高中数学 2.2.2对数函数及其性质 导学案新人教A版必修1
高中数学 2.2.2 对数函数及其性质导学案 新人教A版必修1
2.2.2对数函数及其性质班级:__________姓名:__________设计人__________日期__________课前预习· 预习案【学习目标】1.理解对数函数的定义和意义.2.了解反函数的概念.3.掌握对数函数的图象和性质.【学习重点】对数函数的图象与性质【学习难点】对数函数的图象与性质【自主学习】1.对数函数的定义(1)解析式为: .(2)自变量是: .2.对数函数的图象和性3.反函数指数函数,且)与对数函数互为反函数.【预习评价】1.若函数与互为反函数,则A. B. C. D.不确定2.函数的定义域为A.(1,+∞)B.C.(-∞,1)D.3.对数函数与的图象如图,则A. B.C. D.4.已知函数,则的值为 .5.若对数函数的图象经过点(8,3),则函数的解析式为 .6.对数函数在定义域内是减函数,则的取值范围是 .知识拓展· 探究案【合作探究】1.对数函数的图象与性质(1)在同一坐标系内画出函数和的图象.并说出函数图象从左到右的变化趋势.(2)在问题(1)所画图象的基础上,现画出函数和的图象,观察所画出的两个函数图象的变化趋势及这四个函数图象的特征,回答下列问题:①函数和的图象从左到右的变化趋势是怎样的?②函数和的图象间有什么关系?和呢?③观察所画出的四个函数的图象,请说出对数函数图象的大致走势有几种?主要取决于什么?2.对数函数的解析式请你根据所学过的知识,思考对数函数解析式中的底数能否等于0或小于0?3.对数函数的解析式根据对数函数的解析式,完成下列填空,并明确其具有的三个结构特征(1)特征1:底数曾大于0且不等于1的,不含有自变量.(2)特征2:自变量的位置在,且的系数是 .(3)特征3:的系数是 .【教师点拨】1.对数函数值的变化规律(1)(2)2.对对数函数图象与性质的三点说明(1)定点:所有对数函数的图象均过定点(1,0).(2)对称性:底数互为倒数的对数函数图象关于轴对称.。
高中数学2.2.2对数函数及其性质教案2新人教A版必修1
对数函数的复习课教学目标:(1)知识与技能:理解对数函数的概念,掌握对数函数的图像与性质,并能应用对数函数的图像与性质解决实际的问题;(2)过程与方法:通过对数函数概念及对数函数图像与性质的梳理,深化对对数函数的认识,感受数学结合,分类讨论的数学思想。
(3)情感态度与价值观:让学生在探索中体会数学的简洁美,对称美,激发学习的热情和学习的兴趣,培养探索精神。
教学重点:对数函数的概念,对数函数的图像与性质教学难点:对数函数的图像与性质的应用教学过程:(一)以案导学,先学检查预习是一种良好的学习习惯,能培养学生的自学习惯和自学能力,有效的提高学生课堂的独立思考问题能力。
1.函数2()log (2)f x x =-的定义域是_____________;2. 函数()log (2)1,0,1a f x x a a =-+>≠的图像恒过一定点是___________;3. 函数2()ln(43)f x x x =+-的单调减区间是_____________;4. 函数()l o g ,0,x a f x a x a a =+>≠在区间[1,2]上的最大值为l o g 26a +,则a =_____;(二)自主深化,问题探究以学生为主体,充分发挥学生的主观能动性,注重学生对基础知识的整合,使学生在自主探究中构建知识,发展自主学习的能力。
学生活动(1):自主梳理知识点,具体要求:(1)独立的在导学案上梳理出本节课的知识网络;(2)小组讨论:提出自己的疑惑,可以是具体的知识点,亦可是具体的例题、习题;(3)小组代表发言:讲解自己对知识点的梳理结果,在形成知识脉络的前提下,进一步的通过直观感知体验对数函数图像与性质的应用,同时从局部归纳①与③图像间的联系,以及①②③④图像反映出的底数变化规律。
学生活动(2)在同一个坐标系中画出下列函数的图像:①2log y x = ②3log y x = ③12log y x = ④15log y x =(三)交流展示,点拨精讲请学生独立完成以下问题,其目的是:让学生在展示中暴露出思维,规范性,在交流中发生思维的碰撞,在自主的讲解中深化认识,互学中共同提高;例1.比较下列各组数的大小(1)已知0.3log 2a =,0.3log 5b =,则,a b 的大小关系__________;(2)已知0.12a =,5ln2b =,39log 10c =,则,,a b c 的大小关系__________;例2.设函数()log ,0,1,0a x b f x a a b x b+=>≠>- (1)求函数()f x 的定义域;(2)讨论函数()f x 的奇偶性;例3.已知函数2()log (1),0,1a f x ax x a a =-+>≠(1)若12a =,求函数()f x 的值域; (2)当()f x 在区间13[,]42上为增函数时,求a 的取值范围;例题解决后的反思:_____________________________________________________________________________________________________________________________________________(四)即练即将,当堂检测为了及时了解学生在一节课中的收获及学习效率,查漏补缺,特设计当堂检测环节。
数学:2.2.2《对数函数及其性质》教案(新人教版A必修1)
2.2.2对数函数及其性质一、教学内容分析《普通高中课程标准数学教科书·必修(1)》(人民教育出版社)高中一年级第二单元2.2.2《对数函数的图象和性质》第一课时。
函数是高中数学的主体内容——变量数学的主要研究对象之一,是中学数学的重点知识,研究函数的一般理论和基本方法,用函数的思想方法解决实际问题,是函数教学的主要目标。
必修(Ⅰ)2.2.2对数函数及其性质,按课标要求教学时间为3个学时,本节课为第1课时,本节课教学是学生在学过正比例函数、一次函数、二次函数、反比例函数和指数函数的基础上进一步学习的一种新函数,对对数函数概念的理解,图象和性质的掌握和应用有利于学生对初等函数认识的系统性,有利于进一步加深对函数思想方法的理解。
为后面进一步探究对数函数的应用及指数函数、对数函数的综合应用起到承上启下的作用。
二、学情与教材分析对数函数是高中引进的第二个初等函数,是本章的重点内容。
学生在前面的函数性质、指数函数学习的基础上,用研究指数函数的方法,进一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进一步完善初等函数的认识的系统性,加深对函数的思想方法的理解,在教学过程中,虽然学生的认知水平有限,但只要让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受y=log a x(a>0且a≠1)中,a取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的规律,进而探究学习对数函数的性质。
最后将对数函数、指数函数的图象和性质进行比较,以便加深对对数函数的概念、图象和性质的理解,同时也为后面教学作准备。
三、设计思想在本节课的教学过程中,通过古遗址上死亡生物体内碳14含量与生物死亡年代关系的探索,引出对数函数的概念。
通过对底数a的分类讨论,探究总结出对数函数的图象与性质,使学生经历从特殊到一般的过程,体验知识的产生、形成过程,通过例题的分析与练习,进一步培养学生自主探索,合作交流的学习方式,通过学生经历直观感知,观察、发现、归纳类比,抽象概括等思维过程,落实培养学生积极探索学习习惯,提高学生的数学思维能力的新课程理念。
高中数学2.2.2对数函数及其性质(3)学案新人教A版必修1
2. 2. 2 (3)对数函数及其性质(学生学案)(内容:指数函数与对数函数的关系)表例1 :在同一坐标系中,作出函数 y 2与y log 2 x 的图象,并观察两图象之间有何关系。
例2 :求下列函数的反函数:(1)y=3X ; ( 2)y=lnx ; ( 3)y= - ; ( 4) y xx小结:求函数的反函数的步骤:(1)求定义;(2)反解;(3)互换 性质:反函数的定义域就是原函数的值域。
变式训练1 :在同一坐标系中,作出函数y G )x 与 y2log 2 X 的图象,并观察两图象之间有何关系。
变式训练2 :求下列函数的反函数:(1) y=x+1; (2) y= e x ; (3)y= log 2(x 1) 例3 :作出下列函数的图象: (1) y=|lgx| ; (2) y=lg|x| 变式训练3 :作出下列函数的图象: (1)y =| log 1 x | ; (2) y=ln|x| ; (3)y= 2M 2例4 :解下列不等式: 2(1)log 1(2x 1)0; (2) log,2x 1) 0 ; (3)log 1(2x 1) 0 ; (4)log 2(x x) 12 2 2 2(5) log 2(x x) 1 变式训练:解下列不等式: 2 2 2(1) log 2(x 2x)3 ; (2) log 2(x 4x) 5 ; (3) log 1 (x 2x) 13布置作业: A 组: 1、在同一坐标系中,作出函数 y=lgx 与y 10x 的图象,并分别写出它们的定义域,值域,单调递增区间。
2、求下列函数的反函数 V1 (1) y=2x+3 ; (2) y=ln(x+1) ; (3) y=10 - 3、解下列不等式: (1) lg(x2 3x) 1 ; (2) log 1 (x 28x) 3 2; (3) logN 1)1;2x4、判断下列函数的奇偶性 1 x (1) y log 3 ; (2) y=log a |x| ; (3) y=2|x| 1 x B 组: 3 1、(tb0218719)若a>0且a 1,且log a <1,则实数 a 的取值范围是( 43 (A ) 0<a<1 (B)0<a< (C) a> 4 2、函数 y l°g 2(x x 1)(x 3 3 或 0<a< (D)0<a< 4 4 R)的奇偶性为[ ] 3 或 a>14 A.奇函数而非偶函数 B •偶函数而非奇函数 C •非奇非偶函数 D •既奇且偶函数。
高中数学人教版必修一新导学案:2.2.2《对数函数及其性质(一)》
《对数函数及其性质〔一〕》导学案[学习目标]:通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型.能够用描点法画出对数函数的图象.能根据对数函数的图象和性质进行值的大小比较.[重点难点]重点:对数函数的图象和性质难点:对数函数的图象和性质及应用[知识]画出2x y =、1 2x y ⎛⎫= ⎪⎝⎭的图像,并以这两个函数为例,说说指数函数的性质.[学习过程]1.对数函数的图象和性质:① 定义:一般地,当a >0且a ≠1时,函数log (01)a y x a a 且叫做对数函数. ② 辨析: 对数函数定义与指数函数类似,都是形式定义,注意辨别,如:22log y x =,5log (5)y x = 都不是对数函数,而只能称其为对数型函数;对数函数对底数的限制 0(>a ,且)1≠a .③ 探究:类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法: 研究方法:画出函数的图象,结合图象研究函数的性质.研究内容:定义域、值域、特殊点、单调性、最大〔小〕值、奇偶性.④ 练习:同一坐标系中画出下列对数函数的图象 x y 2log =;0.5log y x =⑤ 讨论:根据图象,你能归纳出对数函数的哪些性质?列表归纳:分类 → 图象 → 由图象观察〔定义域、值域、单调性、定点〕引申:图象的分布规律?2、总结出的表格〔略〕[例题分析]例1:〔P71例7〕求下列函数的定义域〔1〕2log a y x ;〔2〕log (4)a y x =-〔a >0且a ≠1〕 〔3〕23log (34)yx x例2.〔P72例8〕比较下列各组数中的两个值大小〔1〕22log 3.4,log 8.5 〔2〕0.30.3log 1.8,log 2.7 〔3〕log 5.1,log 5.9a a 〔a >0,且a ≠1〕[基础达标]1.下列不等式中,不能成立的是〔 〕A .log0.2<1; B .log 312>log3;C .log 527<log 71; D log 234>log 243. 2.与函数y x 有相同图象的一个函数是〔〕 A .y =2x ;B .y =)1,0(log ≠>a a ax a ; C .y =x x 2; D y =)1,0(log ≠>a a a x a . 3.函数lg 1y x 的反函数__________; 4.函数23log 34y x x 的定义域为___________;5 已知函数22log 32f x x x 的定义域为P,133log 42g x x x的定义域为Q,求P ⋂Q .6 求下列函数的定义域:〔1〕0.2log6y x ;〔2〕y =.7.比较下列各题中两个数值的大小:〔1〕22log 3log 3.5和; 〔2〕0.30.2log 4log 0.7和;〔3〕0.70.7log 1.6log 1.8和; 〔4〕23log 3log 2和.8.已知下列不等式,比较正数m 、n 的大小:3log m <3log n ; 3.0log m >3.0log n ; a log m >a log n <a >1[学习反思] 对数函数的概念、图象和性质; 求定义域;利用单调性比大小。
人教a版必修1学案:2.2.2对数函数及其性质(1)(含答案)
2.2.2 对数函数及其性质(一)自主学习1.掌握对数函数的概念、图象和性质.2.能够根据指数函数的图象和性质得出对数函数的图象和性质,把握指数函数与对数函数关系的实质.1.对数函数的定义:一般地,我们把函数y =log a x (a >0,且a ≠1)叫做________________,其中x 是自变量,函数的定义域是(0,+∞).a >10<a <1(0,+∞)对数函数y =log a x (a >0且a ≠1)和指数函数________________________互为反函数.对点讲练对数函数的图象【例1】 下图是对数函数y =log a x 的图象,已知a 值取3,43,35,110,则图象C 1,C 2,C 3,C 4相应的a 值依次是( )A. 3、43、35、110B.3、43、110、35C.43、3、35、110D.43、3、110、35规律方法 (1)y =log a x (a >0,且a ≠1)图象无限地靠近于y 轴,但永远不会与y 轴相交. (2)设y 1=log a x ,y 2=log b x ,其中a >1,b >1(或0<a <1,0<b <1),则当x >1时,“底大图低”,即若a >b ,则y 1<y 2.当0<x <1时,“底大图高”,即若a >b ,则y 1>y 2.(3)在同一坐标系内,y =log a x (a >0,且a ≠1)的图象与y =log 1ax (a >0,且a ≠1)的图象关于x 轴(即y =0)对称.变式迁移1 借助图象求使函数y =log a (3x +4)的函数值恒为负值的x 的取值范围.对数函数的单调性的应用【例2】 比较下列各组中两个值的大小:(1)log 0.52.7,log 0.52.8; (2)log 34,log 65; (3)log a π,log a e (a >0且a ≠1).变式迁移2 若a =log 3π,b =log 76,c =log 20.8,则( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a求函数的定义域【例3】 求下列函数的定义域:(1)y =3log 2x ; (2)y =log 0.5(4x -3); (3)y =log (x +1)(2-x ).规律方法 求与对数函数有关的函数定义域时,除遵循前面已学习过的求函数定义域的方法外,还要对这种函数自身有如下要求:一是要特别注意真数大于零;二是要注意对数的底数;三是按底数的取值应用单调性,有针对性的解不等式.变式迁移3 求下列函数的定义域.(1)y =1lg (x +1)-3; (2)y =log a (4x -3)(a >0,且a ≠1).1.对数函数单调性等重要性质要借助图象来理解与掌握.2.比较对数值的大小要用函数单调性及中间“桥梁”过渡.另外还要注意底数是否相同.3.掌握对数函数不但要清楚对数函数自身的图象和性质,还要结合指数函数的图象和性质来对比掌握.4.对数函数的单调性与指数函数的单调性大同小异.课时作业一、选择题1.已知函数f (x )=11-x的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N 等于( )A .{x |x >-1}B .{x |x <1}C .{x |-1<x <1}D .∅ 2.若log a 2<log b 2<0,则( )A .0<a <b <1B .0<b <a <1C .a >b >1D .b >a >1 3.以下四个数中的最大者是( )A .(ln 2)2B .ln(ln 2)C .ln 2D .ln 24.函数y =a x 与y =-log a x (a >0且a ≠1)在同一坐标系中的图象形状只能是( )二、填空题5.函数f (x )=lg (4-x )x -3的定义域为______________.6.若指数函数f (x )=a x则不等式log a (x -1)<07.函数y =log a (x +2)+3的图象过定点__________. 三、解答题8.求下列函数的定义域:(1)y = 32x -1-127;(2)y =-lg (1-x );(3)y =11-log a (x +a )(a >0,a ≠1).9.已知f (x )=log a 1+x1-x(a >0,a ≠1),(1)求f (x )的定义域; (2)求使f (x )>0的x 的取值范围; (3)判断f (x )的奇偶性.2.2.2 对数函数及其性质(一) 答案自学导引 1.对数函数2.(1,0) (-∞,0) [0,+∞) (0,+∞) (-∞,0] x 轴3.y =a x (a >0且a ≠1) 对点讲练【例1】 A [过(0,1)作平行于x 轴的直线,与C 1,C 2,C 3,C 4的交点的坐标为(a 1,1),(a 2,1),(a 3,1),(a 4,1),其中a 1,a 2,a 3,a 4分别为各对数的底,显然a 1>a 2>a 3>a 4,所以C 1,C 2,C 3,C 4的底值依次由大到小.]变式迁移1 解 当a >1时,由题意有 0<3x +4<1,即-43<x <-1.当0<a <1时,由题意有3x +4>1,即x >-1.综上,当a >1时,-43<x <-1;当0<a <1时,x >-1.【例2】 解 (1)∵0<0.5<1,∴对数函数y =log 0.5x 在(0,+∞)上是减函数. 又∵2.7<2.8,∴log 0.52.7>log 0.52.8.(2)∵y =log 3x 在(0,+∞)上是增函数, ∴log 34>log 33=1.∵y =log 6x 在(0,+∞)上是增函数, ∴log 65<log 66=1. ∴log 34>log 65.(3)当a >1时,y =log a x 在(0,+∞)上是增函数. ∵π>e ,∴log a π>log a e.当0<a <1时,y =log a x 在(0,+∞)上是减函数. ∵π>e ,∴log a π<log a e.综上可知,当a >1时,log a π>log a e ; 当0<a <1时,log a π<log a e.变式迁移2 A [利用界值法可得a =log 3π>log 33=1,0<b =log 76<log 77=1,c =log 20.8<log 21=0,故a >b >c .]【例3】 解 (1)∵该函数是奇次根式,要使函数有意义,只要对数的真数是正数即可, ∴定义域是{x |x >0}.(2)要使函数y =log 0.5(4x -3)有意义, 必须log 0.5(4x -3)≥0=log 0.51,∴0<4x -3≤1.解得34<x ≤1.∴定义域是⎩⎨⎧⎭⎬⎫x |34<x ≤1.(3)由⎩⎪⎨⎪⎧x +1>0x +1≠12-x >0,得⎩⎪⎨⎪⎧x >-1x ≠0,x <2即0<x <2或-1<x <0,所求定义域为(-1,0)∪(0,2).变式迁移3 解 (1)由⎩⎪⎨⎪⎧lg (x +1)-3≠0x +1>0,得⎩⎪⎨⎪⎧x +1≠103x >-1, ∴x >-1且x ≠999,∴函数的定义域为{x |x >-1且x ≠999}. (2)log a (4x -3)≥0.(*)当a >1时,(*)可化为log a (4x -3)≥log a 1, ∴4x -3≥1,x ≥1.当0<a <1时,(*)可化为 log a (4x -3)≥log a 1,∴0<4x -3≤1,34<x ≤1.综上所述,当a >1时,函数定义域为[1,+∞),当0<a <1时,函数定义域为⎝⎛⎦⎤34,1. 课时作业1.C [由题意知M ={x |x <1}, N ={x |x >-1}.故M ∩N ={x |-1<x <1}.]2.B [由底数与对数函数的图象关系(如图)可知y =log a x ,y =log b x 图象的大致走向.再由对数函数的图象规律:从第一象限看,自左向右底数依次增大.∴选B.] 3.D [∵0<ln 2<1,∴ln(ln 2)<0,(ln 2)2<ln 2,而ln 2=12ln 2<ln 2.∴最大的数是ln 2.] 4.A5.{x |x <4,且x ≠3}解析 ⎩⎪⎨⎪⎧4-x >0x -3≠0解得x <4,且x ≠3,所以定义域为{x |x <4,且x ≠3}. 6.{x |1<x <2}解析 由题可知a =1.2,∴log 1.2(x -1)<0, ∴log 1.2(x -1)<log 1.21,解得x <2, 又∵x -1>0,即x >1,∴1<x <2. 故原不等式的解集为{x |1<x <2}. 7.(-1,3)8.解 (1)由32x -1-127≥0得,x ≥-1.∴所求定义域为[-1,+∞).(2)由-lg(1-x )≥0得,⎩⎪⎨⎪⎧1-x ≤11-x >0,即x ∈[0,1)∴所求定义域为[0,1).(3)1-log a (x +a )>0时,函数有意义, 即log a (x +a )<1① 当a >1时,-a <-1由①得,⎩⎪⎨⎪⎧x +a <ax +a >0解得-a <x <0.∴定义域为(-a,0). 当0<a <1时,-1<-a <0. 由①得,x +a >a .∴x >0. ∴定义域为(0,+∞).故所求定义域是:当0<a <1时,x ∈(0,+∞); 当a >1时,x ∈(-a,0).9.解 (1)由1+x1-x>0,得-1<x <1.故所求的定义域为(-1,1).(2)①当a >1时,由log a 1+x1-x>0=log a 1得1+x 1-x>1,∴0<x <1. ②当0<a <1时,由log a 1+x1-x>0=log a 1得0<1+x 1-x<1,∴-1<x <0.故当a >1时,所求范围为0<x <1; 当0<a <1时,所求范围为-1<x <0.(3)f (-x )=log a 1-x1+x=log a (1+x 1-x)-1=-f (x )∴f (x )为奇函数.。
2.2.2对数函数及其性质(一) 新课标高中数学人教A版 必修一 教案
2.2.2 对数函数及其性质(一)(一)教学目标1.知识技能(1)理解对数函数的概念.(2)掌握对数函数的性质.了解对数函数在生产实际中的简单应用.2.过程与方法(1)培养学生数学交流能力和与人合作精神.(2)用联系的观点分析问题.通过对对数函数的学习,渗透数形结合的数学思想.3.情感、态度与价值观(1)通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的学习兴趣.(2)在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质.(二)教学重点、难点1、重点:(1)对数函数的定义、图象和性质;(2)对数函数性质的初步应用.2、难点:底数a对图象的影响.(三)教学方法通过让学生观察、思考、交流、讨论、发现对数函数的图象的特点.(四)教学过程一般式吗?.概念.质,.的图象之间有什么关系?对数函数图象有以下特征对数函数有以下性质相同点:图象都在y轴的右侧,都过点(1,0).不同点:y=log3x的图象是上升=log x的图象是下降的.备选例题例1 求函数)416(log )1(x x y -=+的定义域. 【解析】由⎪⎩⎪⎨⎧≠+>+>-11010416x x x ,得⎪⎩⎪⎨⎧≠-><012x x x . ∴所求函数定义域为{x | –1<x <0或0<x <2}.【小结】求与对数函数有关的定义域问题,首先要考虑真数大于零,底数大于零且不等于1.例2 求函数y = log 2|x |的定义域,并画出它的图象. 【解析】函数的定义域为{x |x ≠0,x ∈R }. 函数解析式可化为y =⎪⎩⎪⎨⎧<->)0()(log )0(log 22x x xx ,其图象如图所示(其特征是关于y 轴对称).x。
高中数学 2.2.2 对数函数及其性质导学案(1) 新人教A版必修1
高中数学 2.2.2 对数函数及其性质导学案(1)新人教A版必修1§2.2.2 对数函数及其性质(1)学习目标1. 通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;2. 能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;3. 通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养数形结合的思想方法,学会研究函数性质的方法.学习过程一、课前准备(预习教材P70~ P72,找出疑惑之处)复习1:画出2xy=、1 ()2xy=的图象,并以这两个函数为例,说说指数函数的性质.复习2:生物机体内碳14的“半衰期”为5730年,湖南长沙马王堆汉墓女尸出土时,碳14的残余量约占原始含量的76.7%,试推算马王堆古墓的年代.(列式)二、新课导学※学习探究探究任务一:对数函数的概念问题:根据上题,用计算器可以完成下表:碳14的0.5 0.3 0.1 0.01 0.001含量Pa >1 0<a <1 图 象性 质 (1)定义域:(2)值域:(3)过定点:(4)单调性:(2)图象具有怎样的分布规律?※ 典型例题例1求下列函数的定义域:(1)2log a y x =;(2)log (3)a y x =-;变式:求函数2log (3)y x -的定义域.例2比较大小:(1)ln3.4,ln8.5; (2)0.30.3log 2.8,log 2.7;(3)log 5.1,log 5.9a a.小结:利用单调性比大小;注意格式规范. ※ 动手试试练1. 求下列函数的定义域.(1)0.2log (6)y x =--; (2)32log 1y x -练2. 比较下列各题中两个数值的大小.(1)22log 3log 3.5和; (2)0.30.2log 4log 0.7和;(3)0.70.7log 1.6log 1.8和; (4)23log 3log 2和.三、总结提升 ※ 学习小结 1. 对数函数的概念、图象和性质; 2. 求定义域;3. 利用单调性比大小.※ 知识拓展对数函数凹凸性:函数()log ,(0,1)a f x x a a =>≠,12,x x 是任意两个正实数.当1a >时,1212()()()22f x f x x x f ++≤; 当01a <<时,1212()()()22f x f x x x f ++≥. 学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 当a >1时,在同一坐标系中,函数x y a -=与log a y x =的图象是( ).2. 函数22log (1)y x x =+≥的值域为( ).A. (2,)+∞B. (,2)-∞C. [)2,+∞D. [)3,+∞3. 不等式的41log 2x >解集是( ). A. (2,)+∞ B. (0,2)B. 1(,)2+∞ D. 1(0,)24. 比大小:(1)log 67 log 76 ; (2)log 31.5 log2 0.8. 5. 函数(-1)log (3-)x y x =的定义域是 . 课后作业1. 已知下列不等式,比较正数m 、n 的大小: (1)3log m <3log n ; (2)0.3log m >0.3log n ; (3)log a m >log an (a >1) 2. 求下列函数的定义域:(1)2log (35)y x =-(2)0.5log 43y x -。
人教A版数学必修一2.2.2《对数函数及其性质》导学案
高中数学人教版必修1:2.2.2《对数函数及其性质》导学案姓名: 班级: 组别: 组名: 【学习目标】1﹑知道对数函数的概念.2﹑通过比较、对照的方法,结合图象类比指数函数,探索研究对数函数的性质. 3﹑知道指数函数与对数函数互为反函数 【重点难点】▲重点:对数函数的图象和性质.▲难点:借助对数函数的图象探索并归纳对数函数的性质. 【知识链接】1﹑研究指数函数图像和性质的方法. 2﹑对数的运算. 【学习过程】阅读课本70页到71页的内容,尝试回答以下问题: 知识点1:对数函数的定义问题1﹑请回答对数函数的定义,并注明定义域.问题2﹑根据对数函数的定义,尝试判断下列哪些是对数函数? ①)1(log 2+=x y ②x y 4log 2= ③3log 31+=x y④x y 3log = ⑤x y 21log = ⑥xy 21log 1=知识点2:对数函数的图像与性质问题1﹑你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗?问题2﹑在同一坐标系中画出函数x y 2log =和x y 21log =的图象.问题3﹑观察上述两个函数图像,它们的定义域、值域、单调性分别有何特征?问题4﹑根据问题3,由特殊到一般,你能归纳出对数函数)0,0(log ≠>=a a x y a 且的哪些性质?阅读课本73页的内容,尝试回答以下问题: 知识点3:对数比较大小问题1﹑试比较下列各组数中两个值的大小.(1)5.3log 2,8log 2 (2)5.4log ,4log 2121(3)1.5log a ,7.5log a (4)8log 7与7log 8问题2﹑函数x y 2=与函数x y 2log =是否互为反函数?为什么?【基础达标】A1﹑已知函数x a y a log )1(2-=是对数函数,求a 的值.B2、求下列函数的定义域①)54(log 22--=x x y ②)34(log 5.0-x ③)32lg(422-+-x x xC3﹑①函数x y a log =恒过一定点,这个点的坐标是 .②函数)2(log -=x y a 恒过一定点,这个点的坐标是 . ③函数3)2(log +-=x y a 恒过一定点,这个点的坐标是 .D4﹑已知下列不等式,比较正数m 、n 的大小.(1)n m 33log log < (2)n m 3.03.0log log > (3)n m a a log log >【小结】1﹑对数函数的概念:2﹑对数函数的图象与性质: 3﹑对数比较大小的方法:【当堂检测】A1﹑已知对数函数)(x f y =的图像经过点(9,2),试求)(x f 的解析式.【课后反思】。
高中数学2.2.2对数函数及其性质导学案新人教A版必修1
课题:对数函数及其性质(2)一、三维目标:知识与技术 :1.能够正确描述出对数函数的图像,并能够利用图像来解决有关问题;2.能够利用对数函数的相性质解决有关问题。
过程与方法 :1.经过师生之间,学生与学生之间的合作沟通,使学生学会与他人共同学习;2.经过研究对数函数的图像,感觉数形联合思想,培育学生数学的剖析问题的意识。
感情态度与价值观 :1.经过对对数函数图像的学习,加深对人类认识事物的一般规律的理解和认识,使学生领会知识之间的有机联系,感觉数学的整体性,激发学生的学习兴趣;2.经过学生的互相沟通来加深理解对数函数图像的理解,加强学生数学沟通能力,培育学生聆听,接受他人建议的优秀质量。
二、学习重、难点:要点:正确描述出对数函数的图像。
难点:依照对数的函数性质进行对有关问题的办理。
三、学法指导:对照指数函数有关性质。
四、知识链接:B1、求以下函数的定义域:(1)y log 3 x ;(2)y 3 log2x;(3)y log (4 x 3) .五、学习过程:B 例 1、如下图曲线是对数函数y log a x 的图像,已y431C 1知 a 值取,则相应于C,C,C,C的 a3,,,12343510C2值挨次为0x1B 变式训练 1:已知3,b 3,c log30.3,d log3C3将 a, b, c, d 四数从小到大摆列C4B 问题 1、说明函数y log 3 ( x 2) 与函数 y log 3 x 的图像关系。
C 问题 2、将函数 y log a x 的图像沿 x 轴向右平移 2 个单位,再向下平移 1 个单位,所获得函数图像的分析式:C 例 2、(1) 若 (log a 2)21 , 求 a 的取值范围 ;3(2)解不等式 : 2log a (x 4) log a (x 2) .D 例 3、已知函数 f ( x ) = lg[ ( a 2- 1) x 2+( a + 1) x +1] ,若 f ( x ) 的定义域为 R ,务实数 a 的取值范围。
高中数学第二章2.2对数函数2.2.2对数函数及其性质(一)学案(含解析)新人教A版必修1
2.2.2 对数函数及其性质(一)学习目标 1.理解对数函数的概念.2.掌握对数函数的性质.3.了解对数函数在生产实际中的简单应用.知识点一对数函数的概念思考已知函数y=2x,那么反过来,x是否为关于y的函数?答案由于y=2x是单调函数,所以对于任意y∈(0,+∞)都有唯一确定的x与之对应,故x也是关于y的函数,其函数关系式是x=log2y,此处y∈(0,+∞).习惯上用x,y分别表示自变量、因变量.上式可改为y=log2x,x∈(0,+∞).梳理一般地,把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).知识点二对数函数的图象与性质对数函数y=log a x(a>0,且a≠1)的图象和性质如下表:定义y=log a x (a>0,且a≠1)底数a>10<a<1图象定义域(0,+∞)值域R单调性在(0,+∞)上是增函数在(0,+∞)上是减函数共点性图象过定点(1,0),即x=1时,y=0函数值特点x∈(0,1)时,y∈(-∞,0);x∈[1,+∞)时,y∈[0,+∞)x∈(0,1)时,y∈(0,+∞);x∈[1,+∞)时,y∈(-∞,0] 对称性函数y=log a x与y=1logax的图象关于x轴对称1.由y =log a x ,得x =a y,所以x >0.( √ ) 2.y =2log 2x 是对数函数.( × )3.y =a x与y =log a x 的单调区间相同.( × )4.由log a 1=0,可得y =log a x 恒过定点(1,0).( √ )类型一 对数函数的定义域的应用 例1 求下列函数的定义域. (1)y =log a (3-x )+log a (3+x ); (2)y =log 2(16-4x). 考点 对数函数的定义域 题点 对数函数的定义域解 (1)由⎩⎪⎨⎪⎧3-x >0,3+x >0,得-3<x <3,∴函数的定义域是{x |-3<x <3}. (2)由16-4x>0,得4x <16=42, 由指数函数的单调性得x <2,∴函数y =log 2(16-4x)的定义域为{x |x <2}. 引申探究1.把本例(1)中的函数改为y =log a (x -3)+log a (x +3),求定义域.解 由⎩⎪⎨⎪⎧x -3>0,x +3>0,得x >3.∴函数y =log a (x -3)+log a (x +3)的定义域为{x |x >3}.2.求函数y =log a [(x +3)(x -3)]的定义域,相比引申探究1,定义域有何变化?解 (x +3)(x -3)>0,即⎩⎪⎨⎪⎧x +3>0,x -3>0或⎩⎪⎨⎪⎧x +3<0,x -3<0,解得x <-3或x >3.∴函数y =log a [(x +3)(x -3)]的定义域为{x |x <-3或x >3}.相比引申探究1,函数y =log a [(x +3)(x -3)]的定义域多了(-∞,-3)这个区间,原因是对于y =log a [(x +3)·(x -3)],要使对数有意义,只需(x +3)与(x -3)同号,而对于y =log a (x -3)+log a (x +3),要使对数有意义,必须(x -3)与(x +3)同时大于0.反思与感悟 求含对数式的函数定义域关键是真数大于0,底数大于0且不为1.如需对函数式变形,需注意真数底数的取值范围是否改变. 跟踪训练1 求下列函数的定义域.(1)y =x 2-4lg x +3;(2)y =log (x +1)(16-4x); 考点 对数函数的定义域 题点 对数函数的定义域解 (1)要使函数有意义,需⎩⎪⎨⎪⎧x 2-4≥0,x +3>0,x +3≠1,即⎩⎪⎨⎪⎧x ≤-2或x ≥2,x >-3,x ≠-2,即-3<x <-2或x ≥2,故所求函数的定义域为(-3,-2)∪[2,+∞). (2)要使函数有意义,需⎩⎪⎨⎪⎧16-4x>0,x +1>0,x +1≠1,即⎩⎪⎨⎪⎧x <2,x >-1,x ≠0,所以-1<x <2,且x ≠0,故所求函数的定义域为{x |-1<x <2,且x ≠0}. 类型二 对数函数单调性的应用 命题角度1 比较同底对数值的大小 例2 比较下列各组数中两个值的大小. (1)log 23.4,log 28.5; (2)log 0.31.8,log 0.32.7;(3)log a 5.1,log a 5.9(a >0,且a ≠1). 考点 对数值大小比较 题点 对数值大小比较解 (1)考察对数函数y =log 2x , 因为它的底数2>1,所以它在(0,+∞)上是增函数, 又3.4<8.5, 于是log 23.4<log 28.5.(2)考察对数函数y =log 0.3x ,因为它的底数0<0.3<1,所以它在(0,+∞)上是减函数,又1.8<2.7,于是log0.31.8>log0.32.7.(3)当a>1时,y=log a x在(0,+∞)上是增函数,又5.1<5.9,于是log a5.1<log a5.9;当0<a<1时,y=log a x在(0,+∞)上是减函数,又5.1<5.9,于是log a5.1>log a5.9.综上,当a>1时,log a5.1<log a5.9,当0<a<1时,log a5.1>log a5.9.反思与感悟比较两个同底数的对数大小,首先要根据对数底数来判断对数函数的增减性;然后比较真数大小,再利用对数函数的增减性判断两对数值的大小.对于底数以字母形式出现的,需要对底数a进行讨论.对于不同底的对数,可以估算范围,如log22<log23<log24,即1<log23<2,从而借助中间值比较大小.跟踪训练2 设a=log3π,b=log23,c=log32,则( )A.a>b>c B.a>c>bC.b>a>c D.b>c>a考点对数值大小比较题点对数值大小比较答案 A解析∵a=log3π>1,b=12log23,其中log22<log23<log24,则12<b<1,c=12log32<12,∴a>b>c.命题角度2 求y=log a f x型的函数值域例3 函数f(x)=log2(3x+1)的值域为________.考点对数函数的值域题点对数函数的值域答案(0,+∞)解析f(x)的定义域为R.∵3x>0,∴3x+1>1.∵y=log2x在(0,+∞)上单调递增,∴log 2(3x+1)>log 21=0. 即f (x )的值域为(0,+∞).反思与感悟 在函数三要素中,值域从属于定义域和对应关系.故求y =log a f (x )型函数的值域必先求定义域,进而确定f (x )的范围,再利用对数函数y =log a x 的单调性求出log a f (x )的取值范围.跟踪训练3 已知f (x )=log 2(1-x )+log 2(x +3),求f (x )的定义域、值城. 考点 对数函数的值域题点 真数为二次函数的对数型函数的值域解 要使函数式有意义,需⎩⎪⎨⎪⎧1-x >0,x +3>0,解得定义域为(-3,1).f (x )=log 2[(1-x )(x +3)]=log 2[-(x +1)2+4].∵x ∈(-3,1),∴-(x +1)2+4∈(0,4].∴log 2[-(x +1)2+4]∈(-∞,2]. 即f (x )的值域为(-∞,2]. 类型三 对数函数的图象例4 画出函数y =lg|x -1|的图象. 考点 对数函数的图象题点 含绝对值的对数函数的图象 解 (1)先画出函数y =lg x 的图象(如图).(2)再画出函数y =lg|x |的图象(如图).(3)最后画出函数y =lg|x -1|的图象(如图).反思与感悟现在画图象很少单纯依靠描点,大多是以基本初等函数为原料加工,所以一方面要掌握一些常见的平移、对称变换的结论,另一方面要关注定义域、值域、单调性、关键点.跟踪训练4 画出函数y=|lg(x-1)|的图象.考点对数函数的图象题点含绝对值的对数函数的图象解(1)先画出函数y=lg x的图象(如图).(2)再画出函数y=lg(x-1)的图象(如图).(3)再画出函数y=|lg(x-1)|的图象(如图).1.下列函数为对数函数的是( )A.y=log a x+1(a>0且a≠1)B.y=log a(2x)(a>0且a≠1)C.y=log(a-1)x(a>1且a≠2)D.y=2log a x(a>0且a≠1)考点对数函数的概念题点对数函数的概念答案 C2.函数y=log2(x-2)的定义域是( )A.(0,+∞) B.(1,+∞)C.(2,+∞) D.[4,+∞)考点对数函数的定义域题点 对数函数的定义域 答案 C3.函数y =2log 4(1-x )的图象大致是( )考点 对数函数的图象 题点 对数函数的图象 答案 C解析 函数y =2log 4(1-x )的定义域为(-∞,1),排除A ,B ;又函数y =2log 4(1-x )在定义域内单调递减,排除D.故选C.4.函数f (x )=log 0.2(2x+1)的值域为________. 考点 对数函数的值域 题点 对数函数的值域 答案 (-∞,0)5.若函数f (x )=2log a (2-x )+3(a >0,且a ≠1)过定点P ,则点P 的坐标是__________. 考点 对数函数的性质 题点 对数函数图象过定点问题 答案 (1,3)1.含有对数符号“log”的函数不一定是对数函数.判断一个函数是否为对数函数,不仅要含有对数符号“log”,还要符合对数函数的概念,即形如y =log a x (a >0,且a ≠1)的形式.如:y =2log 2x ,y =log 5x5都不是对数函数,可称其为对数型函数.2.研究y =log a f (x )的性质如定义域、值域、比较大小,均需依托对数函数的相应性质.一、选择题1.给出下列函数:①y=log 23x2;②y=log3(x-1);③y=log(x+1)x;④y=logπx.其中是对数函数的有( )A.1个B.2个C.3个D.4个考点对数函数的概念题点对数函数的概念答案 A解析①②不是对数函数,因为对数的真数不是只含有自变量x;③不是对数函数,因为对数的底数不是常数;④是对数函数.2.已知函数f(x)=11-x的定义域为M,g(x)=ln(1+x)的定义域为N,则M∩N等于( )A.{x|x>-1} B.{x|x<1}C.{x|-1<x<1} D.∅考点对数函数的定义域题点对数函数的定义域答案 C解析∵M={x|1-x>0}={x|x<1},N={x|1+x>0}={x|x>-1},∴M∩N={x|-1<x<1}.3.已知a>0,且a≠1,函数y=a x与y=log a(-x)的图象只能是下图中的( )考点对数函数的图象题点同一坐标系下的指数函数与对数函数的图象答案 B解析y=a x与y=log a(-x)的单调性相反,排除A,D.y=log a(-x)的定义域为(-∞,0),排除C,故选B.4.已知函数f(x)=log a(x+2),若图象过点(6,3),则f(2)的值为( )A .-2B .2C.12D .-12考点 对数函数的性质 题点 对数函数图象过定点问题 答案 B解析 代入(6,3),3=log a (6+2)=log a 8, 即a 3=8,∴a =2.∴f (x )=log 2(x +2),∴f (2)=log 2(2+2)=2.5.若函数f (x )=log a (x +b )的图象如图所示:其中a ,b 为常数,则函数g (x )=a x+b 的图象大致是( )考点 对数函数的图象题点 同一坐标系下的指数函数与对数函数的图象 答案 D解析 由f (x )的图象可知0<a <1,0<b <1, ∴g (x )的图象应为D.6.下列不等号连接错误的一组是( ) A .log 0.52.2>log 0.52.3 B .log 34>log 65 C .log 34>log 56 D .log πe>lnπ 考点 对数值大小比较 题点 对数值大小比较 答案 D解析 对A ,根据y =log 0.5x 为单调减函数易知正确. 对B ,由log 34>log 33=1=log 55>log 65可知正确.对C ,由log 34=1+log 343>1+log 365>1+log 565=log 56可知正确.对D ,由π>e>1,得lnπ>1>log πe 可知错误. 7.已知f (x )=2+log 3x ,x ∈⎣⎢⎡⎦⎥⎤181,9,则f (x )的最小值为( )A .-2B .-3C .-4D .0 考点 对数函数的值域 题点 对数函数的值域 答案 A解析 ∵181≤x ≤9,∴log 3181≤log 3x ≤log 39,即-4≤log 3x ≤2,∴-2≤2+log 3x ≤4. ∴当x =181时,f (x )min =-2.8.已知函数f (x )=log a |x +1|在(-1,0)上有f (x )>0,那么( ) A .f (x )在(-∞,0)上是增函数 B .f (x )在(-∞,0)上是减函数 C .f (x )在(-∞,-1)上是增函数 D .f (x )在(-∞,-1)上是减函数 考点 对数函数的图象题点 含绝对值的对数函数的图象 答案 C解析 当x ∈(-1,0)时,|x +1|∈(0,1), ∵log a |x +1|>0,∴0<a <1, 画出f (x )的图象如图:由图可知选C. 二、填空题9.已知函数f (x )的图象如图所示,则函数g (x )=log 2f (x )的定义域是____________.考点 对数函数的定义域题点 对数函数的定义域答案 {x |2<x ≤8}解析 由题意知,f (x )>0,由所给图象可知f (x )>0的解集为{x |2<x ≤8}.10.设a =log 2π,b =log 12π,c =π-2,则a ,b ,c 的大小关系是______________.考点 对数值大小比较题点 指数、对数值大小比较答案 a >c >b解析 因为π>2,所以a =log 2π>1,所以b =log 12π<0.因为π>1,所以0<π-2<1,即0<c <1.所以a >c >b .11.已知函数f (x )=|lg x |,若0<a <b ,且f (a )=f (b ),则a +4b 的取值范围是____________. 考点 对数函数的图象题点 含绝对值的对数函数的图象答案 (5,+∞)解析 因为f (a )=f (b ),且0<a <b ,所以0<a <1<b ,且-lg a =lg b ,即b =1a,所以a +4b =a +4a .令g (a )=a +4a ,易知g (a )在(0,1)上为减函数,所以g (a )>g (1)=1+41=5,即a +4b 的取值范围是(5,+∞).三、解答题12.已知f (x )=log 2(x +1),当点(x ,y )在函数y =f (x )的图象上时,点⎝ ⎛⎭⎪⎫x 3,y 2在函数y =g (x )的图象上.(1)写出y =g (x )的解析式;(2)求方程f (x )-g (x )=0的根.考点 对数函数的解析式题点 对数函数的解析式解 (1)设x 3=x ′,y 2=y ′, 则x =3x ′,y =2y ′.∵(x ,y )在y =f (x )的图象上,∴y =log 2(x +1),∴2y ′=log 2(3x ′+1),y ′=12log 2(3x ′+1), 即点(x ′,y ′)在y =12log 2(3x +1)的图象上. ∴g (x )=12log 2(3x +1). (2)f (x )-g (x )=0,即log 2(x +1)=12log 2(3x +1)=log 23x +1, ∴x +1=3x +1,∴⎩⎪⎨⎪⎧x +1>0,3x +1>0,x +12=3x +1, 解得x =0或x =1. 13.已知1≤x ≤4,求函数f (x )=log 2x 4×log 2x 2的最大值与最小值. 考点 对数函数的值域 题点 对数函数的值域 解 ∵f (x )=log 2x 4×log 2x 2=(log 2x -2)(log 2x -1)=⎝⎛⎭⎪⎫log 2x -322-14, 又∵1≤x ≤4,∴0≤log 2x ≤2,∴当log 2x =32,即x =232=22时,f (x )取最小值-14; 当log 2x =0,即x =1时,f (x )取最大值2.∴函数f (x )的最大值是2,最小值是-14. 四、探究与拓展14.已知log a (3a -1)恒为正,则a 的取值范围是________.考点 对数函数的图象题点 对数函数的图象答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪ 13<a <23或a >1解析 由题意知log a (3a -1)>0=log a 1.当a >1时,y =log a x 是增函数,∴⎩⎪⎨⎪⎧3a -1>1,3a -1>0,解得a >23,∴a >1; 当0<a <1时,y =log a x 是减函数,∴⎩⎪⎨⎪⎧ 3a -1<1,3a -1>0,解得13<a <23. ∴13<a <23. 综上所述,a 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪ 13<a <23或a >1. 15.已知函数f (x )=ln(ax 2+2x +1).(1)若f (x )的定义域为R ,求实数a 的取值范围;(2)若f (x )的值域为R ,求实数a 的取值范围.考点 对数函数的值域题点 求对数函数的定义域与值域解 (1)若f (x )的定义域为R ,则y =ax 2+2x +1的图象恒在x 轴的上方,所以⎩⎪⎨⎪⎧ a >0,Δ=4-4a <0,所以a >1.(2)若f (x )的值域为R ,则y =ax 2+2x +1的图象一定要与x 轴有交点,且能取得y 轴正半轴的任一值,所以a =0或⎩⎪⎨⎪⎧ a >0,Δ=4-4a ≥0,所以0≤a ≤1.。
高中数学 2.2.2 对数函数及其性质教案2 新人教A版必修1
碳14的含量P
0.5
0.3
0.1
0.01
0.001
生物死亡年数t
5730
9953
19035
39069
57104
可读出精确年份为39069,当P值为0.001时,t大约为57104年,所以每一个P值都与一个t值相对应,是一一对应关系,所以p与t之间是函数关系。
(5)数学知识不但可以解决猛犸象的封存时间,也可以与其他学科的知识相结合来解决视频中的遗留问题,就是不知道咱们中国的猛犸象克隆问题会由班里的哪位同学解决,我们拭目以待。
课后作业的设计意图:
一、巩固学生本节课所学的知识并落实教学目标;二、让不同基础的学生学到不同的技能,体现因材施教的原则;
三、使同学们体会到科学的探索永无止境,为数学的学习营造一种良好的科学氛围。
对数函数及其性质教学设计
教学过程
设计意图
一、创设情境,导入新课
活动1:(1)同学们有没有看过《冰河世纪》这个电影?先播放视频,引入课题。
(2)考古学家经过长期实践,发现冻土层内某微量元素的含量P与年份t的关系: ,这是一个指数式,由指数与对数的关系,此指数式可改写为对数式 。
(3)考古学家提取了冻土层内微量元素,确定它的残余量约占原始含量的1%,即P=0.01,代入对数式,可知
教学过程中,评价学生的情绪、状态、积极性、自信心、合作交流的意识与独立思考的能力;
在学习互动中,评价学生思维发展的水平;
在解决问题练习和作业中,评价学生基础知识基本技能的掌握.
适时地组织和指导学生归纳知识和技能的一般规律,有助于学生更好地学习、记忆和应用,发挥知识系统的整体优势,并为后续学习打好基础。
解:(1) 函数 的定义域是 。
高中数学2.2.2对数函数及其性质第1课时对数函数的图象及性质人教A版必修1
第1课时 对数函数的图象及性质[A 基础达标]1.y =2x与y =log 2x 的图象关于( ) A .x 轴对称 B .直线y =x 对称 C .原点对称D .y 轴对称解析:选B.函数y =2x与y =log 2x 互为反函数,故函数图象关于直线y =x 对称. 2.函数y =ln(1-x )的图象大致为( )解析:选C.函数的定义域为(-∞,1),且函数在定义域上单调递减,故选C.3.函数y =lg(x -1)+lg(x -2)的定义域为M ,函数y =lg(x 2-3x +2)的定义域为N ,则( )A .M NB .N MC .M =ND .M ∩N =∅解析:选A.y =lg(x 2-3x +2)=lg[(x -1)(x -2)],所以⎩⎪⎨⎪⎧x -1>0x -2>0或⎩⎪⎨⎪⎧x -1<0x -2<0,即x >2或x <1. 所以N ={x |x >2或x <1}. 又M ={x |x >2}.所以M N .4.已知函数y =log a (x +c )(a ,c 为常数,且a >0,a ≠1)的图象如图所示,则下列结论成立的是( )A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1解析:选D.由题意可知y =log a (x +c )的图象是由y =log a x 的图象向左平移c 个单位长度得到的,结合题图知0<c <1.根据单调性易知0<a <1.5.已知a >1,b <-1,则函数y =log a (x -b )的图象不经过( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选D.因为a >1,所以函数y =log a (x -b )(b <-1)的图象就是把函数y =log a x 的图象向左平移|b |个单位长度,如图.由图可知函数y =log a (x -b )不经过第四象限,所以选D.6.若f (x )=log a x +(a 2-4a -5)是对数函数,则a =______.解析:由对数函数的定义可知,⎩⎪⎨⎪⎧a 2-4a -5=0,a >0,a ≠1,解得a =5.答案:57.若函数y =f (x )是函数y =a x(a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=________. 解析:函数y =a x(a >0,且a ≠1)的反函数是f (x )=log a x ,又f (2)=1,即log a 2=1,所以a =2.故f (x )=log 2x .答案:log 2x8.已知y =log a (3a -1)恒为正值,则a 的取值范围为________.解析:当⎩⎪⎨⎪⎧0<a <1,0<3a -1<1,即13<a <23时,y =log a (3a -1)恒正;当⎩⎪⎨⎪⎧a >1,3a -1>1,即a >1时,y =log a (3a -1)恒正.综上,a 的取值范围为a >1或13<a <23.答案:a >1或13<a <239.已知f (x )=log 3x . (1)作出这个函数的图象;(2)若f (a )<f (2),利用图象求a 的取值范围. 解:(1)作出函数y =log 3x 的图象如图所示. (2)令f (x )=f (2),即log 3x =log 32,解得x =2.由图象知:当0<a <2时,恒有f (a )<f (2).所以所求a 的取值范围为0<a <2. 10.已知函数f (x )=log a (3+2x ),g (x )=log a (3-2x )(a >0,且a ≠1). (1)求函数y =f (x )-g (x )的定义域;(2)判断函数y =f (x )-g (x )的奇偶性,并予以证明. 解:(1)要使函数y =f (x )-g (x )有意义,必须有⎩⎪⎨⎪⎧3+2x >0,3-2x >0,解得-32<x <32.所以函数y =f (x )-g (x )的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-32<x <32.(2)由(1)知函数y =f (x )-g (x )的定义域关于原点对称,f (-x )-g (-x )=log a (3-2x )-log a (3+2x ) =-[log a (3+2x )-log a (3-2x )]=-[f (x )-g (x )].所以函数y =f (x )-g (x )是奇函数.[B 能力提升]11.已知a >0且a ≠1,函数y =log a x ,y =a x,y =x +a 在同一坐标系中的图象可能是( )解析:选C.因为函数y =a x与y =log a x 的图象关于直线y =x 对称,当0<a <1时,y =x +a 的纵截距小于1,y =log a x 单调递减且过点(1,0),y =a x 单调递减且过点(0,1),此时C项符合题意,A 、B 项均不符合题意.当a >1时,y =x +a 的纵截距大于1,y =log a x 单调递增且过点(1,0),y =a x单调递减且过点(0,1),D 项不符合题意.12.已知函数y =|log 12x |的定义域为⎣⎢⎡⎦⎥⎤12,m ,值域为[0,1],则m 的取值范围为________.解析:作出y =|log 12x |的图象(如图)可知f ⎝ ⎛⎭⎪⎫12=f (2)=1, 由题意结合图象知:1≤m ≤2. 答案:[1,2]13.已知函数f (x )=log a x (a >0且a ≠1)的图象过点(4,2), (1)求a 的值;(2)若g (x )=f (1-x )+f (1+x ),求g (x )的解析式及定义域.解:(1)由已知f (x )=log a x (a >0且a ≠1)的图象过点(4,2),则2=log a 4,所以a 2=4. 因为a >0且a ≠1,所以a =2.(2)g (x )=f (1-x )+f (1+x )=log 2(1-x )+log 2(1+x ),由⎩⎪⎨⎪⎧1-x >0,1+x >0得-1<x <1. 所以g (x )的定义域为(-1,1).14.(选做题)求函数y =(log 12x )2-12log 12x +5在区间[2,4]上的最大值和最小值.解:因为2≤x ≤4,所以log 122≥log 12x ≥log 124,即-1≥log 12x ≥-2. 设t =log 12x ,则-2≤t ≤-1,所以y =t 2-12t +5,其图象的对称轴为直线t =14,所以当t =-2时,y max =10;当t =-13 2.1时,y min=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省荆州市监利县柘木中学高中数学 2.2.2对数函数及其性质 导学案 新人
教A 版必修1
【学习目标】
1﹑理解对数函数的概念.
2﹑通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质.
3﹑知道指数函数与对数函数互为反函数
【重点难点】
▲重点:对数函数的图象和性质.
▲难点:借助对数函数的图象探索并归纳对数函数的性质.
【知识链接】
1﹑研究指数函数图像和性质的方法.
2﹑对数的运算.
【学习过程】 阅读课本70页到71页的内容,尝试回答以下问题:
知识点1:对数函数的定义
问题1﹑请回答对数函数的定义,并注明定义域.
问题2﹑根据对数函数的定义,尝试判断下列哪些是对数函数?
①)1(log 2+=x y ②x y 4log 2= ③3log 3
1+=x y
④x y 3log = ⑤x y 21log = ⑥x
y 2
1log 1
= 知识点2:对数函数的图像与性质
问题1﹑你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗?
问题2﹑在同一坐标系中画出函数x y 2log =和x y 2
1log =的图象.
问题3﹑观察上述两个函数图像,它们的定义域、值域、单调性分别有何特征?
问题4﹑根据问题3,由特殊到一般,你能归纳出对数函数)0,0(log ≠>=a a x y a 且的哪些性质?
是
阅读课本73页的内容,尝试回答以下问题:
知识点3:对数比较大小
问题1﹑试比较下列各组数中两个值的大小.
(1)5.3log 2,8log 2 (2)5.4log ,4log 2
121
(3)1.5log a ,7.5log a (4)8log 7与7log 8
问题2﹑请归纳比较对数大小的方法.
① 如果两对数的底数相同,则由 . ② 如果两对数的底数和真数均不相同,则 . 知识点4: 指数函数与对数函数互为反函数
问题1﹑如何由x y 2= 求出x ?
问题2﹑函数x y 2=与函数x y 2log =是否互为反函数?为什么?
【基础达标】
A1﹑已知函数x a y a log )1(2-=是对数函数,求a 的值.
B2、求下列函数的定义域
①)54(log 22--=x x y ②)34(log 5.0-x ③)32lg(4
22-+-x x x
C3﹑①函数x y a log =恒过一定点,这个点的坐标是 .
②函数)2(log -=x y a 恒过一定点,这个点的坐标是 .
③函数3)2(log +-=x y a 恒过一定点,这个点的坐标是 .
D4﹑已知下列不等式,比较正数m 、n 的大小.
(1)n m 33log log < (2)n m 3.03.0log log >
(3)n m a a log log >
【小结】
1﹑对数函数的概念:
2﹑对数函数的图象与性质:
3﹑对数比较大小的方法:
【当堂检测】
A1﹑已知对数函数)(x f y =的图像经过点(9,2),试求)(x f 的解析式.
【课后反思】。