七年级数学线段、射线、直线

合集下载

七年级数学直线射线线段

七年级数学直线射线线段

直线、射线和线段的作图方法
直线
在平面内,通过两点有且仅有一 条直线。可以通过两点确定一条 直线,并使用直尺和笔来绘制。
射线
有一个固定端点,另一侧则沿一 个方向无限延伸。可以通过一个 点并指定一个方向来绘制射线。
线段
有两个端点,长度有限。可以通 过两个端点来绘制线段,并使用
直尺来确保其长度和直度。
直线、射线和线段的应用实例
角平分线定义
角平分线是将一个角分成两个 相等的小角,且与角的两边相
交的线段。
角平分线性质
角平分线上的任意一点到角的 两边的距离相等。
03 直线、射线和线段的表示 方法
直线的表示方法
01
02
03
直线的定义
直线是无限长的,没有端 点,可以向两个方向无限 延伸。
直线的表示
在平面内,我们通常用两 个大写字母来表示直线, 如直线AB或直线a。
经过两点有且仅有一条直线。
射线的性质和定理
射线是直线上的一点向外延伸的 部分,有一个端点。
射线和直线都是无限长的,但射 线只有一侧是无限的。
射线上任意两点确定一条射线。
线段的性质和定理
线段是直线上两点之间所有点的集合,有明确的长度。 线段是两点之间最短的路径。
线段的基本性质是两点之间线段最短。
05 直线、射线和线段的作图 和应用
线段的定义和性质
定义
线段是由两个固定端点和连接这两个端点的有限长度的直线组成的图形。
性质
线段有两个固定端点,长度是有限的。线段上的任意两点可以确定一条线段。
线段的中点和角平分线
01
02
03
04
中点定义
线段的中点是线段上的一点, 它到线段两个端点的距离相等

初一数学教案3篇:直线、线段和射线的认识教案

初一数学教案3篇:直线、线段和射线的认识教案

初一数学教案3篇:直线、线段和射线的认识教案在初一数学中,直线、线段和射线是非常重要的基础概念,因此,对于学生来说,深入理解这些概念不仅为学习更高级的数学知识奠定基础,而且对于日常生活也有实际应用。

为此,下面将介绍三篇针对初一数学教学的直线、线段和射线的认识教案,以帮助学生更好地理解这些概念。

教案一:认识直线教学目标:1.学习如何定义直线。

2.理解直线在数学和日常生活中的应用。

3.识别直线的不同特征。

教学步骤:1.引入主题:老师可以引入贯穿全文的主题,简要介绍直线,以便学生可以在课程结束后对本次教学的内容形成整体的认识。

2.基础知识介绍:老师可以介绍如何定义一条直线,如何使用符号来表示直线,并简要介绍直线的性质。

3.直线的应用:老师可以让学生通过案例学习直线在数学和日常生活中的应用,例如:直线可以用于测量距离和角度,也可以用于描述建筑结构和市场规则等等。

4.指导学生使用工具和技巧:为了帮助学生更好地理解直线的特征和属性,老师可以用白板或幻灯片展示不同类型的直线,以便学生可以指出它们的共同点和不同点,从而认识直线的各种形态和性质。

5.演练和测试:老师可以通过演练或测试,让学生检验他们对直线的定义和性质的理解,以确保学生正确理解直线的概念。

教案二:认识线段教学目标:1.学习如何定义线段。

2.理解线段在数学和日常生活中的应用。

3.识别线段的不同特征。

教学步骤:1.引导学生思考:老师可以引导学生思考关于线段的定义和性质,以便他们可以更好地理解线段。

2.基础知识介绍:老师可以介绍如何定义线段,如何使用符号来表示线段,并简要介绍线段的性质。

3.线段的应用:老师可以让学生通过案例学习线段在数学和日常生活中的应用,例如:线段可以用于测量长度和面积,也可以用于描述圆形和正方形等等。

4.指导学生使用工具和技巧:为了帮助学生更好地理解线段的特征和属性,老师可以用白板或幻灯片展示不同类型的线段,以便学生可以指出它们的共同点和不同点,从而认识线段的各种形态和性质。

七年级数学上册1.3线段、射线和直线

七年级数学上册1.3线段、射线和直线

C
练习:作出符合下列要求的图形 (1)直线AB经过点C . (4)直线m,n,l相交于点P
(2)点D不在直线EF上
( 3)直线a,b都过点G
课堂小结 1、线段、射线都是直线的一部分
3、平面上的两条直线有相交和不相交 (平行)两种位置关系
l
A
B
直线AB或线直BA或 者直线l
例1 如图 A,B,C是直线L上的3个点.
(1)图中共有几条线段?这些线段怎样表示?
(2)图中共有几条射线?以点B为端点的射线如何表示?
(3)直线L还可以怎样表示?
C B
A
解 (1)图中共有3条线段,分别是线段AB (或线段BA)、 线段AC (或线段CA)、线段BC(或线段CB). (2)由于每一个点都把直线分成了两题射线,所以图中 共有6条射线.以点B为端点 的射线是射线BA与射线BC. (3)直线L还可以表示为直线AB(或直线BA)、直线AC(或 直线CA)、直线BC(或直线CB).
练习;1.射线OA与射线AO相同吗?区别在哪里?
O
A
端点与方向不同
2.用直尺画图:延长线段AB,得到射线AB.
A
B
A
B
3.如图,看图填空:
O
C
(1)图中以点O为端点的射线有____射__线_O__A_射__线__O_B__射_ 线OC
(2)图中以点B为端点的线段有___线__段__B_A__线_段___B_O__线_ 段BC
(3)图中共有_6__条线段,它们分别是_____________
_线_段___O_A__线_段___O_B__线__段__O_C__线__段_A__B_线__段__A_C__线__段__B_C___.
知识点3:点与直线位置关系、直线的性质

七年级上学期数学知识点:直线、射线、线段

七年级上学期数学知识点:直线、射线、线段

七年级上学期数学知识点:直线、射线、线段鉴于数学知识点的重要性,小编为您提供了这篇七年级上学期数学知识点:直线、射线、线段,希望对同学们的数学有所帮助。

1、基本概念图形直线射线线段端点个数无一个两个表示法直线a直线AB(BA) 射线AB 线段a线段AB(BA)作法叙述作直线AB;作直线a 作射线AB 作线段a;作线段AB;连接AB延长叙述不能延长反向延长射线AB 延长线段AB;反向延长线段BA2、直线的性质经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.图形:A M B符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM.6、线段的性质两点的所有连线中,线段最短.简单地:两点之间,线段最短.7、两点的距离连接两点的线段长度叫做两点的距离.宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。

至元明清之县学一律循之不变。

明朝入选翰林院的进士之师称“教习”。

到清末,学堂兴起,各科教师仍沿用“教习”一称。

其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。

而相应府和州掌管教育生员者则谓“教授”和“学正”。

“教授”“学正”和“教谕”的副手一律称“训导”。

于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。

在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。

8、点与直线的位置关系(1)点在直线上 (2)点在直线外.宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。

至元明清之县学一律循之不变。

明朝入选翰林院的进士之师称“教习”。

到清末,学堂兴起,各科教师仍沿用“教习”一称。

其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。

北师大版七年级数学上册第四章基本平面图形线段、 射线、 直线课件

北师大版七年级数学上册第四章基本平面图形线段、 射线、 直线课件

6. 射线可以用两个大写英文字母表示,并且表示端点的字母必须写在 前面 . 7. 直线可以用 两 个大写英文字母表示,也可以用一个小写英文字母表示,表 示直线的大写英文字母不分顺序.
1. 下列说法中,正确的是( B )
A. 射线比线段短
B. 两点确定一条直线
C. 两点确定一条射线
D. 两点间的连线叫线段
(1)有不在同一直线上的三点A,B,C,每两点连一条线段,则可以连3条线段. (2)有四个点A,B,C,D,且每三点都不在同一直线上,每两点连一条线段,则 可以连6条线段. (3)5×(5-1)÷2=10(场), 故需要举行10场比赛.
3. 如图,点A,B在A. 线段AB和线段BA是同一条线段 B. 直线AB和直线BA是同一条直线 C. 射线AB和射线BA是同一条射线 D. 图中以点A 为端点的射线有两条 4. 手电筒、探照灯所射出的光线可以近似地看做 射线 .
5. 如图,图中线段有 6 条,直线有 3 条, 以点D为端点的射线有 2 条.
6. 往返于M,N两地的客运火车,中途停靠三个站(所有站近似地看做在同一 条直线上,如图所示),假设该车只有硬座.
(1)最多有多少种不同的票价? (2)要准备多少种车票?
(1)数线段时,从左到右,以每个端点为开始向后数,如题中的线段有: 从点M开始数有线段MA,线段MB,线段MC,线段MN共4条;从点A开始数有线段 AB,线段AC,线段AN共3条;从点B开始数有线段BC,线段BN共2条;从点C开 始数有线段CN共1条.图中共有10条线段,所以最多可有10种票价.
图中共有10条线段,分别是线段AB, 线段AC,线段AD,线段AE,线段BE,线段 BD,线段BC,线段CE,线段CD,线段DE.
【基础训练】

人教版七年级数学上册:第四章4.2《直线、射线、线段》例题与讲解

人教版七年级数学上册:第四章4.2《直线、射线、线段》例题与讲解

4.2 直线、射线、线段1.直线(1)概念:直线是最简单、最基本的几何图形之一,是一个不作定义的原始的概念,直线常用“一根拉得很紧的细线”,“一张纸的折痕”等实际事物进行描述.(2)特点:直线向两方无限延伸,不可度量,没有粗细;并且同一平面内的两条相交直线只有一个交点.(3)直线的基本性质:经过两点有一条直线,并且只有一条直线.即“两点确定一条直线”.(4)直线的两种表示法:一是用一个小写字母表示:如直线a,b,c或直线l等.另一个是用直线上两个点的大写字母表示,如:直线AB或直线BA.如图:表示为直线l或直线AB(点的字母位置可以交换).(5)直线与点的位置关系:一是点在直线上,也叫做直线经过这点;另一种是点在直线外,也叫做直线不经过这个点.【例1-1】下面几种表示直线的写法中,错误的是().A.直线a B.直线MaC.直线MN D.直线MO解析:直线的表示法有两种,一种是用一个小写字母表示,另一种是用直线上两个点的大写字母表示,所以直线Ma这种表示法不正确,故选B.答案:B【例1-2】如图,下列说法错误的是().A.点A在直线m上B.点A在直线l上C.点B在直线l上D.直线m不经过B点解析:点与直线有两种位置关系,一是点在直线上,也称作直线过这点,另一种是点在直线外.所以C错误.答案:C2.射线(1)定义:直线上一点和它一旁的部分,叫做射线.它是直线的一部分.如图就是一条射线,其中O是射线的端点.(2)表示法:同直线一样,射线也有两种表示方法,一种是用一个小写字母表示:如射线a,b,c或射线l等,另一个是用射线上两个点的大写字母表示,其中前面的字母表示的点必须是端点.如图:表示为射线l或射线OA.注意:表示射线端点的字母一定要写在前面.(3)特点:射线只有1个端点,向一方无限延伸,因此不可度量.【例2-1】如图,若射线AB上有一点C,下列与射线AB是同一条射线的是().A.射线BA B.射线ACC.射线BC D.射线CB解析:端点相同,在同一条直线上,且方向一致,就是同一条射线,所以B正确.答案:B3.线段(1)定义:直线上两点和它们之间的部分,叫做线段.它是直线的一部分.(2)特点:有两个端点,不能向两方无限延伸,因此它有长度,有大小.(3)表示法:同直线一样,线段也有两种表示法,一种是用一个小写字母表示,如线段a,b,c.另一种是用线段两个端点的大写字母表示.如图:可以表示为:线段AB或线段BA,或线段a.(4)线段的基本性质:两点的所有连线中,线段最短,简单的说成:“两点之间,线段最短.”意义:选取最短路线的原则和依据.(5)两点间的距离:连接两点的线段的长度,叫做这两点间的距离.破疑点线段的表示表示线段的两端点的字母可以交换,如线段AB也是线段BA,但端点字母不同线段就不一样.【例3】如图有几条直线?几条射线?几条线段?并写出.分析:直线主要看有几条线向两方无限延伸,图中只有一条;射线主要看端点,再看延伸方向,3个端点,所以有6条,线段主要是看端点,3个端点,所以有3条.解:有一条直线AB(或AC,AD,AE,BE,BD,CD,…);射线有6条:CA,CB,DA,DB,EA,EB.线段有3条:CD,CE,DE.4.线段的画法(1)画一条线段等于已知线段画法:①测量法:用刻度尺先量出已知线段的长度,画一条等于这个长度的线段;②尺规法:如图:画一条射线AB,在这条射线上截取(用圆规)AC=a.(2)画线段的和差测量法:量出每一条线段的长度,求出它们的和差,画一条线段等于计算结果的长度.如:已知线段a,b(a>b),画线段AB=a-b,就是计算出a-b的长度,画出线段AB等于a-b 的长度即可.尺规法:如图,已知线段a,b,画一条线段,使它等于2b-a.画法:如图,①画一条射线AB,在这条射线上连续截取(用圆规)AC=2b,②再以A为一个端点,截取AD=a,那么DC=2b-a.【例4】如图,已知线段a,b,c,画一条线段,使它等于a+b-c(用尺规法).画法:如图,①画射线(直线也可)AB,在射线AB上分别截取AC=a,CD=b.②以D为一个端点在AD上截取DE=c,线段AE即为所求.5.线段的比较(1)测量法:就是用刻度尺测量出两条线段的长度,再比较它们的大小.(2)叠合法:把两条线段的一端对齐,放在一起进行比较.如图:①若C 点落在线段AB 内,那么AB >AC ;②若C 点落在线段AB 的一个端点上,那么AB =AC ;③若C 点落在线段AB 外(准确的说是AB 的延长线上),那么AB <AC .谈重点 线段的比较 用叠合法比较两条线段的大小,一端一定要对齐,看另一个端点的落点,测量法要注意单位的统一.【例5】 已知:如图,完成下列填空:(1)图中的线段有________、________、________、________、________、________共六条.(2)AB =________+________+________;AD =________+________;CB =_______+__________.(3)AC =AB -__________;CD =AD -__________=BC -__________;(4)AB =__________+__________.解析:根据图形和线段间的和差关系填空,注意(4)题有两种可能.答案:(1)AC AD AB CD CB DB(2)AC CD DB AC CD CD DB(3)CB AC DB(4)AD DB 或AC CB6.线段中点、线段等分点(1)定义:点M 把线段AB 分成相等的两条线段AM 与MB ,点M 叫做线段AB 的中点.(2)拓展:把一条线段分成相等的三条线段的点叫做这条线段的三等分点….(3)等量关系:在上图中:AM =BM =12AB ;2AM =2BM =AB . 【例6】 如图,点C 是线段AB 的中点.(1)若AB =6 cm ,则AC =__________cm.(2)若AC =6 cm ,则AB =__________cm.解析:若AB =6 cm ,那么AC =12AB =3(cm). 若AC =6 cm ,那么AB =2AC =2×6=12(cm).答案:3 127.关于延长线的认识延长线是重要的,也是应用较多的几何术语,是初学者最易错,最不好理解的地方,下面介绍几种关于延长线的术语:如图(1)延长线段AB ,就是由A 往B 的方向延长,并且延长线一般在作图中都用虚线表示;如图(2)叫做反向延长线段AB ,就是由B 向A 的方向延长;如图(3)延长AB 到C ,就是到C 不再延长;如图(4)延长AB 到C ,使AB =BC ;如图(5)点C 在AB 的延长线上等.几种常见的错误,延长射线AB 或延长直线AB ,都是错误的,图(6)中只能反向延长射线AB .【例7-1】 若AC =12AB ,那么点C 与AB 的位置关系为( ). A .点C 在AB 上 B .点C 在AB 外C .点C 在AB 延长线上D .无法确定答案:D【例7-2】 画线段AB =5 cm ,延长AB 至C ,使AC =2AB ,反向延长AB 至E ,使AE =13CE ,再计算: (1)线段AC 的长;(2)线段AE ,BE 的长.分析:按要求画图.由画图过程可知:AC =2AB ,且C 在AB 的延长线上,所以AB =BC =12AC ,E 在AB 的反向延长线上,且AE =13CE ,所以AB =BC =AE =5 c m.解:如图:(1)因为AC =2AB ,所以BC =AB =5 cm ,所以AC =AB +BC =5+5=10 (cm).(2)因为AE =13CE ,所以AE =AB =BC =5 cm , 所以BE =AB +AE =5+5=10 (cm).8.线段的计数公式及应用一条直线上有n 个点,如何不重复不遗漏地数出该直线上分布着多少条线段呢?以下图为例:为避免重复,我们一般可以按以下方法来数线段的条数:即A →AB ,AC ,AD ,B →BC ,BD ,C →CD ,线段总数为3+2+1=6,若是更多的点,由以A 为顶点的线段的条数可以看出,每个点除了自身以外,和其他任何一个点都能组成一条线段,因此当有n 个点时,以A 为顶点的线段就有(n -1)条,同样以B 为顶点的线段也有(n -1)条,因此n 个顶点共有n (n -1)条线段;但由A 到B 得到的线段AB 和由B 到A 得到的线段BA 是同一条,而每条线段的数法都是如此,这样对于每一条线段都数了2次,所以除以2就是所得线段的实际条数,即当一条直线上有n 个点时,线段的总条数就等于12n (n -1). 【例8-1】 从秦皇岛开往A 市的特快列车,途中要停靠两个站点,如果任意两站之间的票价都不相同,那么有多少种不同的票价?有多少种车票?分析:这个问题相当于一条直线上有4个点,求这条直线上有多少条线段.因为任意两站之间的票价都不相同,因此有多少条线段就有多少种票价,根据公式我们很快可以得出有6种不同的票价,因为任意两站往返的车票不一样,所以,从秦皇岛到达目的地有12种车票.解:当n =4时,有n (n -1)2=4×(4-1)2=6(种)不同的票价.车票有6×2=12(种).答:有6种不同的票价,有12种车票.【例8-2】 在1,2,3,…,100这100个不同的自然数中任选两个求和,则不同的结果有多少种?分析:本题初看似乎和线段条数的计数规律无关,但事实上,若把每个数都看成直线上的点,而把这两个数求和得到的结果看成是1条线段,则其中的道理就和直线上线段的计数规律是完全一致的,因而解法一样,直接代入公式计算即可求出结果.解:不同的结果共有:12n (n -1)=12×100×(100-1)=4 950(种). 答:共有4 950种不同的结果. 9.与线段有关的计算和线段有关的计算主要分为以下三种情况:(1)线段的和差及有关计算,一般比较简单,根据线段间的和差由已知线段求未知线段.(2)有关线段中点和几等分点的计算,是本节的重点,其中以中点运用最多,这也是用数学推理的方式进行运算的开始.(3)综合性的运算,既有线段的和差,也有线段的中点,综合运用和差倍分关系求未知线段.解技巧 线段的计算 有关线段的计算都是由已知,经过和差或中点进行转化,求未知的过程,因此要结合图形,分析各段关系,找出它们的联系,通过加减倍分的运算解决.【例9-1】 如图,线段AB =8 cm ,点C 是AB 的中点,点D 在CB 上且DB =1.5 cm ,求线段CD 的长度.分析:根据中点关系求出CB ,再根据CD =CB -DB 求出CD .解:CB =12AB =12×8=4(cm),CD =CB -DB =4-1.5=2.5(cm). 答:线段CD 的长度为2.5 cm.【例9-2】 如图所示,线段AB =4,点O 是线段AB 上一点,C ,D 分别是线段OA ,OB 的中点,求线段CD 的长.解:由于C ,D 分别是线段OA ,OB 的中点,所以OC =12OA ,OD =12OB ,所以CD =12(OA +OB )=12AB =12×4=2. 答:线段CD 的长为2.10.直线相交时的交点数两条直线相交有1个交点,三条直线两两相交最多有3个交点,那么n 条直线两两相交最多有多少个交点?下面以5条直线两两相交最多有多少个交点为例研究:如图,当有5条直线时,每条直线上有4个交点,共计有(5-1)×5个交点,但图中交点A ,既在直线e 上也在直线a 上,因而多算了一次,其他交点也是如此,因而实际交点数是(5-1)×5÷2=10个,同样的道理,当有n 条直线时,在没有共同交点的情况下,每条直线上有(n -1)个交点,共有n 条直线,交点总数就是n (n -1)个,但由于每一个点都数了两次,所以交点总数是12n (n -1)个. 【例10-1】 三条直线a ,b ,c 两两相交,有__________个交点( ).A .1B .2C .3D .1或3解析:三条直线a ,b ,c 两两相交的情形有两种,如图.答案:D【例10-2】 同一平面内的12条直线两两相交,(1)最多可以有多少个交点?(2)是否存在最多交点个数为10的情况?分析:(1)将n =12代入12n (n -1)中求出交点个数.(2)交点个数为10,也就是12n (n -1)=10,即n (n -1)=20,没有两个相邻整数的积是20,所以不存在最多交点个数是10的情况.解:(1)12条直线两两相交,最多可以有:12n (n -1)=12×12×(12-1)=66(个)交点. (2)不存在最多交点个数为10的情况.11.最短路线选择“两点之间,线段最短”是线段的一条重要性质,运用这个性质,可以解决一些最短路线选择问题.这类问题一般分两类:一类是选择路线,选择从A 到B 的最短路线,连接AB 所得到的线段就是;另一类是选择一个点,使这个点到A ,B 的距离之和最小,根据“两点之间,线段最短”这条线段上的任一点到A 到B 的距离之和都等于这条线段的长度,所以这条线段上的任一点都符合要求.但这类问题往往还有附加条件,如:这点还要在某条公路上,某条河上等,所以要满足所有条件.解技巧 求最短路线 对于第一类问题,只要将A ,B 放到同一个平面上,连接AB 即可得到所需线路.对于第二类问题,连接AB ,它们的交点一般就是所求的点.【例11】 如图(1),一只壁虎要从圆柱体A 点沿着表面尽可能快的爬到B 点,因为B 点处有它要吃的一只蚊子,则它怎样爬行路线最短?分析:要想求最短路线,必须将AB 放置到一个平面上,根据“两点之间,线段最短”,连接AB ,所得路线就是所求路线,因此将圆柱体的侧面展开如图(2)所示,连接AB ,则AB 是壁虎爬行的最短路线.解:在圆柱上,标出A ,B 两点,将圆柱的侧面展开(如图(2)),连接AB ,再将圆柱复原,会得到围绕圆柱的一条弧线,这条线就是所求最短路线.析规律 立体图形中的最短路线 在立体图形中研究两点之间最短路径问题时,通常把立体图形展开成平面图形,转化为平面图形中的两点间的距离问题,再用平面内“两点之间,线段最短”求解.。

初一数学线段射线直线讲解

初一数学线段射线直线讲解

初一数学线段射线直线讲解嘿,大家好!今天我们来聊聊数学里那些看似简单却又很有意思的概念——线段、射线和直线。

听起来是不是有点学术?别担心,我会尽量让它变得轻松有趣!咱们先从线段开始说起。

想象一下,你手里有一根美味的巧克力棒,嗯,真的很诱人。

你把它切成两半,那这两块巧克力之间的距离就形成了一条线段。

线段可不复杂,开始和结束都有明确的点,像是你吃巧克力的起点和终点,吃完就没了,哈哈!线段的长度可以测量,你只要用尺子一量就知道了,特别简单。

就像是你在找你那根被吃掉的巧克力,没错,就是那一段的长度。

说到射线,这玩意儿就有点儿意思了。

想象你在阳光明媚的下午,举起一根手电筒,光线从手电筒的头儿发射出去。

你看,光线是从一个点出发,一直向前延伸下去,再也没有尽头。

这就是射线,它有一个起点,永远向一个方向延伸,简直是无止境。

你可以想象自己是个探险家,光线就是你去探索世界的武器,反正它永远不会停下来。

射线在数学里可有很多用途,比如帮助我们理解角度和方向,就像在生活中找路一样,没错,你绝对可以用它来找到家。

说完线段和射线,最后就是这位大人物——直线。

直线就像是个不拘小节的朋友,什么限制都没有。

你可以随意延伸它,它也不会在乎。

想象你在海边画了一条线,海浪一来,线还在那儿,没被打断。

直线的两端永远都没有尽头,无论你怎么画,它总是能继续。

感觉像是个不想回家的流浪汉,永远在路上。

直线也很重要,数学中的很多公式和定理都是围绕着它展开的,真的是万金油,怎么用都行。

线段、射线和直线就像是数学中的三兄弟,各有各的特点和用处。

线段是短暂的,射线是奔放的,而直线则是永恒的。

它们共同构成了我们在几何中认识世界的基础,就像是你生活中的各种元素,缺一不可。

记得有次老师说过,数学就像生活,有时候短暂,有时候延续,但无论怎样,理解它们总是能让我们更清楚地看待这个世界。

哎,说到这里,我真的觉得数学其实也蛮有趣的嘛!希望大家在学习这些概念的时候,不要把自己搞得太紧张,轻松一点,慢慢来,总能掌握这些有趣的知识。

人教版七年级数学上册 直线、射线、线段

人教版七年级数学上册  直线、射线、线段
(4) 把线段向一个方向无限延伸可得到射线,向两个方向无限延伸可得到直
线.( √ )
例2.根据下列语句画出图形. (1)点A在直线l上,点B在直线l外; (2)过点C画射线AC; (3)画一条与线段AB相交的直线DA. 解:根据题意作图,如图所示:
B D
C
A
l
按下列语句画出图形: (1)直线EF经过点C;
解:
(2)直线AB与直线CD相交于点C; 解:
(3)线段AB与线段BC相交于点B,直线l分别交线段AB、BC于点E、F. 解:
12. 如图,在平面上有四个点A,B,C,D ,根据下列语句画图: (1) 做射线BC; (2) 连接线段AC,BD交于点F; (3) 画直线AB,交线段DC的延长线于点E; (4) 连接线段AD,并将其反向延长.
如图,经过一点O画直线,能画出几条?经过两点A、B呢?动手试 试.
经过思考和画图,我们可以得到一个基本事实:
经过两点有一条直线,并且只有一条直线.
简单说成:两点确定一条直线.
在日常生活和生产中常常用到这个基本事实. 例如,建筑工人砌墙时,经常在两个墙脚的位置分别 插一根木桩,然后拉一条直的参照线.
6.如图,若射线AB上有一点C,下列与射线AB是同一条射线的是( B )
A.射线BA
B.射线AC
C.射线BC
D.射线CB
7.下列说法正确的是( C )
A.延长直线EF B.延长射线EF
C.延长线段EF D.射线EF=射线FE
8.下图中有线段、射线和直线,根据它们的基本特征判断出其中能够相交的
是( D )
条线段;
(2)有图可得: 直线l上有4个点A,B,C,D,可得线段AB、 线段AC、线段AD、线段BC、线段BD和线段CD, 则可以确定6条线段, 故答案为:6.

七年级数学上册数学 6.1线段、射线、直线(七大题型)(解析版)

七年级数学上册数学 6.1线段、射线、直线(七大题型)(解析版)

6.1线段、射线、直线分层练习考察题型一线段、射线、直线的概念辨析1.如图中射线OA与OB表示同一条射线的是()A.B.C.D.【详解】解:A、方向相反,不是同一条射线;B、端点相同,方向相同,是同一条射线;C、端点相同,方向不同,不是同一条射线;D、方向相反,不是同一条射线.故本题选:B.2.下列说法错误的是()A.直线AB和直线BA表示同一条直线B.过一点能作无数条直线C.射线AB和射线BA表示不同射线D.射线比直线短【详解】解:直线AB和直线BA表示同一条直线,A选项正确;过一点能作无数条直线,B选项正确;射线AB和射线BA表示不同射线,C选项正确;射线、直线都是无限长的,不能比较长短,D选项错误.故本题选:D.3.线段、射线、直线的位置如图所示,图中能相交的是()A.B.C.D.【详解】解:A、图中两线段不能相交;B、图中射线与直线能相交;C、图中线段与直线不能相交;D、图中线段与射线不能相交.故本题选:B.4.如图,AB是一段高铁行驶路线图,图中字母表示的5个点表示5个车站,在这段路线上往返行车,需印制多少种车票?()A.10B.11C.18D.20【详解】解:图中线段有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE,共10条,单程要10种车票,往返就是20种,即5(51)20⨯-=.故本题选:D.考察题型二符号语言和几何图形的匹配1.如图,已知三点A、B、C,画射线AB,画直线BC,连接AC.画图正确的是()A.B.C.D.【详解】解:如图,画射线AB,画直线BC,连接AC,.故本题选:B.2.下列几何图形与相应语言描述相符的是()A.如图1所示,延长线段BA到点CB.如图2所示,射线CB不经过点AC.如图3所示,直线a和直线b相交于点AD.如图4所示,射线CD和线段AB没有交点【详解】解:A、如图1,点C在线段BA的延长线上,与语言描述不相符;B、如图2,射线BC不经过点A,与语言描述不相符;C、如图3,直线a和直线b相交于点A,与语言描述相符;D、如图4,射线CD和线段AB有交点,与语言描述不相符.故本题选:C.考察题型三两点确定一条直线1.如图,下列说法正确的是()A.点O在射线BA上B.点B是直线AB的端点C.直线AO比直线BO长D.经过A,B两点的直线有且只有一条【详解】解:A.点O在射线BA的反向延长线上,故此项错误;B.直线没有端点,故此项错误;C.直线无法比较长短,故此项错误;D.两点确定一条直线,故此项正确.故本题选:D.2.在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是() A.钟表的秒针旋转一周,形成一个圆面B.把笔尖看成一个点,当这个点运动时便得到一条线C.把弯曲的公路改直,就能缩短路程D.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两个点弹出一条墨线【详解】解:A、钟表的秒针旋转一周,形成一个圆面,说明线动成面;B、把笔尖看成一个点,当这个点运动时便得到一条线,说明点动成线;C、把弯曲的公路改直,就能缩短路程,说明两点之间,线段最短;D、木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两个点弹出一条墨线,说明两点确定一条直线.故本题选:D.3.平面上有3个点,并且这3个点不在同一直线上,经过每两点画一条直线,则共可以画()条直线.A.3B.4C.5D.6【详解】解:可以画的直线条数为3(31)32⨯-=.故本题选:A.考察题型四两点之间,线段最短1.下列说法:①经过一点有无数条直线;②两点之间线段最短;③经过两点,有且只有一条直线;④若线段AM等于线段BM,则点M是线段AB的中点,其中正确的有()A.1个B.2个C.3个D.4个【详解】解:①经过一点有无数条直线,说法正确;②两点之间线段最短,说法正确;③经过两点,有且只有一条直线,说法正确;④若线段AM等于线段BM,则当A、B、M三点共线时,点M是线段AB的中点,原说法错误;综上,说法正确的一共有3个.故本题选:C.2.如图,某同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这一现象的数学知识是()A .两点之间,直线最短B .两点确定一条直线C .两点之间,线段最短D .经过一点有无数条直线【详解】解: 两点之间线段最短,∴剩下树叶的周长比原树叶的周长小.故本题选:C .3.如图,某市汽车站A 到高铁站P 有四条不同的路线,其中路程最短的是()A .从点A 经过 BF 到点PB .从点A 经过线段BF 到点PC .从点A 经过折线BCF 到点PD .从点A 经过折线BCDF 点P 【详解】解:如图,某市汽车站A 到高铁站P 有四条不同的路线,其中路程最短的是从点A 经过线段BF 到点P .故本题选:B .4.在一条沿直线l 铺设的电缆一侧有P ,Q 两个小区,要求在直线l 上的某处选取一点M ,向P ,Q 两个小区铺设电缆,现有如下四种铺设方案,图中实线表示铺设的电缆,则所需电缆材料最短的是()A .B .C .D .【详解】解:观察四个选项中的图形发现:选项D 中,点Q 与点P 关于直线l 对称点的连线交l 于M ,根据轴对称的性质可知:PM QM +为最短,即所需电缆材料最短.故本题选:D .5.如图,3AB =,2AD =,1BC =,5CD =,则线段BD 的长度可能是()A.3.5B.4C.4.5D.5【详解】解:由“两点之间,线段最短”得:BD-<<+,15∴<<,BD3232BD∴<<,BD-<<+,465151BD∴<<.45四个选项中,只有4.5在这个范围内.故本题选:C.6.如图,已知四点A、B、C、D,请用尺规作图完成.(保留画图痕迹)(1)画直线AB;(2)画射线AC;(3)连接BC并延长BC到E,使得CE AB BC=+;(4)在线段BD上取点P,使PA PC+的值最小.【详解】解:如图所示:.考察题型五比较线段的大小1.如图,用圆规比较两条线段的长短,其中正确的是()A .A B A C ''''>B .A B A C ''''=C .A B A C ''''<D .不能确定【详解】解:如图用圆规比较两条线段的长短,A B A C ''<''.故本题选:C .2.如图,AC BD >,则AD 与BC 的大小关系是:AD BC .(填“>”或“<”或“=”)【详解】解:AC BD > ,AC CD BD CD ∴+>+,AD BC ∴>.故本题答案为:>.3.如图,下列关系式中与图不符合的式子是()A .AD CD AB BC-=+B .AC BC AD BD -=-C .AC BC AC BD -=+D .AD AC BD BC-=-【详解】解:A 、AD CD AB BC -=+,正确,B 、AC BC AD BD -=-,正确;C 、AC BC AB -=,而AC BD AB +≠,故本选项错误;D 、AD AC BD BC -=-,正确.故本题选:C .考察题型六线段的中点1.下列说法正确的个数有()①若AB BC =,则点B 是AC 中点;②两点确定一条直线;③射线MN 与射线NM 是同一条射线;④线段AB 就是点A 到点B 之间的距离.A .1B .2C .3D .4【详解】解:①没有说明A 、B 、C 在同一条直线上,故可能出现这种情况,不合题意;②两点确定一条直线,符合题意;③射线MN 是以M 为端点,射线NM 是以N 为端点,射线MN 与射线NM 不是同一条射线,不合题意;④线段AB 是指连接A 、B 两点的线段,是一条有长度的几何图形,点A 到点B 之间的距离是指点A 和点B 之间的直线距离,是线段AB 的长度,不合题意.故本题选:A .2.如图,点D 是线段AC 上一点,点C 是线段AB 的中点,则下列等式不成立的是()A .AD BD AB +=B .BD CD CB -=C .2AB AC =D .12AD AC =【详解】解:由图可知:AD BD AB +=,BD CD CB -=,故选项A 、选项B 符合题意; 点C 是线段AB 的中点,2AB AC ∴=,故选项C 符合题意;D 是不是线段AC 的中点,12AD AC ∴≠,故本题选项D 不合题意.故本题选:D .3.小亮正确完成了以下两道作图题:①“延长线段AB 到C ,使BC AB =”;②“反向延长线段DE 到F ,使点D 是线段EF 的一个三等分点”.针对小亮的作图,小莹说:“点B 是线段AC 中点”.小轩说:“2DE DF =”.下列说法正确的是()A .小莹、小轩都对B .小莹不对,小轩对C .小莹、小轩都不对D .小莹对,小轩不对【详解】解:①“延长线段AB 到C ,使BC AB =”,如图①所示,此时点B 是AC 的中点;2综上,小莹说得对,小轩说得不对.故本题选:D.考察题型七线段长度的有关计算1.平面上有三点A、B、C,如果10BC=,那么()AC=,3AB=,7A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外【详解】解: 1073==+=+,AB AC BC∴点C在线段AB上.故本题选:A.2.已知直线AB上有两点M,N,且8+=,则P点的位置()MP PN cmMN cm=,再找一点P,使10A.只在直线AB上B.只在直线AB外C.在直线AB上或在直线AB外D.不存在【详解】解: 108MP PN cm MN cm+=>=,∴分两种情况:如图,P点在直线AB上或在直线AB外.故本题选C.3.点A、B、C在同一直线上,10BC=)=,则(=,2AC cmAB cmA.12cm B.8cm C.12cm或8cm D.以上均不对【详解】解:①如图,点C在A、B中间时,=-=-=;BC AB AC cm1028()②如图,点C在点A的左边时,BC AB AC cm=+=+=;10212()综上,线段BC的长为12cm或8cm.故本题选:C.4.已知点A、B、C位于直线l上,其中线段4AB=,且23=,若点M是线段AC的中点,则线段BC ABBM的长为()A.1B.3C.5或1D.1或4综上,线段BM 的长为5或1.故本题选:C .5.如图,C 、D 是线段AB 上两点,M 、N 分别是线段AD ,BC 的中点,下列结论:①若AD BM =,则3AB BD =;②AC BD =,则AM BN =;③2()AC BD MC DN -=-;④2MN AB CD =-.其中正确的结论是()A .①②③B .③④C .①②④D .①②③④【详解】解:如图,AD BM = ,AD MD BD ∴=+,12AD AD BD ∴=+,2AD BD ∴=,2AD BD BD BD ∴+=+,即3AB BD =,故①正确;AC BD = ,AD BC ∴=,∴1122AD BC =,M 、N 分别是线段AD 、BC 的中点,AM BN ∴=,故②正确;AC BD AD BC -=- ,222()AC BD MD CN MC DN ∴-=-=-,故③正确;222MN MC CN =+ ,MC MD CD =-,22()2MN MD CD CN ∴=-+,12MD AD = ,12CN BC =,1122()22MN AD BC CD AD CD BC CD AB CD ∴=+-=-+-=-,故④正确.故本题选:D .6.已知A ,B ,C ,D 四点在同一直线上,线段8AB =,点D 在线段AB 上.(1)如图1,点C是线段AB的中点,13CD BD=,求线段AD的长度;(2)若点C是直线AB上一点,且满足:4:1AC BC=,2BD=,求线段CD的长度.:4:1AC BC=,8AB=,:4:1AC BC=,8AB=,7.(1)如图1,点C在线段AB上,M,N分别是AC,BC的中点.若12AB=,8AC=,求MN的长;(2)设AB a=,C是线段AB上任意一点(不与点A,B重合),①如图2,M,N分别是AC,BC的三等分点,即13AM AC=,13BN BC=,求MN的长;②若M,N分别是AC,BC的n等分点,即1AM ACn=,1BN BCn=,直接写出MN的值.8.如图1,已知B、C在线段AD上.(1)图1中共有条线段;(2)①若AB CD=,比较线段的长短:AC BD(填:“>”、“=”或“<”);②(图2)若18AD=,14MN=,M是AB的中点,N是CD的中点,求BC的长度.③(图3)若AB CD=,M是AB的中点,N是CD的中点,直接写出BC的长度.(用=,MN b≠,AD a含a,b的代数式表示)1.同一平面内的三条直线最多可把平面分成多少部分()A.4B.5C.6D.7【详解】解:任意画三条直线,相交的情况有四种可能:1、三直线平行,将平面分成4部分;2、三条直线相交同一点,将平面分成6部分;3、两直线平行被第三直线所截,将平面分成6部分;4、三条直线两两相交于不同的三个点,将平面分成7部分;综上,同一平面内的三条直线最多把平面分成7个部分.故本题选:D .2.如图,已知点A 、点B 是直线上的两点,12AB =厘米,点C 在线段AB 上,且8AC =厘米.点P 、点Q 是直线上的两个动点,点P 的速度为1厘米/秒,点Q 的速度为2厘米/秒.点P 、Q 分别从点C 、点B 同时出发,在直线上运动,则经过秒时线段PQ 的长为6厘米.【详解】解:12AB = 厘米,8AC =厘米,1284CB ∴=-=(厘米);①点P 、Q 都向右运动时,(64)(21)-÷-21=÷2=(秒);②点P 、Q 都向左运动时,(64)(21)+÷-101=÷10=(秒);③点P 向左运动,点Q 向右运动时,(64)(21)-÷+23=÷23=(秒);④点P 向右运动,点Q 向左运动时,(64)(21)+÷+103=÷103=(秒);综上,经过2、10、23或103秒时线段PQ 的长为6厘米.故本题答案为:2、10、23或103.3.如图,点M 在线段AN 的延长线上,且线段20MN =,第一次操作:分别取线段AM 和AN 的中点1M ,1N ;第二次操作:分别取线段1AM 和1AN 的中点2M ,2N ;第三次操作:分别取线段2AM 和2AN 的中点3M ,3N ;⋯⋯连续这样操作10次,则每次的两个中点所形成的所有线段之和11221010(M N M N M N ++⋯+=)A .910202-B .910202+C .1010202-D .1010202+【详解】解: 线段20MN =,线段AM 和AN 的中点1M ,1N ,4.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b ,则A ,B 两点之间的距离||AB a b =-,线段AB 的中点表示的数为2a b +.【问题情境】如图,数轴上点A 表示的数为2-,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(0)t >.【综合运用】(1)填空:①A 、B 两点间的距离AB =,线段AB 的中点表示的数为;②用含t 的代数式表示:t 秒后,点P 表示的数为;点Q 表示的数为.(2)求当t 为何值时,P 、Q 两点相遇,并写出相遇点所表示的数;(3)求当t 为何值时,12PQ AB =;(4)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.。

人教版七年级数学上册4.2:直线、射线、线段

人教版七年级数学上册4.2:直线、射线、线段
(1)画直线AB;
(2)连接线段AC,并将其延长;
(3)连接线段AD,并将其反向延长; (4)作射线BC.
练习
1.下列给线段取名正确的是( C)
A.线段M B.线段Mm
C.线段m D.线段mn
2.用适当的语句表述图中 点与直线的关系
P A
l B
3.下面图形的表示方法是否正确?
若错误,请改正.
①a
在同一平面内有三个点 A,B,C,过其中任意两个点画直线,可以画出
条直线.
(3)点与直线的位置关系
②要准备多少种车票? 如图,其中线段有 条,
线段向一端无限延长形成射线,向两端无限延长形成直线
下面图形的表示方法是否正确?
解:画出示意图如下: 例2 如图,平面上有四个点A,B,C,D,根据下列语句画图:
直线、射线、线段的区别与联系:
射线、线段都是直线的一部分.
类型 端点数 延伸
度量
线段 2个
可度量
射线 直线
1个 无端点
向一个方 向无限延
不可度量
向两个伸方向无 限延伸
不可度量
联系:线段向一端无限延长形成射线,向两端无限延长形成直线
想一想
生活中有哪些物体可以近似 地看成线段、射线、直线?
直线
线段
掌握“两点确定一条直线”的基本事实,了解点和直线的位置关系. (4)直线与直线的位置关系
联系与区别吗? (2)如何由一条线段得到一条射线或一条直线?
认真看课本第125页、126页. (3)点与直线的位置关系 联系:
理解直线、射线、线段的区别与联系. 经过一个点能画几条直线?经过两个点呢?动手试一试. 认真看课本第125页、126页. 记作:射线PO ( ) (2)连接线段AC,并将其延长; 记作:线段BA ( ) 怎么样能保证我种的树都在一条直线上?

七年级线段直线射线知识点

七年级线段直线射线知识点

七年级线段直线射线知识点七年级数学课程中,线段直线射线是重要的知识点,它为学生提供了理解几何学和代数学中的基础。

下面我们将介绍线段、直线和射线的概念以及重要的性质和应用。

一、定义
1. 线段:两点之间的线段称为线段。

线段由两个端点和它们之间的所有点组成。

用AB表示端点为A、B的线段。

2. 直线:无限延伸的笔直的路径称为直线。

用l表示。

3. 射线:从一个端点开始,沿着一条方向无限延伸的线段称为射线。

用AB ->表示以A为端点,以B为方向的射线。

二、性质
1. 线段的长度是有限的,直线的长度是无限的。

2. 直线上的任何两个点都可以确定一个直线。

3. 射线上只有一个端点。

4. 在平面直角坐标系中,直线可以表示为y = mx + b的形式,
其中m是斜率,b是截距。

5. 在同一平面上,当线段的长度相等时,它们是同一线段。


两条直线重合时,它们是同一条直线。

当射线的起始点和方向相
同时,它们是同一射线。

三、应用
1. 线段可以用来构造图形,如三角形、正方形等等。

2. 直线可以用于描述平面内的方向和位置,用来解决几何问题。

3. 射线可以用于表述针对一个特定方向的运动,例如描述自行
车行走的方向。

4. 知道线段的长度和点的坐标可以用勾股定理计算距离。

结论
在七年级的数学课程中,线段直线射线是非常重要的知识点,
学生应该熟练掌握它们的概念和性质,并能够应用到实际问题中。

初中数学七年级上册-线段、射线、直线

初中数学七年级上册-线段、射线、直线

侵权必究
STRUGGLE
讲授新课
知识点 1 线段、射线、直线
思考:如何表示线段、射线、直线呢?
C
线段:
a
B
表示1: 线段 CB(或线段BC) 表示2:线段 a
射线: O
B
表示:射线 OB
直线: E
F
表示1:直线 EF(或直线FE)
l
表示2:直线l
侵权必究
STRUGGLE
判断下列正误:
(1) A
B 记作:直线AB ( √ )
解析: 在直线上任意两个大写字母都可以表示这条直线, 所以A错;表示射线时,第一个字母表示射线的端点.端点字 母不同,射线必然不同,所以B错;直线无长短,所以D错.
侵权必究
STRUGGLE
练一练
1.下列图形中表示射线AB的是( B )
2.下列关于直线的表示方法正确的是( C )
侵权必究
STRUGGLE
典例2
如图,已知平面上三点A、B、C.
(1)画线段AB; (2)画直线BC; (3)画射线CA;
解:(1)、(2)、(3)题解答如图所示.
侵权必究
STRUGGLE
由线段AB得到射线AB
由线段AB得到直线AB
常见说法:线段AB所在的直线
侵权必究
STRUGGLE
直线AB与直线BC有几个公共点?
答:直线AB与直线BC有一个公共点
侵权必究
STRUGGLE
活动2:当直线a上有n个点时,可得到2n条射线, n(n-1) 2 条线段.
·· · · a
A
O
B
C
1.当直线a上有1个点时,可得到 2条射线, 0 条线段; 2.当直线a上有2个点时,可得到 4条射线, 1 条线段; 3.当直线a上有3个点时,可得到 6条射线, 3 条线段; 4.当直线a上有4个点时,可得到 8条射线, 6 条线段; 5.当直线a上有5个点时,可得到 10 条射线, 10 条线段; 6.当直线a上有6个点时,可得到 12条射线,15条线段;

人教版初一数学上册 直线、射线、线段 讲义

人教版初一数学上册 直线、射线、线段 讲义

直线、射线与线段知识点一、直线、射线、线段的概念1、直线:由无数个点构成,没有端点,向两端无限延长,长度是无穷的,无法测量2、射线:由无数个点构成,有一个端点,从这个端点开始向另一端无限延长,长度是无穷的,无法测量3、线段:由无数个点构成,有两个端点,从一个端点连向另一个端点,长度是有限的,可以测量1、下列说法正确的有_____________①直线比射线长②线段由无数个点构成③过三点一定能作一条直线④线段的长度是无穷的⑤直线有两个端点⑥射线有两个端点⑦线段有两个端点2、下列关于直线、射线、线段的说法正确的是()A、直线最长,线段最短B、射线是直线长度的一半C、直线没有端点D、直线、射线和线段的长度都不确定3、下列说法正确的是()A、线段不能延长B、延长直线AB到CC、延长射线AB到CD、直线上两个点和它们之间的部分是线段A、线段AB的长度是A、B两点间的距离B、若点P使PA=PB,则点P是AB中点C、画一条10厘米的直线D、画一条3厘米的射线知识点二、直线、射线、线段的表示方法1、直线用一个小写字母或两个大写字母表示,例如直线a或直线AB。

注意:直线AB和直线BA是同一条直线2、射线用一个小写字母或两个大写字母表示,例如射线a或射线AB注意:射线AB指从A射向B,射线BA指从B射向A,是不同的两条射线3、线段用一个小写字母或两个大写字母表示,例如线段a或线段AB注意:线段AB和线段BA是同一条线段思考:(1)直线AB和直线BA一样吗?_______(2)射线AB和射线BA一样吗?_______(3)线段AB和线段BA一样吗?_______1、下列说法正确的是()A、直线AB和直线BA是两条直线B、射线AB和射线BA是两条射线C、线段AB和线段BA是两条线段D、直线AB和直线a不能是同一条直线A、线段AB和线段a可以代表同一条线段B、直线AB和直线BA是同一条直线C、线段AB和线段BA是同一条线段D、射线AB和射线BA是同一条射线3、下列叙述正确的是()A、直线AB、线段ABC、射线abD、直线Ab4、下列叙述不正确的是()A、线段aB、射线bC、直线CDD、射线Ca知识点三、数学原理1、两点确定一条直线2、两点之间线段最短1、下列说法正确的有_______________①经过两点有且只有一条直线②两点之间线段最短③两点确定一条直线④到线段两个端点距离相等的点叫做线段的中点⑤线段的中点到线段两个端点的距离相等2、植树时,只要定出两棵树的位置,就能确定同一行树所在的直线,体现的原理是________________________3、小明是神枪手,他打靶时眼睛总要与枪上的准星、靶心在同一条直线上,这体现了什么道理_______________________4、从A到B有多条路,但是聪明的人都知道走走中间的直路比较近,这体现的数学原理是_____________________5、把弯曲的河流改成直的,可以缩小航程,这体现的原理是_____________________6、要把一根木条在墙上钉牢,至少需要______枚钉子,原理是_________________7、开学整理教室时,老师总是先把每一列最前和最后的课桌整理好,然后再依次摆中间的课桌,一会儿一列课桌就摆在一条线上,整整齐齐。

初一数学第18讲:直线,射线,线段(学生版

初一数学第18讲:直线,射线,线段(学生版

第七讲直线,射线,线段点与直线的关系:点在直线上;点在直线外.两个重要公理:②经过两点有且只有一条直线,也称为“两点确定一条直线”.②两点之间的连线中,线段最短,简称“两点之间,线段最短”.两点之间的距离:两点确定的线段的长度.⑴点的表示方法:我们经常用一个大写的英文字母表示点:A,B,C,D,……⑵直线的表示方法:①用两个大写字母来表示,这两个大写字母表示直线上的点,不分先后顺序,如直线AB,如下图⑴也可以写作直线BA.l(1) (2)②用一个小写字母来表示,如直线l,如上图⑵.注意:在直线的表示前面必须加上“直线”二字;用两个大写字母表示时字母不分先后顺序.⑶ 射线的表示方法:① 用两个大写字母来表示.第一个大写字母表示射线的端点,第二个大写字母表示射线上的点.如射线OA ,如图⑶,但不能写作射线AO . ② 用一个小写字母来表示,如射线l ,如图⑷.注意:在射线的表示前面必须加上“射线”二字.用两个大写字母表示射线时字母有先后顺序,射线的端点在前.⑷ 线段的表示方法:① 用两个大写字母来表示,这两个大写字母表示线段的两个端点,无先后顺序之分,如线段AB ,如图⑸,也可以写作线段BA .② 也可以用一个小写字母来表示:如线段l ,如图⑹.注意:在线段的表示前面必须加上“线段”二字.用两个大写字母表示线段时字母不分先后顺序.直线、射线、线段的主要区别:中点:1.直线,射线,线段的符号表示方法2.培养学生学会一些几何语言,培养学生的空间观念(3) (4)lAO(5) (6)AB在一个美丽的小岛上,有一座数学城堡里住着线段、直线、射线三个家族,它们在一起经常因比长短,而争论不休,它们三家的关系也很紧张。

这天上午阳光明媚、天气暖和,线段8分米带着弟弟6厘米,在花园里的花丛中玩耍,这是只见直线和射线也大摇大摆的来到这里。

它们看到线段兄弟就嘲笑的说:“喂;你们这么矮能摘得漂亮的花吗?你们能捉到蝴蝶吗?”线段兄弟听了直线和射线的挑衅的话;不服气地来到它们身旁抬头看它们比自己高不了多少,就对它们说:“你们不比我们高多少,还那么高傲,我们的10米、80米、200米……哥哥们比你们高的多,一会儿,等我把它们叫来,让你们见识见识它们的高度,吓你们一跳。

初一数学直线、射线、线段含答案

初一数学直线、射线、线段含答案

初一数学直线、射线、线段中考要求例题精讲直线、射线、线段的概念:① 在直线的基础上定义射线、线段:直线上的一点和这点一旁的部分叫射线,这个点叫做射线的端点. 直线上两点和中间的部分叫线段,这两个点叫线段的端点. ② 在线段的基础上定义直线、射线:把线段向一方无限延伸所形成的图形叫射线, 把线段向两方无限延伸所形成的图形是直线. 点与直线的关系:点在直线上;点在直线外. 两个重要公理:① 经过两点有且只有一条直线,也称为“两点确定一条直线”. ② 两点之间的连线中,线段最短,简称“两点之间,线段最短”. 两点之间的距离:两点确定的线段的长度.⑴ 点的表示方法:我们经常用一个大写的英文字母表示点:A ,B ,C ,D ,…… ⑵ 直线的表示方法:① 用两个大写字母来表示,这两个大写字母表示直线上的点,不分先后顺序,如直线AB ,如下图⑴ 也可以写作直线BA .(1) (2)lA B② 用一个小写字母来表示,如直线l ,如上图⑵.注意:在直线的表示前面必须加上“直线”二字;用两个大写字母表示时字母不分先后顺序. ⑶ 射线的表示方法:① 用两个大写字母来表示.第一个大写字母表示射线的端点,第二个大写字母表示射线上的点.如射线OA ,如图⑶,但不能写作射线AO .② 用一个小写字母来表示,如射线l ,如图⑷.(3) (4)lAO注意:在射线的表示前面必须加上“射线”二字.用两个大写字母表示射线时字母有先后顺序,射线的端点在前.⑷ 线段的表示方法:① 用两个大写字母来表示,这两个大写字母表示线段的两个端点,无先后顺序之分,如线段AB ,如图⑸,也可以写作线段BA .② 也可以用一个小写字母来表示:如线段l ,如图⑹.(5) (6)lAB注意:在线段的表示前面必须加上“线段”二字.用两个大写字母表示线段时字母不分先后顺序.中点:模块一直线、射线、线段的概念【例1】下列说法正确的是()A. 直线上一点一旁的部分叫做射线B. 直线是射线的2倍C. 射线AB与射线BA是同一条射线D. 过两点P Q、可画出两条射线【解析】略【答案】A【巩固】下列说法中正确的是()A. 直线的一半是射线B. 延长线段AB至C,使BC AB=C. 从北京到上海火车行驶的路程就是这两地的距离D. 三条直线两两相交,有三个交点【解析】略【答案】C【例2】下列语句准确规范的是( )A. 直线a b、相交于一点mB. 延长直线ABC. 反向延长射线AO(O是端点)D. 延长线段AB到C,使BC AB=【解析】略【答案】D【巩固】下面说法中错误的是( )A. 直线AB和直线BA是同一条直线B. 射线AB和射线BA是同一条射线C. 线段AB和线段BA是同一条线段D. 把线段AB向两端无限延伸便得到直线BA【解析】略【答案】B【巩固】下列叙述正确的是()A.孙悟空在天上画一条十万八千里的直线B.笔直的公路是一条直线C.点A一定在直线A B上D.过点A、B可以画两条不同的直线,分别为直线A B和直线B A 【解析】略【答案】C【例3】 根据直线、射线、线段各自的性质,如下图,能够相交的是( )D.C.B.B AA.【解析】略【答案】B【巩固】下列四个图形中各有一条射线和一条线段,它们能相交的是( )C.B.A.【解析】略 【答案】C【巩固】下列叙述正确的是( )A .可以画一条长5cm 的直线B .一根拉紧的线是一条直线C .直线AB 经过C 点D .直线AB 与直线BA 是不同的直线【解析】略 【答案】C【例4】 如图所示根据要求作图:⑴连结AB ;⑵作射线AC ;⑶作直线BC .ABC【解析】略 【答案】如图A模块二 直线公理公理:两点确定一条直线【例5】如图,图中共有条线段.【解析】1234515++++=.【答案】15【巩固】平面上有三个点,经过两点画一条直线,则可以画几条直线? 【解析】略【答案】1条或3条.模块三线段的相关计算【例6】如图所示,M是线段A B的中点,则1______2A M=,2_____2_____AB==.【解析】12AM AB=,22AB AM BM==.【答案】AM;AM;BM.【巩固】判断:若3c mA BBC==,则说明B是A C的中点.【解析】错误,如图,虽然3c mA BB C==,但B不是A C的中点,要明确点B把线段A C分成两条相等的线段才可.【答案】错误AB C【巩固】判断:已知A,B,C三点在同一条直线上,12AC AB=,那么C是A B的中点.【解析】错误,几何中的题目如果无图,要特别注意读准题意,适时分类求解.如下图⑴,⑵,均满足题意.【答案】错误(1) (2)【例7】如图,已知线段AB上依次有三个点C D E,,把线段AB分成2:3:4:5四个部分,56AB=,求BD的长度.【解析】根据题意可设2345AC x CD x DE x EB x ====,,,,所以有:1456436AB AC CD DE EB x x BD DE EB =+++====+=,,.【答案】36【巩固】已知14cm AD =,B C ,是AD 上顺次两点,且::2:3:2AB BC CD =,E 为AB 的中点,F 为CD的中点,求EF 的长.E【解析】设2AB x =,3BC x =,2CD x =,23214x x x ++=,2x =,510EF x == 【答案】10【例8】 如图,已知线段A B 上依次有三个点,,C D E 把线段A B 分成2:3:4:5四个部分,,,,M P Q N 分别是,,,A C C D D E E B的中点,若21,M N =求P Q 的长度. EQDPA【解析】根据题意可设234510.5212 3.57AC x CD x DE x EB x MN x x PQ x =========,,,,,, 【答案】7【巩固】摄影组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃饭,由于堵车,中 午才赶到一个小镇,只行驶了原计划的三分之一,过了小镇,汽车赶了400千米,傍晚才停下来休息,司机说,再走从C 市到这里路程的二分之一就到达目的地了,问A B ,两市相距多少千米?【解析】根据题意画图,D 为中午赶到的小镇,E 为傍晚赶到的地方,根据题意可得:1140022AD DC BE CE DE ===,,,所以有111200222AD BE DC CE DE +=+==,则600AB AD DE EB =++=(千米).【答案】600千米模块四 两点之间线段最短【例9】 从家到学校共有条路可以走,如图所示,若想走最近的路,应选择 (填序号).这是根据 .学校家【解析】略【答案】②;两点之间,线段最短.【例10】 如图,已知A B ,在直线的两侧,在l 上求一点P ,使PA PB +最小;B l图1【解析】如图,连接,A B ,A B 与的交点即为所求的P 点,利用“两点之间线段最短”, 教师不妨可在其他出处取一点P ,显然''A P B PA B+>.l图1-1【答案】如图l图1-1【巩固】如图,有一个正方体的盒子1111ABCD A B C D -,在盒子内的顶点A 处有一只蜘蛛,而在对角的顶点1C 处有一只苍蝇。

初一数学上册:如何区分线段、直线、射线

初一数学上册:如何区分线段、直线、射线

初一数学上册:如何区分线段、直线、射线一、定义线段是直的,有两个端点,可以测量长度。

要判断一个图形是不是线段一定要满足上面三个条件。

接着,我们就学习了直线,直线没有端点,是直的,没有办法度量长度。

要判断一个图形是不是线段要满足上面的三个条件。

最后我们学习了射线,射线只有1个端点,直的,也没有办法度量长度,要判断一个图形是不是线段要满足上面的三个条件。

由一个点引出的两条射线构成了一个角,这个点叫做角的顶点,这两条射线叫做角的边。

二、表示方法1.线段的表示方法:先给线段的两个端点大写字母命名,一个端点是A,一个端点是B,那么这条线段就是AB。

这里就有一个知识点,两点确定一条线段。

2.直线的表示方法:先给直线上的两个点用大写字母命名,一个点是A,一个点是B,那么这条直线就是直线AB。

这里就有一个知识点,两点确定一条直线。

也可以用一个小写字母来表示直线,比如线段l。

3.射线的表示方法:射线可以用端点和射线上的另一点表示,端点(起点)的字母写在前面,不能调换位置。

射线的端点是A,另一个点是B,那就是射线AB;射线的端点是B,另一个点是A,那就是射线BA。

4.角的表示方法:认识“∠”,知道角的符号怎么写,如“∠1”读作角1。

那么在上述内容中,我们学习了线段、直线、射线和角的专项练习,下面我们就通过4道典型的例题,进一步让大家学会怎么区分线段、直线、射线和角。

在例1当中,一条直线上有A、B、C三个端点,根据规律在一条直线上,射线的条数是端点数的两倍,线段的条数=(端点数-1)+(端点数-2)+ (1)直线的条数是1条,射线的条数是3×2=6条,线段的条数是2+1=3条。

在例2当中,一条射线上有ABCDEF共6个端点,根据规律,在一条射线上,射线的条数等于端点数,线段的条数=端点数-1)+(端点数-2)+……+1;直线的条数是0条,射线的条数的6条,线段的条数是5+4+3+2+1=15条。

在例3当中,甲地到乙地之间有3个站点,根据规律,在一条线段上,线段的条数=(端点数-1)+(端点数-2)+……+1;所以火车的票价就有4+3+2+1=10种,但是因为火车票有往返两种情况,所以,就有10×2=20种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

达标检测
反思目标
3. 数一数,图中共有多少条线段?并分别写出这 些线段.
解:由图形得:共有10条线段, 分别为:线段AB、线段BC、线段 CD、线段DA、线段AC、线段AO 、线段CO、线段BD、线段BO、 线段DO.
达标检测
反思目标
4.A,B,C,D四点如图所示,读下列语句,按要求作出 图形(不写画法): 解:如图所示.
可以近似地看做线段
线段
可以近似地看做射线
射线
都可以近似地看做直线
直线
二、师生互动,学习新知
1、线段、射线、直线的概念
线段
(线段有两个端点,不能延伸)
射线
(射线有一个端点,可以向一个方向无限延伸)
直线
(没有端点,可以向两个方向无限延伸)
2、说一说:
生活中,有哪些物体可以近似的看作 线段、 射线、直线?
一、创设情景,引入新课
欣赏图片,你能从中找出我们熟悉的几何图形吗?
1.使我们在了解直线概念的基础上,理解 射线和线段的概念,并能理解它们的区别与 联系. 会表示直线、射线和线段。 2.通过直线、射线、线段概念的学习,培 养几何想象能力和观察能力,用运动的观点 看待几何图形. 3.培养对几何图形的兴趣,提高学习几何 的积极性
已知平面上四个点A、B、C、D ,读下列语 句,并画出相应的图形:
①画线段AC; ②画直线AB ;
A
B
③画射线AD、DC、CB。
C
D
四、动手操作,再探新知 ⑴ 过一点O 可以画几条直线?
O
⑵过两点A、B 可以画几条直线?
A B
这告诉我 们一个什 么道理?
⑴ 经过一点有无数条直线; ⑵ 经过两点有一条直线,并且只有一条直线。
射线OA 直线CD 直线 m
不能延伸 两个 可以
一方延伸 一个 不可以 两方延伸 无 不可以
O C
A D
直 线
m
三、巩固练习,深化概念
1.请分别表示出下图中线段、射线、直线.
M
A
B
C
N
答: 有3条线段,是线段 AB、线段 AC、线段 BC 有6条射线,分别是每个点分成的两条. 只有一条直线,是直线 AB
(1)连接AD,并延长线段DA. (2)连接BC,并反向延长线段BC. (3)连接AC,BD,它们相交于点O. (4)DA延长线与BC反向延长线交于点P.
六、归纳小结、布置作业
说一说这节课你学到了什么?
1、直线、射线、线段的概念及表达方式.
2、直线性质:两点确定一条直线.
3、直线、射线、线段三者的区别与联系.
辨一辨 × A B a E A b F 记作:直线A ( )
记作:射线AB ( × ) 记作:直线ab ( ×)
记作:线段FE ( √ ) 画一条2cm的直线。 ( )×
如图,直线 AB和直线AC表示的是同一条直线。(√)
A B
如上图,射线AB和射线BA表示的是同一条射线。(×)

3.比一比看谁画的好
解释:
⑵中的“有”是存在的意思,“只有”是 唯一的意思,也就是说“两点确定一条直线”。
生活与数学
1、要把一根木条用钉子固定在木板上, 要求用尽可能少的钉 子,问至少要几颗钉子?
2、植树时,怎么样才能使所 种的树在同一条直线上?
3、木匠师傅在锯木料时,一般先在木 板上画出两个点,然后过这两点弹 出一条墨线
3、线段、射线、直线的表示方法
A B
表示1:线段 AB(或线段BA) 表示2:线段 a
a
O A
表示:射线 OA
B
A
表示1:直线 AB(或直线BA) 表示2:直线 l
l
4、线段、射线、直线之间的区别与联系
名 称 线 段 射 线
A a


B
表示方法
延伸 方向
端点 长度可 个数 否度量
线段AB 线段 a
五、达标检测
反思目标
1. 如图,林林的爸爸只用两枚钉子就把一根木条 固定在墙上,下列语句能解释这个原理的是 ( B )
A. 木条是直的 B. 两点确定一条直线 C. 过一点可以画无数条直线 D. 一个点不能确定一条直线
达标检测
反思目标
2. 下列语句正确的是( D ) A.画直线AB=10厘米 B.确定O为直线l的中点 C.画射线OB=3厘米 D.延长线段AB到点C, 使得BC=AB
2.判断下列说法是否正确:
⑴ 直线、射线、线段都有两个端点; ⑵ 直线和射线可以延伸,线段不能延伸; ( ×) (√ )
请观察图形作出判断:
A B C ( ×) (√ ) ( ×)
⑶ 直线AB和直线AC表示的不是同一条直线; ⑷ 线段BC和线段CB表示的是同一条线段 ⑸ 射线AC和射线CA表示的是同一条射线。
相关文档
最新文档