师通过实例,让学生体会锐角三角函数在实际问题中的应用。

3.小组讨论法:学生分组讨论,培养学生的合作能力和解决问题的能力。

六. 教学准备1.教学课件:教师准备课件,内容包括锐角三角函数的定义、性质及应用实例。

2.练习题:教师准备练习题,用于巩固学生对锐角三角函数的理解。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾锐角三角形的性质,为新课的学习做好铺垫。

2.呈现(10分钟)教师利用课件呈现锐角三角函数的定义及性质,引导学生直观地理解锐角三角函数的概念。

3.操练(10分钟)教师提出实例,让学生运用锐角三角函数解决问题。

学生分组讨论,培养合作能力和解决问题的能力。

4.巩固(10分钟)教师引导学生总结锐角三角函数的性质,并通过练习题巩固学生对锐角三角函数的理解。

5.拓展(10分钟)教师提出拓展问题,引导学生思考锐角三角函数在实际问题中的应用。

北师大版九年级数学下全册详细教案(含答案)

北师大版九年级数学下全册详细教案(含答案)

第一章 直角三角形的边角关系1.1 锐角三角函数 第1课时 正切1.理解正切的定义,运用正切值的大小比较生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算.(重点)2.经历探索直角三角形中边角关系的过程,理解正切的意义和与现实生活的联系.阅读教材P2~4,完成预习内容. (一)知识探究1.在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与邻边的比便随之确定,这个比叫做∠A 的正切,记作tanA ,即tanA =∠A 的对边∠A 的邻边.2.tanA 的值越大,梯子越陡.3.坡面的竖直高度与水平距离的比称为坡度(或坡比). (二)自学反馈1.在Rt △ABC 中,∠C =90°,AC =12,BC =5,那么tanA 等于(C) A.513 B.1213 C.512 D.1252.如图,有一个山坡在水平方向上前进100 m ,在竖直方向上就升高60 m ,那么山坡的坡度i =tan α=35.活动1 小组讨论例 如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?解:甲梯中,tan α=5132-52=512.乙梯中,tan β=68=34. 因为tan β>tan α,所以乙梯更陡.求正切值一定要在直角三角形中进行,并且一定要分清锐角的对边与邻边.活动2 跟踪训练1.如图,下面四个梯子最陡的是(B)2.如图,在边长为1的小正方形组成的网格中,点A 、B 、O 为格点,则tan ∠AOB =(A) A.12 B.23 C.105 D.533.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,且a =24,c =25,则tanA =247、tanB =724.4.如图,某人从山脚下的点A 走了300 m 后到达山顶的点B ,已知点B 到山脚的垂直距离为70 m ,求山的坡度0.24.(结果精确到0.01)活动3 课堂小结 1.正切的定义.2.梯子的倾斜程度与tanA 的关系(∠A 和tanA 之间的关系).3.数形结合的方法,构造直角三角形的意识.第2课时 锐角三角函数1.理解正弦函数和余弦函数的意义,能根据边长求出锐角的正弦值和余弦值,准确分清三种函数值的求法.(重点)2.经历探索直角三角形中边角关系的过程,进一步理解当锐角度数一定,则其对边、邻边、斜边三边比值也一定.能根据直角三角形中的边角关系,进行简单的计算.阅读教材P5~6,完成预习内容. (一)知识探究1.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ;∠A 的对边与斜边的比叫做∠A 的正弦,即sinA =a c .∠A 的邻边与斜边的比叫做∠A 的余弦,即cosA =bc.2.锐角A 的正弦、余弦、正切叫做∠A 的三角函数.3.sinA 的值越大,梯子越陡;cosA 的值越小,梯子越陡.锐角三角函数是在直角三角形的前提下.(二)自学反馈1.如图,在△ABC 中,∠C =90°,AB =13,BC =5,则sinA 的值是(A) A.513 B.1213 C.512 D.1352.如图,在Rt △ABC 中,∠C =90°,AB =6,cosB =23,则BC 的长为(A)A.4B.2 5C.181313D.1213133.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若a =3、b =4,则sinB =45,cosB =35,tanB =43.活动1 小组讨论例1 如图,在Rt △ABC 中,∠B =90°,AC =200,sinA =0.6,求BC 的长.解:在Rt △ABC 中, ∵sinA =BC AC ,即BC200=0.6,∴BC =200×0.6=120.例2 如图,在Rt △ABC 中,∠C =90°,AC =10,cosA =1213,求AB 的长及sinB.解:在Rt △ABC 中, ∵cosA =ACAB ,即10AB =1213,∴AB =656. ∴sinB =AC AB =cosA =1213.这里需要注意cosA =sinB.活动2 跟踪训练1.如图,某厂房屋顶呈人字架形(等腰三角形),已知AC =8,DB =43,CD ⊥AB 于点D ,求sinB 的值.解:∵△ABC 是等腰三角形,∴BC =AC =8. ∵CD ⊥AB ,∴∠CDB =90°,∴CD =BC 2-BD 2=82-(43)2=4, ∴sinB =CD BC =48=12.2.如图,在△ABC 中,CD ⊥AB ,垂足为D.若AB =12,CD =6,tanA =32,求sinB +cosB的值.解:在Rt △ACD 中,∵CD =6,tanA =32,∴AD =4,∴BD =AB -AD =8.在Rt △BCD 中,BC =82+62=10,∴sinB =CD BC =35,cosB =BD BC =45,∴sinB +cosB =75.活动3 课堂小结学生试述:这节课你学到了些什么?1.2 30°,45°,60°角的三角函数值1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理.进一步体会三角函数的意义.2.能够进行30°、45°、60°角的三角函数值的计算,能够根据30°、45°、60°的三角函数值说明相应的锐角的大小.(重点)阅读教材P8~9,完成预习内容. 自学反馈完成下面的表格:sin α cos α tan α 30°12323345° 22 22 1 60°32123活动1 小组讨论 例1 计算:(1)sin30°+cos45°;(2)sin 260°+cos 260°-tan45°. 解:(1)原式=12+22=1+22.(2)原式=34+14-1=0.sin 230°表示(sin30°)2,即sin30°·sin30°,这类计算只需将三角函数值代入即可.例2 一个小孩荡秋千,秋千链子的长度为2.5 m ,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m)解:根据题意可知,∠AOD =12∠AOB =30°,AO =2.5 m.∴OD =OAcos30°=2.5×32=2.165(m). ∴CD =2.5-2.165≈0.34(m).∴最高位置与最低位置的高度差约为0.34 m. 活动2 跟踪训练 1.计算:(1)2sin30°+3tan30°+tan45°;(2)cos 245°+tan60°cos30°.解:(1)原式=2+ 3. (2)原式=2. 2.如图,某同学用一个有60°的直角三角板估测学校旗杆AB 的高度,他将60°角的直角边水平放在1.5 m 高的支架CD 上,三角板的斜边与旗杆的顶点在同一直线上,他又量得D ,B 的距离为5 m ,则旗杆AB 的高度大约是多少米?(精确到1 m ,3取1.73)解:由已知可得四边形CDBE 是矩形,∴CE =DB =5 m ,BE =CD =1.5 m. 在Rt △ACE 中,∵tan ∠ACE =AECE,∴AE =CE ·tan ∠ACE =5·tan60°=53,∴AB =53+1.5=8.65+1.5=10.15≈10 (m), 即旗杆AB 的高度大约是10 m. 活动3 课堂小结学生试述:这节课你学到了些什么?1.3 三角函数的计算1.能利用计算器求锐角三角函数值.2.已知锐角三角函数值,能用计算器求相应的锐角.阅读教材P12~14,完成预习内容. 自学反馈1.已知tan α=0.324 9,则α约为(B)A.17°B.18°C.19°D.20°2.已知tan β=22.3,则β=87°25′56″.(精确到1″)活动1 小组讨论例1 如图,当登山缆车的吊箱经过点A 到达点B 时,它走过了200 m.已知缆车行驶的路线与水平面的夹角为∠α=16°,那么缆车垂直上升的距离是多少?(结果精确到0.01 m)解:在Rt △ABC 中,∠ACB =90°,∴BC =ABsin α=200×sin16°≈55.13(m).例2 为了方便行人推自行车过某天桥,市政府在10 m 高的天桥两端修建了40 m 长的斜到.这条斜道的倾斜角是多少?解:在Rt △ABC 中,sinA =BC AC =1040=14.∴∠A ≈14°28′.答:这条斜道的坡角α是14°28′.在直角三角形ABC 中,直接用正弦函数描述∠CBA 的关系式,再用计算器求出它的度数.活动2 跟踪训练1.用计算器计算:(结果精确到0.000 1) (1)sin36°; (2)cos30.7°;(3)tan20°30′; (4)sin25°+2cos61°-tan71°. 解:(1)0.587 8;(2)0.859 9;(3)0.373 9;(4)-1.512 0.2.在Rt △ABC 中,若∠C =90°,BC =20,AC =12.5,求两个锐角的度数(精确到1°). 解:∵∠C =90°,BC =20,AC =12.5, ∴tanB =AC BC =12.520=0.625,用计算器计算,得∠B ≈32°,∴∠A =90°-32°=58°. 活动3 课堂小结1.本节学习的数学知识:利用计算器求锐角的三角函数值或锐角的度数.2.本节学习的数学方法:培养学生一般化意识,认识特殊和一般都是事物属性的一个方面.3.求锐角的三角函数时,不同计算器的按键顺序是不同的,大体分两种情况:先按三角函数键,故数字键;或先输入数字后,再按三角函数键,因此使用计算器时一定先要弄清输入顺序.1.4 解直角三角形1.了解什么叫解直角三角形.2.掌握解直角三角形的根据,能由已知条件解直角三角形.(重点)阅读教材P16~17,完成预习内容. (一)知识探究1.在直角三角形中,由已知元素求未知元素的过程叫做解直角三角形.2.直角三角形中的边角关系:三边之间的关系a 2+b 2=c 2;两锐角之间的关系∠A +∠B =90°;边与角之间的关系:sinA =a c ,cosA =b c ,tanA =a b ,sinB =b c ,cosB =a c ,tanB =ba .3.在Rt △ABC 中,∠C =90°,已知∠A 与斜边c ,用关系式∠B =90°-∠A ,求出∠B ,用关系式sinA =ac求出a.(二)自学反馈1.在Rt △ABC 中,∠C =90°,sinA =35,则BC ∶AC =(A)A.3∶4B.4∶3C.3∶5D.4∶52.如图所示,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为(B)A.5cos αB.5cos αC.5sin αD.5sin α活动1 小组讨论例1 在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,且a =15,b =5,求这个三角形的其他元素.解:在Rt △ABC 中,a 2+b 2=c 2,a =15,b =5,∴c =a 2+b 2=(15)2+(5)2=2 5.在Rt △ABC 中,sinB =b c =525=12.∴∠B =30°.∴∠A =60°.例2 在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,且b =30,∠B =25°,求这个三角形的其他元素(边长精确到1).解:在Rt △ABC 中,∠C =90°,∠B =25°,∴∠A =65°.∵sinB =b c ,b =30,∴c =bsinB≈71.∵tanB =b a ,b =30,∴a =b tanB =30tan25°≈64.活动2 跟踪训练1.根据下列条件解直角三角形.(1)在Rt △ABC 中,∠C =90°,c =43,∠A =60°. 解:∵∠A =60°,∴∠B =90°-∠A =30°.∵sinA =a c ,∴a =c ·sinA =43·sin60°=43×32=6,∴b =c 2-a 2=(43)2-62=2 3. (2)在Rt △ABC 中,∠C =90°,a =6,b =2 3.解:∵∠C =90°,a =6,b =23, ∴c =a 2+b 2=62+(23)2=4 3. ∵tanA =a b =623=3,∴∠A =60°,∴∠B =90°-∠A =90°-60°=30°.2.如图,在△ABC 中,AD ⊥BC 于点D ,AB =8,∠ABD =30°,∠CAD =45°,求BC 的长.解:∵AD ⊥BC 于点D , ∴∠ADB =∠ADC =90°.在Rt △ABD 中,∵AB =8,∠ABD =30°, ∴AD =12AB =4,BD =3AD =4 3.在Rt △ADC 中,∵∠CAD =45°,∠ADC =90°, ∴DC =AD =4,∴BC =BD +DC =43+4. 活动3 课堂小结学生试述:这节课你学到了些什么?1.5 三角函数的应用 第1课时 方位角问题能运用解直角三角形解决航行问题.阅读教材P19有关方位角问题,完成预习内容. 自学反馈1.如图,我们说点A 在O 的北偏东30°方向上,点B 在点O 的南偏西45°方向上,或者点B 在点O 的西南方向.2.如图,小雅家(图中点O 处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB 是250米.活动1 小组讨论例 如图,海中一小岛A ,该岛四周10海里内有暗礁,今有货轮由西向东航行,开始在A 岛南偏西55°的B 处,往东行驶20海里后到达该岛的南偏西25°的C 处,之后,货轮继续向东航行,你认为货轮向东航行的途中会有触礁的危险吗?解:如图,过点A 作AD ⊥BC 交BC 的延长线于点D. 在Rt △ABD 中,∵tan ∠BAD =BDAD,∴BD =AD ·tan55°.在Rt △ACD 中,∵tan ∠CAD =CDAD ,∴CD =AD ·tan25°. ∵BD =BC +CD ,∴AD ·tan55°=20+AD ·tan25°. ∴AD =20tan55°-tan25°≈20.79>10.∴轮船继续向东行驶,不会遇到触礁危险.应先求出点A 距BC 的最近距离,若大于10则无危险,若小于或等于10则有危险.活动2 跟踪训练1.如图,一艘海轮位于灯塔P 的北偏东30°方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45°方向上的B 处,这时,海轮所在的B 处与灯塔P 的距离为(A)A.402海里B.403海里C.80海里D.406海里2.如图所示,A 、B 两城市相距100 km.现计划在这两座城市间修筑一条高速公路(即线段AB).经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上,已知森林保护区的范围在以P 点为圆心,50 km 为半径的圆形区域内,请问计划修筑的这条高速公路会不会穿越保护区.为什么?(参考数据:3≈1.732,2≈1.414)解:计划修筑的这条高速公路不会穿越保护区.理由如下:过点P 作PC ⊥AB ,C 是垂足. 则∠APC =30°,∠BPC =45°,AC =PC ·tan30°,BC =PC ·tan45°. ∵AC +BC =AB ,∴PC ·tan30°+PC ·tan45°=100, 即33PC +PC =100,(33+1)PC =100, ∴PC =33+3×100=50×(3-1.732)≈63.40>50.∴计划修筑的这条高速公路不会穿越保护区.解这类题目时,首先弄清楚方位角的含义;其次是通过作垂线构造直角三角形,将问题转化为解直角三角形.活动3 课堂小结学生试述:这节课你学到了些什么?第2课时仰角、俯角问题1.理解仰角、俯角等概念,并会把类似于测量建筑物高度的实际问题抽象成几何图形.2.能利用解直角三角形来解其他非直角三角形的问题.阅读教材P19想一想,完成预习内容.(一)知识探究1.仰角、俯角:当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.2.解决实际应用问题时,常作的辅助线:构造直角三角形,解直角三角形.(二)自学反馈1.如图,某飞机在空中A处探测到它的正下方地平面上目标C,此时飞机飞行高度AC =1 200 m,从飞机上看地平面指挥台B的俯角α=30°,则飞机A与指挥台B的距离为(D)A.1 200 mB.1 200 2 mC.1 200 3 mD.2 400 m2.如图,从热气球C处测得地面A、B两点的俯角分别为30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是(D)A.200米B.2003米C.2203米D.100(3+1)米活动1 小组讨论例如图,小明想测量塔CD的高度.他在A处仰望塔顶,测得仰角为30°,再往塔的方向前进50 m至B处.测得仰角为60°.那么该塔有多高?(小明的身高忽略不计,结果精确到1 m)解:∵∠DAB =30°,∠DBC =60°, ∴BD =AB =50 m.∴DC =BD ·sin60°=50×32=253≈43(m). 答:该塔高约为43 m. 活动2 跟踪训练1.我市某建筑工地,欲拆除该工地的一危房AB(如图),准备对该危房实施定向爆破.已知距危房AB 水平距离60米(BD =60米)处有一居民住宅楼,该居民住宅楼CD 高15米,在该住宅楼顶C 处测得此危房屋顶A 的仰角为30°,请你通过计算说明在实施定向爆破危房AB 时,该居民住宅楼有无危险?(在地面上以点B 为圆心,以AB 长为半径的圆形区域为危险区域,参考数据:2≈1.414,3≈1.732)解:没有危险,理由如下: 在△AEC 中,∵∠AEC =90°, ∴tan ∠ACE =AECE.∵∠ACE =30°,CE =BD =60, ∴AE =203≈34.64(米).又∵AB =AE +BE ,BE =CD =15, ∴AB ≈49.64(米).∵60>49.64,即BD>AB ,∴在实施定向爆破危房AB 时,该居民住宅楼没有危险.2.如图,CD 是一高为4米的平台,AB 是与CD 底部相平的一棵树,在平台顶C 点测得树顶A 点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E ,在点E 处测得树顶A 点的仰角β=60°,求树高AB.(结果保留根号)解:作CF ⊥AB 于点F ,设AF =x 米, 在Rt △ACF 中,tan ∠ACF =AFCF,则CF =AF tan ∠ACF =x tan α=xtan30°=3x ,在直角△ABE 中,AB =x +BF =4+x(米),在直角△ABE 中,tan ∠AEB =AB BE ,则BE =AB tan ∠AEB =x +4tan60°=33(x +4)米.∵CF -BE =DE ,即3x -33(x +4)=3. 解得x =33+42.则AB =33+42+4=33+122(米).答:树高AB 是33+122米.活动3 课堂小结1.本节学习的数学知识:利用解直角三角形解决实际问题.2.本节学习的数学方法:数形结合、数学建模的思想.第3课时 坡度问题1.能运用解直角三角形解决斜坡问题.2.理解坡度i =坡面的铅直高度坡面的水平宽度=tan 坡角.阅读教材P19做一做,完成预习内容. 自学反馈1.如图所示,斜坡AB 和水平面的夹角为α.下列命题中,不正确的是(B) A.斜坡AB 的坡角为α B.斜坡AB 的坡度为BCABC.斜坡AB 的坡度为tan αD.斜坡AB 的坡度为BCAC2.如图,一人乘雪橇沿30°的斜坡笔直滑下,滑下的距离s(米)与时间t(秒)间的关系为s =10t +2t 2,若滑到坡底的时间为4秒,则此人下降的高度为(C)A.72 mB.36 3 mC.36 mD.18 3 m活动1 小组讨论例 某商场准备改善原来楼梯的安全性能,把倾角由40°减至35°,已知原楼梯长为4 m ,调整后的楼梯会加长多少?楼梯多占多长一段地面?(结果精确到0.01 m)解:根据题意可得图形,如图所示: 在Rt △ABD 中,sin40°=AD AB =AD4,∴AD =4sin40°=4×0.64=2.56, 在Rt △ACD 中,tan35°=AD CD =2.56CD ,CD = 2.56tan35°=3.66,tan40°=AD BD =2.56BD ,BD = 2.56tan40°≈3.055 m.∴CB =CD -BD =3.66-3.055≈0.61(m). ∴楼梯多占了0.61 m 长一段地面. AC =ADsin35°≈4.46 m.∴AC -AB =4.46-4=0.46(m). ∴调整后的楼梯会加长0.46 m. 活动2 跟踪训练1.如图,某公园入口处原有三级台阶,每级台阶高为18 cm ,深为30 cm ,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起始点为C ,现设计斜坡BC 的坡度i =1∶5,则AC 的长度是210cm.2.如图,水库大坝的横断面是梯形,坝顶宽6 m ,坝高23 m ,斜坡AB 的坡度i =1∶3,斜坡CD 的坡度i ′=1∶2.5,求斜坡AB 的坡角α,坝底宽AD 和斜坡AB 的长.(精确到0.1 m)解:如图,过点B 作BE ⊥AD 于点E ,过点C 作CF ⊥AD 于点F , 在Rt △ABE 和Rt △CDF 中,BE AE =13,CF FD =12.5,∴AE =3BE =3×23=69(m),FD =2.5CF =2.5×23=57.5(m). ∴AD =AE +EF +FD =69+6+57.5=132.5(m).∵斜坡的坡度i=13≈0.333 3,∴BEAE =0.333 3,即tan α=0.333 3.∴α≈18°26′. ∵BE AB =sin α,∴AB =BE sin α≈230.316 2≈72.7(m). 答:斜坡AB 的坡角α约为18°26′,坝底宽AD 为132.5 m ,斜坡AB 的长约为72.7 m.这类问题,首先要弄清楚坡度、坡角等名词的含义;其次,要将梯形予以分割,分割成特殊的四边形和直角三角形.活动3 课堂小结学生试述:这节课你学到了些什么?1.6 利用三角函数测高会利用直角三角形的边角关系测物体的高度.(重点)阅读教材P22~23,完成预习内容. 自学反馈1.测量倾斜角可用测倾器.简单的测倾器由度盘、铅锤和支杆组成.活动1 小组讨论例1 测量底部可以到达的物体的高度下面是活动报告的一部分,请填写“测得数据”和“计算”两栏中未完成的部分.课题测量旗杆高测量示 意图测得 数据 测量项目 第一次 第二次 平均值 BD 的长 24.19 m 23.97 m 24.08 m 测倾器的高 CD =1.23 m CD =1.19 m 1.21 m 倾斜角α=31°15′α=30°45′α=31°计算,旗杆高AB(精确到0.1 m)AB =AE +BE =CEtan31°+CD=24.08×tan31°+1.21=15.7(m) 例2 测量底部不可以到达的物体的高度.如图,小山上有一座铁塔AB ,在D 处测得点A 的仰角为∠ADC =60°,点B 的仰角为∠BDC =45°;在E 处测得A 的仰角为∠E =30°,并测得DE =90米,求小山高BC 和铁塔高AB(精确到0.1米).解:在△ADE 中,∠E =30°,∠ADC =60°, ∴∠E =∠DAE =30°. ∴AD =DE =90米.在Rt △ACD 中,∠DAC =30°,则CD =12AD =45米,AC =AD ·sin ∠ADC =AD ·sin60°=453米.在Rt △BCD 中,∠BDC =45°,则△BCD 是等腰直角三角形. BC =CD =45米,∴AB =AC -BC =453-45≈32.9米.答:小山高BC 为45米,铁塔高AB 约为32.9米. 活动2 跟踪训练为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索: 实践一:根据《自然科学》中光的反射定律,利用一面镜子和一根皮尺,设计如图(1)的测量方案:把镜子放在离树(AB)8.7(米)的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =2.7米,观察者目高CD =1.6米,请你计算树A B 的高度(精确到0.1米)实践二:提供选用的测量工具有:①皮尺一根;②教学用三角板一副;③长为2.5米的标杆一根;④高度为1.5米的测角仪一架,请根据你所设计的测量方案,回答下列问题:(1)在你设计的方案中,选用的测量工具是①④. (2)在图(2)中画出你的测量方案示意图;(3)你需要测得示意图中哪些数据,并分别用a ,b ,c ,α,β等表示测得的数据a ·tan α+1.5.(4)写出求树高的算式:AB =AB =a ·tan α+1.5.解:实践一:∵∠CED =∠AEB ,CD ⊥DB ,AB ⊥BD , ∴△CED ∽△AEB , ∴CD AB =DE BE. ∵CD =1.6米,DE =2.7米,BE =8.7米, ∴AB =1.6×8.72.7≈5.2(m).实践二:(1)在距离树AB 的a 米的C 处,用测角仪测得仰角α,测角仪为CD.再根据仰角的定义,构造直角三角形ADE ,求得树高出测角仪的高度AE ,则树高为AE +BE.(2)如图.活动3 课堂小结学生试述:这节课你学到了些什么?第三章圆3.1 圆1.回顾圆的基本概念.2.理解并掌握与圆有关的概念:弦、直径、半圆、等圆、等弧等.(重点)3.结合实例,理解平面内点与圆的三种位置关系.(难点)阅读教材P65~66,完成预习内容.(一)知识探究1.连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径;圆上任意两点间的部分叫做圆弧;圆的任意一条直径的两个端点分圆成两条弧,每条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.2.设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.(二)自学反馈1.下列命题中正确的有(A)①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个2.如图所示,图中共有2条弦.3.在平面内,⊙O的半径为5 cm,点P到圆心的距离为3 cm,则点P与⊙O的位置关系是点P在圆内.活动1 小组讨论例1 ⊙O的半径为2 cm,则它的弦长d的取值范围是0<d≤4_cm.直径是圆中最长的弦.例2⊙O中若弦AB等于⊙O的半径,则△AOB的形状是等边三角形.与半径相等的弦和两半径构造等边三角形是常用数学模型.例3 已知AB=4 cm,画图说明满足下列条件的图形.(1)到点A和B的距离都等于3 cm的所有点组成的图形;(2)到点A和B的距离都小于3 cm的所有点组成的图形;(3)到点A的距离大于3 cm,且到点B的距离小于2 cm的所有点组成的图形.解:(1)如图1,分别以点A和B为圆心,3 cm为半径画⊙A与⊙B,两圆的交点C、D 为所求;图1 图2(2)如图1,分别以点A和点B为圆心,3 cm为半径画⊙A与⊙B,两圆的重叠部分为所求;(3)如图2,以点A为圆心,3 cm为半径画⊙A,以点B为圆心,2 cm为半径画⊙B,则⊙B中除去两圆的重叠部分为所求.活动2 跟踪训练1.已知⊙O的半径为4,OP=3.4,则P在⊙O的内部.2.已知点P在⊙O的外部,OP=5,那么⊙O的半径r满足0<r<5.3.如图,图中有1条直径,2条非直径的弦,圆中以A为一个端点的优弧有4条,劣弧有4条.这类数弧问题,为防多数或少数,通常按一定的顺序和方向来数.4.如图,已知矩形ABCD的边AB=3 cm、AD=4 cm.(1)以点A为圆心,4 cm为半径作⊙A,则点B、C、D与⊙A的位置关系怎样?(2)若以A点为圆心作⊙A,使B、C、D三点中至少有一点在圆内,且至少有一点在圆外,则⊙A的半径r的取值范围是什么?解:(1)点B在⊙A内,点C在⊙A外,点D在⊙A上;(2)3<r<5.(2)问中B、C、D三点中至少有一点在圆内,是指哪个点在圆内?至少有一点在圆外是指哪个点在圆外?活动3 课堂小结1.这节课你学了哪些知识?2.学会了哪些解圆的有关问题的技巧?3.2 圆的对称性1.理解圆的轴对称性及其中心对称性.2.通过学习圆的旋转性,理解圆的弧、弦、圆心角之间的关系.(重难点)阅读教材P70~71,完成预习内容.(一)知识探究1.圆是轴对称图形,其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.2.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.在同圆或等圆中,如果两个圆心角,两条弦,两条弧中有一组量相等,那么它们所对应的其余各组量也相等.(二)自学反馈1.圆是轴对称图形,它有无数条对称轴,其对称轴是任意一条过圆心的直线.2.在⊙O 中,AB 、CD 是两条弦.(1)如果AB =CD ,那么AB ︵=CD ︵,∠AOB =∠COD ; (2)如果AB ︵=CD ︵,那么AB =CD ,∠AOB =∠COD ; (3)如果∠AOB =∠COD ,那么AB =CD ,AB ︵=CD ︵.活动1 小组讨论例 如图,AB 、DE 是⊙O 的直径,C 是⊙O 上的一点,且AD ︵=CE ︵.BE 与CE 的大小有什么关系?为什么?解:BE =CE.理由是:∵∠AOD =∠BOE ,∴AD ︵=BE ︵. 又∵AD ︵=CE ︵, ∴BE ︵=CE ︵. ∴BE =CE.活动2 跟踪训练1.如图,在⊙O 中,AB ︵=AC ︵,∠ACB =75°,则∠BAC =30°.2.如图,在⊙O 中,AB ︵=AC ︵,∠ACB =60°,求证:∠AOB =∠BOC =∠AOC.证明:∵AB ︵=AC ︵,∴AB =AC.又∵∠ACB =60°,∴△ABC 为等边三角形. ∴AB =AC =BC.∴∠AOB =∠BOC =∠AOC.3.如图,已知在⊙O 中,BC 是直径,AB ︵=DC ︵,∠AOD =80°,求∠AOB 的度数.解:∵AB ︵=DC ︵, ∴∠AOB =∠DOC. ∵∠AOD =80°,∴∠AOB =∠DOC =12(180°-80°)=50°.活动3 课堂小结圆心角、弧、弦是圆中证弧等、弦等、弦心距等、圆心角等的常用方法.*3.3 垂径定理1.通过圆的轴对称性质的学习,理解垂径定理及其推论.(重点).2.能运用垂径定理及其推论计算和证明实际问题.(难点)阅读教材P74~75,完成预习内容. (一)知识探究1.垂直于弦的直径平分这条弦,并且平分弦所对的两条弧,即一条直线如果满足:①AB 经过圆心O 且与圆交于A 、B 两点;②AB ⊥CD 交CD 于E ;那么可以推出:③CE =DE ;④CB ︵=DB ︵;⑤CA ︵=DA ︵.2.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. (二)自学反馈1.如图,弦AB ⊥直径CD 于E ,相等的线段有:AE =EB ,CO =DO ;相等的弧有:AD ︵=DB ︵,AC ︵=BC ︵,CAD ︵=CBD ︵.2.在⊙O 中,直径为10 cm ,圆心O 到AB 的距离OC 为3 cm ,则弦AB 的长为8_cm.活动1 小组讨论例 如图,一条公路的转弯处是一段圆弧(即图中CD ︵,点O 是CD ︵所在圆的圆心),其中CD =600 m ,E 为CD ︵上一点,且OE ⊥CD ,垂足为F ,EF =90 m ,求这段弯路的半径.解:连接OC.设弯路的半径为R m ,则OF =(R -90)m. ∵OE ⊥CD ,∴CF =12CD =12×600=300(m).在Rt △OCF 中,根据勾股定理,得OC 2=CF 2+OF 2,即 R 2=3002+(R -90)2. 解得R =545.所以,这段弯路的半径为545 m.常用辅助线:连接半径,由半径、半弦、弦心距构造直角三角形.活动2 跟踪训练1.如图,在⊙O 中,弦AB =4 cm ,点O 到AB 的距离OC 的长是2 3 cm ,则⊙O 的半径是4_cm.2.CD 是⊙O 的直径,AB 是弦,且AB ⊥CD ,垂足是E ,如果CE =2、AB =8,那么ED =8,⊙O 的半径r =5.3.已知:如图,线段AB 与⊙O 交于C 、D 两点,且OA =OB.求证:AC =BD.证明:作OE ⊥AB 于E.则CE =DE. ∵OA =OB ,OE ⊥AB , ∴AE =BE.∴AE -CE =BE -DE , 即AC =BD.过圆心作垂径是圆中常用辅助线.活动3 课堂小结用垂径定理及其推论进行有关的计算.3.4 圆周角和圆心角的关系第1课时 圆周角定理及其推论11.理解圆周角的定义,会区分圆周角和圆心角.(重点)2.理解同弧或等弧所对的圆心角和圆周角的关系,理解记忆推论1,能在证明或计算中熟练地应用它们处理相关问题.(难点)阅读教材P78~80,完成预习内容. (一)知识探究1.顶点在圆上,它的两边与圆还有另一个交点的角叫做圆周角.2.圆周角的度数等于它所对弧上的圆心角度数的一半.3.同弧或等弧所对的圆周角相等. (二)自学反馈1.如图所示,已知圆心角∠BOC =100°,点A 为优弧BC ︵上一点,则∠BAC =50°.2.如图所示,点A 、B 、C 在圆周上,∠A =65°,则∠D =65°.活动1 小组讨论例1 如图所示,点A 、B 、C 在⊙O 上,连接OA 、OB ,若∠ABO =25°,则∠C =65°.例2 如图所示,AB 是⊙O 的直径,AC 是弦,若∠ACO =32°,则∠COB =64°.(1)求圆周角通常先求同弧所对的圆心角.(2)求圆心角可先求对应的圆周角.(3)连接OC ,构造圆心角的同时构造等腰三角形.活动2 跟踪训练1.如图,锐角△ABC 的顶点A ,B ,C 均在⊙O 上,∠OAC =20°,则∠B =70°.2.OA 、OB 、OC 都是⊙O 的半径,∠AOB =2∠BOC.求证:∠ACB =2∠BAC.证明:∵∠AOB 是劣弧AB ︵所对的圆心角,∠ACB 是劣弧AB ︵所对的圆周角, ∴∠AOB =2∠ACB. 同理∠BOC =2∠BAC. ∵∠AOB =2∠BOC. ∴∠ACB =2∠BAC.求圆周角一定先看它是哪条弧所对的圆周角,再看所对的圆心角.活动3 课堂小结圆周角的定义、定理及推论.第2课时 圆周角定理的推论2、31.进一步探索直径所对的圆周角的特征,并能应用其进行简单的计算与证明.(重点)2.掌握圆内接四边形的有关概念及性质.(难点)阅读教材P81(问题解决)~83(议一议),完成预习内容. (一)知识探究1.直径所对的圆周角是直角,90°的圆周角所对的弦是直径.2.四个顶点都在圆上的四边形叫做这个圆的内接四边形,这个圆叫做四边形的外接圆;圆内接四边形的对角互补.(二)自学反馈1.如图,在⊙O 的内接四边形ABCD 中,若∠BAD =110°,则∠BCD 等于(C) A.110° B.90° C.70° D.20°2.如图,AB 是⊙O 的直径,∠A =35°,则∠B 的度数是55°.活动1 小组讨论例1 如图,BD 是⊙O 的直径,∠CBD =30°,则∠A 的度数为(C) A.30° B.45° C.60° D.75°例2 如图,四边形ABCD 是⊙O 的内接四边形,∠CBE 是它的外角,若∠D =120°,则∠CBE 的度数是120°.例3 如图所示,已知△ABC 的顶点在⊙O 上,AD 是△ABC 的高,AE 是⊙O 的直径,求证:∠BAE =∠CAD.证明:连接BE ,∵AE 是⊙O 的直径, ∴∠ABE =90°, ∴∠BAE +∠E =90°. ∵AD 是△ABC 的高, ∴∠ADC =90°, ∴∠CAD +∠C =90°. ∵AB ︵=AB ︵,∴∠E =∠C.∵∠BAE +∠E =90°,∠CAD +∠C =90°, ∴∠BAE =∠CAD.涉及直径时,通常是利用“直径所对的圆周角是直角”来构造直角三角形,并借助直角三角形的性质来解决问题.活动2 跟踪训练1.如图,⊙O的直径AB=4,点C在⊙O上,∠ABC=30°,则AC的长是(D)A.1B. 2C. 3D.22.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为4.3.如图,在⊙O的内接四边形ABCD中,∠BCD=110°,则∠BOD=140度.4.如图,AB是⊙O的直径,点D在⊙O上,∠AOD=130°,BC∥OD交⊙O于C,求∠A 的度数.解:∵∠AOD=130°,∴∠BOD=50°.∵BC∥OD,∴∠B=∠BOD=50°.∵AB是⊙O的直径,∴∠ACB=90°.∴∠A=90°-∠B=40°.活动3 课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答基础上,教师强调:①直径所对的圆周角是直角,90°的圆周角所对的弦是直径;②圆内接四边形定义及性质;③在圆周角定理运用中,遇到直径,常构造直角三角形.。

2024北师大版数学九年级下册1.1.2《锐角三角函数》教学设计

2024北师大版数学九年级下册1.1.2《锐角三角函数》教学设计

2024北师大版数学九年级下册1.1.2《锐角三角函数》教学设计一. 教材分析《锐角三角函数》是北师大版数学九年级下册1.1.2的内容,本节课主要介绍锐角三角函数的定义和性质。

通过本节课的学习,学生能够理解锐角三角函数的概念,掌握锐角三角函数的定义和性质,并能运用锐角三角函数解决实际问题。

二. 学情分析学生在学习本节课之前,已经学习了锐角三角函数的概念和特殊角的三角函数值。

他们对锐角三角函数有一定的了解,但可能对锐角三角函数的定义和性质还不够清晰。

因此,在教学过程中,需要引导学生通过观察、思考、交流等方式,进一步理解和掌握锐角三角函数的知识。

三. 教学目标1.知识与技能:学生能够理解锐角三角函数的概念,掌握锐角三角函数的定义和性质。

2.过程与方法:学生能够通过观察、思考、交流等方式,探索和发现锐角三角函数的性质。

3.情感态度与价值观:学生能够积极参与学习活动,培养对数学的兴趣和自信心。

四. 教学重难点1.重点:学生能够理解锐角三角函数的概念,掌握锐角三角函数的定义和性质。

2.难点:学生能够运用锐角三角函数解决实际问题。

五. 教学方法1.引导发现法:教师通过提出问题,引导学生观察、思考和交流,发现锐角三角函数的性质。

2.案例分析法:教师通过举例分析,让学生了解锐角三角函数在实际问题中的应用。

3.小组合作学习:学生分组讨论,共同探索和解决问题。

六. 教学准备1.教学素材:教师准备相关的图片、实例和问题,用于引导学生观察和思考。

2.教学工具:教师准备黑板、粉笔等教学工具,用于板书和讲解。

七. 教学过程1.导入(5分钟)教师通过提出问题,引导学生回顾锐角三角函数的概念和特殊角的三角函数值。

例如:“你们知道什么是锐角三角函数吗?请举例说明。

”2.呈现(10分钟)教师展示相关的图片和实例,引导学生观察和思考。

例如,展示一个直角三角形,让学生观察并说出各个角的三角函数值。

3.操练(10分钟)教师提出问题,让学生通过计算和解答来巩固对锐角三角函数的理解。

北师大版数学九年级下册 1.1.1锐角三角函数 导学案

北师大版数学九年级下册  1.1.1锐角三角函数  导学案

青岛市西海岸新区滨海初级中学2018-2019学年度九年级班级: 姓名:课题 1.1.1锐角三角函数(第1课时)教师 课型新授时间序号1学习 目标1.经历探索直角三角形中边的比值和角大小关系的过程;理解正切三角函数的意义和与现实生活的联系.2.能够用tanA 表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算.学法指导 自主探究 合作交流第一环节 创设问题情境,引入新课梯子是我们日常生活中常见的物体.我们经常听人们说这个梯子放的“陡”,那个梯子放的“平缓”,人们是如何判断的?“陡”或“平缓”是用来描述梯子什么的?第二环节 新课讲授在小明家的墙角处放有一架较长的梯子,墙很高,又没有足够长的尺来测量,你有什么巧妙的方法得到梯子的倾斜程度呢?如图,小明想通过测量11B C 及1AC ,算出它们的比,来说明梯子的倾斜程度;而小亮则认为通过测量22B C 及2AC ,算出它们的比,也能说明梯子的倾斜程度.你同意小亮的看法吗?(1)11Rt AB C ∆和22Rt AB C ∆有什么关系?(2)222AC C B 和111AC CB 有什么关系? (3)如果改变2B 在梯子上的位置呢? 由此你得出什么结论?第三环节 典例探究 重点讲解正切的定义如图,在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与邻边之比便随之确定,这个比叫做∠A 的正切(tangent),记作tanA ,即tanA=的邻边的对边A A ∠∠.注意:1.tanA 是在直角三角形中定义的,目前∠A 是一个锐角(注意数形结合,构造直角三角形).2.tanA 是一个完整的符号,表示∠A 的正切,省去“∠”号(注意tanA 不表示tan 乘以A).3.tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比..4.tanA 的大小只与∠A 的大小有关,而与直角三角形的边长无关.图1—4C BA∠A 的邻边∠A 的对边5.角相等,则正切值相等;两锐角的正切值相等,则这两个锐角相等. 思考:1.∠B 的正切如何表示?它的数学意义是什么?2.前面我们讨论了梯子的倾斜程度,梯子的倾斜程度与tanA 有关系吗?总结:梯子越陡,tanA 的值越____;反过来,tanA 的值越大,梯子越____.练习:请你用不同的符号表示下列图形中两个锐角的正切.第四环节 例题讲解例题1:图1—6表示甲、乙两个手扶电梯,哪个手扶电梯比较陡?βα(乙)4m(甲)13m5m8m图1—63、如图1—10,某人从山脚下的点A走了200m后到达山顶的点B.已知山顶B到山脚下的垂直距离是55m.求山坡的坡度(结果精确到0.001m).第七环节课堂小结师生互相交流总结本堂课所学的知识点和体会;谈谈对本节知识的理解.第八环节布置作业作业:《新课堂》课后记图1—10。

九年级数学下册第1章直角三角形的边角关系1.1锐角三角函数1.1.2锐角三角函数教案新版北师大版_

九年级数学下册第1章直角三角形的边角关系1.1锐角三角函数1.1.2锐角三角函数教案新版北师大版_

1.1.2 锐角三角函数一、教学目标1、能利用相似的直角三角形,探索并认识锐角三角函数——正弦、余弦,理解锐角的正弦与余弦和梯子倾斜程度的关系.2、能够用sinA,cosA表示直角三角形中直角边与斜边的比,能够用正弦、余弦进行简单的计算.二、课时安排1课时三、教学重点理解正弦、余弦的数学定义,感受数学与生活的联系.四、教学难点体会正弦、余弦的数学意义,并用它来解决生活中的实际问题.五、教学过程(一)导入新课上节课我们学习直角三角形中边角关系的函数是什么?(二)讲授新课如图,当Rt△ABC中的一个锐角A确定时,它的对边与邻边的比便随之确定.此时,其它边之间的比值也确定吗?在Rt△ABC中,如果锐角A确定,那么∠A的对边与斜边的比、邻边与斜边的比也随之确定.如图,∠A的对边与邻边的比叫做∠A的正弦(sine),记作sinA,即sinA=∠A的邻边与斜边的比叫做∠A的余弦(cosine),记作cosA,即cosA=锐角A的正弦、余弦和正切都是∠A的三角函数 (trigonometricfunction).[师]你能用自己的语言解释一下你是如何理解“sinA、cosA、tanA都是之A的三角函数”呢?我们在前面已讨论过,当直角三角形中的锐角A确定时.∠A的对边与斜边的比值,∠A的邻边与斜边的比值,∠A的对边与邻边的比值也都唯一确定.在“∠A的三角函数”概念中,∠A是自变量,其取值范围是0°<A<90°;三个比值是因变量.当∠A变化时,三个比值也分别有唯一确定的值与之对应.(三)重难点精讲[例2]如图,在Rt△ABC中,∠B=90°,AC=200.sinA=0.6,求B的长.分析:sinA不是“sin”与“A”的乘积,sinA表示∠A所在直角三角形它的对边与斜边的比值,已知sinA =0.6,=0.6.解:在Rt△ABC中,∠B=90°,AC=200.sinA=0.6,即=0.6,BC=AC×0.6=200×0.6=120.思考:(1)cosA=?(2)sinC=? cosC=?(3)由上面计算,你能猜想出什么结论?解:根据勾股定理,得AB==160.在Rt△ABC中,CB=90°.cosA==0.8,sinC= =0.8,cosC==0.6,由上面的计算可知sinA=cosC=O.6,cosA=sinC=0.8.因为∠A+∠C=90°,所以,结论为“一个锐角的正弦等于它余角的余弦”“一个锐角的余弦等于它余角的正弦”.例题3:如图,在Rt△ABC中,∠C=90°,cosA=,AC=10,AB等于多少?sinB呢?你还能得出类似例1的结论吗?请用一般式表达.。

北师大九年级下数学第1章导学案(2)

北师大九年级下数学第1章导学案(2)

1.1 锐角三角函数 第2课时 正弦与余弦学习目标:1.经历探索直角三角形中边角关系的过程,理解正弦和余弦的意义.2.能够运用sinA 、cosA 表示直角三角形两边的比.3.能根据直角三角形中的边角关系,进行简单的计算.4.理解锐角三角函数的意义. 学习重点:1.理解锐角三角函数正弦、余弦的意义,并能举例说明.2.能用sinA 、cosA 表示直角三角形两边的比.3.能根据直角三角形的边角关系,进行简单的计算. 学习难点:用函数的观点理解正弦、余弦和正切.学习方法:探索——交流法. 学习过程:一、正弦、余弦及三角函数的定义 想一想:如图(1)直角三角形AB 1C 1和直角三角形AB 2C 2有什么关系? (2)有什么关系?呢?(3)如果改变A 2在梯子A 1B 上的位置呢?你由此可得出什么结论?(4)如果改变梯子A1B 的倾斜角的大小呢?你由此又可得出什么结论? 请讨论后回答.二、由图讨论梯子的倾斜程度与sinA 和cosA 的关系:三、例题:例1、如图,在Rt △ABC 中,∠B=90°,AC =200.sinA =0.6,求BC 的长.例2、做一做:如图,在Rt △ABC 中,∠C=90°,cosA =1312,AC =10,AB 等于多少?sinB 呢?cosB 、sinA 呢?你还能得出类似例1的结论吗?请用一般式表达.DB AB A C四、随堂练习:1、在等腰三角形ABC 中,AB=AC =5,BC=6,求sinB ,cosB ,tanB.2、在△ABC 中,∠C =90°,sinA =54,BC=20,求△ABC 的周长和面积.3、在△ABC 中.∠C=90°,若tanA=21,则sinA= .4、已知:如图,CD 是Rt △ABC 的斜边AB 上的高,求证:BC2=AB ·BD.(用正弦、余弦函数的定义证明)五、课后练习:1、在Rt△ABC 中,∠ C=90°,tanA=34,则sinB=_______,tanB=______. 2、在Rt△ABC 中,∠C=90°,AB=41,sinA=941,则AC=______,BC=_______.3、在△ABC 中,AB=AC=10,sinC=45,则BC=_____.4、在△ABC 中,已知AC=3,BC=4,AB=5,那么下列结论正确的是( )A.sinA=34B.cosA=35C.tanA=34D.cosB=355、如图,在△ABC 中,∠C=90°,sinA=35,则BC AC等于( ) A.34 B.43 C.35 D.45 6、Rt△ABC 中,∠C=90°,已知cosA=35,那么tanA 等于( )A.43B.34C.45D.547、在△ABC 中,∠C=90°,BC=5,AB=13,则sinA 的值是A .135B .1312C .125D .5128、已知甲、乙两坡的坡角分别为α、β, 若甲坡比乙坡更徒些, 则下列结论正确的是( ) A.tan α<tan β B.sin α<sin β; C.cos α<cos β D.cos α>cos β9、如图,在Rt△ABC 中,CD 是斜边AB 上的高,则下列线段的比中不等于sinA 的是( )A.CDACB.DBCBC.CBABD.CDCB10、某人沿倾斜角为β的斜坡前进100m,则他上升的最大高度是( )mA.100sinβB.100sinβC.100cosβD. 100cosβ11、如图,分别求∠α,∠β的正弦,余弦,和正切.12、在△ABC中,AB=5,BC=13,AD是BC边上的高,AD=4.求:CD,sinC.13、在Rt△ABC中,∠BCA=90°,CD是中线,BC=8,CD=5.求sin∠ACD,cos∠ACD和tan∠A CD.14、在Rt△ABC中,∠C=90°,sinA和cosB有什么关系?15、如图,已知四边形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=45.求:s△ABD:s△BCDBDAC1.1 锐角三角函数第1课时正切与坡度学习目标:1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系.2.能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,外能够用正切进行简单的计算.学习重点:1.从现实情境中探索直角三角形的边角关系.2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系.学习难点:理解正切的意义,并用它来表示两边的比.学习方法:引导—探索法.学习过程:一、生活中的数学问题:1、你能比较两个梯子哪个更陡吗?你有哪些办法?2、生活问题数学化:⑴如图:梯子AB和EF哪个更陡?你是怎样判断的?⑵以下三组中,梯子AB和EF哪个更陡?你是怎样判断的?二、直角三角形的边与角的关系(如图,回答下列问题)⑴Rt△AB1C1和Rt△AB2C2有什么关系?⑵222111B AC CB AC C 和有什么关系? ⑶如果改变B 2在梯子上的位置(如B 3C 3)呢?⑷由此你得出什么结论?三、例题:例1、如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?例2、在△ABC 中,∠C=90°,BC=12cm ,AB=20cm ,求tanA 和tanB 的值.四、随堂练习:1、如图,△ABC 是等腰直角三角形,你能根据图中所给数据求出tanC 吗?2、如图,某人从山脚下的点A 走了200m 后到达山顶的点B ,已知点B 到山脚的垂直距离为55m ,求山的坡度.(结果精确到0.001)3、若某人沿坡度i =3:4的斜坡前进10米,则他所在的位置比原来的位置升高________米.4、菱形的两条对角线分别是16和12.较长的一条对角线与菱形的一边的夹角为θ,则tan θ=______.5、如图,Rt △ABC 是一防洪堤背水坡的横截面图,斜坡AB 的长为12 m ,它的坡角为45°,为了提高该堤的防洪能力,现将背水坡改造成坡比为1:1.5的斜坡AD ,求DB 的长.(结果保留根号)五、课后练习:1、在Rt △ABC 中,∠C=90°,AB=3,BC=1,则tanA= _______.2、在△ABC 中,AB=10,AC=8,BC=6,则tanA=_______.3、在△ABC 中,AB=AC=3,BC=4,则tanC=______.4、在Rt △ABC 中,∠C 是直角,∠A、∠B、∠C 的对边分别是a 、b 、c,且a=24,c= 25,求tanA 、tanB 的值.5、若三角形三边的比是25:24:7,求最小角的正切值.6、如图,在菱形ABCD 中,AE⊥BC 于E,EC=1,tanB=125, 求菱形的边长和四边形AECD 的周长.7、已知:如图,斜坡AB 的倾斜角a,且tan α=34,现有一小球从坡底A 处以20cm/s 的速度向坡顶B 处移动,则小球以多大的速度向上升高?8、探究: ⑴、a 克糖水中有b 克糖(a>b>0),则糖的质量与糖水质量的比为_______; 若再添加c 克糖(c>0),则糖的质量与糖水的质量的比为________.生活常识告诉我们: 添加的糖完全溶解后,糖水会更甜,请根据所列式子及这个生活常识提炼出一个不等式: ____________.⑵、我们知道山坡的坡角越大,则坡越陡,联想到课本中的结论:tanA 的值越大, 则坡越陡,我们会得到一个锐角逐渐变大时,它的正切值随着这个角的变化而变化的规律,请你写出这个规律:_____________.⑶、如图,在Rt△ABC 中,∠B=90°,AB=a,BC=b(a>b),延长BA 、BC,使AE=CD=c, 直线CA 、DE 交于点F,请运用(2) 中得到的规律并根据以上提供的几何模型证明你提炼出的不等式.E DB ACBA1.2 30°,45°,60°角的三角函数值学习目标:1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理.进一步体会三角函数的意义.2.能够进行30°、45°、60°角的三角函数值的计算.3.能够根据30°、45°、60°的三角函数值说明相应的锐角的大小.学习重点:1.探索30°、45°、60°角的三角函数值.2.能够进行含30°、45°、60°角的三角函数值的计算.3.比较锐角三角函数值的大小.学习难点:进一步体会三角函数的意义.学习方法:自主探索法学习过程:一、问题引入[问题]为了测量一棵大树的高度,准备了如下测量工具:①含30°和60°两个锐角的三角尺;②皮尺.请你设计一个测量方案,能测出一棵大树的高度.二、新课[问题] 1、观察一副三角尺,其中有几个锐角?它们分别等于多少度?[问题] 2、sin30°等于多少呢?你是怎样得到的?与同伴交流.[问题] 3、cos30°等于多少?tan30°呢?[问题] 4、我们求出了30°角的三个三角函数值,还有两个特殊角——45°、60°,它们的三角函数值分别是多少?你是如何得到的?[例1]计算:(1)sin30°+cos45°; (2)sin260°+cos260°-tan45°.[例2]一个小孩荡秋千,秋千链子的长度为2.5 m,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m)三、随堂练习1.计算:(1)sin60°-tan45°; (2)cos60°+tan60°;(3) sin45°+sin60°-2cos45°; ⑷;⑸(+1)-1+2sin30°-8; ⑹(1+2)0-|1-sin30°|1+(21)-1;⑺sin60°+︒-60tan 11; ⑻2-3-(0032+π)0-cos60°-211-.2.某商场有一自动扶梯,其倾斜角为30°.高为7 m ,扶梯的长度是多少?3.如图为住宅区内的两幢楼,它们的高AB =CD=30 m ,两楼问的距离AC=24 m ,现需了解甲楼对乙楼的采光影响情况.当太阳光与水平线的夹角为30°时,求甲楼的影子在乙楼上有多高?(精确到0.1 m ,2≈1.41,3≈1.73)四、课后练习:1、Rt △ABC 中,8,60=︒=∠c A ,则__________,==b a ;2、在△ABC 中,若2,32==b c ,,则____tan =B ,面积S = ;3、在△ABC 中,AC :BC =1:3,AB =6,∠B = ,AC = BC =4、等腰三角形底边与底边上的高的比是3:2,则顶角为 ( ) (A )600(B )900(C )1200(D )1505、有一个角是︒30的直角三角形,斜边为cm 1,则斜边上的高为 ( ) (A )cm 41 (B )cm 21(C )cm 43 (D )cm 23 6、在ABC ∆中,︒=∠90C ,若A B ∠=∠2,则tanA 等于( ). (A )3 (B )33 (C )23 (D )217、如果∠a 是等边三角形的一个内角,那么cos a 的值等于( ).(A )21 (B )22(C )23 (D )1︒15020米30米8、某市在“旧城改造”中计划内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a 元,则购买这种草皮至少要( ). (A )450a 元 (B )225a 元 (C )150a 元 (D )300a 元 9、计算:⑴、︒+︒60cos 60sin 22⑵、⑶、︒-︒45cos 30sin 2⑷、3245cos 2-+︒⑸、045cos 360sin 2+ ⑹、 130sin 560cos 300-⑺、︒30sin 22·︒+︒60cos 30tan tan60° ⑻、︒-︒30tan 45sin 2210、请设计一种方案计算tan15°的值。

九年级数学下册 第一章 直角三角形的边角关系 1.1《锐角三角函数》教案 (新版)北师大版

九年级数学下册 第一章 直角三角形的边角关系 1.1《锐角三角函数》教案 (新版)北师大版

《锐角三角函数》锐角三角函数是义务教育课程标准实验教科书(北师版)《数学》九年级下册第一章第一节内容,本章主要研究直角三角形的边角关系;本节要求经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算。

;所以本节的重点是理解tanA的数学含义和公式。

【知识与能力目标】1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系2.能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算。

【过程与方法目标】1.经历观察、猜想等数学活动过程,发展合情推理能力,能有条理地,清晰地阐述自己的观点。

2.体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题.提高解决实际问题的能力。

3.体会解决问题的策略的多样性,发展实践能力和创新精神。

【情感态度价值观目标】1.积极参与数学活动,对数学产生好奇心和求知欲。

2.形成实事求是的态度以及独立思考的习惯。

【教学重点】理解tanA的数学含义和公式。

【教学难点】现实情境中理解tanA的数学含义,以及公式的应用。

课前准备教师准备课件、多媒体;学生准备;练习本;教学过程第一课时创设情境引入课题[问题1]在直角三角形中,知道一边和一个锐角,你能求出其他的边和角吗?从而引出课题在活动1中教师应重点关注:(1) 学生是否能从实际生活中发现并提出数学问题。

(2)学生的审美意识及对演示图片倾注的情感。

通过熟悉的物体(梯子),不仅让学生感受到生活中数学无处不在,也为后面的探究活动作好了情感准备。

梯子是日常生活常见的物体,让学生比较如何比较梯子的倾斜度,有哪些办法?“陡”或“平缓”是用来描述梯子什么的?教师通过引导学生观察、讨论,通过步步设问,引发学生思考。

定义在在Rt△ABC中,锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA=∠A的对边/∠A的邻边从而引出正切的定义利用这个梯子模型引入,可以帮助学生直观理解正切的概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1(2)锐角三角函数
一、教学目标
1、能利用相似的直角三角形,探索并认识锐角三角函数——正弦、余弦,理解锐角的正弦与余弦和梯子倾斜程度的关系.
2、能够用sinA,cosA 表示直角三角形中直角边与斜边的比,能够用正弦、余弦进行简单的计算.
二、教学重点和难点
重点:理解正弦、余弦的数学定义,感受数学与生活的联系.
难点:体会正弦、余弦的数学意义,并用它来解决生活中的实际问题.
三、教学过程
(一)复习引入:
1、如图,Rt △ABC 中,tanA = ,tanB= .
2、在Rt △ABC 中,∠C =90°,tanA =
4
3,AC =10,求BC,AB 的长.
3、若梯子与水平面相交的锐角(倾斜角)为∠A ,∠A 越大,梯子越 ;tanA 的值越大,梯子越 .
4、当Rt △ABC 中的一个锐角A 确定时,其它边之间的比值也确定吗? 可以用其它的方式来表示梯子的倾斜程度吗?
(二)学习新知:
1.在Rt △ABC 中,∠C=900,∠A 的_________________ 的比叫做∠A 的正弦(sine )。

∠A 的( )边 ( ) ( )
记作sinA 即 sinA= = =
∠A 的( )边 ( ) ( )
(字母表示)
2.在Rt △ABC 中,∠A 的________________ 的比叫做∠A 的余弦(cosine )。

记作cosA
∠A 的( )边
即 cosA= = = (字母表示)
∠A 的( )边
3.锐角A 的______、______、______都是∠A 的三角函数....。

4.AB,A1B1表示梯子CE表示支撑梯子的墙,AC在地面上。

E
B1
B
A A1 C
(1)梯子AB, A1B1那个更陡?
(2)梯子的倾斜程度与tanA有关系吗?
(3)梯子的倾斜程度与sinA和cosA有关系吗?
(三)典型例题:
例1. 在Rt△ABC中,∠C=900,AC=3,BC=4,求tanA、sinA和cosA的值。

例2. 在Rt△ABC中,∠B=900, AC=200, sinA=0.6
(1)求BC的长。

(2)求cosA,sinC和cosC的值
(3)通过(2)的计算,你能得出什么结论?
(四)巩固训练:
1. 在Rt △ABC 中,∠C=900, cosA=
1312,AC=10,AB 等于多少?sinB 呢?
2. 在Rt △ABC 中,∠C=900,sinA=
54,BC=20,求△ABC 的周长和面积。

3. 在Rt △ABC 中,∠C=900,sinA=
4
3,求tanA 和cosA 的值。

(五)知识小结:
1、锐角三角函数定义:sinA= ,cosA= ,tanA= ;
2、温馨提示:
(1)sinA ,cosA ,tanA , 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构
造直角三角形);
(2)sinA ,cosA ,tanA 是一个完整的符号,表示∠A 的正切,习惯省去“∠”号;
(3)sinA ,cosA ,tanA 都是一个比值,注意区别,且sinA,cosA,tanA 均大于0,无单位;
(4)sinA ,cosA ,tanA 的大小只与∠A 的大小有关,而与直角三角形的边长没有必然
关系;
(5)角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等. (六)拓展提升:
1、在用三角函数解决一般三角形或四边形的实际问题中,应注意构造直角三角形.
4.如图,△ABC是等腰三角形,AB=AC=5,BC=6,求tanB、sinB和cosB。

B C
2. 在Rt△ABC中,∠BCA=900,CD是AB边上的中线,BC=8,CD=5,
求sin∠ACD,cos∠ACD, tan∠ACD(注意书写格式)
3.在△ABC中,∠BAC>900, AB=5, BC=13, AD是BC边上的高线,AD=4,
求CD和sinC。

如果∠BAC<900呢?。

相关文档
最新文档