二元一次方程组应用题

合集下载

二元一次方程组应用题33道及答案

二元一次方程组应用题33道及答案

第五章列二元一次方程组解应用题专项训练1、一名学生问老师:“您今年多大?”老师风趣地说:“我像您这样大时,您才出生;您到我这么大时,我已经37岁了。

”请问老师、学生今年多大年龄了呢?2、某长方形的周长是44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少?3、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少?4、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元(1)若分班购票,则共应付1240元,求两班各有多少名学生?(2)请您计算一下,若两班合起来购票,能节省多少元钱?(3)若两班人数均等,您认为是分班购票合算还是集体购票合算?5、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。

已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元。

(1)初一年级人数是多少?原计划租用45座汽车多少辆?(2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?6、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间?7、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生。

(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定?请说明理由。

二元一次方程组应用题(50题)

二元一次方程组应用题(50题)

二元一次方程组应用题1、用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少?2、一张桌子由桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有5立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?3、一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?4、某厂第二车间的人数比第一车间的人数的五分之四少30人.如果从第一车间调10人到第二车间,那么第二车间的人数就是第一车间的四分之三.问这两个车间各有多少人?5、共青团中央部门发起了“保护母亲河”行动,某校九年级两个班的115名学生积极参与,已知九一班有三分之一的学生捐了10元,九二班有五分之二的学生每人捐了十元,两班其余的学生每人捐了5元,两班的捐款总额为785元,问两班各有多少名学生?6、某班同学去18千米的北山郊游。

只有一辆汽车,需分两组,甲组先乘车、乙组步行。

车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时到达北山站。

已知车速度是60千米/时,步行速度是4千米/时,求A点距北山的距离。

7、运往灾区的两批货物,第一批共480吨,用8节火车车厢和20辆汽车正好装完;第二批共运524吨,用10节火车车厢和6辆汽车正好装完,求每节火车车厢和每辆汽车平均各装多少吨?8、现要加工400个机器零件,若甲先做1天,然后两人再共做2天,则还有60个未完成;若两人齐心合作3天,则可超产20个.问甲、乙两人每天各做多少个零件?9、一船队运送一批货物,如果每艘船装50吨,还剩下25吨装不完;如果每艘船再多装5吨,还有35吨空位.求这个船队共有多少艘船,共有货物多少吨?10、某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?11、有一只驳船,载重量是800吨,容积是795立方米,现在装运生铁和棉花两种物资,生铁每吨的体积为0.3立方米,棉花每吨的体积为4立方米,生铁和棉花各装多少吨,才能充分利用船的载重量和容积?12、加工一批零件,甲先单独做8小时,然后又与乙一起加工5小时完成任务。

二元一次方程组-应用题专项练习

二元一次方程组-应用题专项练习

y x 25 题图322卫生间厨房卧室客厅6图1 二元一次方程组应用题(一)1、小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图1所示。

根据图中的数据(单位:m ),解答下列问题:(1)用含x 、y 的代数式表示地面总面积;(2)已知客厅面积比卫生间面积多21m 2,且地面总面积是卫生间面积的15倍。

若铺1m 2地砖的平均费用为80元,那么铺地砖的总费用为多少元o ?2、八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话: 李小波:阿姨,您好!售货员:同学,你好,想买点什么? 李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本. 售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?3、2001年以来,我国曾五次实施药品降价,累计降价的总金额为269亿元,五次药品降价的年份与相应降价金额如表二所示,表中缺失了2003年、2007年相关数据.已知2007年药品降价金额是2003年药品降价金额的6倍,结合表中信息,求2003年和2007年的药品降价金额.年份2001 2003 2004 2005 2007降价金额(亿元) 54 35 40 6、某城区中学5月份开展了与农村偏远学校“手拉手”的活动.九(3)班苗苗同学积极响应学校的号召,用自己的零花钱买了圆株笔和钢笔共8支,准备送给偏远山区的同学,共用去了20元钱,其中圆珠笔每支1元,钢笔每支5元.你知道苗苗同学买了圆珠笔和钢笔各多少支吗?7、“种粮补贴”惠农政策的出台,大大激发了农民的种粮积极性,某粮食生产专业户去年计划生产小麦和玉米共18吨,实际生产了20吨,其中小麦超产12%,玉米超产10%,该专业户去年实际生产小麦、玉米各多少吨?8、某博物馆的门票每张10元,一次购买30张到99张门票按8折优惠,一次购买100张以上(含100张)按7折优惠.甲班有56名学生,乙班有54名学生.(1)若两班学生一起前往参观博物馆,请问购买门票最少共需花费多少元?(2)当两班实际前往该博物馆参观的总人数多于30人且不足100人时,至少要多少人,才能使得按7折优惠购买100张门票比实际人数按8折优惠购买门票更便宜?10、李明家和陈刚家都从甲、乙两供水点购买同样的一种桶装矿泉水,李明家第一季度从甲、乙两供水点分别购买了8桶和12桶,且在乙供水点比在甲供水点多花18元钱. 若只考虑价格因素,通过计算说明到哪家供水点购买这种桶装矿泉水更便宜一些?11、某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40kg 到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:品 名 西红柿 豆角批发价(单位:元/kg ) 1.2 1.6零售价(单位:元/kg ) 1.8 2.5问:他当天卖完这些西红柿和豆角能赚多少钱?12、随着我国人口速度的减慢,小学入学儿童数量每年按逐渐减少的趋势发展,某区2003年和2004年小学儿童人数之比为8 : 7,且2003年入学人数的2倍比2004年入学人数的3倍少1500人,某人估计2005年入学儿童数将超过2300人,请你通过计算,判断他的估计是否符合当前的变.二元一次方程组应用题(二)1、某班到毕业时共结余经费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件文化衫或一本相册作为纪念品.已知每件文化衫比每本相(图1) (图2)册贵9元,用200元恰好可以买到2件文化衫和5本相册.(1)求每件文化衫和每本相册的价格分别为多少元?(2)有几购买文化衫和相册的方案?哪种方案用于购买老师纪念品的资金更充足?2、李晖到“宇泉牌”服装专卖店做社会调查.了解到商店为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员小俐 小花 月销售件数(件)200 150 月总收入(元) 1400 1250假设月销售件数为x 件,月总收入为y 元,销售每件奖励a 元,营业员月基本工资为b 元.(1)求a b ,的值;(2)若营业员小俐某月总收入不低于1800元,那么小俐当月至少要卖服装多少件3、 某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40㎏到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示: 品名西红柿 豆角 批发价(单位:元/㎏)1.2 1.6 零售价(单位:元/㎏) 1.82.5问:他当天卖完这些西红柿和豆角能赚多少钱?4、随着我国人口增长速度的减慢,小学入学儿童数量每年按逐渐减少的趋势发展。

10个二元一次方程组的应用题

10个二元一次方程组的应用题

1、有48支队520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只能参加一项比赛.篮球、排球队各有多少支参赛?2、甲、乙二人都以不变的速度在环形路上跑步,如果同时同地出发,反向而行,每隔2min 相遇一次;如果同时同地出发,同向而行,每隔6min相遇一次,已知甲比乙跑得快,甲、乙二人每分各跑多少圈?3、用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?4、某家商店的账目记录显示,某天卖出39支牙刷和21盒牙膏,收入396元;另一天,以同样的价格卖出同样的52支牙刷和28支牙膏,收入518元.这个记录是否有误?如果有误,请说明理由.5、打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.打折后,买500件A商品和500件B商品用了9600元,比不打折少花多少钱?6、有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5t,5辆大货车与6辆小货车一次可以运货35t,3辆大货车与5辆小货车一次可以运货多少吨?7、从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需42min,甲地到乙地全程是多少?8、养牛场原有30头大牛和15头小牛,1天约用饲料675 kg;一周后又购进12头大牛和5头小牛,这时1天约用饲料940 kg.饲养员李大叔估计平均每头大牛1天约需饲料18~20 kg,每头小牛1天约需饲料7 ~8 kg.你能否通过计算检验他的估计吗?9、2台大收割机和5台小收割机同时工作2 h共收割小麦3.6 hm2,3台大收割机和2台小收割机同时工作5 h共收割小麦8 hm2.1台大收割机和1台小收割机每小时各收割小麦多少公顷?10、张翔从学校出发骑自行车去县城,中途因道路施工步行一段路,1.5 h后到达县城.他骑车的平均速度是15 km/h,步行的平均速度是5 km/h,路程全长20 km.他骑车与步行各用多少时间?。

列二元一次方程组解应用题专项练习50题(有答案)ok

列二元一次方程组解应用题专项练习50题(有答案)ok

列二元一次方程组解应用题专项练习50题(有答案)ok1、已知某铁路桥长800m,火车从开始上桥到完全过桥共用45s,整列火车完全在桥上的时间是35s,求火车的速度和长度。

解:设火车的速度为v,长度为l,则有:l + 800 = vt (火车在桥上的时间)l = v(t-10) (火车在桥上外的时间)联立得:v = 80m/s,l = 2400m。

2、现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底配成一个完整盒子,问:用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?解:设用x张铁皮制盒身,y张铁皮制盒底,则有:8x = 22y (每张铁皮做8个盒身或做22个盒底)x = 2y/7190 = 9x + 11y (总共用了190张铁皮)代入得:x = 60,y = 35.3、用白铁皮做水桶,每张铁皮能做1个桶身或8个桶底,一个桶身一个桶底正好配套做一个水桶,现在有63张这样的铁皮,则需要多少张做桶身,多少张做桶底正好配套?解:设用x张铁皮做桶身,y张铁皮做桶底,则有:x + y/8 = 63 (每张铁皮能做1个桶身或8个桶底)代入得:x = 35,y = 224.4、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表:货车种类 | 货车辆数(辆) | 累计运货吨数(吨) |甲。

| 2.| 15.5.|乙。

| 5.| 35.|现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,则货主应付运费多少元?解:设甲、乙两种货车每辆运输的吨数分别为x、y,则有:2x + 5y = 50 (过去两次租用的情况)3x + 5y = 70 (现在租用的情况)联立得:x = 10,y = 8.应付运费为:(15.5+35) * 30 = 1650元。

5、某工厂第一季度生产甲、乙两种机器共480台,计划第二季度生产这两种机器共554台,其中甲种机器要比第一季度增产10%,乙种机器产量要比第一季度增产20%,该厂第一季度生产甲、乙两种机器各多少台?解:设第一季度甲、乙两种机器分别生产x、y台,则有:x + y = 4801.1x + 1.2y = 554 (第二季度计划生产的情况)联立得:x = 280,y = 200.6、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?解:设种茄子的亩数为x,种西红柿的亩数为y,则有:x + y = 252600x + 2600y = - 1700x - 1800y (总花费为元)联立得:x = 10,y = 15.总获纯利为:2600 * 10 + 2600 * 15 = 元。

二元一次方程组应用题

二元一次方程组应用题

二元一次方程组应用题1. 一次篮、排球比赛,共有48个队,520名运动员参加,其中篮球队每队10名,排球队每队12名,求篮、排球各有多少队参赛?2. 某厂买进甲、乙两种材料共56吨,用去9860元。

若甲种材料每吨190元,乙种材料每吨160元,则两种材料各买多少吨?3. 某人用24000元买进甲、乙两种股票,在甲股票升值15%,乙股票下跌10%时卖出,共获利1350元,试问某人买的甲、乙两股票各是多少元?4.一次篮、排球比赛,共有48个队,520名运动员参加,其中篮球队每队10名,排球队每队12名,求篮、排球各有多少队参赛?5.某厂买进甲、乙两种材料共56吨,用去9860元。

若甲种材料每吨190元,乙种材料每吨160元,则两种材料各买多少吨?6.某人用24000元买进甲、乙两种股票,在甲股票升值15%,乙股票下跌10%时卖出,共获利1350元,试问某人买的甲、乙两股票各是多少元?7.有甲乙两种债券年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?8. 种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角。

3种包装的饮料每瓶各多少元?9.某班同学去18千米的北山郊游。

只有一辆汽车,需分两组,甲组先乘车、乙组步行。

车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站。

已知汽车速度是60千米/时,步行速度是4千米/时,求A点距北山站的距离。

10.一级学生去饭堂开会,如果每4人共坐一张长凳,则有28人没有位置坐,如果6人共坐一张长凳,求初一级学生人数及长凳数.11.两列火车同时从相距910千米的两地相向出发,10小时后相遇,如果第一列车比第二列车早出发4小时20分,那么在第二列火车出发8小时后相遇,求两列火车的速度.12.购买甲种图书10本和乙种图书16本共付款410元,甲种图书比乙种图书每本贵15元,问甲、乙两种图书每本各买多少元?13.甲、乙两人分别从甲、乙两地同时相向出发,在甲超过中点50米处甲、乙两人第一次相遇,甲、乙到达乙、甲两地后立即返身往回走,结果甲、乙两人在距甲地100米处第二次相遇,求甲、乙两地的路程。

二元一次方程应用题_新情境中的二元一次方程应用题

二元一次方程应用题_新情境中的二元一次方程应用题

二元一次方程应用题_新情境中的二元一次方程应用题题目一:商场购物小明去商场购物,他购买了一些衣服和一些鞋子。

已知衣服的价格为每件150元,鞋子的价格为每双200元。

他一共花了1200元购买了10件物品。

问小明购买了多少件衣服和鞋子?解题思路:设小明购买了x件衣服和y双鞋子。

根据题意可以列出方程:150x+200y=1200(1)x+y=10(2)解方程:由(2)式可得,x=10-y。

将x的值代入(1)式中,得到150(10-y)+200y=1200。

化简得1500-150y+200y=1200。

整理得50y=300,即y=6将y的值代入x=10-y中,得到x=10-6,即x=4结论:小明购买了4件衣服和6双鞋子。

题目二:公交车站人数公交车站下午5点时车站人数为60人。

在5点至6点的时段内,每5分钟车站人数减少10人。

问这段时段内进入和离开车站的人数各是多少?解题思路:设进入车站的人数为x,离开车站的人数为y。

根据题意可以列出方程:60+x-y=60(1)x-y=10(2)x-y=20(3)x-y=30(4)x-y=40(5)解方程:根据(2)、(3)、(4)、(5)式可得:x=10+yx=20+yx=30+yx=40+y将x的值代入(1)式中,得到60+(10+y)-y=60。

化简得10=y。

将y的值代入任意一个x=10+y中,得到x=10+10,即x=20。

结论:这段时段内进入车站的人数为20人,离开车站的人数为10人。

题目三:游乐园票价解题思路:设成人票数为x,儿童票数为y。

根据题意可以列出方程:x+y=100(2)解方程:由(2)式可得,x=100-y。

整理得50y=1000,即y=20。

将y的值代入x=100-y中,得到x=100-20,即x=80。

结论:该游乐园有80个成人和20个儿童。

二元一次方程组应用题

二元一次方程组应用题

二元一次方程组应用题(一)1、两个车间,按计划每月工生产微型电机680台,由于改进技术,上个月第一车间完成计划的120%,第二车间完成计划的115%,结果两个车间一共生产微型电机798台,则上个月两个车间各生产微型电机多少台?解法一:解:设第一车间计划每月生产x台,第二车间计划每月生产y台。

解法二:解:设上个月第一车间生产x台,第二车间生产y台。

2、某人准备装修一套新宅,若甲、乙两个装修公司合作需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的工程由乙公司来做,还需9周才能完成,需工钱4.8万元;若只选一个公司单独完成,从节约开支的角度考虑,选甲公司还是选已公司?请说明理由。

3、某水果批发市场批发香蕉的价格如下表所示:张倩两次共购买香蕉50千克(第二次多于第一次)共付264元,则张倩第一次、第二次分别购买香蕉多少千克?4、某中学全体师生租乘同类型客车若干辆外出旅游,如果每辆车乘坐22人,就会余下一人;如果开走一辆车,那么所有师生刚好平均分乘余下的车辆。

问原先去租多少辆客车和学校师生共有多少人?(已知每辆车的容量不多于32人)- 1 -- 2 -5、一个宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房7间,如果每个房间都注满,那么共有多少租房方案?5、羊圈里白羊的只数比黑羊的脚数少2,黑羊的只数比白羊的脚数少187,则白羊与黑羊各有多少只?.6、小明到商店买东西,下面是他和售货员阿姨的对话:“我买这种牙膏3支,这种牙刷5把”.“一共15元6角”.付款后,小明说:“阿姨,这支牙膏我不要了,换一把牙刷吧!”“还需找你2元”.从他们的对话中你能知道牙刷、牙膏的单价吗?7、如图,周长为68cm 的长方形ABCD 被分成7个相同的长方形,求长方形ABCD 的长和宽.8、长沙市某公园的门票价格如下表所示:某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人?9、两个水池共贮水40吨,如果甲池再注进水4吨,乙池再注进水8吨,则两池的水一样多,那么两池原来有水分别为多少吨?10、用一根绳子环绕一棵大树,若环绕大树3周,则绳子还多4尺;若环绕大树4周,则绳子少了3尺,求这根绳子长.11、古算题:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.问多少房间多少客?”(题目大意是:一些客人到李三公的店中住宿,若每间房里住7人,就分有7人没地方住;若每间房住9人,则空出一间房.问有多少房间多少客人.)12、已知一个两位数,它的十位上的数字x比个位上的数字y大1,若颠倒个位数字与十位数字的位置,得到的新数比原数小9,求这个两位数。

二元一次方程组应用题

二元一次方程组应用题

二元一次方程组应用题
二元一次方程组应用题
调配问题
1、在一条马路旁种树,每隔3米种一棵,到头还剩3棵树;每隔2.5米种一棵,到头还缺77棵树。

问马路有多长?树有多少棵?
2、某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成.按这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求期限内只能完成订货的4;现在工厂改进了人员5
组织结构和生产流程,每天可生产这种工作服200套,这样,不仅比规定的期限少用1天,而且比订货量多生产25套.那么客户订做的工作服是多少套,要求完成的期限是多少天?
配套问题
3、一个工人一天能生产100值螺栓或150只螺帽,一只螺栓要与2只螺帽配套,若有工人42名,问怎样分配,才能使每天生产的螺栓和螺帽刚好配套?
4、某车间有62名工人,生产甲、乙两种零件,每人每天平均能生产甲零件12个或乙零件23个,应分配多少人生产甲零件,多少人生产乙零件,才能使每天生产的甲零件和乙零件刚好配套?(每3个甲零件和2个乙零件配成一套)。

列二元一次方程组解应用题练习题及答案

列二元一次方程组解应用题练习题及答案

第八章列二元一次方程组解应用题专项训练1、一名学生问老师:“您今年多大?”老师风趣地说:“我像您这样大时,您才出生;您到我这么大时,我已经37 岁了。

”请问老师、学生今年多大年龄了呢?44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少?2、某长方形的周长是3、已知梯形的高是7面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少?4、某校初一年级一班、二班共104 人到博物馆参观,一班人数不足50 人,二班人数超过50人,已知博物馆门票规定如下:1〜50人购票,票价为每人13元;51〜100人购票为每人11 元,100人以上购票为每人9元(1)若分班购票,则共应付1240元,求两班各有多少名学生?(2)请您计算一下,若两班合起来购票,能节省多少元钱?(3)若两班人数均等,您认为是分班购票合算还是集体购票合算?5、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60 座汽车,则多出一辆,且其余客车恰好坐满。

已知45 座客车每日租金每辆220 元,60 座客车每日租金为每辆300 元。

(1 )初一年级人数是多少?原计划租用45 座汽车多少辆?(2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?6、某酒店的客房有三人间和两人间两种,三人间每人每天25 元,两人间每人每天35 元,一个50 人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510 元,求两种客房各租了多少间?7、某中学新建了一栋4 层的教学大楼,每层楼有8 间教室,进出这栋大楼共有4 道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对 4 道门进行了测试:当同时开启正门和两道侧门时, 2 分钟可以通过560 名学生,当同时开启一道正门和一道侧门时, 4 分钟可以通过800 名学生。

(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45 名学生,问通过的这 4 道门是否符合安全规定?请说明理由。

二元一次方程(组)解应用题(含答案)

二元一次方程(组)解应用题(含答案)

第八章二元一次方程(组)解应用题(含答案)1.缉私艇与走私艇相距120海里的同一航道上航行,如果走私艇与缉私艇同时相向而行,则2小时缉私艇即可将走私艇截住;如果走私艇与缉私艇同时同向而行,则缉私艇需12小时才能追上.问走私艇与缉私艇的速度分别是多少?时才能追上.问走私艇与缉私艇的速度分别是多少?1.解:设走私艇的速度是x海里/时,缉私艇的速度是y海里/时,由题意得:时,由题意得:,解得,答:走私艇的速度是25海里/时,缉私艇的速度是35海里/时2.甲、乙两人从A,B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条直线公路相向匀速行驶.出发后经3小时两人相遇.已知在相遇时乙比甲多行驶了90千米,相遇后经1地.小时乙到达A地.)问甲、乙行驶的速度分别是多少?(1)问甲、乙行驶的速度分别是多少?千米?(2)甲、乙行驶多少小时,两车相距30千米?2.解:(1)设甲、乙行驶的速度分别是每小时x千米、y千米,千米,根据题意,得,解得.所以甲、乙行驶的速度分别是每小时15千米、45千米;千米;(2)由第(1)小题,可得A,B两地相距45×(3+1)=180(千米).千米,设甲、乙行驶x小时,两车相距30千米,)千米,根据题意,得两车行驶的总路程是(180﹣30)千米或(180+30)千米,则:(45+15)x=180﹣30或(45+15)x=180+30.解得:或.千米所以甲、乙行驶或小时,两车相距30千米3.小明家离学校1.8千米,其中有一段为上坡路,另一段为下坡路.如果小明在上坡路的而在下坡路上的平均速度为5千米/时,那么从家里到学校共用了32平均速度为3千米/时,时,而在下坡路上的平均速度为分钟.求小明上坡、下坡各用了多长时间?分钟.求小明上坡、下坡各用了多长时间?3.解:32分钟=小时,小时,)小时,由题意,得设小明上坡用了x小时,下坡用了(﹣x)小时,由题意,得3x+5(﹣x)=1.8,解得:x=,则下坡所用时间为:﹣==.答:小明上坡用了小时,下坡用了小时小时4.A 、B 两地相距20千米.甲乙两人同时从A 、B 两地相向而行,经过2小时后两人相遇,相遇时甲比乙多行4千米.根据题意,列出两元一次方程组,求出甲乙两人的速度.千米.根据题意,列出两元一次方程组,求出甲乙两人的速度. 4.解:(1)设甲的速度为x 千米/时,乙的速度为y 千米/小时,由题意得,小时,由题意得,,解得:.答:甲的速度为6千米/时,乙的速度为4千米/小时小时5.长春至吉林现有铁路长为128千米,为了加快长春与吉林的经济一体化发展,有关部门决定新修建一条长春至吉林的城际铁路,城际铁路全长96千米.开通后,城际列车的平均速度将为现有列车平均速度的2.25倍,运行时间将比现有列车运行时间缩短小时.求城际列车的平均速度.列车的平均速度.5.解:设现有列车的平均速度为x 千米/小时,现在列车的运行时间为y 小时.小时.,解得.64×2.25=144千米/小时.小时.城际列车的平均速度144千米/小时小时6.甲乙两地相距160千米,一辆汽车和一辆拖拉机从两地同时出发相向而行,1小时20分后相遇.相遇后,拖拉机继续前进,后相遇.相遇后,拖拉机继续前进,汽车在相遇处停留汽车在相遇处停留1小时后原速返回,小时后原速返回,在汽车再次出发在汽车再次出发半小时后追上了拖拉机,这时汽车、拖拉机从开始到现在各自行驶了多少千米?半小时后追上了拖拉机,这时汽车、拖拉机从开始到现在各自行驶了多少千米? 6.解:设汽车的速度是x 千米每小时,拖拉机速度y 千米每小时,根据题意得:千米每小时,根据题意得:,解得:,则汽车汽车行驶的路程是:(+)×90=165(千米),拖拉机行驶的路程是:(+)×30=85(千米).千米答:汽车、拖拉机从开始到现在各自行驶了165千米和85千米7.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两,问两车每秒各行驶多少米?车尾相离经过16s,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?7.解:设客车的速度是每秒x米,货车的速度是每秒x米.米.由题意得(x+x)×16=200+280,解得x=18.答:两车的速度是客车18m/s,货车12m/s8.A、B两地相距36千米.甲从A地出发步行到B地,乙从B地出发步行到A地.两人倍.求两人的速度. 同时出发,4小时后相遇;6小时后,甲所余路程为乙所余路程的2倍.求两人的速度.8.解:设甲的速度是x千米/时,乙的速度是y千米/时.时.由题意得:解得:答:甲的速度是4千米/时,乙的速度是5千米/时9.从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地用54分钟,从乙地到甲地用42分钟,甲地到乙地的全程是多少?乙地的全程是多少?9.解:设从甲地到乙地的上坡路为xkm,平路为ykm,依题意得,解之得,∴x+y=3.1km,答:甲地到乙地的全程是3.1km10.甲、乙分别自A、B两地同时相向步行,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时,当甲到达B地后立刻按原路向A地返行,当乙到达A地后也立刻.解:设甲的速度为x千米/时,乙的速度为由题意可得:.由题意得,,解得:,则解得答:甲,乙二人的速度是1414、在某条高速公路上依次排列着、在某条高速公路上依次排列着A 、B 、C 三个加油站,三个加油站,A A 到B 的距离为120千米,千米,B B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?1414、解:设巡逻车、犯罪团伙的车的速度分别为、解:设巡逻车、犯罪团伙的车的速度分别为x 、y 千米千米//时,则()3120120x y x y -=ìïí+=ïî,整理,得40120x y x y -=ìí+=î,解得8040x y =ìí=î, 答:巡逻车的速度是80千米千米//时,犯罪团伙的车的速度是40千米千米//时.1515、悟空顺风探妖踪,千里只行四分钟、悟空顺风探妖踪,千里只行四分钟、悟空顺风探妖踪,千里只行四分钟. .归时四分行六百,风速多少才称雄归时四分行六百,风速多少才称雄归时四分行六百,风速多少才称雄? ?1515、解:设悟空飞行速度是每分钟、解:设悟空飞行速度是每分钟x 里,风速是每分钟y 里,依题意得依题意得依题意得 4(x+y)=1000 4(x+y)=10004(x-y)=600 x=200 y=5016.16.某列火车通过某列火车通过450米的铁桥,从车头上桥到车尾下桥,从车头上桥到车尾下桥,共共33秒,同一列火车以同样的速度穿过760米长的隧道时,整列火车都在隧道里的时间是22秒,问这列火车的长度和速度分别是多少分别是多少? ?16. 16. 解解:设火车长为x 米,火车的速度为y 米/秒,33y=x 33y=x++45022y=760 22y=760--xX=276解方程组得:解方程组得:解方程组得: y=22 y=22答:火车长答:火车长276米,速度为22米/秒.。

二元一次方程组经典应用题及答案

二元一次方程组经典应用题及答案

2.25%;第二种,三年期整存整取,这种存款银行年利率为 2.70%.三年后同时取出共得利息
303.75 元( 不计利息税 ) ,问小敏的爸爸两种存款各存入了多少元?
解: 设 x 为第一种存款的方式, Y 第二种方式存款,则
X + Y = 4000
X * 2.25 % * 3 + Y * 2.7 % * 3 = 303.75
① x+y=10
② 2000x+1500y=18000
解得: x=6 , y=4
答:李大叔去年甲、乙两种蔬菜各种植了
6 亩、 4 亩
某商场用 36 万元购进 A、 B 两种商品,销售完后共获利 6 万元,其进价和售价如下表:
A
B
进价(元 / 件)
1200
1000
售价(元 / 件)
1380
1200
(注:获利 = 售价 — 进价)求该商场购进 A、 B 两种商品各多少件; 解: 设购进 A 的数量为 x 件、购进 B 的数量为 y 件,依据题意列方程组
解得: X = 1500 , Y = 2500 。
答:略。
;.
..
五:列二元一次方程组解决 —— 生产中的配套问题
现有 190 张铁皮做盒子,每张铁皮做 8 个盒身或 22 个盒底,一个盒身与两个盒底配成一个完整盒 子,问用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子? 解:设 x 张做盒身, y 张做盒底,则有盒身 8x 个,盒底 22y 个
;.
..
十一:列二元一次方程组解决 —— 年龄问题
今年,小李的年龄是他爷爷的五分之一 分之一 . 试求出今年小李的年龄 .
解: 设小李 X 岁,爷爷 Y 岁,则

二元一次方程组经典应用题及答案

二元一次方程组经典应用题及答案

实际问题与二元一次方程组题型归纳(练习题答案)一:列二元一次方程组解决 ------ 行程问题甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发 2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x, y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。

两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,二:列二元一次方程组解决——工程问题小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由解:设甲.乙两公司毎周完成工程的爼和^则1 L丄H X +得! 10故1 + 1=10(1)11^—= UH 』n ’ I 1 10 15即甲、乙完成这项工程分别需山周[沾周又设需忖甲、乙毎周的工犠分别为击元,右万元则出较知■从节约开支轴度考虑I选乙公司划宜三:列二元一次方程组解决一一商品销售利润问题李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:(注:获利=售价一进价)求该商场购进A、B两种商品各多少件; 解:设购进A的数量为x件、购进B的数量为y件,依据题意列方程组1200x+1000y=360000(1380-1200)x+(1200-1000)y=60000解得x=200,y=120答:略四:列二元一次方程组解决 ----- 银行储蓄问题小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息 2.25%;第二种,三年期整存整取,这种存款银行年利率为 2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?解:设x为第一种存款的方式,Y第二种方式存款,则X + Y = 4000X * 2.25 % * 3 + Y * 2.7 % * 3 = 303.75解得:X = 1500,Y = 2500。

二元一次方程组应用题训练题(含答案)

二元一次方程组应用题训练题(含答案)

二元一次方程组应用题训练题(含答案)1.一家工厂需要进行两道工序来生产产品。

第一道工序每人每天可以完成900件,第二道工序每人每天可以完成1200件。

现在有7位工人参与这两道工序,应该如何分配人力,才能使每天第一道工序和第二道工序所完成的件数相等?2.垃圾对环境的影响越来越严重,因此垃圾分类回收成为了一个重要的话题。

一所中学准备购买两种型号的垃圾分类回收箱,共20个,放置在校园中各个合适的位置。

其中型号一有14个,型号二有6个,总共需要4240元。

如果购买型号一8个,型号二12个,需要4480元。

请问型号一和型号二的单价分别是多少?3.某农场去年生产了大豆和小麦共计300吨。

今年采用新技术后,总产量为350吨,其中大豆超产10%,小麦超产20%。

请问今年该农场实际生产了多少吨大豆和多少吨小麦?4.有两块试验田,原本每块田都可以产生470千克的花生。

改用良种后,两块试验田共产生了532千克的花生。

已知第一块田的产量比原来增加了16%,第二块田的产量比原来增加了10%。

请问这两块试验田改用良种后,各增产了多少千克的花生?5.一家书店有两个下属书店,共有某种图书5000册。

如果将甲书店的400册该种图书调出给乙书店,那么乙书店的该种图书数量仍然比甲书店的数量少400册的一半。

请问这两个书店原来各有多少册这种图书?6.甲种电影票每张20元,乙种电影票每张15元。

如果购买甲、乙两种电影票共40张,恰好用去720元,请问甲、乙两种电影票各买了多少张?7.XXX和XXX一起去超市购买矿泉水和面包。

XXX买了3瓶矿泉水和3个面包,共花费21元;XXX买了4瓶矿泉水和5个面包,共花费32.5元。

请问这种矿泉水和面包的单价分别是多少?8.一家旅馆有三人间和两人间两种客房,其中三人间每人每天需要支付25元,两人间每人每天需要支付35元。

一个50人的旅游团到该旅馆住宿,租住了若干个客房,每个客房都被住满,一天总共花费1510元。

二元一次方程组的应用题10大题型

二元一次方程组的应用题10大题型

类型一:行程问题例:甲、乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇.问甲、乙两人每小时各走多少千米?【分析】设甲,乙速度分别为x,y千米/时,根据甲乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么在甲出发后3小时相遇可列方程求解。

类型二:工程问题例:小明家准备装修一套新住房,若甲、乙两个装饰公司,合做需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元,若只选一个公司单独完成,从节约开支角度考虑,小明家是选甲公司、还是乙公司请你说明理由.分析:需先算出甲乙两公司独做完成的周数.等量关系为:甲6周的工作量+乙6周的工作量=1;甲4周的工作量+乙9周的工作量=1;还需算出甲乙两公司独做需付的费用.等量关系为:甲做6周所需钱数+乙做6周所需钱数=5.2;甲做4周所需钱数+乙做9周所需钱数=4.8类型三:商品销售利润问题例:李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?分析:由题意得出两个相等关系为:甲、乙两种蔬菜共10亩和共获利18000元,依次列方程组求解类型四:银行储蓄问题例:小明的爸爸为了给他筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期存取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期存取,这种存款银行利率为年息2.70%.三年后同时取出共得利息303.75元.问小明的爸爸两种存款各存入了多少元?分析:利用两种方式共计存了4000元钱以及两笔存款三年内共得利息303.75元得出等式求出即可类型五:生产配套问题例:现用190张铁皮做盒,一张可以做8个盒身或22个盒底,1个盒身与2个盒底配一个盒子,问用多少张铁皮制盒身、多少张铁皮制盒底,可制成一批完整的盒子?分析:本题的等量关系是:制盒身的铁皮+制盒底的铁皮=190张;盒底的数量=盒身数量的2倍.据此可列方程组求解类型六:增长率问题例:某城市现有人口42万人.计划一年后城镇人口增加0.8%,农村人中增加1.1%,这样全市人口得增加1%,求这个城市现有城镇人口和农村人口分别是多少人?分析:根据题意可得出的等量关系为:现有的城镇人口+现有的农村人口=42万,计划一年后城镇人口增加的数量+农村人口的增加的数量=全市人口增加的数量,然后列出方程组求解类型七:数字问题例:一个两位数的十位数字与个位数字和为6,十位数字比个位数字大4,求这个两位数字.分析:设这个两位数十位上的数字为x,个位上的数字为y,根据十位数字与个位数字和为6,十位数字比个位数字大4,列方程组求解类型八:几何问题用长48厘米的铁丝弯成一个矩形,若将此矩形的长边分别折3厘米,补较短边上去,则得到一个正方形,求正方形的面积比矩形面积大多少?分析:设矩形的长为x,宽为y,则可得x-3=y+3,再由矩形的周长为48,可得出2(x+y)=48,联立方程组求解即可类型九:年龄问题例:今年,小李的年龄是他爷爷的1/5,小李发现,12年后,他的年龄变成爷爷的1/3,求今年小李的年龄.分析:通过理解题意可知本题的等量关系,12年之后他爷爷的年龄x1/3=12年之后小李的年龄.根据这两个等量关系,可列出方程,再求解类型十:方案优化问题例:某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同类型的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场用9万元同时购进甲、乙两种不同型号的电视机共50台,求应购进甲、乙两种电视机各多少台?(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.试问:同时购进两种不同型号电视机的方案可以有几种(每种方案必须刚好用完9万元)?为使销售时获利最多,应选择哪种进货方案?并说明理由.分析:(1)本题的等量关系是:甲乙两种电视的台数和=50台,买甲乙两种电视花去的费用=9万元.依此列出方程求出正确的方案;(2)根据(1)得出的方案,分别计算出各方案的利润,然后判断出获利最多的方。

10道二元一次方程组应用题及答案

10道二元一次方程组应用题及答案

1:某校为同学们安排宿舍。

若每间宿舍住5人,则有4人住不下;若每间住6人,则有一间只住4人,且两间宿舍没人住。

求该年级同学人数和宿舍间数。

(解:设年级人数是x人,宿舍是y人)解:设年级人数是x人,宿舍是y人)5y-x=-46(y-2)-x=2解这个方程组得:y=18x=942:用A、B两种原料配制两种油漆,已知甲种油漆含A、B两种原料之比为5:4,每千克50元,乙种油漆含A、B两种原料之比为3:2,每千克48.6元,求A、B两种原料每千克的价格分别是多少元。

(解:设A种原料每千克x元,B种原料每千克y元)5÷9×x+4÷9×y=503÷5×x+2÷5×y=48.6化简方程组得:5x+4y=4503x+2y=243解这个方程组得:x=36y=67.53:甲、乙两地相距24千米,公共汽车和直达快车在8:45从甲、乙两地相向开出,这两辆车都在8:52到达中途A处。

有一次,直达快车晚开8分钟,两车则在8:58相遇途中B处,求这两车的速度。

(解:设直达快车每小时x千米,公共汽车每小时y千米)7÷60×x+7÷60×y=2413÷60×y+5÷60×x=244.要用含药30%和75%的两种防腐药水,配制含药50%的防腐药水18千克,两种药水各需取多少千克?(解:设含药30%的药水x千克,含药75%的药水y千克)x+y=1830%有效成分=x×30%75%有效成分=y×75%50%有效×成分=18×50%所以30%x+7×5%=18×50%0.3x+0.75y=9x+y=180.3x+0.3y=5.4所以0.75y-0.3y=9-5.40.45x=3.6x=8y=10所以30%取8千克,75%取10千克5.一列快车长70千米,慢车长80千米,若两车同时相向而行,快车从追上慢车到完全离开慢车为20秒,若两车相向而行,则两车从相遇到离开时间为4秒,求两车每小时各行多少千米。

二元一次方程组应用题30道专项练习

二元一次方程组应用题30道专项练习

二元一次方程组应用题30道专项练习1、一个两位数,它的个位数字与十位数字之和为11.将这个两位数的个位数字与十位数字互换,得到的新数比原数大63.求原来的两位数。

2、一批货物需要运往某地。

货主准备租用汽车运输公司的甲、乙两种货车。

已知过去两次租用这种货车的情况如下表:项目第一次第二次甲种货车辆数/辆25乙种货车辆数/辆36累计运货吨数/吨15.535现在租用该公司3辆甲种货车和5辆乙种货车,刚好可以运完这批货。

如果按每吨付运费30元计算,问:货车应付运费多少元?3、初一级学生去某处旅游。

如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么会多出1辆汽车。

问需要多少辆汽车和多少名学生?4、某校举办物理竞赛,共有120人报名参加。

竞赛结果:总平均成绩为66分,合格生平均成绩为76分,不及格生平均成绩为52分。

问这次物理竞赛中,及格的学生有多少人,不及格的学生有多少人?5、甲乙两地相距20千米。

A从甲地向乙地方向前进,同时B从乙地向甲地方向前进。

两小时后二人在途中相遇。

相遇后A就返回甲地,B仍向甲地前进。

A回到甲地时,B离甲地还有2千米。

求A、B二人的速度。

6、甲乙两地相距60千米。

A、B两人骑自行车分别从甲乙两地相向而行。

如果A比B先出发半小时,B每小时比A多行2千米,那么相遇时他们所行的路程正好相等。

求A、B两人骑自行车的速度。

7、某公司去年的总收入比总支出多50万元。

今年比去年的总收入增加10%,总支出节约20%,今年的总收入比总支出多100万元。

求去年的总收入与总支出。

8、XXX承包了25亩地。

今年春季改种茄子和西红柿两种大棚蔬菜,用去了元。

其中茄子每亩用了1700元,获得纯利2400元;种西红柿每亩用了1800元,获得纯利2600元。

问XXX一共获得多少纯利?9、XXX和XXX分别从相距20千米的甲、乙两地相向而行。

经过2小时两人相遇。

相遇后XXX即返回原地,XXX继续向甲地前进。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章《二元一次方程组》一、选择题1. 已知⎩⎨⎧=++=+m y x m y x 32353且x 、y 之和为12,则m 等于( )A. 10B. 15C. 20D. 25 2. 方程72=+y x 在自然数范围内的解( )A. 有无数对B. 只有1对C. 只有3对D. 以上都不对3. 若方程组⎩⎨⎧=+=+b ay x y x 21有唯一解,那么a 、b 的值应当是( )A. a ≠2,b 为任意实数B. a =2,b ≠0C. a =2,b ≠2D. a ,b 为任意实数4. 若x 、y 为非负实数,且方程组⎪⎩⎪⎨⎧-=+=+y x a y x 213219992001有解,则a 的值为( )A. 0B. -2 C . 2 D. 不定5. 一次函数b ax y +=1和bx y =2则⎩⎨⎧+=+=a bx y b ax y 21的解⎩⎨⎧==ny m x 中( )A. m >0,n >0C. m <0,n >0 D. m <0,n <0 6. 如果5=-y x 且5=-z y 那么x z -的值是( )A. 5B. 10C. -5D. -10 7. 已知k zyx y x z x z y =+=+=+,那么k=( ) A. 2 B. -1 C. 2或-1 D. 无法确定8. 如果方程组⎩⎨⎧=+=+k y x y x 4252有无穷多解,那么方程组⎩⎨⎧=+=+84572y x y kx 的解的情况有( )A. 唯一解B. 无穷多解C. 无解D. 都有可能9. 一个两位数的十位数字比个位数字小2,且能被3整除,若将十位数字与个位数字交换又能被5整除,这个两位数是( )A. 53B. 57C. 35D. 75二、填空题2. 当⎩⎨⎧==y x 时代数式26-+y x 与53+-y x 的和与差都是9。

3. 一次函数1+=x y 的图象与52--=x y 的图形的交点坐标是________ 。

4. 已知方程1)3()2()4(2+=-+++-k y k x k x k ,若k=_____,则方程为二元一次方程;若k=_____,则方程为一元一次方程,且这个方程的解为________ 。

5. 已知x y b a 332+-与y x b a 4223-的和是一个单项式,则x+y=________ 。

6. 已知方程组⎩⎨⎧=++=+-062034z y x z y x ,且xyz ≠0,则x:y:z=__________。

7. 已知二元一次方程组⎩⎨⎧=-=+731885y x y x ,则=+y x 92________ 。

8. 二元一次方程组⎩⎨⎧=-+=+3)1(134y k kx y x 的解中,x 、y 的值相等,则k =______。

9. 在方程3227291=-y x 中,用含有y 的代数式表示x ,则x=___________ 。

10. 已知142522=+=+y x y x ,则=+-++73212y x y x ________。

11. 当a=2时,方程组⎩⎨⎧=+=+221y x y ax ________解,当a ≠2时,______解。

(填“有”或“无”)12. 若05431)2(2=-+-c b c a ,则=c b a ::___________ 。

13. 如果方程组⎩⎨⎧=++=365:4:3::c b a c b a 的解为___________ 。

三、解答题1. 某学校有校舍20 000m 2,计划拆除部分旧校舍,建造新校舍,使校舍总面积增加30﹪。

若建造新校舍的面积为被拆除的旧校舍面积的4倍,那么应该拆除多少旧校舍,建造多少新校舍?(单位:m 2)2. 求出方程3x+y=9在正整数范围内的解。

3. 已知⎩⎨⎧==34y x 是关于x 、y 的二元一次方程组⎩⎨⎧-=--=+21by x y ax 的解,求出a+b的值。

4. 若关于x 、y 的方程组⎩⎨⎧-=-=+k y x ky x 95432的解x 、y 的和等于5,求k 的值。

5. 已知方程组⎪⎩⎪⎨⎧=--=+1023215y x a y ax 的解也是方程4049=+y x 的解,求a 的值。

6. 已知⎩⎨⎧=+-=--030334z y x z y x 并且0≠z ,求x:z 和y:z 的值。

7. (只列方程,不要求解题步骤)某班同学参加学校运土劳动,一部分同学抬土,一部分同学挑土。

已知全班共有箩筐59个,扁担36根(无闲置不用工具)。

问共有多少同学抬土,多少同学挑土?8. (只列方程,不要求解题步骤)某项工程,甲、乙两人合作,8天可以完成,需费用3520元;若甲单独做6天后,剩余工程由乙单独做,乙还需12天才能完成,这样需费用3480元。

问:(1)甲、乙两人单独完成此工程,各需多少天?(2)甲、乙两人单独完成此工程,各需费用多少元?9. (只列方程,不要求解题步骤)第一小组的同学分铅笔若干支。

若其中有4人每人各取4支,其余的人每人取3支,则还剩16支;若1人只取2支,则其余的人恰好每人各取6支,问同学有多少人?铅笔有多少支?10. 某工厂第一车间的人数比第二车间人数的54少30人。

若从第二车间调10人到第一车间,那么第一车间的人数是第二车间人数的43,问各车间原有多少人?11. 小明与小凯进行投篮比赛,约定跨步上篮投中一个得3分,还可以在罚球线上罚球一次,投入再加1分。

而如果上篮未中,那么就要扣1分。

结果小明跨步上篮10次,得27分。

已知小明罚球得了5分。

问小明跨步上篮投中多少次?12. (只列方程,不要求解题步骤)《鸡兔同笼》问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”13. 水源紧张,节约用水迫在眉睫。

针对用水浪费现象。

某城市制定了居民每月每用户用水标准8m3,超过部分加价收费,某用户居民连续两个月的用水和水费分别为12 m3,22元;10 m3,16.2元。

试求该居民用户每月用水收费标准。

14. (只列方程,不要求解题步骤)甲、乙两人在400m的环行跑道上跑步,甲的速度比乙的速度快,当他们从某处同时出发并且同向跑出时,经过6min40s 甲追上乙;背向跑出时,经过40s两人相遇。

求甲、乙两人跑步的速度各是多少?15. 甲、乙两人从相距36km的两地相向而行。

如果甲比乙先走2h,那么他们在乙出发2.5h后相遇;如果乙比甲先走2 h,那么他们在甲出发3 h后相遇。

求甲、乙两人每小时各走多少千米?16. 用含糖分别为35﹪和40﹪的两种糖水混合,配制成含糖为36﹪糖水50kg。

问每种糖水各需多少千克?17. (只列方程,不要求解题步骤)某公司用30000元购进两种货物。

货物卖出后,一种货物的利润是10﹪,另一种货物的利润是11﹪,共获得利润3150元。

问两种货物各进货多少元?18. 北京和上海都有某种仪器可供外地使用,其中北京可提供10台,上海可提供4台。

已知重庆需要8台,武汉需要6台,从北京、上海将仪器运往重庆、武汉的费用如下表所示。

有关部门计划用7600元运送这些仪器。

请你设计一种方案,使重庆、武汉能得到所需的仪器,而且运费正好够用。

运费表(单位:元/台)起点终点武汉重庆北京 400 800上海 300 50019. (只列方程,不要求解题步骤)某农场有300名职工耕种51公顷土地,计划种植水稻、棉花和蔬菜。

已知种植各种植物每公顷所需劳动力人数及投入的设备资金如下表:农作物品种每公顷需劳动力每公顷需投入资金水稻 4人1万元棉花8人1万元蔬菜 5人2万元已知该农场计划在设备上投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的设备资金正好够用?20. (只列方程,不要求解题步骤)为治理沙尘暴,加快防护造林工程建设,某中学初二年级学生开展义务植树活动,参加者是未参加者人数的3倍,若该年级人数减少6人,未参加人数增加6人,则参加者人数是未参加人数的2倍,该校初二年级学生共有多少人?21. 森林公园的门票价格规定如下表:购票人数 1~50人 51~100人 100人以上每人门票价 13元 11元 9元某校初一(1)、(2)两个班共104人去游森林公园,其中(1)班人数较少,不到50人,(2)班人数较多,有50多人。

经估算,如果两班都以班为单位分别购票,则一共应付1240元;如果两班联合起来,作为一个团体购票,则可以节约不少钱。

问两个班各有多少名学生?22. 某纸品厂要制作如图所示的甲、乙两种无盖的长方体小盒。

该厂利用了边角料裁出长方形和正方形两种纸片,其中长方形纸片的宽和正方形纸片的边长相等。

现将150张正方形纸片和300张长方形纸片,用来制作这两种小盒(不计连接部分)。

可以做甲、乙两种小盒各多少个?(1)设可以做成甲、乙两种小盒分别x个、y个,列方程求解。

(2)设做甲种小盒用去x张长方形纸片。

做乙种小盒要用去y张正方形纸片,应如何列方程并解方程。

23. 一个三位数的数字之和等于12,它的个位数比十位数字小2。

若将它的百位数字与个位数字互换,所得的数比原来的数小99,求原数。

24. A、B两地相距50km,甲于某日下午1时骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车从A地出发驶往B地。

如图,折线PQR和线段MN分别表示甲、乙所行驶的里程s与该日下午时间t之间的关系。

(1)甲出发多少小时,乙才开始出发?(2)乙行驶多少小时就追上了甲,这时两人离B地还有多少千米?25. 甲、乙两个蓄水池,蓄满水后的水量都为120m3。

已知甲池有水48m3,乙水池蓄满了水,现甲池开始进水,每小时进水8m3,同时,乙池放水,每小时放水10m3。

(1)甲池内的水量y(m3)与进水时间t(h)之间函数关系式是什么?乙池内的水量y(m3)与进水时间t(h)之间函数关系式是什么?(2)画出这两个函数的图象。

(3)经过几小时,两个池内的水一样多?26. 某同学解下列方程组⎩⎨⎧-=+=+1321by ax by ax 时,因将方程②中的未知数y 的系数的正负号看错,而解得⎩⎨⎧==12y x ,试求a 、b 的值。

27. (只列方程,不要求解题步骤) A 、B 两地相距20km ,甲、乙两人分别从A 、B 两地同时相向而行,2h 后相遇,然后甲折回,乙仍然继续前进,当甲回到A 地时,乙离A 地还有2km 。

求甲、乙两人的速度。

28. 甲、乙两人的年收入之比为5:4,年支出之比为3:2,一年后两人各余1500元,求这两个人的年收入。

29. 一张方桌由1个桌面、4条桌腿组成。

如果1m 3木料可以做方桌的桌面50个或做桌腿300条,现有5m 3木料,那么用多少立方米木料做桌面、多少立方米木料做桌腿,做出的桌面和桌腿,恰好能配成方桌?能配成多少张方桌?30. 已知等式c bx ax y ++=2,当x=0时,y=1;当x=2时,y=7;当x=-1时,y=4。

相关文档
最新文档