2017年秋季学期新版新人教版九年级数学上学期24.1.4、圆周角教案9
2017年秋季学期新版新人教版九年级数学上学期24.1.4、圆周角教案17
板书设计
圆周角定义三、练 习
圆周角定理四、小结
参考书目
及推பைடு நூலகம்资料
教学反思
圆周角定理的得出部分学生理解 不了,通过互 助学习,有一定效果。
学情分析
学生理解圆周角定理的证明有一定困难
学法指导
合作、探究、讨论。
教学过程
教学内容
教师活动
学生活动
效果预测
及补救措 施
修改 意见
一、圆周角定义
二、圆周角定理导入
三、探究圆周角与圆心角的关系
四、定理 及推论
五、讲解例题
六、练习
七、小结
谈谈本节课 有什么收获
指导学生学习圆周角定义
指导学生观察同弧所对圆周 角有什么关系
圆周角
课题
24.1.4圆周角
课时
1
课型
新课
修改意见
教学目标
1.理解圆周角、圆内角、圆外角概念,掌握圆周角和圆心角的关系定理
2.在定理的证明过程中,了解化归思想 和分类思想和完全归纳的思想。
3.培养学生分析问题和解决问题及综 合运用知识的能力
教学重点
学会识别圆周角并掌握圆周角定理
教学难点
理解圆周角定理的证明
引导学生探究圆周角与圆心角的关系
引导学生得出圆周角定理
讲解例题
指导学生完成练习
引导学生小结:谈谈本节课有什么收获
学习圆周角 定义
观 察同弧所对圆周角有什么关系
探究圆周角与圆心角的关系
合作探究,得出圆周角定理
学习例题
完成练习
小结:谈谈本节课有什么收获
部分学生不会观察,教师应适度指导。
因为难度较大,教师要加强引导,同学之间合作、探讨。
2017秋人教版数学九年级上册24.1.4圆周角定理word教案
作课类别课题圆周角定理课型新授教学媒体多媒体教学目标知识技能1.了解圆周角的概念,理解圆周角的定理及其推论.2.熟练掌握圆周角的定理及其推论的灵活运用.3.体会分类思想.过程方法设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推论解决问题.情感态度激发学生观察、探究、发现数学问题的兴趣和欲望.教学重点圆周角定理、圆周角定理的推导及运用它们解题.教学难点运用数学分类思想证明圆周角的定理.教学过程设计教学程序及教学内容师生行为设计意图一、导语上节课我们学习了圆心角、弧、弦之间的关系定理,如果角的顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题.二、探究新知(一)、圆周角定义问题:如图所示的⊙O,我们在射门游戏中,设EF是球门,•设球员们只能在所在的⊙O其它位置射门,如图所示的A、B、C点.观察∠EAF、∠EBF、∠ECF这样的角,它们的共同特点是什么?得到圆周角定义:顶点在圆上,且两边都与圆相交的角叫做圆周角.分析定义:○1圆周角需要满足两个条件;○2圆周角与圆心角的区别(二)、圆周角定理及其推论1.结合圆周角的概念通过度量思考问题:○1一条弧所对的圆周角有多少个?教师联系上节课所学知识,提出问题,引起学生思考,为探究本节课定理作铺垫学生以射门游戏为情境,通过寻找共同特点,总结一类角的特点,引出圆周角的定义学生比较圆周角与圆心角,进一步理解圆周角定义教师提出问题,引导学生思考,大胆猜想.得到:1一条弧上所对的圆周角从具体生活情境出发,通过学生观察,发现圆周角的特点深化理解定义激发学生求知欲,为探究圆周角定理做铺垫.②同弧所对的圆周角的度数有何关系?③同弧所对的圆周角与圆心角有何数量关系吗?2.分情况进行几何证明①当圆心O在圆周角∠ABC的一边BC上时,如图⑴所示,那么∠ABC=12∠AOC吗?②当圆心O在圆周角∠ABC的内部时,如图⑵,那么∠ABC=12∠AOC吗?③当圆心O在圆周角∠ABC的外部时,如图⑶,∠ABC=12∠AOC吗?可得到:一条弧所对的圆周角等于这条弧所对的圆心角的一半.根据得到的上述结论,证明同弧所对的圆周角相等.得到:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.问题:将上述“同弧”改为“等弧”结论会发生变化吗?总结归纳出圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.于是,在同圆或等圆中,两个圆心角,两个圆周角、两条弧、两条弦中有一组量相等,则其它各组量都分别相等.半圆作为特殊的弧,直径作为特殊的弦,运用上述定理有什么新的结论?推论半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.(三)圆内接多边形与多边形的内接圆1.圆内接多边形与多边形的内接圆的定义如何区别两个定义?(前者是特殊的多边形后者是特殊的圆)2.圆内接四边形性质这条性质的题设和结论分别是什么?怎样证明?(四)定理应用1.课本例2有无数个.2通过度量,同弧所对的圆周角是没有变化的,同弧所对的圆周角是圆心角的一半.教师组织学生先自主探究,再小组合作交流,总结出按照圆周角在圆中的位置特点分情况进行探究的方案.学生尝试叙述,达到共识学生尝试证明学生根据同弧与等弧的概念思考教师提出的问题,师生归纳出定理让学生明白该定理的前提条件的不可缺性,师生分析,进一步理解定理.教师试让学生将上节课定理与归纳的定理进行综合,思考,便于综合运用圆的性质定理..教师提出问题,学生领会半圆作为特殊的弧,直径作为特殊的弦,进行思考,得到推论学生按照教师布置阅读课本85—86页,理解圆内接多边形与多边形的内接圆学生运用圆周角定理尝试证明学生审题,理清题中的数量关系,由本节课知识思培养学生全面分析问题的能力,尝试运用分类讨论思想方法,培养学生发散思维能力.为继续探究其推论奠定基础.感受类比思想,类比中全面透彻地理解和掌握定理,让学生感受相关知识的内在联系,形成知识系统.使学生运用定理解决特殊性问题,从而得到推论培养学生的阅读能力,自学能力.学生初步运用圆周角定理进行证明,同时发现圆内接四边形性质培养学生解决问题的意识和能力运用所学知识进行应用,巩固知识,形成做题技2. 如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?请证明.三、课堂训练完成课本86页练习四、小结归纳1.圆周角的概念及定理和推论2. 圆内接多边形与多边形的内接圆概念和圆内接四边形性质3. 应用本节定理解决相关问题.五、作业设计作业:复习巩固作业和综合运用为全体学生必做;拓广探索为成绩中上等学生必做.考解决方法.教师组织学生进行练习,教师巡回检查,集体交流评价,教师指导学生写出解答过程,体会方法,总结规律.让学生尝试归纳,总结,发言,体会,反思,教师点评汇总巧让学生通过练习进一步理解,培养学生的应用意识和能力归纳提升,加强学习反思,帮助学生养成系统整理知识的习惯巩固深化提高板书设计课题圆周角定理推论圆内接四边形性质例题归纳教学反思。
人教版九年级数学上册24.1.4《圆周角》教案
1.教学重点
-圆周角的定义:理解圆周角的含义,明确圆周角顶点在圆心上,两边分别与圆上的两条弧相交。
-圆周角定理:掌握同圆或等圆中,相等圆周角所对的弧相等;相等弧所对的圆周角也相等的定理。
-圆周角的应用:学会将圆周角定理应用于解决实际问题,如计算弧长、角度等。
-圆内接四边形的性质:了解圆内接四边形的对角互补,以及圆周角定理在四边形中的应用。
课堂上,我通过提问和实例引入新课,希望能激发学生的兴趣和好奇心。从学生的反应来看,这个方法还是有效的,他们能够积极参与课堂讨论。但在讲授理论知识时,我发现有些学生难以跟上我的思路,可能是因为我讲解得太快,没有给学生足够的思考时间。在接下来的教学中,我会注意放慢讲解速度,给予学生更多的思考空间。
实践活动环节,学生分组讨论和实验操作进行得相当不错。他们能够将所学的圆周角定理应用到实际问题中,这让我感到很欣慰。但同时,我也注意到,在小组讨论过程中,有些学生过于依赖同伴,没有独立思考。因此,我会在以后的课堂上,更加关注每个学生的学习状态,鼓励他们提出自己的观点和疑问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解圆周角的基本概念。圆周角是指圆上一条弧所对的角,其顶点位于圆心上。它是研究圆的重要几何属性,对于解决与圆相关的问题具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了圆周角在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调圆周角的定义和圆周角定理这两个重点。对于难点部分,比如圆周角与圆心角的区别,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆周角相关的实际问题,如圆内接四边形的性质。
人教版数学九年级上册24.1.4《圆周角定理》教学设计
人教版数学九年级上册24.1.4《圆周角定理》教学设计一. 教材分析人教版数学九年级上册24.1.4《圆周角定理》是本节课的主要内容。
圆周角定理是圆周角定理系列中的重要定理之一,也是后续学习圆的性质和圆的方程的基础。
本节课的内容包括圆周角定理的证明和应用。
教材通过丰富的例题和练习题,帮助学生理解和掌握圆周角定理,并能够运用到实际问题中。
二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的性质,对角的性质有一定的了解。
但是,对于圆周角定理的理解和运用还需要进一步引导和培养。
因此,在教学过程中,需要注重引导学生通过观察和操作,发现和总结圆周角定理的规律。
三. 教学目标1.了解圆周角定理的内容和证明过程。
2.能够运用圆周角定理解决实际问题。
3.培养学生的观察能力、操作能力和推理能力。
四. 教学重难点1.圆周角定理的证明过程。
2.圆周角定理在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察和操作,发现和总结圆周角定理的规律。
2.运用多媒体辅助教学,展示圆周角定理的证明过程,增强学生的直观感受。
3.通过例题和练习题,让学生在实际问题中运用圆周角定理,巩固所学知识。
六. 教学准备1.多媒体教学设备。
2.圆规、直尺等绘图工具。
3.相关例题和练习题。
七. 教学过程1.导入(5分钟)通过提问方式,引导学生回顾相似三角形的性质和角的性质。
让学生思考:在圆中,圆周角和圆心角之间有什么关系?2.呈现(10分钟)展示圆周角定理的证明过程,引导学生观察和理解证明方法。
通过多媒体动画演示,让学生更直观地感受圆周角定理的应用。
3.操练(10分钟)让学生分组讨论,尝试解决一些与圆周角定理相关的问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)呈现一些例题和练习题,让学生独立解答。
教师选取部分学生的解答进行讲解和分析,巩固所学知识。
5.拓展(10分钟)引导学生思考:圆周角定理在实际问题中的应用。
人教版九年级上册数学24.1.4圆周角优秀教学案例
1.利用多媒体课件,讲解圆周角的定义及其性质。
2.通过动画演示,让学生直观地感受圆周角的形成过程。
3.运用几何图形,解释圆周角定理及其推论。
在讲授新知环节,我将利用多媒体课件,讲解圆周角的定义及其性质。通过动画演示,让学生直观地感受圆周角的形成过程。在此基础上,我会运用几何图形,解释圆周角定理及其推论。在这个过程中,注重引导学生积极参与,鼓励他们提出问题,以便更好地理解和掌握圆周角的知识。
(三)学生小组讨论
1.设计具有挑战性的问题,引导学生进行小组讨论。
2.让学生通过合作、交流,共同探究圆周角的性质。
3.组织学生展示讨论成果,分享彼此的想法和收获。
三、教学策略
(一)情景创设
1.利用多媒体课件,展示生活中的圆周角实例,引导学生认识圆周角。
2.通过动画演示,让学生直观地感受圆周角的形成过程。
3.设计有趣的数学问题,激发学生的求知欲。
在情景创设方面,我将运用多媒体课件,以生动形象的方式展示圆周角的特点,帮助学生建立起空间观念。通过展示生活中的圆周角实例,引导学生认识圆周角,激发他们的学习兴趣。同时,设计有趣的数学问题,激发学生的求知欲,让他们在解决问题的过程中,自然而然地引入圆周角的知识。
人教版九年级上册数学24.1.4圆周角优秀教学案例
一、案例背景
本节内容为人教版九年级上册数学24.1.4圆周角,旨在让学生掌握圆周角的定义、性质及其在几何中的应用。通过对圆周角的学习,培养学生观察、思考、推理的能力,提高他们的空间想象力。
圆周角是圆心角的一种,它在圆中具有重要的地位。在本节内容中,学生需要了解圆周角的定义、性质,并能运用圆周角定理解决实际问题。在教学过程中,我将结合生活实例,引导学生认识圆周角,并通过小组合作、讨论交流的方式,让学生探究圆周角的性质,从而提高他们的合作意识和解决问题的能力。
数学人教版九年级上册24.1.4圆周角教案
6.培养学生的团队合作意识:在小组讨论和合作完成练习题的过程中,促进学生相互交流、协作,共同提高。
三、教学难点与重点
1.教学重点
-圆周角的定义:强调圆周角是由圆上两条弧所对的角,这是后续学习圆周角性质和计算的基础。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆周角相关的实际问题,如如何在一个圆形花园中均匀划分种植区域。
2.实验操作:为了加深理制作圆形模型,并通过切割来演示圆周角的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
-圆周角定理:理解和掌握圆周角等于其所对圆心角的一半,这是本节课的核心知识点。
-圆周角的计算:学会运用圆周角定理及相关定理(如圆内接四边形的性质)解决具体计算问题。
-实际应用:通过例题,使学生掌握圆周角在实际问题中的应用,如计算圆中未知角度等。
举例:
在讲解圆周角定理时,重点强调圆周角与圆心角的关系,并通过动态演示或实际操作让学生直观感受这一关系。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆周角的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对圆周角定理及其计算方法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂中,我尝试了多种教学方法来帮助学生理解圆周角的概念和性质。我发现,通过引入日常生活中的实例,学生们能够更快地进入学习状态,对圆周角产生了直观的兴趣。在理论讲授环节,我注意到了几个关键点:首先,用简洁明了的语言解释圆周角的定义,让学生对基本概念有清晰的认识;其次,通过案例分析,让学生看到圆周角在实际问题中的应用,这有助于他们理解学习的现实意义。
人教版九年级上册24.1.4圆周角教学设计
人教版九年级上册24.1.4圆周角教学设计一、教学目标1.知道圆周角的定义2.能够计算圆周角的度数3.熟悉圆周角在实际应用中的运用二、教学重点1.圆周角的定义2.计算圆周角的度数三、教学难点1.熟悉圆周角在实际应用中的运用四、教学方法1.讲解:通过讲解圆周角的定义和计算方法,让学生掌握基本概念和方法。
2.实验:通过展示圆形物品,让学生亲身体验圆周角的度数。
3.案例分析:通过实例分析,帮助学生了解圆周角在实际应用中的运用。
五、教学过程1. 导入新知识通过展示圆形物品,如扇形、轮胎等,让学生感受圆形的特征,并引入圆周角的概念。
2. 讲解圆周角的定义让学生掌握圆周角的定义:圆周角是指夹在圆内的两条弧所对的角。
3. 讲解圆周角的计算方法1.讲解圆周角的度数:圆的周长为360度,因此圆周角所对的弧长与圆周长的比例为所对的角与360度的比例。
2.计算圆周角的度数:根据所对弧的长度与圆周长的比例以及圆周的度数制求得圆周角的度数。
4. 实验展示通过展示圆形物品,让学生通过手动旋转掌握圆周角的度数,并在班级中交流讨论。
5. 案例分析1.讲解圆周角在电子产品外观设计中的应用。
2.讲解圆周角在建筑、机器等领域中的应用。
六、教学评价通过布置作业,检测学生对圆周角的掌握程度,并通过课堂互动,了解学生对圆周角在实际应用中的理解情况。
七、板书设计1.圆周角的定义:夹在圆内的两条弧所对的角。
2.圆周角的计算方法:所对弧长与圆周长的比例。
八、课堂设计本节课内容较为抽象,需要通过实物展示和案例分析来帮助学生掌握基本概念和方法。
同时,教师还需要与学生进行及时互动,以确保学生的参与度和掌握程度。
人教版数学九年级上册教学设计24.1.4《圆周角》
人教版数学九年级上册教学设计24.1.4《圆周角》一. 教材分析《圆周角》是人教版数学九年级上册第24章的一部分,主要介绍了圆周角的定义、性质和应用。
通过本节课的学习,学生能够理解圆周角的概念,掌握圆周角的性质,并能够运用圆周角解决一些实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念和性质,如圆的定义、半径、直径等。
同时,学生也具备了一定的观察、分析和解决问题的能力。
但是,对于圆周角的定义和性质,学生可能还比较陌生,需要通过实例和练习来进一步理解和掌握。
三. 教学目标1.知识与技能:理解圆周角的定义,掌握圆周角的性质,并能够运用圆周角解决一些实际问题。
2.过程与方法:通过观察、分析和归纳,培养学生的逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 教学重难点1.圆周角的定义和性质。
2.运用圆周角解决实际问题。
五. 教学方法1.讲授法:通过讲解圆周角的定义和性质,引导学生理解和掌握相关知识。
2.案例分析法:通过分析具体案例,让学生更好地理解圆周角的运用。
3.小组讨论法:通过小组讨论,培养学生的团队合作意识和解决问题的能力。
六. 教学准备1.课件:制作相关的课件,包括圆周角的定义、性质和应用等方面的内容。
2.案例:准备一些具体的案例,用于分析和解决实际问题。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾圆的基本概念和性质,为新课的学习做好铺垫。
2.呈现(15分钟)利用课件呈现圆周角的定义和性质,让学生初步了解并掌握相关知识。
3.操练(15分钟)让学生通过观察和分析具体的案例,运用圆周角的知识解决问题,巩固所学内容。
4.巩固(5分钟)让学生完成一些练习题,检查对圆周角知识的掌握程度,并对存在的问题进行讲解和辅导。
5.拓展(5分钟)引导学生进一步思考和探讨圆周角在实际问题中的应用,培养学生的解决问题的能力。
人教版九年级数学上册24.1.4《圆周角》教学设计
人教版九年级数学上册24.1.4《圆周角》教学设计一. 教材分析《圆周角》是人民教育出版社九年级数学上册第24章《圆》的第四节内容。
本节主要让学生通过探究圆周角的性质,掌握圆周角定理及其推论,并能在实际问题中运用。
圆周角定理是圆的内接四边形定理的重要组成部分,对于学生理解圆的性质,解决与圆有关的问题具有重要意义。
二. 学情分析学生在学习本节内容前,已经掌握了圆的基本概念、圆的性质、圆的周长和面积等知识。
但学生对于圆周角的理解和应用还不够深入,需要通过本节内容的学习,进一步巩固和提高。
同时,学生对于几何图形的观察和分析能力有待提高,需要在教学过程中加强引导和培养。
三. 教学目标1.知识与技能目标:使学生掌握圆周角定理及其推论,能运用圆周角定理解决简单问题。
2.过程与方法目标:通过观察、分析、推理等方法,培养学生的几何思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:圆周角定理及其推论。
2.难点:圆周角定理的证明和应用。
五. 教学方法1.采用问题驱动法,引导学生观察、分析、推理,从而得出圆周角定理。
2.运用案例教学法,让学生通过实际问题,运用圆周角定理解决问题。
3.采用小组合作学习法,培养学生的团队合作意识。
六. 教学准备1.准备相关的几何模型和图片,以便于学生观察和分析。
2.准备一些实际问题,供学生练习和应用。
3.准备PPT,用于展示和讲解。
七. 教学过程1.导入(5分钟)利用PPT展示一些与圆有关的实际问题,引导学生思考圆周角的概念。
2.呈现(10分钟)利用PPT展示圆周角定理的内容,让学生初步了解圆周角定理。
3.操练(10分钟)让学生分组讨论,通过观察、分析、推理,证明圆周角定理。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生运用圆周角定理解决一些实际问题,巩固所学知识。
5.拓展(10分钟)让学生进一步探索圆周角定理的推论,了解圆周角定理在几何中的应用。
人教版数学九年级上册24.1. 圆周角 教案
演示课件:展示一个圆柱形的海洋馆.在这个海洋馆里,人们可以通过其中的圆AB弧形玻璃窗观看窗内的海洋动物出示海洋馆的横截面示意图:利用几何画板演示,让学生感受圆周角的概念,并结合示意图,给出圆周角的定义.3.改变圆的半径大小活动二:问题1在圆上任取一个圆周角,观察圆心与圆周角的位置关系有几种情况?问题2当圆心在圆周角的一边上时,如何证明活动2中所发现的结论?问题3另外两种情况如何证明,可否转化成第一种情况呢?教师演示圆心与圆周角的三种位置关系.教师引导学生从特殊情况入手证明所发现的结论:同弧或等所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等.活动三:问题1:一个特殊的圆弧——半圆,它所对的圆周角是什么样的角?学生写出已知、求证,完成证明.(问题1的设计是让学生通过合作探索,学会运用分类讨论的数学思想研究问题.培养学生思维的深刻性.问题2、3的提出是让学生学会一种分析问题、解决问题的方式方法:从特殊到一般.学会运用化归思想将问题转化.并启发培养学生创造性的解决问题.)87654321B C DA灵活应用, 巩固提高 (8分钟)课件显示1、如图,点A 、B 、C 、D 在同一个圆上,四边形ABCD 的对角线把4各内角分成8个角,这些角中哪些是相等的角?2、求圆中角X 的度数3、如图,已知圆心角∠AOB=100°,求圆周角∠ACB 、∠ADB 的度数?学生先独立解决问题,然后提出自己的看法,再分组讨论,并鼓励学生上讲台演示多媒体课件(通过本题,让学生通过自己的思维活动得到解题思路的探索过程,由学生自己完成证明,使学生切实从应用上加深对圆周角的理解)多媒体课件(通过课堂练习,检查学生对基础知识的掌握情况,了解学生是否圆周角的定理及推论有更深刻的理解,使学生进一步巩固知识,运用知识。
)运用结论 解决实情 (3分钟)2004年5月13日,我国发生了建国以来最大的珠宝盗窃案,在上海商城会举行的第四届上海国际珠宝展览会中的百万珠宝不翼而飞,被盗的56号和57号展多媒体课件位有盲区,为避免这类事情再次发生,我们需要解决这样一个问题:在一圆形展厅边缘安装监视器,每台监控角度是65°,为了监控整个展厅,最少要在边缘上安装多少台这样的监视器?把数学知识和现实实际相连,让学生不再感到数学与现实无关,数学不再是一味地演算、推导等抽象的东西,数学同样可以很具体,和生活密切相连.让学生真正感受到“数学好玩”,“数学有用”.归纳总结,形成体系(3分钟)课件显示:请学生选择下面一个或几个关键词谈本节课的体会:知识、方法、思想、收获、喜悦、困惑、成功······通过这堂课的学习你有什么收获?知道了哪些新知识?学会了做什么通过小结使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联结,有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感.多媒体课件布置作业,必做题:课本94页4,5题。
24.1.4圆周角(教案)九年级上册初三数学(人教版)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆周角相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用量角器和直尺来测量圆周角,并观察其与圆心角的关系。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
在学生小组讨论环节,我发现学生们对于圆周角在实际生活中的应用提出了许多有趣的想法。这说明他们在思考问题时能够联系实际,这是一个很好的学习态度。但我也发现,有些学生的思考还不够深入,可能是因为他们对圆周角的理论知识掌握得不够扎实。因此,我需要加强对这部分学生的个别辅导,确保他们能够跟上课程进度。
最后,我意识到在总结回顾环节,我没有给予学生足够的时间来提问和表达疑惑。在今后的教学中,我会更加注意这一点,确保每个学生都有机会提出问题,及时解决他们的疑惑。
,则这两个圆周角相等。
3.应用圆周角性质解决实际问题,如测量弦长、计算圆周长等。
4.练习相关习题,加深对圆周角性质的理解和应用。
本节课将围绕以上内容,通过讲解、示范、练习等形式,使学生掌握圆周角的概念和性质,并能运用其解决实际问题。
二、核心素养目标
举例:
针对第一个难点,教师可以通过绘制多个不同大小和位置的圆周角,引导学生观察和总结规律,帮助他们理解圆周角与圆心角的关系。
对于第二个难点,教师可以设计一些包含多个圆周角和复杂弦关系的例题,逐步引导学生分析问题,明确解题步骤。
对于第三个难点,教师可以让学生通过小组讨论和展示,共同探索圆周角推论的应用场景,从而加深理解。
在讲授过程中,我尽量通过生动的例子和实际操作来帮助学生理解,但显然效果还有待提高。下次,我可以尝试使用更多的实物模型或动态图示,让学生更直观地感受圆周角的变化,从而加深他们的理解。
九年级数学上册24.1.4圆周角(教案)
九年级数学上册24.1.4 圆周角【知识与技术】理解圆周角的观点 .研究圆周角与同弧所对的圆心角之间的关系,并会用圆周角定理及推论进行相关计算和证明 .【过程与方法】经历研究圆周角定理的过程,初步领会分类议论的数学思想,浸透解决不确立的研究型问题的思想和方法,提升学生的发散思想能力 .【感情态度】经过踊跃指引,帮助学生存心识地累积活动经验,获取成功的体验.【教课要点】圆周角定理及其推论的研究与应用.【教课难点】圆周角定理的证明中由一般到特别的数学思想方法以及圆周角定理及推论的应用 .一、情境导入,初步认识如图是一个圆柱形的大海馆的横截面表示图,人们能够经过此中的圆弧形玻璃窗 AB 观看窗内的大海动物,同学甲站在圆心 O 的地点 .同学乙站在正对着玻璃窗的靠墙的地点 C,他们的视角(∠ AOB 和∠ ACB)有什么关系?假如同学丙、丁分别站在其余靠墙的地点 D 和 E,他们的视角(∠ ADB 和∠ AEB )和同学乙的视角同样吗?[同样, 2∠ACB=2 ∠ AEB=2 ∠ADB= ∠ AOB ]【教课说明】教师出示大海馆图片,指引学生思虑,引出课题,学生察看图形、剖析,初步感知角的特点.二、思虑研究,获取新知1.圆周角的定义研究 1 察看以下各图,图(1)中∠APB的极点P在圆心O的地点,此时∠APB 叫做圆心角,这是我们上节所学的内容 .图(2)中∠ APB 的极点 P 在⊙ O 上,角的两边都与⊙ O 订交,这样的角叫圆周角 .请同学们剖析( 3)、(4)、( 5)、( 6)是圆心角仍是圆周角 .【教课说明】设计这样的一个判断角的问题,是再次重申圆周角的定义,让学生深刻领会定义中的两个条件缺一不行 .【概括结论】圆周角一定具备两个条件:①极点在圆上;②角的两边都与圆订交 .两者缺一不行 .2.圆周角定理研究 2 如图,(1)指出⊙ O 中全部的圆心角与圆周角,并指出这些角所对的是哪一条弧?(2)量一量∠ D、∠ C、∠ AOB 的度数,看看它们之间有什么样的关系?(3)改改动点 C 在圆周上的地点,看看圆周角的度数有没有变化?你发现此中有规律吗?如有规律,请用语言表达.解:(1)圆心角有:∠ AOB 圆周角有:∠ C、∠ D,它们所对的都是AB(2)∠ C=∠D=1/2∠AOB.(3)改改动点 C 在圆周上的地点,这些圆周角的度数没有变化,并且圆周角的度数恰巧等于同弧所对圆心角度数的一半 .【教课说明】教师利用几何画板丈量角的大小,挪动点 C,让学生察看当 C 点地点发生改变过程中,图中有哪些不变,从而沟通总结,找出规律,同时指引学生察看圆心与圆周角的地点关系,为定理分状况证明作铺垫.为了进一步研究上边发现的结论,如图,在⊙ O 上任取一个圆周角∠ ACB ,将圆对折,使折痕经过圆心 O 和∠ ACB 的极点 C.因为点 C 的地点的取法可能不一样,这时折痕可能会:(1)在圆周角的一条边上;(2)在圆周角的内部;(3)在圆周角的外面 .已知:在⊙ O 中,AB所对的圆周角是∠ ACB ,圆心角是∠ AOB ,求证:∠ACB=1/2 ∠ AOB.[提示剖析:我们可按上边三种图形、三种状况进行证明.]如图( 1),圆心 O 在∠ ACB 的边上,∵ OB=OC,∴∠ B=∠C,而∠ BOA= ∠B+∠C,∴∠ B=∠C=1/2∠AOB.图( 2)(3)的证明方法与图( 1)不一样,但能够转变成( 1)的基本图形进行证明,证明过程请学生们议论达成 .得出圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半 .注意:①定理应用的条件是“同圆或等圆中”,并且一定是“同弧或等弧” ,以以下图( 1) .②若将定理中的“同弧或等弧”改为“同弦或等弦”结论就不行立了.因为一条弦所对的圆周角有两种状况,它们一般不相等(而是互补).以以下图( 2) .【教课说明】在定理的证明过程中,要使学生明确,要不要分状况来证明 . 若要分状况证明,一定要理解按什么标准来分状况,而后针对各样不一样的状况逐一进行证明 .在证明过程中,第( 1)种状况是特别状况,是比较简单证明的,经过增添直径这条协助线将( 2)、(3)种状况转变为第( 1)种状况,表现由一般到特别的思想方法。
24.1.4 圆周角 人教版数学九年级上册教案
24.1.4 圆周角一、【教材分析】知识技能1、理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;2、掌握圆周角定理的三个推论,并会熟练运用这些知识进行有关的计算和证明.过程方法1、培养学生观察、分析、想象、归纳和逻辑推理的能力;2、渗透由“特殊到一般”,由“一般到特殊”,体验分类讨论的数学思想方法.教学目标情感态度敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.教学重点圆周角定理及定理的三个推论的应用.教学难点圆周角定理的证明,三个推论的灵活应用.二、【教学流程】教学环节问题设计师生活动二次备课情景创设观察与思考:(教师边演示自制教具边介绍,其中底面圆片上标注好有关的字母、线条)假设这是一个圆柱形的房子,同学们可以站在房中通过圆弧形玻璃窗AB向外观看外面的风景,同学甲站在圆心O的位置,同学乙站在正创设问题情境,开展学习活动,引起学生学习的兴趣图图c图画出来.3、利用第2题的图形,分别证明图a、图b、图c中的∠B OC=2∠B AC.4、用自己的语言说出圆周角定理的内容是什么?(1)在同圆或等圆中,同弧或等弧所对的圆周角相等;动,归纳出:⑴在圆周角的一条边上(如图a);⑵在圆周角的内部(如图b);⑶在圆周角的外部(如图c).学生自己独立完成图a的证明.对于图b、图c两种情况的证明,我们可以先尝试让学生小组交流,寻找证题方法,教师可以参与小组讨论,及时给予引导、点拨,然后板书展示证明过程,最后全班进行点评,引导学生体会“转换化归”在解决从特殊到一般问题时的应用思路和方法.以小组为单位讨论、探索,教师参与其中,指导帮助学生完成问题的解答.最后归纳通过制作演示折纸,培养学生动手操作的能力,促进学生参与教学的意识的形成.学会分类讨论、转换化归是教学突破的关键通过观察、交流、归纳,锻炼学生的逻辑思维能力,体验分类讨论的数学思想方法C三、【板书设计】四、【教后反思】本节课首先设计了一个问题情境,展示了圆心角与圆周角的位置关系,引出圆周角的概念.然后通过测量、猜想,得出同弧所对的圆周角等于圆心角的一半的结论.接着通过让学生折纸,观察与思考,利用分类讨论的思想方法,分三种情况给出系统的证明及思维过程.至此我们利用迁移、转化的思想方法化未知为已知,将圆周角的问题转化为圆心角来求解.其后为进一步探索圆周角的其他性质,我们又以设置的问题为导线,将学生带入到教学活动中,同时再次通过交流、讨论、合作、归纳出圆周角定理的三个推论,并运用它们进行解题,实现从认识到应用的转化.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学重点
圆内接四边形对角互补的探索与运用.
教 学难点
论证圆内接四边形对角互补.
教 学设计
设计意图
一、复习引入,激发学生兴趣.
(1)问题:你能设法确定一个圆形纸片的圆心吗?(P87练习2)
方法:①利用对称性,两次对折纸片找到直径的交点;
②利用“90度的圆周角所对的弦是直径”找到两条直径的交点。
24.1.4圆周角
第2课时圆内接四边形的性质及圆周角定理的综合运用
教
学
目
标
知 识
和
能 力
过 程和
方 法
1、通过观察、比较,分析了解并证明圆内接四边形对角,发展学生合情推理能力和演绎推理能力.
2、通过 观察图形,提高学生的识图能力.
3、通过引导学生添加合理的辅助线,培养学生的创造力.
情 感态 度价值观
∠D=;
3、四边形ABCD内接于⊙O,∠A:∠C=1:3,则∠A=;
4、如 图3,梯形ABCD内接于⊙O,AD∥BC,∠B=75°,则∠C=°。(写出推理过程)
四、归纳与小结
1、圆内接多边形和多边形外接圆的概念。
2、圆内接四边形的性质
复习圆 周角定理及其推论
推导论证圆内接四边形的对角互补
运用圆内接四边形的对角互补进行计算
解:发现:∠A+∠C=180°,∠B+∠D=180°
理由如下:连接OB,OD
在⊙O中,∠A所对的弧为BCD,∠C所对的弧为BAD,
又∵BCD与BCD所对的圆心角的度数之和为360°,
∴∠A +∠C= 360°=180°.
同理:∠B+∠D=180°.
4、得出结论:圆内接四边形对角互补.
5、几何语言:∵四边形ABCD内接于⊙O
(2)练习:如图,BD是⊙O的直径,∠ ABC=130°
则∠ADC=°
二、探究圆内接四边形的性质,培 养学生的探究精神.
1、圆内接多边形和多边形内接圆的概 念,介绍圆内接四边形
2、 如图四边形ABCD是⊙O的内接四边形,那么其相对的两个内角之间 有什么关系?(观察复习2 ,写出你的猜想)
3、证明你的发现.
作业
设计
必做
P88 2,5
∴∠A+∠C=180°,∠B+∠D=180°
三、应用举例:
例1、若四边形ABCD为圆内接四边形,则下列选项 可能成立的是()
∠B﹕∠C﹕∠D=2﹕1﹕3﹕4
C.∠A﹕∠B﹕∠C﹕∠D=3﹕2﹕1﹕4
D.∠A﹕∠B﹕∠C﹕∠D=4﹕ 3﹕2﹕1
例2、如图,点C 、D是⊙O上不与点A、B重合的两点,
(1)若∠AOB=70°,则∠ACB=°
(2)若∠ACB=130°,求∠AOB的度数.
(写出推理过程 )
练习:1、如图1 ,四边形ABCD内接于⊙O,
则∠A+∠C=°,∠B+∠ADC=°,
若∠B=80 °,则∠ADC=,∠CDE= ;
2、如图2,四边形ABCD内接于⊙O,∠AOC=100°,则∠B=,