最新高中数学必修三习题:第一章1.1-1.1.1算法的概念 含答案
高中数学人教B版必修三课时作业第一章 1.1.1算法的概念 Word版含解析
第一章算法的概念级基础巩固一、选择题.下列语句中是算法的是)( ).解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为.吃饭.做饭.写作业[解析]选项是解一元一次方程的具体步骤,故它是算法,而、、是说的三个事实,不是算法..计算下列各式中的值,能设计算法求解的是)( )①=+++…+;②=+++…++…;③=+++…+(≥,且∈)..①③.①②.②③.②[解析]由算法的确定性、有限性知选..早上从起床到出门需要洗脸、刷牙( ),刷水壶( ),烧水( ),泡面( ),吃饭( ),听广播( )几个过程,下列选项中最好的一种算法是)( ).第一步,洗脸刷牙;第二步,刷水壶;第三步,烧水;第四步,泡面;第五步,吃饭;第六步,听广播.第一步,刷水壶;第二步,烧水同时洗脸刷牙;第三步,泡面;第四步,吃饭;第五步,听广播.第一步,刷水壶;第二步,烧水同时洗脸刷牙;第三步,泡面;第四步,吃饭同时听广播.第一步,吃饭同时听广播;第二步,泡面;第三步,烧水同时洗脸刷牙;第四步,刷水壶[解析]因为选项共用时,选项共有时,选项共用时,选项的算法步骤不符合常理,所以最好的一种算法为选项..对于一般的二元一次方程组(\\(+=+=)),在写求此方程组解的算法时,需要我们注意的是)( ).≠.≠.-≠.-≠[解析]由二元一次方程组的公式算法即知正确..下面是对高斯消去法的理解:①它是解方程的一种方法;②它只能用来解二元一次方程组;③它可以用来解多元一次方程组;④用它来解方程组时,有些方程组的答案可能不准确.其中正确的是)( ).②④.①②.①③.②③[解析]高斯消去法是只能用来解二元一次方程组的一种方法,故①②正确..一个算法步骤如下:取值,取值;如果≤,则执行,否则执行;计算+并将结果代替;用+的值代替;转去执行;输出.运行以上步骤输出的结果为)( )....[解析]按算法步骤一步一步地循环计算替换,该算法作用为求和=++++=.二、填空题.已知直角三角形两条直角边长分别为、,求斜边长的算法如下:)输入两直角边长、的值.计算=的值;.将算法补充完整,横线处应填.输出斜边长的值[解析]算法要有输出,故应为输出的值..一个算法步骤如下:)取值,取值;如果≤,则执行,否则执行;计算+并将结果代替;用+的值代替;。
高中数学必修三习题:第一章1.1-1.1.2第1课时程序框图、顺序结构含答案
第一章算法初步1.1 算法与程序框图1.1.2 程序框图与算法的基本逻辑结构第1课时程序框图、顺序结构A级基础巩固一、选择题1.一个完整的程序框图至少包含( )A.终端框和输入、输出框B.终端框和处理框C.终端框和判断框D.终端框、处理框和输入、输出框解析:一个完整的程序框图至少需包括终端框和输入、输出框.对于处理框,由于输出框含有计算功能,所以可不必有.答案:A2.下列是流程图中的一部分,表示恰当的是( )解析:B选项应该用处理框而非输入、输出框,C选项应该用输入、输出框而不是处理框,D选项应该在出口处标明“是”和“否”.答案:A3.下面的程序框图的运行结果是( )A.5 2B.3 2C .-32D .-1解析:因为a =2,b =4,所以S =a b -b a =24-42=-32,故选C.答案:C4.在如图所示程序框图中,若R =8,运行结果也是8,则程序框图中应填入的内容是( )A .a =2bB .a =4b C.a 4=b D .b =a4解析:因为R =8,所以b =4=2. 又a =8,因此a =4b ,故选B. 答案:B5.程序框图符号“”可用于( )A .输出a =10B .赋值a =10C .判断a =10D .输入a =1解析:图形符号“”是处理框,它的功能是赋值、计算,不是用来输出、判断和输入的,故选B.答案:B 二、填空题6.下面程序框图输出的S 表示____________________.答案:半径为5的圆的面积7.如图所示的一个算法的程序框图,已知a 1=3,输出的结果为7,则a 2的值为________.解析:由框图可知,b =a 1+a 2,再将b2赋值给b ,所以7×2=a 2+3,所以a 2=11.答案:118.写出下列算法的功能.(1)图①中算法的功能是(a >0,b >0)__________________; (2)图②中算法的功能是____________________.答案:(1)求以a ,b 为直角边的直角三角形斜边c 的长 (2)求两个实数a ,b 的和 三、解答题9.已知一个三角形的三边边长分别为2,3,4,设计一个算法,求出它的面积,并画出程序框图.解:第一步,取a =2,b =3,c =4.第二步,计算p =a +b +c2.第三步,计算S =p (p -a )(p -b )(p -c ). 第四步,输出S 的值.10.如图所示的程序框图,要使输出的y 的值最小,则输入的x 的值应为多少?此时输出的y 的值为多少?解:此程序框图执行的功能是对于给定的任意x 的值,求函数y =x 2+2x +3的值. 将y =x 2+2x +3配方,得y =(x +1)2+2,要使y 的值最小,需x =-1, 此时y min =2.故输入的x 的值为-1时,输出的y 的值最小为2.B 级 能力提升1.给出如图程序框图:若输出的结果为2,则①处的执行框内应填的是( ) A .x =2B .b =2C .x =1D .a =5解析:因结果是b =2,所以2=a -3,即a =5.当2x +3=5时,得x =1.故选C. 答案:C2.图1是计算图2中阴影部分面积的一个程序框图,则图1中①处应填________.解析:题干图2中,正方形的面积为S 1=a 2,扇形的面积为S 2=14πa 2,则阴影部分的面积为S =S 1-S 2=a 2-π4a 2=4-π4a 2. 因此题干图1中①处应填入S =4-π4a 2. 答案:S =4-π4a 23.如图所示的程序框图,当输入的x 的值为0和4时,输出的值相等,根据该图和下列各小题的条件解答下面的几个问题.(1)该程序框图解决的是一个什么问题?(2)当输入的x 的值为3时,求输出的f (x )的值; (3)要想使输出的值最大,求输入的x 的值. 解:(1)该程序框图解决的是求二次函数f (x )=-x 2+mx 的函数值的问题.(2)当输入的x 的值为0和4时,输出的值相等, 即f (0)=f (4).因为f(0)=0,f(4)=-16+4m,所以-16+4m=0,所以m=4,所以f(x)=-x2+4x.因为f(3)=-32+4×3=3,所以当输入的x的值为3时,输出的f(x)的值为3.(3)因为f(x)=-x2+4x=-(x-2)2+4,当x=2时, f(x)max=4,所以要想使输出的值最大,输入的x的值应为2.。
高中数学必修3第一章:1.1.1 算法的概念
A级基础巩固一、选择题1.下列四种自然语言叙述中,能称作算法的是()A.在家里一般是妈妈做饭B.做米饭需要刷锅、淘米、添水、加热这些步骤C.在野外做饭叫野炊D.做饭必须要有米解析:算法是做一件事情或解决一类问题的程序或步骤,故B 正确.答案:B2.下面的结论正确的是()A.一个程序的算法步骤是可逆的B.一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D.设计算法要本着简单方便的原则解析:算法需每一步都按顺序进行,并且结果唯一,不能保证可逆,故A不正确;一个算法必须在有限步内完成,不然就不是问题的解了,故B 不正确;一般情况下,完成一件事情的算法不止一个,但是存在一个比较好的,故C不正确;设计算法要尽量运算简单,节约时间,故D正确.答案:D3.一个算法的步骤如下,若输入x的值为-3,则输出z的值为()第一步,输入x的值.第二步,计算x的绝对值y.第三步,计算z=2y-y.第四步,输出z的值.A.4B.5C.6 D.8解析:因为x=-3,所以y=|x|=3.所以z=23-3=5.答案:B4.阅读下面的算法:第一步,输入两个实数a,b.第二步,若a<b,则交换a,b的值;否则,不交换a,b的值.第三步,输出a.这个算法输出的是()A.a,b中较大的数B.a,b中较小的数C.原来的a的值D.原来的b的值解析:第二步中,若a<b,则交换a,b的值,那么a是a,b中较大的数,即a≥b.答案:A5.给出算法:第一步,输入n=6.第二步,令i=1,S=0.第三步,判断i≤n是否成立.若不成立,则输出S,结束算法;若成立,则执行下一步.第四步,令S的值加i,仍用S表示,令i的值加1,仍用i表示,返回第三步.则该算法的功能为()A.计算1+2+3+4+5+6的值B.计算1+2+3+4+5的值C.计算1+2+3+4+5+6+7的值D.以上答案皆不正确解析:该算法的运行过程是:n=6,i=1,S=0,i=1≤6成立;S=0+1=1,i=1+1=2,i=2≤6成立;S=1+2,i=2+1=3,i=3≤6成立;S=1+2+3,i=3+1=4,i=4≤6成立;S=1+2+3+4,i=4+1=5,i=5≤6成立;S=1+2+3+4+5,i=5+1=6,i=6≤6成立;S=1+2+3+4+5+6,i=6+1=7,i=7≤6不成立,输出S=1+2+3+4+5+6=21.答案:A二、填空题6.给出下列算法:第一步,输入x 的值.第二步,当x >4时,计算y =x +2;否则执行下一步.第三步,计算y =4-x .第四步,输出y .当输入x =0时,输出y =________.解析:因为0<4,执行第三步,所以y =4-0=2.答案:27.已知直角三角形两直角边长为a ,b ,求斜边长c 的一个算法分下列三步:①计算c =a 2+b 2.②输入直角三角形两直角边长a ,b 的值.③输出斜边长c 的值.其中正确的顺序是________________.解析:算法的步骤是有先后顺序的,第一步是输入,最后一步是输出,中间的步骤是赋值、计算.答案:②①③8.如下算法:第一步,输入x 的值.第二步,若x ≥0,则y =x .第三步,否则,y =x 2.第四步,输出y 的值.若输出的y 值为9,则x =________. 解析:根据题意可知,此为求分段函数y =⎩⎨⎧x ,x ≥0,x 2,x <0的函数值的算法.当x≥0时,x=9;当x<0时,x2=9,所以x=-3.答案:9或-3三、解答题9.试设计一个判断圆(x-a)2+(y-b)2=r2与直线Ax+By+C=0(A、B不同时为零)位置关系的算法.解:算法步骤如下:第一步,输入圆心的坐标(a,b)、半径r和直线方程的系数A,B,C.第二步,计算z1=Aa+Bb+C.第三步,计算z2=A2+B2.第四步,计算d=|z1| z2.第五步,如果d>r,则输出“相离”;如果d=r,则输出“相切”;如果d<r,则输出“相交”.10.某商场举办优惠促销活动.若购物金额在800 元以上(不含800 元),打7折;若购物金额在400 元以上(不含400 元),800 元以下(含800 元),打8折;否则,不打折.请为商场收银员设计一个算法,要求输入购物金额x,输出实际交款额y.解:算法步骤如下:第一步,输入购物金额x(x>0).第二步,判断“x>800”是否成立,若是,则y=0.7x,转第四步;否则,执行第三步.第三步,判断“x>400”是否成立,若是,则y=0.8x;否则,y =x.第四步,输出y,结束算法.B级能力提升1.给出算法:第一步,输入x.第二步,判断x是否小于0,若是,则输出x+2;否则,执行第三步.第三步,输出x-1.当输入的x的值为-1,0,1时,输出的结果分别为()A.-1,0,1 B.-1,1,0C.1,-1,0 D.0,-1,1解析:根据x值与0的关系选择执行不同的步骤.答案:C2.以下为输出1至1 000的正整数中3的倍数的一个算法,请将算法补充完整:第一步,令i=1.第二步,i被3除,得余数r.第三步,若________,则输出i,否则不输出.第四步,令i=i+1.第五步,若i≤1 000,则返回第二步继续执行,否则结束算法.解析:由定义可知,可被3整除的数即3的倍数,所以此处余数是否为0可以作为判断是否输出该数的条件.答案:r=03.“韩信点兵”问题:韩信是汉高祖手下的大将,他英勇善战,谋略超群,为汉朝的建立立下了不朽功勋.据说他在一次点兵的时候,为保住军事秘密,不让敌人知道自己部队的军事实力,采用下述点兵方法:①先令士兵从1~3报数,结果最后一个士兵报2;②又令士兵从1~5报数,结果最后一个士兵报3;③又令士兵从1~7报数,结果最后一个士兵报4.这样韩信很快算出自己部队里士兵的总数.请设计一个算法,求出士兵至少有多少人.解:第一步,首先确定最小的满足除以3余2的正整数:2.第二步,依次加3就得到所有除以3余2的正整数:2,5,8,11,14,17,20,….第三步,在上列数中确定最小的满足除以5余3的正整数:8.第四步,在自然数内的8的基础上依次加上15,得到8,23,38,53,….第五步,在上列数中确定最小的满足除以7余4的正整数:53.即士兵至少有53人.。
【同步练习】必修3 1.1.1 算法的概念-高一数学人教版(必修3)(解析版)
第一章算法初步1.1.1 算法的概念一、选择题1.下列语句中是算法的有①从广州到北京旅游,先坐火车,再坐飞机抵达;②解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1;③方程210x-=的两个实数根;④求1+2+3+4的值,先计算1+2=3,再由3+3=6,6+4=10得最终结果是10.A.1个B.2个C.3个D.4个【答案】C2.以下关于算法的说法正确的是A.描述算法可以用不同的方式,可用程序设计语言也可用其他语言B.算法可以看成是按照要求设计好的有限的确切的计算序列,并且这样的步骤或计算序列只能解决当前问题C.算法过程要一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步或无限步后能得出结果D.算法要求按部就班地做,每一步可以有不同的结果【答案】A【解析】算法可以看成是按照要求设计好的有限的确切的计算序列,并且这样的步骤或计算序列能够解决一类问题.算法过程要一步一步执行,每一步执行的操作必须确切,且只能有唯一结果,而且经过有限步后必须有结果输出,然后终止.描述算法可以用不同的语言形式,如自然语言、框图语言、程序设计语言等.3.给出下列表述:①利用海伦公式)2a b cS p ++==计算边长分别为6,8,10的三角形的面积; ②从江苏常州到九寨沟旅游可以先乘汽车到上海,再乘飞机到成都,再乘汽车抵达九寨沟;③求过(1,2)M 与(3,5)N -两点的连线所在的直线方程,可先求直线MN 的斜率,再利用点斜式方程求得; ④求三点(2,2)A ,(2,6)B ,(4,4)C 所在ABC △的面积,可先算AB 的长a ,再求AB 的直线方程及点C 到直线AB 的距离h ,最后利用12S ah =来进行计算,其中是算法的有A .1个B .2个C .3个D .4个【答案】D【解析】四个表述均满足算法的定义. 4.下列可以看成算法的是A .学习数学时,课前预习,课上认真听讲并记好笔记,课下先复习再做作业,之后做适当的练习题B .今天餐厅的饭真好吃C .这道数学题难做D .方程2x 2-x +1=0无实数根 【答案】A【解析】A 是学习数学的一个步骤,所以是算法. 5.计算下列各式中S 的值,能设计算法求解的是 ①123100S =++++; ②123100S =+++++; ③123(1,)S n nn =++++∈N 且.A .①②B .①③C .②③D .①②③【答案】B【解析】算法的设计要求步骤是可行的,并且在有限步之内能完成任务. 6.下列叙述中,①植树需要运苗、挖坑、栽苗、浇水这些步骤;②按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…99+1=100; ③从青岛乘火车到济南,再从济南乘飞机到广州观看亚运会开幕式;④3x >x +1;⑤求所有能被3整除的正数,即3,6,9,12,…. 能称为算法的个数为 A .2 B .3 C .4 D .5【答案】B【解析】根据算法的含义和特征:①②③都是算法;④⑤不是算法.其中④,3x >x +1不是一个明确的步骤,不符合确定性;⑤的步骤是无穷的,与算法的有限性矛盾. 7.关于一元二次方程x 2-5x +6=0的求根问题,下列说法正确的是 A .只能设计一种算法 B .可以设计多种算法C .不能设计算法D .不能根据解题过程设计算法 【答案】B【解析】一元二次方程的求解过程可以用公式法和分解因式法进行,也可用配方法求解,可根据不同的解题过程来设计算法,故可以设计多种算法,但几种算法输出的结果是一样的. 8.对于解方程x 2-2x -3=0的下列步骤: ①设f (x )=x 2-2x -3;②计算判别式Δ=(-2)2-4×1×(-3)=16>0; ③作f (x )的图象;④将a =1,b =-2,c =-3代入求根公式x =-b ±Δ2a ,得x 1=3,x 2=-1.其中可作为解方程的算法的有效步骤为 A .①② B .②③ C .②④ D .③④【答案】C【解析】解一元二次方程可分为两步:确定判别式和代入求根公式,故②④是有效的,①③不起作用. 9.看下面的四段话,其中不是解决问题的算法的是A .从大楼的一层到三层,先由一层到二层,再由二层到三层B .解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C .方程210x -=有两个实根D .求12345++++的值,先计算123+=,再由336+=,6410+=,10515+=,得最终结果为15 【答案】C【解析】算法强调的是解决一类问题的一系列的方法或步骤,选项C 只是陈述了有两个根的事实,没有解决如何求这两个根的问题,所以不能看成是算法. 10.使用配方法解方程2230x x --=的算法的正确步骤是①配方得2(1)4x -=; ②移项得223x x -=; ③解得3x =或1x =-; ④开方得12x -=±. A .①②③④ B .②①④③ C .②③④① D .④③②①【答案】B【解析】使用配方法的步骤应按移项、配方、开方、得解的顺序进行. 11.下列算法要解决的问题是第一步,比较a 与b 的大小,如果a <b ,则交换a ,b 的值. 第二步,比较a 与c 的大小,如果a <c ,则交换a ,c 的值. 第三步,比较b 与c 的大小,如果b <c ,则交换b ,c 的值. 第四步,输出a ,b ,C .A .输入a ,b ,c 三个数,比较a ,b ,c 的大小B .输入a ,b ,c 三个数,找出a ,b ,c 中的最大数C .输入a ,b ,c 三个数,按从大到小的顺序输出D .输入a ,b ,c 三个数,求a ,b ,c 的平均数 【答案】C【解析】由步骤S 1→S 4可知算法要解决问题是输入a ,b ,c 三个数,按从大到小的顺序输出. 二、填空题12.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅盛水2分钟;②洗菜6分钟;③准备面条及佐料2分钟;④用锅把水烧开10分钟;⑤煮面条和炒菜共3分钟.以上各道工序,除了④之外,一次只能进行一道工序.小明要将面条煮好,最少要用______________分钟. 【答案】15【解析】①洗锅盛水2分钟+④用锅把水烧开10分钟(同时②洗菜6分钟+③准备面条及佐料2分钟)+⑤煮面条和炒菜共用3分钟=15分钟.13.在用二分法求方程3210x x --=的一个近似解时,现在已经将根锁定在区间(1,2)内,则下一步可断定该根所在的区间为______________. 【答案】3(,2)2【解析】区间(1,2)的中点为032x =,令3()21f x x x =--,则35()028f =-<,(2)30f =>,所以根所在的区间为3(,2)2.14.以下是解二元一次方程组⎩⎪⎨⎪⎧2x -y +6=0,①x +y +3=0 ②的一个算法,请将该算法补充完整.第一步,①②两式相加得3x +9=0;③ 第二步,由③式可得______________;④ 第三步,将④式代入①式得y =0; 第四步,输出方程组的解______________.15.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99,求他的总分和平均成绩的一个算法为:第一步,取A =89,B =96,C =99; 第二步,__________________________; 第三步,__________________________; 第四步,输出计算的结果.【答案】计算总分D =A +B +C 计算平均成绩E =【解析】应先计算总分D =A +B +C ,然后再计算平均成绩E =D3.16.已知A (-1,0),B (3,2),下面是求直线AB 的方程的一个算法,请将其补充完整:第一步,__________________________.第二步,用点斜式写出直线AB 的方程y -0=12[x -(-1)].第三步,将第二步的方程化简,得到方程x -2y +1=0. 【答案】计算直线AB 的斜率k =12【解析】该算法功能为用点斜式方程求直线方程,第一步应为求直线的斜率,应补充为“计算直线AB 的斜率k =12”.三、解答题17.设计一个判断直线0Ax By C ++=与圆()()22200x x y y r -+-=的位置关系的算法.18.写出解方程0ax b +=(),a b 是常数的一个算法.【解析】算法步骤如下:第一步,判断a 是否为0,若=0a ,执行第二步;若0a ≠,执行第三步. 第二步,判断b 是否为0,若=0b ,则输出“x R ∈”;否则输出“无解”. 第三步,将0ax b +=变形为ax b =-,得b x a =-,输出bx a=-.19.设计算法,找出,,,a b c d 四个互不相同的数中的最小数.【解析】算法如下:第一步,输入四个互不相同的数,,,a b c d ,定义最后求得的最小者为m ,令m a =. 第二步,如果b m <,则m b =;如果b m >,则m 的值不变. 第三步,如果c m <,则m c =;如果c m >,则m 的值不变. 第四步,如果d m <,则m d =;如果d m >,则m 的值不变. 第五步,输出m ,则m 就是,,,a b c d 这四个互不相同的数中的最小数.。
高中数学必修三习题:第一章1.1-1.1.1算法的概念含答案
第一章 算法初步1.1 算法与程序框图1.1.1 算法的概念A 级 基础巩固一、选择题1.下列四种自然语言叙述中,能称作算法的是( )A .在家里一般是妈妈做饭B .做米饭需要刷锅、淘米、添水、加热这些步骤C .在野外做饭叫野炊D .做饭必须要有米解析:算法是做一件事情或解决一类问题的程序或步骤,故选B.答案:B2.以下对算法的描述正确的有( )①对一类问题都有效;②算法可执行的步骤必须是有限的;③算法可以一步一步地进行,每一步都有确切的含义;④是一种通法,只要按部就班地做,总能得到结果.A .1个B .2个C .3个D .4个答案:D3.给出下面一个算法:第一步,给出三个数x ,y ,z .第二步,计算M =x +y +z .第三步,计算N =13M .第四步,得出每次计算结果.则上述算法是( )A .求和B .求余数C .求平均数D .先求和再求平均数解析:由算法过程知,M 为三数之和,N 为这三数的平均数.答案:D4.一个算法步骤如下:S 1,S 取值0,i 取值1;S2,如果i≤10,则执行S3;否则,执行S6;S3,计算S+i并将结果代替S;S4,用i+2的值代替i;S5,转去执行S2;S6,输出S.运行以上步骤后输出的结果S=( )A.16 B.25C.36 D.以上均不对解析:由以上计算可知:S=1+3+5+7+9=25.答案:B5.对于算法:第一步,输入n.第二步,判断n是否等于2,若n=2,则n满足条件;若n>2,则执行第三步.第三步,依次从2到(n-1)检验能不能整除n,若不能整除n,则执行第四步;若能整除n,则执行第一步.第四步,输出n.满足条件的n是( )A.质数B.奇数C.偶数D.约数解析:此题首先要理解质数,只能被1和自身整除的大于1的整数叫质数.2是最小的质数,这个算法通过对2到(n-1)一一验证,看是否有其他约数,来判断其是否为质数.答案:A二、填空题6.给出下列算法:第一步,输入x的值.第二步,当x>4时,计算y=x+2;否则执行下一步.第三步,计算y=4-x.第四步,输出y.当输入x=0时,输出y=________.解析:因为0<4,执行第三步,所以y=4-0=2.答案:27.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:(1)计算c=a2+b2.(2)输入直角三角形两直角边长a,b的值.(3)输出斜边长c 的值.其中正确的顺序是________________.解析:算法的步骤是有先后顺序的,第一步是输入,最后一步是输出,中间的步骤是赋值、计算.答案:(2)(1)(3)8.如下算法:第一步,输入x 的值;第二步,若x ≥0,则y =x ;第三步,否则,y =x 2;第四步,输出y 的值.若输出的y 值为9,则x =________.解析:根据题意可知,此为求分段函数y =⎩⎪⎨⎪⎧x ,x ≥0,x 2,x <0的函数值的算法,当x ≥0时,x=9;当x <0时,x 2=9,所以x =-3.答案:9或-3三、解答题9.写出求1×2×3×4×5×6的算法.解:第一步,计算1×2得到2.第二步,将第一步的运算结果2乘3,得到6.第三步,将第二步的运算结果6乘4,得到24.第四步,将第三步的运算结果24乘5,得到120.第五步,将第四步的运算结果120乘6,得到720.10.某商场举办优惠促销活动.若购物金额在800 元以上(不含800 元),打7折;若购物金额在400 元以上(不含400 元),800 元以下(含800 元),打8折;否则,不打折.请为商场收银员设计一个算法,要求输入购物金额x ,输出实际交款额y .解:算法步骤如下:第一步,输入购物金额x (x >0).第二步,判断“x >800”是否成立,若是,则y =0.7x ,转第四步;否则,执行第三步. 第三步,判断“x >400”是否成立,若是,则y =0.8x ;否则,y =x .第四步,输出y ,结束算法.B 级 能力提升1.结合下面的算法:第一步,输入x .第二步,判断x 是否小于0,若是,则输出x +2;否则,执行第三步.第三步,输出x -1.当输入的x 的值为-1,0,1时,输出的结果分别为( )A .-1,0,1B .-1,1,0C .1,-1,0D .0,-1,1解析:根据x 值与0的关系选择执行不同的步骤.答案:C2.求过P (a 1,b 1),Q (a 2,b 2)两点的直线斜率有如下的算法,请将算法补充完整: S 1 取x 1=a 1,y 1=b 1,x 2=a 2,y 2=b 2.S 2 若x 1=x 2,则输出斜率不存在;否则,________.S 3 输出计算结果k 或者无法求解信息.解析:根据直线斜率公式可得此步骤.答案:k =y 2-y 1x 2-x 13.鸡兔同笼问题:鸡和兔各若干只,数腿共100条,数头共30只,试设计一个算法,求鸡和兔各有多少只.解:第一步,设有x 只鸡,y 只兔,列方程组⎩⎪⎨⎪⎧x +y =30,①2x +4y =100.② 第二步,②÷2-①,得y =20.第三步,把y =20代入①,得x =10.第四步,得到方程组的解⎩⎪⎨⎪⎧x =10,y =20. 第五步,输出结果,鸡10只,兔20只.。
新高中人教B版数学必修三同步练习:1.1.1 算法的概念(含答案解析)
1.1.1 算法的概念1.算法可以理解为由基本运算及规定的________所构成的完整的解题步骤,或者看成按照要求设计好的________________计算序列,并且这样的步骤或序列能够解决________问题.2.求解某个问题的算法不一定是惟一的.3.算法的要求(1)写出的算法,必须能解决________问题,并且____重复使用;(2)算法过程要能一步一步执行,每一步执行的操作,必须________,不能含混不清,而且经过________步后能得出结果.一、选择题1.下面四种叙述能称为算法的是( )A .在家里一般是妈妈做饭B .做米饭需要刷锅、淘米、添水、加热这些步骤C .在野外做饭叫野炊D .做饭必须要有米2.下列对算法的理解不正确的是( )A .算法有一个共同特点就是对一类问题都有效(而不是个别问题)B .算法要求是一步步执行,每一步都能得到唯一的结果C .算法一般是机械的,有时要进行大量重复计算,它的优点是一种通法D .任何问题都可以用算法来解决3.下列关于算法的描述正确的是( )A .算法与求解一个问题的方法相同B .算法只能解决一个问题,不能重复使用C .算法过程要一步一步执行,每步执行的操作必须确切D .有的算法执行完后,可能无结果4.计算下列各式中S 的值,能设计算法求解的是( )①S =12+14+18+…+12100 ②S =12+14+18+…+12100+…③S =12+14+18+…+12n (n≥1且n ∈N +) A .①② B .①③ C .②③ D .①②③5.关于一元二次方程x 2-5x +6=0的求根问题,下列说法正确的是( )A .只能设计一种算法B .可以设计两种算法C .不能设计算法D .不能根据解题过程设计算法6.对于算法:第一步,输入n.第二步,判断n 是否等于2,若n =2,则n 满足条件;若n>2,则执行第三步.第三步,依次从2到(n -1)检验能不能整除n ,若不能整除n ,则执行第四步;若能整除n ,则执行第一步.第四步,输出n.满足条件的n 是( )A .质数B .奇数C .偶数D .约数二、填空题7.已知直角三角形两条直角边长分别为a ,b.写出求斜边长c 的算法如下: 第一步,输入两直角边长a ,b 的值.第二步,计算c =a 2+b 2的值.第三步,________________.将算法补充完整,横线处应填____________.8.下面给出了解决问题的算法:第一步:输入x.第二步:若x≤1,则y =2x -1,否则y =x 2+3.第三步:输出y.(1)这个算法解决的问题是________;(2)当输入的x 值为________时,输入值与输出值相等.9.求1×3×5×7×9×11的值的一个算法是:第一步,求1×3得到结果3;第二步,将第一步所得结果3乘5,得到结果15;第三步,____________________;第四步,再将105乘9得到945;第五步,再将945乘11,得到10 395,即为最后结果.三、解答题10.已知某梯形的底边长AB =a ,CD =b ,高为h ,写出一个求这个梯形面积S 的算法.11.函数y =⎩⎪⎨⎪⎧ -x +1 x>0 0 x=0 x +1 x<0,写出给定自变量x ,求函数值的算法.能力提升12.某铁路部门规定甲、乙两地之间旅客托运行李的费用为:c =⎩⎪⎨⎪⎧0.53×ω, ω≤50,50×0.53+ ω-50 ×0.85, ω>50. 其中ω(单位:kg)为行李的质量,如何设计计算托运费用c(单位:元)的算法.13.从古印度的汉诺塔传说中演变了一个汉诺塔游戏:(1)有三根杆子A ,B ,C ,A 杆上有三个碟子(大小不等,自上到下,由小到大),如图.(2)每次移动一个碟子,小的只能叠在大的上面.(3)把所有碟子从A 杆移到C 杆上.试设计一个算法,完成上述游戏.1.算法的特点(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且能得到确定的结果,而不应当是模棱两可的.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决.2.算法与数学问题解法的区别与联系(1)联系算法与解法是一般与特殊的关系,也是抽象与具体的关系.(2)区别算法是解决某一类问题所需要的程序和步骤的统称,也可理解为数学中的“通法通解”;而解法是解决某一个具体问题的过程和步骤,是具体的解题过程.答案知识梳理1.运算顺序 有限的确切的 一类 3.(1)一类 能 (2)确切 有限作业设计1.B [算法是解决一类问题的程序或步骤,A 、C 、D 均不符合.]2.D3.C [算法与求解一个问题的方法既有区别又有联系,故A 不对;算法能重复使用,故B 不对;每个算法执行后必须有结果,故D 不对;由算法的要求可知C 正确.]4.B [因为算法的步骤是有限的,所以②不能设计算法求解.]5.B [算法具有不唯一性,对于一个问题,我们可以设计不同的算法.]6.A [此题首先要理解质数,只能被1和自身整除的大于1的整数叫质数.2是最小的质数,这个算法通过对2到(n -1)一一验证,看是否有其他约数,来判断其是否为质数.]7.输出斜边长c 的值8.(1)求分段函数y =⎩⎪⎨⎪⎧2x -1 x≤1 ,x 2+3 x>1 的函数值 (2)1 9.将第二步所得的结果15乘7,得结果10510.解 第一步,输入梯形的底边长a 和b ,以及高h.第二步,计算a +b 的值.第三步,计算(a +b)×h 的值.第四步,计算S = a +b ×h 2的值. 第五步,输出结果S.11.解 算法如下:第一步,输入x.第二步,若x>0,则令y =-x +1后执行第五步,否则执行第三步.第三步,若x =0,则令y =0后执行第五步,否则执行第四步.第四步,令y =x +1;第五步,输出y 的值.12.解 第一步,输入行李的质量ω.第二步,如果ω≤50,则令c =0.53×ω,否则执行第三步.第三步,c =50×0.53+(ω-50)×0.85.第四步,输出托运费c.13.解 第一步,将A 杆最上面碟子移到C 杆.第二步,将A 杆最上面碟子移到B 杆.第三步,将C杆上的碟子移到B杆.第四步,将A杆上的碟子移到C杆.第五步,将B杆最上面碟子移到A杆.第六步,将B杆上的碟子移到C杆.第七步,将A杆上的碟子移到C杆.。
【高中数学必修三】1.1.1 算法的概念
b2c1 b1c2 第二步:解(3)得:x a1b2 a2b1
(2) a1 (1) a2 : (a1b2 a2b1 ) y a1c2 a2c1 (4) 第三步:
a1c2 a2c1 第四步: 解(4)得:y a1b2 a2b1
b2 c1 b1c2 x a1b2 a 2 b1 a c a 2 c1 y 1 2 a1b2 a 2 b1
第三步:取区间中点 m
含零点的区间为 [m, b]. 将新得到的含零点的区间仍记为 [a, b]. 第五步:判断 [a, b] 的长度是否小于d或f(m)是否等于0. 若是,则m是方程的近似值;否则,返回第三步.
【例2】 x 2 2 0( x 0) 写出用“二分法”求方程 法. 取d=0.005,可以得到以下表格:
【例1】(1)设计一个算法,判断7是否为质数.
(2)设计一个算法,判断35是否为质数.
第一步:用2除35,得余数为1,所以2不能整除35. 第二步:用3除35,得余数为2,所以3不能整除35. 第三步:用4除35,得余数为3,所以4不能整除35. 第四步:用5除35,得余数为0,所以5能整除35. 因此,35不是质数.
简单地说,算法就是解决 问题的程序或步骤。
问题创设
小品“钟点工”片段
问: 要把大象装冰箱,分几步?
答:分三步:
第一步:打开冰箱门 第二步:把大象装冰箱 第三步:关上冰箱门
算法:就是解决一个问题的程序与步骤.
问题创设
x 2 y 1 ① 解二元一次方程组 , 2 x y 1 ② 并写出具体求解步骤
算法分析:按照逐一相加的程序进行. 算法1 第一步:计算1+2,得3;
高中数学必修三课后习题答案
高中数学必修三课后习题答案第一章 算法初步 1.1算法与程序框图练习(P5) 1、算法步骤:第一步,给定一个正实数r .第二步,计算以r 为半径的圆的面积2S r π=.第三步,得到圆的面积S .2、算法步骤:第一步,给定一个大于1的正整数n .第二步,令1i =.第三步,用i 除n ,等到余数r .第四步,判断“0r =”是否成立. 若是,则i 是n 的因数;否则,i 不是n 的因数. 第五步,使i 的值增加1,仍用i 表示.第六步,判断“i n >”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)算法步骤:第一步,给定精确度d ,令1i =.的到小数点后第i 位的不足近似值,赋给a 的到小数点后第i 位的过剩近似值,赋给b . 第三步,计算55b am =-.第四步,若m d <,则得到5a;否则,将i 的值增加1,仍用i 表示.返回第二步. 第五步,输出5a.程序框图:习题1.1 A 组(P20)1、下面是关于城市居民生活用水收费的问题.为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m 3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m 3的部分,每立方收费1.5元,并加收0.4元的城市污水处理费.设某户每月用水量为x m 3,应交纳水费y 元,那么y 与x 之间的函数关系为 1.2,071.9 4.9,7x x y x x ≤≤⎧=⎨->⎩我们设计一个算法来求上述分段函数的值.算法步骤:第一步:输入用户每月用水量x .第二步:判断输入的x 是否不超过7. 若是,则计算 1.2y x =;若不是,则计算 1.9 4.9y x =-.第三步:输出用户应交纳的水费y .程序框图:2、算法步骤:第一步,令i =1,S=0.第二步:若i ≤100成立,则执行第三步;否则输出S. 第三步:计算S=S+i 2.第四步:i = i +1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x ,设收取的卫生费为m 元.第二步:判断x 与3的大小. 若x >3,则费用为5(3) 1.2m x =+-⨯;若x ≤3,则费用为5m =.第三步:输出m .程序框图:B 组 1、算法步骤:第一步,输入111222,,,,,a b c a b c ..第二步:计算21121221b c b c x a b a b -=-.第三步:计算12211221a c a c y ab a b -=-.第四步:输出,x y .程序框图:INPUT “a ,b=”;a ,bsum=a+b diff=a -b pro=a*b quo=a/bPRINT sum ,diff ,pro ,quoEND2、算法步骤:第一步,令n =1第二步:输入一个成绩r ,判断r 与6.8的大小. 若r ≥6.8,则执行下一步;若r<6.8,则输出r ,并执行下一步.第三步:使n 的值增加1,仍用n 表示.第四步:判断n 与成绩个数9的大小. 若n ≤9,则返回第二步;若n >9,则结束算法.程序框图:说明:本题在循环结构的循环体中包含了一个条件结构.1.2基本算法语句 练习(P24) 1、程序:2、程序:3、程序:练习(P29) 1、程序:INPUT “a ,b ,c=”;a ,b ,cIF a+b>c AND a+c>b AND b+c>a THEN PRINT “Yes.” ELSEPRINT “No.” END IF INPUT “a ,b ,c=”;a ,b ,cp=(a+b+c)/2 s=SQR(p*(p -a) *(p -b) *(p -c)) PRINT “s=”;s END INPUT “F=”;F C=(F -32)*5/9 PRINT “C=”;C END4、程序: INPUT “a ,b ,c=”;a ,b ,csum=10.4*a+15.6*b+25.2*c PRINT “sum =”;sum END2、本程序的运行过程为:输入整数x . 若x 是满足9<x <100的两位整数,则先取出x 的十位,记作a ,再取出x 的个位,记作b ,把a ,b 调换位置,分别作两位数的个位数与十位数,然后输出新的两位数. 如输入25,则输出52. 34练习(P32) 1 2习题1.2 A 组(P33)1、1(0)0(0)1(0)x x y x x x -+<⎧⎪==⎨⎪+>⎩23、程序: 习题1.2 B 组(P33) 1、程序:23 41.3算法案例 练习(P45) 1、(1)45; (2)98; (3)24; (4)17. 2、2881.75.3、2200811111011000=() ,820083730=() 习题1.3 A 组(P48) 1、(1)57; (2)55. 2、21324.3、(1)104; (2)7212() (3)1278; (4)6315().4、习题1.3 B 组(P48)1、算法步骤:第一步,令45n =,1i =,0a =,0b =,0c =.第二步,输入()a i .第三步,判断是否0()60a i ≤<. 若是,则1a a =+,并执行第六步. 第四步,判断是否60()80a i ≤<. 若是,则1b b =+,并执行第六步. 第五步,判断是否80()100a i ≤≤. 若是,则1c c =+,并执行第六步. 第六步,1i i =+. 判断是否45i ≤. 若是,则返回第二步.2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等. 第二章复习参考题A组(P50)1、(1)程序框图:程序:1、(2)程序框图:程序:2、见习题1.2 B组第1题解答.INPUT “x=”;x IF x<0 THENy=0ELSEIF x<1 THENy=1ELSEy=xEND IFEND IFPRINT “y=”;y ENDINPUT “x=”;x IF x<0 THENy=(x+2)^2 ELSEIF x=0 THENy=4ELSEy=(x-2)^2 END IFEND IFPRINT “y=”;y END34、程序框图:程序:INPUT “t=0”;t IF t<0 THEN PRINT “Please input again.”ELSE IF t>0 AND t<=180 THENy=0.2ELSEIF (t -180) MOD 60=0 THENy=0.2+0.1*(t-180)/60ELSEy=0.2+0.1*((t-180)\60+1)END IFEND IFPRINT “y=”;yEND IF END INPUT “n=”;n i=1 S=0WHILE i<=n S=S+1/i i=i+1 WENDPRINT “S=”;S END5、 (1)向下的运动共经过约199.805 m (2)第10次着地后反弹约0.098 m (3)全程共经过约299.609 m 第二章 复习参考题B 组(P35)1、 2、3、算法步骤:第一步,输入一个正整数x 和它的位数n . 第二步,判断n 是不是偶数,如果n 是偶数,令2n m =;如果n 是奇数,令12n m -=. 第三步,令1i =i=100 sum=0 k=1 WHILE k<=10 sum=sum+i i=i /2 k=k+1 WEND PRINT “(1)”;sum PRINT “(2)”;i PRINT “(3)”;2*sum -100 ENDINPUT “n=”;n IF n MOD 7=0 THEN PRINT “Sunday ” END IF IF n MOD 7=1 THEN PRINT “Monday ” END IF IF n MOD 7=2 THEN PRINT “Tuesday ” END IF IF n MOD 7=3 THEN PRINT “Wednesday ” END IF IF n MOD 7=4 THEN PRINT “Thursday ” END IF IF n MOD 7=5 THEN PRINT “Friday ” END IF IF n MOD 7=6 THEN PRINT “Saturday ” END IF END第四步,判断x 的第i 位与第(1)n i +-位上的数字是否相等. 若是,则使i 的值增加1,仍用i 表示;否则,x 不是回文数,结束算法.第五步,判断“i m >”是否成立. 若是,则n 是回文数,结束算法;否则,返回第四步.第二章 统计 2.1随机抽样 练习(P57)1、.况之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差. 2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号. (2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生. 3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本. 练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差. 2、(1)对这118名教师进行编号;(2)计算间隔1187.37516k==,由于k不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔7k=;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性.练习(P62)1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地).习题2.1 A组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品.(2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数.(3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间.2、调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本.(2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等.(3)前面列举的两个问题都可能导致样本的统计推断结果的误差.(4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷.4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天用简单随机抽样设计方案:制作365个号签,依次标上0~364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量.用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0~349. 制作7个分别标有0~7的号签,放在容器中充分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为a,则编号为7(050)a k k +≤<所对应的那些天构成样本,检测样本中所有个体的空气质量.显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.5、田径队运动员的总人数是564298+=(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取256167⨯=(人),在女运动员中随机抽取281612-=(人).这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1~10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案. 习题2.1 B 组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成. 例如:(1)你最喜欢哪一门课程? (2)你每月的零花钱平均是多少? (3)你最喜欢看《新闻联播》吗? (4)你每天早上几点起床? (5)你每天晚上几点睡觉?要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案. 2.2用样本估计总体 练习(P71) 1、说明:由于样本的极差为364.41362.51 1.90-=,取组距为0.19,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图. 2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为:由该图可以看出30名工人的日加工零件个数稳定在120件左右. 练习(P74)这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大.练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.2、(1)平均重量496.86x ≈,标准差 6.55s ≈.(2)重量位于(,)x s x s -+之间有14袋白糖,所占的百分比约为66.67%.3、(1)略. (2)平均分19.25x ≈,中位数为15.2,标准差12.50s ≈.这些数据表明这些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,15.2x >说明存在大的异常数据,值得关注. 这些异常数据使标准差增大. 习题2.2 A 组(P81) 1、(1)茎叶图为:(2)汞含量分布偏向于大于1.00 ppm 的方向,即多数鱼的汞含量分布在大于1.00 ppm 的区域. (3)不一定. 因为我们不知道各批鱼的汞含量分布是否都和这批鱼相同. 即使各批鱼的汞含量分布相同,上面的数据只能为这个分布作出估计,不能保证平均汞含量大于1.00 ppm. (4)样本平均数 1.08x ≈,样本标准差0.45s ≈.(5)有28条鱼的汞含量在平均数与2倍标准差的和(差)的范围内.2比较短,所以在这批棉花中混进了一些次品.3、说明:应该查阅一下这所大学的其他招生信息,例如平均数信息、最低录取分数线信息等. 尽管该校友的分数位于中位数之下,而中位数本身并不能提供更多录取分数分布的信息.在已知最低录取分数线的情况下,很容易做出判断;在已知平均数小于中位数很多,则说明最低录取分数线较低,可以推荐该校友报考这所大学,否则还要获取其他的信息(如标准差的信息)来做出判断. 4、说明:(1)对,从平均数的角度考虑; (2)对,从标准差的角度考虑;(3)对,从标准差的角度考虑; (4)对,从平均数和标准差的角度考虑; 5、(1)不能. 因为平均收入和最高收入相差太多,说明高收入的职工只占极少数. 现在已知知道至少有一个人的收入为50100x =万元,那么其他员工的收入之和为4913.55010075ii x==⨯-=∑(万元)每人平均只有1.53. 如果再有几个收入特别高者,那么初进公司的员工的收入将会很低. (2)不能,要看中位数是多少.(3)能,可以确定有75%的员工工资在1万元以上,其中25%的员工工资在3万元以上.(4)收入的中位数大约是2万. 因为有年收入100万这个极端值的影响,使得年平均收入比中位数高许多.6、甲机床的平均数=1.5x 甲,标准差=1.2845s 甲;乙机床的平均数 1.2z y =,标准差0.8718z s =. 比较发现乙机床的平均数小而且标准差也比较小,说明乙机床生产出的次品比甲机床少,而且更为稳定,所以乙机床的性能较好. 7、(1)总体平均数为199.75,总体标准差为95.26. (2)可以使用抓阄法进行抽样. 样本平均数和标准差的计算结果和抽取到的样本有关. (3) (4)略 习题2.2 B 组(P82)1、(1)由于测试1T 的标准差小,所以测试1T 结果更稳定,所以该测试做得更好一些. (2)由于2T 测出的值偏高,有利于增强队员的信心,所以应该选择测试2T .2、说明:此题需要在本节开始的时候就布置,先让学生分头收集数据,汇总所收集的数据才能完成题目.2.3变量间的相关关系 练习(P85)1、从已经掌握的知识来看,吸烟会损害身体的健康. 但除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果. 我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题. 但吸烟引起健康问题的可能性大,因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.2、从现在我们掌握的知识来看,没有发现根据说明“天鹅能够带来孩子”,完全可能存在既能吸引天鹅和又使婴儿出生率高的第3个因素(例如独特的环境因素),即天鹅与婴儿出生率之间没有直接的关系,因此“天鹅能够带来孩子”的结论不可靠.而要证实此结论是否可靠,可以通过试验来进行. 相同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的附近不让天鹅活动,对比两组居民的出生率是否相同. 练习(P92)1、当0x =时,147.767y =,这个值与实际卖出的热饮杯数150不符,原因是:线性回归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果的偏差;即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x ,预报值y 能够等于实际值y . 事实上:y bx a e =++. (这里e 是随机变量,是引起预报值y 与真实值(1)散点图如下: y 之间的误差的原因之一,其大小取决于e 的方差.)2、数据的散点图为:从这个散点图中可以看出,鸟的种类数与海拔高度应该为正相关(事实上相关系数为0.793). 但是从散点图的分布特点来看,它们之间的线性相关性不强. 习题2.3 A 组(P94)1、教师的水平与学生的学习成绩呈正相关关系. 又如,“水涨船高”“登高望远”等.2、(3)基本成正相关关系,即食品所含热量越高,口味越好.(4)因为当回归直线上方的食品与下方的食品所含热量相同时,其口味更好. 3、(1)散点图如下:(2)回归方程为:0.66954.933y x =+.(2)回归直线如下图所示:(3)加工零件的个数与所花费的时间呈正线性相关关系. 4、(1)散点图为:(2)回归方程为:0.546876.425y x =+.(3)由回归方程知,城镇居民的消费水平和工资收入之间呈正线性相关关系,即工资收入水平越高,城镇居民的消费水平越高. 习题2.3 B 组(P95) 1、(1)散点图如下:(2)回归方程为: 1.44715.843y x =-.(3)如果这座城市居民的年收入达到40亿元,估计这种商品的销售额为42.037y ≈(万元). 2、说明:本题是一个讨论题,按照教科书中的方法逐步展开即可.第二章 复习参考题A 组(P100)1、A .2、(1)该组的数据个数,该组的频数除以全体数据总数; (2)nmN. 3、(1)这个结果只能说明A 城市中光顾这家服务连锁店的人比其他人较少倾向于选择咖啡色,因为光顾连锁店的人使一种方便样本,不能代表A 城市其他人群的想法. (2)这两种调查的差异是由样本的代表性所引起的. 因为A 城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点.4、说明:这是一个敏感性问题,可以模仿阅读与思考栏目“如何得到敏感性问题的诚实反应”来设计提问方法.5、表略. 可以估计出句子中所含单词的分布,以及与该分布有关的数字特征,如平均数、标准差等.6、(1)可以用样本标准差来度量每一组成员的相似性,样本标准差越小,相似程度越高. (2)A 组的样本标准差为 3.730A S ≈,B 组的样本标准差为11.789B S ≈. 由于专业裁判给分更符合专业规则,相似程度应该高,因此A 组更像是由专业人士组成的.7、(1)中位数为182.5,平均数为217.1875.(2)这两种数字特征不同的主要原因是,430比其他的数据大得多,应该查找430是否由某种错误而产生的. 如果这个大数据的采集正确,用平均数更合适,因为它利用了所有数据的信息;如果这个大数据的采集不正确,用中位数更合适,因为它不受极端值的影响,稳定性好. 8、(1)略.(2)系数0.42是回归直线的斜率,意味着:对于农村考生,每年的入学率平均增长0.42%.(3)城市的大学入学率年增长最快. 说明:(4)可以模仿(1)(2)(3)的方法分析数据.第二章 复习参考题B 组(P101)1、频率分布如下表:从表中看出当把指标定为17.46千元 时,月65%的推销员 经过努力才能完成销 售指标.2、(1)数据的散点图如下:(2)用y 表示身高,x 表示年龄,则数据的回归方程为 6.31771.984y x =+. (3)在该例中,斜率6.317表示孩子在一年中增加的高度.(4)每年身高的增长数略. 3~16岁的身高年均增长约为6.323 cm. (5)斜率与每年平均增长的身高之间之间近似相等.第三章 概率3.1随机事件的概率 练习(P113) 1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面. (2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25. 2、略 3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数任选一个数,选到的数大于1. 练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次. 练习(P121)1、0.72、0.6153、0.44、D5、B 习题3.1 A 组(P123) 1、D . 2、(1)0; (2)0.2; (3)1.3、(1)430.067645≈; (2)900.140645≈; (3)7010.891645-≈.4、略5、0.136、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到红球的概率为110,在第二种下也为110. 第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是1 10.习题3.1 B组(P124)1、D.2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3.2古典概率练习(P130)1、110. 2、17. 3、16.练习(P133)1、38,38.2、(1)113;(2)1213;(3)14;(4)313;(5)0;(6)213;(7)12;(8)1.说明:模拟的方法有两种.(1)把1~52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1~4的随机数,代表4个花色;第二次产生1~13的随机数,代表牌号.3、(1)不可能事件,概率为0;(2)随机事件,概率为49;(3)必然事件,概率为1;(4)让计算机产生1~9的随机数,1~4代表白球,5~9代表黑球.4、(1)16;(2)略;(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)1、游戏1:取红球与取白球的概率都为12,因此规则是公平的.游戏2:取两球同色的概率为13,异色的概率为23,因此规则是不公平的.游戏3:取两球同色的概率为12,异色的概率为12,因此规则是公平的.2、第一位可以是1~9这9个数字中的一个,第二位可以是0~9这10个数字中的一个,所以(1)190;(2)18919090-=;(3)9919010-=3、(1)0.52;(2)0.18.4、(1)12;(2)16;(3)56;(4)16.5、(1)25;(2)825.6、(1)920;(2)920;(3)12.习题3.2 B组(P134)1、(1)13;(2)14.2、(1)35;(2)310;(3)910.说明:(3)先计算该事件的对立事件发生的概率会比较简单.3、具体步骤如下:①建立概率模型. 首先要模拟每个人的出生月份,可用1,2,…,11,12表示月份,用产生取整数值的随机数的办法,随机产生1~12之间的随机数. 由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.②进行模拟试验. 可用计算器或计算机进行模拟试验.如使用Excel软件,可参看教科书125页的步骤,下图是模拟的结果:其中,A,B,C,D,E,F,G,H,I,J的每一行表示对一个10人集体的模拟结果. 这样的试验一共做了100次,所以共有100行,表示随机抽取了100个集体.③统计试验的结果. K,L,M,N列表示统计结果. 例如,第一行前十列中至少有两个数相同,表示这个集体中至少有两个人的生日在同一月. 本题的难点是统计每一行前十列中至少有两个数相同的个数. 由于需要判断的条件态度,所以用K,L,M三列分三次完成统计.其中K列的公式为“=IF(OR(A1=B1,A1=C1,A1=D1,A1=E1,A1=F1,A1=G1,A1=H1,A1=I1,A1=J1,B1=C1,B1=D1,B1=E1,B1=F1,B1=G1,B1=H1,B1=I1,B1=J1,C1=D1,C1=E1,C1=F1,C1=G1,C1=H1,C1=I1,C1=J1,D1=E1,D1=F1,D1=G1,D1=H1,D1=I1,D1=J1),1,0)”,L列的公式为“=IF(OR(E1=F1,E1=G1,E1=H1,E1=I1,E1=J1,F1=G1,F1=H1,F1=I1,F1=J1,G1=H1,G1=I1,G1=J1,H1=I1,H1=J1,I1=J1),1,0)”,M列的公式为“=IF(OR(K1=1,L1=1),1,0)”,M列的值为1表示该行所代表的10人集体中至少有两个人的生日在同一个月. N1表示100个10人集体中至少有两个人的生日在同一个月的个数,其公式为“=SUM(M$1:M$100)”. N1除以100所得的结果0.98,就是用模拟方法计算10人集体中至少有两个人的生日在同一个月的概率的估计值. 可以看出,这个估计值很接近1.3.3几何概率。
最新人教A版数学必修三 同步练习1.1.1算法的概念(含答案解析)
第一章 1.1.1算法的概念一、选择题1.已知算法:第一步,输入n.第二步,判断n是否是2.若n=2,则n满足条件.若n>2,则执行第三步.第三步,依次检验从2到n-1的整数能不能整除n,若不能整除n,满足条件,上述满足条件的数是()A.质数B.奇数C.偶数D.3的倍数解析由算法及质数的定义,知满足条件的数是质数.答案 A2.下列关于算法的说法中,正确的是()A.算法就是某个问题的解题过程B.算法执行后可以不产生确定的结果C.解决某类问题的算法不是唯一的D.算法可以无限地操作下去不停止解析算法与一般意义上具体问题的解法既有区别,又有联系,算法的获得要借助一类问题的求解方法,而这一类任何一个具体问题都可以用这类问题的算法来解决,因此A 选项错误;算法中的每一步,都应该是确定的,并且能有效的执行,得到确定的结果,因此选项B错误;算法的操作步骤必须是有限的,所以D项也不正确,故选C项.答案 C3.算法的有穷性是指()A.算法的步骤必须有限B.算法中每个操作步骤都是可执行的C.算法的最后应有输出D.以上说法都不正确解析由算法的概念,知应选A项.答案 A4.家中配电盒至冰箱的电路断了,检测故障的算法中,第一步,检测的是() A.靠近配电盒的一小段B.靠近冰箱的一小段C .电路中点处D .随便挑一段检测解析 本题考查的是二分法在现实生活中的应用.答案 C5.下列语句表达中是算法的有( )①从济南到巴黎可以先乘火车到北京再坐飞机抵达;②利用公式S =12ah 计算底为1、高为2的三角形的面积;③12x >2x +4;④求M (1,2)与N (-3,-5)两点连线的方程,可先求MN 的斜率,再利用点斜式方程求得.A .1个B .2个C .3个D .4个解析 ①②④都是解决某一类问题的方法步骤,是算法,故选C 项.答案 C二、填空题6.设计一个算法求方程5x +2y =22的正整数解,其最后输出的结果是________. 答案 (4,1),(2,6)7.有如下算法:第一步,输入x 的值.第二步,若x ≥0成立,则y =x .否则,y =x 2.第三步,输出y 的值.若输出三的结果是4,则输入的x 的值是________.解析 该算法是求分段函数y =⎩⎪⎨⎪⎧ x x ,x 2 x 的函数值.当y =4时,易知x =4,或x =-2.答案 4或-2三、解答题8.已知直角三角形的两直角边长分别为a ,b ,设计一个求该三角形周长的算法. 解 算法步骤如下:第一步,输入a ,b .第二步,求斜边长c =a 2+b 2.第三步,求周长l =a +b +c .第四步,输出l .9.已知直角坐标系中两点A (-1,0),B (0,2),写出求直线AB 的方程的两个算法. 解 算法1(点斜式)第一步,求直线AB 斜率k AB =2.第二步,直线过A 点,代入点斜式方程,y -0=2(x +1),即2x -y +2=0.算法2(截距式)第一步,a =-1,b =2.第二步,代入截距式方程,x -1+y 2=1, 即2x -y +2=0.10.有红和黑两个墨水瓶,但现在却错把红墨水装在了黑墨水瓶中,黑墨水错装在了红墨水瓶中,要求将其交换,请你设计一个算法解决这一问题.解 算法步骤如下:第一步,取一只空的墨水瓶,设其为白色.第二步,将黑墨水瓶中的红墨水装入白瓶中.第三步,将红墨水瓶中的黑墨水装入黑墨水瓶中.第四步,将白瓶中的红墨水装入红墨水瓶中.11.试描述求函数y =-x 2-2x +1的最大值的算法.解 算法如下:第一步,输入a ,b ,c .第二步,计max =4ac -b 24a. 第三步,输出max.12.下面给出了一个问题的算法:第一步,输入x .第二步,若x ≥4,则执行第三步,否则执行第四步.第三步,输出2x -1,结束.第四步,输出x 2-2x +3,结束.问题:(1)这个算法解决的问题是什么?(2)当输入的x 值为几时,输出的值最小?解 (1)这个算法解决的问题是求分段函数f (x )=⎩⎪⎨⎪⎧2x -1,x ≥4,x 2-2x +3,x <4的函数值的问题. (2)当x ≥4时,f (x )=2x -1≥7;当x <4时,f (x )=(x -1)2+2≥2.∴f(x)的最小值为2,此时x=1.故当输入x=1时,输出的函数值最小.。
高中数学人教A版必修3教学案第一章 1.1 1.1.1 算法的概念 Word版含解析
.算法的概念预习课本~,思考并完成以下问题()利用加减消元法求解一般的二元一次方程组的步骤有哪些?()在数学中算法是如何定义的?()算法的特征是什么?()解决一类问题的算法是唯一的吗?是不是任何一个算法都有明确的结果?.算法的概念的步骤.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限和现在,算法通常可以编成计算机程序,让计算机执行并解决问题..算法的特征()确定性:算法中每一步都是确定的,并且能有效地执行且得到确定的结果.()有限性:一个算法的步骤是有限的,不能无限地进行下去,它能在有限步的操作后解决问题.()有序性:算法从初始步骤开始,分为若干明确的步骤,每个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步.()不唯一性:解决一个问题可以有多种不同的算法.()普遍性:给出一个算法的程序步骤,它可以解决一类问题,并且能够多次重复使用..判断下列命题是否正确.(正确的打“√”,错误的打“×”)()求解一类问题的算法是唯一的( )()算法必须在有限步骤操作之后解决问题( )()算法执行后一定产生确定的结果( )解析:由算法具有有限性、确定性和不唯一性可知()错,()、()对.答案:()× ()√ ()√.下列叙述不能称为算法的是( ).从北京到上海先乘汽车到飞机场,再乘飞机到上海.解方程+=的过程是先移项再把的系数化成 .利用公式=π计算半径为的圆的面积得π×.解方程-+=解析:选 选项,给出了解决问题的方法和步骤,是算法;选项是利用公式计算,也属于算法;选项只提出问题没有给出解决的方法,不是算法..下面是某人出家门先打车去火车站,再坐火车去北京的一个算法,请补充完整.第一步,出家门.第二步,.第三步,坐火车去北京.答案:打车去火车站错误!算法概念的理解[典例] .算法就是某个问题的解题过程 .算法执行后可以产生不同的结果.解决某一个具体问题算法不同,则结果不同 .算法执行步骤的次数不可以很大,否则无法实施[解析]选项正确,例如:判断一个整数是否为偶数,结果为“是偶数”和“不是偶数”两种;选项,算法不能等同于解法;选项,解决某一个具体问题算法不同,但结果应相同;选项,算法可以为很多次,但不可以无限次.[答案]算法实际上是解决问题的一种程序性方法,它通常解决某一个或一类问题,用算法解决问题,体现了从特殊到一般的数学思想.[活学活用]有人对哥德巴赫猜想“任何大于的偶数都能写成两个奇质数之和”设计了如下操作步骤:第一步,检验=+.。
高中数学必修3(人教A版)第一章算法初步1.1知识点总结含同步练习及答案
描述:例题:高中数学必修3(人教A版)知识点总结含同步练习题及答案第一章 算法初步 1.1 算法与程序框图一、学习任务1. 了解算法的含义,了解算法的基本思想,能用自然语言描述解决具体问题的算法.2. 了解设计程序框图表达解决问题的过程,了解算法和程序语言的区别;了解程序框图的三种基本逻辑结构,会用程序框图表示简单的常见问题的算法.二、知识清单算法 程序框图三、知识讲解1.算法算法(algorithm)是指按照一定规则解决某一类问题的明确和有限的步骤 .可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.描述算法可以有不同的方式.例如,可以用自然语言和数学语言加以描述,也可以借助形式语言(算法语言)给出精确的说明,也可以用框图直观地显示算法的全貌.算法的要求:(1)写出的算法,必须能解决一类问题,并且能重复使用;(2)算法过程要能一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步后能得到结果.下列对算法的理解不正确的是( )A.一个算法应包含有限的步骤,而不能是无限的B.算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的C.算法中的每一个步骤都应当是有效地执行,并得到确定的结果D.一个问题只能设计出一种算法解:D算法的有限性是指包含的步骤是有限的,故 A 正确;算法的确定性是指每一步都是确定的,故 B正确;算法的每一步都是确定的,且每一步都应有确定的结果,故 C 正确;对于同一个问题可以有不同的算法,故 D 错误.下列叙述能称为算法的的个数为( )描述:2.程序框图程序框图简称框图,是一种用程序框、流程线及文字说明来表示算法的图形.其中,起、止框是任何流程不可少的,表明程序的开始和结束.输入和输出框可用在算法中任何需要输入、输出的位置.算法中间要处理数据或计算,可分别写在不同的处理框内.一个算法步骤到另一个算法步骤用流程线连接.如果一个框图需要分开来画,要在断开处画上连接点,并标出连接的号码.①植树需要运苗、挖坑、栽苗、浇水这些步骤;②依次进行下列运算:,,,,;③从枣庄乘火车到徐州,从徐州乘飞机到广州;④ ;⑤求所有能被 整除的正整数,即 .A. B. C. D.解:B①、②、③为算法.1+1=22+1=33+1=4⋯99+1=1003x >x +133,6,9,12,⋯2345写出解方程组的一个算法.解:方法一:代入消元法. 第一步,由 得 ;第二步,将 代入 ,得 ,解得 ;第三步,将 代入方程 ,得 ;第四步,得到方程组的解为 .方法二:加减消元法.第一步,方程 两边同乘以 ,得 ;第二步,将第一步所得的方程与方程 作差,消去 ,得 ,解得 ;第三步,将 代入方程 ,得 ,解得 ;第四步,得到方程组的解为 .{2x +y =74x +5y =112x +y =7y =7−2x y =7−2x 4x +5y =114x +5(7−2x )=11x =4x =4y =7−2x y =−1{x =4y =−12x +y =7510x +5y =354x +5y =11y 6x =24x =4x =42x +y =72×4+y =7y =−1{x =4y =−1例题:画程序框图的规则(1)使用标准的图形符号.(2)框图一般按从上到下、从左到右的方向画.(3)除判断框外,大多数流程图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的惟一符号.(4)判断框分两大类,一类判断框是“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果.(5)在图形符号内描述的语言要非常简练清楚.算法的三种基本逻辑结构顺序结构:语句与语句之间,框与框之间按从上到下的顺序进行.条件分支结构:在一个算法中,经常会遇到一些条件的判断,算法的流程条件是否成立有不同的流向,条件结构就是处理这种过程的结构.循环结构:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.下列程序框图分别是解决什么问题的算法.解:(1)已知圆的半径,求圆的面积的算法.(2)求两个实数加法的算法.执行如图的程序框图,输出的 ______ .解:T =30四、课后作业 (查看更多本章节同步练习题,请到快乐学)某程序框图如图所示,若输出的 ,则判断框内为( )A. B. C. D.解:AS =57k >4?k >5?k >6?k >7?已知函数 ,对每次输入的一个值,都得到相应的函数值,画出程序框图.解:f (x )={2x +3,3−x ,x 2x ⩾0x <0x答案:1. 关于算法的说法中,正确的是 A .算法就是某个问题的解题过程B .算法执行后可以产生不确定的结果C .解决某类问题的算法不是唯一的D .算法可以无限地操作下去不停止C()答案:解析:2. 下列运算不属于我们所讨论算法范畴的是 A .已知圆的半径求圆的面积B .随意抽 张扑克牌算到二十四点的可能性C .已知坐标平面内两点求直线方程D .加减乘除法运算法则B注意算法需按照一定的顺序进行.()4答案:解析:3. 执行如图所示的程序框图,如果输入的 ,则输出的 属于 .A .B .C .D .D取 ,得输出的 ,即可判断.t ∈[−2,2]S ()[−6,−2][−5,−1][−4,5][−3,6]t =−2S =64. 某批发商按客户订单数额的大小分别给予不同的优惠折扣.计算客户应付货款的算法步骤如下: :输入订单数额 (单位:件);输入单价 (单位:元);:若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;:计算应付货款 (单位:元);:输出应付货款 .S 1x A S 2x <250d =0250⩽x <500d =0.05500⩽x <1000d =0.10x ⩾1000d =0.15S 3T =Ax (1−d )S 4T。
最新人教版高中数学必修3第一章《算法与程序框图1.1.1算法的概念》 三同步训练(附答案)1
第一章 算法初步1.1 算法与程序框图1.1.1 算法的概念1.对于算法:第一步,输入n.第二步,判断n 是否等于2,若n =2,则n 满足条件;若n>2,则执行第三步. 第三步,依次从2到n -1检验能不能整除n ,若不能整除n ,则执行第四步;若能整除n ,则执行第一步.第四步,输出n.满足条件的n 是( )A .质数B .奇数C .偶数D .约数2.对于一般的二元一次方程组⎩⎪⎨⎪⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2,在写此方程组的算法时,需要我们注意的是( )A .a 1≠0B .a 2≠0C .a 1b 2-a 2b 1≠0D .a 1b 1-a 2b 2≠03.已知一个学生的语文成绩为89分,数学成绩为96分,外语成绩为99分.以下是求他的总分和平均成绩的一个算法:(在横线上填入算法中缺的两个步骤)第一步,取A =89, B =96, C =99.第二步,____________________.第三步,____________________.第四步,输出计算的结果.4.鸡兔同笼问题:“一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整17,多少小兔多少鸡?”写出求解这个问题的算法.答案:1.A 此题首先要理解质数的含义,只能被1和自身整除的大于1的整数叫质数.2是最小的质数,这个算法通过对2到(n -1)一一验证,看是否有其他约数,来判断其是否为质数.2.C 在写解方程组的算法时,a 1b 2-a 2b 1是一个很重要的值,它决定着方程组解的个数.3.计算总分D =A +B +C 计算平均成绩E =D 34.解:设有x 只鸡,y 只小兔,则由题意可得⎩⎪⎨⎪⎧ x +y =17,2x +4y =48. ①②算法步骤如下:第一步,②-①×2,得2y =14,③第二步,解③,得y =7.第三步,②-①×4,得-2x =-20.④第四步,解④,得x =10.第五步,得到方程组的解为⎩⎪⎨⎪⎧x =10,y =7, 即有10只鸡,7只小兔.1.下列关于算法的说法中,正确的是( )A .算法就是某个问题的解题过程B .算法执行后可以不产生确定的结果C .解决某类问题的算法不是唯一的D .算法可以无限地操作下去不停止2.下列语句表达中是算法的有( )①从济南到巴黎可以先乘火车到北京,再坐飞机抵达 ②利用公式S =12ah 计算底为1,高为2的三角形的面积 ③12x>2x +4 ④求M(1,2)与N(-3,-5)两点连线的方程,可先求MN 的斜率,再利用点斜式方程求得A .1个B .2个C .3个D .4个3.早上从起床到出门需要洗脸刷牙(5 min)、刷水壶(2 min)、烧水(8 min)、泡面(3 min)、吃饭(10 min)、听广播(8 min)几步,从下列选项中选出最好的一种算法为( )A .第一步洗脸刷牙、第二步刷水壶、第三步烧水、第四步泡面、第五步吃饭、第六步听广播B .第一步刷水壶、第二步烧水同时洗脸刷牙、第三步泡面、第四步吃饭、第五步听广播C .第一步刷水壶、第二步烧水同时洗脸刷牙、第三步泡面、第四步吃饭同时听广播D .第一步吃饭同时听广播、第二步泡面、第三步烧水同时洗脸刷牙、第四步刷水壶4.一瓶香波上写着有关使用的文字:“先将头发湿润,使用香波,出现泡沫,洗涤均匀,重复上述过程.”请问,这是不是一个算法?______.其理由是:________________________________________________________________________.5.一位商人有9枚银圆,其中有1枚略轻的是假银圆,请你设计一个算法能够用天平(不用砝码)将假银圆找出来.6.试写出找出1至1000内7的倍数的算法.答案:1.C 算法是按照一定的规则解决某一类问题的明确和有限的步骤,它具有不唯一性.2.C算法是解决问题的步骤与过程,这个问题并不仅仅限于数学问题,①②④都表达了一种算法.3.C由题意可知,A用时36 min,B用时31 min,C用时23 min,D用时23 min,而C选项更符合逻辑规律.4.不是算法必须在有限步内完成5.解:算法一:第一步,任取2枚银圆分别放在天平的两边.如果天平不平衡,则轻的一边就是假银圆;如果天平平衡,则进行第二步.第二步,取下右边的银圆,放在一边,然后把剩余的7枚银圆依次放在右边进行称量,直到天平不平衡,偏轻的那一枚就是假银圆.算法二:第一步,把银圆分成3组,每组3枚.第二步,先将两组分别放在天平的两边.如果天平不平衡,那么假银圆就在轻的那一组;如果天平左右平衡,则假银圆就在未称的第三组.第三步,取出含假银圆的那一组,从中任取两枚银圆放在天平的两边.如果左右不平衡,则轻的那一边就是假银圆;如果天平两边平衡,则未称的那一枚就是假银圆.6.解:算法一:第一步,令k=1.第二步,输出k·7的值.第三步,将k的值增加1,若k·7的值小于1000,则返回第二步,否则结束.算法二:第一步,令x=7.第二步,输出x的值.第三步,将x的值增加7,若没有超过1000,则返回第二步,否则结束.1.下列结果中,叙述不正确的是()A.算法可以理解为由基本运算及规定的运算顺序构成的完整的解题步骤B.算法可以看成按要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题C.算法只是在计算机产生之后才有的算法D.描述算法有不同的方式,可以用日常语言和数学语言答案:C现代数学中的算法可以借助于计算机完成,但并不是有了计算机才有算法.2.计算下列各式中的S值,能设计算法求解的是()①S=1+2+3+…+100②S=1+2+3+…+100+…③S=1+2+3+…+n(n≥1且n∈N)A.①②B.①③C.②③D.①②③答案:B算法具有概括性、逻辑性、有穷性、不唯一性和普遍性的特点.3.写出作出y=|x|图象的算法.第一步,当x>0时,作出第一象限的角平分线.第二步,当x=0时,即为原点.第三步,______________________________.答案:当x<0时,作出第二象限的角平分线4.写出求一等腰梯形的面积的算法步骤,已知等腰梯形的腰和底边的夹角为45°,上底长为3,高为2.第一步, ______________________________________________________________. 第二步, _______________________________________________________________. 第三步, ________________________________________________________________.答案:求等腰梯形的下底长2×2+3=7 代入梯形面积公式S =12×(3+7)×2 输出结果S =105.下面给出了一个问题的算法:第一步,输入a.第二步,若a ≥4,则执行第三步,否则执行第四步.第三步,输出2a -1.第四步,输出a 2-2a +3.问题:(1)这个算法解决的问题是什么?(2)当输入的a 值为多大时,输出的数值最小?答案:解:(1)这个算法解决的问题是求分段函数f(a)=⎩⎪⎨⎪⎧2a -1,a ≥4,a 2-2a +3,a<4的函数值. (2)当输入的a 的值为1时,输出的数值最小.6.设计一个算法,求长为a ,宽为b 的长方形的面积.答案:解:算法如下:第一步,输入a ,b.第二步,计算面积S =ab.第三步,输出长方形的面积S.7.有A 、B 两个杯子,其中A 杯中盛有牛奶,B 杯中盛有水,请设计一个算法,将牛奶盛在B 杯中,水盛在A 杯中.(提示:借助第三个空杯子)答案:解:借助第三个杯子C.第一步,将A 杯中的牛奶倒入C 杯中.第二步,将B 杯中的水倒入A 杯中.第三步,将C 杯中的牛奶倒入B 杯中.8.两个大人和两个小孩一起渡河,渡口只有一条小船,每次只能渡一个大人或两个小孩,他们四人都会划船,但都不会游泳.试问他们怎样渡过河去?请写出一个渡河方案.答案:解:第一步,两个小孩同船渡过河去.第二步,一个小孩划船回来.第三步,一个大人划船过河去.第四步,对岸的小孩划船回来.第五步,两个小孩同船渡过河去.第六步,一个小孩划船回来.第七步,余下的一个大人独自划船渡过河去.第八步,对岸的小孩划船回来.第九步,两个小孩再同时划船渡过河去.9.写出一个求有限整数序列中的最大值的算法.答案:解:算法如下:第一步,先假定序列中的第一个整数为“最大值”.第二步,将序列中的下一个整数值与“最大值”比较,如果它大于此“值”,这时就假定“最大值”是这个整数.第三步,如果序列中还有其他整数,重复第二步.10.写出一个判断圆(x -a)2+(y -b)2=r 2和直线Ax +By +C =0(A 、B 不同时为零)位置关系的算法.答案:解:第一步,输入圆心的坐标(a ,b),直线方程的系数A 、B 、C 和半径r. 第二步,计算z 1=Aa +Bb +C.第三步,计算z 2=A 2+B 2.第四步,计算d =|z 1|z 2. 第五步,如果d>r 则相离,如果d =r 则相切,如果d<r 则相交.注:也可将第二、三、四步合为一步计算d =|Aa +Bb +C|A 2+B 2. 点评:算法与一般意义上具体问题的解法既有联系,又有区别,它们之间是一般和特殊的关系,也是抽象与具体的关系.算法的获得要借助一般意义上具体问题的求解方法,而任何一个具体问题都可以利用这类问题的一般算法来解决.。
高中数学人教A版必修3第一章1.1.1算法的概念同步练习 算法的概念(解析版)
1.1.1算法的概念学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列四种自然语言叙述中,能称作算法的是()A.在家里一般是妈妈做饭B.做米饭需要刷锅、淘米、添水、加热这些步骤C.在野外做饭叫野炊D.做饭必须要有米【答案】B【解析】用算法的定义逐一来分析判断各选项的正确与否.【解答】算法的特点:有穷性,确定性,顺序性与正确性,不唯一性,普遍性算法可以用自然语言、图形语言,程序语言来表示,同一问题可以用不同的算法来描述, 但结果一定相同,所以B选项是正确的,故选B.本题考查算法的概念,解题的关键是理解算法的概念,由概念做出正确判.2.算法的三种基本结构是A.顺序结构、条件结构、循环结构B.顺序结构、循环结构、模块结构C.顺序结构、模块结构、条件结构D.模块结构、条件结构、循环结构【答案】A【解析】算法的三种基本结构是顺序结构,条件结构,循环结构.故选:A.3.下列四个有关算法的说法中:①算法的某些步骤可以不明确或有歧义,以便使算法能解决更多问题;②正确的算法执行后一定得到确定的结果;③解决某类问题的算法不一定是唯一的;④正确的算法一定能在有限步之内结束.其中正确的序号是()A.①②③B.②③④C.①④D.②④【答案】B【解析】算法通常是指按照一定规则解决某一类问题的明确和有限步骤,且运用计算机执行后都能得到正确的结果. 根据算法的概念可以看出①是错误的。
【解答】①算法的步骤不可以不明确或有歧义,所以错误;②正确的算法执行后需要得到确定的结果,正确;③算法不一定是唯一的,正确;④正确的算法需要在有限步之内结束,正确.故选:B.【解题点拨】算法虽然没有一个明确的意义,但其特点还是很鲜明的,不仅要注意算法的程序性,明确性,有限性特点,还应充分理解算法的问题指向性,即算法往往指向某一确定的问题. 本题考查了算法的概念,解答此题的关键是对算法概念的正确理解,属基础题.4.下列描述不是解决问题的算法的是( )A .从中山到北京先坐汽车,再坐火车B .解一元一次方程的步骤是去分母、去括号、移项、合并同类项、化系数为1C .方程2430x x -+=有两个不相等的实根D .求12345++++的值,先计算123+=,再由336,6410,10515+=+=+=,最终结果为15【答案】C【解析】根据算法的概念,可得结果.【解答】算法是解决某个问题或某类型问题的方法和步骤所以C 不对,C 没有说明有两个不相等的实根步骤故选:C【解题点拨】本题考查算法的概念,属基础题.5.已知直角三角形两直角边长为a ,b ,求斜边长c 的一个算法分下列三步:①计算;②输入直角三角形两直角边长a,b的值;③输出斜边长c的值;其中正确的顺序是()A.①②③B.②③①C.①③②D.②①③【答案】D【解析】试题分析:由算法的概念可知:算法是先后顺序的,结果明确性,每一步操作明确的,根据已知直角三角形两直角边长为a,b,求斜边长c的一个算法的先后顺序,即可判断选项的正误.解:由算法规则得:第一步:输入直角三角形两直角边长a,b的值,第二步:计算,第三步:输出斜边长c的值;这样一来,就是斜边长c的一个算法.故选D.点评:本题考查算法的概念,解题关键是算法的作用,格式.6.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅、盛水需要2分钟;②洗菜需要6分钟;③准备面条及佐料需要2分钟;④用锅把水烧开需要10分钟;⑤煮面条和菜共需要3分钟,以上各道工序,除了④之外,一次只能进行一道工序小明要将面条煮好,最少要用()A.13分钟B.14分钟C.15分钟D.23分钟【答案】C【解析】根据生活常识,先洗锅后在烧水的同时做准备工作,最后再煮面条和菜.【解答】由题意, ①洗锅、盛水2分钟后再④用锅把水烧开期间的10分钟的同时进行②洗菜6分钟;③准备面条及佐料2分钟;再⑤煮面条和菜共3分钟.++=分钟.故总共210315故选:C【解题点拨】本题主要考查了算法步骤的实际运用,属于基础题型.7.以下说法不正确的是()A.顺序结构是由若干个依次执行的处理步骤组成的,每一个算法都离不开顺序结构B.循环结构是在一些算法中从某处开始按照一定条件,反复执行某一处理步骤,故循环结构中一定包含选择结构C.循环结构中不一定包含选择结构D.用程序框图表示算法,使之更加直观形象,容易理解【答案】C【解析】试题分析:根据算法中三种逻辑结构的定义,顺序结构是最基本的结构,每个算法一定包含顺序结构;选择结构是算法中出现分类讨论时使用的逻辑结构,循环结构一定包含一个选择结构;分析四个答案,即可得到结论.解:任何算法都是由若干个顺序结构组成.循环结构中要对是否循环进行判断,所以一定包含选择结构,故选C .点评:本题考查的知识点是算法的概念及算法的特点,是对概念的直接考查,属基础题,熟练掌握相关概念是解答本题的关键.8.进入互联网时代,经常发送电子邮件,一般而言,发送电子邮件要分成以下几个步骤:(a).打开电子邮件;(b)输入发送地址;(c)输入主题;(d)输入信件内容;(e)点击“写邮件”;(f )点击“发送邮件”;正确的步骤是A .a b c d e f →→→→→B .a c d f e b →→→→→C .a e b c d f →→→→→D .b a c d f e →→→→→【答案】C【解析】分析:发电子邮件的操作步骤:第一步a..打开电子信箱;第二步:e .点击“写邮件”;等.依次操作,不能颠倒.解答:发电子邮件的操作步骤:第一步a..打开电子信箱;第二步:e .点击“写邮件”;等.依次操作,不能颠倒.则正确顺序为:a e b c d f →→→→→.解题点拨:本题主要考查绘制简单实际问题的流程图,注意发电子邮件的步骤,步骤不能颠倒.9.给出30个数:1,2,3,5,8,13,要计算这30个数的和,现已给出了该问题的程序框图如图所示,那么框图中判断框①处和执行框②处应分别填入( )A .30?1i p p i ≤=+-和B .31?1i p p i ≤=++和C .31?i p p i ≤=+和D .30?i p p i 和≤=+【答案】D【解析】试题分析:要计算30个数的和,所以要循环30次;考查循环情况:s=1,s=1+2,s=1+2+4,……每循环一次,p 须增加一,即30?;i p p i ≤=+,故选D . 考点:本题主要考查程序框图.点评:基础题,注意研究依次循环的情况,发现规律,做出正确选择.10.给出下列算法:第一步,输入正整数()1n n >.第二步,判断n 是否等于2,若2n =,则输出n ;若2n >,则执行第三步.第三步,依次从2到1n -检验能不能整除n ,若不能整除n ,则执行第四步;若能整除n ,则执行第一步.第四步,输出n .则输出的n 的值是 ( )A .奇数B .偶数C .质数D .合数【答案】C【解析】根据第二步“判断n 是否是2;若n=2,则n 满足条件;若n >2,则执行第三步” 可得满足条件的最小的数为2根据第三步“依次从2到n ﹣1检验能不能整除n .若不能整除n 满足条件.由表示这样的数在2~n ﹣1之间没有约数即这个数只有1和本身两个约数根据质数的定义,可得满足条件的数为质数故选C二、填空题11.下列关于算法的说法中正确的有______.(填写正确的答案序号)①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果.【答案】②③④【解析】根据算法的概念逐一分析选项,得到正确结果.【解答】①求解某个问题的算法不是唯一的,故①错;②算法必须在有限个步骤内解决问题,步骤是有限的,故②正确;③算法的每一步操作必须是明确的,不能有歧义或模糊,故③正确;④算法执行后一定产生确定的结果,故④正确.故答案为:②③④【解题点拨】本题考查算法的概念和特点,属于基础题型.12.给出下面四个问题:①输入x ,输出它的平方;②求面积为9的正方形的周长;③求出三个数a ,b ,c 中的最大数;④求函数()()()1020x x f x x x ⎧-≤⎪=⎨+>⎪⎩的函数值. 其中不需要用条件语句来描述其算法的是______.【答案】①,②【解析】对于选项①、②的值,代入相应的公式求解即可,不必事先进行判断,对于选项③,在确定最大值时,还需先分别讨论,对于选项④,求函数值时先需对所给的x 进行条件判断,故要用条件语句来描述其算法.【解答】解:对于①,输入x ,输出它的平方,代入x ,求2x 即可;对于②,求面积为9的正方形的周长,代入2a ,求a 后计算4a 即可;对于③,求出三个数a ,b ,c 中的最大数,必须先进行大小比较,要用到条件语句;对于④,求函数()()()1020x x f x x x ⎧-≤⎪=⎨+>⎪⎩的函数值,必须对所给的x 进行条件判断,要用到条件语句,即不需要用条件语句来描述其算法的是①②.故答案为:①②.【解题点拨】本题考查了条件语句的特征,重点考查了对条件语句的特征的理解,属基础题. 13.下列关于算法的说法,正确的序号是__________.(1)一个问题的算法是唯一的;(2)算法的操作步骤是有限的;(3)算法的每一步操作必须是明确的,不能有歧义;(4)算法执行后一定产生确定的结果.【答案】(2)、(3)、(4)【解析】对于(1),解决某个问题的算法可能有多个,算法是不唯一的,故原命题错误;对于(2),算法是在有限个步骤内解决问题,命题正确;对于(3),算法的每一步操作必须是明确的,不能有歧义或模糊,命题正确. 对于(4),算法执行后一定产生确定的结果,命题正确.综上,正确的命题是(2),(3),(4).故答案为(2)、(3)、(4).14.已知实数]9[1x ,,执行如图所示的流程图,则输出的x 不小于55的概率为________.【答案】38【解析】设实数x ∈[1,9],经过第一次循环得到x =2x +1,n =2,经过第二循环得到x =2(2x +1)+1,n =3,经过第三次循环得到x =2[2(2x +1)+1]+1,n =4此时输出x ,输出的值为8x +7,令8x +7⩾55,得x ⩾6,由几何概型得到输出的x 不小于55的概率为963918P -==-. 故答案为38. 15.已知点()00,P x y 和直线:0l Ax By C ++=,写出求点到直线距离的一个算法.有如下步骤:①输入点的坐标00,x y ;②计算100z Ax By C =++;③计算222z A B =+;④输入直线方程的系数,A B 和常数C;⑤计算d =d 的值.其中正确的顺序为_____ .【答案】①④②③⑤⑥【解析】由题意得,(1)算法步骤应先输入相关信息最后输出结果;(2)d=,应先将分子、分母求出,再代入公式.解题点拨:本题主要考查了算法的一个应用问题,解答此类问题时,算法可以看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或计算序列能够解决一类问题.算法过程要求一步一步执行,每一步执行的操作,而且经过有限步后,必须有结果输出后终止,正确把握算法的概念是解答此类问题的关键.三、解答题16.下面给出一个问题的算法:S1输入x;S2若x≤2,则执行S3;否则,执行S4;S3输出-2x-1;S4输出x2-6x+3.问题:(1)这个算法解决的是什么问题?(2)当输入的x值为多大时,输出的数值最小?【答案】(1)f(x)=2-2x-1,x 2,x -6x 3,x 2≤⎧⎨+>⎩;(2)当输入的x 值为3时,输出的数值最小. 【解析】试题分析:(1)由S2判断语句知是求分段函数的函数值问题,为f(x)=2-2-1,2,x -63, 2.x x x x ≤⎧⎨+>⎩;(2)由函数性质性质可知,当输入的x 值为3时,输出的数值最小. 试题解析:(1)由于输入x 的值不同,代入的关系式不同,从而它是求分段函数的函数值问题,这个分段函数为f(x)=2-2-1,2,x -63, 2.x x x x ≤⎧⎨+>⎩ (2)当x≤2时,f(x)≥f(2)=-5;当x>2时,f(x)=x 2-6x+3=(x-3)2-6≥-6.故当x=3时,f(x)min =-6.所以当输入的x 值为3时,输出的数值最小.解题点拨:本题考查算法的理解.在读取算法语句时,关键是根据其执行顺序理解.当语句中含有判断语句时,即其实分段执行的,本题中即为分段函数;当含有循环语句时,即不断循环执行语句.17.建立数学模型一般都要经历下列过程:从实际情境中提出问题,建立数学模型,通过计算或推导得到结果,结合实际情况进行检验.如果合乎实际,就得到可以应用的结果,否则重新审视问题的提出、建模、计算和推导得到结果的过程,直到得到合乎实际的结果为止.请设计一个流程图表示这一过程.【答案】见解答【解析】分析:建立数学模型的一般过程是一个顺序结构的流程,结合实际情况进行检验,有两种不同的结果,故是一个选择结构,由此画出流程图.解答:流程图如下:解题点拨:选择适当逻辑结构表示算法是解本题关键,属于基础题.18.鸡兔同笼问题:鸡和兔各若干只,数腿共100条,数头共30只,试设计一个算法,求鸡和兔各有多少只.【答案】见解析【解析】试题分析:由题意,设出鸡兔的只数,然后列出方程组,消元解方程组即可确定鸡和兔各有多少只.据此给出算法说明即可.试题解析:解:第一步,设有x 只鸡,y 只兔,列方程组第二步,②÷2-①,得y =20. 第三步,把y =20代入①,得x =10.第四步,得到方程组的解第五步,输出结果,鸡10只,兔20只.解题点拨:在设计一个算法的过程中要牢记它的五个特征:概括性、逻辑性、有穷性、不唯一性、普遍性.19.下面给出了一个问题的算法:第一步,输入x .第二步,若x ≥4,则执行第三步,否则执行第四步.第三步,y =2x -1,输出y .第四步,y =x 2-2x +3,输出y .问题:(1)这个算法解决的问题是什么?(2)当输入的x 值为多大时,输出的数值最小?【答案】(1)见解析(2)当输入的x 的值为1时,输出的数值最小.【解析】试题分析:本题考查了一个条件分支结构的算法,可分为4x ≥和4x <,执行不同的计算,即可得到结论.试题解析:(1)这个算法解决的问题是求分段函数()()221x4yx23x4xx⎧-≥⎪=⎨-+<⎪⎩的函数值的问题.(2)本问的实质是求分段函数最小值的问题.当x≥4时,y=2x-1≥7;当x<4时,y=x2-2x+3=(x-1)2+2≥2.∴函数最小值为2,当x=1时取到最小值.∴当输入x的值为1时,输出的数值最小.解题点拨:本题主要考查了一个条件分支结构的算法的应用问题,解答中涉及到分段函数的性质,其中程序填空是重点考查的题型,这种试题考试的重点:①分支条件;②循环的条件;③变量的赋值;④变量的输出,其中前两个是考试的重点,正确理解算法的流程,读懂题意是解答的关键.20.有关专家建议预测,在未来几年内,中国的通货膨胀率保持在3%左右,这将对我国经济的稳定有利无害.所谓通货膨胀率为3%,指的是每年消费品的价格增长率为3%.在这种情况下,某种品牌的钢琴2015年的价格是10 000元,试分析其算法并用流程图描述这种钢琴今后四年的价格变化情况,并输出四年后的价格.【答案】见解析【解析】用P(单位:元)表示钢琴的价格,根据指数函数的性质写出算法步骤,进而得到流程图.【解答】用P(单位:元)表示钢琴的价格,算法步骤如下:2016年P=10 000×(1+3%)=10 300(元);2017年P=10 300×(1+3%)=10 609(元);2018年P=10 609×(1+3%)=10 927.27(元);2019年P=10 927.27×(1+3%)=11 255.088 1(元).因此,价格的变化情况表为:流程图为:【解题点拨】本题考查苏菲的设计及流程图,属基础题.。
最新高一数学题库 必修3算法初步练习题及答案
第一章算法初步1.1算法与程序框图1.1.1算法的概念1.下面的结论正确的是【】A.一个程序的算法步骤是可逆的B.一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D.设计算法要本着简单方便的原则2.下面对算法描述正确的一项是【】A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征【】A.抽象性B.精确性C.有穷性D.唯一性4.算法的有穷性是指【】A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤,从下列选项中选最好的一种算法【】A.S1洗脸刷牙、S2刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.S1吃饭同时听广播、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶6.看下面的四段话,其中不是解决问题的算法是【】A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程210x-=有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为157.写出求1+2+3+4+5+6+…+100的一个算法.可运用公式1+2+3+…+n=(1)2n n+直接计算.第一步______①_______;第二步_______②________;第三步输出计算的结果.8.写出1×2×3×4×5×6的一个算法.1.1.2 程序框图1.算法的三种基本结构是【】A. 顺序结构、模块结构、条件结构 B. 顺序结构、循环结构、模块结构C. 顺序结构、条件结构、循环结构D. 模块结构、条件结构、循环结构2.给出以下四个问题,①输入x, 输出它的相反数;②求面积为6的正方形的周长;③在三个不等实数,,a b c中,求一个数的最大数;④求函数1,0()2,0x xf xx x-≥⎧=⎨+<⎩的函数值。
高中数学(人教A版)必修三课后提升作业:一1.1.1算法的概念Word版含解析
⾼中数学(⼈教A版)必修三课后提升作业:⼀1.1.1算法的概念Word版含解析温馨提⽰:此套题为Word版,请按住Ctrl,滑动⿏标滚轴,调节合适的观看⽐例,答案解析附后。
关闭Word⽂档返回原板块。
课后提升作业⼀算法的概念(45分钟70分)⼀、选择题(每⼩题5分,共40分)1.我们学习的算法不同于求解⼀个具体问题的⽅法,下列要求中正确的是( )A.写出的算法,必须能解决⼀类问题,并且能重复使⽤B.求解某个问题的算法是唯⼀的C.算法过程要⼀步⼀步执⾏,每⼀步执⾏的操作,必须确切,不能含混不清,⽽且经过有限步或⽆限步后能得出结果D.算法要求按部就班地做,每⼀步可以有不同的结果【解析】选A.根据算法的特征知A正确.2.在⽤⼆分法求⽅程零点的算法中,下列说法正确的是( )A.这个算法可以求所有的零点B.这个算法可以求任何⽅程的零点C.这个算法能求所有零点的近似解D.这个算法可以求变号零点的近似解【解析】选 D.⼆分法的理论依据是函数的零点存在定理,它解决的是求变号零点的问题,并不能求所有零点的近似值.3.关于⼀元⼆次⽅程x2-5x+6=0的求根问题,下列说法正确的是( )A.只能设计⼀种算法B.可以设计两种算法C.不能设计算法D.不能根据解题过程设计算法【解析】选 B.算法具有不唯⼀性,对于⼀个问题,我们可以设计不同的算法.4.计算下列各式中的S值,能设计算法求解的是( )①S=1+2+3+ (100)②S=1+2+3+…+100+…;③S=1+2+3+…+n(n≥1,且n∈N).A.①②B.①③C.②③D.①②③【解析】选B.②中的S值是不确定的,⾮有限步之内能够完成的.5.已知算法:第⼀步,输⼊n;第⼆步,判断n是否是2,若n=2,则n满⾜条件;若n>2,则执⾏第三步;第三步,依次检验从2到n-1的整数能不能整除n,若不能整除n,满⾜条件.上述满⾜条件的数是( )A.质数B.奇数C.偶数D.4的倍数【解析】选A.该算法是判断⼀个数除1和它本⾝之处是否还有其他约数.故满⾜条件的数是质数.6.已知直⾓三⾓形两直⾓边长为a,b,求斜边长c的⼀个算法分下列三步:①计算a,b的值;③输出斜边长c的值.其中正确的顺序为( )A.①②③B.②③①C.①③②D.②①③【解析】选D.按照解决这类问题的步骤,应该先输⼊两直⾓边长.再由勾股定理求出斜边长,输出斜边长.7.下列说法中,叙述不正确的是( )A.算法可以理解为由基本运算及规定的运算顺序构成的完整的解题步骤B.算法可以看成按要求设计好的、有限的、明确的计算序列,并且这样的步骤或序列能够解决⼀类问题C.算法只是在计算机产⽣之后才有的D.描述算法有不同的⽅式,可以⽤⽇常语⾔和数学语⾔等【解析】选 C.计算机只是执⾏算法的⼯具之⼀,⽣活中有些问题还是⾮计算机能解决的.8.如图,汉诺塔问题是指有3根杆⼦A,B,C,杆上有若⼲碟⼦,把所有的碟⼦从B杆移到A杆上,每次只能移动⼀个碟⼦,⼤的碟⼦不能叠在⼩的碟⼦上⾯,把B杆上的3个碟⼦全部移动到A杆上,则最少需要移动的次数是( )A.12B.9C.6D.7【解析】选D.由上⾄下三个碟⼦⽤a,b,c表⽰,移动过程如下:a→A,b →C,a→C,c→A,a→B,b→A,a→A,共移动7次.⼆、填空题(每⼩题5分,共10分)9.已知⼀个学⽣的语⽂成绩为89分,数学成绩为96分,外语成绩为99分.求他的总分和平均分的⼀个算法为:第⼀步,取A=89,B=96,C=99.第⼆步,____________________________________________________.第三步,____________________________________________________.第四步,输出计算的结果.【解析】因为该算法是计算三科的平均分,故第⼆步应该求和,第三步计算平均分.答案:计算总分D=A+B+C 计算平均分E=D3【补偿训练】(2016·东莞⾼⼀检测)请说出下⾯算法要解决的问题_________________________________________________.第⼀步,输⼊三个不同的数,并分别⽤a,b,c表⽰.第⼆步,⽐较a与b的⼤⼩,如果a第三步,⽐较a与c的⼤⼩,如果a第四步,⽐较b与c的⼤⼩,如果b第五步,输出a,b,c.【解析】第⼀步是给a,b,c赋值.第⼆步运⾏后a>b.第三步运⾏后a>c.第四步运⾏后b>c,所以a>b>c.第五步运⾏后,显⽰a,b,c的值,且从⼤到⼩排列.答案:输⼊三个不同的数a,b,c,并按从⼤到⼩的顺序输出10.(2016·天津⾼⼀检测)结合下⾯的算法:第⼀步,输⼊x.第⼆步,判断x是否⼩于0,若是,则输出3x+2,否则执⾏第三步.第三步,输出x2+1.当输⼊的x的值分别为-1,0,1时,输出的结果分别为__________、__________、__________.【解题指南】按算法步骤逐⼀执⾏,即可求得结果.【解析】当x=-1时,-1<0,输出3×(-1)+2=-1,当x=0时,0=0,输出02+1=1,当x=1时,1>0,输出12+1=2.答案:-1 1 2三、解答题(每⼩题10分,共20分)11.已知直线l 1:3x-y+12=0和直线l 2:3x+2y-6=0,设计算法求l 1和l 2及y 轴所围成的三⾓形的⾯积.【解题指南】先求出三⾓形的三个顶点的坐标,再求出任意⼀边及该边上⾼的长度,最后求出三⾓形的⾯积.【解析】第⼀步,解⽅程组3x y 120,3x 2y 60-+=??+-=?,得l 1, l 2的交点为P(-2,6); 第⼆步,在⽅程3x-y+12=0中令x=0,得y=12,从⽽得到l 1与y 轴的交点为A(0,12);第三步,在⽅程3x+2y-6=0中令x=0,得y=3,从⽽得到l 2与y 轴的交点为B(0,3);第四步,求出△ABP 的边长|AB|=12-3=9;第五步,求出△ABP 的边AB 上的⾼h=2;第六步,根据三⾓形的⾯积公式计算S=12·|AB|·h=12×9×2=9;第七步,输出S.12.(2016·包头⾼⼀检测)函数y=x 1,x 0,0,x 0,x 1,x 0,-+>??=??+函数值的算法.【解析】算法如下:第⼀步,输⼊x.第⼆步,若x>0,则令y=-x+1后执⾏第五步,否则执⾏第三步. 第三步,若x=0,则令y=0后执⾏第五步,否则执⾏第四步. 第四步,令y=x+1;第五步,输出y 的值.【补偿训练】某铁路部门规定甲、⼄两地之间旅客托运⾏李的费⽤为:0.53,50,c 500.53(50)0.85,50.ωω≤?=??+ω-?ω>? 其中ω(单位:kg)为⾏李的质量,如何设计计算托运费⽤c(单位:元)的算法.【解析】第⼀步,输⼊⾏李的质量ω.第⼆步,如果ω ≤50,则令c=0.53×ω,否则执⾏第三步. 第三步,c=50×0.53+(ω-50)×0.85.第四步,输出托运费c.【能⼒挑战题】⼀箱苹果,4个4个地数,最后余下1个;5个5个地数,最后余下2个;9个9个地数,最后余下7个.请设计⼀种算法,求出这箱苹果⾄少有多少个.【解题指南】寻找共同满⾜三种数法的最⼩值.【解析】第⼀步,确定最⼩的除以9余7的正整数:7.第⼆步,依次加9就得到所有除以9余7的正整数:7,16,25,34,43,52,….第三步,在第⼆步得到的⼀列数中确定最⼩的除以5余2的正整数:7.第四步,然后依次加上45,得到:7,52,97,….第五步,在第四步得到的⼀列数中找出最⼩的满⾜除以4余1的正整数:97.因此,这箱苹果⾄少有97个.关闭Word⽂档返回原板块。
最新人教版高中数学必修3第一章《算法与程序框图1.1.1算法的概念(附答案)2
第一章 算法初步1.1 算法与程序框图1.1.1 算法的概念1.下列四种叙述能称为算法的是 ( )A .在家里一般是妈妈做饭B .做米饭时要刷锅、淘米、添水、加热这些步骤C .在野外做饭叫野炊D .做饭必须要有米2.下面的结论正确的是 ( )A .一个程序的算法是可逆的B .一个算法可以无止境地运行下去C .完成一件事的算法有且只有一种D .设计算法要本着简单可行的原则3.在解二元一次方程组(Ⅰ)⎩⎪⎨⎪⎧a 11x 1+a 12x 2=b 1,a 21x 1+a 22x 2=b 2时,利用方程组(Ⅰ)中的第一个方程来消去第二个方程中的未知数x ,从而使该方程组(Ⅰ)化为与其等价的方程组(Ⅱ),进而通过(Ⅱ)的第二个方程确定y ,再通过第一个方程确定x ,这种求解方程组的方法称为__________.4.设计算法的要求是①__________,②__________.答案:1.B2.D 程序的算法不一定可逆,并且完成一件事的算法可能不止一个,算法必须在有限步后得出结果.3.高斯消去法4.①导出的算法必须能够解决一类问题,并能重复使用 ②算法过程要一步一步地执行,每一步执行的操作必须确切,不能含糊不清,而且在有限步后能得出结果1.算法的有穷性是指 ( )A .算法的最后包含输出B .算法中的每个步骤都可行C .算法的步骤必须有限D .以上说法都不对2.早上起床到出门需洗脸、刷牙(5min),刷水壶(2min),烧水(8min),泡面(3min),吃饭(10min),听广播(8min)几个步骤.下列选项中最好的一种算法为 ( )A .S1洗脸刷牙、S2刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播B .S1刷水壶、S2烧水的同时洗脸刷牙、S3泡面、S4吃饭、S5听广播C .S1刷水壶、S2烧水的同时洗脸刷牙、S3泡面、S4吃饭的同时听广播D .S1吃饭的同时听广播、S2泡面、S3烧水的同时洗脸刷牙、S4刷水壶3.一个厂家生产的商品的数量按照每年增加原来的18%的比率递增,若第一年的产量为a ,“计算第n 年的产量”这个算法程序中所用到的一个函数式为__________.4.求a 、b 、c 中最大值的算法中,最多需要__________次赋值,才能输出最大值.5.写出1×3×5×7的一个算法.6.电视娱乐节目中,有一种有趣的“猜数”游戏:竞猜者如在规定的时间内猜出某种商品的价格(或重量),就可获得该件商品.现有一商品,价格在0~8000元之间,采取怎样的策略才能在较短的时间内说出正确的答案呢?试设计一种算法.答案:1.C2.C 经比较可知C 最省时,效率最高.3.a(1+18%)n -14.三 S1 a 赋值给max ;S2 b 赋值给max ;S3 c 赋值给max.5.解:S1 计算1×3,得到3;S2 将S1中的运算结果3与5相乘,得到15;S3 将S2中的运算结果15与7相乘,得到105.6.解:S1 报“4000”;S2 若主持人说“高了”(说明答数在1~4000之间),就报“2000”;否则(说明答数在4000~8000之间)就报“6000”;S3 重复第二步的报数方法,直到得到正确结果.1.下列关于算法的说法正确的有 ( )①求解某一类问题的算法是唯一的;②算法必须在有限步操作后停止;③算法的每一步必须是明确的,不能有歧义;④算法执行后一定产生确定的结果.A .1个B .2个C .3个D .4个答案:C 算法具有可终止性、明确性和确定性,∴②③④正确2.对于一般的二元一次方程组⎩⎪⎨⎪⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2,在写此方程组的算法时,需要我们注意的是 ( )A .a 1≠0B .a 2≠0C .a 1b 2-a 2b 1≠0D .a 1b 1-a 2b 2≠0答案:C3.指出下列哪个不是算法 ( )A .解方程3x -6=0的过程是移项和系数化为1B .从济南到温哥华要先乘火车到北京,再转乘飞机C .解方程2x 2+x -1=0D .利用公式S =πr 2计算半径为3的圆的面积就是计算π×32答案:C C 选项没给出解这个方程的程序或步骤.4.用Scilab 指令解二元一次方程组⎩⎪⎨⎪⎧2x +3y =1,7x -2y =5时,在界面上应该输入 ( ) A .A =[2,3,7,-2] B =[1;5]B .A =[2,3;7,-2] B =[1;5]C .A =[2,7,3,-2] B =[1;5]D .A =[2,7;3,-2] B =[1;5]答案:B5.写出求方程2x +3=0的算法步骤,S1__________,S2__________,S3__________.答案:移项得2x =-3 两边同除以2得x =-32输出x =-326.下列计算S 值的各式中,能设计算法求解的是__________.①S =1+2+3+…+100②S =1+2+3+…+100+…③S =1+2+3+…+n(n ≥1且n ∈N )答案:①③ ②中的运算是无限步进行的,故不能设计算法.7.已知直角三角形的两直角边分别为a ,b ,设计一个求该三角形周长的算法.答案:解:由勾股定理,可求出斜边c =a 2+b 2,∴周长l =a +b +a 2+b 2.算法步骤如下:S1 计算c =a 2+b 2;S2 计算l =a +b +c ;S3 输出l.8.一个商人有9枚银元,其中有一枚略轻的是假银元,你能用天平(不用砝码)将假银元找出来吗?设计一个算法,解决这一问题.答案:解法一:算法步骤如下:S1 任取2枚银元分别放在天平的两边,如果天平左右不平衡,则轻的一边就是假银元;如果天平平衡,则执行S2;S2 取下右边的银元,放在一边,然后把剩余的7枚银元依次放在右边进行称量,直到天平不平衡,偏轻的那一枚就是假银元.解法二:算法步骤如下:S1 把银元分成3组,每组3枚;S2 先将两组分别放在天平的两边,如果天平不平衡,那么假银元就在偏轻的那一组;如果天平左右平衡,则假银元就在未称的第3组里;S3 取出含假银元的那一组,从中任取两枚银元放在天平的两边,如果左右不平衡,则轻的那一边就是假银元;如果天平平衡,则未称的那一枚就是假银元.9.写出一个求过点M(-2,-1)、N(2,3)的直线与坐标轴围成三角形面积的一个算法.答案:解:已知直线上的两点M 、N ,由两点式可写出直线方程,令x =0,得出与y 轴交点;令y =0,得出与x 轴交点,求出三角形两直角边的长,根据三角形面积公式可求出其面积.算法步骤如下:S1 取x 1=-2,y 1=-1,x 2=2,y 2=3;S2 得直线方程y -y 1y 2-y 1=x -x 1x 2-x 1; S3 令x =0,得y 的值m ,从而得直线与y 轴交点的坐标(0,m);S4 令y =0,得x 的值n ,从而得直线与x 轴交点的坐标(n,0);S5 根据三角形面积公式求S =12·|m|·|n|; S6 输出运算结果.。
高中数学人教A版必修三课时习题:第1章算法初步1.1.1含答案
1. 1.1算法的观点课时目标1.认识详细算法的基本过程与主要特色;2.能应用算法思想解决相关的详细问题;3.能按步骤用自然语言写出简单问题的算法过程.识记加强1.算法往常能够编成计算机程序,让计算机履行并解决问题,计算机解决任何问题都要依靠于算法.只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”正确地描绘出来,计算机才能够解决问题.2.算法的五个特色为归纳性、逻辑性、有穷性、不独一性、广泛性.课时作业一、选择题1.算法的有穷性是指()A.算法一定包括输出步骤B.算法中每个操作步骤都是可履行的C.算法一定在有穷步内结束D.以上说法均不正确答案: C分析:算法的有穷性是指一个算法的步骤序列是有限的,它应在有限步骤以后停止,而不可以是无穷的.2.以下对于算法的描绘正确的是()..A.算法与求解一个问题的方法同样B.算法只好解决一个问题,不可以重复使用C.算法过程要一步一步履行,每步履行的操作一定切实D.算法要求循规蹈矩做,每一步能够有不一样的结果答案: C分析: A 中算法能够解决一类问题而不是一个问题,同理 B 也不正确, D 中每一步履行的操作,只好有独一的结果,故 D 错误.3.利用计算机进行运算,第一一定()A.编程 B .人机对话C.计算机自动达成 D .没法进行答案: A分析:编程就是设计算法.4.对算法的理解不正确的选项是()A.一个算法应包括有限的操作步骤,而不可以是无穷的B.算法中的每一个步骤都应该是确立的,而不该该是含糊的、含糊其词的C.算法中的每一个步骤都应该有效地履行,并获得确立的结果D.一个问题只好设计出一种算法答案: D分析:算法是不独一的.5.看下边的四段话,此中不是解决问题的算法是()A.方程x2- 100=0 有两个实根± 10B.解一元一次方程的步骤是去分母、去括号、移项、归并同类项、系数化为1C.某人去深圳打工,先步行到县城,再乘火车到省城,最后坐飞机到达D.求 1+2+ 3+ 4+ 5 的值:先计算1+ 2=3,再计算3+ 3= 6,6 + 4= 10,10 + 5=15,最后结果为15答案: A6.对于算法:第一步:输入n第二步:判断n 能否等于2,若 n=2,则 n 知足条件;若n>2,则履行第三步第三步:挨次从 2 到n- 1 查验能不可以整除n,若不可以整除n,则履行第四步;若能整除n,则履行第一步第四步:输出n知足条件的n 是()A.质数 B .奇数C.偶数 D .约数答案: A分析:本题第一要理解质数,除 1 和它自己外没有其余约数的正整数叫做质数, 2 是最小的质数,这个算法经过对 2 到( n- 1) 一一考证,看能否有其余约数来判断其能否为质数.二、填空题7.已知一个学生的语文成绩为98,数学成绩为87,外语成绩为92,以下是他的总分和均匀成绩的一个算法:( 在横线上填入算法中缺的两个步骤)第一步:取A=98, B=87, C=92;第二步: ________;第三步: ________;第四步:输出计算的结果.答案:计算总分D= A+ B+ CD计算均匀成绩E= .38.求 1×3×5×7×9×11 的值的一个算法是:第一步:求1×3获得结果 3.第二步:将第一步所得结果 3 乘 5,获得结果15.第三步: _______________________________________________.第四步:再将105 乘 9 获得 945.第五步:再将945×11,获得10395,即为最后结果.答案:将第二步所得的结果15 乘 7,获得结果 105.9.下边给出一个问题的算法:第一步:输入 x.第二步:假如≥2014,那么y =- 2014,不然y= 2014-.x x x第三步:输出y.则这个算法解决的问题是________________________________ .答案:求 x 与2014的差的绝对值.三、解答题10.下边给出了一个问题的算法:第一步,输入a.第二步,若a≥4,则履行第三步,不然履行第四步.第三步,输出2a- 1.第四步,输出a2-2a+3.: (1) 个算法解决的是什么?(2)当入的 a 多大,出的数最小?解: (1) 个算法解决的是求分段函数f (x) =2x- 1,x≥4,的函数的.x2-2x+3, x<4(2)a=1出的数最小.11.写出求解一元二次方程ax2+ bx+ c=0( a≠0)的根的算法.解:第一步:算=b2-4ac;第二步:若<0;行第三步;否行第四步;第三步:出方程无根;-b± b2-4ac第四步:算并出方程根x1,2=2a.能力提高12.写出求 2+ 4+ 6+⋯+ 200 的一个算法.能够运用公式2+ 4+ 6+⋯+ 2n=n( n+ 1)直接算.第一步__① __;第二步__② __;第三步出运算果.答案:①取 n=100② 算n(n+1)分析:本考算法步.解此第一求出算式中n 的取,而后将 n 的取代入公式 n( n+1)行算,即可得此的一个算法.13.写出求两点M(-2,-1), N(2,3)的直与坐成面的一个算法.解:第一步:取x1=-2,y1=-1, x2=2, y2=3;第二步:算y- y1=x- x1;y2-y2x2- x1第三步:在第二步果中令x = 0获得y的,得直与y交点(0, );m m第四步:在第二步果中令y=0获得 x 的 n,得直与 x 交点( n, 0);第五步:算=1||·||;S2m n第六步:出运算果.。
高中数学第一章算法初步1.1.1算法的概念学案(含解析)新人教版必修3
1.1 算法与程序框图1.1.1算法的概念内容标准学科素养1。
通过回顾解二元一次方程组的方法,了解算法的思想。
2。
了解算法的含义和特征。
3.会用自然语言表述简单的算法。
提升数学运算发展逻辑推理应用数学抽象授课提示:对应学生用书第1页[基础认识]知识点一算法的概念预习教材P2-3,思考并完成以下问题一个大人和两个小孩一起渡河,渡口只有一条小船,每次只能渡1个大人或两个小孩,他们三人都会划船,但都不会游泳.(1)试问他们怎样渡过河去?提示:第一步,两个小孩同船过河去;第二步,一个小孩划船回来;第三步,一个大人划船过河去;第四步,对岸的小孩划船回来;第五步,两个小孩同船渡过河去.(2)设计的过河方法有什么特点?提示:由于船小,不能同时坐三个人,这样就需要遵循这一规则,然后按照一定的步骤一步一步的把三人运到河对岸.知识梳理在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.知识点二算法与计算机知识梳理计算机解决任何问题都要依赖于算法.只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题.思考:与一般的解决问题的过程相比,算法最重要的特征是什么?提示:最重要的特征是步骤的有序性、明确性和有限性.[自我检测]下列叙述不能称为算法的是()A.从北京到上海先乘汽车到飞机场,再乘飞机到上海B.解方程4x+1=0的过程是先移项再把x的系数化成1C.利用公式S=πr2计算半径为2的圆的面积得π×22D.解方程x2-2x+1=0解析:A、B两选项给出了解决问题的方法和步骤,是算法.C项,利用公式计算也属于算法.D项,只提出问题没有给出解决的方法,不是算法.答案:D授课提示:对应学生用书第2页探究一算法的概念[例1]下列关于算法的说法,正确的个数为()①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果.A.1B.2C.3 D.4[解析]由于算法具有有限性、确定性、输出性等特点,因而②③④正确,而解决某类问题的算法不一定唯一,从而①错.[答案] C方法技巧1。
人教A版高中数学必修三第一章1.1-1.1.1算法的概念1 答案和解析
人教A版高中数学必修三第一章1.1-1.1.1算法的概念1 学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列关于算法的描述正确的是( )A.算法与求解一个问题的方法相同B.算法只能解决一个问题,不能重复使用C.算法过程要一步一步执行,每步执行的操作必须确切D.有的算法执行完后,可能无结果2.下列叙述能称为算法的个数为()①植树需要运苗、挖坑、栽苗、浇水这些步骤;②按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100;③从枣庄乘火车到徐州,从徐州乘飞机到广州;④3x>x+1;⑤求所有能被3整除的正数,即3,6,9,12,….A.2B.3C.4D.53.一个算法的步骤如下:如果输入x的值为-3,则输出z的值为( )第一步,输入x的值;第二步,计算x的绝对值y;第三步,计算z=2y-y;第四步,输出z的值.A.4 B.5 C.6 D.84.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤、从下列选项中选最好的一种算法()A.S1洗脸刷牙、S2刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播B.刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播C.刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.吃饭同时听广播、S2泡面、S3烧水同时洗脸刷牙、S4刷水壶5.现用若干张扑克牌进行扑克牌游戏,小明背对小亮,让小亮按下列四个步骤操作:第一步,分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同.第二步,从左边一堆拿出两张,放入中间一堆.第三步,从右边一堆拿出一张,放入中间一堆.第四步,左边一堆有几张牌,就从中间一堆拿出几张牌放入左边一堆.这时,小明准确地说出了中间一堆牌现有的张数,你认为中间一堆牌的张数是( ) A.4 B.5 C.6 D.86.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅、盛水需要2分钟;②洗菜需要6分钟;③准备面条及佐料需要2分钟;④用锅把水烧开需要10分钟;⑤煮面条和菜共需要3分钟,以上各道工序,除了④之外,一次只能进行一道工序小明要将面条煮好,最少要用()A.13分钟B.14分钟C.15分钟D.23分钟7.下列语句表达中是算法的个数为( )①从济南去巴黎可以先乘火车到北京,再乘飞机到巴黎;②利用公式S=12ah计算底为1,高为2的三角形的面积;③解不等式12x>2x+4;④求过点M(1,2)与点N(-3,-5)的直线的方程,可先求直线的斜率,再利用点斜式求得方程.A.1 B.2 C.3 D.48.下列运算不属于我们所讨论算法范畴的是( )A.已知圆的半径求圆的面积B.随意抛掷两枚骰子得到8点的可能性C.已知坐标平面内两点求两点间的距离D.已知球的体积求表面积9.阅读下列算法:第一步,输入x.第二步,判断x>2是否成立,若成立,则y=x;否则,y=-2x+6.第三步,输出y.当输入的x∈[0,7]时,输出的y的取值范围是()A.[2,7]B.[2,6]C.[6,7]D.[0,7]二、填空题10.下列各式中S 的值不能用算法求解的是_____.①S=13+23+33+43+ (1003)②S=12+13+14+15+…+150; ③S=1+2+3+4+5+…;④S=1-2+3-4+5-6+…+99-100.11.下面是某人出家门先打车去火车站,再坐火车去北京的一个算法,请补充完整. 第一步,出家门.第二步,_____.第三步,坐火车去北京.12.写出作y=|x|图象的算法.第一步,当x>0时,作出第一象限的角平分线.第二步,当x=0时,即为原点.第三步,_____________.13.结合下面的算法:第一步,输入x.第二步,判断x 是否小于0,若是,则输出3x+2,否则执行第三步.第三步,输出x 2+1.当输入的x 的值分别为-1,0,1时,输出的结果分别为___、___、___.14.给出下列算法:第一步,输入x 的值.第二步,当4x >时,计算2y x =+;否则执行下一步.第三步,计算y =第四步,输出y .当输入0x =时,输出y = _____.15.求过P(a 1,b 1),Q(a 2,b 2)两点的直线的斜率有如下算法,请在横线上填上适当的步骤:第一步,取x 1=a 1,y 1=b 1,x 2=a 2,y 2=b 2.第二步,判断“x 1=x 2”是否成立.若是,则输出“斜率不存在”;否则,执行第三步. 第三步,______________.第四步,输出k.16.如下算法:第一步,输入x的值;第二步,若x≥0,则y=x;第三步,否则,y=x2;第四步,输出y的值.若输出的y值为9,则x=________.三、解答题17.写出解方程x2-2x-3=0的一个算法.18.某人带着一只狼和一只羊及一捆青菜过河,只有一条船,船仅可载重此人和狼、羊及青菜中的一种,没有人在的时候,狼会吃羊,羊会吃青菜.设计安全过河的算法.19.写出求1×2×3×4×5×6的算法.20.写出求方程组3x2y14x2y2+=⎧⎨+=-⎩ ① ②的解的算法.21.已知某梯形的底边长AB=a,CD=b,高为h,写出一个求这个梯形面积S的算法. 22.写出求过两点M(-2,-1),N(2,3)的直线与坐标轴围成面积的一个算法.参考答案1.C【解析】算法与求解一个问题的方法既有区别又有联系,故A 不对.算法能够重复使用,故B 不对.每一个算法执行完以后,必须有结果,故D 不对.2.B【解析】因为①②③均为完成一件事所需要的确定的步骤,所以①②③是算法,④⑤均不存在确定的步骤,因此④⑤不是算法. 选B.3.B【解析】 分析算法中各变量、各语句的作用,再根据算法的步骤可知:该算法的作用是计算并输出2xz x =- 的函数值.第一步,输入x=-3.第二步,计算x 的绝对值y=3.第三步,计算z=2y -y=23-3=5.第四步,输出z 的值为5.选B.4.C【解析】本小题主要考察统筹方法,能在同一时间段完成的任务,就在同一时间段完成,这样会节省时间.5.B【解析】按各放3张,可以算出答案是5,各放x 张答案也是一样.原因如下:设每堆有x 张,经过四个步骤后,中间一堆有(x+3)-(x-2)=5(张), 选B.6.C【解析】【分析】根据生活常识,先洗锅后在烧水的同时做准备工作,最后再煮面条和菜.【详解】由题意, ① 洗锅、盛水2分钟后再④ 用锅把水烧开期间的10分钟的同时进行② 洗菜6分钟;③准备面条及佐料2分钟;再⑤煮面条和菜共3分钟.故总共210315++=分钟.故选:C【点睛】本题主要考查了算法步骤的实际运用,属于基础题型.7.C【解析】现代意义上的“算法”通常指可以用计算机解决某一类问题的程序或步骤,因为③只提出问题,没有给出解决方法,所以③不是算法,选C.8.B【解析】算法是解决某一类问题的步骤,B不是算法,选项A,C,D中的运算均为算法,选B.9.A【解析】由题意可知,y=(][] x,x2,7,2x6,x0,2,⎧∈⎪⎨-+∈⎪⎩当x∈(2,7]时,y=x∈(2,7],当x∈[0,2]时,y=-2x+6∈[2,6],所以输入的x∈[0,7]时,输出的y的取值范围是[2,7],选A.10.③【解析】根据算法的有限性知C不能用算法求解.11.打车去火车站【解析】按照这个人出门去北京的顺序,第一步,出家门;第二步,打车去火车站;第三步,坐火车去北京.因此为第二步应该为打车去火车站.12.当x<0时,作出第二象限的角平分线【解析】依据算法解决的问题知,第一步,当x>0时,作出第一象限的角平分线;第二步,当x=0时,即为原点;第三步应为“当x<0时,作出第二象限的角平分线”.因此算法的第三步为“当x<0时,作出第二象限的角平分线”.13.-1; 1; 2【解析】当x=-1时,-1<0,输出3×(-1)+2=-1,当x=0时,0=0,输出02+1=1,当x=1时,1>0,输出12+1=2.输出的结果分别为:-1 1 214.2【解析】运行算法程序,输入0x = ,因为不满足04>,所以执行第三步,=2,三 输出2y =.15.计算k=2121y y x x -- 【解析】 根据题意,该算法编制的是已知直线上的两个点的坐标求直线的斜率的算法步骤,当“x 1=x 2”时,则输出“斜率不存在”;当“x 1≠x 2”时执行第三步,即计算斜率k ,此时只需用斜率公式k=2121y y x x -- 计算斜率即可求解,填写计算k=2121y y x x --. 16.9或-3【解析】根据本题算法可知,此题为求分段函数y=2x,?x 0x ,x 0≥⎧⎨<⎩的函数值的算法,当x≥0时,y =x=9,则9x =; 当x<0时,y = x 2=9,则3x =± ,由于0x <, 所以x=-3;综上可知:填写9或-3. 17.见解析【解析】试题分析:本题设计一个求一元二次方程的根的算法,第一步要用赋值语句计算一元二次方程的根的判别式,第二步判断判别式的符号决定根的判别式的符号;判断语句判别式若小于0,输出无实根,否则转入下一步,赋值语句输出方程的根;当然算法设计方法不是一种,不同思路方法不同.试题解析:算法一:第一步,移项,得x 2-2x=3. ①第二步,①式两边同时加1并配方,得(x-1)2=4. ②第三步,②式两边开方,得x-1=±2. ③ 第四步,解③得x=3或x=-1.算法二:第一步,计算方程的判别式并判断其符号:Δ=(-2)2-4×(-3)=16>0.第二步,将a=1,b=-2,c =-3代入求根公式x=b 2a-±,得x 1=3,x 2=-1. 【点睛】设计一个求一般的一元二次方程ax 2+bx+c=0(a≠0)的根的算法如下:第一步,计算Δ=b 2-4ac.第二步,若Δ<0.第三步,输出方程无实根.第四步,若Δ≥0.第五步,计算并输出方程根x 1,218.见解析【解析】试题分析:这个问题是狼与羊不能同时放在一起,羊和青菜不能同时放在一起,因此第一步,不可能带青菜,带羊过河为首选;第二步,人自己返回时自然的事情,第三步,不可能代狼,只能人带青菜过河,防止羊把青菜吃掉;所以第四步,人带羊返回.防止狼把羊吃掉而且狼是不吃青菜的,所以第五步,人带狼过河.试题解析:第一步,人带羊过河.第二步,人自己返回.第三步,人带青菜过河.第四步,人带羊返回.第五步,人带狼过河.第六步,人自己返回.第七步,人带羊过河. 人自己返回.第七步,人带羊过河.设计算法解决实际问题的步骤(1)读懂题意,明确要求.(2)利用算法特点,建立合适的模型,设计合理的算法步骤.(3)用自然语言写出来,关键是找出解决问题的合适方案.【点睛】根据题意要求,设计本算法时涉及两个要求,第一个问题是狼与羊不能同时放在一起,第二个要求是羊和青菜不能同时放在一起,第一步,不可能带青菜,只能人带羊过河为首选,第二步,人自己返回时自然的事情,第三步,不可能代狼,只能人带青菜过河.防止羊把青菜吃掉,所以第四步,人带羊返回.防止狼把羊吃掉而且狼是不吃青菜的,所以第五步,人带狼过河.19.见解析【解析】试题分析:按照逐一相乘的程序进行,即可写出相应的算法.解:按照逐一相乘的程序进行第一步:计算1×2,得到2;第二步:将第一步的运算结果2与3相乘,得到6;第三步:将第二步的运算结果6与4相乘,得到24;第四步:将第三步的运算结果24与5相乘,得到120;第五步:将第四的运算结果120与6相乘,得到720;第六步:输出结果.点评:本题考查算法的书写,考查学生分析解决问题的能力,属于基础题.20.见解析【解析】试题分析:本题算法为解二元一次方程组,首先按照加减消元法设计算法,第一步消去y,第二步得出x的值,第三步把求出的x的值代入得出关于y方程,第五步解得y的值,第六步得出方程组的解.当然还可以设计成代入消元法设计算法去解方程组.试题解析:方法一:第一步,①-②得:2x=14+2;③第二步,解方程③得:x=8;④第三步,将④代入②得:8+2y=-2;⑤第四步,解⑤得:y=-5;第五步,得到方程组的解为8,5. xy=⎧⎨=-⎩方法二:第一步,由②式移项可得:x=-2-2y;③第二步,把③代入①可解得:y=-5;④第三步,把④代入③得:x=8;第四步,得到方程组的解为8,5. xy=⎧⎨=-⎩【点睛】本题算法为解二元一次方程组,可以按照代入消元法或加减消元法设计算法,例如按照代入消元法设计算法,第一步消去y,第二步得出x的值,第三步把求出的x的值代入得出关于y方程,第五步解得y的值,第六步得出方程组的解.21.见解析【解析】试题分析:根据梯形面积公式,设计一个梯形面积的算法,按照梯形面积的公式的运算方法,首先输入梯形的上底、下底、高,第二步计算上底与下底的和;第三步计算上底与下底的和与高的乘积,第四步再把以上数据除以2 ,输出所得的面积.试题解析:结合梯形的面积公式进行算法的设计.第一步,输入梯形的底边长a和b,以及高h.第二步,计算a+b的值.第三步,计算(a+b)×h的值.第四步,计算S=()a b h2+⨯的值.第五步,输出结果S.【点睛】多边形或圆的面积的计算的算法的设计,首先按照面积公式的计算方法,一步一步的进行计算,如本题的梯形面积的算法,按照梯形面积的公式的运算方法,首先输入梯形的上底、下底、高,第二步计算上底与下底的和;第三步计算上底与下底的和与高的乘积,第四步再把以上数据除以2 ,输出所得的面积.22.见解析【解析】试题分析:过两个点的直线与两个坐标轴所围成的三角形的面积,设计算法时首先要输入这两个点的坐标,根据这两个点的坐标才能写出直线的两点式方程,然后分别设计两步求直线与两个坐标轴的交点,得出直线与x轴交点的横坐标及直线与y轴交点的纵坐标,最后一步设计求出三角形的面积,输出面积的值.试题解析:第一步:取x1=-2,y1=-1,x2=2,y2=3;本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
苏教版高中数学必修三练习:1.1算法的含义含答案
第一章算法初步1.1算法的含义【新知导读】1.什么是算法?试从日常生活中找3个例子,描述它们的算法.2.我们从小学到初中再到高中所学过的许多数学公式是算法吗?【范例点睛】例1.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤.从下列选项中选出较好的一种算法A.第一步洗脸刷牙、第二步刷水壶、第三步烧水、第四步泡面、第五步吃饭、第六步听广播.B.第一步刷水壶、第二步烧水同时洗脸刷牙、第三步泡面、第四步吃饭、第五步听广播C第一步刷水壶、第二步烧水同时洗脸刷牙、第三步泡面、第四步吃饭同时听广播.D.第一步吃饭同时听广播、第二步泡面、第三步烧水同时洗脸刷牙、第四步刷水壶.思路点拨:从四个答案所给出的步骤是否合理、最少需要花费多少时间入手,进行判断.易错辨析:选择A很大程度上是受人们的通常的习惯所影响,即起床后首先应该洗脸刷牙再做其他的事情.方法点评:作为完成过程的算法来说,要讲究一个优劣之分,也即完成这个过程用时最少的是一个好算法,所以.应选C.例2.一位商人有9枚银元,其中有1枚略轻的是假银元.你能用天平(不用砝码)将假银元找出来吗?思路点拨:最容易想到的解决这个问题的一种方法是:把9枚银元按顺序排成一列,先称前2枚,若不平衡,则可找出假银元;若平衡,则2枚银元是真的,再依次与剩下的银元比较,就能找出假银元.这种算法最少要称1次,最多要称7次,是不是还有更好的办法,使得称量次数少一些?我们可以采用下面的方法:1.把银元分成3组,每组3枚.2.先将两组分别放在天平的两边.如果天平不平衡,那么假银元就在轻的那一组;如果天平平衡,则假银元就在未称的第3组里.3.取出含假银元的那一组,从中任取两枚银元放在天平的两边,如果左右不平衡,则轻的那一边就是假银元;如果天平两边平衡,则未称的那一枚就是假银元.方法点评:经分析发现,这种算法只需称量2次,这种做法要明显好于前一种做法.从以上两个问题中可以看出,同一个问题可能存在着多种算法,其中一些可能要比另一些好.在实际问题和算法理论中,找出好的算法是一项重要的工作. 【课外链接】1.设计一个算法,求840与1764的最大公因数.思路点拨:该算法是在对自然数进行素因数分解的基础上设计的.解答这个问题需要按以下思路进行.首先,对两个数分别进行素因数分解:75328403⨯⨯⨯=, 2227321764⨯⨯=.其次,确定两数的公共素因数:7,3,2.接着,确定公共素因数的指数:对于公共素因数22,2是1764的因数,32是840的因数,因此22是这两个数的公因数,这样就确定了公共素因数2的指数为2.同样,可以确定出公因数3和7的指数均为1.这样,就确定了840与1764的最大公因数为847322=⨯⨯【随堂演练】1.算法是指 ( ) A .为解决问题而编写的计算机程序 B.为解决问题而采取的方法和步骤 C .为解决问题而需要采用的计算机程序 C.为解决问题而采用的计算方法 2.看下面的四段话,其中不是解决问题的算法的是( ) (A )从济南到北京旅游,先坐火车,再坐飞机抵达(B )解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1 (C )方程x 2-1=0有两个实根(D )求1+2+3+4+5的值,先计算1+2=3,再求3+3=6,6+4=10,10+5=15,最终结果为15 3.方程⎩⎨⎧=+=+1043732y x y x 的解集是_______________4.买一个茶杯1.5元,现要写出计算买n 个茶杯所需要的钱数的一个算法,则这个算法中必须要用到的一个表达式为_______________5.设计算法,判断97是否为素数.6.设计算法,求1356和2400的最小公倍数.7.有两个瓶子A和B,分别盛放醋和酱油,要求将它们互换(即A瓶原来盛醋,现改盛酱油;B 瓶则相反)8.设计算法,将三个数按从大到小的顺序排列.9.有13个球看上去一模一样,但其中一个质量不同(它比其他12个略重),现在有一个天平(没有砝码),要求给出一种操作方法,把这个球找出来.参考答案 1.1算法的含义【新知导读】1.对一类问题的机械的、统一的求解方法称为算法 2.是 【随堂演练】1.B 2.C 3.⎩⎨⎧==12y x 4.1.5n5.S1 对两个数分别进行素因数分解:1356=22×3×113 2400=25×3×52S2 确定两数的所有素因数:2,3,5,113S3 确定素因数的指数:2的指数为5,3的指数为1,5的指数为2, 113的指数为1 S4 输出结果[1356,2400]=25×3×52×113. 6. S1 引入第三个空瓶即C 瓶; S2 将A 瓶中的醋装入C 瓶中; S3 将B 瓶中的酱油装入A 瓶中; S4 将C 瓶中的醋装入B 瓶中; S5 交换结束。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新人教版数学精品教学资料
第一章 算法初步
1.1 算法与程序框图
1.1.1 算法的概念
A 级 基础巩固
一、选择题
1.下列四种自然语言叙述中,能称作算法的是( )
A .在家里一般是妈妈做饭
B .做米饭需要刷锅、淘米、添水、加热这些步骤
C .在野外做饭叫野炊
D .做饭必须要有米
解析:算法是做一件事情或解决一类问题的程序或步骤,故选B.
答案:B
2.以下对算法的描述正确的有( )
①对一类问题都有效;
②算法可执行的步骤必须是有限的;
③算法可以一步一步地进行,每一步都有确切的含义;
④是一种通法,只要按部就班地做,总能得到结果.
A .1个
B .2个
C .3个
D .4个
答案:D
3.给出下面一个算法:
第一步,给出三个数x ,y ,z.
第二步,计算M =x +y +z.
第三步,计算N =13
M. 第四步,得出每次计算结果.
则上述算法是( )
A .求和
B .求余数
C .求平均数
D .先求和再求平均数 解析:由算法过程知,M 为三数之和,N 为这三数的平均数.
答案:D
4.一个算法步骤如下:
S1,S取值0,i取值1;
S2,如果i≤10,则执行S3;否则,执行S6;
S3,计算S+i并将结果代替S;
S4,用i+2的值代替i;
S5,转去执行S2;
S6,输出S.
运行以上步骤后输出的结果S=( )
A.16 B.25
C.36 D.以上均不对
解析:由以上计算可知:S=1+3+5+7+9=25.
答案:B
5.对于算法:
第一步,输入n.
第二步,判断n是否等于2,若n=2,则n满足条件;若n>2,则执行第三步.
第三步,依次从2到(n-1)检验能不能整除n,若不能整除n,则执行第四步;若能整除n,则执行第一步.
第四步,输出n.
满足条件的n是( )
A.质数B.奇数
C.偶数D.约数
解析:此题首先要理解质数,只能被1和自身整除的大于1的整数叫质数.2是最小的质数,这个算法通过对2到(n-1)一一验证,看是否有其他约数,来判断其是否为质数.答案:A
二、填空题
6.给出下列算法:
第一步,输入x的值.
第二步,当x>4时,计算y=x+2;否则执行下一步.
第三步,计算y=4-x.
第四步,输出y.
当输入x=0时,输出y=________.
解析:因为0<4,执行第三步,所以y=4-0=2.
答案:2
7.已知直角三角形两直角边长为a ,b ,求斜边长c 的一个算法分下列三步:
(1)计算c =a 2+b 2
.
(2)输入直角三角形两直角边长a ,b 的值.
(3)输出斜边长c 的值.
其中正确的顺序是________________.
解析:算法的步骤是有先后顺序的,第一步是输入,最后一步是输出,中间的步骤是赋值、计算.
答案:(2)(1)(3)
8.如下算法:
第一步,输入x 的值;
第二步,若x≥0,则y =x ;
第三步,否则,y =x 2;
第四步,输出y 的值.
若输出的y 值为9,则x =________.
解析:根据题意可知,此为求分段函数y =⎩⎪⎨⎪⎧x ,x ≥0,x 2,x<0的函数值的算法,当x≥0时,x =9;当x<0时,x 2
=9,
所以x =-3.
答案:9或-3
三、解答题
9.写出求1×2×3×4×5×6的算法.
解:第一步,计算1×2得到2.
第二步,将第一步的运算结果2乘3,得到6.
第三步,将第二步的运算结果6乘4,得到24.
第四步,将第三步的运算结果24乘5,得到120.
第五步,将第四步的运算结果120乘6,得到720.
10.某商场举办优惠促销活动.若购物金额在800 元以上(不含800 元),打7折;若购物金额在400 元以上(不含400 元),800 元以下(含800 元),打8折;否则,不打折.请为商场收银员设计一个算法,要求输入购物金额x ,输出实际交款额y.
解:算法步骤如下:
第一步,输入购物金额x(x >0).
第二步,判断“x>800”是否成立,若是,则y =0.7x ,转第四步;否则,执行第三步. 第三步,判断“x>400”是否成立,若是,则y =0.8x ;否则,y =x.
第四步,输出y ,结束算法.
B 级 能力提升
1.结合下面的算法:
第一步,输入x.
第二步,判断x 是否小于0,若是,则输出x +2;否则,执行第三步.
第三步,输出x -1.
当输入的x 的值为-1,0,1时,输出的结果分别为( )
A .-1,0,1
B .-1,1,0
C .1,-1,0
D .0,-1,1
解析:根据x 值与0的关系选择执行不同的步骤.
答案:C
2.求过P(a 1,b 1),Q(a 2,b 2)两点的直线斜率有如下的算法,请将算法补充完整: S 1 取x 1=a 1,y 1=b 1,x 2=a 2,y 2=b 2.
S 2 若x 1=x 2,则输出斜率不存在;否则,________.
S 3 输出计算结果k 或者无法求解信息.
解析:根据直线斜率公式可得此步骤.
答案:k =y 2-y 1x 2-x 1
3.鸡兔同笼问题:鸡和兔各若干只,数腿共100条,数头共30只,试设计一个算法,求鸡和兔各有多少只.
解:第一步,设有x 只鸡,y 只兔,
列方程组⎩
⎪⎨⎪⎧x +y =30,①2x +4y =100.② 第二步,②÷2-①,得y =20.
第三步,把y =20代入①,得x =10.
第四步,得到方程组的解⎩
⎪⎨⎪⎧x =10,y =20. 第五步,输出结果,鸡10只,兔20只.。