[推荐学习]2018年高考数学总复习第二章函数概念与基本初等函数1第7讲函数的图象学案

合集下载

届数学一轮总复习第2章函数的概念与基本初等函数Ⅰ第7节函数的图象跟踪检测文含解析

届数学一轮总复习第2章函数的概念与基本初等函数Ⅰ第7节函数的图象跟踪检测文含解析

第二章函数的概念与基本初等函数(Ⅰ)第七节函数的图象A级·基础过关|固根基|1。

(2019届沈阳市质量监测)函数f(x)=错误!的图象大致为()解析:选C因为y=x2-1与y=e|x|都是偶函数,所以f(x)=错误!为偶函数,排除A、B;又f(2)=错误!<1,排除D,故选C。

2.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶,与以上事件吻合得最好的图象是()解析:选C小明匀速运动时,所得图象为一条直线,且距离学校越来越近,排除A;因交通堵塞停留了一段时间,与学校的距离不变,排除D;后来为了赶时间加快速度行驶,排除B。

3.(一题多解)下列函数中,其图象与函数y=ln x的图象关于直线x=1对称的是()A.y=ln(1-x)B.y=ln(2-x)C.y=ln(1+x) D.y=ln(2+x)解析:选B解法一:设所求函数图象上任一点的坐标为(x,y),则其关于直线x=1的对称点的坐标为(2-x,y),由对称性知点(2-x,y)在函数f(x)=ln x的图象上,所以y=ln(2-x),故选B.解法二:由题意知,对称轴上的点(1,0)既在函数y=ln x的图象上也在所求函数的图象上,代入选项中的函数表达式逐一检验,排除A、C、D,故选B.4.已知图①中的图象对应的函数为y=f(x),则图②中的图象对应的函数为()A.y=f(|x|) B.y=f(-|x|)C.y=|f(x)| D.y=-f(|x|)解析:选B观察函数图象,图②是由图①保留y轴左侧部分图象,并将左侧图象翻折到右侧所得.因此,图②中对应的函数解析式为y=f(-|x|).5.函数y=错误!的图象大致为()解析:选B函数y=错误!的定义域为{x|x≠0且x≠±1},排除A 项;∵f(-x)=错误!=-f(x),f(x)是奇函数,排除C项;当x=2时,y=错误!>0,排除D项.6.已知函数f(x)=错误!则函数y=f(e-x)的大致图象是()解析:选B令g(x)=f(e-x),则g(x)=错误!化简得g(x)=错误!因此g(x)在(0,+∞),(-∞,0)上都是减函数,A、C、D不成立.7.已知函数f(2x+1)是奇函数,则函数y=f(2x)的图象的对称中心为()A.(1,0) B.(-1,0)C.错误!D.错误!解析:选C f(2x+1)是奇函数,所以图象关于原点成中心对称,而f(2x)的图象是由f(2x+1)的图象向右平移12个单位长度得到的,故关于点错误!成中心对称.8.已知函数f(x)=dax2+bx+c(a,b,c,d∈R)的图象如图所示,则()A.a>0,b>0,c<0,d<0 B.a<0,b>0,c<0,d>0 C.a<0,b>0,c>0,d>0 D.a>0,b<0,c>0,d>0解析:选B由题图可知,x≠1且x≠5,则ax2+bx+c=0的两根为1,5,由根与系数的关系,得-错误!=6,错误!=5,∴a,b异号,a,c同号,排除A、C;又∵f(0)=错误!<0,∴c,d异号,排除D,只有B项适合.9.(2019届石家庄模拟)在同一平面直角坐标系中,函数y=g (x)的图象与y=e x的图象关于直线y=x对称.而函数y=f(x)的图象与y=g(x)的图象关于y轴对称,若f(m)=-1,则m =________.解析:由题意知g(x)=ln x,则f(x)=ln(-x),若f(m)=-1,则ln(-m)=-1,解得m=-1 e.答案:-错误! 10。

(江苏专用)2018高考数学一轮复习 第二章 函数概念与基本初等函数(Ⅰ)热点探究课1 函数的图

(江苏专用)2018高考数学一轮复习 第二章 函数概念与基本初等函数(Ⅰ)热点探究课1 函数的图

热点探究课(一) 函数的图象与性质[命题解读] 函数是中学数学的核心概念,函数的图象与性质既是中学数学教学的重点,又是高考考查的重点与热点,题型以填空题为主,既重视三基,又注重思想方法的考查,备考时,要透彻理解函数,尤其是分段函数的概念,切实掌握函数的性质,并加强函数与方程思想、数形结合思想、分类讨论思想的应用意识.热点1 函数图象的应用利用函数图象研究方程的解、不等式的解集等是高考的热点,多以填空题的形式出现,属中档题目,主要考查学生的数形结合意识以及用图象解答问题的能力.已知f (x )为偶函数,当x ≥0时,f (x )=⎩⎪⎨⎪⎧cos πx ,x ∈⎣⎢⎡⎦⎥⎤0,12,2x -1,x ∈⎝ ⎛⎭⎪⎫12,+∞,则不等式f (x -1)≤12的解集为________. 【导学号:62172064】⎣⎢⎡⎦⎥⎤14,23∪⎣⎢⎡⎦⎥⎤43,74 [画出函数f (x )的图象,如图,当0≤x ≤12时,令f (x )=cos πx ≤12,解得13≤x ≤12;当x >12时,令f (x )=2x -1≤12,解得12<x ≤34,故有13≤x ≤34.因为f (x )是偶函数,所以f (x )≤12的解集为⎣⎢⎡⎦⎥⎤-34,-13∪⎣⎢⎡⎦⎥⎤13,34,故f (x -1)≤12的解集为⎣⎢⎡⎦⎥⎤14,23∪⎣⎢⎡⎦⎥⎤43,74.][迁移探究1] 在本例条件下,若关于x 的方程f (x )=k 有2个不同的实数解,求实数k 的取值范围.[解] 由函数f (x )的图象(图略)可知,当k =0或k >1时,方程f (x )=k 有2个不同的实数解,即实数k 的取值范围是k =0或k >1.[迁移探究2] 在本例条件下,若函数y =f (x )-k |x |恰有两个零点,求实数k 的取值范围.[解] 函数y =f (x )-k |x |恰有两个零点,即函数y =f (x )的图象与y =k |x |的图象恰有两个交点,借助函数图象(图略)可知k ≥2或k =0,即实数k 的取值范围为k =0或k ≥2.[规律方法] 1.利用函数的图象研究函数的性质,一定要注意其对应关系,如:图象的左右范围对应定义域,上下范围对应值域,上升、下降趋势对应单调性,对称性对应奇偶性.2.有关方程解的个数问题常常转化为两个熟悉的函数图象的交点个数;利用此法也可由解的个数求参数值或范围.3.有关不等式的问题常常转化为两个函数图象的上、下关系来解. [对点训练1] (2017·镇江期中)已知函数f (x )=⎩⎪⎨⎪⎧|log 2x |,0<x <2,x +22x,x ≥2,若0<a <b <c ,满足f (a )=f (b )=f (c ),则abf c的范围是________.(1,2) [如图所示,∵0<a <b <c ,且f (a )=f (b )=f (c ), ∴-log 2a =log 2b ,即ab =1, 又由图可知12<f (c )<1,故1<1f c<2,∴ab f c =1f c∈(1,2).] 热点2 函数性质的综合应用对函数性质的考查,以单调性、奇偶性和周期性为主,同时融合函数的零点问题,重在考查学生的等价转化能力及数形结合意识,难度中等.熟练掌握上述性质是解此类题的关键. ☞角度1 单调性与奇偶性结合(2016·天津高考改编)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.⎝ ⎛⎭⎪⎫12,32 [因为f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增,所以f (-x )=f (x ),且f (x )在(0,+∞)上单调递减.由f (2|a -1|)>f (-2),f (-2)=f (2)可得2|a -1|<2,即|a -1|<12,所以12<a <32.]☞角度2 奇偶性与周期性结合(2017·南通二模)已知f(x)是定义在R上的偶函数,且对于任意的x∈[0,+∞),满足f(x+2)=f(x),若当x∈[0,2)时,f(x)=|x2-x-1|,则函数y=f(x)-1在区间[-2,4]上的零点个数为________.7[由f(x+2)=f(x)可知,f(x)在[0,+∞)上是周期为2的函数,又x∈[0,2)时,f(x)=|x2-x-1|,且f(x)为偶函数,故f(x)在[-2,4]上的图象如图所示.由图可知y=f(x)与y=1有7个交点,故函数y=f(x)-1在区间[-2,4]上有7个零点.]☞角度3 单调性、奇偶性与周期性结合已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则f(-25),f(11),f(80)的大小关系为________.f(-25)<f(80)<f(11) [因为f(x)满足f(x-4)=-f(x),所以f(x-8)=f(x),所以函数f(x)是以8为周期的周期函数,则f(-25)=f(-1),f(80)=f(0),f(11)=f(3).由f(x)是定义在R上的奇函数,且满足f(x-4)=-f(x),得f(11)=f(3)=-f(-1)=f(1).因为f(x)在区间[0,2]上是增函数,f(x)在R上是奇函数,所以f(x)在区间[-2,2]上是增函数,所以f(-1)<f(0)<f(1),即f(-25)<f(80)<f(11).][规律方法]函数性质综合应用问题的常见类型及解题方法(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.热点3 函数图象与性质的综合应用函数的零点、方程的根和函数图象的交点横坐标之间的等价转化思想和数形结合思想是解答此类问题的关键所在.因此在处理此类问题时,务必要结合题设信息实现知识转化.以填空题压轴题据多,求解时务必细心.(2015·江苏高考)已知函数f (x )=|ln x |,g (x )=⎩⎪⎨⎪⎧0,0<x ≤1,|x 2-4|-2,x >1,则方程|f (x )+g (x )|=1实根的个数为______.4 [令h (x )=f (x )+g (x ), 则h (x )=⎩⎪⎨⎪⎧-ln x ,0<x ≤1,-x 2+ln x +2,1<x <2,x 2+ln x -6,x ≥2,当1<x <2时,h ′(x )=-2x +1x =1-2x2x<0,故当1<x <2时h (x )单调递减,在同一坐标系中画出y =|h (x )|和y =1的图象如图所示.由图象可知|f (x )+g (x )|=1的实根个数为4.][规律方法] 解决分段函数与函数零点的综合问题的关键在于“对号入座”,即根据分段函数中自变量取值范围的界定,代入相应的解析式求解零点,注意取值范围内的大前提,以及函数性质和数形结合在判断零点个数时的强大功能.[对点训练2] 已知函数f (x )=⎩⎪⎨⎪⎧2-x-1,x ≤0,f x -,x >0,若方程f (x )=x +a 有且只有两个不相等的实数根,则实数a 的取值范围是________.【导学号:62172065】(-∞,1) [函数f (x )=⎩⎪⎨⎪⎧2-x-1,x ≤0,f x -,x >0的图象如图所示,当a <1时,函数y =f (x )的图象与函数f (x )=x +a 的图象有两个交点,即方程f (x )=x +a 有且只有两个不相等的实数根.]热点探究训练(一)A 组 基础达标 (建议用时:30分钟)一、填空题1.(2017·镇江期中)函数f (x )=12-lg x 的定义域是________. (0,10] [由12-lg x ≥0得lg x ≤12,即0<x ≤10.]2.(2017·常州期末)函数f (x )=log 2(-x 2+22)的值域为________.【导学号:62172066】⎝⎛⎦⎥⎤-∞,32 [∵-x 2+22≤22,且y =log 2x 在(0,22]上单调递增,故log 2x ≤log 222=log 2232=32.]3.(2017·如皋中学高三第一次月考)若函数f (x )=x 2x+me x-1(e 为自然对数的底数)是奇函数,则实数m 的值为________.1 [由f (-x )=-f (x )得x 2-x +m e -x -1=-x 2x+me x-1, 即1+m e x=e x+m ,故m =1.]4.若函数f (x )=a sin 2x +b tan x +1,且f (-3)=5,则f (π+3)=________.【导学号:62172067】-3 [令g (x )=a sin 2x +b tan x ,则g (x )是奇函数,且最小正周期是π,由f (-3)=g (-3)+1=5,得g (-3)=4,则g (3)=-g (-3)=-4,则f (π+3)=g (π+3)+1=g (3)+1=-4+1=-3.]5.已知函数f (x )是(-∞,+∞)上的奇函数,当x ∈[0,2)时,f (x )=x 2,若对于任意x ∈R ,都有f (x +4)=f (x ),则f (2)-f (3)的值为________.1 [由题意得f (2)=f (-2+4)=f (-2)=-f (2), ∴f (2)=0.∵f (3)=f (-1+4)=f (-1)=-f (1)=-1, ∴f (2)-f (3)=1.]6.已知函数f (x )=⎩⎪⎨⎪⎧x +2,x >a ,x 2+5x +2,x ≤a ,函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a 的取值范围是________.[-1,2) [由题意知g (x )=⎩⎪⎨⎪⎧2-x ,x >a ,x 2+3x +2,x ≤a .因为g (x )有三个不同的零点,所以2-x =0在x >a 时有一个解.由x =2,得a <2. 由x 2+3x +2=0,得x =-1或x =-2, 由x ≤a ,得a ≥-1.综上,a 的取值范围为[-1,2).]7.(2017·南通第一次学情检测)已知f (x )为定义在R 上的偶函数,当x ≥0时,f (x )=2x-2,则不等式f (x -1)≤6的解集是________. 【导学号:62172068】[-2,4] [∵f (x )为R 上的偶函数, ∴当x <0时,-x >0, ∴f (-x )=2-x-2, 即f (x )=2-x -2. ∵f (x -1)≤6,∴当x -1≥0,即x ≥1时, 2x -1-2≤6,解得1≤x ≤4; 当x -1<0,即x <1时,21-x-2≤6,解得-2≤x <1.综上可知,f (x -1)≤6的解集为[-2,4].]8.已知函数f (x ),g (x )分别是定义在R 上的偶函数与奇函数,且g (x )=f (x -1),则f (2 019)的值为________.0 [g (-x )=f (-x -1),由f (x ),g (x )分别是偶函数与奇函数,得g (x )=-f (x +1),∴f (x -1)=-f (x +1),即f (x +2)=-f (x ),∴f (x +4)=f (x ),故函数f (x )是以4为周期的周期函数,则f (2 019)=f (505×4-1)=f (-1)=g (0)=0.]9.已知函数y =f (x +2)的图象关于直线x =-2对称,且当x ∈(0,+∞)时,f (x )=|log 2x |,若a =f (-3),b =f ⎝ ⎛⎭⎪⎫14,c =f (2),则a ,b ,c 的大小关系是________. b >a >c [由函数y =f (x +2)的图象关于直线x =-2对称,得函数y =f (x )的图象关于y 轴对称,即y =f (x )是偶函数.当x ∈(0,1)时,f (x )=f ⎝ ⎛⎭⎪⎫1x=|log 2x |,且x ∈[1,+∞)时,f (x )=log 2x 单调递增,又a =f (-3)=f (3),b =f ⎝ ⎛⎭⎪⎫14=f (4),所以b >a >c .] 10.(2017·南京一模)设f (x )是定义在R 上的奇函数,且f (x )=2x+m2x ,设g (x )=⎩⎪⎨⎪⎧f x ,x >1,f -x ,x ≤1,若函数y =g (x )-t 有且只有一个零点,则实数t 的取值范围是________.⎣⎢⎡⎦⎥⎤-32,32 [由f (x )为R 上的奇函数可知,f (0)=0,即1+m =0,m =-1,∴f (x )=2x-12x ,∴g (x )=⎩⎪⎨⎪⎧2x-12x ,x >1,12x-2x,x ≤1.又当x >1时,g (x )为增函数, ∴g (x )>g (1)=2-12=32,当x ≤1时,g (x )为减函数, ∴g (x )≥g (1)=-⎝ ⎛⎭⎪⎫2-12=-32. 要使g (x )-t =0有且只有一解,即函数y =g (x )与y =t 的图象只有一个交点(图略),故-32≤t ≤32.]二、解答题11.(2017·镇江期中)已知函数f (x )=log 2x4log 22x .(1)解不等式f (x )>0;(2)当x ∈[1,4]时,求f (x )的值域.[解] (1)函数f (x )=log 2x4·log 22x =(log 2x -log 24)(log 22+log 2x )=(log 2x )2-log 2x -2,x ∈(0,+∞). 令f (x )=(log 2x )2-log 2x -2>0, 则log 2x >2或log 2x <-1,故x >4或0<x <12.(2)若x ∈[1,4],则0≤log 2x ≤2,f (x )=(log 2x )2-log 2x -2=⎝⎛⎭⎪⎫log 2x -122-94,当log 2x =12即x =2时,f (x )min =-94;当log 2x =2即x =4时,f (x )max =0.故f (x )值域为⎣⎢⎡⎦⎥⎤-94,0. 12.(2017·启东中学高三第一次月考)已知函数f (x )=-2x+m2x +1+n (其中m ,n 为参数).(1)当m =n =1时,证明:f (x )不是奇函数; (2)如果f (x )是奇函数,求实数m ,n 的值;(3)已知m >0,n >0,在(2)的条件下,求不等式f (f (x ))+f ⎝ ⎛⎭⎪⎫14<0的解集. [解] 证明:(1)f (x )=-2x+12x +1+1,∴f (1)=-2+122+1=-15,f (-1)=-12+12=14,∵f (-1)≠-f (1),∴f (x )不是奇函数. (2)由f (x )是奇函数得f (-x )=-f (x ),即-2-x+m 2-x +1+n =--2x+m2x +1+n 对定义域内任意实数x 都成立,化简整理得关于x 的恒等式(2m -n )·22x+(2mn -4)·2x+(2m -n )=0,∴⎩⎪⎨⎪⎧2m -n =0,2mn -4=0,即⎩⎪⎨⎪⎧m =-1,n =-2或⎩⎪⎨⎪⎧m =1,n =2.(3)由题意得m =1,n =2,∴f (x )=-2x+12x +1+2=12⎝ ⎛⎭⎪⎫-1+22x +1,易判断f (x )在R 上递减,∵f (f (x ))+f ⎝ ⎛⎭⎪⎫14<0, ∴f (f (x ))<-f ⎝ ⎛⎭⎪⎫14=f ⎝ ⎛⎭⎪⎫-14,∴f (x )>-14,∴2x<3,∴x <log 23,即所求不等式的解集为(-∞,log 23).B 组 能力提升 (建议用时:15分钟)1.已知函数f (x )是定义在R 上的奇函数,且在[0,+∞)上是增函数,则不等式⎪⎪⎪⎪⎪⎪f x -f ⎝ ⎛⎭⎪⎫ln 1x 2<f (1)的解集为________.⎝ ⎛⎭⎪⎫1e ,e [f (x )为R 上的奇函数,则f ⎝ ⎛⎭⎪⎫ln 1x =f (-ln x )=-f (ln x ),所以⎪⎪⎪⎪⎪⎪f x -f ⎝ ⎛⎭⎪⎫ln 1x 2=|fx +fx2=|f (ln x )|,即原不等式可化为|f (lnx )|<f (1),所以-f (1)<f (ln x )<f (1),即f (-1)<f (ln x )<f (1).又由已知可得f (x )在R 上单调递增,所以-1<ln x <1,解得1e<x <e.]2.(2017·泰州中学高三摸底考试)对于函数y =f (x ),若存在区间[a ,b ],当x ∈[a ,b ]时的值域为[ka ,kb ](k >0),则称y =f (x )为k 倍值函数.若f (x )=ln x +x 是k 倍值函数,则实数k 的取值范围是________.⎝⎛⎭⎪⎫1,1+1e [由题意得lnx +x =kx 有两个不同的解,k =ln x x +1,则k ′=1-ln x x 2=0⇒x =e ,因此当0<x <e 时,k ∈⎝ ⎛⎭⎪⎫-∞,1+1e ,当x >e 时,k ∈⎝ ⎛⎭⎪⎫1,1+1e ,从而要使ln x+x =kx 有两个不同的解,需k ∈⎝⎛⎭⎪⎫1,1+1e .] 3.函数f (x )=m +log a x (a >0且a ≠1)的图象过点(8,2)和(1,-1). (1)求函数f (x )的解析式;(2)令g (x )=2f (x )-f (x -1),求g (x )的最小值及取得最小值时x 的值.[解] (1)由⎩⎪⎨⎪⎧f=2,f =-1,得⎩⎪⎨⎪⎧m +log a 8=2,m +log a 1=-1,解得m =-1,a =2,故函数解析式为f (x )=-1+log 2x . (2)g (x )=2f (x )-f (x -1)=2(-1+log 2x )-[-1+log 2(x -1)] =log 2x 2x -1-1(x >1).∵x 2x -1=x -2+x -+1x -1=(x -1)+1x -1+2≥2x -1x -1+2=4. 当且仅当x -1=1x -1,即x =2时,等号成立. 而函数y =log 2x 在(0,+∞)上单调递增, 则log 2x 2x -1-1≥log 24-1=1,故当x =2时,函数g (x )取得最小值1. 4.已知函数f (x )=x 2-1,g (x )=a |x -1|.(1)若当x ∈R 时,不等式f (x )≥g (x )恒成立,求实数a 的取值范围; (2)求函数h (x )=|f (x )|+g (x )在区间[0,2]上的最大值.[解] (1)不等式f (x )≥g (x )对x ∈R 恒成立,即x 2-1≥a |x -1|(*)对x ∈R 恒成立. ①当x =1时,(*)显然成立,此时a ∈R ;②当x ≠1时,(*)可变形为a ≤x 2-1|x -1|,令φ(x )=x 2-1|x -1|=⎩⎪⎨⎪⎧x +1,x >1,-x +,x <1.因为当x >1时,φ(x )>2,当x <1时,φ(x )>-2, 所以φ(x )>-2,故此时a ≤-2.综合①②,得所求实数a 的取值范围是(-∞,-2]. (2)h (x )=⎩⎪⎨⎪⎧-x 2-ax +a +1,0≤x <1,0,x =1,x 2+ax -a -1,1<x ≤2.①当-a2≤0,即a ≥0时, (-x 2-ax +a +1)max =h (0)=a +1, (x 2+ax -a -1)max =h (2)=a +3. 此时,h (x )max =a +3. ②当0<-a2≤1,即-2≤a <0时,(-x 2-ax +a +1)max=h ⎝ ⎛⎭⎪⎫-a 2=a 24+a +1,(x 2+ax -a -1)max =h (2)=a +3.此时h (x )max =a +3. ③当1<-a2≤2,即-4≤a <-2时,(-x 2-ax +a +1)max =h (1)=0,(x 2+ax -a -1)max =max{h (1),h (2)}=max{0,3+a }=⎩⎪⎨⎪⎧0,-4≤a <-3,3+a ,-3≤a <-2.此时h (x )max =⎩⎪⎨⎪⎧0,-4≤a <-3,3+a ,-3≤a <-2.④当-a2>2,即a <-4时,(-x 2-ax +a +1)max =h (1)=0, (x 2+ax -a -1)max =h (1)=0. 此时h (x )max =0.综上:h (x )max =⎩⎪⎨⎪⎧ 3+a ,a ≥-3,0,a <-3.。

高考数学一轮复习 第2章 函数与基本初等函数 第7课时 对数函数练习 理-人教版高三全册数学试题

高考数学一轮复习 第2章 函数与基本初等函数 第7课时 对数函数练习 理-人教版高三全册数学试题

第7课时 对数函数1.(log 29)·(log 34)的值为( ) A .14 B .12 C .2 D .4答案 D解析 原式=(log 232)·(log 322)=4(log 23)·(log 32)=4·lg3lg2·lg2lg3=4.2.(2018·某某某某模拟)已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是( ) A .a =b <c B .a =b >c C .a <b <c D .a >b >c 答案 B解析 a =log 23+log 23=log 233,b =log 29-log 23=log 233,因此a =b ,而log 233>log 22=1,log 32<log 33=1,所以a =b >c ,故选B.3.若log a 23<1(a>0且a≠1),则实数a 的取值X 围是( )A .(0,23)B .(1,+∞)C .(0,23)∪(1,+∞)D .(23,1)答案 C解析 当0<a<1时,log a 23<log a a =1,∴0<a<23;当a>1时,log a 23<log a a =1,∴a>1.∴实数a 的取值X 围是(0,23)∪(1,+∞). 4.函数y =ln 1|2x -3|的图像为( )答案 A解析 易知2x -3≠0,即x≠32,排除C ,D 项.当x>32时,函数为减函数,当x<32时,函数为增函数,所以选A.5.如图,函数f(x)的图像为折线ACB ,则不等式f(x)≥log 2(x +1)的解集是( ) A .{x|-1<x≤0} B .{x|-1≤x≤1} C .{x|-1<x≤1} D .{x|-1<x≤2}答案 C解析 作出函数y =log 2(x +1)的大致图像,如图所示.其中函数f(x)与y =log 2(x +1)的图像的交点为D(1,1),结合图像可知f(x)≥log 2(x +1)的解集为{x|-1<x≤1},故选C.6.设函数f(x)=⎩⎪⎨⎪⎧1+log 2(2-x ),x<1,2x -1,x ≥1,则f(-2)+f(log 212)等于( )A .3B .6C .9D .12答案 C解析 因为-2<1,所以f(-2)=1+log 2[2-(-2)]=3. 因为log 212>1,所以f(log 212)=2log 212-1=2log 26=6. 所以f(-2)+f(log 212)=9.故选C.7.若实数a ,b ,c 满足log a 2<log b 2<log c 2<0,则下列关系中正确的是( ) A .a<b<c B .b<a<c C .c<b<a D .a<c<b答案 C解析 根据不等式的性质和对数的换底公式可得1log 2a <1log 2b <1log 2c<0,即log 2c<log 2b<log 2a<0,可得c<b<a<1.故选C. 8.(2014·某某,理)函数f(x)=log 12(x 2-4)的单调递增区间为( )A .(0,+∞) B.(-∞,0) C .(2,+∞) D .(-∞,-2) 答案 D解析 函数y =f(x)的定义域为(-∞,-2)∪(2,+∞),因为函数y =f(x)是由y =log 12t 与t =g(x)=x 2-4复合而成,又y =log 12t 在(0,+∞)上单调递减,g(x)在(-∞,-2)上单调递减,所以函数y =f(x)在(-∞,-2)上单调递增.选D.9.(2018·某某金陵中学模拟)设函数f(x)=⎩⎪⎨⎪⎧log 2x ,x>0,log 12(-x ),x<0,若f(a)>f(-a),则实数a 的取值X 围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)答案 C解析 由题意可得⎩⎪⎨⎪⎧a>0,log 2a>log 12a 或⎩⎪⎨⎪⎧a<0,log 12(-a )>log 2(-a ),解得a>1或-1<a<0,故选C.10.已知定义在R 上的函数f(x)=2|x -m|-1(m 为实数)为偶函数.记a =f(log 0.53),b =f(log 25),c =f(2m),则a ,b ,c 的大小关系为( ) A .a<b<c B .a<c<b C .c<a<b D .c<b<a答案 C解析 因为f(x)=2|x -m|-1为偶函数,所以m =0.因为a =f(log 123)=f(log 23),b =f(log 25),c =f(0),log 25>log 23>0,而函数f(x)=2|x -m|-1在(0,+∞)上为增函数,所以f(log 25)>f(log 23)>f(0),即b>a>c.故选C.11.若函数y =log a (x 2-ax +2)在区间(-∞,1]上为减函数,则a 的取值X 围是( ) A .(0,1) B .[2,+∞) C .[2,3) D .(1,3)答案 C解析 当0<a<1时,由复合函数与对数函数的性质知,不合题意;当a>1时,要满足⎩⎪⎨⎪⎧12-a +2>0,a 2≥1,解得2≤a<3.12.已知函数f(x)=2+log 2x ,x ∈[1,2],则函数y =f(x)+f(x 2)的值域为( ) A .[4,5] B .[4,112]C .[4,132]D .[4,7]答案 B解析 y =f(x)+f(x 2)=2+log 2x +2+log 2x 2=4+3log 2x ,注意到为使得y =f(x)+f(x 2)有意义,必有1≤x 2≤2,得1≤x≤2,从而4≤y≤112.13.已知函数f(x)=xln(e 2x+1)-x 2+1,f(a)=2,则f(-a)的值为( ) A .1 B .0 C .-1 D .-2答案 B解析 f(x)+f(-x)=xln(e 2x+1)-x 2+1+[-xln(e -2x+1)-(-x)2+1]=x[ln(e 2x+1)-ln(e-2x+1)]-2x 2+2=xln e 2x +1e -2x +1-2x 2+2=xlne 2x-2x 2+2 =2x 2-2x 2+2=2, 所以f(a)+f(-a)=2,因为f(a)=2,所以f(-a)=2-f(a)=0.故选B.14.(2017·课标全国Ⅰ)设x ,y ,z 为正数,且2x=3y=5z,则( ) A .2x<3y<5z B .5z<2x<3y C .3y<5z<2x D .3y<2x<5z答案 D解析 ∵2x=3y=5z,∴ln2x=ln3y=ln5z, ∴xln2=yln3=zln5.∴x y =ln3ln2,∴2x 3y =2ln33ln2=ln32ln23=ln9ln8>1, ∴2x>3y ,同理可得2x<5z. ∴3y<2x<5z.故选D. 15.log 327-log 33+(5-1)0-(94)12+cos 4π3=________.答案 0解析 原式=log 3(27÷3)+1-32-12=1+1-32-12=0.16.若log a (x +1)>log a (x -1),则x∈________,a ∈________. 答案 (1,+∞)(1,+∞)17.(1)若log a 3<log a π,则实数a 的取值X 围是________. (2)若log 3a<log πa ,则实数a 的取值X 围是________. 答案 (1)a>1 (2)0<a<1 18.设函数f(x)=|lgx|,(1)若0<a<b 且f(a)=f(b).证明:a·b=1; (2)若0<a <b 且f(a)>f(b).证明:ab <1. 答案 略解析 (1)由|lga|=|lgb|,得-lga =lgb.∴ab =1. (2)由题设f(a)>f(b),即|lga|>|lgb|.上式等价于(lga)2>(lgb)2,即(lga +lgb)(lga -lgb)>0,lg(ab)lg a b >0,由已知b >a >0,得0<a b <1.∴lg ab<0,故lg(ab)<0.∴ab<1.1.已知a>b>1,若log a b +log b a =52,a b =b a ,则ab +2=________.答案 1解析 ∵log a b +log b a =log a b +1log a b =52,∴log a b =2或12.∵a>b>1,∴log a b<log a a =1,∴log a b =12,∴a =b 2.∵a b=b a,∴(b 2)b=bb 2,∴b 2b=bb 2,∴2b =b 2,∴b =2,∴a =4,∴ab +2=1. 2.已知函数f(x)是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.如果实数t 满足f(lnt)+f(ln 1t )≤2f(1),那么t 的取值X 围是________.答案 [1e,e]解析 由于函数f(x)是定义在R 上的偶函数,所以f(lnt)=f(ln 1t ).由f(lnt)+f(ln 1t )≤2f(1),得f(lnt)≤f(1).又函数f(x)在区间[0,+∞)上单调递增,所以|lnt|≤1,-1≤lnt ≤1,故1e ≤t ≤e.3.已知函数f(x)=lg[(a 2-1)x 2+(a +1)x +1]. (1)若f(x)的定义域为R ,某某数a 的取值X 围; (2)若f(x)的值域为R ,某某数a 的取值X 围. 答案 a≤-1或a>53 (2)1≤a≤53解析 (1)依题意(a 2-1)x 2+(a +1)x +1>0,对一切x ∈R 恒成立,当a 2-1≠0时,其充要条件是⎩⎪⎨⎪⎧a 2-1>0,Δ=(a +1)2-4(a 2-1)<0,即⎩⎪⎨⎪⎧a>1或a<-1,a >53或a<-1. ∴a<-1或a>53.又a =-1时,f(x)=0,满足题意. ∴a ≤-1或a>53.(2)依题意,只要t =(a 2-1)x 2+(a +1)x +1能取到(0,+∞)上的任何值,则f(x)的值域为R ,故有a 2-1>0,Δ≥0,解之1<a≤53,又当a 2-1=0,即a =1时,t =2x +1符合题意;a =-1时不合题意,∴1≤a ≤53.。

[推荐学习]2018版高考数学大一轮复习第二章函数概念与基本初等函数I2.1函数及其表示教师用书

[推荐学习]2018版高考数学大一轮复习第二章函数概念与基本初等函数I2.1函数及其表示教师用书

(浙江专用)2018版高考数学大一轮复习第二章函数概念与基本初等函数I 2.1 函数及其表示教师用书1.函数与映射(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)函数的三要素:定义域、对应关系和值域.(3)函数的表示法表示函数的常用方法有解析法、图象法和列表法.3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.【知识拓展】1.函数实质上就是数集上的一种映射,即函数是一种特殊的映射,而映射可以看作函数概念的推广.2.函数图象的特征:与x轴垂直的直线与其最多有一个公共点.利用这个特征可以判断一个图形能否作为一个函数的图象.3.分段函数有几段,它的图象就由几条曲线组成,同时要注意每段曲线端点的虚实,而且横坐标相同的地方不能有两个及两个以上的点. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)对于函数f :A →B ,其值域是集合B .( × )(2)若两个函数的定义域与值域相同,则这两个函数是相等函数.( × ) (3)映射是特殊的函数.( × )(4)若A =R ,B ={x |x >0},f :x →y =|x |,其对应是从A 到B 的映射.( × ) (5)分段函数是由两个或几个函数组成的.( × )1.(教材改编)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )答案 B解析 A 中函数的定义域不是[-2,2],C 中图象不表示函数,D 中函数值域不是[0,2],故选B.2.(2016·全国甲卷)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x答案 D 解析 函数y =10lg x的定义域为{x |x >0},值域为{y |y >0},所以与其定义域和值域分别相同的函数为y =1x,故选D.3.已知f (1x)=x 2+5x ,则f (x )=________.答案5x +1x2(x ≠0)解析 令1x=t (t ≠0),则f (t )=1t 2+51t =5t +1t2,∴f (x )=5x +1x2(x ≠0).4.(2016·诸暨期末)已知函数f (x )=⎩⎪⎨⎪⎧-x +10,x >0,x 2+4,x ≤0,则f [f (0)]=________;若f [f (x 0)]=2,则x 0=________. 答案 6 2或-2解析 由题意知f (0)=4,f (4)=6,设f (x 0)=t ,则f (t )=2,当t >0时,-t +10=2,得t =8,当t <0时,t 2+4=2,无解,当x 0>0时,由-x 0+10=8,得x 0=2,当x 0≤0时,由x 20+4=8,得x 0=-2,所以x 0=2或-2.题型一 函数的概念 例1 有以下判断:①f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1 x -x表示同一函数;②函数y =f (x )的图象与直线x =1的交点最多有1个; ③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;④若f (x )=|x -1|-|x |,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=0.其中正确判断的序号是________. 答案 ②③解析 对于①,由于函数f (x )=|x |x的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧x ,-x的定义域是R ,所以二者不是同一函数;对于②,若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于③,f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数;对于④,由于f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-⎪⎪⎪⎪⎪⎪12=0,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f (0)=1.综上可知,正确的判断是②③.思维升华 函数的值域可由定义域和对应关系唯一确定,当且仅当定义域和对应关系都相同的函数才是同一函数.值得注意的是,函数的对应关系是就结果而言的(判断两个函数的对应关系是否相同,只要看对于函数定义域中的任意一个相同的自变量的值,按照这两个对应关系算出的函数值是否相同).(1)下列所给图象中函数图象的个数为( )A .1B .2C .3D .4(2)下列各组函数中,表示同一个函数的是( )A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2D .f (x )=x 2x和g (x )=x x2答案 (1)B (2)D解析 (1)①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象,②中当x =x 0时,y 的值有两个,因此不是函数图象,③④中每一个x 的值对应唯一的y 值,因此是函数图象,故选B.(2)A 中两个函数的定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同.故选D.题型二 函数的定义域问题 命题点1 求函数的定义域例2 (2016·临安中学一模)(1)函数f (x )=1-2x+1x +3的定义域为( )A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1](2)若函数y =f (x )的定义域为[0,2],则函数g (x )=f 2xx -1的定义域是________. 答案 (1)A (2)[0,1)解析 (1)由题意得⎩⎪⎨⎪⎧1-2x≥0,x +3>0,解得-3<x ≤0.所以函数f (x )的定义域为(-3,0].(2)由0≤2x ≤2,得0≤x ≤1, 又x -1≠0,即x ≠1,所以0≤x <1,即g (x )的定义域为[0,1). 引申探究例2(2)中,若将“函数y =f (x )的定义域为[0,2]”改为“函数y =f (x +1)的定义域为[0,2]”,则函数g (x )=f 2xx -1的定义域为________________. 答案 [12,1)∪(1,32]解析 由函数y =f (x +1)的定义域为[0,2], 得函数y =f (x )的定义域为[1,3],令⎩⎪⎨⎪⎧1≤2x ≤3,x -1≠0,得12≤x ≤32且x ≠1, ∴g (x )的定义域为[12,1)∪(1,32].命题点2 已知函数的定义域求参数范围例3 (1)若函数f (x )的定义域为R ,则a 的取值范围为________.(2)若函数y =ax +1ax 2+2ax +3的定义域为R ,则实数a 的取值范围是________.答案 (1)[-1,0] (2)[0,3)解析 (1)因为函数f (x )的定义域为R , 所以22210x ax a+--≥对x ∈R 恒成立,即22022x ax a+-≥,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0. (2)因为函数y =ax +1ax 2+2ax +3的定义域为R ,所以ax 2+2ax +3=0无实数解,即函数y =ax 2+2ax +3的图象与x 轴无交点. 当a =0时,函数y =3的图象与x 轴无交点; 当a ≠0时,则Δ=(2a )2-4·3a <0,解得0<a <3. 综上所述,a 的取值范围是[0,3).思维升华 (1)求给定函数的定义域往往转化为解不等式(组)的问题,在解不等式(组)取交集时可借助于数轴,要特别注意端点值的取舍.(2)求抽象函数的定义域:①若y =f (x )的定义域为(a ,b ),则解不等式a <g (x )<b 即可求出y =f (g (x ))的定义域;②若y =f (g (x ))的定义域为(a ,b ),则求出g (x )在(a ,b )上的值域即得f (x )的定义域.(3)已知函数定义域求参数范围,可将问题转化成含参数的不等式,然后求解.(1)已知函数f (x )的定义域为[3,6],则函数y=的定义域为( ) A .[32,+∞)B .[32,2)C .(32,+∞)D .[12,2)(2)若函数y = 的定义域为R ,则实数m 的取值范围是( ) A .(0,34]B .(0,34)C .[0,34]D .[0,34)答案 (1)B (2)D 解析 (1)要使函数y有意义,需满足⎩⎪⎨⎪⎧3≤2x ≤6,12log (2)0x ->⇒⎩⎪⎨⎪⎧32≤x ≤3,0<2-x <1⇒32≤x <2. (2)要使函数的定义域为R ,则mx 2+4mx +3≠0恒成立. ①当m =0时,得到不等式3≠0,恒成立; ②当m ≠0时,要使不等式恒成立, 需⎩⎪⎨⎪⎧ m >0,Δ=m2-4×m ×3<0,即⎩⎪⎨⎪⎧m >0,m4m -或⎩⎪⎨⎪⎧m <0,Δ<0,即⎩⎪⎨⎪⎧m <0,m4m-解得0<m <34.由①②得0≤m <34,故选D.题型三 求函数解析式例4 (1)已知f (2x+1)=lg x ,则f (x )=________.(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,则f (x )=________. (3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f (1x)·x -1,则f (x )=________.答案 (1)lg2x -1(x >1) (2)2x +7 (3)23x +13解析 (1)(换元法)令t =2x +1(t >1),则x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)(待定系数法) 设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b , 即ax +5a +b =2x +17,不论x 为何值都成立,∴⎩⎪⎨⎪⎧a =2,5a +b =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7. (3)(消去法)在f (x )=2f (1x)·x -1中,用1x代替x ,得f (1x )=2f (x )·1x-1,将f (1x)=2f x x-1代入f (x )=2f (1x )·x -1中,可求得f (x )=23x +13.思维升华 函数解析式的求法(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法. (2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围. (3)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)消去法:已知f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).(1)已知f (x +1)=x +2x ,求f (x )的解析式;(2)已知一次函数f (x )满足f (f (x ))=4x -1,求f (x ); (3)已知f (x )+3f (-x )=2x +1,求f (x ). 解 (1)设x +1=t (t ≥1), ∴f (t )=(t -1)2+2(t -1)=t 2-1,∴f (x )=x 2-1(x ≥1).(2)设f (x )=kx +b (k ≠0),则f (f (x ))=k 2x +kb +b , 即k 2x +kb +b =4x -1,∴⎩⎪⎨⎪⎧k 2=4,kb +b =-1,∴⎩⎪⎨⎪⎧k =2,b =-13或⎩⎪⎨⎪⎧k =-2,b =1.故f (x )=2x -13或f (x )=-2x +1.(3)以-x 代替x ,得f (-x )+3f (x )=-2x +1, ∴f (-x )=-3f (x )-2x +1, 代入f (x )+3f (-x )=2x +1, 可得f (x )=-x +14.2.分类讨论思想在函数中的应用典例 (1)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为________________.(2)(2015·山东)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤23,1B .[0,1] C.⎣⎢⎡⎭⎪⎫23,+∞ D .[1, +∞)思想方法指导 (1)求分段函数的函数值,首先要确定自变量的范围,通过分类讨论求解. (2)当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.解析 (1)当a >0时,1-a <1,1+a >1, 由f (1-a )=f (1+a ),可得2(1-a )+a =-(1+a )-2a ,解得a =-32,不合题意.当a <0时,1-a >1,1+a <1, 由f (1-a )=f (1+a ),可得-(1-a )-2a =2(1+a )+a ,解得a =-34,符合题意.(2)由f (f (a ))=2f (a ),得f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a≥1,∴a ≥0,∴a ≥1. 综上,a ≥23,故选C.答案 (1)-34(2)C1.下列各组函数中,表示同一函数的是( )A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1 C .y =x 0(x ≠0)与y =1(x ≠0) D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z 答案 C解析 A 项中两函数的定义域不同;B 项、D 项中两函数的对应关系不同,故选C. 2.函数f (x )=10+9x -x2x -的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10]答案 D解析 要使函数f (x )有意义, 则x 需满足⎩⎪⎨⎪⎧10+9x -x 2≥0,x -1>0,x -,即⎩⎪⎨⎪⎧x +x -,x >1,x ≠2,解得1<x <2或2<x ≤10,所以函数f (x )的定义域为(1,2)∪(2,10].3.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2x D .g (x )=-3x 2-2x答案 B解析 (待定系数法) 设g (x )=ax 2+bx +c (a ≠0),∵g (1)=1,g (-1)=5,且图象过原点,∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3,b =-2,c =0,∴g (x )=3x 2-2x ,故选B.4.(2015·陕西)设f (x )=⎩⎨⎧1-x ,x ≥0,2x,x <0,则f (f (-2))等于( )A .-1 B.14 C.12 D.32答案 C解析 ∵f (-2)=2-2=14>0,则f (f (-2))=f ⎝ ⎛⎭⎪⎫14=1-14=1-12=12,故选C. 5.(2016·余杭六校联考)已知函数f (x )=x |x |,若f (x 0)=4,则x 0的值为( ) A .-2 B .2 C .-2或2 D. 2答案 B解析 当x ≥0时,f (x )=x 2,f (x 0)=4, 即x 20=4,解得x 0=2.当x <0时,f (x )=-x 2,f (x 0)=4, 即-x 20=4,无解,所以x 0=2, 故选B.*6.(2016·嘉兴期末)已知f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是( )A .(-∞,-1]B .(-1,12)C .[-1,12) D .(0,12) 答案 C解析 要使函数f (x )的值域为R ,需使⎩⎪⎨⎪⎧ 1-2a >0,ln 1≤1-2a +3a ,∴⎩⎪⎨⎪⎧ a <12,a ≥-1,∴-1≤a <12. 即a 的取值范围是[-1,12). 7.(2016·济南模拟)已知函数f (1-x 1+x)=x ,则f (2)=________. 答案 -13解析 令t =1-x 1+x ,则x =1-t 1+t, ∴f (t )=1-t 1+t ,即f (x )=1-x 1+x, ∴f (2)=1-21+2=-13. 8.(2017·金华十校调研)已知函数f (x )=⎩⎪⎨⎪⎧ 3x -1,x ≤1,f x -,x >1,则f (f (2))=________,值域为______.答案 2 (-1,2]解析 ∵f (2)=f (1)=2,∴f [f (2)]=f (2)=2.又x >1时,f (x )=f (x -1),∴f (x )的值域即为x ≤1时函数值的范围.又x ≤1时,-1<3x -1≤2,故f (x )的值域为(-1,2].9.(2015·浙江)已知函数f (x )=⎩⎪⎨⎪⎧ x +2x-3,x ≥1,x 2+,x <1,则f (f (-3))=________,f (x )的最小值是________.答案 0 22-3解析 ∵f (-3)=lg[(-3)2+1]=lg 10=1,∴f (f (-3))=f (1)=0,当x ≥1时,f (x )=x +2x -3≥22-3,当且仅当x =2时,取等号,此时f (x )min =22-3<0;当x <1时,f (x )=lg(x 2+1)≥lg 1=0,当且仅当x =0时,取等号,此时f (x )min =0.∴f (x )的最小值为22-3. *10.具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧ x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是________.答案 ①③解析 对于①,f (x )=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x-x =-f (x ),满足; 对于②,f ⎝ ⎛⎭⎪⎫1x =1x+x =f (x ),不满足; 对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧ 1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1, 故f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足. 综上可知,满足“倒负”变换的函数是①③.11.已知f (x )=⎩⎪⎨⎪⎧ f x +,-2<x <0,2x +1,0≤x <2,x 2-1,x ≥2.(1)求f (-32)的值; (2)若f (a )=4且a >0,求实数a 的值.解 (1)由题意,得f (-32)=f (-32+1)=f (-12) =f (-12+1)=f (12)=2×12+1=2. (2)当0<a <2时,由f (a )=2a +1=4,得a =32, 当a ≥2时,由f (a )=a 2-1=4,得a =5或a =-5(舍去).综上所述,a =32或a = 5. 12.若函数f (x )=x 2-1x 2+1. (1)求f 2f 12的值;(2)求f (3)+f (4)+…+f (2 017)+f (13)+f (14)+…+f (12 017)的值. 解 (1)∵f (2)=35,f (12)=-35, ∴f 2f 12=-1.(2)∵f (1x )=1x 2-11x 2+1=1-x 2x 2+1=-f (x ), ∴f (3)+f (13)=0,f (4)+f (14)=0,…,f (2 017)+f (12 017)=0, 故f (3)+f (4)+…+f (2 017)+f (13)+f (14)+…+f (12 017)=0. 13.(2016·嘉兴期末)已知函数f (x )=x 2+mx +n (m ,n ∈R ),f (0)=f (1),且方程x =f (x )有两个相等的实数根.(1)求函数f (x )的解析式;(2)当x ∈[0,3]时,求函数f (x )的值域.解 (1)∵f (x )=x 2+mx +n 且f (0)=f (1),∴n =1+m +n ,∴m =-1,∴f (x )=x 2-x +n .∵方程x =f (x )有两个相等的实数根,∴方程x =x 2-x +n 有两个相等的实数根,即方程x 2-2x +n =0有两个相等的实数根,∴(-2)2-4n =0,∴n =1.∴f (x )=x 2-x +1.(2)由(1),知f (x )=x 2-x +1.此函数的图象是开口向上,对称轴为直线x =12的抛物线,∴当x =12时,f (x )有最小值f (12). ∴f (12)=(12)2-12+1=34,∵f (0)=1,f (3)=32-3+1=7,∴当x ∈[0,3]时,函数f (x )的值域是[34,7].。

2018版高考数学文理通用新课标一轮复习教师用书:第二

2018版高考数学文理通用新课标一轮复习教师用书:第二

第二章⎪⎪⎪函数的概念与基本初等函数Ⅰ 第一节 函数及其表示突破点(一) 函数的定义域1.函数与映射的概念(1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.本节主要包括3个知识点:1.函数的定义域;2.函数的表示方法;分段函数.(1)分式函数中分母不等于零.(2)偶次根式函数的被开方式大于或等于0. (3)一次函数、二次函数的定义域均为R. (4)y =x 0的定义域是{x |x ≠0}.(5)y =a x (a >0且a ≠1),y =sin x ,y =cos x 的定义域均为R. (6)y =log a x (a >0且a ≠1)的定义域为(0,+∞). (7)y =tan x 的定义域为⎩⎨⎧ x ⎪⎪⎭⎬⎫x ≠k π+π2,k ∈Z .[例1] y =x -12x-log 2(4-x 2)的定义域是( ) A .(-2,0)∪(1,2) B .(-2,0]∪(1,2) C .(-2,0)∪[1,2)D .[-2,0]∪[1,2][解析] 要使函数有意义,必须⎩⎪⎨⎪⎧x -12x≥0,x ≠0,4-x 2>0,∴x ∈(-2,0)∪[1,2).即函数的定义域是(-2,0)∪[1,2). [答案] C [易错提醒](1)不要对解析式进行化简变形,以免定义域发生变化.(2)当一个函数由有限个基本初等函数的和、差、积、商的形式构成时,定义域一般是各个基本初等函数定义域的交集.(3)定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.求抽象函数的定义域对于抽象函数定义域的求解(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. [例2] 若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域为________.[解析] 由题意得,⎩⎪⎨⎪⎧x -1≠0,0≤2x ≤2,解得0≤x <1,即g (x )的定义域是[0,1).[答案] [0,1)[易错提醒]函数f [g (x )]的定义域指的是x 的取值范围,而不是g (x )的取值范围.已知函数定义域求参数[例3] (2017·杭州模拟)若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是( )A .[0,4)B .(0,4)C .[4,+∞)D .[0,4][解析] 由题意可得mx 2+mx +1≥0恒成立. 当m =0时,1≥0恒成立;当m ≠0时,则⎩⎪⎨⎪⎧m >0,Δ=m 2-4m ≤0,解得0<m ≤4. 综上可得:0≤m ≤4. [答案] D[方法技巧]已知函数定义域求参数的思想方法已知函数的定义域,逆向求解函数中参数的取值,需运用分类讨论以及转化与化归的思想方法.转化与化归的思想方法是通过某种转化过程,将一个难以解决的问题转化为一个已经解决或者比较容易解决的问题,从而获解.基础联通 抓主干知识的“源”与“流” 1.[考点一]函数y =x ln(2-x )的定义域为( ) A .(0,2) B .[0,2) C .(0,1]D .[0,2]解析:选B 由题意知,x ≥0且2-x >0,解得0≤x <2,故其定义域是[0,2). 2.[考点一](2017·青岛模拟)函数y =1-x 22x 2-3x -2的定义域为( )A .(-∞,1]B .[-1,1]C .[1,2)∪(2,+∞)D.⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1 解析:选D 由题意得⎩⎪⎨⎪⎧1-x 2≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧-1≤x ≤1,x ≠2且x ≠-12,即-1≤x ≤1且x ≠-12, 所以函数的定义域为⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1.故选D. 3.[考点一]函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为________.解析:由题意得⎩⎪⎨⎪⎧ 1-|x -1|≥0,a x -1≠0,解得⎩⎪⎨⎪⎧0≤x ≤2,x ≠0,即0<x ≤2,故所求函数的定义域为(0,2].答案:(0,2]4.[考点二]已知函数y =f (x 2-1)的定义域为[-3, 3 ],则函数y =f (x )的定义域为________.解析:∵y =f (x 2-1)的定义域为[-3, 3 ],∴x ∈[-3, 3 ],x 2-1∈[-1,2],∴y =f (x )的定义域为[-1,2].答案:[-1,2]5.[考点三]若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________. 解析:函数f (x )的定义域是不等式ax 2+abx +b ≥0的解集.不等式ax 2+abx +b ≥0的解集为{x |1≤x ≤2},所以⎩⎪⎨⎪⎧a <0,1+2=-b ,1×2=b a,解得⎩⎪⎨⎪⎧a =-32,b =-3,所以a +b =-32-3=-92.答案:-92突破点(二) 函数的表示方法1.函数的表示方法函数的表示方法有三种,分别为解析法、列表法和图象法.同一个函数可以用不同的方法表示.2.应用三种方法表示函数的注意事项(1)解析法:一般情况下,必须注明函数的定义域;(2)列表法:选取的自变量要有代表性,应能反映定义域的特征;(3)图象法:注意定义域对图象的影响.与x 轴垂直的直线与其最多有一个公共点. 3.函数的三种表示方法的优缺点[典例] (1)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为( )A .y =12x 3-12x 2-xB .y =12x 3+12x 2-3xC .y =14x 3-xD .y =14x 3+12x 2-2x(2)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.(3)(2017·合肥模拟)已知f (x )的定义域为{x |x ≠0},满足3f (x )+5f ⎝⎛⎭⎫1x =3x +1,则函数f (x )的解析式为________.[解析] (1)设该函数解析式为f (x )=ax 3+bx 2+cx +d ,则f ′(x )=3ax 2+2bx +c , 由题意知⎩⎪⎨⎪⎧f (0)=d =0,f (2)=8a +4b +2c +d =0,f ′(0)=c =-1,f ′(2)=12a +4b +c =3,解得⎩⎪⎨⎪⎧a =12,b =-12,c =-1,d =0,∴f (x )=12x 3-12x 2-x .(2)∵-1≤x ≤0,∴0≤x +1≤1,∴f (x )=12f (x +1)=12(x +1)[1-(x +1)]=-12x (x +1).故当-1≤x ≤0时,f (x )=-12x (x +1).(3)用1x 代替3f (x )+5f ⎝⎛⎭⎫1x =3x +1中的x ,得3f ⎝⎛⎭⎫1x +5f (x )=3x +1, ∴⎩⎨⎧3f (x )+5f ⎝⎛⎭⎫1x =3x +1, ①3f ⎝⎛⎭⎫1x +5f (x )=3x +1, ②①×3-②×5得f (x )=1516x -916x +18(x ≠0).[答案] (1)A (2)-12x (x +1) (3)f (x )=1516x -916x +18(x ≠0)[易错提醒]在求解析式时,一定要注意自变量的范围,也就是定义域.如已知f (x )=x +1,求函数f (x )的解析式,通过换元的方法可得f (x )=x 2+1,函数f (x )的定义域是[0,+∞),而不是(-∞,+∞).1.已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝⎛⎭⎫1x x -1,则f (x )=________. 解析:在f (x )=2f ⎝⎛⎭⎫1x x -1中,用1x 代替x ,得f ⎝⎛⎭⎫1x =2f (x )1x -1,将f ⎝⎛⎭⎫1x =2f (x )1x -1代入f (x )=2f ⎝⎛⎭⎫1x x -1中,求得f (x )=23x +13(x >0). 答案:23x +13(x >0) 2.函数f (x )满足2f (x )+f (-x )=2x ,则f (x )=________.解析:由题意知⎩⎪⎨⎪⎧2f (x )+f (-x )=2x ,2f (-x )+f (x )=-2x ,解得f (x )=2x . 答案:2x3.已知f (x +1)=x +2x ,求f (x )的解析式. 解:设t =x +1,则x =(t -1)2,t ≥1,代入原式有 f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1,x ≥1.4.已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x )的解析式. 解:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R.5.已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式. 解:由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2.突破点(三) 分段函数基础联通 抓主干知识的“源”与“流”1.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.2.分段函数的相关结论(1)分段函数虽由几个部分组成,但它表示的是一个函数.(2)分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集. 考点贯通 抓高考命题的“形”与“神”分段函数求值[例1] (1)设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))=( )A .-1 B.14 C.12D.32(2)(2017·张掖高三模拟)已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x ,x ≥4,f (x +1),x <4,则f (1+log 25)的值为( ) A.14 B.⎝⎛⎭⎫12 21log 5+ C.12D.120[解析] (1)因为f (-2)=2-2=14,所以f (f (-2))=f ⎝⎛⎭⎫14=1- 14=12,故选C. (2)因为2<log 25<3,所以3<1+log 25<4,则4<2+log 25<5,则f (1+log 25)=f (1+log 25+1)=f (2+log 25)=⎝⎛⎭⎫12 22log 5+=14×⎝⎛⎭⎫12 2log 5=14×15=120,故选D. [答案] (1)C (2)D [方法技巧]分段函数求值的解题思路求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.求参数或自变量的值或范围[例2] (1)(2017·西安模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,x 2,x ≤0,若f (4)=2f (a ),则实数a 的值为( )A .-1或2B .2C .-1D .-2(2)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.[解析] (1)f (4)=log 24=2,因而2f (a )=2,即f (a )=1,当a >0时,f (a )=log 2a =1,因而a =2,当a ≤0时,f (a )=a 2=1,因而a =-1,故选A.(2)当x <1时,由e x -1≤2得x ≤1+ln 2,∴x <1;当x ≥1时,由x 13≤2得x ≤8,∴1≤x ≤8.综上,符合题意的x 的取值范围是x ≤8.[答案] (1)A (2)(-∞,8][方法技巧]求分段函数自变量的值或范围的方法求某条件下自变量的值或范围,先假设所求的值或范围在分段函数定义区间的各段上,然后求出相应自变量的值或范围,切记代入检验,看所求的自变量的值或范围是否满足相应各段自变量的取值范围.能力练通 抓应用体验的“得”与“失”1.[考点一]已知函数f (x )=⎩⎪⎨⎪⎧1-2x,x ≤0,x 2,x >0,则f (f (-1))=( )A .2B .1 C.14D.12解析:选C 由题意得f (-1)=1-2-1=12,则f (f (-1))=f ⎝⎛⎭⎫12=⎝⎛⎭⎫122=14. 2.[考点一]已知f (x )=⎩⎨⎧3sin πx ,x ≤0,f (x -1)+1,x >0,则f ⎝⎛⎭⎫23的值为( ) A.12B .-12C .1D .-1解析:选B f ⎝⎛⎭⎫23=f ⎝⎛⎭⎫-13+1=3sin ⎝⎛⎭⎫-π3+1=-12. 3.[考点一]已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0,且f (0)=2,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3解析:选B 由题意得f (0)=a 0+b =1+b =2, 解得b =1.f (-1)=a -1+b =a -1+1=3,解得a =12.则f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,故f (-3)=⎝⎛⎭⎫12-3+1=9, 从而f (f (-3))=f (9)=log 39=2.4.[考点二]设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x , x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎡⎦⎤23,1 B .[0,1] C.⎣⎡⎭⎫23,+∞ D .[1,+∞)解析:选C 由f (f (a ))=2f (a )得,f (a )≥1. 当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1. 综上,a ≥23,故选C.5.[考点二]已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≥0,3x 2,x <0,且f (x 0)=3,则实数x 0的值为________.解析:由条件可知,当x 0≥0时,f (x 0)=2x 0+1=3,所以x 0=1;当x 0<0时,f (x 0)=3x 20=3,所以x 0=-1.所以实数x 0的值为-1或1.答案:-1或16.[考点二]已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________.解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1, 解得-4≤x ≤0或0<x ≤2,故x 的取值范围是[-4,2]. 答案:[-4,2][全国卷5年真题集中演练——明规律] 1.(2016·全国甲卷)下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x解析:选D 函数y =10lg x 的定义域与值域均为(0,+∞). 函数y =x 的定义域与值域均为(-∞,+∞).函数y =lg x 的定义域为(0,+∞),值域为(-∞,+∞). 函数y =2x 的定义域为(-∞,+∞),值域为(0,+∞). 函数y =1x的定义域与值域均为(0,+∞).故选D. 2.(2015·新课标全国卷Ⅱ)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12解析:选C ∵-2<1,∴f (-2)=1+log 2(2+2)=1+log 24=1+2=3.∵log 212>1,∴f (log 212)=2log 212-1=122=6.∴f (-2)+f (log 212)=3+6=9.3.(2015·新课标全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-14解析:选A 由于f (a )=-3,①若a ≤1,则2a -1-2=-3,整理得2a -1=-1.由于2x >0,所以2a -1=-1无解;②若a >1,则-log 2(a +1)=-3,解得a =7,所以f (6-a )=f (-1)=2-1-1-2=-74.综上所述,f (6-a )=-74.4.(2013·新课标全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1)C .[-2,1]D .[-2,0]解析:选D y =|f (x )|的图象如图所示,y =ax 为过原点的一条直线,当|f (x )|≥ax 时,必有k ≤a ≤0,其中k 是y =x 2-2x (x ≤0)在原点处的切线的斜率,显然,k =-2.所以a 的取值范围是[-2,0].[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.下列图象可以表示以M ={x |0≤x ≤1}为定义域,以N ={y |0≤y ≤1}为值域的函数的是( )解析:选C A 选项中的值域不对,B 选项中的定义域错误,D 选项不是函数的图象,由函数的定义可知选项C 正确.2.若函数f (x +1)的定义域为[0,1],则f (2x -2)的定义域为( ) A .[0,1] B .[log 23,2] C .[1,log 23]D .[1,2]解析:选B ∵f (x +1)的定义域为[0,1],即0≤x ≤1,∴1≤x +1≤2.∵f (x +1)与f (2x -2)是同一个对应关系f ,∴2x -2与x +1的取值范围相同,即1≤2x -2≤2,也就是3≤2x ≤4,解得log 23≤x ≤2.∴函数f (2x -2)的定义域为[log 23,2].3.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2xD .g (x )=-3x 2-2x解析:选B 设g (x )=ax 2+bx +c (a ≠0),∵g (1)=1,g (-1)=5,且图象过原点,∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3,b =-2,c =0,∴g (x )=3x 2-2x .4.若函数f (x )=2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.解析:因为函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥20,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0.答案:[-1,0]5.设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x ,x ≥1.若f ⎝⎛⎭⎫f ⎝⎛⎭⎫56=4,则b =________. 解析:f ⎝⎛⎭⎫56=3×56-b =52-b ,若52-b <1,即b >32,则3×⎝⎛⎭⎫52-b -b =152-4b =4,解得b =78,不符合题意,舍去;若52-b ≥1,即b ≤32,则252-b =4,解得b =12.答案:12[练常考题点——检验高考能力]一、选择题1.函数f (x )=10+9x -x 2lg (x -1)的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10]解析:选D 要使函数f (x )有意义,则x 须满足⎩⎪⎨⎪⎧10+9x -x 2≥0,x -1>0,lg (x -1)≠0,即⎩⎪⎨⎪⎧(x +1)(x -10)≤0,x >1,x ≠2,解得1<x ≤10,且x ≠2,所以函数f (x )的定义域为(1,2)∪(2,10].2.已知f (x )=⎩⎪⎨⎪⎧-cos πx ,x >0,f (x +1)+1,x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于( ) A .1 B .2 C .3 D .-2解析:选C f ⎝⎛⎭⎫43=-cos 4π3=cos π3=12;f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13+1=f ⎝⎛⎭⎫23+2=-cos 2π3+2=12+2=52.故f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=3. 3.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (1)=( ) A .2 B .0 C .1D .-1解析:选A 令x =1,得2f (1)-f (-1)=4,① 令x =-1,得2f (-1)-f (1)=-2, ② 联立①②得f (1)=2.4.(2017·贵阳检测)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx ,x <a ,ca ,x ≥a ,(a ,c 为常数).已知工人组装第4件产品用时30分钟,组装第a 件产品用时15分钟,那么c 和a 的值分别是( )A .75,25B .75,16C .60,25D .60,16 解析:选D 因为组装第a 件产品用时15分钟, 所以ca=15,① 所以必有4<a ,且c 4=c2=30.② 联立①②解得c =60,a =16.5.设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则( )A .|x |=x |sgn x |B .|x |=x sgn|x |C .|x |=|x |sgn xD .|x |=x sgn x解析:选D 当x <0时,|x |=-x ,x |sgn x |=x ,x sgn|x |=x ,|x |sgn x =(-x )·(-1)=x ,排除A ,B ,C ,故选D.6.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足“倒负”变换;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足“倒负”变换;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足“倒负”变换.综上可知,满足“倒负”变换的函数是①③.二、填空题7.已知函数f (x )对任意的x ∈R ,f (x +1 001)=2f (x )+1,已知f (15)=1,则f (2 017)=________.解析:根据题意,f (2 017)=f (1 016+1 001)=2f (1 016)+1,f (1 016)=f (15+1 001)=2f (15)+1,而f (15)=1,所以f (1 016)=21+1=1,则f (2 017)=2f (1 016)+1=21+1=1.答案:18.(2017· 绵阳诊断)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析:当a >0时,1-a <1,1+a >1,此时f (1-a )=2(1-a )+a =2-a ,f (1+a )=-(1+a )-2a =-1-3a .由f (1-a )=f (1+a )得2-a =-1-3a ,解得a =-32,不合题意,舍去.当a <0时,1-a >1,1+a <1,此时f (1-a )=-(1-a )-2a =-1-a ,f (1+a )=2(1+a )+a =2+3a ,由f (1-a )=f (1+a )得-1-a =2+3a ,解得a =-34.综上可知,a 的值为-34.答案:-349.已知函数f (x )满足对任意的x ∈R 都有f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2成立,则f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫28+…+f ⎝⎛⎭⎫78=________.解析:由f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2,得f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫78=2,f ⎝⎛⎭⎫28+f ⎝⎛⎭⎫68=2,f ⎝⎛⎭⎫38+f ⎝⎛⎭⎫58=2,又f ⎝⎛⎭⎫48=12⎣⎡⎦⎤f ⎝⎛⎭⎫48+f ⎝⎛⎭⎫48=12×2=1,∴f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫28+…+f ⎝⎛⎭⎫78=2×3+1=7. 答案:710.定义函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则不等式(x +1)f (x )>2的解集是________.解析:①当x >0时,f (x )=1,不等式的解集为{x |x >1};②当x =0时,f (x )=0,不等式无解;③当x <0时,f (x )=-1,不等式的解集为{x |x <-3}.所以不等式(x +1)·f (x )>2的解集为{x |x <-3或x >1}.答案:{x |x <-3或x >1} 三、解答题11.已知函数f (x )对任意实数x 均有f (x )=-2f (x +1),且f (x )在区间[0,1]上有解析式f (x )=x 2.(1)求f (-1),f (1.5);(2)写出f (x )在区间[-2,2]上的解析式.解:(1)由题意知f (-1)=-2f (-1+1)=-2f (0)=0, f (1.5)=f (1+0.5)=-12f (0.5)=-12×14=-18.(2)当x ∈[0,1]时,f (x )=x 2;当x ∈(1,2]时,x -1∈(0,1],f (x )=-12f (x -1)=-12(x -1)2;当x ∈[-1,0)时,x +1∈[0,1),f (x )=-2f (x +1)=-2(x +1)2;当x ∈[-2,-1)时,x +1∈[-1,0),f (x )=-2f (x +1)=-2×[-2(x +1+1)2]=4(x +2)2.所以f (x )=⎩⎪⎨⎪⎧4(x +2)2,x ∈[-2,-1),-2(x +1)2,x ∈[-1,0),x 2,x ∈[0,1],-12(x -1)2,x ∈(1,2].12.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx+n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数解析式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.解:(1)由题意及函数图象,得⎩⎨⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x 100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0,∴0≤x ≤70.故行驶的最大速度是70千米/时.第二节函数的单调性与最值本节主要包括2个知识点:1.函数的单调性;函数的最值.突破点(一)函数的单调性1.单调函数的定义2.单调区间的定义若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.1.复合函数单调性的规则若两个简单函数的单调性相同,则它们的复合函数为增函数;若两个简单函数的单调性相反,则它们的复合函数为减函数.即“同增异减”.2.函数单调性的性质(1)若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数,更进一步,即增+增=增,增-减=增,减+减=减,减-增=减;(2)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (3)在公共定义域内,函数y =f (x )(f (x )≠0)与y =-f (x ),y =1f (x )单调性相反;(4)在公共定义域内,函数y =f (x )(f (x )≥0)与y =f (x )单调性相同;(5)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反.[例1] (1)下列四个函数中,在(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |(2)已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为( ) A .(-∞,1] B .[3,+∞) C .(-∞,-1]D .[1,+∞)[解析] (1)当x >0时,f (x )=3-x 为减函数; 当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数; 当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数. (2)设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3. 所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f (x )的单调递增区间为[3,+∞). [答案] (1)C (2)B [易错提醒](1)单调区间是定义域的子集,故求单调区间时应树立“定义域优先”的原则.(2)单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分开写,不能用并集符号“∪”连接,也不能用“或”连接.(3)函数的单调性是函数在某个区间上的“整体”性质,所以不能仅仅根据某个区间内的两个特殊变量x 1,x 2对应的函数值的大小就判断函数在该区间的单调性,必须保证这两个变量是区间内的任意两个自变量.函数单调性的应用应用(一) 比较函数值或自变量的大小[例2] 已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c[解析] 由f (x )的图象关于直线x =1对称,可得f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.由x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.∵1<2<52<e ,∴f (2)>f ⎝⎛⎭⎫52>f (e),∴b >a >c . [答案] D应用(二) 解函数不等式[例3] f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8)[解析] 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x ) 是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.[答案] B [方法技巧]用单调性求解与抽象函数有关不等式的策略(1)在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(2)有时,在不等式一边没有符号“f ”时,需转化为含符号“f ”的形式.如若已知f (a )=0,f (x -b )<0,则f (x -b )<f (a ).应用(三) 求参数的取值范围[例4] (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( )A.⎝⎛⎭⎫-14,+∞ B.⎣⎡⎭⎫-14,+∞C.⎣⎡⎭⎫-14,0 D.⎣⎡⎦⎤-14,0 (2)设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是( )A .(-∞,1]B .[1,4]C .[4,+∞)D .(-∞,1]∪[4,+∞)[解析] (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增, 所以a <0,且-1a ≥4,解得-14≤a <0.综上所述得-14≤a ≤0.(2)作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4,故选D.[答案] (1)D (2)D[易错提醒](1)若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的. (2)对于分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.能力练通 抓应用体验的“得”与“失”1.[考点一]函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2]D .[2,+∞)解析:选A 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象(图略)可知函数的单调减区间是[1,2].2.[考点二·应用(一)]已知函数y =f (x )是R 上的偶函数,当x 1,x 2∈(0,+∞),x 1≠x 2时,都有(x 1-x 2)·[f (x 1)-f (x 2)]<0.设a =ln 1π,b =(ln π)2,c =ln π,则( )A .f (a )>f (b )>f (c )B .f (b )>f (a )>f (c )C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a )解析:选C 由题意可知f (x )在(0,+∞)上是减函数,且f (a )=f (|a |),f (b )=f (|b |),f (c )=f (|c |),又|a |=ln π>1,|b |=(ln π)2>|a |,|c |=12ln π,且0<12ln π<|a |,故|b |>|a |>|c |>0,∴f (|c |)>f (|a |)>f (|b |),即f (c )>f (a )>f (b ).3.[考点二·应用(二)](2017·太原模拟)定义在R 上的奇函数y =f (x )在(0,+∞)上单调递增,且f ⎝⎛⎭⎫12=0,则满足f log 19x >0的x 的集合为________.解析:由题意,y =f (x )为奇函数且f ⎝⎛⎭⎫12=0, 所以f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12=0, 又y =f (x )在(0,+∞)上单调递增,则y =f (x )在(-∞,0)上单调递增, 于是⎩⎪⎨⎪⎧log 19x >0,f log 19x >f ⎝⎛⎭⎫12或⎩⎪⎨⎪⎧log 19x <0,f log 19x >f ⎝⎛⎭⎫-12,即⎩⎪⎨⎪⎧log 19x >0,log 19x >12或⎩⎪⎨⎪⎧log19x <0,log 19x >-12,解得0<x <13或1<x <3.答案:⎝⎛⎭⎫0,13∪(1,3) 4.[考点二·应用(三)]已知f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.解析:由已知条件得f (x )为增函数,∴⎩⎪⎨⎪⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2,∴a 的取值范围是⎣⎡⎭⎫32,2.答案:⎣⎡⎭⎫32,25.[考点一]用定义法讨论函数f (x )=x +ax (a >0)的单调性.解:函数的定义域为{x |x ≠0}.任取x 1,x 2∈{x |x ≠0},且x 1<x 2,则f (x 1)-f (x 2)=x 1+ax 1-x 2-a x 2=(x 1-x 2)(x 1x 2-a )x 1·x 2=(x 1-x 2)⎝⎛⎭⎫1-a x 1x 2. 令x 1=x 2=x 0,1-ax 20=0可得到x 0=±a ,这样就把f (x )的定义域分为(-∞,-a ],[-a ,0),(0,a ],[a ,+∞)四个区间,下面讨论它的单调性.若0<x 1<x 2≤a ,则x 1-x 2<0,0<x 1x 2<a ,所以x 1x 2-a <0.所以f (x 1)-f (x 2)=x 1+ax 1-x 2-a x 2=(x 1-x 2)(x 1x 2-a )x 1·x 2>0,即f (x 1)>f (x 2),所以f (x )在(0,a ]上单调递减. 同理可得,f (x )在[a ,+∞)上单调递增,在(-∞,-a ]上单调递增,在[-a ,0)上单调递减.故函数f (x )在(-∞,-a ]和[a ,+∞)上单调递增,在[-a ,0)和(0,a ]上单调递减.突破点(二) 函数的最值1.函数的最值2.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点处取到.(2)开区间上的“单峰”函数一定存在最大或最小值.1.(1)判断或证明函数的单调性; (2)计算端点处的函数值; (3)确定最大值和最小值.2.分段函数的最值由于分段函数在定义域不同的子区间上对应不同的解析式,因而求其最值的常用方法是先求出分段函数在每一个子区间上的最值,然后取各区间上最大值中的最大者作为分段函数的最大值,各区间上最小值中的最小者作为分段函数的最小值.[典例] (1)函数y =x +x -1的最小值为________. (2)函数y =2x 2-2x +3x 2-x +1的值域为________.(3)函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.[解析] (1)法一:令t =x -1,且t ≥0,则x =t 2+1, ∴原函数变为y =t 2+1+t ,t ≥0. 配方得y =⎝⎛⎭⎫t +122+34, 又∵t ≥0,∴y ≥14+34=1.故函数y =x +x -1的最小值为1.法二:因为函数y =x 和y =x -1在定义域内均为增函数,故函数y =x +x -1在其定义域[1,+∞)内为增函数,所以当x =1时y 取最小值,即y min =1.(2)y =2x 2-2x +3x 2-x +1=2(x 2-x +1)+1x 2-x +1=2+1x 2-x +1=2+1⎝⎛⎭⎫x -122+34. ∵⎝⎛⎭⎫x -122+34≥34,∴2<2+1⎝⎛⎭⎫x -122+34≤2+43=103.故函数的值域为⎝⎛⎦⎤2,103. (3)当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2.[答案] (1)1 (2)⎝⎛⎦⎤2,103 (3)2 [方法技巧] 求函数最值的五种常用方法1.已知a >0,设函数f (x )=2 018x +1+2 0162 018x +1(x ∈[-a ,a ])的最大值为M ,最小值为N ,那么M +N =( )A .2 016B .2 018C .4 032D .4 034解析:选D 由题意得f (x )=2 018x +1+2 0162 018x +1=2 018-22 018x+1.∵y =2 018x +1在[-a ,a ]上是单调递增的,∴f (x )=2 018-22 018x +1在[-a ,a ]上是单调递增的,∴M =f (a ),N =f (-a ),∴M +N =f (a )+f (-a )=4 036-22 018a+1-22 018-a +1=4 034. 2.(2017·贵阳检测)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -2⊕x ,x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数,且1-2=13-2=-1.∴f (x )的最大值为f (2)=23-2=6.3.函数f (x )=⎝⎛⎭⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________.解析:∵y =⎝⎛⎭⎫13x 和y =-log 2(x +2)都是[-1,1]上的减函数,∴f (x )=⎝⎛⎭⎫13x -log 2(x +2)在区间[-1,1]上是减函数,∴函数f (x )在区间[-1,1]上的最大值为f (-1)=3.答案:34.(2017·益阳模拟)已知函数f (x )的值域为⎣⎡⎦⎤38,49,则函数g (x )=f (x )+1-2f (x )的值域为________.解析:∵38≤f (x )≤49,∴13≤1-2f (x )≤12.令t =1-2f (x ),则f (x )=12(1-t 2)⎝⎛⎭⎫13≤t ≤12,令y =g (x ),则y =12(1-t 2)+t ,即y =-12(t -1)2+1⎝⎛⎭⎫13≤t ≤12.∴当t =13时,y 有最小值79;当t =12时,y 有最大值78.∴g (x )的值域为⎣⎡⎦⎤79,78. 答案:⎣⎡⎦⎤79,785.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.解析:依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数,当x >2时,h (x )=3-x 是减函数,则h (x )max =h (2)=1.答案:1[全国卷5年真题集中演练——明规律] 1.(2015·新课标全国卷Ⅱ)设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x的取值范围是( )A.⎝⎛⎭⎫13,1B.⎝⎛⎭⎫-∞,13∪(1,+∞) C.⎝⎛⎭⎫-13,13 D.⎝⎛⎭⎫-∞,-13∪⎝⎛⎭⎫13,+∞ 解析:选A ∵f (-x )=ln(1+|-x |)-11+(-x )2=f (x ),∴函数f (x )为偶函数.∵当x ≥0时,f (x )=ln(1+x )-11+x 2,在(0,+∞)上y =ln(1+x )递增,y =-11+x 2也递增,根据单调性的性质知,f (x )在(0,+∞)上单调递增.综上可知:f (x )>f (2x -1)⇔f (|x |)>f (|2x -1|)⇔|x |>|2x -1|⇔x 2>(2x -1)2⇔3x 2-4x +1<0⇔13<x <1.故选A.2.(2013·新课标全国卷Ⅰ)若函数f (x )=(1-x 2)(x 2+ax +b )的图象关于直线x =-2对称,则f (x )的最大值为________.解析:∵点(1,0),(-1,0)在f (x )的图象上,且图象关于直线x =-2对称, ∴点(-5,0),(-3,0)必在f (x )的图象上.∴⎩⎪⎨⎪⎧f (-5)=(1-25)(25-5a +b )=0,f (-3)=(1-9)(9-3a +b )=0, 即⎩⎪⎨⎪⎧ 5a -b =25,3a -b =9,解得⎩⎪⎨⎪⎧a =8,b =15.∴f (x )=(1-x 2)(x 2+8x +15) =-(x +1)(x -1)(x +3)(x +5) =-(x 2+4x +3)(x 2+4x -5) 令t =x 2+4x =(x +2)2-4≥-4, 则y =-(t +3)(t -5) =-(t 2-2t -15)=-(t -1)2+16.故当t =1时,f (x )max =16. 答案:16[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2) B .y =-x +1 C .y =⎝⎛⎭⎫12xD .y =x +1x解析:选A 函数y =ln(x +2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.2.如果二次函数f (x )=3x 2+2(a -1)x +b 在区间(-∞,1)上是减函数,则( ) A .a =-2 B .a =2 C .a ≤-2D .a ≥2解析:选C 二次函数的对称轴方程为x =-a -13,由题意知-a -13≥1,即a ≤-2. 3.函数y =|x |(1-x )在区间A 上是增函数,那么区间A 是( ) A .(-∞,0) B.⎣⎡⎦⎤0,12 C .[0,+∞) D.⎝⎛⎭⎫12,+∞ 解析:选B y =|x |(1-x )=⎩⎪⎨⎪⎧x (1-x ),x ≥0,-x (1-x ),x <0=⎩⎨⎧-⎝⎛⎭⎫x -122+14,x ≥0,⎝⎛⎭⎫x -122-14,x <0.画出函数的大致图象,如图所示.由图易知函数在⎣⎡⎦⎤0,12上单调递增,故选B.4.函数f (x )=2x -1在[-6,-2]上的最大值是________;最小值是________. 解析:因为f (x )=2x -1在[-6,-2]上是减函数,故当x =-6时,f (x )取最大值-27.当x=-2时,f (x )取最小值-23.答案:-27 -235.已知f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是________.解析:要使函数f (x )的值域为R ,需使⎩⎪⎨⎪⎧1-2a >0,ln 1≤1-2a +3a ,∴⎩⎪⎨⎪⎧a <12,a ≥-1,∴-1≤a <12,即a 的取值范围是⎣⎡⎭⎫-1,12. 答案:⎣⎡⎭⎫-1,12[练常考题点——检验高考能力]一、选择题1.给定函数①y =x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1.其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④解析:选B ①y =x 12在(0,1)上递增;②∵t =x +1在(0,1)上递增,且0<12<1,故y =log12(x +1)在(0,1)上递减;③结合图象(图略)可知y =|x -1|在(0,1)上递减;④∵u =x +1在(0,1)上递增,且2>1,故y =2x+1在(0,1)上递增.故在区间(0,1)上单调递减的函数序号是②③.2.定义在R 上的函数f (x )的图象关于直线x =2对称,且f (x )在(-∞,2)上是增函数,则( )A .f (-1)<f (3)B .f (0)>f (3)C .f (-1)=f (3)D .f (0)=f (3)解析:选A 依题意得f (3)=f (1),且-1<1<2,于是由函数f (x )在(-∞,2)上是增函数得f (-1)<f (1)=f (3).3.函数y =⎝⎛⎭⎫132x 2-3x +1的单调递增区间为( ) A .(1,+∞) B.⎝⎛⎦⎤-∞,34 C.⎝⎛⎭⎫12,+∞ D.⎣⎡⎭⎫34,+∞ 解析:选B 令u =2x 2-3x +1=2⎝⎛⎭⎫x -342-18.因为u =2⎝⎛⎭⎫x -342-18在⎝⎛⎦⎤-∞,34上单调递减,函数y =⎝⎛⎭⎫13u 在R 上单调递减.所以y =⎝⎛⎭⎫132x 2-3x +1在⎝⎛⎦⎤-∞,34上单调递增,即该函数的单调递增区间为⎝⎛⎦⎤-∞,34. 4.已知f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,log a x ,x ≥1是(-∞,+∞)上的减函数,那么a 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫0,13 C.⎣⎡⎭⎫17,13D.⎣⎡⎭⎫17,1解析:选C 当x =1时,log a 1=0,若f (x )为R 上的减函数,则(3a -1)x +4a >0在x <1时恒成立,令g (x )=(3a -1)x +4a ,则必有⎩⎪⎨⎪⎧ 3a -1<0,g (1)≥0,即⎩⎪⎨⎪⎧3a -1<0,3a -1+4a ≥0,解得17≤a <13.此时,log a x 是减函数,符合题意.5.(2017·九江模拟)已知函数f (x )=log 2x +11-x ,若x 1∈(1,2),x 2∈(2,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解析:选B ∵函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0;当x 2∈(2,+∞)时,f (x 2)>f (2)=0,即f (x 1)<0,f (x 2)>0.6.(2017·日照模拟)若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .(0,1]解析:选D ∵f (x )=-x 2+2ax 在[1,2]上是减函数,∴a ≤1,又∵g (x )=ax +1在[1,2]上是减函数,∴a >0,∴0<a ≤1.二、填空题7.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为________.解析:由已知可得⎩⎪⎨⎪⎧a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3.所以实数a 的取值范围为(-3,-1)∪(3,+∞).答案:(-3,-1)∪(3,+∞) 8.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的单调递减区间是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,由函数图象易得函数g (x )的单调递减区间是[0,1).答案:[0,1)9.已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f (x )的最小值是________.解析:当x ≥1时,x +2x-3≥2x ·2x -3=22-3,当且仅当x =2x,即x =2时等号成立,此时f (x )min =22-3<0;当x <1时,lg(x 2+1)≥lg(02+1)=0,此时f (x )min =0.所以f (x )的最小值为22-3.答案:22-310.(2017·豫南名校联考)已知f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是________.解析:作出函数f (x )的图象的草图如图所示,易知函数f (x )在R 上为单调递减函数,所以不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立等价于x +a <2a -x ,即x <a 2在[a ,a +1]上恒成立,所以只需a +1<a2,即a <-2.答案:(-∞,-2) 三、解答题 11.已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 解:(1)证明:任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增.(2)任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ).∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1.综上所述知a 的取值范围是(0,1].12.已知函数f (x )=ax +1a (1-x )(a >0),且f (x )在[0,1]上的最小值为g (a ),求g (a )的最大值.解:f (x )=⎝⎛⎭⎫a -1a x +1a ,当a >1时,a -1a >0,此时f (x )在[0,1]上为增函数,∴g (a )=f (0)=1a ;当0<a <1时,a -1a <0,此时f (x )在[0,1]上为减函数,∴g (a )=f (1)=a ;当a =1时,f (x )=1,此时g (a )=1.∴g (a )=⎩⎪⎨⎪⎧a ,0<a <1,1a ,a ≥1,∴g (a )在(0,1)上为增函数,在[1,+∞)上为减函数,又a =1时,有a =1a=1,∴当a =1时,g (a )取最大值1. 第三节函数的奇偶性及周期性突破点(一) 函数的奇偶性1.函数的奇偶性2.函数奇偶性常用结论(1)如果函数f (x )是偶函数,那么f (x )=f (|x |).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.本节主要包括3个知识点: 1.函数的奇偶性; 2.函数的周期性;函数性质的综合问题.。

高考数学(理)一轮复习课时训练第2章函数的概念与基本初等函数Ⅰ7

高考数学(理)一轮复习课时训练第2章函数的概念与基本初等函数Ⅰ7

【课时训练】第7节 幂函数与二次函数一、选择题 1.(2018湖南长沙模拟)已知函数f (x )=x12,则()A .∃x 0∈R ,使得f (x )<0B .∀x >0, f (x )>0C .∃x 1,x 2∈[0,+∞),使得 f (x 1)-f (x 2)x 1-x 2<0D .∀x 1∈[0,+∞),∃x 2∈[0,+∞),使得f (x 1)>f (x 2) 【答案】B【解析】由题得,f (x )=x ,函数的定义域为[0,+∞),函数的值域为[0,+∞),并且函数是单调递增函数,所以A 不成立,根据单调性可知C 也不成立,而D 中,当x 1=0时,不存在x 2∈[0,+∞),使得f (x 1)>f (x 2),所以D 不成立.故选B.2.(2018黑龙江哈尔滨六中月考)已知α∈⎩⎨⎧⎭⎬⎫-2,-1,-12,12,1,2,则使f (x )=x α为奇函数,且在(0,+∞)上单调递减的α的值的个数是( )A .1B .2C .3D .4【答案】A【解析】由f (x )=x α在(0,+∞)上单调递减,可知αf (x )=x α为奇函数,所以α只能取-1.3.(2018福建六校联考)若幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( )A .-1≤m ≤2B .m =1或m =2C .m =2D .m =1 【答案】B【解析】由幂函数性质可知m2-3m+3=1,∴m=1或m,∴m2-m-2≤0,即-1≤m≤2.∴m=1或m=2.4.(2018天津河东区模拟)若函数f(x)=(1-x2)(x2+ax-5)的图象关于直线x=0对称,则f(x)的最大值是()A.-4 B.4C.4或-4 D.不存在【答案】B【解析】由题意知,函数f(x)是偶函数,则y=x2+ax-5是偶函数,故af(x)=(1-x2)(x2-5)=-x4+6x2-5=-(x2-3)2x2=3时,f(x)取最大值为4.5.(2018广东惠州一模)已知函数f(x)=x2-m是定义在区间[-3-m,m2-m]上的奇函数,则下列成立的是()A.f(m)<f(0) B.f(m)=f(0)C.f(m)>f(0) D.f(m)与f(0)大小不确定【答案】A【解析】因为函数f(x)是奇函数,所以-3-m+m2-m=0,解得m=3或mm=3时,函数f(x)=x-1,定义域不是[-6,6],不合题意;当m=-1时,函数f(x)=x3在定义域[-2,2]上单调递增,又m<0,所以f(m)<f(0).6.(2018湖南岳阳一模)已知函数f(x)=x2+2|x|,若f(-a)+f(a)≤2f(2),则实数a的取值范围是()A.[-2,2]B.(-2,2]C.[-4,2]D.[-4,4]【答案】A【解析】由题意知f(2)=8,则f(-a)+f(a)=2a2+4|a|≤16,解得-2≤a≤2.7.(2018云南大理一模)设函数f(x)=x2-23x+60,g(x)=f(x)+|f(x)|,则g(1)+g(2)+…+g(20)=()A.56 B.112C.0 D.38【答案】B【解析】由二次函数图象的性质可知,当3≤x≤20时,f(x)+|f(x)|=0,∴g(1)+g(2)+…+g(20)=g(1)+g(2)=f(1)+|f(1)|+f(2)+|f(2)|=112.8.(2018河南南阳第一中学联考)已知函数f(x)=(m2-m-1)x4m9-m5-1是幂函数,对任意的x1,x2∈(0,+∞),且x1≠x2,(x1-x2)[f(x1)-f(x2)]a,b∈R,且a+b>0,ab<0,则f(a)+f(b)的值() A.恒大于0 B.恒小于0C.等于0 D.无法判断【答案】A【解析】∵函数f(x)=(m2-m-1)x4m9-m5-1是幂函数,∴m2-m-1=1,解得m=2或mf(x)在第一象限是增函数,当m=2时,指数为4×29-25-1=2 015>0,满足题意,当m=-1时,指数为4×(-1)9-(-1)5-1=-4<0,不满足题意.∴幂函数f(x)=x2 015,它是定义在R上的奇函数,且是增函数.又∵a,b∈R,且a+b>0,∴a>-b,∴f(a)>f(-b)=-f(b),∴f(a)+f(b)>0.故选A.二、填空题9.(2018河南百校联盟质检)若关于x的不等式x2-4x≥m对任意x∈(0,1]恒成立,则m的取值范围为________.【答案】(-∞,-3]【解析】因为函数f(x)=x2-4x在(0,1]上为减函数,所以当x=1时,f(x)m i n=1-4=-3,所以m≤-3.10.(2018四川遂宁零诊)已知点P 1(x 1,2 018)和P 2(x 2,2 018)在二次函数f (x )=ax 2+bx +9的图象上,则f (x 1+x 2)的值为________.【答案】9【解析】依题意得x 1+x 2=-ba ,则f (x 1+x 2)=f ⎝ ⎛⎭⎪⎫-b a =a ⎝ ⎛⎭⎪⎫-b a 2+b ⎝ ⎛⎭⎪⎫-b a +9=9. 11.(2019福建泉州质检).若二次函数f (x )=ax 2-x +b 的最小值为0,则a +4b 的取值范围为________.【答案】[2,+∞)【解析】由已知可得,a >0,且判别式Δ=1-4ab =0,即ab =14,∴a +4b ≥24ab =2,即a +4b 的取值范围为[2,+∞).12.(2018江苏兴化三校联考)已知函数f (x )=x |x -2|在[0,a ]上的值域为[0,1],则实数a 的取值范围是________.【答案】[1,1+2]【解析】函数f (x )=x |x -2|=⎩⎨⎧x 2-2x ,x >2,2x -x 2,x ≤2,则易知f (x )在(-∞,1)上单调递增,在(1,2)上单调递减,在(2,+∞)上单调递增,且过点(0,0),(2,0).因为由2x -x 2=1(x ≤2)解得x =1,由x 2-2x =1(x >2)解得x =1+2,且f (x )在[0,a ]上的值域为[0,1],所以1≤a ≤1+ 2.三、解答题13.(2018杭州模拟)已知函数h (x )=(m 2-5m +1)x m +1为幂函数,且为奇函数.(1)求m 的值;(2)求函数g (x )=h (x )+1-2h (x ),x ∈⎣⎢⎡⎦⎥⎤0,12的值域.【解】(1)∵函数h (x )=(m 2-5m +1)x m +1为幂函数,∴m 2-5m +1=1,解得mh (x )为奇函数,∴m =0.(2)由(1)可知g (x )=x +1-2x ,x ∈⎣⎢⎡⎦⎥⎤0,12,令1-2x =t ,则x=-12t 2+12,t ∈[0,1],∴f (t )=-12t 2+t +12=-12(t -1)2+1∈⎣⎢⎡⎦⎥⎤12,1,故g (x )=h (x )+1-2h (x ),x ∈⎣⎢⎡⎦⎥⎤0,12的值域为⎣⎢⎡⎦⎥⎤12,1.14.(2018四川成都二诊)已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值; (2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围.【解】(1)由已知c =1,a -b +c =0, 且-b2a =-1,解得a =1,b =2. ∴f (x )=(x +1)2.∴F (x )=⎩⎨⎧(x +1)2,x >0,-(x +1)2,x <0.∴F (2)+F (-2)=(2+1)2-(-2+1)2=8.(2)由题意可知, f (x )=x 2+bx ,则原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立.又1x -x 的最小值为0,-1x -x 的最大值为-2, 所以-2≤b ≤b 的取值范围是[-2,0].。

2018版高考数学一轮复习 第二章 函数与基本初等函数I 第7讲 函数图象 理

2018版高考数学一轮复习 第二章 函数与基本初等函数I 第7讲 函数图象 理

第7讲 函数图象一、选择题1.函数y =|x |与y =x 2+1在同一坐标系上的图像为( )解析 因为|x |≤x 2+1,所以函数y =|x |的图像在函数y =x 2+1图像的下方,排除C 、D ,当x →+∞时,x 2+1→|x |,排除B ,故选A. 答案 A2.函数y =11-x 的图象与函数y =2sin πx (-2≤x ≤4)的图象所有交点的横坐标之和等于( ).A .2B .4C .6D .8解析 此题考查函数的图象、两个函数图象的交点及函数的对称性问题.两个函数都是中心对称图形.如上图,两个函数图象都关于点(1,0)成中心对称,两个图象在[-2,4]上共8个公共点,每两个对应交点横坐标之和为2,故所有交点的横坐标之和为8. 答案 D3.已知函数f (x )=⎝ ⎛⎭⎪⎫1e x -tan x ⎝ ⎛⎭⎪⎫-π2<x <π2,若实数x 0是函数y =f (x )的零点,且0<t <x 0,则f (t )的值( ).A .大于1B .大于0C .小于0D .不大于0解析 分别作出函数y =⎝ ⎛⎭⎪⎫1e x 与y =tan x 在区间⎝ ⎛⎭⎪⎫-π2,π2上的图象,得到0<x 0<π2,且在区间(0,x 0)内,函数y =⎝ ⎛⎭⎪⎫1e x的图象位于函数y =tan x 的图象上方,即0<x <x 0时,f (x )>0,则f (t )>0,故选B. 答案 B4.如图,正方形ABCD 的顶点A ⎝ ⎛⎭⎪⎫0,22,B ⎝ ⎛⎭⎪⎫22,0,顶点C 、D 位于第一象限,直线l :x =t (0≤t ≤2)将正方形ABCD 分成两部分,记位于直线l 左侧阴影部分的面积为f (t ),则函数S =f (t )的图象大致是( ).解析 当直线l 从原点平移到点B 时,面积增加得越来越快;当直线l 从点B 平移到点C 时,面积增加得越来越慢.故选C.答案 C5.给出四个函数,分别满足①f (x +y )=f (x )+f (y ), ②g (x +y )=g (x )·g (y ),③h (x ·y )=h (x )+h (y ),④m (x ·y )=m (x )·m (y ).又给出四个函数的图象,那么正确的匹配方案可以是( )A .①甲,②乙,③丙,④丁B .①乙,②丙,③甲,④丁C .①丙,②甲,③乙,④丁D .①丁,②甲,③乙,④丙解析 图象甲是一个指数函数的图象,它应满足②;图象乙是一个对数函数的图象,它应满足③;图象丁是y =x 的图象,满足①. 答案 D6.如右图,已知正四棱锥S -ABCD 所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分.记SE =x (0<x <1),截面下面部分的体积为V (x ),则函数y =V (x )的图象大致为( ).解析 (1)当0<x <12时,过E 点的截面为五边形EFGHI (如图1所示),连接FI ,由SC 与该截面垂直知,SC ⊥EF ,SC ⊥EI ,∴EF =EI =SE tan 60°=3x ,SI =2SE =2x ,IH =FG =BI =1-2x ,FI =GH =2AH =2 2x ,∴五边形EFGHI 的面积S =FG ×GH +12FI ×EF 2-⎝ ⎛⎭⎪⎫12FI 2=22x -32x 2,∴V (x )=V C -EFGHI +2V I -BHC =13(22x -32x 2)×CE +2×13×12×1×(1-2x )×22(1-2x )=2x 3-2x 2+26,其图象不可能是一条线段,故排除C ,D. (2)当12≤x <1时, 过E 点的截面为三角形,如图2,设此三角形为△EFG ,则EG =EF =EC tan 60°=3(1-x ),CG =CF =2CE =2(1-x ),三棱锥E -FGC 底面FGC 上的高h =EC sin 45°=22(1-x ), ∴V (x )=13×12CG ·CF ·h =23(1-x )3,∴V ′(x )=-2(1-x )2,又显然V ′(x )=-2(1-x )2在区间⎝ ⎛⎭⎪⎫12,1上单调递增,V ′(x )<0⎝ ⎛⎭⎪⎫x ∈⎝ ⎛⎭⎪⎫12,1,∴函数V (x )=23(1-x )3在区间⎝ ⎛⎭⎪⎫12,1上单调递减,且递减的速率越来越慢,故排除B ,应选A. 答案 A 二、填空题7.函数y =11-x 的图象与函数y =2sin πx (-2≤x ≤4)的图象所有交点的横坐标之和等于________.解析 函数y =11-x =-1x -1和y =2sin πx 的图象有公共的对称中心(1,0),画出二者图象如图所示,易知y =11-x与y =2sin πx (-2≤x ≤4)的图象共有8个交点,不妨设其横坐标为x 1,x 2,x 3,x 4,x 5,x 6,x 7,x 8,且x 1<x 2<x 3<x 4<x 5<x 6<x 7<x 8,由对称性得x 1+x 8=x 2+x 7=x 3+x 6=x 4+x 5=2,∴x 1+x 2+x 3+x 4+x 5+x 6+x 7+x 8=8. 答案 88.使log 2(-x )<x +1成立的x 的取值范围是________.解析 作出函数y =log 2(-x )及y =x +1的图象.其中y =log 2(-x )与y =log 2 x 的图象关于y 轴对称,观察图象(如图所示)知-1<x <0,即x ∈(-1,0).也可把原不等式化为⎩⎪⎨⎪⎧-x >0,-x <2x +1后作图.答案 (-1,0)9.设f (x )表示-x +6和-2x 2+4x +6中较小者,则函数f (x )的最大值是________.解析 在同一坐标系中,作出y =-x +6和y =-2x 2+4x +6的图象如图所示,可观察出当x =0时函数f (x )取得最大值6.答案 6 10.已知函数f(x)=(12)x的图象与函数y=g(x)的图象关于直线y=x 对称,令h(x)=g(1-|x|),则关于h(x)有下列命题: ①h(x)的图象关于原点对称; ②h(x)为偶函数; ③h(x)的最小值为0; ④h(x)在(0,1)上为减函数.其中正确命题的序号为_________.(将你认为正确的命题的序号都填上) 解析 g(x)= 12log x,∴h(x)= 12log (1-|x|),∴h(x)= ()()1212log 1x 1x 0,log 1x 0x 1+-<≤⎧⎪⎨-<<⎪⎩,, 得函数h(x)的大致图象如图,故正确命题序号为②③.答案 ②③ 三、解答题11.讨论方程|1-x |=kx 的实数根的个数.解 设y =|1-x |,y =kx ,则方程的实根的个数就是函数y =|1-x |的图象与y =kx 的图象交点的个数.由右边图象可知:当-1≤k <0时,方程没有实数根; 当k =0或k <-1或k ≥1时,方程只有一个实数根; 当0<k <1时,方程有两个不相等的实数根.12.设函数f (x )=x +1x的图象为C 1,C 1关于点A (2,1)对称的图象为C 2,C 2对应的函数为g (x ).(1)求g (x )的解析式;(2)若直线y =m 与C 2只有一个交点,求m 的值和交点坐标. 解析 (1)设点P (x ,y )是C 2上的任意一点,则P (x ,y )关于点A (2,1)对称的点为P ′(4-x,2-y ), 代入f (x )=x +1x,可得2-y =4-x +14-x ,即y =x -2+1x -4,∴g (x )=x -2+1x -4. (2)由⎩⎪⎨⎪⎧y =m ,y =x -2+1x -4,消去y得x 2-(m +6)x +4m +9=0,Δ=(m +6)2-4(4m +9), ∵直线y =m 与C 2只有一个交点, ∴Δ=0,解得m =0或m =4.当m =0时,经检验合理,交点为(3,0); 当m =4时,经检验合理,交点为(5,4).13.当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,求a 的取值范围. 解 设f1(x )=(x -1)2,f 2(x )=log a x ,要使当x ∈(1,2) 时,不等式(x -1)2<log a x 恒成立,只需f 1(x )=(x -1)2在(1,2)上的图象在f 2(x )=log a x 的下方即可.当0<a <1时,综合函数图象知显然不成立.当a >1时,如图,要使在(1,2)上,f 1(x )=(x -1)2的图象在f 2(x )=log a x 的下方, 只需f 1(2)≤f 2(2),即(2-1)2≤log a 2,log a 2≥1, ∴1<a ≤2.∴a 的取值范围是(1,2]14.已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0. (1)求实数m 的值;(2)作出函数f (x )的图象并判断其零点个数; (3)根据图象指出f (x )的单调递减区间; (4)根据图象写出不等式f (x )>0的解集;(5)求集合M ={m |使方程f (x )=m 有三个不相等的实根}. 解 (1)∵f (4)=0,∴4|m -4|=0,即m =4.(2)∵f (x )=x |m -x |=x |4-x |=⎩⎪⎨⎪⎧x x -,x ≥4,-x x -,x <4.∴函数f (x )的图象如图:由图象知f (x )有两个零点.(3)从图象上观察可知:f (x )的单调递减区间为[2,4]. (4)从图象上观察可知:不等式f (x )>0的解集为:{x |0<x <4或x >4}.(5)由图象可知若y =f (x )与y =m 的图象有三个不同的交点,则0<m <4,∴集合M ={m |0<m <4}.。

高考数学知识点总结 第二章函数概念与基本初等函数

高考数学知识点总结 第二章函数概念与基本初等函数

第二章函数概念与基本初等函数知识点与方法1.函数解析式的求法主要有换元法和待定系数法等:利用函数的解析式研究问题时要特别注意分析自变量x与函数值y的关系,尤其要注意分段函数各段的自变量所对ƒ的解析式.已知函数解析式,计算有限个函数值的和.fl类问题一般都具有明显的规律,或者函数具有周期性,或者函数具有对称性(自变量具有某种关系,其函数值和fi定值).如£(x)=,求+的值(这$£(x)+£(1—x)=).².确定函数定义域的基本原则.(1)分式函数y=中,满足分母g(x)≠0.(²)偶次式y=(n∈N*)中,满足被开方式£(x)≥0.(3)对数函数y=log£(x)g(x)中,满足且£(x)≠1.(4)幂函数y=[£(x)]0中,满足£(x)≠0.(±)fl切函数y=tanx中,满足x≠kπ+(k∈Z).(6)在实际问题中考虑自变量的实际意义.3.函数值域(最值)的求法.(1)二次型函数——配方法.(²)©曲函数——均值н等式.(3)利用换元法转化fi二次型函数或©曲函数.(4)函数单调性法.(±)导数法.对于н等式恒成立、fl在性问题h要通过求函数最值的方法解决.4.判断函数单调性的方法.(1)定义法:一般地,设函数y=£(x)的定义域fiA,区间W⊆A,∀x1,x²∈W,(x1—x²)[£(x1)—£(x²)]>0⇔>0⇔£(x)在区间W L是增函数.若£(x)在区间W L fi增函数,x1, x²∈W,则有x1<x²⇔£(x1)<£(x²),减函数有类似结论.(注意:在涉þ到н等式的求解、证明等有关问题时可以考虑构造函数,利用函数单调性求解).(²)用已知函数单调性判断(下列函数都在¿共单调区间L): ķ增函数+增函数=增函数:ĸ减函数+减函数=减函数:③复合函数单调性:④奇(偶)函数在对称区间L的单调性相¼(相反).(3)借助图像判断函数单调性.(4)导数法:对可导函数£(x),x∈(a,b ),£′(x)≥0⇔£(x)在(a,b)L是增函数:£′(x)≤0⇔£(x)在(a,b)L 是减函数(其中导致导数fi0的点是孤立的).±.函数的奇偶性.(1)判定函数奇偶性的方法.函数具有奇偶性的必要条fl是定义域fi 关于原点对称的区间.判断函数奇偶性首先确定函数定义域.ķ定义法:∀x∈D£,£(x)±£(—x)=0: ĸ用已知函数奇偶性判定:(i)奇±奇=奇:偶±偶=偶:奇±偶=非奇非偶(非零函数): 奇×偶=奇:奇×奇=偶:偶×偶=偶.(ii)复合函数奇偶性,内偶则偶,两奇fi奇.③借助图像确定奇偶性.(²)奇偶函数的性质.ķ定义域含0的奇函数图像必过原点: ĸ奇函数若fl在最大(小)值,则它们的和fi0:③£(x)是偶函数,则有£(—x)=£(x)=£(|x|):④既奇又偶的函数的解析式必fi£(x)=0:⑤对于奇(偶)函数,已知y轴一侧的图像、解析式、单调性,能够确定y轴另一侧的图像、解析式、单调性.题目中出现x与—x的函数值问题,需考虑函数的奇偶性.(3)奇偶函数性质推广(对称性问题).已知函数£(x),x∈D.ķ满足£(a+x)=£(b—x)⇔£(x)关于直线x=对称, 特别地,£(—x)=£(x)⇔£(x)关于y轴(x=0)对称: ĸ满足£(a+x)=—£(b—x)⇔£(x)关于点,0 对称, 特别地,£(—x)=—£(x)⇔£(x)关于原点(0,0)中心对称:③函数y=£(x)与y=£(—x)的图像关于y轴对称:④函数y=£(x)与y=—£(x)的图像关于x轴对称:⑤函数y=£(a+x)与y=£(b—x)的图像关于x=对称. 6.函数的周期性.(1)定义:已知函数y=£(x),x∈D,若对任意x∈D,fl在非零fl 常数T,满足:ķ£(x+T)=£(x),周期fiT:ĸ£(x+T)=—£(x),周期fi²T:£(x+T)+£(x)=G,周期fi²T:③£(x+T)=±,周期fi²T:£(x+T)·£(x)=G(G≠0),周期FI²T:④£(x+T)=—£(x—T),周期fi4T:⑤£(x+T)+£(x—T)=£(x),周期fi6T.(²)对称性与周期性关系:若函数£(x)具有两个对称性(中心、轴)þ周期性三个性质中的两个,则必定具有第三个性质.例如:ķ若£(x)的图像关于直线x=a和x=b对称(a≠b),则£(x)是周期fi²|a—b|的周期函数.ĸ若£(x)的图像关于点(a,0)和(b,0)对称(a≠b),则£(x)是周期fi²|a—b|的周期函数.③若£(x)的图像关于直线x=aþ点(b,0)对称(a≠b),则£(x)是周期fi4|a—b|的周期函数.7.三个二次(一元二次方程、二次н等式、二次函数)间的问题可相互转化.如二次函数零点是相ƒ二次方程的,二次н等式的求解依赖于二次方程与二次函数的图像等.(1)一元二次方程.ķ判别式,求¿式, 与系数关系:ĸ的分布问题,要由判别式、对称轴、端点值三者确定.例如:(i)二次方程ax²+BX+G=0(A>0)两都大于k⇔(ii)一大于k,一小于k⇔£(k)<0.(²)二次函数的三种表现形式. y=ax²+bx+G=a(x—m)²+n=a (x—x1)(x—x²)(a≠0),其中(m,n)是顶点,x1,x²fi零点.对于限定区间L的二次函数最值要注意对称轴与区间的ƒ置关系.(3)一元二次н等式解法依赖于相ƒ方程与二次函数图像.(4)对于二次函数£(x)=ax²+bx+G,若£(x1 )=£(x²), x1≠x²,则x1+x²=—.8.关于幂、指数、对数函数问题.(1)幂函数£(x)=xα在第一象限的图像如图1—3所示,单调性fi:当α>0时,函数£(x)在(0,+∞)Lfi增函数:当α<0时,函数£(x)在(0,+∞)Lfi减函数.图1-3(²)指数与对数.a b=N⇔b=log a N(a>0,a≠1),a log a N=N,log a a b=b,=,log a m b n=log a b.(3)指数函数y=a x(a>0,a≠1)与对数函数y=log a x(a>0, a≠1).ķ互fi反函数: ĸ定义域、值域之间的关系fl好相反:③单调性:在各自定义域L,当0<a<1时,均fi减函数:当a>1 时,均fi增函数.(4)以各自的䘀算规则fi模型的抽象函数的表示法.ķ幂函数:£(xy)=£(x)£(y),£=(y≠0,£(y)≠0),£(1)=1:ĸ指数函数:£(x+y)=£(x)·£(y),£(x—y)=,£(0)=1:③对数函数:£(x y)=£(x)+£(y),£=£(x)—£(y),£(1)=0.(±)会画y=a|x|,y=log a|x|,y=|log a x|(a>0,a≠1)的图像.9.图像问题.(1)注意以下两个函数图像.ķ形如y=的函数能变fi形如y=n±的函数,其图像是关于点(m,n)对称的反比例函数图像:ĸ形如y=ax+ 的“©曲函数”,若ab>0,则fi“对勾函数”: 若ab<0,则fi单调函数.(²)图像变换.ķᒣ移变换:ĸ伸缩变换:③对称变换:函数y=£(—x)的图像与函数y=£(x)的图像关于y轴对称.函数y=—£(x)的图像与函数y=£(x)的图像关于x轴对称.函数y=—£(—x)的图像与函数y=£(x)的图像关于原点对称.④翻折变换:y=£(|x|)与y=£(x)之间的关系,y=£(x)与y=£(x)之间的关系.(3)研究问题方法.会由图像特征研究函数性质,能用性质描函数图像,养成用图像、性质分析思考问题,即数形结合思想解题的习惯.查漏补缺1. 函数是数集到数集的特殊映射,其对应法则必须满足自变量在定义域内的任意性,函数值的唯一性例8 已知集合A=(1,²,3,…,²3),求证:нfl在这fi的函数£:A→(1,²,3),使得对任意的整数x1,x²∈A,若|x1—x²|∈(1,²,3),则£(x1)≠£(x²).变式1 函数y=£(x)的图像与直线x=a(a∈R)的交点个数fi ().A.0B.1 C.0或 1 D.可多于12. 结合函数图像研究函数性质如图1—4所示,以函数fi核心,其核心内容包括函数的图像与性质,函数的图像包括基本初等函数的图像的作法þ图像变换,函数的性质主要包括函数的定义域、解析式、值域、奇偶性、单调性、周期性, 对称性þ特殊点.函数知识的外延主要体现在函数与方程(函数零点)þ函数与н等式的结合.而函数与方程(函数零点)þ函数与н等式问题可通过转化思想,利用函数图像与性质求解.图1-4例9 关于x的方程(x—a)(x—b)=²(a<b)的两实fiα, β,且α<β,试比较α,β,a,b的大小.变式1 已知函数£(x)=,若£(²—a²)>£(a),则实数a的ᒣ值范围是().(—1,²)A.(—∞,—1)∪(²,+∞) B.C.(—²,1)D.(—∞,—²)∪(1,+∞)3. 已知函数的解析式研究函数的性质给出函数的解析式,常常需要¼学们能够有意识地通过函数的解析式来研究函数的性质,如函数的奇偶性、单调性、周期性þ函数值的分布等,进而解决函数的有关问题.已知函数£(x)=x²—GOSX,对于L的任意x1 ,x²,有如下条fl:ķx1>x²:ĸ>:③|x1|>x²,其中能使£(x1 )>£(x²)恒成立的条fl序号是.4. 构造函数的解析式研究函数的性质看似与函数无关的问题,如果我们能够分析其本质特点,引入变量并根据其模型构造函数,利用函数性质求解.这才是函数的真正魅力例10 若α,β∈,且αsinα—βsinβ>0,则下列结论fl确的是().A.α>βB.α+β>0C.α<βD.α²>β²变式1 比较, ,ln 这三个实数的大小,并说明理由.变式2 比较, , 的大小.。

[推荐学习]2018版高考数学一轮复习第二章函数概念与基本初等函数I2.1函数的概念及其表示法课时作

[推荐学习]2018版高考数学一轮复习第二章函数概念与基本初等函数I2.1函数的概念及其表示法课时作

第二章 函数概念与基本初等函数Ⅰ 第1讲 函数的概念及其表示法基础巩固题组(建议用时:25分钟)1.(2017·扬州中学质检)函数f (x )=log 2(x 2+2x -3)的定义域是________.解析 使函数f (x )有意义需满足x 2+2x -3>0,解得x >1或x <-3,所以f (x )的定义域为(-∞,-3)∪(1,+∞). 答案 (-∞,-3)∪(1,+∞)2.(2017·衡水中学月考)设f ,g 都是由A 到A 的映射,其对应法则如下:映射f 的对应法则则f [g 解析 由映射g 的对应法则,可知g (1)=4, 由映射f 的对应法则,知f (4)=1,故f [g (1)]=1. 答案 13.(2016·江苏卷)函数y =3-2x -x 2的定义域是________.解析 要使函数有意义,则3-2x -x 2≥0, ∴x 2+2x -3≤0,解之得-3≤x ≤1. 答案 [-3,1]4.已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=________.解析 ∵f ⎝ ⎛⎭⎪⎫π4=-tan π4=-1.∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫π4=f (-1)=2×(-1)3=-2. 答案 -25.已知f (x )是一次函数,且f [f (x )]=x +2,则f (x )=________.解析 设f (x )=kx +b (k ≠0),又f [f (x )]=x +2, 得k (kx +b )+b =x +2,即k 2x +kb +b =x +2. ∴k 2=1,且kb +b =2,解得k =b =1. 答案 x +16.(2017·盐城中学一模)f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x x ,log 3x x,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=________.解析 ∵f ⎝ ⎛⎭⎪⎫19=log 319=-2,∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=f (-2)=⎝ ⎛⎭⎪⎫13-2=9. 答案 97.(2016·全国Ⅱ卷改编)在函数①y =x ;②y =lg x ;③y =2x;④y =1x中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的有________(填序号).解析 函数y =10lg x的定义域、值域均为(0,+∞),而y =x ,y =2x的定义域均为R ;y =lg x 的值域为R ,y =1x的定义域和值域为(0,+∞).答案 ④8.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为________(填序号).①y =⎣⎢⎡⎦⎥⎤x 10;②y =⎣⎢⎡⎦⎥⎤x +310;③y =⎣⎢⎡⎦⎥⎤x +410;④y =⎣⎢⎡⎦⎥⎤x +510. 解析 设x =10m +α(0≤α≤9,m ,α∈N ), 当0≤α≤6时,⎣⎢⎡⎦⎥⎤x +310=⎣⎢⎡⎦⎥⎤m +α+310=m =⎣⎢⎡⎦⎥⎤x 10,当6<α≤9时,⎣⎢⎡⎦⎥⎤x +310=⎣⎢⎡⎦⎥⎤m +α+310=m +1=⎣⎢⎡⎦⎥⎤x 10+1. 答案 ②9.(2016·江苏卷)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R .若f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,则f (5a )的值是________.解析 由题意f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-12+a , f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪25-12=110,∴-12+a =110,则a =35,故f (5a )=f (3)=f (-1)=-1+35=-25.答案 -2510.(2017·南师大附中一模)设P (x 0,y 0)是函数f (x )图象上任意一点,且y 20≥x 20,则f (x )的解析式可以是________(填序号).①f (x )=x -1x ;②f (x )=e x-1; ③f (x )=x +4x;④f (x )=tan x .解析 对于①,当x =1,f (1)=0,此时02≥12不成立.对于②,取x =-1,f (-1)=1e -1,此时⎝ ⎛⎭⎪⎫1e -12≥(-1)2不成立.在④中,f ⎝ ⎛⎭⎪⎫54π=tan 54π=1,此时12≥⎝ ⎛⎭⎪⎫54π2不成立.∴①②④均不正确.事实上,在③中,对∀x 0∈R ,y 20=⎝⎛⎭⎪⎫x 0+4x 02有y 20-x 20=16x 20+8>0,有y 20≥x 20成立.答案 ③11.已知函数f (x )满足f ⎝⎛⎭⎪⎫2x +|x |=log 2x |x |,则f (x )的解析式是________.解析 根据题意知x >0,所以f ⎝ ⎛⎭⎪⎫1x =log 2x ,则f (x )=log 21x=-log 2x .答案 f (x )=-log 2 x12.设函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0,|log 2x |,x >0,则使f (x )=12的x 的集合为________.解析 由题意知,若x ≤0,则2x=12,解得x =-1;若x >0,则|log 2x |=12,解得x=212或x =2-12,故x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,2,22. 答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,2,22 能力提升题组(建议用时:10分钟)13.函数f (x )=ln ⎝⎛⎭⎪⎫1+1x +1-x 2的定义域为________.解析 要使函数f (x )有意义,则⎩⎪⎨⎪⎧1+1x>0,x ≠0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,x ≠0,-1≤x ≤1⇒0<x ≤1.∴f (x )的定义域为(0,1]. 答案 (0,1]14.(2015·湖北卷改编)设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0.给出下列四个结论:①|x |=x |sgn x |;②|x |=x sgn|x |;③|x |=|x |sgn x ;④|x |=x sgn x . 其中正确的结论是________(填序号).解析 当x >0时,|x |=x ,sgn x =1,则|x |=x sgn x ; 当x <0时,|x |=-x ,sgn x =-1,则|x |=x sgn x ; 当x =0时,|x |=x =0,sgn x =0,则|x |=x sgn x . 答案 ④15.设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是________.解析 由f (f (a ))=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a≥1,∴a ≥0,∴a ≥1. 综上,a ≥23.答案 ⎣⎢⎡⎭⎪⎫23,+∞ 16.(2015·浙江卷)已知函数f (x )=⎩⎪⎨⎪⎧x +2x-3,x ≥1,x 2+,x <1,则f (f (-3))=________,f (x )的最小值是________.解析 ∵f (-3)=lg[(-3)2+1]=lg 10=1, ∴f (f (-3))=f (1)=0,当x ≥1时,f (x )=x +2x-3≥22-3,当且仅当x =2时,取等号,此时f (x )min =22-3<0;当x <1时,f (x )=lg(x 2+1)≥lg 1=0,当且仅当x =0时,取等号,此时f (x )min =0.∴f (x )的最小值为22-3. 答案 0 22-3。

高考数学大一轮复习第二章函数与基本初等函数Ⅰ第7课函数的奇偶性文

高考数学大一轮复习第二章函数与基本初等函数Ⅰ第7课函数的奇偶性文

第7课 函数的奇偶性(本课时对应学生用书第 页)自主学习 回归教材1.(必修1P43练习6改编)函数f (x )=42-1(-1)x x x 是 函数.(填“奇”、“偶”或“非奇非偶”) 【答案】奇【解析】由题知定义域{x|x ∈R ,且x ≠0,x ≠±1}关于原点对称,且f (-x )=-f (x ),所以f (x )为奇函数.2.(必修1P94习题28改编)设f (x )是定义在R 上的奇函数,且当x>0时,f (x )=2x-3,则f (-2)= . 【答案】-1【解析】f (-2)=-f (2)=-1.3.(必修1P55习题8改编)若函数f (x )=(x+a )(x-4)为偶函数,则实数a= . 【答案】4【解析】因为函数f (x )=(x+a )(x-4)为偶函数,所以f (-x )=f (x ),由f (x )=(x+a )(x-4)=x 2+(a-4)x-4a ,得x 2-(a-4)x-4a=x 2+(a-4)x-4a ,即a-4=0,a=4.4.(必修1P43习题4改编)已知函数f (x )=4x 2+bx+3a+b 是偶函数,其定义域为[a-6,2a ],则点(a ,b )的坐标为 . 【答案】(2,0)【解析】因为f (x )为偶函数且定义域为[a-6,2a ],所以0-(-6)2b a a =⎧⎨=⎩,,即02b a =⎧⎨=⎩,,故点(a ,b )的坐标为(2,0).5.(必修1P111复习题17改编)若函数f(x)是定义在R上的偶函数,且在[0,+∞)上是增函数,f(1)=2,则不等式f(lg x)>2的解集为.【答案】110⎛⎫⎪⎝⎭,∪(10,+∞)【解析】因为f(x)为偶函数,所以由f(lg x)>2⇔f(|lg x|)>2=f(1),又因为f(x)在[0,+∞)上是增函数,所以|lg x|>1,所以0<x<110或x>10,故不等式f(lg x)>2的解集为110⎛⎫⎪⎝⎭,∪(10,+∞).1.奇、偶函数的定义对于函数f(x)定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)+f(x)=0),则称f(x)为奇函数;对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x)(或f(-x)-f(x)=0),则称f(x)为偶函数.2.奇、偶函数的性质(1)具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称).(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.(3)若奇函数的定义域包含0,则f(0)=0.(4)定义在(-∞,+∞)上的任意函数f(x)都可以唯一表示成一个奇函数与一个偶函数之和. 【要点导学】要点导学 各个击破函数奇偶性的判定例1 判断下列各函数的奇偶性.(1)f (x )=32--1x x x ;(2)f (x )(3)f (x )=|x+2|-|x-2|;(4)f (x )=220-0.x x x x x x ⎧+<⎨>⎩,,,【思维引导】先求定义域,看定义域是否关于原点对称,在定义域下,解析式带绝对值符号的,要利用绝对值的意义判断f (-x )与f (x )的关系,分段函数应分情况判断.【解答】(1)定义域是{x|x ≠1},不关于原点对称, 所以f (x )是非奇非偶函数. (2)定义域是{-1,1},f (x )=0, 所以f (x )既是奇函数又是偶函数.(3)定义域是R ,f (-x )=|-x+2|-|-x-2|=-(|x+2|-|x-2|)=-f (x ), 所以f (x )是奇函数. (4)当x<0时,-x>0,则f (-x )=(-x )2-(-x )=x 2+x=f (x ); 当x>0时,-x<0,则f (-x )=(-x )2+(-x )=x 2-x=f (x ).综上所述,对任意的x ∈(-∞,0)∪(0,+∞),都有f (-x )=f (x ),所以f (x )为偶函数. 【精要点评】利用定义判断函数奇偶性的步骤: (1)首先确定函数的定义域,并判断其是否关于原点对称. (2)确定f (-x )与f (x )的关系.(3)作出相应结论:若f (-x )=f (x )或f (-x )-f (x )=0,则f (x )是偶函数;若f (-x )=-f (x )或f (-x )+f (x )=0,则f (x )是奇函数.变式求证:函数f(x)=x112-12x⎛⎫+⎪⎝⎭+a(其中a为常数)为偶函数.【解答】易知此函数的定义域为(-∞,0)∪(0,+∞),关于原点对称.因为f(-x)=-x-112-12x⎛⎫+⎪⎝⎭+a=x212-12xx⎛⎫-⎪⎝⎭+a=x2-111-2-12xx⎛⎫+⎪⎝⎭+a=x112-12x⎛⎫+⎪⎝⎭+a=f(x),所以f(x)=x112-12x⎛⎫+⎪⎝⎭+a为偶函数.【精要点评】函数奇偶性的证明与函数奇偶性的判断的区别在于我们已经知道函数具有奇偶性,从而有了解决问题的方向,只是在对式子的变形上可能要下一定的功夫,特别是对于抽象函数我们还是要牢牢抓住奇偶性的定义找到解决问题的突破口.函数奇偶性的应用例2(1)已知函数f(x)是定义在(-∞,+∞)上的偶函数.当x∈(-∞,0)时,f(x)=x-x4,则当x∈(0,+∞)时,f(x)= .(2)(2014·湖南卷改编)已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)= ,g(1)= .【思维引导】(1)要求f(x)在(0,+∞)上的表达式,由于已知f(x)在(-∞,0)上的表达式,因此解答本题可先设x∈(0,+∞),然后将它转化到已知解析式的区间(-∞,0)上,最后利用函数的奇偶性定义即可得出结论.(2)先利用函数的奇偶性,确定f(x)和g(x)的解析式,然后代值计算.【答案】 (1)-x-x4(2)2-1【解析】(1)当x∈(0,+∞)时,有-x∈(-∞,0),注意到函数f(x)是定义在(-∞,+∞)上的偶函数,于是有f(x)=f(-x)=-x-(-x)4=-x-x4.(2)由题意得f(-x)-g(-x)=-x3+x2+1,因为f(x)是偶函数,g(x)是奇函数,所以f(x)+g(x)=-x3+x2+1,联结f(x)-g(x)=x3+x2+1,解得f(x)=x2+1,g(x)=-x3,所以f(1)=2,g(1)=-1.【精要点评】(1)解决本题第(1)问的关键是利用偶函数的关系式f(-x)=f(x)成立,但要注意求给定哪个区间的解析式就设这个区间上的变量x,然后把x转化为-x(另一个已知区间上的解析式中的变量),通过适当的推导,求出所求区间上的解析式.(2)本题第(2)问也可以直接用赋值法解决,即赋值x=±1,然后利用奇偶性化归为关于f(1)和g(1)的方程组,进行求解.变式(1)设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)= .(2)已知f(x)=223pxx q++是奇函数,且f(2)=53,那么p= ,q= .【答案】 (1)-3(2)20【解析】(1)因为f(x)是定义在R上的奇函数,所以f(0)=20+2×0+b=0,解得b=-1,故当x≥0时,f(x)=2x+2x-1,所以f(-1)=-f(1)=-(2+2×1-1)=-3.(2)因为f(x)是奇函数,所以f(-x)+f(x)=0,即22-3pxx q+++223pxx q++=0,得q=0.又由f(2)=53,得426p+=53,解得p=2.函数奇偶性与单调性的综合应用微课2● 问题提出奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.抽象函数中的不等式问题,核心是去掉抽象函数中的符号“f”,除了画出草图利用数形结合思想求解外,本质是利用奇偶性和单调性.那么,求解此类问题的解题模板是怎样的?● 典型示例例3 已知函数f (x )是定义在R 上的单调函数,且对任意的实数a ∈R ,f (-a )+f (a )=0恒成立,若f (-3)=2.(1)试判断函数f (x )在R 上的单调性,并说明理由;(2)解关于x 的不等式:f-m x x ⎛⎫ ⎪⎝⎭+f (m )<0,其中m ∈R 且m>0. 【思维导图】【规范解答】(1)函数f (x )为R 上的减函数.理由如下:由题知f (x )是R 上的奇函数,所以f (0)=0,又因为f (x )是R 上的单调函数, 由f (-3)=2,f (0)<f (-3),知f (x )为R 上的减函数.(2)由f -m x x ⎛⎫ ⎪⎝⎭+f (m )<0,得f-m x x ⎛⎫⎪⎝⎭<-f (m )=f (-m ), 结合(1)得-m x x >-m ,整理得(1-)-m x mx <0. 当m>1时,不等式的解集为|01-m x x x m ⎧⎫><⎨⎬⎩⎭或; 当m=1时,不等式的解集为{x|x>0};当0<m<1时,不等式的解集为|01-m x x m ⎧⎫<<⎨⎬⎩⎭. 【精要点评】利用函数的单调性解函数不等式要特别注意必须考虑函数的定义域,进而结合函数单调性去求不等式的解集.● 总结归纳奇函数在对称的两个区间上具有相同的单调性,偶函数在对称区间上具有相反的单调性,因此,若函数具有奇偶性,研究单调性、最值或作图象等问题时,只需在非负值范围内研究即可,在负值范围内由对称性可得.● 题组强化1.(2014·江苏压题卷)若奇函数f (x )在(0,+∞)上单调递减,且f (2)=0,则不等式3(-)-2()5f x f x x ≤0的解集为.(第1题)【答案】[-2,0)∪(0,2]【解析】根据已知条件可画出f (x )的草图如图所示.不等式3(-)-2()5f x f x x ≤0⇔()f x x ≥0, 即0()0x f x >⎧⎨≥⎩,或0()0.x f x <⎧⎨≤⎩,由图可知不等式的解集为[-2,0)∪(0,2].2.(2015·全国卷)设函数f (x )=ln(1+|x|)-211x +,则使得f (x )>f (2x-1)成立的x 的取值范围是 .【答案】113⎛⎫ ⎪⎝⎭,【解析】由f (x )=ln(1+|x|)-211x +可知f (x )是偶函数,且在[0,+∞)是增函数, 所以f (x )>f (2x-1)⇔f (|x|)>f (|2x-1|)⇔|x|>|2x-1|⇔13<x<1.3.已知偶函数f (x )在[0,+∞)上是增函数,如果f (ax+1)≤f (x-2)在x ∈112⎡⎤⎢⎥⎣⎦,上恒成立,求实数a 的取值范围.【解答】由于f (x )为偶函数,且在[0,+∞)上为增函数,则在(-∞,0]上为减函数. 由f (ax+1)≤f (x-2),知|ax+1|≤|x-2|.又x ∈112⎡⎤⎢⎥⎣⎦,,故|x-2|=2-x ,即x-2≤ax+1≤2-x. 故x-3≤ax ≤1-x ,1-3x ≤a ≤1x -1在112⎡⎤⎢⎥⎣⎦,上恒成立.由于min 1-1x ⎛⎫ ⎪⎝⎭=0,max 31-x ⎛⎫ ⎪⎝⎭=-2,故-2≤a ≤0, 即实数a 的取值范围为[-2,0].4.已知奇函数f (x )是定义在(-3,3)上的减函数,且满足不等式f (x-3)+f (x 2-3)<0,求x 的取值范围.【解答】由题知2-3-33-3-33x x <<⎧⎨<<⎩,,解得0600x x x <<⎧⎪⎨<<<⎪⎩,或故0<x<因为f (x )是奇函数,所以f (x-3)<-f (x 2-3)=f (3-x 2),又f (x )在(-3,3)上是减函数, 所以x-3>3-x 2,即x 2+x-6>0,解得x>2或x<-3. 综上,2x 的取值范围是{x|2.1.(2015·北京卷改编)已知下列函数:①y=x 2sin x ;②y=x 2cos x ;③y=|ln x|;④y=2-x.其中为偶函数的是 .(填序号) 【答案】②【解析】根据奇偶性的定义知①为奇函数,②为偶函数,③的定义域为(0,+∞),故③不具有奇偶性,④既不是奇函数,也不是偶函数.2.(2015·南通模拟)已知函数f(x)=·2-221xxa a++(x∈R)是奇函数,那么实数a= .【答案】1【解析】因为f(x)=·2-221xxa a++(x∈R)是奇函数,因此f(0)=0,解得a=1.3.(2016·苏州期中)已知定义在R上的奇函数f(x),当x>0时,f(x)=2x-x2,则f(-1)+f(0)+f(3)= .【答案】-2【解析】由题意知,f(0)=0,f(-1)=-f(1),又因为当x>0时,f(x)=2x-x2,所以f(-1)+f(0)+f(3)=-f(1)+0+f(3)=-21+12+23-32=-2.4.(2015·天津卷)已知定义在R上的函数f(x)=2|x-m|-1 (m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为.【答案】c<a<b【解析】因为函数f(x)=2|x-m|-1为偶函数,所以m=0,即f(x)=2|x|-1,所以a=f(log0.53)=f21log3⎛⎫⎪⎝⎭=21log32-1=2log32-1=3-1=2,b=f(log25)=2log52-1=4,c=f(2m)=f(0)=20-1=0.所以c<a<b.5.已知函数f(x)是定义在R上的奇函数,且在[0,+∞)上为增函数,若f(1-a)+f(-2a)<0,求实数a的取值范围.【解答】因为f(x)是定义在R上的奇函数,且在[0,+∞)上为增函数,所以f(x)在R上为增函数. 又f(1-a)+f(-2a)<0,所以f(1-a)<-f(-2a)=f(2a).所以1-a<2a,即a>1 3.所以实数a的取值范围为13∞⎛⎫+⎪⎝⎭,.【融会贯通】融会贯通能力提升已知函数f(x)的定义域D={x|x≠0},且满足对于任意的x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性,并给出证明;(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.【思维引导】【规范解答】(1)令x1=x2=1,得f(1×1)=f(1)+f(1),解得f(1)=0.……………………………………………………………2分(2)f(x)为偶函数.证明如下:…………………………………………………………………4分令x1=x2=-1,得f[(-1)×(-1)]=f(-1)+f(-1),解得f(-1)=0.令x1=-1,x2=x,有f(-x)=f(-1)+f(x),所以f(-x)=f(x),所以f(x)为偶函数.…………………………7分(3)f(4×4)=f(4)+f(4)=2,f (16×4)=f (16)+f (4)=3.…………………………………………………………………………9分将f (3x+1)+f (2x-6)≤3,变形为f [(3x+1)(2x-6)]≤f (64).(*) 因为f (x )为偶函数,所以f (-x )=f (x )=f (|x|). 所以不等式(*)等价于f [|(3x+1)(2x-6)|]≤f (64).………………11分又因为f (x )在(0,+∞)上是增函数,所以|(3x+1)(2x-6)|≤64,且(3x+1)(2x-6)≠0,解得-73≤x<-13或-13<x<3或3<x ≤5.所以x 的取值范围是711---335333x x x x ⎧⎫≤<<<<≤⎨⎬⎩⎭或或.………………………………14分【精要点评】抽象函数的奇偶性就是要判断-x 对应的函数值与x 对应的函数值之间的关系,从而得到函数图象关于原点或y 轴对称.在利用单调性解决抽象不等式时,不仅要注意单调性的应用,还要注意定义域的限制,以保证转化的等价性.趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》中的练习第13~14页.【检测与评估】第7课 函数的奇偶性一、 填空题1.(2015·湖南卷改编)设函数f (x )=ln(1+x )-ln(1-x ),则f (x )的奇偶性是 .2.(2015·全国卷)若函数f(x)=x ln(x为偶函数,则实数a= .3.(2015·淮安中学)已知函数f(x)=a+x)+bx3+x2,其中a,b为常数,f(1)=3,则f(-1)= .4.已知a为常数,函数f(x)=x2-4x+3.若f(x+a)为偶函数,则a= .5.(2014·福建三明)设f(x)是定义在R上以3为周期的奇函数,且f(1)>1,f(2 015)=2-31aa+,则实数a的取值范围是.6.已知g(x)是定义在R上的奇函数,且当x<0时,g(x)=-ln(1-x),函数f(x)=30()0. x xg x x⎧≤⎨>⎩,,,若f(2-x2)>f(x),则实数x的取值范围是.7.(2015·启东联考)若函数f(x)同时满足:(1)对于定义域上的任意x,恒有f(x)+f(-x)=0;(2)对于定义域上的任意x1,x2,当x1≠x2时,恒有1212()-()-f x f xx x<0,则称函数f(x)为“理想函数”.给出下列四个函数中:①f(x)=1x;②f(x)=x2;③f(x)=2-121xx+;④f(x)=22-0x xx x⎧≥⎨<⎩,,,,能被称为“理想函数”的有.(填序号)8.(2014·南京、盐城一模)若函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增.如果实数t满足f(ln t)+f1lnt⎛⎫⎪⎝⎭≤2f(1),那么t的取值范围是.二、解答题9.已知函数f (x )=x 2+a x (x ≠0,常数a ∈R ).(1)讨论函数f (x )的奇偶性,并说明理由;(2)若函数f (x )在[2,+∞)上为增函数,求实数a 的取值范围.10.已知f (x )是定义在R 上的奇函数,且当x ∈(-∞,0)时,f (x )=-x lg(2-x ),求函数f (x )的解析式.11.设函数f (x )的定义域为D ,若存在非零实数l 使得对于任意的x ∈M(M ⊆D),有x +l ∈D ,且f (x +l )≥f (x ),则称f (x )为M 上的l 高调函数.(1)如果定义域为[-1,+∞)的函数f (x )=x 2为[-1,+∞)上的m 高调函数,求实数m 的取值范围; (2)如果定义域为R 的函数f (x )是奇函数,当x ≥0时,f (x )=|x -a 2|-a 2,且f (x )为R 上的4高调函数,求实数a 的取值范围.三、 选做题(不要求解题过程,直接给出最终结果)12.已知定义域为R 的函数f (x )=1-222x x b +++是奇函数.(1)求实数b 的值;(2)判断函数f (x )的单调性;(3)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求实数k 的取值范围.【检测与评估答案】第7课 函数的奇偶性1.奇函数 【解析】显然,f (x )的定义域为(-1,1),关于原点对称.又因为f (-x )=ln(1-x )-ln(1+x )=-f (x ),所以f (x )为奇函数.2.1 【解析】由题知y=ln(是奇函数,所以ln(+ln(-=ln(a+x 2-x 2)=ln a=0,解得a=1.3.-1 【解析】已知函数f (x )=a+x )+bx 3+x 2,所以f (x )+f (-x )=2x 2,由f (1)=3,得f (-1)=-1.4. 2 【解析】f (x+a )=(x+a )2-4(x+a )+3=x 2+(2a-4)x+a 2-4a+3.因为f (x+a )为偶函数,所以a=2.5.2-13⎛⎫ ⎪⎝⎭, 【解析】因为f (2 015)=f (2)=f (-1)=-f (1)<-1,所以2-31a a +<-1,解得-1<a<23.6. (-2,1) 【解析】设x>0,则-x<0.因为当x<0时,g (x )=-ln(1-x ),所以g (-x )=-ln(1+x ).又因为g (x )是奇函数,所以g (x )=ln(1+x )(x>0),所以f (x )=30ln(1)0x x x x ⎧≤⎨+>⎩,,,,其图象如图所示.由图象知,函数f (x )在R 上是增函数.因为f (2-x 2)>f (x ),所以2-x 2>x ,即-2<x<1.(第6题)7.④ 【解析】依题意,性质(1)反映函数f (x )在定义域上为奇函数,性质(2)反映函数f (x )在定义域上为单调减函数.①f (x )=1x 为定义域上的奇函数,但不是定义域上的单调减函数,其单调减区间为(-∞,0),(0,+∞),故排除①;②f (x )=x 2为定义域上的偶函数,排除②;③f (x )=2-121x x +,定义域为R ,由于y=2x+1在R 上为增函数,故函数f (x )为R 上的增函数,排除③;④根据f (x )=22-00x x x x ⎧≥⎨<⎩,,,的图象,显然此函数为奇函数,且在定义域上为减函数,故④为理想函数.8.1ee⎡⎤⎢⎥⎣⎦,【解析】f(ln t)+f1lnt⎛⎫⎪⎝⎭=f(ln t)+f(-ln t)=2f(ln t),于是f(lnt)+f1lnt⎛⎫⎪⎝⎭≤2f(1)⇔f(ln t)≤f(1)⇔|ln t|≤1⇔-1≤ln t≤1⇔1e≤t≤e.9.(1) 当a=0时,f(x)=x2,对任意x∈(-∞,0)∪(0,+∞),有f(-x)=(-x)2=x2=f(x),所以f(x)为偶函数.当a≠0时,f(x)=x2+ax(x≠0,常数a∈R),若x=±1,则f(-1)+f(1)=2≠0,所以f(-1)≠-f(1),f(-1)≠f(1).所以函数f(x)既不是奇函数也不是偶函数. 综上所述,当a=0时,f(x)为偶函数;当a≠0时,f(x)为非奇非偶函数.(2) 设2≤x1<x2,f(x1)-f(x2)=21x+1ax-22x-2ax=1212-x xx x[x1x2(x1+x2)-a],要使函数f(x)在x∈[2,+∞)上为增函数,必须f(x1)-f(x2)<0恒成立.因为x1-x2<0,x1x2>4,即a<x1x2(x1+x2)恒成立.又因为x1+x2>4,所以x1x2(x1+x2)>16,所以实数a的取值范围是(-∞,16].10.因为f(x)是R上的奇函数,可得f(0)=-f(0),所以f(0)=0.当x>0时,-x<0,由已知得f(-x)=x lg(2+x),所以-f(x)=x lg(2+x),即f(x)=-x lg(2+x)(x>0).所以f(x)=-lg(2-)0 -lg(2)0. x x xx x x<⎧⎨+≥⎩,,,即f(x)=-x lg(2+|x|)(x∈R).11. (1) f(x)=x2(x≥-1)的图象如图(1)所示,图(1)图(2) (第11题)要使f (-1+m )≥f (-1),只要m ≥2, 此时恒有f (x+m )≥f (x ), 所以实数m 的取值范围为[2,+∞).(2) 由f (x )为奇函数及x ≥0时的解析式知f (x )的图象如图(2)所示. 因为f (3a 2)=a 2=f (-a 2),由f (-a 2+4)≥f (-a 2)=a 2=f (3a 2),得-a 2+4≥3a 2,从而a 2≤1. 又当a 2≤1时,恒有f (x+4)≥f (x ). 所以实数a 的取值范围为[-1,1].12.(1) 因为f (x )是奇函数,所以f (0)=0,即-122b +=0,解得b=1.(2) 由(1)知f (x )=11-222x x ++=-12+121x+,设x 1<x 2,则f (x 1)-f (x 2)=1121x +-2121x +=21122-2(21)(21)x x x x++.因为函数y=2x在R 上是增函数,且x 1<x 2,所以22x -12x >0,又(12x +1)(22x +1)>0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). 所以f (x )在定义域R 上为减函数.(3) 因为f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (k-2t 2).由(2)知f (x )为减函数,所以t 2-2t>k-2t 2,即对一切t ∈R 有3t 2-2t-k>0,从而判别式Δ=4+12k<0,解得k<-13,所以实数k 的取值范围是1-.-3∞⎛⎫ ⎪⎝⎭.。

2018年高考数学一轮复习第二章函数概念与基本初等函数Ⅰ2.1函数及其表示课件文新人教A版

2018年高考数学一轮复习第二章函数概念与基本初等函数Ⅰ2.1函数及其表示课件文新人教A版
§2.1 函数及其表示
考纲展示► 1.了解构成函数的要素,会求一些简单函数的定义域和值 域,了解映射的概念. 2.在实际情境中,会根据不同的需要选择恰当的方法(如图 象法、列表法、解析法)表示函数. 3.了解简单的分段函数,并能简单地应用(函数分段不超过 三段).考点1函数的概念
1.函数与映射的概念
解析:①②中,对于定义域内任意一个数 x,可能有两个不 同的 y 值,不满足对应的唯一性,所以①②错误;③中,定义域 是空集,而函数的定义域是非空的数集,所以③错误.
函数与映射理解的误区:唯一性;非空数集.
①②④ 是映 如图表示的是从集合A到集合B的对应,其中________ ①② 是函数. 射,________
解析:函数与映射都要求对于集合A中的任一元素在集合B 中都有唯一确定的元素与之对应,所以③不是映射也不是函 数;①②④表示的对应是映射;①②是函数,由于④中集合A, B不是数集,所以不是函数.
[典题1]
(1)下列四个图象中,是函数图象是( B )
A.① C.①②③
B.①③④ D.③④
[解析]
①中每一个 x 的值对应唯一的 y 值,因此是函数图
象,②中当 x>0 时,每一个 x 的值对应两个不同的 y 值,因此不 是函数图象,③④中每一个 x 的值对应唯一的 y 值,因此是函数 图象.故选 B.
(2)已知函数 f(x)和 g(x)的定义域和值域都是集合{1,2,3}, 对应法则如下表. x f(x) g(x) 1 2 1 2 3 3 3 1 2
考点2 函数的定义域
对函数 y=f(x),x∈A,其中 x 叫做自变量,x 的取值范围 A 叫做定义域,与 x 的值对应的 y 值叫做函数值,函数值的集合 {f(x)|x∈A}叫做值域. 求函数定义域的常见结论: (1)分式的分母不为零; (2)偶次根式的被开方数不小于零; (3)对数函数的真数必须大于零;

全国通用2018版高考数学一轮复习第二章函数概念与基本初等函数I第1讲函数及其表示课件理北师大版

全国通用2018版高考数学一轮复习第二章函数概念与基本初等函数I第1讲函数及其表示课件理北师大版

解析 (1)要使函数 f(x)有意义,应满足x-x 1>0,解得 x>1,故 x≥0,
函数 f(x)=lnx-x 1+x12的定义域为(1,+∞).
(2)∵y=f(x)的定义域为[1,2 017],
∴g(x)有意义,应满足1x-≤1x+ ≠10≤ . 2
017, ∴0≤x≤2
016,且
x≠1.因此 g(x)的定义域为{x|0≤x≤2 016,且 x≠1}.
答案 (1)C (2)[-1,0]
考点二 求函数的解析式 【例 2】 (1)已知 f2x+1=lg x,则 f(x)=________.
(2)已知 f(x)是二次函数且 f(0)=2,f(x+1)-f(x)=x-1,则 f(x)=________. (3)已知函数 f(x)的定义域为(0,+∞),且 f(x)=2f1x· x- 1,则 f(x)=________.
第1讲 函数及其表示
最新考纲 1.了解构成函数的要素,会求一些简单函数的定 义域和值域,了解映射的概念;2.在实际情境中,会根据不 同的需要选择恰当的方法(如图像法、列表法、解析法)表示 函数;3.了解简单的分段函数,并能简单地应用(函数分段 不超过三段).
知识梳理
1.函数的基本概念 (1)函数的定义 给定两个非空_数__集_A和B,如果按照某个对应关系f,对于集 合A中_任__何__的一个数x,在集合B中都存在唯一的数f(x)与之 对应,那么就把对应关系f叫作定义在集合A上的函数,记作 f:A→B或_y_=_f_(_x_),_x_∈__A_,此时x叫作自变量,集合A叫作函 数的定义域,集合{f(x)|x∈A}叫作函数的值域.
【训练 1】 (1)(2015·湖北卷)函数 f(x)= 4-|x|+lgx2-x-5x3+6的

高考数学大一轮复习 第二章 函数概念与基本初等函数I 第7讲 函数的图象教师用书 理 新人教版(20

高考数学大一轮复习 第二章 函数概念与基本初等函数I 第7讲 函数的图象教师用书 理 新人教版(20

2018版高考数学大一轮复习第二章函数概念与基本初等函数I 第7讲函数的图象教师用书理新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学大一轮复习第二章函数概念与基本初等函数I 第7讲函数的图象教师用书理新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学大一轮复习第二章函数概念与基本初等函数I 第7讲函数的图象教师用书理新人教版的全部内容。

第二章函数概念与基本初等函数I 第7讲函数的图象教师用书理新人教版(建议用时:40分钟)一、选择题1.为了得到函数y=2x-2的图象,可以把函数y=2x图象上所有的点()A.向右平行移动2个单位长度B.向右平行移动1个单位长度C。

向左平行移动2个单位长度D。

向左平行移动1个单位长度解析因为y=2x-2=2(x-1),所以只需将函数y=2x的图象上所有的点向右平移1个单位长度即可得到y=2(x-1)=2x-2的图象.答案B2。

小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶,与以上事件吻合得最好的图象是( )解析小明匀速运动时,所得图象为一条直线,且距离学校越来越近,排除A。

因交通堵塞停留了一段时间,与学校的距离不变,排除D.后来为了赶时间加快速度行驶,排除B.故选C.答案C3。

(2015·浙江卷)函数f(x)=错误!cos x(-π≤x≤π且x≠0)的图象可能为()解析(1)因为f(-x)=错误!cos(-x)=-错误!cos x=-f(x),-π≤x≤π且x≠0,所以函数f(x)为奇函数,排除A,B.当x=π时,f(x)=错误!cos π〈0,排除C,故选D。

[推荐学习]课标通用2018年高考数学一轮复习第二章函数概念与基本初等函数Ⅰ2.4二次函数与幂函数学

[推荐学习]课标通用2018年高考数学一轮复习第二章函数概念与基本初等函数Ⅰ2.4二次函数与幂函数学

§2.4 二次函数与幂函数考纲展示► 1.了解幂函数的概念.2.结合函数y =x ,y =x 2,y =x 3,y =1x,y =x 12 的图象,了解它们的变化情况.3.理解并掌握二次函数的定义、图象及性质.4.能用二次函数、方程、不等式之间的关系解决简单问题.考点1 幂函数的图象与性质五种常见幂函数的图象与性质奇增 (-∞,0)减,(0,+∞)增 增 增 (-∞,0)和(0,+∞)减 (1,1)[教材习题改编]已知幂函数f (x )的图象过点(2,2),则函数f (x )=________. 答案:x 12解析:设f (x )=x α,则2=2α,所以α=12,故函数f (x )=x 12 .幂函数概念的误区:系数为1;指数为常数. 已知幂函数f (x )=(m 2-m -1)x m -3,则m 为________.答案:2或-1解析:若函数为幂函数,则m 2-m -1=1,解得m =2或m =-1.[典题1] (1)幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的图象是( )A BC D[答案] C[解析] 令f (x )=x α,则4α=2, ∴α=12,∴f (x )=x 12 .(2)[2017·安徽江南七校联考]已知幂函数f (x )=(n 2+2n -2)·xn 2-3n(n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( )A .-3B .1C .2D .1或2[答案] B[解析] 由于f (x )为幂函数,所以n 2+2n -2=1,解得n =1或n =-3.当n =1时,函数f (x )=x -2为偶函数,其图象关于y 轴对称,且f (x )在(0,+∞)上是减函数,所以n =1满足题意;当n =-3时,函数f (x )=x 18为偶函数,其图象关于y 轴对称,而f (x )在(0,+∞)上是增函数,所以n =-3不满足题意,舍去.故选B.(3)1.1 12 ,0.9 12,1的大小关系为________. [答案] 0.9 12 <1<1.1 12[解析] 把1看作1 12 ,幂函数y =x 12在(0,+∞)上是增函数.∵0<0.9<1<1.1,∴0.9 12 <1 12 <1.1 12 ,即0.9 12 <1<1.1 12 .(4)已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≥2,x -3,x <2,若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.[答案] (0,1)[解析] 作出函数y =f (x )的图象如图.则当0<k <1时,关于x 的方程f (x )=k 有两个不同的实根.[点石成金] 1.幂函数y =x α的性质和图象由于α的取值不同而比较复杂,一般可从三方面考查:(1)α的正负:当α>0时,图象经过点(0,0)和点(1,1),在第一象限的部分“上升”;当α<0时,图象不过点(0,0),经过点(1,1),在第一象限的部分“下降”;(2)曲线在第一象限的凹凸性:当α>1时曲线下凹;当0<α<1时曲线上凸,当α<0时曲线下凹;(3)函数的奇偶性:一般先将函数式化为正指数幂或根式形式,再根据函数定义域和奇偶性定义判断其奇偶性.2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.考点2 求二次函数的解析式二次函数解析式的三种形式 (1)一般式:f (x )=____________; (2)顶点式:f (x )=____________; (3)零点式:f (x )=____________.答案:(1)ax 2+bx +c (a ≠0) (2)a (x -m )2+n (a ≠0) (3)a (x -x 1)(x -x 2)(a ≠0)二次函数对称轴的判断方法:中值法;结论法.(1)对于二次函数y =f (x ),如果定义域内有不同两点x 1,x 2且f (x 1)=f (x 2),那么函数y =f (x )的图象关于直线________对称.(2)“二次函数y =f (x )对定义域内所有x ,都有f (a +x )=f (a -x )成立”的充要条件是“函数y =f (x )的图象关于直线________对称”(a 为常数).答案:(1)x =x 1+x 22(2)x =a解析:(1)作出二次函数y =f (x )的图象(图略),由图可知,当f (x 1)=f (x 2)时, 点P (x 1,f (x 1)),Q (x 2,f (x 2))关于直线x =x 1+x 22对称.由x 1,x 2的任意性,可得函数y =f (x )的图象关于直线x =x 1+x 22对称.(2)由(1)可知,y =f (x )的图象关于直线x =a 对称(a 为常数).[典题2] 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.[解] 解法一(利用一般式): 设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.∴所求二次函数的解析式为f (x )=-4x 2+4x +7. 解法二(利用顶点式): 设f (x )=a (x -m ) 2+n . ∵f (2)=f (-1),∴抛物线的对称轴为x =2+-2=12, ∴m =12.又根据题意,函数有最大值8,∴n =8,∴y =f (x )=a ⎝ ⎛⎭⎪⎫x -122+8.∵f (2)=-1,∴a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4,∴f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.解法三(利用零点式):由已知f (x )+1=0两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1), 即f (x )=ax 2-ax -2a -1. 又函数的最大值为y max =8,即4a-2a --a24a=8.解得a =-4或a =0(舍去).∴所求函数的解析式为f (x )=-4x 2+4x +7. [点石成金] 求二次函数解析式的方法根据已知条件确定二次函数的解析式,一般用待定系数法,选择规律如下: (1)已知三个点坐标,宜选用一般式;(2)已知顶点坐标、对称轴、最大(小)值等,宜选用顶点式;(3)已知图象与x 轴两交点的坐标,宜选用零点式.为了美观,在加工太阳镜时将下半部分轮廓制作成二次函数图象的形状(如图所示).若对应的两条曲线关于y 轴对称,AE ∥x 轴,AB =4 cm ,最低点C 在x 轴上,高CH =1 cm ,BD =2 cm ,则右轮廓线DFE 所在的二次函数的解析式为( )A .y =14(x +3)2B .y =-14(x -3) 2C .y =-14(x +3) 2D .y =14(x -3) 2答案:D解析:由题图可知,对应的两条曲线关于y 轴对称,AE ∥x 轴,AB =4 cm ,最低点C 在x 轴上,高CH =1 cm ,BD =2 cm ,所以点C 的纵坐标为0,横坐标的绝对值为42+22=3,即C (-3,0).因为点F 与点C 关于y 轴对称,所以F (3,0),因为点F 是右轮廓线DFE 所在的二次函数图象的顶点,所以设该二次函数为y =a (x -3) 2(a >0),将点D (1,1)代入得,a =14,即y =14(x -3) 2.考点3 二次函数的图象与性质二次函数的图象和性质(1)[教材习题改编]若函数f (x )=4x 2-kx -8在[-1,2]上是单调函数,则实数k 的取值范围是________.答案:(-∞,-8]∪[16,+∞)解析:f (x )图象的对称轴方程是x =k 8,故k 8≤-1或k8≥2,即k ≤-8或k ≥16.故所求k的取值范围是(-∞,-8]∪[16,+∞).(2)[教材习题改编]已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是________.答案:⎝⎛⎭⎪⎫120,+∞解析:由题意,得⎩⎪⎨⎪⎧a >0,Δ=1-20a <0, 解得a >120.二次函数单调性的求解误区:单调区间;在区间上单调. 已知二次函数f (x )=(k 2-1)x 2+2x -3.(1)若函数f (x )的单调递增区间是(-∞,2],则k =________; (2)若函数f (x )在区间(-∞,2]上单调递增,则k 满足________.答案:(1)±22(2)22≤k<1或-1<k≤-22解析:(1)显然图象开口向下,k2-1<0,且-2k2-=2,得k=±22.(2)图象开口向下,k2-1< 0,且-2k2-≥2,得22≤k<1或-1<k≤-22.[考情聚焦] 二次函数的图象与性质与一元二次方程、一元二次不等式等知识交汇命题是高考考查频率非常高的一个热点,考查求解一元二次不等式、一元二次不等式恒成立及一元二次方程根的分布等问题.主要有以下几个命题角度:角度一二次函数的图象和应用[典题3] [2017·四川雅安诊断] 如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出下面四个结论:①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b.其中正确的是( )A.②④B.①④C.②③D.①③[答案] B[解析] 因为图象与x轴交于两点,所以b2-4ac>0,即b2>4ac,①正确;对称轴为x=-1,即-b2a=-1,2a-b=0,②错误;结合图象,当x=-1时,y>0,即a-b+c>0,③错误;由对称轴为x=-1知,b=2a.又函数图象开口向下,所以a <0, 所以5a <2a ,即5a <b ,④正确. 角度二二次函数的单调性问题[典题4] 已知函数f (x )=x 2+2ax +3,x ∈[-4,6].(1)若y =f (x )在区间[-4,6]上是单调函数,求实数a 的取值范围; (2)当a =1时,求f (|x |)的单调区间.[解] (1)由于函数f (x )的图象开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4.所以实数a 的取值范围是(-∞,-6]∪[4,+∞). (2)当a =1时,f (x )=x 2+2x +3,所以f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=⎩⎪⎨⎪⎧x 2+2x +3,x ∈0,6],x 2-2x +3,x ∈[-6,0],所以f (|x |)的单调递增区间是(0,6],单调递减区间是[-6,0]. 角度三二次函数的最值问题 [题型1] 轴定,区间动类型[典题5] 若函数y =x 2-2x +3在区间[0,m ]上有最大值3,最小值2,求实数m 的取值范围.[解] 作出函数y =x 2-2x +3的图象如图.由图象可知,要使函数在[0,m ]上取得最小值2,则1∈[0,m ],从而m ≥1, 当x =0时,y =3; 当x =2时,y =3,所以要使函数取得最大值为3,则m ≤2, 故所求m 的取值范围为[1,2].[题型2] 轴动,区间定类型[典题6] 求函数f (x )=ax 2-2x 在区间[0,1]上的最小值.[解] f (x )=a ⎝⎛⎭⎪⎫x -1a 2-1a.(1)当a =0时,f (x )=-2x 在[0,1]上递减, ∴f (x )min =f (1)=-2.(2)当a >0时,函数f (x )的图象的开口方向向上,且对称轴为x =1a.当1a≤1,即a ≥1时,函数f (x )的图象的对称轴在[0,1]内,∴f (x )在⎣⎢⎡⎦⎥⎤0,1a 上递减,在⎣⎢⎡⎦⎥⎤1a ,1上递增.∴f (x )min =f ⎝ ⎛⎭⎪⎫1a =-1a.当1a>1,即0<a <1时,函数f (x )的图象的对称轴在[0,1]的右侧,∴f (x )在[0,1]上递减.∴f (x )min =f (1)=a -2.(3)当a <0时,函数f (x )的图象的开口方向向下,且对称轴x =1a<0,在y 轴的左侧,∴f (x )在[0,1]上递减. ∴f (x )min =f (1)=a -2.综上所述,f (x )min =⎩⎪⎨⎪⎧a -2,a <1,-1a,a ≥1.[题点发散] 若将本例中的函数改为f (x )=x 2-2ax ,其他不变,应如何求解? 解:f (x )=x 2-2ax =(x -a )2-a 2,对称轴为x =a . 当a <0时,f (x )在[0,1]上是增函数, ∴f (x )min =f (0)=0;当0≤a ≤1时,f (x )min =f (a )=-a 2; 当a >1时,f (x )在[0,1]上是减函数, ∴f (x )min =f (1)=1-2a .综上所述,f (x )min =⎩⎪⎨⎪⎧0,a <0,-a 2,0≤a ≤1,1-2a ,a >1.角度四二次函数中的恒成立及零点问题[典题7] (1)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.[答案] ⎝ ⎛⎭⎪⎫-22,0 [解析] 作出二次函数f (x )的草图,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧fm <0,fm +,即⎩⎪⎨⎪⎧m 2+m 2-1<0,m +2+m m +-1<0,解得-22<m <0. (2)若方程x 2+(k -2)x +2k -1=0的两根中,一根在0和1之间,另一根在1和2之间,则实数k 的取值范围是________.[答案] ⎝ ⎛⎭⎪⎫12,23[解析] 设f (x )=x 2+(k -2)x +2k -1,由题意知⎩⎪⎨⎪⎧f 0>0,f 1<0,f 2>0,即⎩⎪⎨⎪⎧2k -1>0,3k -2<0,4k -1>0,解得12<k <23.[点石成金] 1.(1)识别二次函数的图象主要从开口方向、对称轴、特殊点对应的函数值这几个方面入手.(2)而用数形结合法解决与二次函数图象有关的问题时,要尽量规范作图,尤其是图象的开口方向、顶点、对称轴及与两坐标轴的交点要标清楚,这样在解题时才不易出错.2.二次函数最值问题的三种类型及解题思路(1)类型:①对称轴、区间都是给定的;②对称轴动、区间固定;③对称轴定、区间变动. (2)思路:抓“三点一轴”,三点是指区间两个端点和中点,一轴指的是对称轴. 3.由不等式恒成立求参数取值范围的两大思路及一个关键 (1)两大思路:一是分离参数;二是不分离参数.(2)一个关键:两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:a ≥f (x )⇔a ≥f (x )max ,a ≤f (x )⇔a ≤f (x )min.[方法技巧] 1.二次函数的三种形式 (1)已知三个点的坐标时,宜用一般式.(2)已知二次函数的顶点坐标或与对称轴有关或与最大(小)值有关的量时,常使用顶点式.(3)已知二次函数与x 轴有两个交点,且横坐标已知时,选用零点式求f (x )更方便. 2.二次函数、二次方程、二次不等式间相互转化的一般规律(1)在研究一元二次方程根的分布问题时,常借助于二次函数的图象数形结合来解,一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.(2)在研究一元二次不等式的有关问题时,一般需借助于二次函数的图象、性质求解. 3.幂函数y =x α(α∈R )图象的特征当α>0时,图象过原点和点(1,1),在第一象限的图象上升;当α<0时,图象不过原点,在第一象限的图象下降,反之也成立.[易错防范] 1.对于函数y =ax 2+bx +c ,要认为它是二次函数,就必须满足a ≠0,当题目条件中未说明a ≠0时,就要讨论a =0和a ≠0两种情况.2.幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.真题演练集训1.[2016·新课标全国卷Ⅲ]已知a =2 43 ,b =425 ,c =25 13,则( ) A .b <a <c B .a <b <c C .b <c <a D .c <a <b答案:A解析:因为a =2 43 =16 13 ,b =425 =16 15 ,c =25 13 ,且幂函数y =x 13在R 上单调递增,指数函数y =16x在R 上单调递增,所以b <a <c .2.[2015·四川卷]如果函数f (x )=12(m -2)x 2+(n -8)x +1(m ≥0,n ≥0)在区间⎣⎢⎡⎦⎥⎤12,2上单调递减,那么mn 的最大值为( )A .16B .18C .25D .812答案:B解析:①当m =2时,∵ f (x )在⎣⎢⎡⎦⎥⎤12,2上单调递减,∴ 0≤n <8,mn =2n <16. ②当m ≠2时,函数f (x )=12(m -2)x 2+(n -8)x +1(m ≥0,n ≥0)的对称轴方程为x =-n -8m -2. a .当m >2时,抛物线开口向上,∵f (x )在⎣⎢⎡⎦⎥⎤12,2上单调递减, ∴-n -8m -2≥2,即2m +n ≤12. 又2m +n ≥22mn ,∴ 22mn ≤12, ∴ mn ≤18.当2m =n =6,即m =3,n =6时取等号, ∴ mn 的最大值为18.b .当m <2时,抛物线开口向下,∵ f (x )在⎣⎢⎡⎦⎥⎤12,2上单调递减, ∴-n -8m -2≤12,即m +2n ≤18,即n ≤9-12m . 又∵ 0≤m <2,n ≥0,∴ mn ≤9m -12m 2=-12(m -9)2+812<-12(2-9)2+812=16. 综上所述,mn 的最大值为18,故选B.3.[2014·浙江卷]在同一直角坐标系中,函数f (x )=x a(x >0),g (x )=log a x 的图象可能是( )A BC D答案:D解析:当a >1时,函数f (x )=x a(x >0)单调递增,函数g (x )=log a x 单调递增,且过点(1,0),由幂函数的图象性质可知C 错;当0<a <1时,函数f (x )=x a(x >0)单调遂增,函数g (x )=log a x 单调递减,且过点(1,0),排除A ,又由幂函数的图象性质可知B 错,故选D.4.[2013·重庆卷]-aa +(-6≤a ≤3)的最大值为( )A. 9 B . 92C. 3 D . 322答案:B解析:易知函数y =(3-a )(a +6)的两个零点是3,-6,对称轴为a =-32,y =(3-a )(a+6)的最大值为y =⎝ ⎛⎭⎪⎫3+32⎝ ⎛⎭⎪⎫-32+6=⎝ ⎛⎭⎪⎫922,则-a6+a 的最大值为92,故选B.5.[2014·辽宁卷]对于c >0,当非零实数a ,b 满足4a 2-2ab +4b 2-c =0且使|2a +b |最大时,3a -4b +5c的最小值为________.答案:-2解析:设2a +b =x ,则2a =x -b , ∴(x -b )2-b (x -b )+4b 2-c =0,x 2-3bx +6b 2-c =0,即6b 2-3xb +x 2-c =0.∴Δ=9x 2-4×6×(x 2-c )≥0,∴3x 2-8x 2+8c ≥0,∴x 2≤85c .当|2a +b |=|x |取最大时,有(2a +b )2=85c ,∴4a 2+4ab +b 2=85c .又∵4a 2-2ab +4b 2=c ,①∴b a =23,∴b =23a . 将b =23a 代入①,得4a 2-2a ·23a +49a 2·4=c ,∴a =32c10,b =c 10或a =-32c10,b =-c10.当a =32c10,b =c10时,有 3a -4b +5c =332c 10-4c10+5c=210c -410c +5c =5⎝ ⎛⎭⎪⎫1c -1052-2≥-2, 当1c=105,即c =52时等号成立. 此时a =34,b =12.当a =-32c10,b =-c10时,3a -4b +5c=-210c +410c+5c=210c+5c>0,综上可知,当c =52,a =34,b =12时,⎝ ⎛⎭⎪⎫3a -4b +5c min =-2.课外拓展阅读 构造二次函数解决问题二次函数是中学数学的一个重要知识,它与一元二次不等式、一元二次方程的联系是诸多命题者的关注点.对于有些问题若能充分利用二次函数的性质,则会迎刃而解.下面就给出几种构造二次函数解决问题的例题.1.构造二次函数求根式函数的最值 [典例1] 求函数y =x 2+1-x 2的最值. [思路分析] 利用换元法转化为二次函数求最值. [解] 令1-x 2=u ,则x 2=1-u 2, 且0≤u ≤1.所以y =1-u 2+u =-⎝ ⎛⎭⎪⎫u -122+54,所以1≤y ≤54,故y min =1,y max =54.2.构造二次函数解不等式(1)从结论的外形结构作形式联想进行构造[典例2] 已知a <b <c ,求证:a 2b +b 2c +c 2a <ab 2+bc 2+ca 2.[思路分析] 观察结论的特点,若将不等式移项后,有a 2b +b 2c +c 2a -(ab 2+bc 2+ca 2)<0, 设A =a 2b +b 2c +c 2a -(ab 2+bc 2+ca 2)=(b -c )a 2+(c 2-b 2)a +(b 2c -bc 2),考虑到a 是按降幂排列的,故可联想到构造二次函数f (x )=(b -c )x 2+(c 2-b 2)x +(b 2c -bc 2)求解.[证明] 令A =a 2b +b 2c +c 2a -(ab 2+bc 2+ca 2)=(b -c )a 2+(c 2-b 2)a +(b 2c -bc 2). 设f (x )=(b -c )x 2+(c 2-b 2)x +(b 2c -bc 2)=(b -c )(x -b )(x -c ),因为b <c ,所以函数f (x )的图象开口向下,且与x 轴交点的横坐标为b ,c ,所以当x <b 或x >c 时,f (x )<0.又a <b ,所以f (a )<0,即A <0,所以a 2b +b 2c +c 2a <ab 2+bc 2+ca 2. (2)利用二次函数的最值特征进行构造[典例3] 已知a 1,a 2,…,a n 为实数,试证:(x -a 1)2+(x -a 2)2+…+(x -a n )2≥n a 21+a 22+…+a 2n-a 1+a 2+…+a n 2n[思路分析] 所证不等式的左边可看作是关于x 的二次函数,只要证此二次函数的最小值是n a 21+a 22+…+a 2n-a 1+a 2+…+a n 2n即可.[证明] 设f (x )=(x -a 1)2+(x -a 2)2+…+(x -a n )2=nx 2-2(a 1+a 2+…+a n )x +(a 21+a 22+…+a 2n ).因为n >0,所以对于二次函数f (x ),当x =a 1+a 2+…+a nn时,f (x )有最小值,且f (x )min =n a 21+a 22+…+a 2n-a 1+a 2+…+a n 2n .所以f (x )≥n a 21+a 22+…+a 2n-a 1+a 2+…+a n 2n,故原不等式成立.(3)利用根与系数的关系构造二次函数[典例4] 已知a >13,b >13,ab =29,求证:a +b <1.[思路分析] 已知条件出现了ab =29,而结论中有a +b ,若设a +b =t ,则a ,b 为二次函数f (x )=x 2-tx +29的图象与x 轴的两个交点的横坐标,由于a >13,b >13,根据二次函数的性质,易证t <1.[证明] 设t =a +b ,又ab =29,则a ,b 为二次函数f (x )=x 2-tx +29的图象与x 轴的两个交点的横坐标.由于a >13,b >13,二次函数的图象开口向上,所以有f ⎝ ⎛⎭⎪⎫13>0,即19-13t +29>0,解得t <1,即a +b <1.。

2018版高考数学一轮复习 第二章 函数与基本初等函数I 2.8 函数与方程 理

2018版高考数学一轮复习 第二章 函数与基本初等函数I 2.8 函数与方程 理

第二章函数与基本初等函数I 2.8 函数与方程理1.函数的零点(1)函数零点的定义对于函数y=f(x)(x∈D),把使f(x)=0的实数x叫做函数y=f(x)(x∈D)的零点.(2)几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.(3)函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个__c__也就是方程f(x)=0的根.2.二分法对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.3.二次函数y=ax2+bx+c (a>0)的图象与零点的关系【知识拓展】1.有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.2.三个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数的零点就是函数的图象与x 轴的交点.( × )(2)函数y =f (x )在区间(a ,b )内有零点(函数图象连续不断),则f (a )·f (b )<0.( × ) (3)只要函数有零点,我们就可以用二分法求出零点的近似值.( × ) (4)二次函数y =ax 2+bx +c (a ≠0)在b 2-4ac <0时没有零点.( √ )(5)若函数f (x )在(a ,b )上单调且f (a )·f (b )<0,则函数f (x )在[a ,b ]上有且只有一个零点.( √ )1.(教材改编)函数121()()2xf x x =-的零点个数为( ) A .0 B .1 C .2 D .3 答案 B解析 f (x )是增函数,又f (0)=-1,f (1)=12,∴f (0)f (1)<0,∴f (x )有且只有一个零点. 2.下列函数中,既是偶函数又存在零点的是( ) A .y =cos x B .y =sin x C .y =ln x D .y =x 2+1答案 A解析 由于y =sin x 是奇函数;y =ln x 是非奇非偶函数;y =x 2+1是偶函数但没有零点;只有y =cos x 是偶函数又有零点.3.(2016·吉林长春检测)函数f (x )=12ln x +x -1x -2的零点所在的区间是( )A .(1e ,1)B .(1,2)C .(2,e)D .(e,3)答案 C解析 因为f (1e )=-12+1e -e -2<0,f (1)=-2<0,f (2)=12ln 2-12<0,f (e)=12+e -1e -2>0,所以f (2)f (e)<0,所以函数f (x )=12ln x +x -1x -2的零点所在区间是(2,e).4.函数f (x )=2x|log 0.5 x |-1的零点个数为________. 答案 2解析 由f (x )=0,得|log 0.5x |=⎝ ⎛⎭⎪⎫12x,作出函数y =|log 0.5x |和y =⎝ ⎛⎭⎪⎫12x的图象,由图象知两函数图象有2个交点, 故函数f (x )有2个零点.5.函数f (x )=ax +1-2a 在区间(-1,1)上存在一个零点,则实数a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫13,1解析 ∵函数f (x )的图象为直线,由题意可得f (-1)f (1)<0,∴(-3a +1)·(1-a )<0,解得13<a <1,∴实数a 的取值范围是⎝ ⎛⎭⎪⎫13,1.题型一 函数零点的确定 命题点1 确定函数零点所在区间例1 (1)(2017·长沙调研)已知函数f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2的零点为x 0,则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)(2)(2016·济南模拟)设函数y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),若x 0∈(n ,n +1),n ∈N ,则x 0所在的区间是________.答案 (1)C (2)(1,2)解析 (1)∵f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2在(0,+∞)上为增函数,又f (1)=ln 1-⎝ ⎛⎭⎪⎫12-1=ln 1-2<0,f (2)=ln 2-⎝ ⎛⎭⎪⎫120<0,f (3)=ln 3-⎝ ⎛⎭⎪⎫121>0,∴x 0∈(2,3),故选C.(2)令f (x )=x 3-(12)x -2,则f (x 0)=0,易知f (x )为增函数,且f (1)<0,f (2)>0,∴x 0所在的区间是(1,2).命题点2 函数零点个数的判断例2 (1)函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是________.(2)若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点个数是( )A .多于4B .4C .3D .2答案 (1)2 (2)B解析 (1)当x ≤0时,令x 2-2=0,解得x =-2(正根舍去),所以在(-∞,0]上有一个零点;当x >0时,f ′(x )=2+1x>0恒成立,所以f (x )在(0,+∞)上是增函数.又因为f (2)=-2+ln 2<0,f (3)=ln 3>0,所以f (x )在(0,+∞)上有一个零点,综上,函数f (x )的零点个数为2.(2)由题意知,f (x )是周期为2的偶函数.在同一坐标系内作出函数y =f (x )及y =log 3|x |的图象,如图,观察图象可以发现它们有4个交点, 即函数y =f (x )-log 3|x |有4个零点.思维升华 (1)确定函数零点所在区间,可利用零点存在性定理或数形结合法.(2)判断函数零点个数的方法:①解方程法;②零点存在性定理、结合函数的性质;③数形结合法:转化为两个函数图象的交点个数.(1)已知函数f (x )=6x-log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)(2)函数f (x )=x cos x 2在区间[0,4]上的零点个数为( ) A .4 B .5 C .6D .7答案 (1)C (2)C解析 (1)因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4).(2)由f (x )=x cos x 2=0,得x =0或cos x 2=0. 又x ∈[0,4],所以x 2∈[0,16]. 由于cos(π2+k π)=0(k ∈Z ),而在π2+k π(k ∈Z )的所有取值中,只有π2,3π2,5π2,7π2,9π2满足在[0,16]内,故零点个数为1+5=6. 题型二 函数零点的应用例3 (1)函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)(2)已知函数f (x )=|x 2+3x |,x ∈R ,若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围是________________. 答案 (1)C (2)(0,1)∪(9,+∞)解析 (1)因为函数f (x )=2x -2x -a 在区间(1,2)上单调递增,又函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则有f (1)·f (2)<0,所以(-a )(4-1-a )<0,即a (a -3)<0.所以0<a <3.(2)设y 1=f (x )=|x 2+3x |,y 2=a |x -1|,在同一直角坐标系中作出y 1=|x 2+3x |,y 2=a |x -1|的图象如图所示.由图可知f (x )-a |x -1|=0有4个互异的实数根等价于y 1=|x 2+3x |与y 2=a |x -1|的图象有4个不同的交点且4个交点的横坐标都小于1,所以⎩⎪⎨⎪⎧y =-x 2-3x ,y =a -x 有两组不同解,消去y 得x 2+(3-a )x +a =0有两个不等实根, 所以Δ=(3-a )2-4a >0,即a 2-10a +9>0, 解得a <1或a >9.又由图象得a >0,∴0<a <1或a >9. 引申探究本例(2)中,若f (x )=a 恰有四个互异的实数根,则a 的取值范围是________________. 答案 (0,94)解析 作出y 1=|x 2+3x |,y 2=a 的图象如下:当x =-32时,y 1=94;当x =0或x =-3时,y 1=0,由图象易知,当y 1=|x 2+3x |和y 2=a 的图象有四个交点时,0<a <94.思维升华 已知函数零点情况求参数的步骤及方法(1)步骤:①判断函数的单调性;②利用零点存在性定理,得到参数所满足的不等式(组);③解不等式(组),即得参数的取值范围. (2)方法:常利用数形结合法.(1)(2016·枣庄模拟)已知函数f (x )=x 2+x +a (a <0)在区间(0,1)上有零点,则a 的取值范围为________.(2)(2015·湖南)若函数f (x )=|2x-2|-b 有两个零点,则实数b 的取值范围是________. 答案 (1)(-2,0) (2)(0,2)解析 (1)∵-a =x 2+x 在(0,1)上有解, 又y =x 2+x =(x +12)2-14,∴函数y =x 2+x ,x ∈(0,1)的值域为(0,2), ∴0<-a <2,∴-2<a <0.(2)由f (x )=|2x-2|-b =0,得|2x-2|=b .在同一平面直角坐标系中画出y =|2x-2|与y =b 的图象,如图所示.则当0<b <2时,两函数图象有两个交点,从而函数f (x )=|2x-2|-b 有两个零点. 题型三 二次函数的零点问题例4 已知f (x )=x 2+(a 2-1)x +(a -2)的一个零点比1大,一个零点比1小,求实数a 的取值范围.解 方法一 设方程x 2+(a 2-1)x +(a -2)=0的两根分别为x 1,x 2(x 1<x 2),则(x 1-1)(x 2-1)<0,∴x 1x 2-(x 1+x 2)+1<0,由根与系数的关系,得(a -2)+(a 2-1)+1<0, 即a 2+a -2<0,∴-2<a <1.方法二 函数图象大致如图,则有f (1)<0,即1+(a 2-1)+a -2<0,∴-2<a <1. 故实数a 的取值范围是(-2,1).思维升华 解决与二次函数有关的零点问题:(1)利用一元二次方程的求根公式;(2)利用一元二次方程的判别式及根与系数之间的关系;(3)利用二次函数的图象列不等式组.(2016·临沂一模)若函数f (x )=(m -2)x 2+mx +(2m +1)的两个零点分别在区间(-1,0)和区间(1,2)内,则m 的取值范围是__________.答案 ⎝ ⎛⎭⎪⎫14,12 解析 依题意,结合函数f (x )的图象分析可知m 需满足⎩⎪⎨⎪⎧m ≠2,f -f ,f f ,即⎩⎪⎨⎪⎧m ≠2,[m -2-m +m +m +,[m -2+m +m +m -+2m +m +,解得14<m <12.4.利用转化思想求解函数零点问题典例 (1)若函数f (x )=a x-x -a (a >0且a ≠1)有两个零点,则实数a 的取值范围是________. (2)若关于x 的方程22x+2xa +a +1=0有实根,则实数a 的取值范围为________. 思想方法指导 (1)函数零点个数可转化为两个函数图象的交点个数,利用数形结合求解参数范围.(2)“a =f (x )有解”型问题,可以通过求函数y =f (x )的值域解决.解析 (1)函数f (x )=a x-x -a (a >0且a ≠1)有两个零点,即方程a x-x -a =0有两个根,即函数y =a x与函数y =x +a 的图象有两个交点.当0<a <1时,图象如图①所示,此时只有一个交点. 当a >1时,图象如图②所示,此时有两个交点. ∴实数a 的取值范围为(1,+∞).(2)由方程,解得a =-22x+12x +1,设t =2x (t >0),则a =-t 2+1t +1=-(t +2t +1-1)=2-[(t +1)+2t +1],其中t +1>1, 由基本不等式,得(t +1)+2t +1≥22,当且仅当t =2-1时取等号,故a ≤2-2 2. 答案 (1)(1,+∞) (2)(-∞,2-22]1.设f (x )=ln x +x -2,则函数f (x )的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)答案 B解析 ∵f (1)=ln 1+1-2=-1<0,f (2)=ln 2>0, ∴f (1)·f (2)<0,∵函数f (x )=ln x +x -2的图象是连续的,∴f (x )的零点所在的区间是(1,2).2.(2016·潍坊模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( )A.12 B .-2 C .0或12D .0答案 D解析 当x ≤1时,由f (x )=2x-1=0,解得x =0;当x >1时,由f (x )=1+log 2x =0,解得x =12,又因为x >1,所以此时方程无解. 综上,函数f (x )的零点只有0,故选D.3.已知三个函数f (x )=2x+x ,g (x )=x -2,h (x )=log 2x +x 的零点依次为a ,b ,c ,则( ) A .a <b <c B .a <c <b C .b <a <c D .c <a <b答案 B解析 方法一 由于f (-1)=12-1=-12<0,f (0)=1>0且f (x )为R 上的递增函数.故f (x )=2x+x 的零点a ∈(-1,0). ∵g (2)=0,∴g (x )的零点b =2; ∵h ⎝ ⎛⎭⎪⎫12=-1+12=-12<0,h (1)=1>0,且h (x )为(0,+∞)上的增函数,∴h (x )的零点c ∈⎝ ⎛⎭⎪⎫12,1,因此a <c <b . 方法二 由f (x )=0得2x=-x ;由h (x )=0得log 2x =-x ,作出函数y =2x,y =log 2x 和y =-x 的图象(如图).由图象易知a <0,0<c <1,而b =2, 故a <c <b .4.方程|x 2-2x |=a 2+1(a >0)的解的个数是( ) A .1 B .2 C .3 D .4 答案 B解析 (数形结合法) ∵a >0,∴a 2+1>1.而y =|x 2-2x |的图象如图,∴y =|x 2-2x |的图象与y =a 2+1的图象总有两个交点. 5.已知函数f (x )=⎩⎪⎨⎪⎧1,x ≤0,1x ,x >0,则使方程x +f (x )=m 有解的实数m 的取值范围是( )A .(1,2)B .(-∞,-2]C .(-∞,1)∪(2,+∞)D .(-∞,1]∪[2,+∞) 答案 D解析 当x ≤0时,x +f (x )=m ,即x +1=m ,解得m ≤1;当x >0时,x +f (x )=m ,即x +1x=m ,解得m ≥2,即实数m 的取值范围是(-∞,1]∪[2,+∞).故选D.6.已知x ∈R ,符号[x ]表示不超过x 的最大整数,若函数f (x )=[x ]x-a (x ≠0)有且仅有3个零点,则实数a 的取值范围是________________.答案 ⎝ ⎛⎦⎥⎤34,45∪[43,32)解析 当0<x <1时,f (x )=[x ]x-a =-a ;当1≤x <2时,f (x )=[x ]x -a =1x -a ;当2≤x <3时,f (x )=[x ]x-a =2x-a ;…f (x )=[x ]x -a 的图象是把y =[x ]x 的图象进行纵向平移而得到的,画出y =[x ]x的图象,如图所示,通过数形结合可知a ∈(34,45]∪[43,32).7.若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式af (-2x )>0的解集是________________. 答案 {x |-32<x <1}解析 ∵f (x )=x 2+ax +b 的两个零点是-2,3. ∴-2,3是方程x 2+ax +b =0的两根,由根与系数的关系知⎩⎪⎨⎪⎧-2+3=-a ,-2×3=b .∴⎩⎪⎨⎪⎧a =-1,b =-6,∴f (x )=x 2-x -6. ∵不等式af (-2x )>0,即-(4x 2+2x -6)>0⇔2x 2+x -3<0, 解集为{x |-32<x <1}.8.已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤a ,x 2,x >a .若存在实数b ,使函数g (x )=f (x )-b 有两个零点,则a的取值范围是________. 答案 (-∞,0)∪(1,+∞)解析 令φ(x )=x 3(x ≤a ),h (x )=x 2(x >a ),函数g (x )=f (x )-b 有两个零点,即函数y =f (x )的图象与直线y =b 有两个交点,结合图象(图略)可得a <0或φ(a )>h (a ),即a <0或a 3>a 2,解得a <0或a >1,故a ∈(-∞,0)∪(1,+∞).9.(2016·天津)已知函数f (x )=⎩⎪⎨⎪⎧x 2+a -x +3a ,x <0,log a x ++1,x ≥0(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|f (x )|=2-x3恰有两个不相等的实数解,则a 的取值范围是____________. 答案 ⎣⎢⎡⎭⎪⎫13,23 解析 因为函数f (x )在R 上单调递减,所以⎩⎪⎨⎪⎧02+a -+3a ≥f ,3-4a2≥0,0<a <1.解得13≤a ≤34.作出函数y =|f (x )|,y =2-x3的图象如图.由图象可知,在[0,+∞)上,|f (x )|=2-x3有且仅有一个解;在(-∞,0)上,|f (x )|=2-x 3同样有且仅有一个解,所以3a <2,即a <23.综上可得13≤a <23, 所以a 的取值范围是⎣⎢⎡⎭⎪⎫13,23.*10.(2016·衡水期中)若a >1,设函数f (x )=a x+x -4的零点为m ,函数g (x )=log a x +x -4的零点为n ,则1m +1n的最小值为________.答案 1解析 设F (x )=a x,G (x )=log a x ,h (x )=4-x ,则h (x )与F (x ),G (x )的交点A ,B 横坐标分别为m ,n (m >0,n >0).因为F (x )与G (x )关于直线y =x 对称, 所以A ,B 两点关于直线y =x 对称.又因为y =x 和h (x )=4-x 交点的横坐标为2, 所以m +n =4. 又m >0,n >0,所以1m +1n =(1m +1n )·m +n 4=14(2+n m +m n )≥14(2+2 n m ×mn)=1. 当且仅当n m =m n,即m =n =2时等号成立. 所以1m +1n的最小值为1.11.设函数f (x )=⎪⎪⎪⎪⎪⎪1-1x (x >0).(1)作出函数f (x )的图象;(2)当0<a <b 且f (a )=f (b )时,求1a +1b的值;(3)若方程f (x )=m 有两个不相等的正根,求m 的取值范围. 解 (1)如图所示.(2)∵f (x )=⎪⎪⎪⎪⎪⎪1-1x =⎩⎪⎨⎪⎧1x -1,x ,1],1-1x ,x,+,故f (x )在(0,1]上是减函数,而在(1,+∞)上是增函数. 由0<a <b 且f (a )=f (b ),得0<a <1<b 且1a -1=1-1b,∴1a +1b=2.(3)由函数f (x )的图象可知,当0<m <1时,方程f (x )=m 有两个不相等的正根. 12.关于x 的二次方程x 2+(m -1)x +1=0在区间[0,2]上有解,求实数m 的取值范围. 解 显然x =0不是方程x 2+(m -1)x +1=0的解, 0<x ≤2时,方程可变形为1-m =x +1x,又∵y =x +1x在(0,1]上单调递减,在[1,2]上单调递增,∴y =x +1x在(0,2]上的取值范围是[2,+∞),∴1-m ≥2,∴m ≤-1, 故m 的取值范围是(-∞,-1].*13.已知二次函数f (x )的最小值为-4,关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }.(1)求函数f (x )的解析式; (2)求函数g (x )=f xx-4ln x 的零点个数. 解 (1)∵f (x )是二次函数且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }, ∴设f (x )=a (x +1)(x -3)=ax 2-2ax -3a 且a >0. 又∵a >0,f (x )=a [(x -1)2-4]≥-4,且f (1)=-4a ,∴f (x )min =-4a =-4,a =1.故函数f (x )的解析式为f (x )=x 2-2x -3.(2)∵g (x )=x 2-2x -3x-4ln x=x -3x-4ln x -2 (x >0),∴g ′(x )=1+3x 2-4x=x -x -x2.令g ′(x )=0,得x 1=1,x 2=3.当x 变化时,g ′(x ),g (x )的变化情况如下表:当0<x ≤3时,g (x )≤g (1)=-4<0,g (x )在(3,+∞)上单调递增, g (3)=-4ln 3<0,取x =e 5>3,又g (e 5)=e 5-3e 5-20-2>25-1-22=9>0.故函数g (x )只有1个零点且零点x 0∈(3,e 5).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7讲 函数的图象最新考纲 1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;2.会运用基本初等函数的图象分析函数的性质,并运用函数的图象解简单的方程(不等式)问题.知 识 梳 理1.利用描点法作函数的图象步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.2.利用图象变换法作函数的图象 (1)平移变换(2)对称变换y =f (x )的图象――――――→关于x 轴对称y =-f (x )的图象; y =f (x )的图象――――――→关于y 轴对称y =f (-x )的图象;y =f (x )的图象――――――→关于原点对称y =-f (-x )的图象;y =a x (a >0,且a ≠1)的图象――――――――――→关于直线y =x 对称y =log a x (a >0,且a ≠1)的图象. (3)伸缩变换y =f (x )――――――――――――――――――→纵坐标不变各点横坐标变为原来的1a(a >0)倍y =f (ax ). y =f (x )――――――――――――――――→横坐标不变各点纵坐标变为原来的A (A >0)倍y =Af (x ).(4)翻转变换y =f (x )的图象――――――――――――――――→x 轴下方部分翻折到上方x 轴及上方部分不变y =|f (x )|的图象; y =f (x )的图象――――――――――――――――→y 轴右侧部分翻折到左侧原y 轴左侧部分去掉,右侧不变y =f (|x |)的图象. 诊 断 自 测1.判断正误(在括号内打“√”或“×”)(1)函数y =f (1-x )的图象,可由y =f (-x )的图象向左平移1个单位得到.( )(2)函数y =f (x )的图象关于y 轴对称即函数y =f (x )与y =f (-x )的图象关于y 轴对称.( ) (3)当x ∈(0,+∞)时,函数y =f (|x |)的图象与y =|f (x )|的图象相同.( )(4)若函数y =f (x )满足f (1+x )=f (1-x ),则函数f (x )的图象关于直线x =1对称.( ) 解析 (1)y =f (-x )的图象向左平移1个单位得到y =f (-1-x ),故(1)错.(2)两种说法有本质不同,前者为函数自身关于y 轴对称,后者是两个函数关于y 轴对称,故(2)错.(3)令f (x )=-x ,当x ∈(0,+∞)时,y =|f (x )|=x ,y =f (|x |)=-x ,两函数图象不同,故(3)错.答案 (1)× (2)× (3)× (4)√2.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x关于y 轴对称,则f (x )的解析式为( ) A.f (x )=e x +1B.f (x )=e x -1C.f (x )=e-x +1D.f (x )=e-x -1解析 依题意,与曲线y =e x关于y 轴对称的曲线是y =e -x,于是f (x )相当于y =e -x向左平移1个单位的结果,∴f (x )=e -(x +1)=e-x -1.答案 D3.(2016·浙江卷)函数y =sin x 2的图象是( )解析 ∵y =sin(-x )2=sin x 2,且x ∈R ,∴函数为偶函数,可排除A 项和C 项;当x =π2时,sin x 2=sin π24≠1,排除B 项,只有D 满足. 答案 D4.若函数y =f (x )在x ∈[-2,2]的图象如图所示,则当x ∈[-2,2]时,f (x )+f (-x )=________.解析 由于y =f (x )的图象关于原点对称∴f (x )+f (-x )=f (x )-f (x )=0. 答案 05.若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值范围是________.解析 在同一个坐标系中画出函数y =|x |与y =a -x 的图象,如图所示.由图象知当a >0时,方程|x |=a -x 只有一个解. 答案 (0,+∞)6.(2017·绍兴调研)已知函数f (x )=2x,若函数g (x )的图象与f (x )的图象关于x 轴对称,则g (x )=________;若把函数f (x )的图象向左移1个单位,向下移4个单位后,所得函数的解析式为h (x )=________.解析 ∵g (x )的图象与函数f (x )=2x关于x 轴对称,∴g (x )=-2x,把f (x )=2x的图象向左移1个单位,得m (x )=2x +1,再向下平移4个单位,得h (x )=2x +1-4.答案 -2x2x +1-4考点一 作函数的图象【例1】 作出下列函数的图象:(1)y =⎝ ⎛⎭⎪⎫12|x |;(2)y =|log 2(x +1)|;(3)y =2x -1x -1;(4)y =x 2-2|x |-1.解 (1)先作出y =⎝ ⎛⎭⎪⎫12x 的图象,保留y =⎝ ⎛⎭⎪⎫12x 图象中x ≥0的部分,再作出y =⎝ ⎛⎭⎪⎫12x的图象中x >0部分关于y 轴的对称部分,即得y =⎝ ⎛⎭⎪⎫12|x |的图象,如图①实线部分.(2)将函数y =log 2x 的图象向左平移一个单位,再将x 轴下方的部分沿x 轴翻折上去,即可得到函数y =|log 2(x +1)|的图象,如图②. (3)∵y =2+1x -1,故函数图象可由y =1x图象向右平移1个单位,再向上平移2个单位即得,如图③.(4)∵y =⎩⎪⎨⎪⎧x 2-2x -1,x ≥0,x 2+2x -1,x <0,且函数为偶函数,先用描点法作出[0,+∞)上的图象,再根据对称性作出(-∞,0)上的图象,得图象如图④. 规律方法 画函数图象的一般方法(1)直接法.当函数解析式(或变形后的解析式)是熟悉的基本函数时,就可根据这些函数的特征描出图象的关键点直接作出.(2)图象变换法.若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响. 【训练1】 分别画出下列函数的图象: (1)y =|lg x |;(2)y =sin |x |.解 (1)∵y =|lg x |=⎩⎪⎨⎪⎧lg x ,x ≥1,-lg x ,0<x <1.∴函数y =|lg x |的图象,如图①.(2)当x ≥0时,y =sin|x |与y =sin x 的图象完全相同,又y =sin|x |为偶函数,图象关于y 轴对称,其图象如图②. 考点二 函数图象的辨识【例2】 (1)(2016·全国Ⅰ卷)函数y =2x 2-e |x |在[-2,2]的图象大致为( )(2)(2015·全国Ⅱ卷)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )解析 (1)f (x )=2x 2-e |x |,x ∈[-2,2]是偶函数, 又f (2)=8-e 2∈(0,1),排除选项A ,B. 设g (x )=2x 2-e x ,x ≥0,则g ′(x )=4x -e x. 又g ′(0)<0,g ′(2)>0,∴g (x )在(0,2)内至少存在一个极值点,∴f (x )=2x 2-e |x |在(0,2)内至少存在一个极值点,排除C ,故选D.(2)当x ∈⎣⎢⎡⎦⎥⎤0,π4时,f (x )=tan x +4+tan 2x ,图象不会是直线段,从而排除A ,C.当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,f ⎝ ⎛⎭⎪⎫π4=f ⎝ ⎛⎭⎪⎫3π4=1+5, f ⎝ ⎛⎭⎪⎫π2=22.∵22<1+5,∴f ⎝ ⎛⎭⎪⎫π2<f ⎝ ⎛⎭⎪⎫π4=f ⎝ ⎛⎭⎪⎫3π4,从而排除D ,故选B. 答案 (1)D (2)B规律方法 (1)抓住函数的性质,定性分析①从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.②从函数的单调性,判断图象的变化趋势;③从周期性,判断图象的循环往复.④从函数的奇偶性,判断图象的对称性.(2)抓住函数的特征,定量计算从函数的特征点,利用特征点、特殊值的计算分析解决问题.【训练2】 (1)(2017·安徽“江南十校”联考)函数y =log 2(|x |+1)的图象大致是( )(2)(2017·临沂一模)已知a 是常数,函数f (x )=13x 3+12(1-a )x 2-ax +2的导函数y =f ′(x )的图象如图所示,则函数g (x )=|a x-2|的图象可能是( )解析 (1)y =log 2(|x |+1)是偶函数,当x ≥0时,y =log 2(x +1)是增函数,且过点(0,0),(1,1),只有选项B 满足.(2)由f (x )=13x 3+12(1-a )x 2-ax +2,得f ′(x )=x 2+(1-a )x -a ,根据y =f ′(x )的图象知-1-a2>0,∴a >1. 则函数g (x )=|a x-2|的图象是由函数y =a x的图象向下平移2个单位,然后将x 轴下方的图象翻折到x 轴上方得到的,故选D. 答案 (1)B (2)D考点三 函数图象的应用(多维探究) 命题角度一 研究函数的零点【例3-1】 已知f (x )=⎩⎪⎨⎪⎧|lg x |,x >0,2|x |,x ≤0,则函数y =2f 2(x )-3f (x )+1的零点个数是________.解析 由2f 2(x )-3f (x )+1=0得f (x )=12或f (x )=1作出函数y =f (x )的图象.由图象知y =12与y =f (x )的图象有2个交点,y =1与y =f (x )的图象有3个交点.因此函数y =2f 2(x )-3f (x )+1的零点有5个. 答案 5命题角度二 求不等式的解集【例3-2】 函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式f (x )cos x<0的解集为________. 解析 当x ∈⎝⎛⎭⎪⎫0,π2时,y =cos x >0.当x ∈⎝⎛⎭⎪⎫π2,4时,y =cos x <0.结合y =f (x ),x ∈[0,4]上的图象知,当1<x <π2时,f (x )cos x <0.又函数y =f (x )cos x为偶函数, ∴在[-4,0]上,f (x )cos x <0的解集为⎝ ⎛⎭⎪⎫-π2,-1, 所以f (x )cos x <0的解集为⎝ ⎛⎭⎪⎫-π2,-1∪⎝⎛⎭⎪⎫1,π2.答案 ⎝ ⎛⎭⎪⎫-π2,-1∪⎝⎛⎭⎪⎫1,π2命题角度三 求参数的取值或范围【例3-3】 (2017·杭州五校联盟诊断)若直角坐标平面内两点P ,Q 满足条件:①P ,Q 都在函数y =f (x )的图象上;②P ,Q 关于原点对称,则称(P ,Q )是函数y =f (x )的一个“伙伴点组”(点组(P ,Q )与(Q ,P )看作同一个“伙伴点组”).已知函数f (x )=⎩⎪⎨⎪⎧kx -1,x >0,-ln (-x ),x <0有两个“伙伴点组”,则实数k 的取值范围是( )A.(-∞,0)B.(0,1)C.⎝ ⎛⎭⎪⎫0,12 D.(0,+∞)解析 依题意,“伙伴点组”的点满足:都在y =f (x )的图象上,且关于坐标原点对称. 可作出函数y =-ln(-x )(x <0)关于原点对称的函数y =ln x (x >0)的图象, 使它与直线y =kx -1(x >0)的交点个数为2即可.当直线y =kx -1与y =ln x 的图象相切时,设切点为(m ,ln m ), 又y =ln x 的导数为y ′=1x,则km -1=ln m ,k =1m,解得m =1,k =1,可得函数y =ln x (x >0)的图象过(0,-1)点的切线的斜率为1, 结合图象可知k ∈(0,1)时两函数图象有两个交点. 答案 B规律方法(1)利用函数的图象研究函数的性质,一定要注意其对应关系,如:图象的左右范围对应定义域,上下范围对应值域,上升、下降趋势对应单调性,对称性对应奇偶性. (2)研究方程根的个数或由方程根的个数确定参数的值(范围):构造函数,转化为两函数图象的交点个数问题,在同一坐标系中分别作出两函数的图象,数形结合求解.(3)研究不等式的解:当不等式问题不能用代数法求解,但其对应函数的图象可作出时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.【训练3】(1)(2015·全国Ⅰ卷)设函数y=f(x)的图象与y=2x+a的图象关于直线y=-x对称,且f(-2)+f(-4)=1,则a=( )A.-1B.1C.2D.4(2)已知函数y=f(x)的图象是圆x2+y2=2上的两段弧,如图所示,则不等式f(x)>f(-x)-2x的解集是________.解析(1)设(x,y)是函数y=f(x)图象上任意一点,它关于直线y=-x的对称点为(-y,-x),由y=f(x)的图象与y=2x+a的图象关于直线y=-x对称,可知(-y,-x)在y=2x+a的图象上,即-x=2-y+a,解得y=-log2(-x)+a,所以f(-2)+f(-4)=-log22+a-log24+a=1,解得a=2,选C.(2)由图象可知,函数f(x)为奇函数,故原不等式可等价转化为f(x)>-x.在同一直角坐标系中分别画出y=f(x)与y=-x的图象,由图象可知不等式的解集为(-1,0)∪(1,2].答案(1)C (2)(-1,0)∪(1,2][思想方法]1.识图对于给定函数的图象,要从图象的左右、上下分布范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系.2.用图借助函数图象,可以研究函数的定义域、值域、单调性、奇偶性、对称性等性质.利用函数的图象,还可以判断方程f(x)=g(x)的解的个数,求不等式的解集等.[易错防范]1.图象变换是针对自变量x 而言的,如从f (-2x )的图象到f (-2x +1)的图象是向右平移12个单位,先作如下变形f (-2x +1)=f ⎝ ⎛⎭⎪⎫-2⎝ ⎛⎭⎪⎫x -12,可避免出错. 2.明确一个函数的图象关于y 轴对称与两个函数的图象关于y 轴对称的不同,前者是自身对称,且为偶函数,后者是两个不同函数的对称关系.3.当图形不能准确地说明问题时,可借助“数”的精确,注重数形结合思想的运用.。

相关文档
最新文档