金牌辅导慧博数学八年级(下)北师大版第一单元三角形的证明试题(珍藏)

合集下载

北师大版八年级下《第一章三角形的证明》单元测试题(含答案)

北师大版八年级下《第一章三角形的证明》单元测试题(含答案)

北师大版八年级数学下册第一章 三角形的证明 单元测试题一、精心选一选,慧眼识金(每小题2分,共20分)1.如图1,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带( )去配.A. ①B. ②C. ③D. ①和②2.下列说法中,正确的是( ).A .两腰对应相等的两个等腰三角形全等B .两角及其夹边对应相等的两个三角形全等C .两锐角对应相等的两个直角三角形全等D .面积相等的两个三角形全等3.如图2,AB ⊥CD ,△ABD 、△BCE 都是等腰三角形,如果CD =8cm ,BE =3cm ,那么AC 长为( ).A .4cmB .5cmC .8cmD .34cm4.如图3,在等边ABC ∆中,,D E 分别是,BC AC 上的点,且BD CE =,AD 与BE 相交于点P ,则12∠+∠的度数是( ).A .045B .055C .060D .0755.如图4,在ABC ∆中,AB=AC ,036A ∠=,BD 和CE 分别是ABC ∠和ACB ∠的平分线,且相交于点P. 在图4中,等腰三角形(不再添加线段和字母)的个数为( ).A .9个B .8个C .7个D .6个6.如图5,123,,l l l 表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有( ).A .1处B .2处C .3处D .4处7.如图6,A 、C 、E 三点在同一条直线上,△DAC 和△EBC 都是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论:① △ACE ≌△DCB ;② CM =CN ;③ AC =DN. 其中,正确结论的个数是( ).A .3个B .2个C . 1个D .0个8.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C ,D ,使CD=BC ,再作出BF 的垂线DE ,使A ,C ,E 在同一条直线上(如图7),可以证明ABC ∆≌EDC ∆,得ED=AB. 因此,测得DE 的长就是AB 的长,在这里判定ABC ∆≌EDC ∆的条件是( ).A .ASAB .SASC .SSSD .HL9.如图8,将长方形ABCD 沿对角线BD 翻折,点C 落在点E 的位置,BE 交AD 于点F. 求证:重叠部分(即BDF ∆)是等腰三角形.证明:∵四边形ABCD 是长方形,∴AD ∥BC又∵BDE ∆与BDC ∆关于BD 对称,∴ 23∠=∠. ∴BDF ∆是等腰三角形.请思考:以上证明过程中,涂黑部分正确的应该依次是以下四项中的哪两项?( ). ①12∠=∠;②13∠=∠;③34∠=∠;④BDC BDE ∠=∠A .①③B .②③C .②①D .③④10.如图9,已知线段a ,h 作等腰△ABC ,使AB =AC ,且BC =a ,BC 边上的高AD =h . 张红的作法是:(1)作线段 BC =a ;(2)作线段BC 的垂直平分线MN ,MN 与BC 相交于点D ;(3)在直线MN 上截取线段h ;(4)连结AB ,AC ,则△ABC 为所求的等腰三角形. 上述作法的四个步骤中,有错误的一步你认为是( ).A. (1)B. (2)C. (3)D. (4)二、细心填一填,一锤定音(每小题2分,共20分)1.如图10,已知,在△ABC 和△DCB 中,AC=DB ,若不增加任何字母与辅助线,要使 △ABC ≌△DCB ,则还需增加一个条件是____________.2.如图11,在Rt ABC ∆中,090,BAC AB AC ∠==,分别过点,B C 作经过点A 的直线的垂线段BD ,CE ,若BD=3厘米,CE=4厘米,则DE 的长为_______.3.如图12,P ,Q 是△ABC 的边BC 上的两点,且BP =PQ =QC =AP =AQ ,则∠ABC 等于_________度.4.如图13,在等腰ABC ∆中,AB=27,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若BC E ∆ 的周长为50,则底边BC 的长为_________.5.在ABC ∆中,AB=AC ,AB 的垂直平分线与AC 所在的直线相交所得的锐角为050,则 底角B 的大小为________.6.在《证明二》一章中,我们学习了很多定理,例如:①直角三角形两条直角边的平方和 等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等;④线段 垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到这个角两边的 距离相等.在上述定理中,存在逆定理的是________.(填序号)7.如图14,有一张直角三角形纸片,两直角边AC=5cm ,BC=10cm ,将△ABC 折叠,点B 与点A 重合,折痕为DE ,则CD 的长为________.8.如图15,在ABC ∆中,AB=AC ,0120A ∠=,D 是BC 上任意一点,分别做DE ⊥AB 于E ,DF ⊥AC 于F ,如果BC=20cm ,那么DE+DF= _______cm.9.如图16,在Rt △ABC 中,∠C =90°,∠B =15°,DE 是AB 的中垂线,垂足为D ,交BC 于点E ,若4BE =,则AC =_______ .10.如图17,有一块边长为24m 的长方形绿地,在绿地旁边B 处有健身器材, 由于居住在A 处的居民践踏了绿地,小颖想在A 处立一个标牌“少走_____步,踏之何忍?”但小颖不知在“_____”处应填什么数字,请你帮助她填上好吗?(假设两步为1米)?三、耐心做一做,马到成功(本大题共48分)1.(7分)如图18,在∆ABC 中,090ACB ∠=,CD 是AB 边上的高, 030A ∠=. 求证:AB= 4BD.2.(7分)如图19,在∆ABC 中,090C ∠=,AC=BC ,AD 平分CAB ∠交BC 于点D ,DE ⊥AB 于点E ,若AB=6cm. 你能否求出BDE ∆的周长?若能,请求出;若不能,请说明理由.3.(10分)如图20,D 、E 分别为△ABC 的边AB 、AC 上的点,BE 与CD 相交于O 点. 现有四个条件:①AB =AC ;②OB =OC ;③∠ABE =∠ACD ;④BE =CD .(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确..的命题: 命题的条件是 和 ,命题的结论是 和 (均填序号).(2)证明你写出的命题.已知:求证:证明:4.(8分)如图21,在ABC ∆中,090A ∠=,AB=AC ,ABC ∠的平分线BD 交AC 于D ,CE⊥BD 的延长线于点E.求证:12CE BD =.5.(8分)如图22,在∆ABC 中,090C ∠=.(1)用圆规和直尺在AC 上作点P ,使点P 到A 、B 的距离相等.(保留作图痕迹,不写作法和证明);(2)当满足(1)的点P 到AB 、BC 的距离相等时,求∠A 的度数.6.(8分)如图23,090AOB ∠=,OM 平分AOB ∠,将直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA 、OB 相交于点C 、D ,问PC 与PD 相等吗?试说明理由.四、拓广探索(本大题12分)如图24,在∆ABC 中,AB=AC ,AB 的垂直平分线交AB 于点N ,交BC 的延长线于点M ,若040A ∠=.(1)求NMB ∠的度数;(2)如果将(1)中A ∠的度数改为070,其余条件不变,再求NMB ∠的度数;(3)你发现有什么样的规律性,试证明之;(4)若将(1)中的A ∠改为钝角,你对这个规律性的认识是否需要加以修改?答案:一、精心选一选,慧眼识金1.C ;2.B ;3.D .点拨:BC=BE=3cm ,AB=BD=5cm ;4.C .点拨:利用ABD ∆≌BCE ∆;5.B ;6.D .点拨:三角形的内角平分线或外角平分线的交点处均满足条件;7.B .点拨:① ②正确;8.A ;9.C ;10.C .点拨:在直线MN 上截取线段h ,带有随意性,与作图语言的准确性不相符.二、细心填一填,一锤定音1.答案不惟一.如ACB DBC ∠=∠;2.7厘米. 点拨:利用ABD ∆≌CAE ∆;3.030;4.23.点拨:由27BE CE AC AB +===,可得502723BC =-=;5.070或020.点拨;当ABC ∆为锐角三角形时,070B ∠=;当ABC ∆为钝角三角形时,020B ∠=;6.①、③、④、⑤.点拨:三个角对应相等的两个三角形不一定是全等三角形,所以②不存在逆定理;7.154cm . 点拨:设C D x =,则易证得10BD AD x ==-.在Rt ACD ∆中,222(10)5x x -=+,解得154x =. 8.10.点拨:利用含030角的直角三角形的性质得,()1122DE DF BD CD BC +=+=. 9.2. 点拨:在Rt AEC ∆中,030AEC ∠=,由AE=BE= 4,则得AC=2;10.16.点拨:AB=26米,AC+BC=34米,故少走8米,即16步.三、耐心做一做,马到成功1.∵090ACB ∠=,030A ∠=,∴AB=2BC ,060B ∠=.又∵CD ⊥AB ,∴030DCB ∠=,∴BC=2BD. ∴AB= 2BC= 4BD.2.根据题意能求出BDE ∆的周长.∵090C ∠=,090DEA ∠=,又∵AD 平分CAB ∠,∴DE=DC.在Rt ADC ∆和Rt ADE ∆中,DE=DC ,AD=AD ,∴Rt ADC ∆≌Rt ADE ∆(HL ). ∴AC=AE ,又∵AC=BC ,∴AE=BC.∴BDE ∆的周长DE DB EB BC EB AE EB AB =++=+=+=.∵AB=6cm ,∴BDE ∆的周长=6cm.3.(1)①,③;②,④.(2)已知:D 、E 分别为△ABC 的边AB 、AC 上的点,BE 与CD 相交于O 点,且AB =AC ,∠ABE =∠ACD.求证:OB =OC ,BE =CD .证明:∵AB=AC ,∠ABE =∠ACD ,∠A=∠A ,∴△ABE ≌△ACD (ASA ).∴BE=CD. 又∵ABC ACB ∠=∠,∴BCD ACB ACD ABC ABE CBE ∠=∠-∠=∠-∠=∠∴BOC ∆是等腰三角形,∴OB =OC.4.延长CE 、BA 相交于点F.∵0090,90EBF F ACF F ∠+∠=∠+∠=,∴EBF ACF ∠=∠.在Rt ABD ∆和Rt ACF ∆中,∵DBA ACF ∠=∠,AB=AC ,∴Rt ABD ∆≌Rt ACF ∆(ASA ). ∴BD CF =.在Rt BCE ∆和Rt BFE ∆中,∵BE=BE ,EBC EBF ∠=∠,∴Rt BCE ∆≌Rt BFE ∆(ASA ).∴CE EF =. ∴1122CE CF BD ==. 5.(1)图略. 点拨:作线段AB 的垂直平分线.(2)连结BP. ∵点P 到AB 、BC 的距离相等,∴BP 是ABC ∠的平分线, ∴ABP PBC ∠=∠.又∵点P 在线段AB 的垂直平分线上,∴PA=PB ,∴A ABP ∠=∠. ∴00190303A ABP PBC ∠=∠=∠=⨯=. 6.过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点F.∵OM 平分AOB ∠,点P 在OM 上,∴PE=PF. 又∵090AOB ∠=,∴090EPF ∠=. ∴EPF CPD ∠=∠,∴E P C F P D∠=∠. ∴Rt PCE ∆≌Rt PDF ∆(ASA ),∴PC=PD. 四、拓广探索(1)∵AB=AC ,∴B ACB ∠=∠. ∴()()000011180180407022B A ∠=-∠=-=. ∴000090907020NMB B ∠=-∠=-=.(2)解法同(1).同理可得,035NMB ∠=.(3)规律:NMB ∠的度数等于顶角A ∠度数的一半.证明:设A α∠=.∵AB=AC ,∴B C ∠=∠,∴()011802B α∠=-. ∵090BNM ∠=,∴()00011909018022NMB B αα∠=-∠=--=. 即NMB ∠的度数等于顶角A ∠度数的一半. (4)将(1)中的A ∠改为钝角,这个规律不需要修改.仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.。

北师大版八年级数学下册第一章 三角形的证明练习(包含答案)

北师大版八年级数学下册第一章 三角形的证明练习(包含答案)

第一章三角形的证明一、单选题1.已知等腰三角形的一个角等于42°,则它的底角为:()A.42°B.69°C.69°或84°D.42°或69°2.等腰三角形的两条边长分别为9cm和12cm,则这个等腰三角形的周长是()A.30cm B.33cm C.24cm或21cm D.30cm或33cm 3.如图所示,V ABC是等边三角形,且BD=CE,∠1=15︒,则∠2的度数为()A.15︒B.30°C.30°D.60︒4.下列各组线段能构成直角三角形的是()A.1,2,3B.7,12,13C.5,8,10D.15,20,255.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP的长不可能是()A.3.5B.4.2C.5.8D.76.如图,在V ABC中,∠A=90︒,∠C=30︒,PQ垂直平分BC,与AC交于点P,下列结论正确的是(). ∠ △°A . PC < 2P AB . PC > 2P AC . AB < 2P AD . AB > 2P A7.在联欢会上,有 A 、B 、C 三名选手站在一个三角形的三个顶点位置上,他们在玩“抢凳子”游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在 ∆ABC 的()A .三边中垂线的交点C .三条角平分线的交点B .三边中线的交点D .三边上高的交点8 如图所示,Rt△ABC 中, C 90° △AB 的垂直平分线 DE 交 BC 于 D ,交 AB 于点 E .当∠B 30时,图中一定不相等的线段有()△A .AC △AE BEC .△CD DEB .AD △BDD .AC △BD9.如图,△ABC 中,AB =5,AC =4,以点 A 为圆心,任意长为半径作弧,分别交 A B 、AC于 D 和 E ,再分别以点 D 、E 为圆心,大于二分之一 DE 为半径作弧,两弧交于点 F ,连接AF 并延长交 BC 于点 G ,GH ⊥AC 于 H ,GH =2,则△ABG 的面积为( )A.4B.5C.9D.1010.已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④二、填空题11.如图,已知在∆ABC中,AB=AC,点D在边BC上,要使BD=CD,还需添加一个条件,这个条件是_____________________.(只需填上一个正确的条件)12.如图是一块菜地,已知AD=8米,CD=6米,∠D=90︒,AB=26米,BC=24米.则这块菜地的面积是_____.13.如图,在V ABC中,AC=BC,分别以点A和点C为圆心,大于1AC长为半径画2弧,两弧相交于点M、N,连接MN分别交BC、AC于点D、E,连接AD.若∠B=70︒,则∠BAD的度数是_____度.14.如图,∆ABC中,∠BAC=90︒,AD⊥BC,∠ABC的平分线BE交AD于点F,AG 平分∠DAC.给出下列结论:①∠BAD=∠C;②∠EBC=∠C;③AE=AF;④FG//AC;⑤EF=FG.其中正确的结论是______.三、解答题15.如图,在△ABC中,AB=AC,D为BC上一点,∠B=30°,连接AD.(1)若∠BAD=△45°,求证:ACD为等腰三角形;(△2)若ACD为直角三角形,求∠BAD的度数.16.如图,已知O是等边三角形ABC内一点,D是线段BO延长线上一点,且OD=OA,∠AOB=120︒,求∠BDC的度数.17.如图,一架2.5m长的梯子AB斜靠在一竖直墙AO上,这时AO为2.4m.(1)求OB的长度;(2)如果梯子底端B沿地面向外移动0.8m到达点C,那么梯子顶端A下移多少m?△18.如图,在ABC中,边AB的垂直平分线OM与边AC的垂直平分线ON交于点O,分别交BC于点D、E,已知△ADE的周长5cm.(1)求BC的长;(2)分别连接OA、OB、△OC,若OBC的周长为13cm,求OA的长.19.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以点D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN.(1)求证:MN=BM+NC;(2)△求AMN的周长.答案1.D 2.D 3.D 4.D 5.D 6.C.△, ,△, △﹣ △, △﹣ ﹣ △,△, △,△, △﹣ ﹣ △﹣ ﹣ 7.A8.D9.B10.C11.AD ⊥BC12.96△△△13.3014.①③④15.(1) AB=AC B=30°B= C=30°BAC=180°30°﹣30°=120°, BAD=45°CAD= BAC BAD=120° 45°=75°△, ADC= B+ BAD=75° ADC= CADAC=CD△即 ACD 为等腰三角形;(2)有两种情况: △当 ADC=90°△时,B=30°BAD= ADC B=90° 30°=60°;△当 CAD=90°△时, BAD= BAC CAD=120° 90°=30°;△即 BAD 的度数是 60°或 30°.⎨∠BAO = ∠CAD16.∵∠AOB=120°,∴∠AOD=60°∵AO=OD ,∴△AOD 是等边三角形∴ ∠BAC = 60︒ , AB = AC∵△ABC 是等边三角形,∴∠BAC=60°,AB=AC∴∠BAC=∠OAD ,∴∠BAO+△OAC=△OAC+△CAD△∴∠BAO= CAD在△BAO 和△CAD 中⎧ AO = AD ⎪⎪ ⎩AB = AC∴ ∆ABO ≌ ∆ACD∴ ∠AOB = ∠ADC = 120︒△ ∠BDC = ∠ADC - ∠ADO = 60︒17.(1)解:在 Rt ∆AOB 中,由勾股定理OB 2 = AB 2 - AO 2= 2.52 - 2.4 2= 0.49∴ OB = 0.49 = 0.7(2)设梯子的 A 端下移到 D , OC = 0.7 + 0.8 = 1.5∴在Rt∆OCD中,由勾股定理∴OD2=CD2-DC2=2.52-1.52=4∴OD=4=2∴顶端A下移了:2.4=2=0.4m18.解:(1)∵DM是线段AB的垂直平分线,∴DA=DB,同理,EA=EC,∵△ADE的周长5,∴AD+DE+EA=5,∴BC=DB+DE+EC=AD+DE+EA=5(cm);(△2)∵OBC的周长为13,∴OB+OC+BC=13,∵BC=5,∴OB+OC=8,∵OM垂直平分AB,∴OA=OB,同理,OA=OC,∴OA=OB=OC=4(cm).19.解:(1)∵△BDC是等腰三角形,且∠BDC=120°,∴∠BCD=∠DBC=30°.∵△ABC是等边三角形,∴∠ABC=∠BCA=60°,∴∠DBA=∠DCA=90°,延长AB至F,使BF=CN,连接DF,由SAS△可证BDF≌△CDN,∴∠BDF=∠CDN,DF=DN,∵∠MDN=60°,∴∠FDM=∠BDM+∠CDN=60°,由SAS△可证DMN≌△DMF,∴MN=MF=MB+BF=MB+CN(2)由(1)知MN=MB+CN,∴△AMN的周长为AM+AN+MN=AM+MB+AN+CN=AB+AC=6。

慧博金牌辅导北师版8年级数学(下)第一章三角形的证明试题(珍藏版)

慧博金牌辅导北师版8年级数学(下)第一章三角形的证明试题(珍藏版)

八年级数学(下)单元学习质量测评 第一章三角形的证明试题( A ) 温馨提示:亲爱的同学们:数学就是力量,自信决定成绩。

请你灵动智慧,缜密思考,细致作答,保持良好的心理状态,养成良好的做题习惯,将是你终身的财富。

答题前,请你先通览全卷;答题时,请你认真审题,做到先易后难;答题后,要注意检查.现在让我们一起走进数学的世界,发挥你的聪明才智,成功一定属于你! 1.3线段的垂直平分线 一、选择题 1.如图,△ABC 中,AB =5,AC =6,BC =4,边AB 的垂直平分线交AC 于点D ,则△BDC 的周长是( )A. 8B. 9C. 10D.11 2.如图,△ABC 中,BD 平分∠ABC ,BC 的中垂线交BC 于点E ,交BD 于点F ,连接CF .若∠A =60°,∠ABD =24°,则∠ACF 的度数为( ) A. 48° B. 36° C. 30° D. 24° 3.如图,在等腰△ABC 中,一腰AB 的垂直平分线交另一腰AC 于点G ,若已知AB =10,△GBC 的周长为17,则底BC 的长为( ) A. 10 B. 9 C. 7 D. 5 4.如图,AB =AC ,∠A =40°,AB 的垂直平分线DE 交AC 于点E ,垂足为D ,则∠EBC 的度数是( )A. 30°B. 40°C. 70°D. 80° 5.如图,在△ABC 中,AB 的垂直平分线分别交AB ,AC 于D ,E 两点,且AC =10,BC =4,则△BCE 的周长为( ) A. 6 B. 14 C. 18 D. 24 6.如图,在Rt △ABC 中,∠C =90°,AC =12,AB =13,AB 边的垂直平分线分别交AB 、AC 于N 、M 两点,则△BCM 的周长为( ) A. 18 B. 16 C. 17 D. 无法确定 7.如果三角形三条边的中垂线的交点在三角形的外部,那么,这个三角形是( ) A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D. 等边三角形 8. 已知MN 是线段AB 的垂直平分线,C ,D 是MN 上任意两点,则∠CAD 和∠CBD 之间的大小关系是( )A .∠CAD <∠CBDB .∠CAD =∠CBDC .∠CAD >∠CBD D.无法确定 9. 已知△ABC 中,AB =AC ,AB 的垂直平分线交AC 于D ,△ABC 和△DBC 的周长分别是60 cm 和38 cm ,则△ABC 的腰和底边长分别为( ) A .24 cm 和12 cm B .16 cm 和22 cm C .20 cm 和16 cm D .22 cm 和16 cm 10.如图,地面上有三个洞口A 、B 、C ,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A 、B 、C 三个点的距离相等),尽快抓到老鼠,应该蹲守在( ) A .△ABC 三边垂直平分线的交点 B .△ABC 三条角平分线的交点C .△ABC 三条高所在直线的交点D .△ABC 三条中线的交点 11. 三角形内有一点到三角形三顶点的距离相等,则这点一定是三角形的( ) A .三条中线的交点 B .三边垂直平分线的交点 C .三条高的交点 D .三条角平分线的交点 12. △ABC 中,AB =AC ,AB 的垂直平分线与直线AC 相交所成锐角为40°,则此等腰三角形的顶角为( )A .50°B .60°C .150°D .50°或130° 13. 如图,在Rt △ABC 中,∠C =90°,直线DE 是斜边AB 的垂直平分线交AC 于D .若AC =8,BC =6,则△DBC 的周长为( ) A .12 B .14 C .16 D .无法计算 14. 如图,在△ABC 中,AB =A ,AC =B ,BC 边上的垂直平分线DE 交BC 、BA 分别于点D 、E ,则△AEC 的周长等于( ) A .A +B B .A -B C .2A +B D .A +2B 15. 如图,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( ) A .在AC ,BC 两边高线的交点处 B .在AC ,BC 两边中线的交点处C .在AC ,BC 两边垂直平分线的交点处D .在∠A ,∠B 两内角平分线的交点处 二、填空题 16.△ABC 中,AB =AC ,∠BAC =120°,AC 的垂直平分线EF 交AC 于E ,交BC 于F .若FC =3 cm ,则BF =_________. 120°可求出∠B 的度数,由直角三角形的性质即可求出BF =2AF =2CF =6 cm. 17. 如图,ED 为△ABC 的AC 边的垂直平分线,且AB =5,△BCE 的周长为8,则BC =________. 18.如图,已知在△ABC 中,AB =AC =10,DE 垂直平分AB ,垂足为E ,DE 交AC 于D ,若△BDC 的周长为16,则BC =__________ . 19. 如图,在等腰三角形ABC 中,AB =AC ,DE 垂直平分AB ,已知∠ADE =40°,则∠DBC = 20. 点P 在线段AB 的垂直平分线上,PA =7,则PB = _________. 三、解答题 21. 某公园有海盗船、摩天轮、碰碰车三个娱乐项目,现要在公园内建一个售票中心,使 三个娱乐项目所处位置到售票中心的距离相等,请在图中确定售票中心的位置. 答案:解:如图,①连接AB ,AC , ②分别作线段AB ,AC 的垂直平分线,两垂直平分线相较于点P ,则P 即为售票中心 解析:由三个娱乐项目所处位置到售票中心的距离相等,可得售票中心是海盗船、摩天轮、碰碰车三个娱乐场组成三角形的三边的垂直平分线的交点. 22.如图,在△ABC 中,∠C =90°,DE 垂直平分AB ,分别交AB ,BC 于D ,E .若∠CAE =∠B +30°,求∠AEB 的度数 答案:140° 解析:解:∵DE 垂直平分AB , ∴AE =BE , ∴∠B =∠EAB . ∵∠C =90°,∠CAE =∠B +30°, ∴∠B +30°+∠B +∠B =90°, ∴∠B =20°, ∴∠AEB =180°-20°-20°=140°. 分析:根据线段垂直平分线求出AE =BE ,推出∠B =∠EAB ,根据已知和三角形内角和定理得出∠B +30°+∠B +∠B =90°,求出∠B ,即可得出答案. 23.如图,在△ABC 中,AB =AC ,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E . (1)求证:△ABD 是等腰三角形; (2)若∠A =40°,求∠DBC 的度数; (3)若AE =6,△CBD 的周长为20,求△ABC 的周长 答案:(1)证明:∵AB 的垂直平分线MN 交AC 于点D ,∴DB =DA , ∴△ABD 是等腰三角形. (2)30°(3)32 解析:解:(1)证明:∵AB 的垂直平分线MN 交AC 于点D ,∴DB =DA , ∴△ABD 是等腰三角形; (2)∵△ABD 是等腰三角形,∠A =40°, ∴∠ABD =∠A =40°,∠ABC =∠C =(180°-40°)÷2=70°. ∴∠BDC =∠ABC -∠ABD =70°-40°=30°. (3)∵AB 的垂直平分线MN 交AC 于点D ,AE =6, ∴AB =2AD =12. ∵△CBD 的周长为20, ∴AC +BC =20, ∴△ABC 的周长=AB +AC +BC =12+20=32. 分析:(1)根据线段的垂直平分线到线段两端点的距离相等即可得证; (2)首先利用三角形内角和求得∠ABC 的度数,然后减去∠ABD 的度数即可得到答案; (3)将△ABC 的周长转化为AB +AC +BC 的长即可求得. 24.如图所示,在△ABC 中,DE 是边AB 的垂直平分线,交AB 于E ,交AC 于D ,连接BD . (1)若∠ABC =∠C ,∠A =50°,求∠DBC 的度数. (2)若AB =AC ,且△BCD 的周长为18 cm ,△ABC 的周长为30 cm ,求BE 的长. 答案:(1)15°;(2)6 cm 解析:解:(1)∵∠A =50°, ∴∠ABC =∠C =65°. 又∵DE 垂直平分AB , ∴∠A =∠ABD =50°, ∴∠DBC =∠ABC -∠ABD =15°. (2)∵DE 是AB 的垂直平分线, ∴AD =BD ,AE =BE , ∴△BCD 的周长=BC +CD +BD =BC +CD +AD =BC +AC =18 cm . ∵△ABC 的周长=30 cm , ∴AB =30-18=12 cm , ∴BE =AE =6 cm . 分析:(1)已知∠A =50°,易求∠ABC 的度数.又因为DE 垂直平分AB 根据线段垂直平分线的性质易求出∠DBC 的度数.(2)同样利用线段垂直平分线的性质:垂直平分线上任意一点,和线段两端点的距离相等可解. 25.已知:如图,在△ABC 中,MN 是边AB 的中垂线,∠MAC =50°,∠C =3∠B ,求∠B 的度数 答案:B =26° 解析:解:∵MN 是边AB 的中垂线, ∴AM =BM , ∴∠BAM =∠B . 设∠B =x ,则∠BAM =x , ∵∠C =3∠B ,∴∠C =3x , 在△ABC 中,由三角形内角和定理,得x +x +3x +50°=180°, ∴x =26°, 即∠B =26° 分析:根据线段垂直平分线性质得出AM =BM ,推出∠BAM =∠B ,设∠B =x ,则∠BAM =x ,∠C =3x ,在△ABC 中,由三角形内角和定理得出方程x+x+3x+50°=180°,求出即可 友情提示:祝贺你,终于将考题做完了,请你再仔细的检查一遍,看看有没有错的、漏的,可要仔细点!。

北师大版八年级数学下册第一章 三角形的证明练习(含答案)

北师大版八年级数学下册第一章 三角形的证明练习(含答案)

第一章 三角形的证明一、单选题1.如图,△ABC 中,△B =60°,AB =AC ,BC =3,则△ABC 的周长为( )A .9B .8C .6D .122.在△ABC 中,AB=AC ,△C=75°, 则△A 的度数是( )A .30°B .50°C .75°D .150°3.如果一个三角形是轴对称图形,且有一个内角是60°,那么这个三角形是( ) A .等边三角形B .等腰直角三角形C .等腰三角形D .含30°角的直角三角形4.如图,过等边△ABC 的顶点A 作射线,若△1=20°,则△2的度数是( )A .100°B .80°C .60°D .40°5.以下列各组数据中的三个数作为三角形的边长,其中不能构成直角三角形的是 ( )A .3,4,5B .1,2C .5,6,7D .1,16.已知a 、b 、c 是三角形的三边长,若满足2(6)100a c --=,则这个三角形的形状是( )A .等腰三角形B .等边三角形C .锐角三角形D .直角三角形7.如图,在ABC V 中,BA BC =,120ABC ∠=︒,AB 的垂直平分线交AC 于点M ,交AB 于点E ,BC 的垂直平分线交AC 于点N 交BC 于点F ,连接BM ,BN ,若24AC =,则BMN △的周长是( )A .36B .24C .18D .168.如图,在ABC V 中,以点A 为圆心,AC 的长为半径作弧,与BC 交于点E ,分别以点E ,C 为圆心,大于12EC 的长为半径作弧,两弧相交于点P ,作射线AP 交BC 于点D .若45B ∠=︒,2C CAD ∠=∠,则BAC ∠的度数为( )A .80︒B .75︒C .65︒D .30°9.如图,在R △ABC 中,△ACB =90°,AC =6,BC =8,E 为AC 上一点,且AE =85,AD 平分△BAC 交BC 于D .若P 是AD 上的动点,则PC +PE 的最小值等于( )A .185B .245C .4D .26510.在Rt ABC ∆中,90ACB ∠=︒,点D E 、是AB 边上两点,且CE 垂直平分,AD CD 平分,6BCE AC cm ∠=,则BD 的长为( )A .6cmB .7cmC .8cmD .9cm二、填空题 11.若等腰三角形的一个内角的度数为48°,则其顶角的度数为_____.12.如图,在ABC ∆中,AD 是边BC 上的高,BE 平分ABC ∠交AC 于点E ,60BAC ∠=︒,25EBC ∠=︒,则DAC ∠=_______.13.如图,△AOD 关于直线l 进行轴对称变换后得到△BOC ,那么对于(1)△DAO =△CBO ,△ADO =△BCO (2)直线l 垂直平分AB 、CD (3)△AOD 和△BOC 均是等腰三角形(4)AD =BC ,OD =OC 中不正确的是_____.14.已知△ABC 的周长是20,OB 、OC 分别平分△ABC 和△ACB ,OD△BC 于D ,且OD=3,则△ABC 的面积是 .三、解答题15.如图,在等边ABC V 中,点D ,E 分别在边BC ,AC 上,且//DE AB ,过点E 作EF DE ⊥,交BC 的延长线于点F .(1)求F ∠的度数;(2)若3CD =,求DF 的长.16.如图,在四边形ABCD 中,AB=BC=1,DA=1,且△B=90°,求:(1)△BAD 的度数;(2)四边形ABCD 的面积(结果保留根号).17.已知如图,在△ABC 中,△B =45°,点D 是BC 边的中点,DE △BC 于点D ,交AB 于点E ,连接CE .(1)求△AEC 的度数;(2)请你判断AE 、BE 、AC 三条线段之间的等量关系,并证明你的结论.18.如图,点O 是等边ABC ∆内一点,110AOB ∠=︒,BOC α∠=.以OC 为一边作等边三角形OCD ,连接AC 、AD .(1)若120α=︒,判断OB OD +_______BD (填“>,<或=”)(2)当150α=︒,试判断AOD ∆的形状,并说明理由;(3)探究:当α=______时,AOD ∆是等腰三角形.(请直接写出答案)答案1.A2.A3.A4.A5.C6.D7.B8.B9.D10.A11.84°或48°.12.20°13.(3)14.30.15.解:(1)ABC ∆Q 是等边三角形,60B ∴∠=︒,//DE AB Q ,60EDC B ∴∠=∠=︒,EF DE ⊥Q ,90DEF ∴∠=︒,9030F EDC ∴∠=︒-∠=︒;(2)60ACB ∠=︒Q ,60EDC ∠=︒,EDC ∴∆是等边三角形.3ED DC ∴==,90DEF ∠=︒Q ,30F ∠=︒,26DF DE ∴==.16.解:(1)连接AC ,如图所示:△AB=BC=1,△B=90°=又△AD=1,△ AD 2+AC 2=3 CD 22=3即CD 2=AD 2+AC 2△△DAC=90°△AB=BC=1△△BAC=△BCA=45°△△BAD=135°;(2)由(1)可知△ABC 和△ADC 是Rt△,△S 四边形ABCD =S △ABC +S △ADC =1×1×12×12=12+ . 17.解:(1)△点D 是BC 边的中点,DE △BC ,△DE 是线段BC 的垂直平分线,△EB =EC ,△△ECB =△B =45°,△△AEC =△ECB +△B =90°;(2)AE 2+EB 2=AC 2.△△AEC =90°,△AE 2+EC 2=AC 2,△EB =EC ,△AE 2+EB 2=AC 2.18.解:(1)=(2)ADO ∆是直角三角形.(3)α为125︒、110︒、140︒时,AOD ∆是等腰三角形。

新版北师大版八年级下册第1章《三角形的证明》单元测试试卷及答案(3)

新版北师大版八年级下册第1章《三角形的证明》单元测试试卷及答案(3)

新版北师大版八年级下册第1章《三角形的证明》单元测试试题及参考答案(3)一、选择题(共6小题,每小题3分,满分18分)1.(3分)下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A. ①②③B. ①②④C. ①③D. ①②③④2.(3分)(2013•邢台一模)如图,AC=BC=10cm,∠B=15°,AD⊥BC于点D,则AD的长为()A. 3cmB. 4cmC. 5cmD. 6cm3.(3分)(2006•曲靖)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()A. 25°B. 30°C. 45°D. 60°4.(3分)如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是()A. 等腰三角形B. 等边三角形C. 不等边三角形D. 不能确定形状5.(3分)(2004•河南)如图,在一个房间内,有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA为a米,此时梯子的倾斜角为75°,如果梯子的底端不动,顶端靠在对面墙上,此时梯子的顶端距地面的垂直距离NB为b米,梯子的倾斜角为45°,则这间房子的宽AB为()A.米B.米C. b米D. a米6.(3分)(2012•深圳)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A. 6B. 12C. 32D. 64二、填空题(共4小题,每小题3分,满分12分)7.(3分)如图所示,在△ABC中,AB=AC=20cm,∠BAC=150°,则S△ABC=_________ cm2.8.(3分)(2007•天津)如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD=_________.9.(3分)如图所示,∠AOB=30°,OC平分∠AOB,P为OC上任意一点,PD∥OA交OB于点D,PE⊥OA于点E,若PE=2cm,则PD=_________cm.10.(3分)(2011•济宁)如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则=_________.三、解答题(共3小题,满分0分)11.(2011•日照)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD 延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.12.如图1,在Rt△ACB中,∠ACB=90°,∠ABC=30°AC=1点D为AC上一动点,连接BD,以BD为边作等边△BDE,EA的延长线交BC的延长线于F,设CD=n,(1)当n=1时,则AF=_________;(2)当0<n<1时,如图2,在BA上截取BH=AD,连接EH,求证:△AEH为等边三角形.13.(2013•抚顺)在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是_________;(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D 逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.(3分)下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A. ①②③B. ①②④C. ①③D. ①②③④考点:等边三角形的判定.分析:根据等边三角形的判定判断.解答:解:①两个角为60度,则第三个角也是60度,则其是等边三角形,故正确;②这是等边三角形的判定2,故正确;③三个外角相等则三个内角相等,则其是等边三角形,故正确;④根据等边三角形三线合一性质,故正确.所以都正确.故选D.点评:此题主要考查学生对等边三角形的判定的掌握情况.2.(3分)(2013•邢台一模)如图,AC=BC=10cm,∠B=15°,AD⊥BC于点D,则AD的长为()A. 3cmB. 4cmC. 5cmD. 6cm考点:含30度角的直角三角形.分析:根据等边对等角的性质可得∠B=∠BAC,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠ACD=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半解答即可.解答:解:∵AC=BC,∴∠B=∠BAC=15°,∴∠ACD=∠B+∠BAC=15°+15°=30°,∵AD⊥BC,∴AD=AC=×10=5cm.故选C.点评:本题考查了等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质是解题的关键.3.(3分)(2006•曲靖)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()A. 25°B. 30°C. 45°D. 60°考点:等边三角形的判定与性质.专题:压轴题.分析:先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.解答:解:△ABC沿CD折叠B与E重合,则BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选B.点评:考查直角三角形的性质,等边三角形的判定及图形折叠等知识的综合应用能力及推理能力.4.(3分)如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是()A. 等腰三角形B. 等边三角形C. 不等边三角形D. 不能确定形状考点:等边三角形的判定.分析:先证得△ABE≌△ACD,可得AE=AD,∠BAE=∠CAD=60°,即可证明△ADE是等边三角形.解答:解:∵△ABC为等边三角形∴AB=AC∵∠1=∠2,BE=CD∴△ABE≌△ACD∴AE=AD,∠BAE=∠CAD=60°∴△ADE是等边三角形.故选B.点评:此题主要考查学生对等边三角形的判定及三角形的全等等知识点的掌握.5.(3分)(2004•河南)如图,在一个房间内,有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA为a米,此时梯子的倾斜角为75°,如果梯子的底端不动,顶端靠在对面墙上,此时梯子的顶端距地面的垂直距离NB为b米,梯子的倾斜角为45°,则这间房子的宽AB为()A.米B.米C. b米D. a米考点:解直角三角形的应用-坡度坡角问题;等边三角形的性质.专题:压轴题.分析:根据CM=CN以及∠MCN的度数可得到△CMN为等边三角形.利用相应的三角函数表示出MN,MC的长,可得到房间宽AB和AM长相等.解答:解:过N点作MA垂线,垂足点D,连接NM.设梯子底端为C点,AB=x,且AB=ND=x.∴△BNC为等腰直角三角形,△CNM为等边三角形(180﹣45﹣75=60°,梯子长度相同∵∠NCB=45°,∴∠DNC=45°,∴∠MND=60°﹣45°=15°,∴cos15°=,又∵∠MCA=75°,∴∠AMC=15°,∴cos15°=,故可得:=.∵△CNM为等边三角形,∴NM=CM.∴x=MA=a.故选D.点评:此题是解直角三角形的知识解决实际生活中的问题,作辅助线很关键.6.(3分)(2012•深圳)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A. 6B. 12C. 32D. 64考点:等边三角形的性质;含30度角的直角三角形.专题:压轴题;规律型.分析:根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.解答:解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故选:C.点评:此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.二、填空题(共4小题,每小题3分,满分12分)7.(3分)如图所示,在△ABC中,AB=AC=20cm,∠BAC=150°,则S△ABC=100cm2.考点:含30度角的直角三角形;等腰三角形的性质.分析:过C作CD⊥BA,交BA延长线于D,求出CD,根据三角形面积公式求出即可.解答:解:过C作CD⊥BA,交BA延长线于D,∵∠BAC=150°,∴∠DAC=30°,∴DC=AC=10cm,∴S△ABC=AB×CD=×20×10=100(cm2),故答案为:100.点评:本题考查了三角形的面积,含30度角的直角三角形性质的应用,关键是求出△ABC的高.8.(3分)(2007•天津)如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD=3.考点:含30度角的直角三角形.分析:由于∠C=90°,∠ABC=60°,可以得到∠A=30°,又由BD平分∠ABC,可以推出∠CBD=∠ABD=∠A=30°,∴BD=AD=6,再30°角所对的直角边等于斜边的一半即可求出结果.解答:解:∵∠C=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠CBD=∠ABD=∠A=30°,∴BD=AD=6,∴CD=BD=6×=3.故填空答案:3.点评:本题利用了直角三角形的性质和角的平分线的性质求解.9.(3分)如图所示,∠AOB=30°,OC平分∠AOB,P为OC上任意一点,PD∥OA交OB于点D,PE⊥OA于点E,若PE=2cm,则PD=4cm.考点:角平分线的性质;含30度角的直角三角形.分析:首先过点P作PF⊥OB于点F,由OC平分∠AOB,PE⊥OA于点E,易得PF=PE,由PD∥OA,可求得∠PDF=30°,然后由含30°角的直角三角形的性质,求得答案.解答:解:过点P作PF⊥OB于点F,∵OC平分∠AOB,PE⊥OA,∴PF=PE=2cm,∵PD∥OA,∴∠PDF=∠AOB=30°,∴PD=2PF=4cm.故答案为:4.点评:此题考查了角平分线的性质以及含30°角的直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.10.(3分)(2011•济宁)如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则=.考点:等边三角形的性质;全等三角形的判定与性质;含30度角的直角三角形.专题:压轴题.分析:首先根据题意推出△CAE≌△BCD,可知∠DCB=∠CAE,因此∠AFG=∠CAF+∠ACF=∠ACF+∠DCB=60°,所以∠FAG=30°,即可推出结论.解答:解:∵AD=BE,∴CE=BD,∵等边三角形ABC,∴△CAE≌△DCB,∴∠DCB=∠CAE,∴∠AFG=∠CAF+∠ACF=∠ACF+∠DCB=60°,∵AG⊥CD,∴∠FAG=30°,∴FG:AF=.故答案为.点评:本题主要考查全等三角形的判定和性质、含30度角的直角三角形的性质、等边三角形的性质,解题的关键在于根据题意推出△CAE≌△DCB和∠AFG=∠CAF+∠ACF=∠ACF+∠DCB=60°.三、解答题(共3小题,满分0分)11.(2011•日照)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD 延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.考点:全等三角形的判定与性质;等边三角形的判定与性质;等腰直角三角形.专题:证明题;压轴题.分析:(1)根据等腰直角△ABC,求出CD是边AB的垂直平分线,求出CD平分∠ACB,根据三角形的外角性质求出∠BDE=∠CDE=60°即可.(2)连接MC,可得△MDC是等边三角形,可求证∠EMC=∠ADC.再证明△ADC≌△EMC即可.解答:证明:(1)∵△ABC是等腰直角三角形,∴∠BAC=∠ABC=45°,∵∠CAD=∠CBD=15°,∴∠BAD=∠ABD=45°﹣15°=30°,∴BD=AD,∴D在AB的垂直平分线上,∵AC=BC,∴C也在AB的垂直平分线上,即直线CD是AB的垂直平分线,∴∠ACD=∠BCD=45°,∴∠CDE=15°+45°=60°,∴∠BDE=∠DBA+∠BAD=60°;∴∠CDE=∠BDE,即DE平分∠BDC.(2)如图,连接MC.∵DC=DM,且∠MDC=60°,∴△MDC是等边三角形,即CM=CD.∠DMC=∠MDC=60°,∵∠ADC+∠MDC=180°,∠DMC+∠EMC=180°,∴∠EMC=∠ADC.又∵CE=CA,∴∠DAC=∠CEM.在△ADC与△EMC中,,∴△ADC≌△EMC(AAS),∴ME=AD=BD.点评:此题主要考查等腰直角三角形,全等三角形的判定与性质,等边三角形的判定与性质的等知识点,难易程度适中,是一道很典型的题目.12.如图1,在Rt△ACB中,∠ACB=90°,∠ABC=30°AC=1点D为AC上一动点,连接BD,以BD为边作等边△BDE,EA的延长线交BC的延长线于F,设CD=n,(1)当n=1时,则AF=2;(2)当0<n<1时,如图2,在BA上截取BH=AD,连接EH,求证:△AEH为等边三角形.考点:含30度角的直角三角形;全等三角形的判定与性质;等边三角形的性质.专题:动点型.分析:(1)根据三角形内角和定理求出∠BAC=60°,再根据平角等于180°求出∠FAC=60°,然后求出∠F=30°,根据30°角所对的直角边等于斜边的一半求解即可;(2)根据三角形的任意一个外角等于与它不相邻的两个内角的和利用∠CBD表示出∠ADE=30°+∠CBD,又∠HBE=30°+∠CBD,从而得到∠ADE=∠HBE,然后根据边角边证明△ADE与△HBE全等,根据全等三角形对应边相等可得AE=HE,对应角相等可得∠AED=∠HEB,然后推出∠AEH=∠BED=60°,再根据等边三角形的判定即可证明.解答:(1)解:∵△BDE是等边三角形,∴∠EDB=60°,∵∠ACB=90°,∠ABC=30°,∴∠BAC=180°﹣90°﹣30°=60°,∴FAC=180°﹣60°﹣60°=60°,∴∠F=180°﹣90°﹣60°=30°,∵∠ACB=90°,∴∠ACF=180°﹣90°,∴AF=2AC=2×1=2;(2)证明:∵△BDE是等边三角形,∴BE=BD,∠EDB=∠EBD=60°,在△BCD中,∠ADE+∠EDB=∠CBD+∠C,即∠ADE+60°=∠CBD+90°,∴∠ADE=30°+∠CBD,∵∠HBE+∠ABD=60°,∠CBD+∠ABD=30°,∴∠HBE=30°+∠CBD,∴∠ADE=∠HBE,在△ADE与△HBE中,,∴△ADE≌△HBE(SAS),∴AE=HE,∠AED=∠HEB,∴∠AED+∠DEH=∠DEH+∠HEB,即∠AEH=∠BED=60°,∴△AEH为等边三角形.点评:本题考查了30°角所对的直角边等于斜边的一半的性质,全等三角形的判定与性质,等边三角形的性质与判定,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,(2)中求出∠ADE=∠HBE是解题的关键.13.(2013•抚顺)在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是DE=BC;(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D 逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.考点:全等三角形的判定与性质;等边三角形的判定与性质;含30度角的直角三角形.分析:(1)由∠ACB=90°,∠A=30°得到∠B=60°,根据直角三角形斜边上中线性质得到DB=DC,则可判断△DCB为等边三角形,由于DE⊥BC,DE=BC;(2)根据旋转的性质得到∠PDF=60°,DP=DF,易得∠CDP=∠BDF,则可根据“SAS”可判断△DCP≌△DBF,则CP=BF,利用CP=BC﹣BP,DE=BC可得到BF+BP=DE;(3)与(2)的证明方法一样得到△DCP≌△DBF得到CP=BF,而CP=BC+BP,则BF﹣BP=BC,所以BF﹣BP=DE.解答:解:(1)∵∠ACB=90°,∠A=30°,∴∠B=60°,∵点D是AB的中点,∴DB=DC,∴△DCB为等边三角形,∵DE⊥BC,∴DE=BC;故答案为DE=BC.(2)BF+BP=DE.理由如下:∵线段DP绕点D逆时针旋转60°,得到线段DF,∴∠PDF=60°,DP=DF,而∠CDB=60°,∴∠CDB﹣∠PDB=∠PDF﹣∠PDB,∴∠CDP=∠BDF,在△DCP和△DBF中,∴△DCP≌△DBF(SAS),∴CP=BF,而CP=BC﹣BP,∴BF+BP=BC,∵DE=BC,∴BC=DE,∴BF+BP=DE;(3)如图,与(2)一样可证明△DCP≌△DBF,∴CP=BF,而CP=BC+BP,∴BF﹣BP=BC,∴BF﹣BP=DE.点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质以及含30度的直角三角形三边的关系.。

(常考题)北师大版初中数学八年级数学下册第一单元《三角形的证明》测试卷(答案解析)

(常考题)北师大版初中数学八年级数学下册第一单元《三角形的证明》测试卷(答案解析)

一、选择题1.如图,在ABC 中,PD ,PE 分别是AC ,BC 边的垂直平分线,且分别与AB 交于点M ,N 连接CM ,CN .有下列四个结论:①P A B ∠=∠+∠;②ACB MCN P ∠=∠+∠;③ACB ∠与P ∠是互为补角;④MCN △的周长与AB 边长相等其中正确结论的个数是( )A .1B .2C .3D .42.如图,在等腰三角形ABC 中,AB AC =,DE 垂直平分AB ,已知40ADE ∠=︒,则DBC ∠度数为( )A .5︒B .15︒C .20︒D .25︒3.如图,在△ABC 中,AB =AC ,∠BAC =64°,∠BAC 的平分线与AB 的垂直平分线交于点O ,点E 、F 分别在BC 、AC 上,点C 沿EF 折叠后与点O 重合,则∠BEO 的度数是( )A .26°B .32°C .52°D .58° 4.下列几组数能作为直角三角形三边长的是( ) A .3,4,6 B .1,13C .5,12,14 D 555 5.已知,如图,BC=DC ,∠B+∠D=180°. 连接AC ,在AB ,AC ,AD 上分别取点E ,P ,F ,连接PE ,PF . 若AE=4,AF=6,△APE 的面积为4,则△APF 的面积是( )A .2B .4C .6D .86.如图,在ABD ∆中,AD AB =,90DAB ︒∠=,在ACE ∆中,AC AE =,90EAC ︒∠=,CD ,BE 相交于点F ,有下列四个结论: ①BDC BEC ∠=∠;②FA 平分DFE ∠;③DC BE ⊥;④DC BE =.其中,正确的结论有( )A .①②③④B .①③④C .②③D .②③④ 7.如图所示,O 为直线AB 上一点,OC 平分∠AOE ,∠DOE =90°,则①∠AOD 与∠BOE 互为余角;②OD 平分∠COA ;③若∠BOE =56°40',则∠COE =61°40';④∠BOE =2∠COD .结论正确的个数为( )A .4B .3C .2D .1 8.在下列命题中,真命题是( )A .同位角相等B .到线段距离相等的点在线段垂直平分线上C .三角形的外角和是360°D .角平分线上的点到角的两边相等9.如图,在四边形ABCD 中,90A BDC ∠=∠=︒,C ADB ∠=∠,点P 是BC 边上的一动点,连接DP ,若3AD =,则DP 的长不可能是( )A .2B .3C .4D .510.如图,ABC 中,AB 的垂直平分线分别交AB 、BC 于点D 、E ,AC 的垂直平分线分别交AC 、BC 于点F 、G ,若100BAC ∠=︒,则EAG ∠的度数是( )A .10°B .20°C .30°D .40° 11.如图,AB AC =,CD CE =.过点C 的直线FG 与DE 平行,若38A ∠=︒,则1∠为( )A .42°B .54.5°C .58°D .62.5°12.若以Rt ABC △的一边为边画一个等腰三角形,使它的第三个顶点也在Rt ABC △的其他边上,则这样的等腰三角形最多能画出( )A .3个B .5个C .6个D .7个二、填空题13.如图,已知点D 为△ABC 内一点,AD 平分∠CAB ,BD ⊥AD ,∠C =∠CBD .若AC =10,AB =6,则AD 的长为_____.14.如图,已知:30MON ︒∠=,点1A 、2A 、3A ⋯在射线ON 上,点1B 、2B 、3B ⋯在射线OM 上,112A B A ∆、223A B A ∆、334A B A ∆⋯均为等边三角形,若11OA =,则9910A B A ∆的边长为________.15.上午9时,一条船从海岛A 出发,以12海里/时的速度向正北航行,11时到达海岛B 处,如图,海岛A 在灯塔C 的南偏西32°方向,灯塔C 在海岛B 的北偏东64°方向,则灯塔C 到海岛B 的距离是______海里.16.如图,在ABC 中,90ACB ∠=︒,AD 是它的角平分线,若:3:2AB AC =,且2BD =,则点D 到直线AB 的距离为______.17.如图所示,在ABC 中,AB AC =,BAD ∠=α,且AE AD =,则EDC ∠=______.18.等腰三角形腰上的高与另一腰的夹角为30°,则底角度数是_________.19.如图,已知∠MON=30°,点123,,A A A ...在射线ON 上,点123,,B B B ...在射线OM 上,112233334,,A B A A B A A B A ∆∆∆..均为等边三角形,若11OA =,则202020202021A B A ∆的边长为_______.20.如图,在ABC 中,90,,,ACB AC BC CE BE CE ∠=︒=⊥与AB 相交于点F ,且CD BE =,则ACD CBA DAF ∠∠∠、、之间的数量关系是_____________.三、解答题21.如图,已知E 、F 分别是ABC 的边AB 和AC 上的两个定点,在BC 上找一点M ,使EFM △的周长最小.(不写作法,保留作图痕迹)22.已知A (3, 5),B (-1, 2),C (1, 1).(1)在所给的平面直角坐标系中作出△ABC ;(2)△ABC 是直角三角形吗?请说明理由.23.如图,在等腰ABC 中,AB AC =,045ACB ︒<∠<︒,点C 关于直线AB 的对称点为点D ,连接BD 与CA 的延长线交于点E ,在BC 上取点F ,使得BF DE =,连接AF .(1)依题意补全图形.(2)求证:AF AE =.24.如图,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,BE 、CD 交于F .(1)求证:BE =CD ;(2)连接CE ,若BE =CE ,求证:从“①DE ⊥AC”、“②DE ∥AB”中选择一个填入(2)中,并完成证明25.如图,已知等腰ABC 的底边13BC cm =,D 是腰BA 延长线上一点,连接CD ,且12BD cm =,5CD cm =.(1)判断BDC 的形状,并说明理由;(2)求ABC 的周长.26.实践与探究如图1,三角尺ABC 和三角尺DEF 是两个全等的直角三角尺,其中,∠A =∠D =60°,∠B =∠E =30°,∠C =∠F =90°.操作发现(1)如图2,将三角尺ABC 和三角尺DEF 如图摆放,连接CF ,交AB 于点G ,请你证明CG= FG ;(2)在图2的基础上,将三角尺DEF 沿BA 方向平移至图3的位置,兴趣小组发现CG 仍然与FG 相等,请你证明CG= FG ;(3)在图3的基础上,将三角尺DEF 沿BA 方向继续平移,使CF 经过点A ,如图4所示,兴趣小组测得BD =20.4cm ,则三角尺DEF 由图2所示位置平移至图4 的位置,平移的距离为_______cm (直接写出答案,不写过程).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据四边形内角和等于360°,即可得出③正确,再根据三角形内角和定理、等腰三角形的性质可得结论①②正确;根据线段的垂直平分线的性质得到MA MC =,NB NC =,即可判定④正确.【详解】解:∵PD ,PE 分别是AC ,BC 边的垂直平分线,∴90CDP ∠=︒,90CEP ∠=︒,又∵360P AC DP B C CE P ∠∠+∠=∠++︒,∴180P ACB ∠=︒∠+,故结论③正确;又∵180AC A B B ∠+︒∠+∠=, ∴P A B ∠=∠+∠,故结论①正确; 直线PD 是AC 的垂直平分线,AM CM ∴=,∴A ACM ∠=∠同理,NB NC =,B BCN ∠=∠,∵AC MC ACB M N N BC ∠∠+∠∠=+,∴M ACB N A C B ∠∠∠=+∠+,∴ACB MCN P∠=∠+∠,故结论②正确;△的周长为MC MN NCAMN=++,∴AMN的周长=AM MN NB AB++=,故结论④正确;综上所述,①②③④正确,共4个.故选D.【点睛】本题主要考查了线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.2.B解析:B【分析】根据线段垂直平分线求出AD=BD,推出∠A=∠ABD=50°,根据三角形内角和定理和等腰三角形性质求出∠ABC,即可得出答案.【详解】解:∵DE垂直平分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°-40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=1(180°-∠A)=65°,2∴∠DBC=∠ABC-∠ABD=65°-50°=15°,故选:B.【点睛】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形内角和定理的应用,能正确运用定理求出各个角的度数是解此题的关键.3.C解析:C【分析】连结OB,根据角平分线定义得到∠OAB=32°,再根据等腰三角形的性质得到∠ABC=∠ACB,再根据线段垂直平分线的性质得到OA=OB,则∠OBA=∠OAB,所以得出∠1,由于AB=AC,OA平分∠BAC,根据等腰三角形的性质得OA垂直平分BC,则BO=OC,所以得出∠1=∠2,然后根据折叠的性质得到EO=EC,于是∠2=∠3,再根据三角形内角和定理计算∠OEC,解答即可.【详解】解:连结OB、OC,∵∠BAC=64°,∠BAC的平分线与AB的中垂线交于点O,∴∠OAB=32°,∵AB=AC,∠BAC=64°,∴∠ABC=∠ACB=58°,∵OD垂直平分AB,∴OA=OB,∴∠OBA=∠OAB=32°,∴∠1=58°-32°=26°,∵AB=AC,OA平分∠BAC,∴OA垂直平分BC,∴BO=OC,∴∠1=∠2=26°,∵点C沿EF折叠后与点O重合,∴EO=EC,∴∠2=∠3=26°,∴∠BEO=∠2+∠3=52°,故选择:C.【点睛】本题考查了线段的垂直平分线的性质和等腰三角形的性质,折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.4.D解析:D【分析】要能作为直角三角形三边长,需验证两小边的平方和等于最长边的平方.【详解】解:A、32+42≠62,不符合勾股定理的逆定理,不是直角三角形,不符合题意;B、12+12≠32,不符合勾股定理的逆定理,不是直角三角形,不符合题意;C、52+122≠142,不符合勾股定理的逆定理,不是直角三角形,不符合题意;D52+(52=52,符合勾股定理的逆定理,是直角三角形,符合题意;故选:D.【点睛】本题考查了勾股定理的逆定理:已知△ABC 的三边满足a 2+b 2=c 2,则△ABC 是直角三角形. 5.C解析:C【分析】作PG AB ⊥于点G ,PJ AD ⊥于点J ,延长AD ,取DH AB =,连接CH ,先证明()ABC HDC SAS ≅,由全等三角形对应边相等、对应角相等,得到,BAC H AC CH ∠=∠=,结合等边对等角得到BAC CAD ∠=∠,再由角平分线的性质证得PG PJ =,最后根据三角形面积公式解题即可.【详解】解:如图,作PG AB ⊥于点G ,PJ AD ⊥于点J ,延长AD ,取DH AB =,连接CH ,180,180B ADC ADC CDH ∠+∠=︒∠+∠=︒B CDH ∴∠=∠BC CD B CDH AB BH =⎧⎪∠=∠⎨⎪=⎩()ABC HDC SAS ∴≅,BAC H AC CH ∴∠=∠=CAD H ∴∠=∠BAC CAD ∴∠=∠PG PJ ∴=142APE S AE PG =⋅= 2PG ∴=2PJ ∴=1162622APF S AF PJ ∴=⋅=⨯⨯= 故选:C.【点睛】本题考查全等三角形的判定与性质、等边对等角、角平分线的性质等知识,是重要考点,难度一般,作出正确的辅助线、掌握相关知识是解题关键.6.D解析:D【分析】由△ABD 和△ACE 都是等腰直角三角形得出AB=AD ,AE=AC ,∠BAD=∠CAE=90°,再进一步得出∠DAC=∠BAE 证得△ABE ≌△ADC ,可以判断①③④;作AP ⊥CD 于P ,AQ ⊥BE 于Q ,利用面积相等证得AP= AQ ,再利用角平分线的判定定理即可判断②.【详解】∵△ABD 和△ACE 都是等腰直角三角形,∴AB=AD ,AE=AC ,∠BDA=∠ECA=45︒,又∵∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC ,即:∠DAC=∠BAE ,在△ABE 和△ADC 中,AB AD BAE DAC AE AC =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADC (SAS ),∴BE=DC ,故④正确;∠ADF=∠ABF ,∴∠BDC=45︒-∠ADF ,∠BEC=45︒-∠AEF ,而∠ADF=∠ABF ≠∠AEF ,∴∠BDC ≠∠BEC ,故①错误;∵∠ADF+∠FDB+∠DBA=90°,∴∠FDB+∠DBA+∠ABF=90°,∴∠DFB=90°,∴CD ⊥BE ,故③正确;作AP ⊥CD 于P ,AQ ⊥BE 于Q ,∵△ABE ≌△ADC ,∴ABE ADC S S =,∵BE=DC ,∴AP= AQ ,∵AP ⊥CD ,AQ ⊥BE ,∴FA 平分∠DFE ,故②正确;综上,②③④正确;故选:D .【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,角平分线的判定,熟练掌握全等三角形的判定与性质是解本题的关键.7.B解析:B【分析】由平角的定义与90DOE ∠=︒,即可求得AOD ∠与∠BOE 互为余角;又由角平分线的定义,可得22AOE COE AOC ∠=∠=∠,即可求得2BOE COD ∠=∠,若5640BOE ∠=︒',则6140COE ∠=︒'.【详解】解:90DOE ∠=︒,90COD COE ∴∠+∠=︒,90EOB DOA ∴∠+∠=︒,故①正确; OC 平分AOE ∠,22AOE COE AOC ∴∠=∠=∠;1801802BOE AOE COE ∴∠=︒-∠=︒-∠,90COD COE ∠=︒-∠,2BOE COD ∴∠=∠,90AOD BOE ∠=︒-∠,故②不正确,④正确;若5640BOE ∠=︒',180AOE BOE ∠+∠=︒,11(180)(1805640)614022COE BOE ∴∠=︒-∠=︒-︒'=︒'. 故③正确;∴①③④正确.故答案为:B .【点睛】此题考查了平角的定义与角平分线的定义.题目中要注意各角之间的关系,解题时要仔细识图.8.C解析:C【分析】直接利用同位角的定义及线段垂直平分线的判定、多边形的外角和、角平分线的性质等知识分别判断得出答案.【详解】解:A.同位角相等,错误,是假命题;B.不是到线段距离相等的点在线段垂直平分线上,而是到线段两端点距离相等的点在这条线段的垂直平分线上,是假命题;C.三角形的外角和是360°,是真命题;D.角平分线上的点到角的两边的距离相等,不是角平分线上的点到角的两边相等,是假命题.故选:C .【点睛】本题主要考查了命题与定理,正确掌握相关定义是解题关键.9.A解析:A【分析】由三角形的内角和定理和角的和差求出∠ABD =∠CBD ,角平分线的性质定理得AD =DH ,垂线段定义证明DH 最短,求出DP 长的最小值为3,即可得到正确答案 .【详解】过点D 作DH ⊥BC 交BC 于点H ,如图所示:∵∠A=∠BDC=90° ,又∵∠C +∠BDC +∠DBC =180°,∠ADB +∠A +∠ABD =180°,∴∠ABD =∠CBD ,∴BD 是∠ABC 的角平分线,又∵AD ⊥AB ,DH ⊥BC ,∴AD =DH ,又∵AD =3,∴DH =3,∴当点P 在BC 上运动时,点P 运动到与点H 重合时DP 最短,其长度为DH 长等于3,即DP 长的最小值为3,故DP 的长不可能是2,故选:A .【点睛】本题综合考查了三角形的内角和定理,角的和差,角平分线的性质定理,垂线段的定义等知识点,重点掌握角平分线的性质定理,难点是作垂线段找线段的最小值.10.B解析:B【分析】根据三角形内角和定理求出∠C +∠B ,根据线段的垂直平分线的性质得到EA =EB ,根据等腰三角形的性质得到∠EAB =∠B ,同理,∠GAC =∠C ,计算即可.【详解】解:∵∠BAC =100°,∴∠C +∠B =180°−100°=80°,∵DE 是AB 的垂直平分线,∴EA =EB ,∴∠EAB =∠B ,同理:∠GAC =∠C ,∴∠EAB +∠GAC =∠C +∠B =80°,∴∠EAG =100°−80°=20°,故选B .【点睛】本题考查的是线段的垂直平分线的性质和等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.11.B解析:B【分析】根据等腰三角形的性质求得∠ACB 与∠CDE 度数,再利用两直线平行,内错角相等求∠1即可.【详解】解:∵AB=AC ,∠A=38︒,∴∠B=∠ACB=1802A ︒-∠=218038︒-︒=71︒, ∵CD=CE ,∴∠CED=∠CDE =2180ACB ︒-∠=218071︒-︒=54.5︒, ∵DE //FG , ∴∠1=∠CED=54.5︒,故选:B .【点睛】此题考查等腰三角形的性质、平行线的性质,关键是根据等腰三角形中角度的求解. 12.D解析:D【分析】先以Rt △ABC 三个顶点分别为圆心,再以每个顶点所在的较短边为半径画弧,即可确定等腰三角形的第三个顶点,也可以作三边的垂直平分线确定等腰三角形的第三个顶点.【详解】解:如图1,以B 为圆心,BC 长为半径画弧,交AB 于点D ,连接CD ,则△BCD 是等腰三角形;如图2,以A 为圆心,AC 长为半径画弧,交AB 于点D ,连接CD ,则△ACD 是等腰三角形;如图3,作AB 的垂直平分线,交AC 于点D ,连接BD ,则△BCD 是等腰三角形; 如图4,以C 为圆心,BC 长为半径画弧,交AC 于点D ,交AB 于点F ,连接BD ,CF 则△BCD 、△BCF 是等腰三角形;如图5,作BC 的垂直平分线,交AB 于点D ,连接CD ,则△BCD 是等腰三角形; 如图6,作AC 的垂直平分线,交AB 于点D ,连接CD ,△ACD 是等腰三角形, ∴符合题意的等腰三角形最多能画7个,故选:D .【点睛】本题考查等腰三角形的判定的应用,通过作垂直平分线或者画弧的方法确定相等的边是解题关键.二、填空题13.4【分析】延长BD交AC于E证明△ABE是等腰三角形利用等腰三角形三线合一得BD=DE再由等角对等边得CE=BE=4最后由勾股定理可得答案【详解】解:如图延长BD交AC于E∵BD⊥AD∴∠ADE=∠解析:42【分析】延长BD交AC于E,证明△ABE是等腰三角形,利用等腰三角形三线合一得BD=DE,再由等角对等边得CE=BE=4,最后由勾股定理可得答案.【详解】解:如图,延长BD交AC于E,∵BD⊥AD,∴∠ADE=∠ADB=90°,∵AD平分∠CAB,∴∠EAD=∠BAD,∴∠AED=∠ABD,∴AE=AB=6,∴DE=BD,∵AC=10,∴CE=10﹣6=4,∵∠C=∠CBD,∴BE=CE=4,∴BD1=BE=2,2由勾股定理得:AD2222AB BD=--=2.62故答案为:2【点睛】本题考查的是勾股定理,等腰三角形的性质和判定,熟练掌握等腰三角形的性质和判定是关键.14.【分析】利用等边三角形的性质得到∠B1A1A2=60°A1B1=A1A2则可计算出∠A1B1O=30°所以A1B1=A1A2=OA1利用同样的方法得到A2B2=A2A3=OA2=2OA1A3B3=A解析:256【分析】利用等边三角形的性质得到∠B 1A 1A 2=60°,A 1B 1=A 1A 2,则可计算出∠A 1B 1O=30°,所以A 1B 1=A 1A 2=OA 1,利用同样的方法得到A 2B 2=A 2A 3=OA 2=2OA 1,A 3B 3=A 3A 4=22•OA 1,A 4B 4=A 4A 5=23•OA 1,利用此规律得到A n B n =A n A n+1=2n-1•OA 1.【详解】解:∵△A 1B 1A 2为等边三角形,∴∠B 1A 1A 2=60°,A 1B 1=A 1A 2,∵∠MON=30°,∴∠A 1B 1O=30°,∴A 1B 1=OA 1=1,∴A 1B 1=A 1A 2=OA 1=1,同理可得A 2B 2=A 2A 3=OA 2=2OA 1=2,∴A 3B 3=A 3A 4=OA 3=2OA 2=22•OA 1=22,A 4B 4=A 4A 5=OA 4=2OA 3=23•OA 1=23,…,∴A n B n =A n A n+1=2n-1•OA 1=2n-1.则△A 9B 9A 10的边长为28=256.故答案为:256.【点睛】本题考查了规律型:图形的变化类,等边三角形的性质以及等腰三角形的性质,解决本题的关键是根据图形的变化寻找规律.15.24【分析】作点C 垂直AB 于点DBE 垂直CE 于点E 由题意可求出AB 的长继而根据方位角可求出∠ACE=∠CAB=∠BCA 即可求解;【详解】解:如图作点C 垂直AB 于点DBE 垂直CE 于点E 由题意知:船的速解析:24【分析】作点C 垂直AB 于点D ,BE 垂直CE 于点E ,由题意可求出AB 的长,继而根据方位角可求出∠ACE=∠CAB=∠BCA ,即可求解;【详解】解:如图,作点C 垂直AB 于点D ,BE 垂直CE 于点E ,由题意知:船的速度为12海里,时间为2小时,∴ ()1211924AB =⨯-=,∵∠CBD=64°,∴∠BCD=90°-64°=26°,∵∠ACE=32°,∴∠BCA=90°-26°-32°=32°,∴∠ACE=∠CAB=∠BCA=32°,∴AB=BC=24,故答案为:24.【点睛】本题考查了平行线的性质,方位角以及等腰三角形的性质,正确掌握知识点是解题的关键.16.【分析】根据角平分线的性质利用面积比求出BD:DC=3:2代入求值即可【详解】解:∵平分∠BACDC ⊥ACDE ⊥AB ∴DC=DE ∵∴即点到直线的距离为故答案为:【点睛】本题考查了角平分线的性质解题关 解析:43【分析】根据角平分线的性质,利用面积比求出BD:DC=3:2,代入2BD =求值即可.【详解】解:∵AD 平分∠BAC ,DC ⊥AC ,DE ⊥AB ,∴DC=DE ,12ABD S AB DE =⨯⨯,12ACD S AC CD =⨯⨯, 132122ABD ACD AB DE SS AC CD ⨯⨯==⨯⨯,12ABD S DB AC =⨯⨯, 1212ABD ACD DB AC S S AC CD ⨯⨯=⨯⨯, 32BD CD =, ∵2BD =,∴43CD =, 43ED = 即点D 到直线AB 的距离为43, 故答案为:43. 【点睛】 本题考查了角平分线的性质,解题关键是利用面积公式,通过角平分线的性质得出面积比,再根据面积比求出边长比.17.【分析】根据等边对等角和三角形的外角性质列出等式整理即可得出结论【详解】解:根据题意:在△ABC 中AB=AC ∴∠B=∠C ∵AE=AD ∴∠ADE=∠AED ∴∠B+∠α-∠EDC=∠C+∠EDC 化简可得解析:12α 【分析】根据等边对等角,和三角形的外角性质列出等式整理即可得出结论.【详解】解:根据题意:在△ABC 中,AB=AC ,∴∠B=∠C ,∵AE=AD ,∴∠ADE=∠AED ,∴∠B+∠α-∠EDC=∠C+∠EDC ,化简可得:∠α=2∠EDC ,∴∠EDC=12α, 故答案为:12α.【点睛】本题考查了等腰三角形的性质,三角形外角定理,关键是熟悉三角形的一个外角等于与它不相邻的两个内角的和的知识点.18.60°或30°【分析】由于此高不能确定是在三角形的内部还是在三角形的外部所以要分锐角三角形和钝角三角形两种情况求解【详解】解:分两种情况:①在左图中AB=ACBD ⊥AC ∠ABD=30°∴∠A=60°解析:60°或30°【分析】由于此高不能确定是在三角形的内部,还是在三角形的外部,所以要分锐角三角形和钝角三角形两种情况求解.【详解】解:分两种情况:①在左图中,AB=AC ,BD ⊥AC ,∠ABD=30°,∴∠A=60°,∴∠C=∠ABC=180602A ︒-∠=︒; ②在右图中,AB=AC ,BD ⊥AC ,∠ABD=30°,∴∠DAB=60°,∠BAC=120°,∴∠C=∠ABC=180302BAC ︒-∠=︒. 故答案为:30°或60°.【点睛】 本题考查了等腰三角形的定义、直角三角形两锐角互余.由于题中没有图,要根据已知画出图形并注意要分类讨论.19.【分析】根据等边三角形的性质等腰三角形的性质以及含角的直角三角形得出得出以此类推进而得到答案【详解】∵是等边三角形∴∴∵∴∴∵∴∴∵是等边三角形同理可得:∴∴以此类推∴的边长故答案为:【点睛】本题考 解析:20192【分析】根据等边三角形的性质、等腰三角形的性质以及含30角的直角三角形得出22122A B B A =,得出331244A B B A ==,441288A B B A ==,551216A B B A =,以此类推,进而得到答案.【详解】∵112A B A ∆是等边三角形,∴1121A B A B =,11211212160A B A B A A A A B ∠=∠=∠=︒,∴11120OA B ∠=︒,∵30MON ∠=︒,∴11111801801203030OB A OA B MON ∠=︒-∠-∠=︒-︒-︒=︒,∴1211112306090OB A OB A A B A ∠=∠+∠=︒+︒=︒,∵1130MON OB A ∠=∠=︒,∴1111OA A B ==,∴211A B =,∵233A B A ∆、334A B A ∆是等边三角形,同理可得:∴22122A B B A =,33232A B B A =,∴3123312242A B B A -===,4134412282A B B A -===,51455122162A B B A -===,以此类推,∴202020202021A B A ∆的边长20192=,故答案为:20192.【点睛】本题考查了规律性-图形的变化类,等边三角形的性质、等腰三角形的性质,30角的锐角三角函数,解答本题的关键是通过观察图形的变化寻找出规律.20.【分析】先利用同角的余角相等得到=再通过证得到即再利用三角形内角和得可得最后利用角的和差即可得到答案=【详解】证明:∵∴∴=又∵∴∴即∵∴即∴=故答案为:【点睛】本题考查了直角三角形的性质内角和定理 解析:=ACD CBA DAF ∠∠∠+【分析】先利用同角的余角相等得到ACD ∠=CBE ∠,再通过证ACD CBE ≌,得到==90ADC CEB ∠︒∠即==90ADF CEB ∠︒∠,再 利用三角形内角和得=AFD ADF EFB FEB ︒--︒-∠-180∠∠180∠可得=DAF EBF ∠∠,最后利用角的和差即可得到答案,ACD ∠==++CBE CBA EFB CBA DAF ∠∠∠=∠∠.【详解】证明:∵90ACB ∠=︒,CE BE ⊥∴+90ACD ECB ∠=︒∠,+90CBE ECB ∠=︒∠∴ACD ∠=CBE ∠又∵AC BC =,CD BE =∴ACD CBE ≌∴==90ADC CEB ∠︒∠即==90ADF CEB ∠︒∠∵=AFD EFB ∠∠∴=AFD ADF EFB FEB ︒--︒-∠-180∠∠180∠即=DAF EBF ∠∠∴ACD ∠==++CBE CBA EFB CBA DAF ∠∠∠=∠∠故答案为:=ACD CBA DAF ∠∠∠+.【点睛】 本题考查了直角三角形的性质、内角和定理以及全等三角形的判定和性质,能通过性质找到角与角之间的关系是解答此题的关键.三、解答题21.画图见解析【分析】先作E 点关于直线BC 的对称点1,E 则1,ME ME = 再连接1,FE 交BC 于,M 从而可得到EFM △的周长最短.【详解】解:如图,EFM △是所求作的周长最小的三角形,【点睛】本题考查的轴对称的性质,过直线外一点作已知直线的垂线,线段的垂直平分线的性质,掌握利用轴对称的性质求解两条线段的和的最小值是解题的关键.22.(1)见解析;(2)是,理由见解析【分析】(1)在平面直角坐标系中描出A 、B 、C 三点,再顺次连接三点即可做出△ABC ; (2)利用网格特点,分别求出AB 2、AC 2、BC 2,再根据勾股定理的逆定理判断即可.【详解】(1)如图所示;(2)△ABC 是直角三角形,理由为:∵AB 2=42+32=25,AC 2=22+42=20,BC 2=12+22=5,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠C=90°.【点睛】本题考查平面直角坐标系、勾股定理及其逆定理,熟练掌握网格结构和平面直角坐标系,准确找出对应点的位置,会利用勾股定理的逆定理判断直角三角形是解答的关键. 23.(1)见解析;(2)见解析【分析】(1)根据几何语言画出对应的几何图形;(2)利用对称的性质得AB 垂直平分CD ,则BC =BD ,AC =AD ,利用等腰三角形的性质得∠ADE =∠ACB ,再利用AB =AC 得到∠ACB =∠ABF ,AD =AB ,所以∠ABF =∠ADE ,然后证明△ABF ≌△ADE ,从而得到结论.【详解】(1)解:如图,(2)证明:连接AD ,如图,∵点C ,D 关于直线AB 对称,∴AB 垂直平分CD ,∴BC BD =,AC AD =,∴ADE ACB ∠=∠,∵AB AC =,∴ACB ABF ∠=∠,AD AB =,∴ABF ADE =∠∠,在ABF 和ADE 中,AB AD ABF ADE BF DE =⎧⎪∠=∠⎨⎪=⎩,∴()ABF ADE SAS ≅△△,∴AF AE =.【点睛】本题考查了作图-轴对称变换,等腰三角形的性质,全等三角形的判定与性质,线段垂直平分线的判定与性质,熟练掌握各知识点是解答本题的关键.24.(1)见解析;(2)见解析【分析】(1)根据“SAS”证明△BAE ≌△CAD ,然后根据全等三角形的性质解答即可;(2)根据线段垂直平分线的判定可知CA 垂直平分DE ,进而可证明结论成立.【详解】证明:(1)∵∠BAC =∠DAE =90°,∴∠DAE +∠DAB =∠BAC +∠DAB ,即∠BAE =∠CAD ,在△BAE 与△CAD 中,AD AE CAD BAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△BAE ≌△CAD (SAS ),∴BE =CD ;(2)∵BE =CD ,BE =CE ,∴CE =CD ,又∵AD =AE ,∴CA 垂直平分DE ,∴DE ⊥AC (可得①),又∵∠BAC =90°,∴DE//AB (可得②).【点睛】本题主要考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.也考查了线段垂直平分线的判定、平行线的判定等知识.25.(1)直角三角形,理由见解析;(2)32512cm 【分析】(1)根据勾股定理的逆定理得出答案即可;(2)根据勾股定理求出AC ,再求出ABC 的周长即可.【详解】解:(1)BDC 是直角三角形,理由是:∵BC=13cm ,BD=12cm ,CD=5cm ,∴BD 2+CD 2=BC 2,∴∠D=90°,即BDC 是直角三角形;(2)设AB=AC=x cm ,在Rt ADC 中,由勾股定理得:AD 2+DC 2=AC 2,即(12-x )2+52=x 2,解得:x=16924, ∴AB=AC=16924(cm ), ∵BC=13cm , ∴△ABC 的周长=AB+AC+BC=16924+16924+13=32512(cm ). 【点睛】本题考查了勾股定理和勾股定理的逆定理,熟记勾股定理的逆定理是解此题的关键. 26.(1)见解析;(2)见解析;(3)6.8cm【分析】(1)由题意易得AC=AF ,进而可证△ACG ≌△AFG ,然后问题可证;(2)分别过点C ,F 作BD 的垂线,垂足为M ,N ,由题意易得AC=DF ,∠FDE=∠CAB ,进而可得∠AMC=∠BMC=∠DNF=∠FNE=90°,然后可证△AMC ≌△DNF ,则CM=FN ,最后根据△CMG ≌△FNG 可求证;(3)由(1)(2)易得AF=AC ,进而可证AD=AE ,然后可得AE=BE ,最后问题可求解.【详解】(1)证明:三角尺ABC 和三角尺DEF 全等,∴AC=AF ,∵在△ACG 和△AFG 中, AC AF CAB FAB AG AG =⎧⎪∠=∠⎨⎪=⎩,∴△ACG ≌△AFG (SAS ),∴CG= FG ;(2)证明:分别过点C ,F 作BD 的垂线,垂足为M ,N ,∵△ABC ≌△DEF ,∴AC=DF ,∠FDE=∠CAB ,∵CM ⊥BD ,FN ⊥BD ,∴∠AMC=∠BMC=∠DNF=∠FNE=90°,在△AMC 和△DNF 中,AMC DNE CAM FDN AC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AMC ≌△DNF ,∴CM=FN ,在△CMG 和△FNG 中,CGM FGN CMG FNG CM FN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CMG ≌△FNG ,∴CG=FG ;(3)解:由(1)(2)易证AF=AC ,∵△DFE ≌△ACB ,∴AC=DF ,∴AF=DF ,∵∠D=60°,∠FED=30°,∴AD=AF=DF=AE ,∵AB=DE ,∴AD=AE=BE ,∵BD=20.4cm ,∴AD=AE=BE=6.8cm ,∴平移的距离为6.8cm ;故答案为6.8.【点睛】本题主要考查三角形全等性质与判定及等边三角形的性质与判定,熟练掌握三角形全等性质与判定及等边三角形的性质与判定是解题的关键.。

(常考题)北师大版初中数学八年级数学下册第一单元《三角形的证明》测试(答案解析)(1)

(常考题)北师大版初中数学八年级数学下册第一单元《三角形的证明》测试(答案解析)(1)

一、选择题1.如图,点A 为MON ∠的角平分线上一点,过A 点作一条直线分别与MON ∠的边OM ON 、交于,B C 两点,点P 为BC 的中点,过P 作BC 的垂线交OA 的延长线于点D ,连接DB DC 、,若130MON ∠=︒,则BDC ∠=( )A .70︒B .60︒C .50︒D .40︒2.已知点P 是ABC 内一点,且它到三角形的三个顶点距离之和最小,则P 点叫ABC 的费马点(Fermat point ).已经证明:在三个内角均小于120︒的ABC 中,当120APBAPC BPC 时,P 就是ABC 的费马点.若点P 是腰长为6的等腰直角三角形DEF 的费马点,则PD PE PF ++=( ) A .6 B .33+C .63D .9 3.如图,等腰直角ABC 中,90BAC ∠=︒,AD BC ⊥于点D ,ABC ∠的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,延长AM 交BC 于点N ,连接NE .下列结论:①AE AF =;②AM EF ⊥;③DF DN =;④//AD NE .正确的有( )A .①②B .①②③C .①②④D .①②③④ 4.如图,在ABC 中,点A 、B 、C 的坐标分别为(,0)m 、(0,2)和(5,3),则当ABC 的周长最小时,m 的值为( )A.0 B.1 C.2 D.35.数学课上,探究角的平分线的作法时,小宇用直尺和圆规作∠AOB的平分线,方法如下:如图,(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N;(2)分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在∠AOB的内部相交于点C;(3)画射线OC.射线OC即为所求.其中的道理是,作出△OMC≌△ONC,根据全等三角形的性质,得到∠AOC=∠BOC,进而得到OC是∠AOB的平分线.其中,△OMC≌△ONC的依据是()A.SSSB.SASC.ASAD.AAS6.如图,在△ABC中,AB=AC,∠BAC=64°,∠BAC的平分线与AB的垂直平分线交于点O,点E、F分别在BC、AC上,点C沿EF折叠后与点O重合,则∠BEO的度数是()A .26°B .32°C .52°D .58°7.如图,在ABC 中,AB AC =,36A ∠=︒,分别以A 、B 两点为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,连接MN ,分别与AC ,AB 交于点D ,E .连接BD .则下列结论不正确的是( )A .BCD △的周长等于AB BC +B .AD BD BC == C .::ABD CBD S S AB BC =△△ D .12ED AB = 8.如图,过边长为3的等边ABC 的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上一点,当PA CQ =时,连接PQ 交边AC 于点D ,则DE 的长为( )A .13B .12C .32D .2 9.如图,在ABC 中,30C ∠=︒,点D 是AC 的中点,DE AC ⊥交BC 于E ;点O 在DE 上,OA OB =,2OD =,4OE =,则BE 的长为( )A .12B .10C .8D .6 10.如图,AB AC =,CD CE =.过点C 的直线FG 与DE 平行,若38A ∠=︒,则1∠为( )A.42°B.54.5°C.58°D.62.5°11.如图,A,B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且ABC为等腰三角形,在图中所有符合条件的点C的个数为()A.7 B.8 C.9 D.1012.如图,以△ABC的边AB、AC为边向外作等边△ABD与等边△ACE,连接BE交DC于点F,下列结论:①CD=BE;②FA平分∠DFE;③∠BFC=120°;④AFEEFCS AFS FC∆∆=.其中正确的有()A.4个B.3个C.2个D.1个二、填空题13.如图,一副含30和45︒角的三角板ABC和EDF拼合在个平面上,边AC与EF重合,6cmAC=.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E从点A滑动到点C时,连接BD.则ABD△的面积最大值为_________2cm.14.如图,在△ABC 中,∠ACB =90°,AC =6,AB =10,点O 是AB 边的中点,点P 是射线AC 上的一个动点,BQ ∥CA 交PO 的延长线于点Q ,OM ⊥PQ 交BC 边于点M .当CP =1时,BM 的长为_____.15.如图,AD 是△ABC 的平分线,DF ⊥AB 于点F ,DE =DG ,AG =16,AE =8,若S △ADG =64,则△DEF 的面积为 ________.16.如图,BD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,△ABC 的面积为60,AB =16,BC =14,则DE 的长等于_____.17.等腰三角形一腰上的高与另一腰的夹角为40︒,则这个等腰三角形的底角度数为____________.18.已知,在等腰ABC ∆中,AD BC ⊥于点D ,且2BC AD =,则等腰ABC ∆底角的度数为_________.19.如图,在等腰直角三角形ABC 中,90,A AC AB ∠=︒=.BD 为ABC ∠的平分线,交AC 于点D ,若BCD △的面积为2,则ABD △的面积为____________.20.如图,在ABC 中,90C ∠=︒,30A ∠=︒,分别以A ,B 两点为圆心,大于1AB 2为半径画弧,两弧交于M ,N 两点,直线MN 交AC 于点D ,若4CD =,则AC 的长度为____.三、解答题21.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)△ACD≌△AED;(2)若AB=2AC,且AC=3,求BD的长.22.如图,已知,在△ABC中,AB =AC,AD是BC边上的中线,AM是△ABC的外角∠CAE 的平分线.(1)求证:AM∥BC;(2)若DN平分∠ADC交AM于点N,判断△ADN的形状并说明理由.23.如图,等边△ABC,边长为4,动点D从点B出发,沿射线BC方向移动,以AD为边在右侧作等边△ADE,取AC中点F,连接EF,当EF的值最小时,BD=_____.24.如图,△ABC是等边三角形,点D在BC的延长线上,连接AD,以AD为边作等边△ADE,连接CE.(1)求证BD =CE ;(2)若AC +CD =2,则四边形ACDE 的面积为 . 25.已知:任意一个三角形的三条角平分线都交于一点.如图,在ABC 中,BD 、CD 分别平分ABC ∠、ACB ∠,过点D 作直线分别交AB 、AC 于点E 、F ,若AE AF =,解答下列问题: (1)证明:DE DF =;(2)若60A ∠=︒,8AB =,7BC =,5AC =,求EF 的长.26.已知:如图,在ABC 中,,90AC BC ACB =∠=︒,D 是AB 延长线上一点,过点C 作CE CD ⊥,使CE CD =,连结,BE DE .(1)求证:AD BE =.(2)求DBE ∠的度数.(3)连结AE ,若ADE 是等腰三角形,1AB =,求DE .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】过D 作DE ⊥OM 于E ,DF ⊥ON 于F ,求出∠EDF ,根据角平分线性质求出DE=DF ,根据线段垂直平分线性质求出BD=CD ,证Rt △DEB ≌Rt △DFC ,求出∠EDB=∠CDF ,推出∠BDC=∠EDF ,即可得出答案.【详解】解:如图:过D 作DE ⊥OM 于E ,DF ⊥ON 于F ,则∠DEB=∠DFC=∠DFO=90°,∵∠MON=130°,∴∠EDF=360°-90°-90°-130°=50°,∵DE ⊥OM ,DF ⊥ON ,OD 平分∠MON ,∴DE=DF ,∵P 为BC 中点,DP ⊥BC ,∴BD=CD ,在Rt △DEB 和Rt △DFC 中,DB DC DE DF =⎧⎨=⎩, ∴Rt △DEB ≌Rt △DFC (HL ),∴∠EDB=∠CDF ,∴∠BDC=∠BDF+CDF=∠BDF+∠EDB=∠EDF=50°.故选:C .【点睛】本题考查了全等三角形的性质和判定,角平分线性质,线段垂直平分线性质的应用,能正确作出辅助线是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等,角平分线上的点到角的两边的距离相等.2.B解析:B【分析】根据题意首先画出图形,过点D 作DM EF ⊥于点M ,在BDE ∆内部过E 、F 分别作30MEP MFP ∠=∠=︒,则120EPF FPD EPD ∠=∠=∠=︒,点P 就是费马点,求出PE ,PF ,DP 的长即可解决问题.【详解】解:如图:过点D 作DM EF ⊥于点M ,在BDE ∆内部过E 、F 分别作30MEP MFP ∠=∠=︒,则120EPF FPD EPD ∠=∠=∠=︒,点P 就是费马点,在等腰Rt DEF △中,6DE DF ==DM EF ⊥,223EF DE ∴==3EM DM ∴=∵∠PEM =30°,∠PME =90°,∴EP =2PM ,则()2222PM EM PM +=,解得:1PM =,则2PE =, 故31DP ,同法可得2PF =, 则312233PD PE PF ++++=故选:B .【点睛】此题主要考查了等腰三角形的性质,正确画出图形进而求出PE 的长是解题关键. 3.D解析:D【分析】根据等腰直角三角形的性质及角平分线的定义求得∠ABE=∠CBE=12∠ABC=22.5°,继而可得∠BFD=∠AEB=90°-22.5°=67.5°,即可判断①;由M 为EF 的中点且AE=AF 可判断②;作FH ⊥AB ,证△FBD ≌△NAD 可判断③,证明△EBA ≌△EBN (SAS ),推出∠BNE=∠BAM=90°,即可判断④.【详解】解:∵∠BAC=90°,AC=AB ,AD ⊥BC ,∴∠ABC=∠C=45°,AD=BD=CD ,∠ADN=∠ADB=90°,∴∠BAD=45°=∠CAD ,∵BE 平分∠ABC ,∴∠ABE=∠CBE=12∠ABC=22.5°, ∴∠BFD=∠AEB=90°-22.5°=67.5° ∴∠AFE=∠BFD=∠AEB=67.5°,∴AF=AE ,故①正确;∵M 为EF 的中点,∴AM ⊥EF ,故②正确;∵AM ⊥EF ,∴∠AMF=∠AME=90°,∴∠DAN=90°-67.5°=22.5°=∠MBN ,在△FBD 和△NAD 中,FBD DAN BD ADBDF ADN ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△FBD ≌△NAD (ASA ),∴DF=DN ,故③正确;∵∠BAM=∠BNM=67.5°,∴BA=BN ,∵∠EBA=∠EBN ,BE=BE ,∴△EBA ≌△EBN (SAS ),∴∠BNE=∠BAE=90°,∴∠ENC=∠ADC=90°,∴AD ∥EN .故④正确,综上,正确的结论有:①②③④故选:D .【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质,三角形内角和定理的应用,能正确证明推出两个三角形全等是解此题的关键.4.C解析:C【分析】做出B 关于x 轴对称点为B′,连接B′C ,交x 轴于点A',此时ABC 的周长最小,由等腰直角三角形的性质可求∠OB'A'=∠OA'B'=45°,可求OB'=OA'=1,即可求解.【详解】解:如图所示,做出B 关于x 轴对称点为B′,连接B′C ,交x 轴于点A',此时△ABC 周长最小过点C作CH⊥x轴,过点B'作B'H⊥y轴,交CH于H,∵B(0,2),∴B′(0,-2),∵C(5,3),∴CH= B′H=5,∴∠CB'H=45°,∴∠BB' A'=45°,∴∠OB'A'=∠OA'B'=45°,∴OB'=OA'=2,则此时A'坐标为(2,0).m的值为2.故选:C.【点睛】此题考查了轴对称-最短路径问题,考查了轴对称的性质,等腰直角三角形的性质等知识,根据已知得出A点位置是解题关键.5.A解析:A【分析】根据角平分线的作图方法解答即可;【详解】根据角平分线的作法可知,OM=ON,CM=CN,又∵OC是公共边,∴△OMC≌△ONC的根据是“SSS”,故选:A.【点睛】本题考查了作图-基本做图,全等三角形的判定,熟悉角平分线的作法,找出相等的条件是解题的关键.6.C解析:C【分析】连结OB,根据角平分线定义得到∠OAB=32°,再根据等腰三角形的性质得到∠ABC=∠ACB,再根据线段垂直平分线的性质得到OA=OB,则∠OBA=∠OAB,所以得出∠1,由于AB=AC,OA平分∠BAC,根据等腰三角形的性质得OA垂直平分BC,则BO=OC,所以得出∠1=∠2,然后根据折叠的性质得到EO=EC,于是∠2=∠3,再根据三角形内角和定理计算∠OEC,解答即可.【详解】解:连结OB、OC,∵∠BAC=64°,∠BAC的平分线与AB的中垂线交于点O,∴∠OAB=32°,∵AB=AC,∠BAC=64°,∴∠ABC=∠ACB=58°,∵OD垂直平分AB,∴OA=OB,∴∠OBA=∠OAB=32°,∴∠1=58°-32°=26°,∵AB=AC,OA平分∠BAC,∴OA垂直平分BC,∴BO=OC,∴∠1=∠2=26°,∵点C沿EF折叠后与点O重合,∴EO=EC,∴∠2=∠3=26°,∴∠BEO=∠2+∠3=52°,故选择:C.【点睛】本题考查了线段的垂直平分线的性质和等腰三角形的性质,折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 7.D解析:D【分析】根据MN 是AB 的垂直平分线,等腰三角形的性质、角平分线的性质逐条判断即可.【详解】解:由作图可知,MN 是AB 的垂直平分线,∴BD=AD ,BCD △的周长等于BC+DC+BD=BC+DC+AD=BC+AC ,∵AB AC =∴BCD △的周长=AB BC +,A 正确;∵AB AC =,36A ∠=︒,∴∠ABC=∠C=72°,∵BD=AD ,∴36A ABD ∠=∠=︒,∠BDC=72°=∠C ,BC=BD=AD ,B 正确;∵36ABD CBD ∠=∠=︒,∴点D 到AB 、BC 的距离相等,∴::ABD CBD S S AB BC =△△C 正确; 如果12ED AB =,则DE=AE , ∠A=45°,与题意不符,D 错误;故答案为:D .【点睛】 本题考查了垂直平分线的作法和等腰三角形的性质与判定以及角平分线的性质,解题关键是熟知垂直平分线的性质和等腰三角形的性质,并能够灵活运用这些知识进行推理. 8.C解析:C【分析】过P 作//PF BC 交AC 于F ,得出等边三角形APF ,推出AP PF QC ==,根据等腰三角形性质求出EF AE =,证PFD QCD ∆≅∆,推出FD CD =,推出12DE AC =即可.解:过P 作//PF BC 交AC 于F ,//PF BC ,ABC ∆是等边三角形,PFD QCD ∴∠=∠,60APF B ∠=∠=︒,60AFP ACB ∠=∠=︒,60A ∠=︒, APF ∴∆是等边三角形,AP PF AF ∴==,PE AC ⊥,AE EF ∴=,AP PF =,AP CQ =,PF CQ ∴=,在PFD ∆和QCD ∆中PFD QCD PDF CDQ PF CQ ∠=∠⎧⎪∠=∠⎨⎪=⎩, PFD QCD ∴∆≅∆,FD CD ∴=,AE EF =,EF FD AE CD ∴+=+, 12AE CD DE AC ∴+==, 3AC =,32DE ∴=, 故选:C .【点睛】本题综合考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质进行推理是解此题的关键,通过做此题培养了学生分析问题和解决问题的能力,题型较好,难度适中.9.C解析:C【分析】连接OC ,过点O 作OF BC ⊥于F ,求得212CE DE ==,60CED ∠=︒,再根据条件得出9030EOF OEF ∠=︒-∠=︒,得到122EF OE ==,即可得解;连接OC ,过点O 作OF BC ⊥于F ,如图,∵2OD =,4OE =,∴6DE OD OE =+=, 在Rt △CDE 中,30C ∠=︒,∴212CE DE ==,9060CED C ∠=︒-∠=︒, ∵D 为AC 的中点,DE AC ⊥,∴OA OC =,∵OA OB =,∴OB OC =,∵OF BC ⊥, ∴12CF BF BC ==, 在Rt △OEF 中,∵60OEF ∠=︒, ∴9030EOF OEF ∠=︒-∠=︒, ∴122EF OE ==, ∴10CF CE EF =-=,∴8BE BC CE =-=;故答案选C .【点睛】本题主要考查了等腰三角形的判定与性质,准确分析计算是解题的关键.10.B解析:B【分析】根据等腰三角形的性质求得∠ACB 与∠CDE 度数,再利用两直线平行,内错角相等求∠1即可.【详解】解:∵AB=AC ,∠A=38︒,∴∠B=∠ACB=1802A ︒-∠=218038︒-︒=71︒, ∵CD=CE , ∴∠CED=∠CDE =2180ACB ︒-∠=218071︒-︒=54.5︒, ∵DE //FG ,∴∠1=∠CED=54.5︒,故选:B .【点睛】此题考查等腰三角形的性质、平行线的性质,关键是根据等腰三角形中角度的求解. 11.B解析:B【分析】分两种情况:①AB 为等腰三角形的底边;②AB 为等腰三角形的一条腰;画出图形,即可得出结论.【详解】解:如图所示:①AB 为等腰三角形的底边,符合条件的点C 的有5个;②AB 为等腰三角形的一条腰,符合条件的点C 的有3个.所以符合条件的点C 共有8个.故选:B .【点睛】 此题考查了等腰三角形的判定,熟练掌握等腰三角形的判定是解题的关键,注意数形结合的解题思想.12.A 解析:A【分析】过点A 作AM ⊥CD 于M ,AN ⊥BE 于N ,过点C 作CH ⊥BE 于H ,证明△ADC ≌△ABE ,可判断①,再证明AM =AN ,结合AM ⊥CD 于M ,AN ⊥BE 于N ,可判断②,证明∠ACF +∠BEC +∠ACE =120°,结合三角形的外角的性质可判断③,证明∠FAN =∠FCH =30°, 利用含30的直角三角形的性质与勾股定理可得: 33,,22AN AF HC FC == 再利用三角形的面积公式可判断④.【详解】解:过点A 作AM ⊥CD 于M ,AN ⊥BE 于N ,过点C 作CH ⊥BE 于H ,∵△ABD ,△ACE 都是等边三角形,∴AD =AB ,AE =AC ,∠DAB =∠EAC =60°,∴∠DAC =∠BAE .在△ADC 和△ABE 中,AD AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△ABE (SAS ),∴CD =BE ,∠AEB =∠ACD ,故①正确∵△ADC ≌△ABE ,∴AM =AN .∵AM ⊥CD 于M ,AN ⊥BE 于N ,∴AF 平分∠DFE ,故②正确.∵∠AEB =∠ACD ,∴∠AEC +∠ACE =120°=∠AEB +∠BEC +∠ACE ,∴∠ACF +∠BEC +∠ACE =120°,∴∠BFC =∠ACF +∠BEC +∠ACE =120°,故③正确,∴∠DFE =120°,∴∠DFA =∠EFA =60°=∠CFE .∵AN ⊥BE ,CH ⊥EF ,∴∠FAN =∠FCH =30°, ∴22222,3,2,3,AF FN AN AF FN FN FC FH HC FC FH FH ==-===-= ∴33,,AN AF HC FC == ∴1322.132AEF EFC EF AN AF S AN AF S CH FC EF CH FC ⨯⨯====⨯⨯故④正确. 故选:A .【点睛】本题考查的是全等三角形的判定与性质,等边三角形的性质,角平分线的判定与性质,勾股定理的应用,掌握以上知识是解题的关键.二、填空题13.cm2【分析】过点作于点作于点连接由直角三角形的性质可得cmcmcm 由可证△△可得由三角形面积公式可求则时有最大值【详解】解:cmcmcmcm 当点从点滑动到点时得△过点作于点作于点连接且且△△当时有 解析:(1239236)+-cm 2 【分析】 过点D 作D N AC '⊥于点N ,作D M BC '⊥于点M ,连接BD ',AD ',由直角三角形的性质可得23BC =cm ,43AB =cm ,32ED DF ==cm ,由“AAS ”可证△D NE ''≅△D MF '',可得D N D M ''=,由三角形面积公式可求111222AD B S BC AC AC D N BC D M '''=⨯+⨯⨯-⨯⨯△,则E D AC ''⊥时,AD B S '△有最大值. 【详解】解:6AC =cm ,30A ∠=︒,45DEF ∠=︒, 233BC ∴==cm ,43AB =cm ,32ED DF ==cm ,当点E 从点A 滑动到点C 时,得△E D F ''',过点D 作D N AC '⊥于点N ,作D M BC '⊥于点M ,连接BD ',AD ',90MD N '∴∠=︒,且90E D F '''∠=︒,E D NF D M ''''∴∠=∠,且90D NE D MF ''''∠=∠=︒,E D D F ''''=,∴△D NE ''≅△()D MF AAS '',D N D M ''∴=,AD B ABC AD C BD C S S S S '''=+-△△△△当E D AC ''⊥时,AD B S '△有最大值,1111123(623)2222AD B S BC AC AC D N BC D M D N ''''∴=⨯+⨯⨯-⨯⨯=-⨯△ AD B S '∴△最大值1123(623)32(1239236)2=-⨯=cm 2. 故答案为:(1239236)cm 2.本题考查了全等三角形的判定和性质,等腰直角三角形的性质,角平分线的性质,三角形面积公式等知识,确定AD B S '△有最大值时的图形位置是本题的关键.14.5或1【分析】如图设BM=x 首先证明BQ=AP 分两种情形利用勾股定理构建方程求解即可【详解】解:如图设BM =x 在Rt △ABC 中AB =10AC =6∴BC ===8∵QB ∥AP ∴∠A =∠OBQ ∵O 是AB 的解析:5或1【分析】如图,设BM=x ,首先证明BQ=AP ,分两种情形,利用勾股定理,构建方程求解即可.【详解】解:如图,设BM =x ,在Rt △ABC 中,AB =10,AC =6,∴BC =22AB AC -=22106-=8,∵QB ∥AP ,∴∠A =∠OBQ ,∵O 是AB 的中点,∴OA =OB ,在△OAP 和△OBQ 中,A OBQ OA OBAOP BOQ ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△OAP ≌△OBQ (ASA ),∴PA =BQ =6﹣1=5,OQ =OP ,∵OM ⊥PQ,∴MQ =MP ,∴52+x 2=12+(8﹣x )2,解得x =2.5.当点P 在AC 的延长线上时,同法可得72+x 2=12+(8﹣x )2,解得x =1,综上所述,满足条件的BM 的值为2.5或1.故答案为:2.5或1.本题考查勾股定理,全等三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题.15.16【分析】过点D 作于H 先利用三角形的面积公式计算出DH=8再利用角平分线的性质得到DF=DH=8接着证明得到证明得到利用等线段代换得到于是求出EF 的长然后根据三角形的面积公式计算即可【详解】过点D解析:16【分析】过点D 作DH AC ⊥于H ,先利用三角形的面积公式计算出DH=8,再利用角平分线的性质得到DF=DH=8,接着证明Rt DEF DGH △≌Rt △得到EF HG =,证明Rt ADF △≌Rt △ADH 得到AF AH =,利用等线段代换得到EF AG HG AE =--,于是求出EF 的长,然后根据三角形的面积公式计算即可【详解】过点D 作DH AC ⊥于H ,64S =△ADG ,16AG =1642AG DH ∴⨯⨯= 8DH ∴= AD 是ABC 的平分线,,DF AB DH AC ⊥⊥8DF DH ==∴在Rt DEF △和Rt DGH △中DE DG DF DH =⎧⎨=⎩\ ∴Rt DEF △≌Rt DGH △EF HG ∴=同理可得Rt ADF △≌Rt △ADHAF AH ∴=168EF AF AE AH AE AG HG AE EF =-=-=--=--4EF ∴=11481622DEF S EF DF ∴=⨯⨯=⨯⨯=△ 【点睛】本题考查了角平分线的性质,全等三角形的判定和性质,熟练掌握角平分线的性质,全等三角形的判定定理是解题关键.16.【分析】过点D 作DF ⊥BC 垂足为F 根据角平分线的性质得到FD=DE 再利用面积求DE 即可【详解】解:过点D 作DF ⊥BC 垂足为F ∵BD 是△ABC 的角平分线DE ⊥ABDF ⊥BC ∴FD=DEDE=4故答案为解析:【分析】过点D 作DF ⊥BC ,垂足为F ,根据角平分线的性质得到FD=DE ,再利用面积求DE 即可.【详解】解:过点D 作DF ⊥BC ,垂足为F ,∵BD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥BC ,∴FD=DE ,182ABD S AB DE DE =⋅=, 172CBD S BC DF DE =⋅=, ABC ABD DBC S S S =+△△△,8760DE DE +=,DE=4,故答案为:4.【点睛】本题考查是角平分线的性质,解题关键是熟知角平分线性质,作垂线,利用面积求DE . 17.65°或25°【分析】在等腰△ABC 中AB =ACBD 为腰AC 上的高∠ABD =40°讨论:当BD 在△ABC 内部时如图1先计算出∠BAD =50°再根据等腰三角形的性质和三角形内角和计算;当BD 在△ABC解析:65°或25°【分析】在等腰△ABC 中,AB =AC ,BD 为腰AC 上的高,∠ABD =40°,讨论:当BD 在△ABC 内部时,如图1,先计算出∠BAD=50°,再根据等腰三角形的性质和三角形内角和计算;当BD 在△ABC外部时,如图2,先计算出∠BAD=50°,再根据等腰三角形的性质和三角形外角性质计算.【详解】解:在等腰△ABC中,AB=AC,BD为腰AC上的高,∠ABD=40°,当BD在△ABC内部时,如图1,∵BD为高,∴∠ADB=90°,∴∠BAD=90°﹣40°=50°,∵AB=AC,∴∠ABC=∠ACB=1(180°﹣50°)=65°;2当BD在△ABC外部时,如图2,∵BD为高,∴∠ADB=90°,∴∠BAD=90°﹣40°=50°,∵AB=AC,∴∠ABC=∠ACB,而∠BAD=∠ABC+∠ACB,∠BAD=25°,∴∠ACB=12综上所述,这个等腰三角形底角的度数为65°或25°.故答案为:65°或25°.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理以及三角形的外角性质,正确分类、熟练掌握上述知识是解题的关键.18.45°或15°或75°【分析】分三种情况讨论先根据题意分别画出图形当AB=AC时根据已知条件得出AD=BD=CD从而得出△ABC底角的度数;当AB=BC时先求出∠ABD的度数再根据AB=BC求出底角解析:45°或15°或75°【分析】分三种情况讨论,先根据题意分别画出图形,当AB=AC时,根据已知条件得出AD=BD=CD,从而得出△ABC底角的度数;当AB=BC时,先求出∠ABD的度数,再根据AB=BC,求出底角的度数;当AB=BC时,根据AD=12BC,AB=BC,得出∠DBA=30°,从而得出底角的度数.【详解】①如图1,当AB=AC时,∵AD⊥BC,∴BD=CD,∵AD=12BC,∴AD=BD=CD,∴底角为45°;②如图2,当AB=BC时,∵AD=12BC,∴AD=12AB,∴∠ABD=30°,∴∠BAC=∠BCA=75°,∴底角为75°.③如图3,当AB=BC时,∵AD=12BC,AB=BC,∴AD=12AB,∴∠DBA=30°,∴∠BAC=∠BCA=15°;∴△ABC底角的度数为45°或75°或15°.故答案为:45°或15°或75°.【点睛】本题考查了含30度角的直角三角形和等腰三角形的性质,关键是根据题意画出图形,注意不要漏解.19.【分析】由等腰直角三角形的性质得到然后利用三角形的面积公式即可求出答案【详解】解:作DE⊥BC垂足为E如图:∵为的平分线∴∵∴△ABC是等腰直角三角形∴∵的面积为2∴∴∴∴的面积为:;故答案为:【点2【分析】由等腰直角三角形的性质,得到2BC AB,然后利用三角形的面积公式,即可求出答案.【详解】解:作DE ⊥BC ,垂足为E ,如图:∵BD 为ABC ∠的平分线,∴AD DE =,∵90,A AC AB ∠=︒=,∴△ABC 是等腰直角三角形, ∴2BC AB ,∵BCD △的面积为2,∴122BC DE •=, ∴1222DE •=, ∴122AB DE •= ∴ABD △的面积为:122AB DE •= 2【点睛】本题考查了角平分线的性质,等腰直角三角形的性质,以及三角形的面积公式,解题的关键是熟练掌握角平分线的性质定理和等腰直角三角形的性质,正确得到2BC AB . 20.【分析】利用基本作图得到MN 垂直平分AB 则DA=DB 所以∠DBA=∠A=30°再计算出∠BDC=60°得到BD=8从而得到AD 的长然后计算AC 的长【详解】解:由作法得MN 垂直平分AB ∴DA=DB ∴∠解析:12【分析】利用基本作图得到MN 垂直平分AB ,则DA=DB ,所以∠DBA=∠A=30°,再计算出∠BDC=60°得到BD=8,从而得到AD 的长,然后计算AC 的长.【详解】解:由作法得MN 垂直平分AB ,∴DA=DB ,∴∠DBA=∠A=30°,∴∠BDC=30°+30°=60°,在Rt △BDC 中,BD=2CD=2×4=8,∴AD=8,∴AC=AD+CD=8+4=12.故答案为:12.【点睛】本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).三、解答题21.(1)见解析;(2)2【分析】(1)由角平分线的性质可推出CD =DE ,再利用“HL ”即可证明Rt △ACD ≌Rt △AED .(2)由(1)得AC =AE AB =AE BE ==由勾股定理可求出BC 的长,设BD =x ,则DE =CD =3-x ,在Rt △DEB 中,由勾股定理可列出关于x 的方程,求出x 即可.【详解】(1)∵AD 平分∠CAB ,DC ⊥AC ,DE ⊥AB ,∴CD =DE ,∵AD =AD ,∴Rt △ACD ≌Rt △AED (HL );(2)∵△ACD ≌△AED ,∴AC =AE ,∵AB =2AC , ∴AB =AE BE ==在Rt △ABC 中,3BC ===,设BD =x ,则DE =CD =3-x ,在Rt △DEB 中,由勾股定理得:222DE BE BD +=,即()2223x x -+=,解得x =2,即BD =2.【点睛】本题考查角平分线的性质、全等三角形的判定和性质以及勾股定理,根据角平分线的性质找出使三角形全等的条件是解答本题的关键.22.(1)见解析;(2)ADN △等腰直角三角形,理由见解析【分析】(1)先证明∠MAD=90°,再证明∠ADC =90°,问题得证;(2)证明∠ADN =∠NDC =∠AND ,得到AD=AN ,即可证明△ADN 是等腰直角三角形.【详解】解:证明:(1)∵AB =AC ,AD 是BC 边上的中线,∴∠BAD =∠CAD 12BAC =∠ ,AD ⊥BC , ∵AM 平分∠EAC ,∴∠EAM =∠MAC 12EAC =∠. ∴∠MAD =∠MAC +∠DAC 11118090222EAC BAC =∠+∠=⨯︒=︒. ∵AD ⊥BC ,∴∠ADC =90°,∴∠MAD +∠ADC =180°,∴AM //BC .(2)△ADN 是等腰直角三角形,理由是:∵AM //BC ,∴∠AND =∠NDC ,∵DN 平分∠ADC ,∴∠ADN =∠NDC =∠AND .∴AD =AN ,∴△ADN 是等腰直角三角形.【点睛】此题考查等腰三角形的判定与性质,熟知等腰三角形的判定定理与性质定理并灵活应用是解题关键.23.1【分析】根据题意可证BAD CAE ∠=∠,再证明()ABD ACE SAS ≅,由全等三角形的性质得到,60CE BD ABD ACE =∠=∠=︒,继而证明E 在ACB ∠的外角平分线上,最后根据垂线段最短及含30°角的直角三角形性质解题即可.【详解】解:如图,连接CE ,F 是AC 的中点,4AC =2AF CF ∴==ABC 、ADE 是等边三角形,,,60AB AC AD AE BAC DAE ∴==∠=∠=︒BAC DAC DAE DAE ∴∠-∠=∠-∠BAD CAE ∴∠=∠在ABD △与ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩()ABD ACE SAS ∴≅,60CE BD ABD ACE ∴=∠=∠=︒180606060ECG ∴∠=︒-︒-︒=︒E ∴在ACB ∠的外角平分线上,当EF CE ⊥时EF 有最小值,30CFE ∴∠=︒112CE CF ∴== 1BD ∴=故答案为:1.【点睛】本题考查等边三角形的性质、全等三角形的判定与性质、垂线段最短、含30°角的直角三角形等知识,是重要考点,难度较易,掌握相关知识是解题关键.24.(1)详见解析;(2【分析】(1)由题意可以得到△ABD ≌△ACE ,从而得到BD=CE ;(2)分别过E 作AC 、CD 的垂线EM 、EN ,由(1)及勾股定理可以求得EM 、EN 的值,然后根据三角形面积计算方法及AC+CD=2可以得到四边形ACDE 的面积 .【详解】证明:(1)∵△ABC 和△ADE 为等边三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE =60°,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△ACE (SAS ),∴BD =CE ;(2)∵△ABD ≌△ACE ,∴∠ACE =∠ABD =60°,∴∠DCE =180°﹣∠ACE ﹣∠ACB =180°﹣60°﹣60°=60°,过点E 作EM ⊥AC 于M ,过E 作EN ⊥BC ,交BC 延长线于N ,∴EM =EN ,∵CE =BD =AC +CD =2,∴EM =EN 3∴ACE DCE ACDE S S S =+四边形1122AC EM CD EN =⨯+⨯ ()1132322EM AC CD =+== 3【点睛】本题考查四边形的综合应用,熟练掌握等边三角形的性质、三角形全等的判定及应用、勾股定理、三角形面积的计算方法及角平分线的性质是解题关键.25.(1)见解析;(2)4【分析】(1)连接AD 由AE AF =可得AEF 是等腰三角形,由三条角平分线交于一点可证AD 平分BAC ∠即可;(2)在BC 上取点M N 、,使得BE BM CF CN ==,,设2EF x =,则DE DF x ==,易证AEF 为等边三角形,可得2AE AF EF x ===,60AEF ∠=︒,可证BED ≌BMD (SAS )可得DM DE =,82BM BE x ==-,BED BMD ∠=∠60DMN AEF ∠=∠=︒,再证NCD ≌FCD (SAS )可得,52DN DF CN CF x ===-,可证DMN 为等边三角形,由BC BM MN NC =++构造方程解之即可.【详解】(1)证明:连接AD ,AE AF =,∴AEF 是等腰三角形,BD 、CD 分别平分ABC ∠、ACB ∠,∴AD 平分BAC ∠,∴DE DF =;(2)解:在BC 上取点M N 、,使得BE BM CF CN ==,,设2EF x =,则DE DF x ==,60A AE AF ∠=︒=, ,∴AEF 为等边三角形,∴2AE AF EF x ===,60AEF ∠=︒,在BED 和BMD 中,BE BM EBD MBD BD BD =⎧⎪∠=∠⎨⎪=⎩,∴BED ≌BMD (SAS ),∴DM DE =,82BM BE x ==-,BED BMD ∠=∠,60DMN AEF ∴∠=∠=︒,在CND △和CFD △中,CN CFBM NCD FCD CD CD =⎧⎪∠=∠⎨⎪=⎩,∴NCD ≌FCD (SAS ),∴ ,52DN DF CN CF x ===-, 又DE DF =, ∴DM DN DE x ===,又60DMN ∠=︒, ∴DMN 为等边三角形,∴MN DM x ==,∴(82)(52)7BC BM MN NC x x x =++=-++-=,即2x =,∴24EF x ==.【点睛】本题考查等腰三角形性质,角平分线性质,等边三角形判定与性质,三角形全等判定与性质,利用BC BM MN NC =++构造方程是解题关键.26.(1)见解析;(2)90°;(35【分析】(1)用SAS 证明△ACD ≌△BCE ,即可得到结论;(2)根据全等三角形的性质得到∠EBC=∠BAC=45°,可得∠DBE ;(3)分DA=DE ,DA=AE ,DE=AE ,三种情况根据等腰三角形的性质求解.【详解】解:(1)∵CE ⊥CD ,∴∠DCE=90°=∠ACB ,∴∠ACB+∠BCD=∠DCE+∠BCD , 即∠ACD=∠ECB ,∴在△ACD 和△BCE 中,AC BC ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ), ∴AD=BE ;(2)由(1)可知:△ACD ≌△BCE , ∴∠EBC=∠BAC=45°,∴∠DBE=180°-∠EBC-∠ABC=90°; (3)∵△ADE 是等腰三角形, 若DA=DE ,则∠DAE=∠DEA , ∵∠DAC=∠DEC ,∴∠CAE=∠CEA ,∴AC=EC ,∵AC≠EC ,∴DA≠DE ;若DA=AE ,∵∠EBA=90°,∴AE >BE ,∵△ACD ≌△BCE ,∴AD=BE ,∴AE≠AD ;若DE=AE ,∵EB ⊥AD ,AE=DE ,∴B 是AD 中点,∴AD=2AB=2BD=1,∵△ACD ≌△BCE ,∴BE=AD=2,由(2)可知:∠DBE=90°, ∴= 综上:DE【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,解题的关键是注意分类讨论,灵活运用等腰三角形的性质.。

(常考题)北师大版初中数学八年级数学下册第一单元《三角形的证明》测试(有答案解析)(1)

(常考题)北师大版初中数学八年级数学下册第一单元《三角形的证明》测试(有答案解析)(1)

一、选择题1.如图,等腰直角ABC 中,90BAC ∠=︒,AD BC ⊥于点D ,ABC ∠的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,延长AM 交BC 于点N ,连接NE .下列结论:①AE AF =;②AM EF ⊥;③DF DN =;④//AD NE .正确的有( )A .①②B .①②③C .①②④D .①②③④ 2.如图,在ABC 中,点A 、B 、C 的坐标分别为(,0)m 、(0,2)和(5,3),则当ABC 的周长最小时,m 的值为( )A .0B .1C .2D .33.如图,平面直角坐标系中,O 是坐标原点,点A (3,2),点P (m ,0),若△POA 是等腰三角形,则m 可取的值最多有( )A .2个B .3个C .4个D .5个 4.下列各组线段a 、b 、c 中不能组成直角三角形的是( ) A .a =7,b =24,c =25B .a =4,b =5,c =6C .a =3,b =4,c =5D .a =9,b =12,c =15 5.数学课上,探究角的平分线的作法时,小宇用直尺和圆规作∠AOB 的平分线,方法如下:如图,(1)以点O 为圆心,适当长为半径画弧,交OA 于点M ,交OB 于点N ; (2)分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠AOB 的内部相交于点C ;(3)画射线OC .射线OC 即为所求. 其中的道理是,作出△OMC ≌△ONC ,根据全等三角形的性质,得到∠AOC =∠BOC ,进而得到OC 是∠AOB 的平分线. 其中,△OMC ≌△ONC 的依据是( )A .SSSB .SASC .ASAD .AAS6.如图,已知等边,2ABC AB =,点D 在AB 上,点F 在AC 的延长线上,BD CF DE BC =⊥,于点,E FG BC ⊥于,G DF 交BC 于点P ,则下列结论中:①BE CG =;②EDP GFP ≌;③60EDP ∠=︒;④1EP =.一定正确的是( )A .①B .②④C .①②③D .①②④ 7.等腰三角形的底边长为6,腰长为5,则此三角形的面积为( )A .18B .20C .12D .15 8.下列命题中真命题的个数( )(1)面积相等的两个三角形全等(2)无理数包含正无理数、零和负无理数(3)在直角三角形中,两条直角边长为n 2﹣1和2n ,则斜边长为n 2+1;(4)等腰三角形面积为12,底边上的高为4,则腰长为5.A .1个B .2个C .3个D .4个9.如图,点B 是线段AC 上任意一点(点B 与点A ,C 不重合),分别以AB 、BC 为边在直线AC 的同侧作等边三角形ABD 和等边三角形BCE ,AE 与BD 相交于点G 、CD 与BE 相交于点F ,AE 与CD 相交于点H ,连HB ,则下列结论:①AE CD =;②120AHC ∠=︒;③HB 平分AHC ∠;④CH EH BH =+.其中正确的结论有( )A .4个B .3个C .2个D .1个10.如图,在Rt ABC △中,90BAC ︒∠=,AD BC ⊥于点D ,AE 平分BAD ∠交BC 于点E ,则下列结论一定成立的是( )A .AC AE =B .EC AE = C .BE AE =D .AC EC = 11.如图,在ABC 中,ED //BC ,ABC ∠和ACB ∠的平分线分别交ED 于点F 、G ,若2FG =,6ED =,则DB EC +的值为( )A .3B .4C .5D .9 12.如图,每个小正方形的边长都相等,A ,B ,C 是小正方形的顶点,则ABC ∠的度数为( )A .45︒B .50︒C .55︒D .60︒二、填空题13.如图,O 是正ABC 内一点,6OA =,8OB =,10OC =,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ',下列结论:①点O 与O '的距离为6;②BO A '△可以由BOC 绕点B 逆时针旋转60°得到;③150AOB ∠=︒;④1263BOC S =+△⑤24163AOBO S '=+四边形.其中正确的结论是________.(填序号)14.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D ,有下列结论:①EF BE CF =+;②点O 到ABC 各边的距离相等;③1902BOC A ∠=+∠︒;④()12AD AB AC BC =+-.其中正确的结论是______(把你认为正确结论的序号都填上).15.如图:已知ABC 是等腰三角形,120BAC ∠=︒,6AB AC ==,点D 是BC 上的中点,点E 是射线AD 上的一动点,点F 是射线CA 上的一动点,且AE CF =,连接BF 、CE ,则BF CE +的最小值______.16.在平面直角坐标系中,一块等腰直角三角板如图放置,其中(2,0)A ,(0,1)B ,则点C 的坐标为_______.17.如图在第一个△A1BC 中,∠B =40°,A 1B =BC ,在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第二个△A 1A 2D ,再在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E……如此类推,可得到第n 个等腰三角形.则第n 个等腰三角形中,以An 为顶点的内角的度数为_____________.18.如图所示,在ABC 中,AB AC =,BAD ∠=α,且AE AD =,则EDC ∠=______.19.如图,在第1个1A BC 中,36B ∠=︒,1A B CB =;在边1A B 上任取一点D ,延长1CA 到2A ,使121A A A D =,得到第2个12A A D ;在边2A D 上任取一点E ,延长12A A 到3A ,使232A A A E =,得到第3个23A A E △,…按此做法继续下去,第2021个三角形的底角度数是________________.20.在第1个△ABA 1中,∠B =30°,AB =A 1B ,在A 1B 上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C ;在A 2C 上取一点D ,延长A 1A 2到A 3,使得A 2A 3=A 2D ;…,按此做法进行下去,第1个三角形的以A 1为顶点的内角的度数为__________;第n 个三角形的以A n 为顶点的内角的度数为__________.三、解答题21.如图,在ABC 中,BD 平分,ABC FC ∠与BD 相交于点H ,34180∠+∠=︒,(1)试说明12∠=∠的理由;(2)若FG AC 与点G ,70A ∠=︒,求ACB ∠的度数. 22.如图,已知,在△ABC 中,AB =AC ,AD 是BC 边上的中线,AM 是△ABC 的外角∠CAE的平分线.(1)求证:AM ∥BC ;(2)若DN 平分∠ADC 交AM 于点N ,判断△ADN 的形状并说明理由.23.已知,如图,在△ABC 中,AD 是BC 边上的高线,CE 是AB 边上的中线(1)若∠B=30°,∠ACD=45°,AB=2,求BC 的长.(2)若点G 是线段CE 的中点,连接DG ,当DG ⊥EC 时,求证: AB=2CD .(3)在(2)的条件下,试判断∠AEC 与∠B 之间的数量关系,并说明理由.24.如图,在四边形ABCD 中,CD =AD =22,∠D =90°,AB =5.BC =3.(1)求∠C 的度数;(2)求四边形ABCD 的面积.25.如图,ABC 中,C 90∠=︒,10cm AB =,6cm BC ,若动点P 从点C 开始,按C→B→A→C 的路径运动,且速度为每秒2cm ,设运动的时间为t 秒.(1)出发几秒后,BCP 是等腰直角三角形?请说明理由;(2)当t 为何值时,BCP 为等腰三角形?(直接写出答案);(3)另有一点Q ,从点B 开始,按B→C 的路径运动,且速度为每秒0.5cm ,若P ,Q 两点同时出发,当P ,Q 中有一点到达终点时,另一点也停止运动.当t 为何值时,直线PQ 把ABC 的周长分成的两部分长度是2倍关系?26.如图,ACB △和DCE 均为等腰三角形,点A ,D ,E 在同一直线上,连接BE .(1)如图1,若55CAB CBA CDE CED ∠=∠=∠=∠=︒.填空:ACB ∠=________︒,AEB ∠=________ ︒;(2)如图2,若60ACB DCE ∠=∠=︒,试猜想,,AE CD BE 之间的关系,并证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据等腰直角三角形的性质及角平分线的定义求得∠ABE=∠CBE=12∠ABC=22.5°,继而可得∠BFD=∠AEB=90°-22.5°=67.5°,即可判断①;由M 为EF 的中点且AE=AF 可判断②;作FH ⊥AB ,证△FBD ≌△NAD 可判断③,证明△EBA ≌△EBN (SAS ),推出∠BNE=∠BAM=90°,即可判断④.【详解】解:∵∠BAC=90°,AC=AB ,AD ⊥BC ,∴∠ABC=∠C=45°,AD=BD=CD ,∠ADN=∠ADB=90°,∴∠BAD=45°=∠CAD ,∵BE 平分∠ABC ,∴∠ABE=∠CBE=12∠ABC=22.5°, ∴∠BFD=∠AEB=90°-22.5°=67.5° ∴∠AFE=∠BFD=∠AEB=67.5°,∴AF=AE ,故①正确;∵M 为EF 的中点,∴AM ⊥EF ,故②正确;∵AM ⊥EF ,∴∠AMF=∠AME=90°,∴∠DAN=90°-67.5°=22.5°=∠MBN ,在△FBD 和△NAD 中,FBD DAN BD ADBDF ADN ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△FBD ≌△NAD (ASA ),∴DF=DN ,故③正确;∵∠BAM=∠BNM=67.5°,∴BA=BN ,∵∠EBA=∠EBN ,BE=BE ,∴△EBA ≌△EBN (SAS ),∴∠BNE=∠BAE=90°,∴∠ENC=∠ADC=90°,∴AD ∥EN .故④正确,综上,正确的结论有:①②③④故选:D .【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质,三角形内角和定理的应用,能正确证明推出两个三角形全等是解此题的关键.2.C【分析】做出B关于x轴对称点为B′,连接B′C,交x轴于点A',此时ABC的周长最小,由等腰直角三角形的性质可求∠OB'A'=∠OA'B'=45°,可求OB'=OA'=1,即可求解.【详解】解:如图所示,做出B关于x轴对称点为B′,连接B′C,交x轴于点A',此时△ABC周长最小过点C作CH⊥x轴,过点B'作B'H⊥y轴,交CH于H,∵B(0,2),∴B′(0,-2),∵C(5,3),∴CH= B′H=5,∴∠CB'H=45°,∴∠BB' A'=45°,∴∠OB'A'=∠OA'B'=45°,∴OB'=OA'=2,则此时A'坐标为(2,0).m的值为2.故选:C.【点睛】此题考查了轴对称-最短路径问题,考查了轴对称的性质,等腰直角三角形的性质等知识,根据已知得出A点位置是解题关键.3.C解析:C【分析】分两种情况分析:①以点OP为底,②OP为腰,讨论点P的个数,再求出m的值即可.解:由点P (m ,0)知点P 在x 轴上,分两种情况:当OP 为底时,以A 点为圆心OA 为半径画圆,交x 轴于点P ,以OA=AP 为腰,点P 的坐标为m=2×3=6,当OP 为腰时,以O 为圆心,OA 长为半径,画圆交x 轴于两点P ,点P 在y 轴左侧或右侧,OP=OA=222313+=,∴m=13±,点P 在y 轴右侧,以OA 为底,作AO 的垂直平分线交x 轴与P ,过A 作AB ⊥x 轴,OP=AP=()2223m +-,则m=()2223m +-,解得m=136,综上,共有4个点P ,即m 有4个值,故选择:C.【点睛】本题考察等腰三角形的性质,解题时分两种情况进行讨论,注意以点A 、O 为顶角顶点时应以点为圆心画弧线,避免有遗漏.4.B解析:B【分析】根据判断三条线段是否能构成直角三角形的三边,需验证两小边的和的平方是否等于最长边的平方,分别对每一项进行分析,即可得出答案;【详解】A 、222724=25+ ,能构成直角三角形;B 、22245=416+≠ ,不能构成直角三角形;C 、22234=5+ ,能构成直角三角形;D 、222912=225=15+,能构成直角三角形;故选:B .【点睛】本题考查了勾股定理的逆定理,用到的知识点是已知△ABC 的三边满足222+=a b c ,则△ABC 是直角三角形;5.A解析:A【分析】根据角平分线的作图方法解答即可;【详解】根据角平分线的作法可知,OM=ON ,CM=CN ,又∵OC 是公共边,∴△OMC ≌△ONC 的根据是“SSS”,故选:A .【点睛】本题考查了作图-基本做图,全等三角形的判定,熟悉角平分线的作法,找出相等的条件是解题的关键.6.D解析:D【分析】由等边三角形的性质可以得出△DEB ≌△FGC ,就可以得出BE =CG ,DE =FG ,就可以得出△DEP ≌△FGP ,得出∠EDP =∠GFP ,EP =PG ,得出PC +BE =PE ,就可以得出PE =1,从而得出结论.【详解】解:∵△ABC 是等边三角形,∴AB =BC =AC ,∠A =∠B =∠ACB =60°.∵∠ACB =∠GCF ,∵DE ⊥BC ,FG ⊥BC ,∴∠DEB =∠FGC =∠DEP =90°.在△DEB 和△FGC 中,DEB FGC GCF A BD CF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DEB ≌△FGC (AAS ),BE =CG ,DE =FG ,故①正确;在△DEP 和△FGP 中,DEP FGP DPE FPG DE FG ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DEP ≌△FGP (AAS ),故②正确;∴PE =PG ,∠EDP =∠GFP≠60°,故③错误;∵PG =PC +CG ,∴PE =PC +BE .∵PE +PC +BE =2,∴PE =1,故④正确.∴正确的有:①②④.故选D .【点睛】本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.7.C解析:C【分析】作底边上的高,根据等腰三角形三线合一和勾股定理求出高,再代入面积公式求解即可.【详解】解:如图,作底边BC 上的高AD ,则AB=5,BD=12×6=3, ∴AD=22AB BD -=2253-=4,∴三角形的面积为:12×6×4=12. 故选C .【点睛】本题考查了勾股定理和等腰三角形的性质,利用等腰三角形“三线合一”作出底边上的高,再根据勾股定理求出高的长度,作高构造直角三角形是解题的关键.8.B解析:B【分析】根据三角形全等的性质、无理数的定义、勾股定理进行判断即可;【详解】面积相等的三角形不一定全等,故(1)是假命题;零不是无理数,故(2)是假命题;()()222242214211n n n n n -+=++=+,故(3)是真命题; 根据题意可得,底边长为12246⨯÷=,则底边长的一半为623÷=,腰长为22345+=,故(4)是真命题;综上所述,真命题有2个;故答案选B .【点睛】本题主要考查了命题的真假判断,结合全等三角形的定义、无理数定义、勾股定理判断是解题的关键.9.A解析:A【分析】利用等边三角形,ABD BCE 的性质,证明 ,ABE DBC ≌ 从而可判断①,由,ABE DBC ≌可得,EAB CDB ∠=∠ 再利用三角形的内角和定理可判断②,如图,过B 作BM AE ⊥交AE 于,M 过B 作BN DC ⊥交DC 于,N 利用全等三角形的对于高相等证明,BM BN = 从而可判断③,如图,在CH 上截取,HK HE = 连接,EK 证明EHK 为等边三角形,再证明,EHB EKC ≌ 可得,HB KC = 从而可判断④.【详解】解:,ABD BCE 为等边三角形, ,60,60BA BD ABD BC BE CE CBE ∴=∠=︒==∠=︒,,,ABD DBE CBE DBE ∴∠+∠=∠+∠ 即,ABE DBC ∠=∠(),ABE DBC SAS ∴≌,AE DC ∴= 故①符合题意;,ABE DBC ≌,EAB CDB ∴∠=∠,DGH AGB ∠=∠180,180,DHG CDB DGH ABD EAB AGB ∠=︒-∠-∠∠=︒-∠-∠60DHG ABD ∴∠=∠=︒,120AHC ∴∠=︒,故②符合题意; 如图,过B 作BM AE ⊥交AE 于,M 过B 作BN DC ⊥交DC 于,N,ABE DBC ≌,AE DC 为对应边,,BM BN ∴=HB ∴平分,AHC ∠ 故③符合题意;如图,在CH 上截取,HK HE = 连接,EK60,EHK AHD ∠=∠=︒EHK ∴为等边三角形,,60,EK EH HEK ∴=∠=︒60,60,HEK HEB FEK BEC FEK KEC ∠=︒=∠+∠∠=︒=∠+∠,HEB KEC ∴∠=∠,BE CE =(),EHB EKC SAS ∴≌,HB KC ∴=.CH CK HK BH EH ∴=+=+ 故④符合题意;综上:①②③④都符合题意,故选:.A【点睛】本题考查的是三角形的内角和定理的应用,全等三角形的判定与性质,等边三角形的判定与性质,角平分线的判定,掌握以上知识是解题的关键.10.D解析:D【分析】根据角平分线的性质得出∠BAE=∠DAE ,再根据∠CEA=∠B+∠BAE ,∠CAE=∠CAD+∠DAE 得出∠CAE=∠CEA 即可得出答案.【详解】解:∵90BAC ∠=︒,∴∠BAE+∠DAE+∠CAD=90°,∠B+∠C=90°∵AD ⊥BC∴∠BAE+∠DAE+∠B=90°,∠DAE+∠DEA=90°,∠CAD+∠C=90°∵AE 平分BAD ∠∴∠DAE=∠BAE∵∠B+∠C=90°∴∠CAD=∠B∵∠CEA=∠B+∠BAE∴∠CEA=∠DAE+∠CAD=∠CAE∴AC=EC ,其他选项均缺少条件,无法证明一定相等,故选:D .【点睛】本题考查直角三角形两锐角和为90°,角平分线的定义以及等腰三角形的判定等知识,解题的关键是灵活运用所学知识解决问题.11.B解析:B【分析】根据平行线的性质和等腰三角形的判定证得EG=EB,DF=DC即可求得结果.【详解】解:∵ED∥BC,∴∠DFB=∠FBC,∠EGC=∠GCB,∵∠DBF=∠FBC,∠ECG=∠GCB,∴∠DFB=∠DBF,∠ECG=∠EGC,∴BD=DF,CE=GE,∵FG=2,ED=6,∴DB+EC=DF+GE=ED−FG=6−2=4,故选:B.【点睛】本题考查等腰三角形的判定和性质、角平分线的定义,平行线的性质等知识,解题的关键是等腰三角形的证明.12.A解析:A【分析】由勾股定理及其逆定理可得三角形ABC是等腰直角三角形,从而得到∠ABC 的度数.【详解】解:如图,连结AC,由题意可得:222222+==+==+=1310,125,125,AB AC BC∴AC=BC,222AB AC BC=+,∴△ABC是等腰直角三角形,∴∠ABC=∠BAC=45°,故选A .【点睛】本题考查勾股定理的应用,熟练掌握勾股定理及其逆定理、等腰直角三角形的性质是解题关键.二、填空题13.②③⑤【分析】由题意易得进而可证如图所示连接根据旋转的性质可知进而可求面积为等边面积为过点B 作交的延长线于点E 然后可得最后可排除选项【详解】解:∵是正三角形∴∵∴在和中∴∴∴可以由绕点B 逆时针旋转6 解析:②③⑤【分析】由题意易得BA BC AC ==,60BAC ABC ACB ==︒=∠∠∠,O BA OBC '∠=∠,进而可证BO A BOC '△≌△,如图所示,连接OO '根据旋转的性质,可知60ABO '∠=︒,OB O B '=,进而可求Rt AOO '面积为168242⨯⨯=,等边BOO '面积为18431632,过点B 作BE AO ⊥交AO 的延长线于点E ,然后可得146122AOB S =⨯⨯=△,最后可排除选项. 【详解】解:∵ABC 是正三角形∴BA BC AC ==,60BAC ABC ACB ==︒=∠∠∠,∵60O BA ABO O BO ABC OBC ABO ''∠+∠=∠=︒=∠=∠+∠,∴O BA OBC '∠=∠, 在BO A '△和BOC 中,BO BO O BA OBC BA BC =⎧⎪∠=∠'⎨='⎪⎩,∴()BO A BOC SAS '△≌△,∴O A OC '=,∴BO A '△可以由BOC 绕点B 逆时针旋转60°得到,∴②正确;如图所示,连接OO '根据旋转的性质,可知60ABO '∠=︒,OB O B '=,∴BOO '是等边三角形,∴点O 与O '的距离为8, ∴①错误;在AOO '△中,6AO =,8OO '=,10AO OC '==,∴222AO OO AO ''=+,∴AOO '△是直角三角形,90AOO '∠=︒,∴Rt AOO '面积为168242⨯⨯=, 等边BOO '面积为18431632, ∴四边形AOBO 的面积为24+∴⑤正确;∵9060150AOB AOO BOO ''∠=∠+∠=︒+︒=︒,∴③正确;过点B 作BE AO ⊥交AO 的延长线于点E ,∵150AOB ∠=︒,∴30BOE ∠=︒,∵8OB =,∴4BE =, ∴146122AOB S =⨯⨯=△, ∴ 241631212163BOC AOB xAOBO S S S '=-=+-=+△△四边形.∴④错误;故答案为:②③⑤.【点睛】本题主要考查等边三角形的性质与判定、含30°的直角三角形的性质及勾股定理,熟练掌握等边三角形的性质与判定、含30°的直角三角形的性质及勾股定理是解题的关键. 14.①②③④【分析】由在△ABC 中∠ABC 和∠ACB 的平分线相交于点O 根据角平分线的定义与三角形内角和定理即可求得③正确;由平行线的性质和角平分线的定义得出△BEO 和△CFO 是等腰三角形得出EF=BE+解析:①②③④【分析】由在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,根据角平分线的定义与三角形内角和定理,即可求得③1902BOC A ∠=+∠︒正确;由平行线的性质和角平分线的定义得出△BEO 和△CFO 是等腰三角形得出EF=BE+CF 故①正确;由角平分线的性质得出点O 到△ABC 各边的距离相等,故②正确;由角平分线定理与三角形面积的求解方法,即可求得④根据求得答案,即可得到④正确.【详解】解:∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°12∠A,∴∠BOC=180°-(∠OBC+∠OCB)=90°+12∠A;故③正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故②正确.∴AM=AD,BM=BN,CD=CN,∵AM+BM=AB,AD+CD=AC,BN+CN=BC,∴AD=12(AB+AC-BC)故④正确,故答案为:①②③④.【点睛】此题考查了角平分线的定义与性质,等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.15.12【分析】延长BA到G使AG=AC=6先证明△ACG是等边三角形得AC=GC 再证明△ACE≌△CGF得CE=GF可得BF+CE=BF+GF最后根据两点之间线段最短可得结论【详解】解:延长BA到G使解析:12【分析】延长BA到G,使AG=AC=6,先证明△ACG是等边三角形得AC=GC,再证明△ACE≌△CGF 得CE=GF,可得BF+CE=BF+GF,最后根据两点之间线段最短可得结论.【详解】解:延长BA到G,使AG=AC=6,如图,∵∠BAC=120°,AB=AC,∴∠GAC=60°,∠ABC=∠ACB=30°,∵AG=AC∴△ACG是等边三角形∴CG=AC=6,∠ACG=60°,∵D是BC的中点,AB=AC∠BAC=60°=∠ACG,∴∠DAC=12又AE=CF∴△ACE≌△CGF∴CE=GF∴BF+CE=BF+GF要使BF+CE最小,只要使BF+GF最小即可,根据两点之间线段最短可得:BF+GF≥BG=AB+AG=6+6=12即BF+CE的最小值为12,故答案为:12.【点睛】此题考查了等边三角形的判定与性质,全等三角形的判定与性质,两点之间线段最短等知识,作辅助线构造等边三角形是解答此题的关键.16.【分析】如图过点C作CH⊥x轴于H证明△AHC≌△BOA(AAS)可得结论【详解】解:如图过点C作CH⊥x轴于H∵∠AHC=∠CAB=∠AOB=90°∴∠BAO+∠CAH=90°∠CAH+∠ACH=解析:(3,2)【分析】如图,过点C作CH⊥x轴于H.证明△AHC≌△BOA(AAS),可得结论.【详解】解:如图,过点C作CH⊥x轴于H.∵∠AHC=∠CAB=∠AOB=90°,∴∠BAO+∠CAH=90°,∠CAH+∠ACH=90°,∴∠ACH=∠BAO ,在△AHC 和△BOA 中,AHC AOB ACH OAB AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AHC ≌△BOA (AAS ),∴AH=OB ,CH=OA ,∵A (2,0),B (0,1),∴OA=CH=2,OB=AH=1,∴OH=OA+AH=3,∴C (3,2).故答案为:(3,2).【点睛】本题考查等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.17.【分析】根据等腰三角形的性质可求出△CBA1的底角的度数再根据三角形外角的性质及等腰三角形的性质可求出△DA1A2的底角的度数同理可求出△EA2A3△FA3A4…底角的度数再找出其规律即可得出第n 个 解析:11702n -︒⨯【分析】根据等腰三角形的性质,可求出 △CBA 1 的底角的度数,再根据三角形外角的性质及等腰三角形的性质,可求出 △DA 1A 2 的底角的度数.同理可求出 △EA 2A 3 、 △FA 3A 4 …底角的度数.再找出其规律即可得出第n 个三角形中以 An 为顶点的底角度数.【详解】在 △CBA 1 中, ∠B=40° , A 1B=CB ,∴ ∠BA 1C=∠BCA 1=(180°−40°)÷2=70° ,又∵ A 1A 2=A 1D , ∠BA 1C 是 △A 1A 2D 的外角.∴ ∠DA 2A 1=∠A 2DA 1=12∠BA 1C=12×70° . 同理可得:∠EA 3A 2=∠A 3EA 2=12∠DA 2A 1=12×12×70°=(12)2×70° , ∠FA 4A 3=∠A 4FA 3=12∠EA 3A 2=(12)3×70°, 综上可知规律: 第n 个三角形中以 An 为顶点的底角度数是:112n -×70° , 故答案为 70° ×112n -. 【点睛】 本题考查等腰三角形和三角形外角的性质,求出 ∠DA 2A 1 、 ∠EA 3A 2 、 ∠FA 4A 3 的度数,找出其规律是解答本题的关键.18.【分析】根据等边对等角和三角形的外角性质列出等式整理即可得出结论【详解】解:根据题意:在△ABC 中AB=AC ∴∠B=∠C ∵AE=AD ∴∠ADE=∠AED ∴∠B+∠α-∠EDC=∠C+∠EDC 化简可得 解析:12α 【分析】根据等边对等角,和三角形的外角性质列出等式整理即可得出结论.【详解】解:根据题意:在△ABC 中,AB=AC ,∴∠B=∠C ,∵AE=AD ,∴∠ADE=∠AED ,∴∠B+∠α-∠EDC=∠C+∠EDC ,化简可得:∠α=2∠EDC ,∴∠EDC=12α, 故答案为:12α.【点睛】本题考查了等腰三角形的性质,三角形外角定理,关键是熟悉三角形的一个外角等于与它不相邻的两个内角的和的知识点. 19.【分析】先根据等腰三角形的性质求得的度数再根据三角形一个外角等于与其不相邻的两个内角和分别求出的度数找出规律即可得到第个三角形中以为顶点的底角度数【详解】解:在中是的外角同理得第个三角形中以为顶点的解析:20201722⎛⎫⨯ ⎪⎝⎭︒【分析】 先根据等腰三角形的性质求得1BA C ∠的度数,再根据三角形一个外角等于与其不相邻的两个内角和,分别求出213243DA A EA A FA A ∠∠∠、、的度数,找出规律即可得到第n 个三角形中以n A 为顶点的底角度数.【详解】解:在1CBA 中,136,B A B CB ∠=︒=1180722B BAC ︒-∠∴∠==︒ 1211,A A AD BA C =∠是12A A D 的外角,211117222DA A BAC ∴∠=∠=⨯︒ 同理得2321()722EA A ∠=⨯︒, 3431()722FA A ∠=⨯︒ ∴第n 个三角形中以n A 为顶点的底角度数是11()722n -⨯︒ ∴第2021个三角形的底角度数是:20201()722⨯︒, 故答案为:20201()722⨯︒.【点睛】本题考查等腰三角形的性质、三角形的外角性质、规律型—图形的变化类等知识,是重要考点,难度一般,掌握相关知识是解题关键. 20.75°【分析】先根据等腰三角形的性质求出∠BA1A 的度数再根据三角形外角及等腰三角形的性质分别求出∠CA2A1∠DA3A2及∠EA4A3的度数找出规律即可得出∠An 的度数【详解】解:∵在△ABA1中解析:75° 1752n ︒- . 【分析】先根据等腰三角形的性质求出∠BA 1A 的度数,再根据三角形外角及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出∠A n 的度数.【详解】解:∵在△ABA 1中,∠B =30°,AB =A 1B ,∴∠BA 1A =1802B ︒-∠=75°, ∵A 1A 2=A 1C ,∠BA 1A 是△A 1A 2C 的外角, ∴∠CA 2A 1=17522BA A ∠︒==37.5︒, 同理可得∠DA 3A 2=2752,∠EA 4A 3=3752︒, ,∴∠A n =1752n , 故答案为:75°;1752n . 【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,找出规律是解答此题的关键.三、解答题21.(1)见解析;(2)70°【分析】(1)求出∠3+∠FHD=180°,根据平行线的判定得出FG ∥BD ,根据平行线的性质得出∠1=∠ABD ,根据角平分线的定义得出∠ABD=∠2即可.(2)根据FG ⊥AC ,求出∠1,可得∠2,从而得到∠ABC ,利用三角形内角和得到∠ACB .【详解】解:(1)∵∠3+∠4=180°,∠FHD=∠4,∴∠3+∠FHD=180°,∴FG ∥BD ,∴∠1=∠ABD ,∵BD 平分∠ABC ,∴∠ABD=∠2,∴∠1=∠2;(2)∵FG ⊥AC ,∠A=70°,∴∠1=90°-70°=20°,∴∠2=∠ABD=∠1=20°,∴∠ABC=∠2+∠ABD=40°,∵∠A+∠ABC+∠ACB=180°,∴∠ACB=180°-∠A-∠ABC=180°-70°-40°=70°.【点睛】本题考查了平行线的性质和判定和角平分线的定义,能灵活运用平行线的性质和判定定理进行推理是解此题的关键.22.(1)见解析;(2)ADN △等腰直角三角形,理由见解析【分析】(1)先证明∠MAD=90°,再证明∠ADC =90°,问题得证;(2)证明∠ADN =∠NDC =∠AND ,得到AD=AN ,即可证明△ADN 是等腰直角三角形.【详解】解:证明:(1)∵AB =AC ,AD 是BC 边上的中线,∴∠BAD =∠CAD 12BAC =∠ ,AD ⊥BC , ∵AM 平分∠EAC ,∴∠EAM =∠MAC 12EAC =∠. ∴∠MAD =∠MAC +∠DAC 11118090222EAC BAC =∠+∠=⨯︒=︒. ∵AD ⊥BC ,∴∠ADC =90°,∴∠MAD +∠ADC =180°,∴AM //BC .(2)△ADN 是等腰直角三角形,理由是:∵AM //BC ,∴∠AND =∠NDC ,∵DN 平分∠ADC ,∴∠ADN =∠NDC =∠AND .∴AD =AN ,∴△ADN 是等腰直角三角形.【点睛】此题考查等腰三角形的判定与性质,熟知等腰三角形的判定定理与性质定理并灵活应用是解题关键.23.(11;(2)见解析;(3)32AEC B =∠∠,理由见解析. 【分析】(1)由直角三角形中,30°角所对的直角边等于斜边的一半解得AD=DC=1,再结合勾股定理解题即可;(2)由三线合一性质证明DC=DE ,由直角三角形斜边中线等于斜边的一半得到12DE AB =,据此利用等量代换解题即可; (3)由直角三角形斜边中线性质可证BE=ED ,再结合等边对等角解得∠DEC=∠DCE ,最后根据角的和差解题即可.【详解】解:(1)∵AD 是BC 边上的高线∴∠ADC=∠ADB=90°∵∠ACD=45°,∠B=30°∴∠ACD=∠CAD=45°,∠BAD=60°∴AD=DC ,12AD AB = 又∵AB=2∴AD=DC=1在Rt △ABD 中,22BD AB AD =-=3∴BC=BD+CD=31+;(2)证明:∵G 是线段CE 的中点,DG ⊥EC∴DC=DE∵CE 是AB 边上的中线,AD ⊥BC ∴12DE AB =∴12DC AB =即AB=2CD ;(3)32AEC B =∠∠,理由如下, ∵12DE AB =,AE=BE ∴BE=ED ∴∠B=∠EDB∵DE=DC∴∠DEC=∠DCE∴∠B=∠EDB=2∠DCE又∵∠AEC=∠B+∠DCE∴∠AEC=3∠DCE∴32AEC B =∠∠. 【点睛】本题考查含30°的直角三角形的性质、直角三角形斜边的中线、三线合一性质、勾股定理、等边对等角等知识,是重要考点,难度一般,掌握相关知识是解题关键.24.(1)135°;(2)10.【分析】(1)连接AC ,由勾股定理求出AC=4,45ACD ∠=︒,再由勾股定理逆定理证明90ACB ∠=︒,进而得出结论;(2)根据ABC ACD ABCD S S S ∆∆=+四边形求解即可.【详解】解:连接AC ,如图,∵∠D =90°,∴222AD CD AC +=∵CD =AD =2∴4AC =∵AB =5.BC =3∴222AC BC AB +=∴90ACB ∠=︒∵CD =AD∴45ACD ∠=︒∴9045135BCD ACB ACD ∠=∠+∠=︒+︒=︒(2)ABC ACD ABCD S S S ∆∆=+四边形 =1122AC BC AD CD ⨯+⨯ =1143222222⨯⨯+⨯ =6+4=10【点睛】 此题考查了勾股定理,等腰直角三角形的性质、勾股定理的逆定理,熟练掌握勾股定理和逆定理是解本题的关键.25.(1)出发9秒后,BCP 是等腰直角三角形;(2)当t=6.6秒或9秒或6秒或5.5秒时,△BCP 为等腰三角形;(3)当t 为5.6秒或8.8秒时,直线PQ 把ABC 的周长分成的两部分长度是2倍关系.【分析】(1)由题意得出BC=CP ,即可得出结果;(2)△BCP 为等腰三角形时,分三种情况进行讨论:①CP=CB ;②BC=BP ;③PB=PC ;即可得出答案.(3)若直线PQ 把△ABC 的周长分成的两部分之间是1:2,则一部分为8,另一部分为16,分两种情况,即可得出答案.【详解】解:(1)如下图,在Rt △ABC 中,根据勾股定理可得 22221068AC AB BC cm =-=-=,当△BCP 为等腰直角三角形时,CP=BC=6cm ,即AP=AC-CP=2cm ,∴6102922BC AB AP t ++++===(秒), 故出发9秒后,BCP 是等腰直角三角形;(2)△BCP 为等腰三角形时,分三种情况:①如果CP=CB ,点P 在AC 上,由(1)可知t=9(秒);如果CP=CB ,点P 在AB 上,如下图,作CD ⊥AB ,则1122ABC S AC BC AB CD ∆=⋅=⋅, 即11861022CD ⨯⨯=⨯⋅,解得CD=4.8cm , ∴22 3.6BD BC CD =-=cm ,∵CP=CB,CD ⊥AB ,∴PD=BD=3.6cm ,67.2 6.622BC BP t ++===(秒),②如果BC=BP ,那么点P 在AB 上,BP=6cm ,此时66622BC BP t ++===(秒); ③如果PB=PC ,那么点P 在BC 的垂直平分线与AB 的交点处,即在AB 的中点,此时 65 5.522BC BP t ++===(秒); 综上可知,当t=6.6秒或9秒或6秒或5.5秒时,△BCP 为等腰三角形;(3)6120.5Q t ==秒,8610122p t ++==, 故12秒时,两点停止运动, 108624ABC C cm ∆=++=,①当P 在AB 上时,若13ABC BQ BP C ∆+=,即0.5268t t +-=,解得t=5.6(秒),①当P 在AC 上时,若23ABC BQ AB AP C ∆++=, 即0.52616t t +-=,解得t=8.8(秒),综上所示,当t 为5.6秒或8.8秒时,直线PQ 把ABC 的周长分成的两部分长度是2倍关系.【点睛】本题考查了勾股定理,等腰三角形的判定,三角形的周长的计算.利用分类讨论的思想是解(2)题的关键.26.(1)70°,70°;(2)AE= BE+CD .【分析】(1)利用三角形内角和定理即可求得∠ACB ,证明△ACD ≌△BCE ,根据∠AEB=∠CEB-∠CED=∠ADC-∠CEA即可得出结果;(2)可证明△CDE为等边三角形CD=BE,再证明△ACD≌△BCE可得BE=AD,最后根据线段的和差即可证明结论.【详解】解:(1)∵∠CAB=∠CBA=55°,∴CA=CB,∠ACB=70°,∵∠CDE=∠CED=55°,∴CD=CE,∠DCE=70°,∴∠ACB=∠DCE,∴∠ACD=∠BCE,在△ACD于△BCE中,∵AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS),∴∠CEB=∠ADC=180°-∠CDE=125°,∴∠AEB=∠CEB-∠CED=70°,故答案为:70°,70°;(2)AE=CD+BE,理由如下:∵∠ACB=∠DCE=60°,∴等腰△ABC和等腰△COE都是等边三角形,∴CA=CB,CD=DE,同(1)可证△ACD≌△BCE,∴BE=AD,AE=AD+DE=BE+CD.【点睛】本题考查全等三角形的性质和判定,等边三角形的性质和判定.掌握全等三角形的几种判定定理,并能结合题意灵活选取合适的定理证明全等是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8年级数学(下)学习质量测评
第1单元
三角形的证明试题(1)
温馨提示:亲爱的同学们:数学就是力量,自信决定成绩。

请你灵动智慧,缜密思考,细致作答,保持良好的
心理状态,养成良好的做题习惯,将是你终身的财富。

答题前,请你先通览全卷;答题时,请你认真审题,做到先易后难;答题后,要注意检查.现在让我们一起走进数学的世界,发挥你的聪明才智,成功一定属于你!
一、选择题(每小题3分,共30分)
1.下列各组数中,以它们为边长的线段不能构成直角三角形的是( ). A. ,,
B. ,

C. ,
, D. ,,
2. 如图,P 为△ABC 外部一点,D ,E 分别在AB ,AC 的延长线上,若点P 到BC ,BD ,CE 的距离都相等,则关于点P 的说法最佳的是( )
A. 在∠DBC 的平分线上
B. 在∠BCE 的平分线上
C. 在∠BAC 的平分线上
D. 在∠DBC,∠BCE,∠BAC 的平分线上
3.如图所示,在△ABC 中,AB =AC ,AD 是中线,DE⊥AB,DF⊥AC,垂足分别为E ,F ,则下列四个结论中:
①AB 上任一点与AC 上任一点到D 的距离相等; ②AD 上任一点到AB ,AC 的距离相等; ③∠BDE=∠CDF; ④∠1=∠2. 正确的有( )
A. 1个
B. 2个
C. 3个
D. 4个 4、到三角形三个顶点距离相等的点是( ) A. 三条边的垂直平分线的交点 B. 三条高线的交点 C. 三条边的中线的交点 D. 三条角平分线的交点
5. 如图,△ABC 中,AB=AC ,D 是BC 中点,下列结论中不正确的是( )
A. AB=2BD
B. AD⊥BC
C. AD 平分∠BAC
D. ∠B=∠C
6. 等腰三角形一腰上的高与另一腰的夹角是50°,则这个等腰三角形的底角为( ) A. 70° B. 20° C. 70°或20° D. 40°或140°
7.在△ABC 中,∠ACB=90°,∠B=30°,CD⊥AB 于点D ,若AC=6,则BD=( ) A. 6 B. 3 C. 9 D. 12
8如图,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )
A. 在AC 、BC 两边高线的交点处
B. 在AC 、BC 两边中线的交点处
C. 在∠A、∠B 两内角平分线的交点处
D. 在AC 、BC 两边垂直平分线的交点处 9.如图, OA OB ⊥, o 50BOC ∠=,OD 平分AOC ∠,则BOD ∠的度数是()
A. o 20
B. o 30
C. o 40
D. o 50
10.如图,Rt△ABC 中,∠C=90°,AD 平分∠BAC,交BC 于点D ,AB=10,S △ABD =15,则CD 的长为( )
A. 3
B. 4
C. 5
D. 6 二、填空题(每小题3分,共30分)
11.等腰三角形的底角是50°,则顶角的度数为__________
12.如图,在Rt△ABC 中,∠C=90°,AB 边的垂直平分线DE 交BC 于点E ,垂足为D ,AC=4cm ,CB=8cm ,△ACE 的周长是_____.
13. 如图,在△ABC 中,∠ACB=90°,AC =4,BC =3,点M 在AB 上,且∠ACM=∠BAC,则CM 的长为_______.
14.等腰三角形的一边是7,另一边是4,其周长等于__________.
15.如图,在ABC ∆中, AB AC =, 36BAC ∠=, BD 平分ABC ∠,则1∠的度数是__________.
16. 如图,在△ABC 中,AD 是它的角平分线,若S △ABD :S △ACD =3:2,则AB :AC =_______.
17如图,在Rt △ABC 中,∠ACB=90°,点D 在AB 边上,将△CBD 沿CD 折叠,使点B 恰好落在AC 边上的点E 处.若∠A=26°,则∠CDE= .

18. 等边三角形是一个轴对称图形,它有 条对称轴.
19. 等腰三角形一腰上的高与另一腰的夹角是28°,则顶角是 .
20.如图,已知:∠MON=30°,点A 1、A 2、A 3 在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,若OA 1=a ,则△A 6B 6A 7的边长为 .
三、解答题
21. (7分)已知如图,点O 在直线AB 上,射线OC 平分∠DOB.若∠COB=35°,求∠AOD 的度数.
【答案】110°
22. (7分)尺规作图:如图所示,直线1l 、2l 、3l 为围绕区域A 的三条公路,为便于公路维护,需在区域
A 内筹建一个公路养护处P ,要求P 到三条公路的距离相等,请利用直尺和圆规确定符合条件的点P 的位
置(保留作图痕迹,不写作法).
【答案】
23.(7分)如图,在四边形ABDC 中,∠D=∠ABD=90°,点O 为BD 的中点,且AO 平分∠BAC.求证:OC 平分∠ACD.
∴OE=OD, ∴OC 平分∠ACD.
24. (7分)在△ABC 中,AB=AC ,BD 是角平分线,BD=AD ,求∠A 的度数.
【答案】∠A=36°
25. (10分)如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,过点C 作CE∥AB 交AD 的延长线于点E .求证:CE=AB .
【答案】证明略.
26. (10分)如图,直线AB 、CD 相交于点O ,OE 平分∠BOD. (1)若∠AOC=70°,∠DOF=90°,求∠EOF 的度数; (2)若OF 平分∠COE,∠BOF=15°,若设∠AOE=x°. ①用含x 的代数式表示∠EOF; ②求∠AOC 的度数.
【答案】(1)55°;(2)①∠FOE=
1
2
x;②100°. 27. (12分)如图,已知P 点是∠AOB 平分线上一点,PC⊥OA,PD⊥OB,垂足为C 、D . (1)求证:∠PCD=∠PDC;
(2)求证:OP 是线段CD 的垂直平分线.
试题解析:
(1)∵OP是∠AOB的角平分线,PC⊥OA,PD⊥OB,
∴PC=PD,
∴∠PCD=∠PDC;
(2)∵OP是∠AOB的角平分线,
∴∠COP=∠DOP,
∵PC⊥OA,PD⊥OB,
∴∠OCP=∠ODP=90°,
∴点O在CD的垂直平分线上,
∵PC=PD,
∴点P在CD的垂直平分线上,
∴OP是CD的垂直平分线.
友情提示:祝贺你,终于将考题做完了,请你再仔细的检查一遍,看看
有没有错的、漏的,可要仔细点!。

相关文档
最新文档