江苏专用2018版高考数学大一轮复习第九章平面解析几何9.8圆锥曲线的综合问题第2课时范围最值问题课件文
高考数学大一轮复习 第九章 平面解析几何 9.8 圆锥曲线的综合问题 第1课时 直线与圆锥曲线教师用
题第1课时直线与圆锥曲线教师用书文新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学大一轮复习第九章平面解析几何9.8 圆锥曲线的综合问题第1课时直线与圆锥曲线教师用书文新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学大一轮复习第九章平面解析几何9.8 圆锥曲线的综合问题第1课时直线与圆锥曲线教师用书文新人教版的全部内容。
问题第1课时直线与圆锥曲线教师用书文新人教版1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ〉0⇔直线与圆锥曲线相交;②Δ=0⇔直线与圆锥曲线相切;③Δ〈0⇔直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点,①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;②若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则|AB|=错误!|x-x1|=错误!|y2-y1|.2【知识拓展】过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线。
三维设计江苏专用高三数学一轮总复习第九章平面解析几何第八节圆锥曲线的综合问题第二课时最值范围证明问题
OA·OB,且23≤λ≤34.
(1)求椭圆的方程;
(2)求k的取值范围;
(3)求△OAB的面积S的取值范围.
(-则 λ解3(所=)24|:A)xx以O因11B(+xA原1|为22)·]x=由O=点直2=B题(2线xO=-1-1意+-到xl4:2知12kxx直kkm22y2)+22+2=线2,c+=y1kx1lx(y12的2y+x2,1,=2-=距m所(12y离1与+2m以+)为2圆2k=-2c2k=)x(22x112.1|1+m2+x+.2|+ykk22=2k)=[m(1x1(相1x,+1+切xx2,)22) 由 设 则 即+ 由 即因 从 所即 由 得 设12△ △23为 而 以mSk≤(≤=mA12yxOO2的圆 所=+=b(2k2λAA12+ x==2≤取与 求1|1≤BB2kAk,+ykk1x234B值椭 椭2的 的+122,+=,y+ )2,|dx1范圆 圆k面1)故m2=A得 1,12得+,围有 方B.,积1212aB4|≤2边是且 程 =Ak(6SxmB≤上k只 为2的-,2x|,2≤|+ 的A有 x, 2取1y2所 B,12+高 2两)值,|m,≤以-y为个范2243-=4公.2围d6221,≤共=.是∪S点0≤.42,6223,,. 231..
于由是Δ=2设(所b8=kt以=)2-△2,k2A24-O解(2B3得k,面 2+b由积=1)的k>12.0>又最,32,大a得2知-值k2为ct>2>=3202..2b.2,从而 a= 2,c=1.
所解以得椭x于1圆,2=是C-S的△4A方k2O±kB程2=+4为k12x2-2+6t,+y82=t412=.
(因 所 即213解 所 因 所 即 因 即)- -为 因 ① ② ⑤证 以xyxy以 为 b: 以 为1111xy为 × × +bC- +明 - +2x(1因 所 所 因 所1所 又 = 即c=1=P直 点 F+(4③ ④ ⑥C1: λλλλa2-为 以 以 为 以以 因 椭13=+ )yyxx--Q= (线cO,因22得 得 得-22设y点 点= =为 圆= =到- x=+x3λbλ8A32为1c1≠2(2,xyx,3F+Cy直131,cλxλbCQ2C1210c212112△2--=2-QP±1- +(-c+2- 1+所),- +的yx线=的 =,在1D-D21A1λλbλ,λy=λ, 3以9yD1λ方2,, 2A21, 224方0BA定λ)1=, y-xy-=),.x所F,322Fa在(y22程..同= =程,0直=,1=41λ2b)(,的以④的圆b2,为 12理为3线((-x22,-x1(-.距22周.D- x122-+可Ox4+所x+ xλ-λ2b(离长(2++cx上λ得y)x)y以+232λ,22(d222, 为=)2x3yy,)3- x=)+ ==2-yy.=b8y3-y.⑥42,,133(b=)11,,y3=b,-.)=b29.+cQ1,yλ0,2(2cx)-所上③2⑤(,=x①以.+3②yba))c3. ,=by2)所.b2c,以
2018版高考数学理江苏专用大一轮复习讲义教师版文档第
1.椭圆的概念平面内到两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆,两个定点F1,F2叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M|MF1+MF2=2a},F1F2=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质【知识拓展】点P (x 0,y 0)和椭圆的关系(1)点P (x 0,y 0)在椭圆内⇔x 20a 2+y 20b 2<1.(2)点P (x 0,y 0)在椭圆上⇔x 20a 2+y 20b 2=1.(3)点P (x 0,y 0)在椭圆外⇔x 20a 2+y 20b2>1.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内到两个定点F 1,F 2的距离的和等于常数的点的轨迹叫做椭圆.( × )(2)椭圆上一点P 与两焦点F 1,F 2构成△PF 1F 2的周长为2a +2c (其中a 为椭圆的长半轴长,c 为椭圆的半焦距).( √ )(3)椭圆的离心率e 越大,椭圆就越圆.( × )(4)方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( √ ) (5)y 2a 2+x 2b 2=1(a ≠b )表示焦点在y 轴上的椭圆.( × ) (6)x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2b 2=1(a >b >0)的焦距相等.( √ )1.(教材改编)椭圆x 210-m +y 2m -2=1的焦距为4,则m =________.答案 4或8 解析 由题意知⎩⎪⎨⎪⎧ 10-m >m -2>0,(10-m )-(m -2)=4或⎩⎪⎨⎪⎧m -2>10-m >0,(m -2)-(10-m )=4,解得m =4或m =8.2.(2016·苏州检测)在平面直角坐标系xOy 内,动点P 到定点F (-1,0)的距离与P 到定直线x =-4的距离的比值为12.则动点P 的轨迹C 的方程为______________.答案 x 24+y 23=1解析 设点P (x ,y ),由题意知(x +1)2+y 2|x +4|=12,化简得3x 2+4y 2=12,所以动点P 的轨迹C 的方程为x 24+y 23=1.3.(2016·全国乙卷改编)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为________.答案 12解析 如图,由题意得,BF =a ,OF =c ,OB =b , OD =14·2b =12b .在Rt △FOB 中,OF ·OB =BF ·OD ,即cb =a ·12b ,解得a =2c ,故椭圆离心率e =c a =12.4.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是________. 答案 (0,1)解析 将椭圆方程化为x 22+y 22k =1,因为焦点在y 轴上,则2k>2,即k <1,又k >0,所以0<k <1.5.(教材改编)已知点P 是椭圆x 25+y 24=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为__________________. 答案 ⎝⎛⎭⎫152,1或⎝⎛⎭⎫152,-1 解析 设P (x ,y ),由题意知c 2=a 2-b 2=5-4=1,所以c =1,则F 1(-1,0),F 2(1,0),由题意可得点P 到x 轴的距离为1,所以y =±1,把y =±1代入x 25+y 24=1,得x =±152,又x >0,所以x =152,所以P 点坐标为⎝⎛⎭⎫152,1或⎝⎛⎭⎫152,-1.题型一 椭圆的定义及标准方程 命题点1 利用定义求轨迹例1 (2016·徐州模拟)如图所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,则点P 的轨迹是________.答案 椭圆解析 由条件知PM =PF , ∴PO +PF =PO +PM =OM =R >OF . ∴P 点的轨迹是以O ,F 为焦点的椭圆. 命题点2 利用待定系数法求椭圆方程例2 (1)已知椭圆以坐标轴为对称轴,且长轴长是短轴长的3倍,并且过点P (3,0),则椭圆的方程为_________________________________.(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 1(6,1),P 2(-3,-2),则椭圆的方程为________________________________________. 答案 (1)x 29+y 2=1或y 281+x 29=1(2)x 29+y 23=1 解析 (1)若焦点在x 轴上, 设方程为x 2a 2+y 2b2=1(a >b >0).∵椭圆过P (3,0),∴32a 2+02b 2=1,即a =3,又2a =3×2b ,∴b =1,∴椭圆方程为x 29+y 2=1.若焦点在y 轴上,设方程为y 2a 2+x 2b 2=1(a >b >0).∵椭圆过点P (3,0),∴02a 2+32b 2=1,即b =3.又2a =3×2b ,∴a =9,∴椭圆方程为y 281+x 29=1.∴所求椭圆的方程为x 29+y 2=1或y 281+x 29=1.(2)设椭圆方程为mx 2+ny 2=1(m >0,n >0且m ≠n ). ∵椭圆经过点P 1,P 2,∴点P 1,P 2的坐标适合椭圆方程.即⎩⎪⎨⎪⎧6m +n =1,①3m +2n =1,② ①②两式联立,解得⎩⎨⎧m =19,n =13.∴所求椭圆方程为x 29+y 23=1.命题点3 利用定义解决“焦点三角形”问题例3 已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________. 答案 3解析 设PF 1=r 1,PF 2=r 2,则⎩⎪⎨⎪⎧r 1+r 2=2a ,r 21+r 22=4c 2, 因为2r 1r 2=(r 1+r 2)2-(r 21+r 22)=4a 2-4c 2=4b 2, 又因为1221219,2PF F S rr b ===△ 所以b =3. 引申探究1.在例3中,若增加条件“△PF 1F 2的周长为18”,其他条件不变,求该椭圆的方程. 解 由原题得b 2=a 2-c 2=9, 又2a +2c =18,所以a -c =1,解得a =5, 故椭圆方程为x 225+y 29=1.2.在例3中,若将条件“PF 1→⊥PF 2→”“△PF 1F 2的面积为9”分别改为“∠F 1PF 2=60°”“12PF F S =△,结果如何?解 PF 1+PF 2=2a ,又∠F 1PF 2=60°,所以PF 21+PF 22-2PF 1·PF 2cos 60°=F 1F 22,即(PF 1+PF 2)2-3PF 1·PF 2=4c 2, 所以3PF 1·PF 2=4a 2-4c 2=4b 2, 所以PF 1·PF 2=43b 2,又因为12121··sin 602PF F S PF PF =︒△ =12·43b 2·32 =33b 2=33, 所以b =3.思维升华 (1)求椭圆的方程多采用定义法和待定系数法,利用椭圆的定义定形状时,一定要注意常数2a >F 1F 2这一条件.(2)求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a ,b 的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx 2+ny 2=1(m >0,n >0,m ≠n )的形式. (3)当P 在椭圆上时,与椭圆的两焦点F 1,F 2组成的三角形通常称为“焦点三角形”,利用定义可求其周长;利用定义和余弦定理可求PF 1·PF 2;通过整体代入可求其面积等.(1)(2016·盐城模拟)已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为________________. (2)(2016·镇江模拟)设F 1、F 2分别是椭圆x 24+y 2=1的左、右焦点,若椭圆上存在一点P ,使(OP→+OF 2→)·PF 2→=0(O 为坐标原点),则△F 1PF 2的面积是______. 答案 (1)x 264+y 248=1 (2)1解析 (1)设圆M 的半径为r ,则MC 1+MC 2=(13-r )+(3+r )=16>8=C 1C 2, 所以M 的轨迹是以C 1,C 2为焦点的椭圆, 且 2a =16,2c =8,故所求的轨迹方程为x 264+y 248=1.(2)∵(OP →+OF 2→)·PF 2→=(OP →+F 1O →)·PF 2→=F 1P →·PF 2→=0, ∴PF 1⊥PF 2,∠F 1PF 2=90°. 设PF 1=m ,PF 2=n ,则m +n =4,m 2+n 2=12,2mn =4,121= 1.2F PF S mn ∴=△题型二 椭圆的几何性质例4 (1)已知点F 1,F 2是椭圆x 2+2y 2=2的左,右焦点,点P 是该椭圆上的一个动点,那么|PF 1→+PF 2→|的最小值是________.(2)(2016·全国丙卷改编)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为椭圆C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为________. 答案 (1)2 (2)13解析 (1)设P (x 0,y 0),则PF 1→=(-1-x 0,-y 0), PF 2→=(1-x 0,-y 0),∴PF 1→+PF 2→=(-2x 0,-2y 0), ∴|PF 1→+PF 2→|=4x 20+4y 20=22-2y 20+y 20=2-y 20+2.∵点P 在椭圆上,∴0≤y 20≤1, ∴当y 20=1时,|PF 1→+PF 2→|取最小值2.(2)设M (-c ,m ),则E ⎝⎛⎭⎫0,am a -c ,OE 的中点为D ,则D ⎝⎛⎭⎫0,am2(a -c ),又B ,D ,M 三点共线,所以m 2(a -c )=m a +c,a =3c ,e =13.思维升华 (1)利用椭圆几何性质的注意点及技巧 ①注意椭圆几何性质中的不等关系在求与椭圆有关的一些量的范围,或者最大值、最小值时,经常用到椭圆标准方程中x ,y 的范围,离心率的范围等不等关系. ②利用椭圆几何性质的技巧求解与椭圆几何性质有关的问题时,要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的内在联系. (2)求椭圆的离心率问题的一般思路求椭圆的离心率或其范围时,一般是依据题设得出一个关于a ,b ,c 的等式或不等式,利用a 2=b 2+c 2消去b ,即可求得离心率或离心率的范围.(2016·江苏)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.答案63解析 联立方程组⎩⎨⎧x 2a 2+y 2b 2=1,y =b2,解得B ,C 两点坐标为B ⎝⎛⎭⎫-32a ,b 2,C ⎝⎛⎫32a ,b 2,又F (c,0),则FB →=⎝⎛⎭⎫-32a -c ,b 2,FC →=⎝⎛⎭⎫3a 2-c ,b 2,又由∠BFC =90°,可得FB →·FC →=0,代入坐标可得 c 2-34a 2+b 24=0,①又因为b 2=a 2-c 2.代入①式可化简为c 2a 2=23,则椭圆离心率为e =c a =23=63. 题型三 直线与椭圆例5 (2016·天津)设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A .已知1OF +1OA =3eF A ,其中O 为原点,e 为椭圆的离心率. (1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF ⊥HF ,且∠MOA ≤∠MAO ,求直线l 的斜率的取值范围. 解 (1)设F (c,0),由1OF +1OA =3eF A ,即1c +1a =3c a (a -c ),可得a 2-c 2=3c 2. 又a 2-c 2=b 2=3,所以c 2=1,因此a 2=4. 所以椭圆的方程为x 24+y 23=1.(2)设直线l 的斜率为k (k ≠0), 则直线l 的方程为y =k (x -2).设B (x B ,y B ),由方程组⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -2)消去y ,整理得(4k 2+3)x 2-16k 2x +16k 2-12=0, 解得x =2或x =8k 2-64k 2+3.由题意,得x B =8k 2-64k 2+3,从而y B =-12k4k 2+3.由(1)知,F (1,0),设H (0,y H ),有FH →=(-1,y H ),BF →=⎝ ⎛⎭⎪⎫9-4k24k 2+3,12k 4k 2+3.由BF ⊥HF ,得BF →·FH →=0,所以4k 2-94k 2+3+12ky H 4k 2+3=0,解得y H =9-4k 212k .因此直线MH 的方程为y =-1k x +9-4k212k.设M (x M ,y M ),由方程组⎩⎪⎨⎪⎧y =k (x -2),y =-1k x +9-4k 212k 消去y ,解得x M =20k 2+912(k 2+1).在△MAO 中,∠MOA ≤∠MAO ⇔MA ≤MO ,即(x M -2)2+y 2M ≤x 2M +y 2M ,化简得x M ≥1,即20k 2+912(k 2+1)≥1,解得k ≤-64或k ≥64. 所以直线l 的斜率的取值范围为⎝⎛⎦⎤-∞,-64∪⎣⎡⎭⎫64,+∞. 思维升华 (1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题时用“点差法”解决,往往会更简单.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则AB =(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+1k2)[(y 1+y 2)2-4y 1y 2](k 为直线斜率).提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.如图,已知椭圆O :x 24+y 2=1的右焦点为F ,B ,C 分别为椭圆O 的上,下顶点,P 是直线l :y =-2上的一个动点(与y 轴交点除外),直线PC 交椭圆O 于另一点M.(1)当直线PM 过椭圆的右焦点F 时,求△FBM 的面积; (2)①记直线BM ,BP 的斜率分别为k 1,k 2,求证:k 1·k 2为定值; ②求PB →·PM →的取值范围.(1)解 由题意知B (0,1),C (0,-1),焦点F (3,0),当直线PM 过椭圆O 的右焦点F 时,直线PM 的方程为x 3+y -1=1,即y =33x -1.联立⎩⎨⎧x 24+y 2=1,y =33x -1,解得⎩⎨⎧x =837,y =17或⎩⎪⎨⎪⎧x =0,y =-1(舍去),即点M 的坐标为(837,17).连结BF ,则直线BF 的方程为x 3+y1=1, 即x +3y -3=0.又BF =a =2, 点M 到直线BF 的距离为d =|837+3×17-3|12+(3)2=2372=37, 故△FBM 的面积为S △MBF =12·BF ·d =12×2×37=37.(2)方法一 ①证明 设P (m ,-2),且m ≠0,则直线PM 的斜率为k =-1-(-2)0-m =-1m ,则直线PM 的方程为y =-1mx -1.联立⎩⎨⎧y =-1mx -1,x24+y 2=1,消去y ,得(1+4m 2)x 2+8mx =0,解得点M 的坐标为(-8mm 2+4,4-m 2m 2+4),所以k 1=4-m 2m 2+4-1-8m m 2+4=-2m 2-8m =14m ,k 2=1-(-2)0-m=-3m ,所以k 1·k 2=-3m ·14m =-34为定值.②解 由①知,PB →=(-m,3), PM →=(-8m m 2+4-m ,4-m 2m 2+4+2)=(-m 3-12m m 2+4,m 2+12m 2+4),所以PB →·PM →=(-m,3)·(-m 3+12m m 2+4,m 2+12m 2+4)=(m 2+12)(m 2+3)m 2+4.令m 2+4=t >4, 则PB →·PM →=(t +8)(t -1)t=t 2+7t -8t =t -8t+7.因为y =t -8t +7在t ∈(4,+∞)上单调递增,所以PB →·PM →=t -8t +7>4-84+7=9,故PB →·PM →的取值范围为(9,+∞).方法二 ①证明 设点M 的坐标为(x 0,y 0)(x 0≠0), 则直线PM 的方程为y =y 0+1x 0x -1,令y =-2,得点P 的坐标为(-x 0y 0+1,-2),所以k 1=y 0-1x 0,k 2=-2-1-x 0y 0+1=3(y 0+1)x 0,所以k 1·k 2=y 0-1x 0·3(y 0+1)x 0=3(y 20-1)x 20=3(y 20-1)4(1-y 20)=-34为定值. ②解 由①知,PB →=(x 0y 0+1,3),PM →=(x 0+x 0y 0+1,y 0+2),所以PB →·PM →=x 0y 0+1(x 0+x 0y 0+1)+3(y 0+2)=x 20(y 0+2)(y 0+1)2+3(y 0+2) =4(1-y 20)(y 0+2)(y 0+1)2+3(y 0+2)=(7-y 0)(y 0+2)y 0+1.令t =y 0+1∈(0,2),则PB →·PM →=(8-t )(t +1)t =-t +8t +7.因为y =-t +8t +7在t ∈(0,2)上单调递减,所以PB →·PM →=-t +8t +7>-2+82+7=9,故PB →·PM →的取值范围为(9,+∞).8.高考中求椭圆的离心率问题考点分析 离心率是椭圆的重要几何性质,是高考重点考查的一个知识点,这类问题一般有两类:一类是根据一定的条件求椭圆的离心率;另一类是根据一定的条件求离心率的取值范围,无论是哪类问题,其难点都是建立关于a ,b ,c 的关系式(等式或不等式),并且最后要把其中的b 用a ,c 表示,转化为关于离心率e 的关系式,这是化解有关椭圆的离心率问题难点的根本方法.典例1 (2015·福建改编)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若AF +BF =4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是__________.解析 左焦点F 0,连结F 0A ,F 0B ,则四边形AFBF 0为平行四边形.∵AF +BF =4, ∴AF +AF 0=4, ∴a =2.设M (0,b ),则4b 5≥45,∴1≤b <2.离心率e =ca =c 2a 2= a 2-b 2a 2= 4-b 24∈⎝⎛⎦⎤0,32. 答案 ⎝⎛⎦⎤0,32典例2 (14分)(2016·浙江)如图,设椭圆x 2a2+y 2=1(a >1).(1)求直线y =kx +1被椭圆截得的线段长(用a ,k 表示);(2)若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围. 规范解答解 (1)设直线y =kx +1被椭圆截得的线段为AM , 由⎩⎪⎨⎪⎧y =kx +1,x 2a 2+y 2=1,得(1+a 2k 2)x 2+2a 2kx =0, 故x 1=0,x 2=-2a 2k 1+a 2k 2,因此AM =1+k 2|x 1-x 2|=2a 2|k |1+a 2k2·1+k 2. [6分](2)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足AP =AQ .记直线AP ,AQ 的斜率分别为k 1,k 2, 且k 1,k 2>0,k 1≠k 2.[8分]由(1)知AP =2a 2|k 1|1+k 211+a 2k 21,AQ =2a 2|k 2|1+k 221+a 2k 22, 故2a 2|k 1|1+k 211+a 2k 21=2a 2|k 2|1+k 221+a 2k 22,所以(k 21-k 22)[1+k 21+k 22+a 2(2-a 2)k 21k 22]=0.由k 1≠k 2,k 1,k 2>0,得1+k 21+k 22+a 2(2-a 2)k 21k 22=0,因此⎝⎛⎭⎫1k 21+1⎝⎛⎭⎫1k 22+1=1+a 2(a 2-2), ①因为①式关于k 1,k 2的方程有解的充要条件是1+a 2(a 2-2)>1,所以a > 2. [12分] 因此,任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a ≤2, 由e =c a =a 2-1a ,得0<e ≤22.所以离心率的取值范围是(0,22].[14分]1.(2016·苏北四市联考)已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为____________. 答案 x 24+y 23=1解析 依题意,可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由已知可得抛物线的焦点为(-1,0),所以c =1,又离心率e =c a =12,解得a =2,b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1.2.(2016·苏北四市一模)已知椭圆x 2a 2+y 2b 2=1(a >b >0),点A 、B 1、B 2、F 依次为其左顶点、下顶点、上顶点和右焦点.若直线AB 2与直线B 1F 的交点恰在直线x =a 2c 上,则椭圆的离心率为________. 答案 12解析 由题意知直线AB 2:-x a +y b =1,直线B 1F :x c -y b =1,联立解得x =2aca -c ,若交点在椭圆的右准线上,则2ac a -c =a 2c,即2c 2+ac -a 2=0,所以2e 2+e -1=0,解得e =12.3.(2017·青岛月考)已知A 1,A 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右顶点,P 是椭圆C上异于A 1,A 2的任意一点,若直线P A 1,P A 2的斜率的乘积为-49,则椭圆C 的离心率为________.答案53解析 设P (x 0,y 0),则y 0x 0+a ·y 0x 0-a=-49,化简得x 20a 2+y 204a29=1,则b 2a 2=49,e = 1-(b a )2=1-49=53. 4.(2016·南昌模拟)已知椭圆:y 29+x 2=1,过点P (12,12)的直线与椭圆相交于A ,B 两点,且弦AB 被点P 平分,则直线AB 的方程为________________. 答案 9x +y -5=0解析 设A (x 1,y 1),B (x 2,y 2),因为A ,B 在椭圆y 29+x 2=1上,所以⎩⎨⎧y 219+x 21=1,y 229+x 22=1,两式相减,得y 21-y 229+x 21-x 22=0, 即(y 1-y 2)(y 1+y 2)9+(x 1-x 2)(x 1+x 2)=0,又弦AB 被点P (12,12)平分,所以x 1+x 2=1,y 1+y 2=1,将其代入上式,得y 1-y 29+x 1-x 2=0,得y 1-y 2x 1-x 2=-9, 即直线AB 的斜率为-9,所以直线AB 的方程为 y -12=-9(x -12), 即9x +y -5=0.5.(2016·宿迁模拟)已知F 1、F 2是椭圆x 24+y 2=1的两个焦点,P 为椭圆上一动点,则使PF 1·PF 2取得最大值的点P 为__________. 答案 (0,1)或(0,-1)解析 由椭圆定义得PF 1+PF 2=2a =4, ∴PF 1·PF 2≤(PF 1+PF 22)2=4,当且仅当PF 1=PF 2=2,即P (0,-1)或(0,1)时,PF 1·PF 2取得最大值.*6.(2016·苏州质检)设A 1,A 2为椭圆x 2a 2+y 2b2=1(a >b >0)的左,右顶点,若在椭圆上存在异于A 1,A 2的点P ,使得PO →·P A 2→=0,其中O 为坐标原点,则椭圆的离心率e 的取值范围是____________. 答案 (22,1) 解析 A 1(-a,0),A 2(a,0),设P (x ,y ),则PO →=(-x ,-y ),P A 2→=(a -x ,-y ), ∵PO →·P A 2→=0,∴(a -x )(-x )+(-y )(-y )=0, ∴y 2=ax -x 2>0,∴0<x <a . 将y 2=ax -x 2代入x 2a 2+y 2b2=1,整理得(b 2-a 2)x 2+a 3x -a 2b 2=0,其在(0,a )上有解, 令f (x )=(b 2-a 2)x 2+a 3x -a 2b 2, ∵f (0)=-a 2b 2<0,f (a )=0, 如图,Δ=(a 3)2-4(b 2-a 2)·(-a 2b 2) =a 2(a 4-4a 2b 2+4b 4) =a 2(a 2-2b 2)2≥0,∴对称轴满足0<-a 32(b 2-a 2)<a ,即0<a 32(a 2-b 2)<a ,∴a 22c 2<1,∴c 2a 2>12. 又0<c a <1,∴22<c a<1.7.若椭圆x 2a 2+y 2b 2=1(a >0,b >0)的焦点在x 轴上,过点(2,1)作圆x 2+y 2=4的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程为________________. 答案 x 220+y 216=1解析 设切点坐标为(m ,n ), 则n -1m -2·nm=-1,即m 2+n 2-n -2m =0.∵m 2+n 2=4,∴2m +n -4=0, 即直线AB 的方程为2x +y -4=0.∵直线AB 恰好经过椭圆的右焦点和上顶点, ∴2c -4=0,b -4=0,解得c =2,b =4, ∴a 2=b 2+c 2=20, ∴椭圆方程为x 220+y 216=1.8.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则PM +PN 的最小值为________. 答案 7解析 由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且PF 1+PF 2=10,从而PM +PN 的最小值为PF 1+PF 2-1-2=7.9.(2017·连云港质检)椭圆x 24+y 2=1的左,右焦点分别为F 1,F 2,点P 为椭圆上一动点,若∠F 1PF 2为钝角,则点P 的横坐标的取值范围是________________. 答案 (-263,263)解析 设椭圆上一点P 的坐标为(x ,y ), 则F 1P →=(x +3,y ),F 2P →=(x -3,y ). ∵∠F 1PF 2为钝角,∴F 1P →·F 2P →<0, 即x 2-3+y 2<0,①∵y 2=1-x 24,代入①,得x 2-3+1-x 24<0,34x 2<2,∴x 2<83. 解得-263<x <263,∴x ∈(-263,263).10.已知过椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点A (-a ,0)作直线l 交y 轴于点P ,交椭圆于点Q ,若△AOP 是等腰三角形,且PQ →=2QA →,则椭圆的离心率为________. 答案255解析 ∵△AOP 是等腰三角形,A (-a,0),∴P (0,a ). 设Q (x 0,y 0),∵PQ →=2QA →,∴(x 0,y 0-a )=2(-a -x 0,-y 0).∴⎩⎪⎨⎪⎧x 0=-2a -2x 0,y 0-a =-2y 0,解得⎩⎨⎧x 0=-23a ,y 0=a3,代入椭圆方程化简,可得b 2a 2=15,∴e =1-b 2a 2=255. 11.(2016·南京模拟)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,右顶点,上顶点分别为A ,B ,且AB =52BF . (1)求椭圆C 的离心率;(2)若斜率为2的直线l 过点(0,2),且l 交椭圆C 于P ,Q 两点,OP ⊥OQ ,求直线l 的方程及椭圆C 的方程.解 (1)由已知AB =52BF , 即a 2+b 2=52a , 4a 2+4b 2=5a 2,4a 2+4(a 2-c 2)=5a 2, ∴e =c a =32.(2)由(1)知a 2=4b 2,∴椭圆C :x 24b 2+y 2b2=1.设P (x 1,y 1),Q (x 2,y 2),直线l 的方程为y -2=2(x -0),即2x -y +2=0. 由⎩⎪⎨⎪⎧2x -y +2=0,x 24b 2+y 2b 2=1消去y , 得x 2+4(2x +2)2-4b 2=0, 即17x 2+32x +16-4b 2=0.Δ=322+16×17(b 2-4)>0,解得b >21717.x 1+x 2=-3217,x 1x 2=16-4b 217.∵OP ⊥OQ ,∴OP →·OQ →=0,即x 1x 2+y 1y 2=0,x 1x 2+(2x 1+2)(2x 2+2)=0, 5x 1x 2+4(x 1+x 2)+4=0. 从而5(16-4b 2)17-12817+4=0,解得b =1,满足b >21717.∴椭圆C 的方程为x 24+y 2=1.12.(2015·安徽)设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足BM =2MA ,直线OM 的斜率为510. (1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.解 (1)由题设条件知,点M 的坐标为⎝⎛⎭⎫23a ,13b , 又k OM =510,从而b 2a =510, 进而得a =5b ,c =a 2-b 2=2b ,故e =c a =255.(2)由题设条件和(1)的计算结果可得,直线AB 的方程为x 5b +yb=1,点N 的坐标为⎝⎛⎭⎫52b ,-12b .设点N 关于直线AB 的对称点S 的坐标为⎝⎛⎭⎫x 1,72, 则线段NS 的中点T 的坐标为⎝⎛⎭⎫54b +x 12,-14b +74.又点T 在直线AB 上,且k NS ·k AB =-1,从而有⎩⎪⎨⎪⎧54b +x 125b+-14b +74b =1,72+12b x 1-52b = 5.解得b =3.所以a =35,故椭圆E 的方程为x 245+y 29=1.13.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,上顶点为B ,O 为坐标原点,M 为椭圆上任意一点.过F ,B ,A 三点的圆的圆心坐标为(p ,q ). (1)当p +q ≤0时,求椭圆的离心率的取值范围;(2)若点D (b +1,0),在(1)的条件下,当椭圆的离心率最小时,(MF →+OD →)·MO →的最小值为72,求椭圆的方程.解 (1)设椭圆半焦距为c .由题意AF ,AB 的中垂线方程分别为x =a -c 2,y -b 2=a b (x -a2),于是圆心坐标为(a -c 2,b 2-ac2b ).所以p +q =a -c 2+b 2-ac2b≤0,整理得ab -bc +b 2-ac ≤0,即(a +b )(b -c )≤0, 所以b ≤c ,于是b 2≤c 2,即a 2=b 2+c 2≤2c 2. 所以e 2=c 2a 2≥12,即22≤e <1.(2)当e =22时,a =2b =2c , 此时椭圆的方程为x 22c 2+y 2c 2=1,设M (x ,y ),则-2c ≤x ≤2c ,MF →=(-c -x ,-y ),OD →=(b +1,0),MO →=(-x ,-y ), 所以(MF →+OD →)·MO →=12x 2-x +c 2=12(x -1)2+c 2-12.当c ≥22时,上式的最小值为c 2-12,即c 2-12=72,得c =2; 当0<c <22时,上式的最小值为12(2c )2-2c +c 2, 即12(2c )2-2c +c 2=72, 解得c =2+304,不合题意,舍去. 综上所述,椭圆的方程为x 28+y 24=1.。
江苏专用2018版高考数学大一轮复习第九章平面解析几何9.8曲线与方程教师用书理
第九章平面解析几何 9.8 曲线与方程教师用书理苏教版1.曲线与方程的定义一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立如下的对应关系:那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.2.求动点的轨迹方程的基本步骤【知识拓展】1.“曲线C是方程f(x,y)=0的曲线”是“曲线C上的点的坐标都是方程f(x,y)=0的解”的充分不必要条件.2.曲线的交点与方程组的关系:(1)两条曲线交点的坐标是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;(2)方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)f(x0,y0)=0是点P(x0,y0)在曲线f(x,y)=0上的充要条件.( √)(2)方程x2+xy=x的曲线是一个点和一条直线.( ×)(3)到两条互相垂直的直线距离相等的点的轨迹方程是x 2=y 2.( × ) (4)方程y =x 与x =y 2表示同一曲线.( × ) (5)y =kx 与x =1ky 表示同一直线.( × )1.(教材改编)已知点F (14,0),直线l :x =-14,点B 是l 上的动点,若过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是________. 答案 抛物线解析 由已知MF =MB ,根据抛物线的定义知, 点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线.2.(2016·苏州模拟)方程(2x +3y -1)(x -3-1)=0表示的曲线是________________. 答案 一条直线和一条射线解析 原方程可化为⎩⎪⎨⎪⎧2x +3y -1=0,x -3≥0或x -3-1=0,即2x +3y -1=0(x ≥3)或x =4,故原方程表示的曲线是一条射线和一条直线.3.(2016·南通模拟)已知A (-2,0),B (1,0)两点,动点P 不在x 轴上,且满足∠APO =∠BPO ,其中O 为原点,则P 点的轨迹方程是________________. 答案 (x -2)2+y 2=4(y ≠0)解析 由角的平分线性质定理得PA =2PB ,设P (x ,y ),则 x +2 2+y 2=2 x -1 2+y 2, 整理得(x -2)2+y 2=4(y ≠0).4.过椭圆x 2a 2+y 2b2=1(a >b >0)上任意一点M 作x 轴的垂线,垂足为N ,则线段MN 中点的轨迹方程是________________.答案 x 2a 2+4y 2b2=1解析 设MN 的中点为P (x ,y ),则点M (x,2y )在椭圆上,∴x 2a 2+ 2y 2b 2=1,即x 2a 2+4y 2b2=1(a >b >0). 5.(2016·镇江模拟)若点P 在椭圆x 29+y 2=1上,F 1,F 2分别为椭圆的左,右焦点,且满足PF 1→·PF 2→=t ,则实数t 的取值范围是____________.答案 [-7,1]解析 设P (x ,y ),F 1(-22,0),F 2(22,0),PF 1→=(-22-x ,-y ),PF 2→=(22-x ,-y ),PF 1→·PF 2→=(-22-x )(22-x )+(-y )2=x 2+y 2-8.∵P 在椭圆x 29+y 2=1上,∴y 2=1-x 29,∴t =PF 1→·PF 2→=x 2+y 2-8 =89x 2-7,∵0≤x 2≤9, ∴-7≤t ≤1,故实数t 的取值范围为[-7,1].题型一 定义法求轨迹方程例1 如图,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点.点A 1,A 2分别为C 2的左,右顶点.求直线AA 1与直线A 2B 交点M 的轨迹方程.解 由椭圆C 2:x 29+y 2=1,知A 1(-3,0),A 2(3,0).设点A 的坐标为(x 0,y 0), 由曲线的对称性,得B (x 0,-y 0), 设点M 的坐标为(x ,y ), 直线AA 1的方程为y =y 0x 0+3(x +3).①直线A 2B 的方程为y =-y 0x 0-3(x -3).② 由①②得y 2=-y 20x 20-9(x 2-9).③又点A (x 0,y 0)在椭圆C 2上,故y 20=1-x 209.④将④代入③得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).思维升华 应用定义法求曲线方程的关键在于由已知条件推出关于动点的等量关系式,由等量关系结合曲线定义判断是何种曲线,再设出标准方程,用待定系数法求解.已知两个定圆O 1和O 2,它们的半径分别是1和2,且O 1O 2=4.动圆M 与圆O 1内切,又与圆O 2外切,建立适当的坐标系,求动圆圆心M 的轨迹方程,并说明轨迹是何种曲线. 解 如图所示,以O 1O 2的中点O 为原点,O 1O 2所在直线为x 轴建立平面直角坐标系. 由O 1O 2=4,得O 1(-2,0),O 2(2,0).设动圆M 的半径为r ,则由动圆M 与圆O 1内切,有MO 1=r -1;由动圆M 与圆O 2外切,有MO 2=r +2. ∴MO 2-MO 1=3<4=O 1O 2.∴点M 的轨迹是以O 1、O 2为焦点,实轴长为3的双曲线的左支.∴a =32,c =2,∴b 2=c 2-a2=74. ∴点M 的轨迹方程为4x 29-4y 27=1(x ≤-32).题型二 直接法求轨迹方程例2 (2016·常州模拟)已知圆O :x 2+y 2=4,点A (3,0),以线段AB 为直径的圆内切于圆O ,记点B 的轨迹为Γ.(1)求曲线Γ的方程;(2)直线AB 交圆O 于C ,D 两点,当B 为CD 的中点时,求直线AB 的方程. 解 (1)设AB 的中点为M ,切点为N ,连结OM ,ON ,则OM +MN =ON =2,取A 关于y 轴的对称点A ′,连结A ′B ,故A ′B +AB =2(OM +MN )=4.所以点B 的轨迹是以A ′,A 为焦点,长轴长为4的椭圆. 其中,a =2,c =3,b =1,则 曲线Γ的方程为x 24+y 2=1.(2)因为B 为CD 的中点,所以OB ⊥CD ,则OB →⊥AB →. 设B (x 0,y 0),则AB →=(x 0-3,y 0), 所以x 0(x 0-3)+y 20=0.又x 204+y 20=1,解得x 0=23,y 0=±23. 则k OB =±22,k AB =∓2, 则直线AB 的方程为y =±2(x -3), 即2x -y -6=0或2x +y -6=0.思维升华 直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.通常将步骤简记为建系设点、列式、代换、化简、证明这五个步骤,但最后的证明可以省略,如果给出了直角坐标系则可省去建系这一步,求出曲线的方程后还需注意检验方程的纯粹性和完备性.在平面直角坐标系xOy 中,点P (a ,b )为动点,F 1,F 2分别为椭圆x 2a 2+y 2b2=1(a >b >0)的左,右焦点.已知△F 1PF 2为等腰三角形. (1)求椭圆的离心率e ;(2)设直线PF 2与椭圆相交于A ,B 两点,M 是直线PF 2上的点,满足AM →·BM →=-2,求点M 的轨迹方程.解 (1)设F 1(-c,0),F 2(c,0)(c >0).由题意,可得PF 2=F 1F 2,即 a -c 2+b 2=2c , 整理得2⎝ ⎛⎭⎪⎫c a2+c a-1=0,得c a =-1(舍去)或c a =12.所以e =12.(2)由(1)知a =2c ,b =3c ,可得椭圆方程为3x 2+4y 2=12c 2,直线PF 2的方程为y =3(x -c ).A ,B 两点的坐标满足方程组⎩⎨⎧3x 2+4y 2=12c 2,y =3 x -c ,消去y 并整理,得5x 2-8cx =0. 解得x 1=0,x 2=85c ,得方程组的解⎩⎨⎧x 1=0,y 1=-3c ,⎩⎪⎨⎪⎧x 2=85c ,y 2=335c .不妨设A ⎝ ⎛⎭⎪⎫85c ,335c ,B (0,-3c ).设点M 的坐标为(x ,y ),则AM →=⎝ ⎛⎭⎪⎫x -85c ,y -335c ,BM →=(x ,y +3c ).由y =3(x -c ),得c =x -33y . 于是AM →=⎝ ⎛⎭⎪⎫8315y -35x ,85y -335x ,BM →=(x ,3x ),由AM →·BM →=-2,即⎝⎛⎭⎪⎫8315y -35x ·x +⎝ ⎛⎭⎪⎫85y -335x ·3x =-2, 化简得18x 2-163xy -15=0. 将y =18x 2-15163x 代入c =x -33y ,得c =10x 2+516x >0.所以x >0.因此,点M 的轨迹方程是18x 2-163xy -15=0(x >0). 题型三 相关点法求轨迹方程例3 (2016·盐城模拟)如图所示,抛物线C 1:x 2=4y ,C 2:x 2=-2py (p >0).点M (x 0,y 0)在抛物线C 2上,过M 作C 1的切线,切点为A ,B (M 为原点O 时,A ,B 重合于O ).当x 0=1-2时,切线MA 的斜率为-12.(1)求p 的值;(2)当M 在C 2上运动时,求线段AB 中点N 的轨迹方程(A ,B 重合于O 时,中点为O ). 解 (1)因为抛物线C 1:x 2=4y 上任意一点(x ,y )的切线斜率为y ′=x2,且切线MA 的斜率为-12, 所以点A 的坐标为(-1,14),故切线MA 的方程为y =-12(x +1)+14.因为点M (1-2,y 0)在切线MA 及抛物线C 2上, 所以y 0=-12×(2-2)+14=-3-224,①y 0=- 1-2 22p =-3-222p .②由①②得p =2.(2)设N (x ,y ),A (x 1,x 214),B (x 2,x 224),x 1≠x 2.由N 为线段AB 的中点,知x =x 1+x 22,③y =x 21+x 228.④所以切线MA ,MB 的方程分别为y =x 12(x -x 1)+x 214,⑤y =x 22(x -x 2)+x 224.⑥由⑤⑥得MA ,MB 的交点M (x 0,y 0)的坐标为x 0=x 1+x 22,y 0=x 1x 24.因为点M (x 0,y 0)在C 2上,即x 20=-4y 0,所以x 1x 2=-x 21+x 226.⑦由③④⑦得x 2=43y ,x ≠0.当x 1=x 2时,A ,B 重合于原点O ,AB 的中点N 为点O ,坐标满足x 2=43y .因此AB 的中点N 的轨迹方程是x 2=43y .思维升华 “相关点法”的基本步骤(1)设点:设被动点坐标为(x ,y ),主动点坐标为(x 1,y 1). (2)求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧x 1=f x ,y ,y 1=g x ,y .(3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.设直线x -y =4a 与抛物线y 2=4ax 交于两点A ,B (a 为定值),C 为抛物线上任意一点,求△ABC 的重心的轨迹方程. 解 设△ABC 的重心为G (x ,y ),点C 的坐标为(x 0,y 0),A (x 1,y 1),B (x 2,y 2).由方程组⎩⎪⎨⎪⎧x -y =4a ,y 2=4ax ,消去y 并整理得x 2-12ax +16a 2=0.∴x 1+x 2=12a ,y 1+y 2=(x 1-4a )+(x 2-4a )=(x 1+x 2)-8a =4a .∵G (x ,y )为△ABC 的重心,∴⎩⎪⎨⎪⎧x =x 0+x 1+x 23=x 0+12a 3,y =y 0+y 1+y 23=y 0+4a3,∴⎩⎪⎨⎪⎧x 0=3x -12a ,y 0=3y -4a .又点C (x 0,y 0)在抛物线上,∴将点C 的坐标代入抛物线的方程得 (3y -4a )2=4a (3x -12a ), 即(y -4a 3)2=4a3(x -4a ).又点C 与A ,B 不重合,∴x 0≠(6±25)a , ∴△ABC 的重心的轨迹方程为(y -4a 3)2=4a 3(x -4a )(x ≠(6±253)a ).分类讨论思想在曲线方程中的应用典例 (16分)已知抛物线y 2=2px 经过点M (2,-22),椭圆x 2a 2+y 2b2=1的右焦点恰为抛物线的焦点,且椭圆的离心率为12.(1)求抛物线与椭圆的方程;(2)若P 为椭圆上一个动点,Q 为过点P 且垂直于x 轴的直线上的一点,OP OQ=λ(λ≠0),试求Q 的轨迹.思想方法指导 (1)由含参数的方程讨论曲线类型时,关键是确定分类标准,一般情况下,根据x 2,y 2的系数与0的关系及两者之间的大小关系进行分类讨论. (2)等价变换是解题的关键:即必须分三种情况讨论轨迹方程. (3)区分求轨迹方程与求轨迹问题. 规范解答解 (1)因为抛物线y 2=2px 经过点M (2,-22), 所以(-22)2=4p ,解得p =2.[2分] 所以抛物线的方程为y 2=4x ,其焦点为F (1,0),即椭圆的右焦点为F (1,0),得c =1. 又椭圆的离心率为12,所以a =2,可得b 2=4-1=3,[4分] 故椭圆的方程为x 24+y 23=1.[5分](2)设Q (x ,y ),其中x ∈[-2,2], 设P (x ,y 0),因为P 为椭圆上一点,所以x 24+y 203=1,解得y 20=3-34x 2.[7分]由OP OQ =λ可得OP 2OQ 2=λ2, 故x 2+3-34x 2x 2+y2=λ2,得(λ2-14)x 2+λ2y 2=3,x ∈[-2,2].[10分]当λ2=14,即λ=12时,得y 2=12,点Q 的轨迹方程为y =±23,x ∈[-2,2], 此轨迹是两条平行于x 轴的线段;[12分] 当λ2<14,即0<λ<12时,得到x 23λ2-14+y 23λ2=1,此轨迹表示实轴在y 轴上的双曲线满足x ∈[-2,2]的部分;[14分] 当λ2>14,即λ>12时,得到x 23λ2-14+y 23λ2=1.此轨迹表示长轴在x 轴上的椭圆满足x ∈[-2,2]的部分.[16分]1.(2016·无锡质检)设定点M 1(0,-3),M 2(0,3),动点P 满足条件PM 1+PM 2=a +9a(其中a是正常数),则点P 的轨迹是__________. 答案 椭圆或线段解析 ∵a 是正常数,∴a +9a≥29=6.当PM 1+PM 2=6时,点P 的轨迹是线段M 1M 2;当a +9a>6时,点P 的轨迹是椭圆.2.(2016·南京模拟)已知点M 与双曲线x 216-y 29=1的左,右焦点F 1,F 2的距离之比为2∶3,则点M 的轨迹方程为________________. 答案 x 2+y 2+26x +25=0解析 F 1(-5,0),F 2(5,0),设M (x ,y ),则 x +5 2+y 2x -5 2+y 2=49,化简得x 2+y 2+26x +25=0.3.已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且PM =MQ ,则Q 点的轨迹方程是____________. 答案 2x -y +5=0解析 由题意知,M 为PQ 中点, 设Q (x ,y ),则P 为(-2-x,4-y ), 代入2x -y +3=0,得2x -y +5=0.4.已知圆锥曲线mx 2+4y 2=4m 的离心率e 为方程2x 2-5x +2=0的根,则满足条件的圆锥曲线的个数为________. 答案 3解析 ∵e 是方程2x 2-5x +2=0的根, ∴e =2或e =12.mx 2+4y 2=4m 可化为x 24+y 2m=1,当它表示焦点在x 轴上的椭圆时, 有4-m 2=12,∴m =3; 当它表示焦点在y 轴上的椭圆时, 有m -4m=12,∴m =163; 当它表示焦点在x 轴上的双曲线时,可化为x 24-y 2-m=1,有4-m2=2,∴m =-12. ∴满足条件的圆锥曲线有3个.5.已知点A (1,0),直线l :y =2x -4,点R 是直线l 上的一点,若RA →=AP →,则点P 的轨迹方程为____________.答案 y =2x解析 设P (x ,y ),R (x 1,y 1),由RA →=AP →知,点A 是线段RP 的中点,∴⎩⎪⎨⎪⎧x +x12=1,y +y12=0,即⎩⎪⎨⎪⎧x 1=2-x ,y 1=-y .∵点R (x 1,y 1)在直线y =2x -4上,∴y 1=2x 1-4,∴-y =2(2-x )-4,即y =2x .6.平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC →=λ1OA →+λ2OB →(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是________. 答案 直线解析 设C (x ,y ),则OC →=(x ,y ),OA →=(3,1),OB →=(-1,3),∵OC →=λ1OA →+λ2OB →,∴⎩⎪⎨⎪⎧x =3λ1-λ2,y =λ1+3λ2,又λ1+λ2=1,∴x +2y -5=0,表示一条直线.7.曲线C 是平面内与两个定点F 1(-1,0)和F 2(1,0)的距离的积等于常数a 2(a >1)的点的轨迹.给出下列三个结论: ①曲线C 过坐标原点; ②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积不大于12a 2.其中,所有正确结论的序号是________. 答案 ②③解析 因为原点O 到两个定点F 1(-1,0),F 2(1,0)的距离的积是1,且a >1,所以曲线C 不过原点,即①错误;因为F 1(-1,0),F 2(1,0)关于原点对称,所以PF 1·PF 2=a 2对应的轨迹关于原点对称,即②正确;因为12F PF S ∆=12PF 1·PF 2·sin∠F 1PF 2≤12PF 1·PF 2=12a 2,即△F 1PF 2的面积不大于12a 2,所以③正确.8.(2017·南通月考)已知△ABC 的顶点A ,B 坐标分别为(-4,0),(4,0),C 为动点,且满足sin B +sin A =54sin C ,则C 点的轨迹方程为______ __________.答案x 225+y 29=1(x ≠±5)解析 由sin B +sin A =54sin C 可知b +a =54c =10,则AC +BC =10>8=AB ,∴满足椭圆定义.令椭圆方程为x 2a ′2+y 2b ′2=1,则a ′=5,c ′=4,b ′=3,则轨迹方程为x 225+y 29=1(x ≠±5). 9.如图,P 是椭圆x 2a 2+y 2b2=1上的任意一点,F 1,F 2是它的两个焦点,O 为坐标原点,且OQ →=PF 1→+PF 2→,则动点Q 的轨迹方程是________.答案 x 24a 2+y 24b2=1解析 由于OQ →=PF 1→+PF 2→, 又PF 1→+PF 2→=PM →=2PO →=-2OP →, 设Q (x ,y ),则OP →=-12OQ →=(-x 2,-y 2),即P 点坐标为(-x 2,-y2),又P 在椭圆上,则有 -x2 2a 2+ -y22b 2=1,即x 24a 2+y 24b2=1.10.已知圆的方程为x 2+y 2=4,若抛物线过点A (-1,0),B (1,0)且以圆的切线为准线,则抛物线焦点的轨迹方程是________________. 答案x 24+y 23=1(y ≠0) 解析 设抛物线的焦点为F ,过A ,B ,O 作准线的垂线AA 1,BB 1,OO 1,则AA 1+BB 1=2OO 1=4, 由抛物线定义得AA 1+BB 1=FA +FB ,∴FA +FB =4>2=AB ,故F 点的轨迹是以A ,B 为焦点, 长轴长为4的椭圆(去掉长轴两端点). ∴轨迹方程为x 24+y 23=1(y ≠0).11.过点(1,0)的直线l 与中心在原点,焦点在x 轴上且离心率为22的椭圆C 相交于A 、B 两点,直线y =12x 过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称,试求直线l 与椭圆C 的方程.解 由e =c a =22,得a 2-b 2a 2=12,从而a 2=2b 2,c =b .设椭圆C 的方程为x 2+2y 2=2b 2,A (x 1,y 1)、B (x 2,y 2),∵A 、B 在椭圆C 上,∴x 21+2y 21=2b 2,x 22+2y 22=2b 2, 两式相减得(x 21-x 22)+2(y 21-y 22)=0, 即y 1-y 2x 1-x 2=-x 1+x 22 y 1+y 2. 设AB 中点坐标为(x 0,y 0),则k AB =-x 02y 0,又(x 0,y 0)在直线y =12x 上,故y 0=12x 0,于是-x 02y 0=-1,即k AB =-1,故直线l 的方程为y =-x +1.右焦点(b,0)关于直线l 的对称点设为(x ′,y ′),则⎩⎪⎨⎪⎧y ′x ′-b =1,y ′2=-x ′+b2+1, 解得⎩⎪⎨⎪⎧x ′=1,y ′=1-b .由点(1,1-b )在椭圆上,得1+2(1-b )2=2b 2, ∴b =34,∴b 2=916,a 2=98.∴所求椭圆C 的方程为x 298+y 2916=1.12.(2016·连云港模拟)定圆M :(x +3)2+y 2=16,动圆N 过点F (3,0)且与圆M 相切,记圆心N 的轨迹为E . (1)求轨迹E 的方程;(2)设点A ,B ,C 在E 上运动,A 与B 关于原点对称,且AC =BC ,当△ABC 的面积最小时,求直线AB 的方程.解 (1)∵F (3,0)在圆M :(x +3)2+y 2=16内, ∴圆N 内切于圆M .∵NM +NF =4>FM ,∴点N 的轨迹E 为椭圆,且2a =4,c =3,∴b =1, ∴轨迹E 的方程为x 24+y 2=1.(2)①当AB 为长轴(或短轴)时,S △ABC =12OC ·AB =2.②当直线AB 的斜率存在且不为0时, 设直线AB 的方程为y =kx ,A (x A ,y A ),联立方程⎩⎪⎨⎪⎧x 24+y 2=1,y =kx ,得x 2A =41+4k 2,y 2A =4k 21+4k2,∴OA 2=x 2A +y 2A =4 1+k 21+4k2. 将上式中的k 替换为-1k ,可得OC 2=4 1+k 2k 2+4.∴S △ABC =2S △AOC =OA ·OC =4 1+k 21+4k2·4 1+k 2 k 2+4=4 1+k 21+4k 2 k 2+4. ∵ 1+4k 2k 2+4 ≤ 1+4k 2+ k 2+42=5 1+k 22,∴S △ABC ≥85,当且仅当1+4k 2=k 2+4,即k =±1时等号成立,此时△ABC 面积的最小值是85.∵2>85,∴△ABC 面积的最小值是85,此时直线AB 的方程为y =x 或y =-x .*13. (2016·河北衡水中学三调)如图,已知圆E :(x +3)2+y 2=16,点F (3,0),P 是圆E 上任意一点,线段PF 的垂直平分线和半径PE 相交于点Q .(1)求动点Q 的轨迹Γ的方程;(2)设直线l 与(1)中轨迹Γ相交于A ,B 两点,直线OA ,l ,OB 的斜率分别为k 1,k ,k 2(其中k >0),△OAB 的面积为S ,以OA ,OB 为直径的圆的面积分别为S 1,S 2,若k 1,k ,k 2恰好构成等比数列,求S 1+S 2S的取值范围. 解 (1)连结QF ,根据题意,QP =QF ,则QE +QF =QE +QP =4>EF =23,故动点Q 的轨迹Γ是以E ,F 为焦点,长轴长为4的椭圆.设其方程为x 2a 2+y 2b2=1(a >b >0),可知a =2,c =3,∴b =1, ∴点Q 的轨迹Γ的方程为x 24+y 2=1.(2)设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2).联立方程⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4,整理得,(1+4k 2)x 2+8kmx +4m 2-4=0, Δ=16(1+4k 2-m 2)>0,x 1+x 2=-8km 1+4k 2,x 1x 2=4 m 2-11+4k 2. ∵k 1,k ,k 2构成等比数列, ∴k 2=k 1k 2= kx 1+m kx 2+m x 1x 2,整理得km (x 1+x 2)+m 2=0, ∴-8k 2m 21+4k 2+m 2=0,解得k 2=14. ∵k >0,∴k =12.此时Δ=16(2-m 2)>0,解得m ∈(-2,2).又由A ,O ,B 三点不共线得m ≠0, 从而m ∈(-2,0)∪(0,2).故S =12·AB ·d =121+k 2|x 1-x 2|·|m |1+k 2=12x 1+x 2 2-4x 1x 2·|m | =2-m 2|m |. 又x 214+y 21=x 224+y 22=1, 则S 1+S 2=π4(x 21+y 21+x 22+y 22)=π4(34x 21+34x 22+2) =3π16[(x 1+x 2)2-2x 1x 2]+π2=5π4为定值. ∴S 1+S 2S =5π4×1 2-m 2 m2≥5π4, 当且仅当m =±1时等号成立. 综上,S 1+S 2S ∈[5π4,+∞).。
2018届高三数学一轮复习第九章平面解析几何第十节圆锥曲线的综合问题课件理
所以|AB|2≥8. 故线段AB长度的最小值为2 2 .
考点三 圆锥曲线中的探索性问题 典例3
x2 y 2 (2015北京,19,14分)已知椭圆C: + =1(a>b>0)的离心率为 a 2 b2
2 ,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M. 2
(1)求椭圆C的方程,并求点M的坐标(用m,n表示);
理数
课标版
第十节 圆锥曲线的综合问题
考点突破
考点一 定点、定值问题 典例1
2
x2 y 2 (2016北京,19,14分)已知椭圆C: + =1(a>b>0)的离心率为 a 2 b2
3 ,A(a,0),B(0,b),O(0,0),△OAB的面积为1.
(1)求椭圆C的方程; (2)设P是椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N.求
2.求定值问题常见的方法
(1)从特殊情况入手,求出定值,再证明这个值与变量无关; (2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.
1-1
x2 2 已知椭圆C: +y =1(a>1)的上顶点为A,右焦点为F,直线AF与圆M: a2
(x-3)2+(y-1)2=3相切. (1)求椭圆C的标准方程;
证:|AN|· |BM|为定值.
解析
解得a=2,b=1.
c 3 , 2 a 1 (1)由题意得 2 ab 1, 2 2 2 a b c ,
x2 2 所以椭圆C的方程为 +y =1. 4
(2)证明:由(1)知,A(2,0),B(0,1).
2 2 设P(x0,y0),则 +4 =4. x0 y0
2018版高考数学理江苏专用大一轮复习讲义教师版文档第九章 平面解析几何 9.3 含答案 精品
圆的定义与方程【知识拓展】1.确定圆的方程的方法和步骤确定圆的方程主要方法是待定系数法,大致步骤为(1)根据题意,选择标准方程或一般方程;(2)根据条件列出关于a,b,r或D,E,F的方程组;(3)解出a,b,r或D,E,F代入标准方程或一般方程.2.点与圆的位置关系点和圆的位置关系有三种.圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0)(1)点在圆上:(x0-a)2+(y0-b)2=r2;(2)点在圆外:(x0-a)2+(y0-b)2>r2;(3)点在圆内:(x0-a)2+(y0-b)2<r2.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)确定圆的几何要素是圆心与半径.( √ )(2)已知点A (x 1,y 1),B (x 2,y 2),则以AB 为直径的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.( √ )(3)方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是A =C ≠0,B =0,D 2+E 2-4AF >0.( √ )(4)方程x 2+2ax +y 2=0一定表示圆.( × )(5)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.( √ )1.(教材改编)圆心是(-2,3),且经过原点的圆的标准方程为______________. 答案 (x +2)2+(y -3)2=13 解析 易得r =13.2.已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m ,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为________. 答案 6解析 根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且AB =2m . 因为∠APB =90°,连结OP , 易知OP =12AB =m .要求m 的最大值,即求圆C 上的点P 到原点O 的最大距离. 因为OC =32+42=5, 所以(OP )max =OC +r =6, 即m 的最大值为6.3.(2016·扬州检测)当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以点C 为圆心,5为半径的圆的方程为______________. 答案 x 2+y 2+2x -4y =0解析 将方程分离参数a 可得a (x +1)-(x +y -1)=0,方程表示过两直线的交点,由⎩⎪⎨⎪⎧x +1=0,x +y -1=0得交点为(-1,2),故圆的方程为(x +1)2+(y -2)2=5,即x 2+y 2+2x -4y =0.4.(教材改编)圆C 的圆心在x 轴上,并且过点A (-1,1)和B (1,3),则圆C 的方程为_______. 答案 x 2+y 2-4x -6=0 解析 设圆心坐标为C (a,0), ∵点A (-1,1)和B (1,3)在圆C 上, ∴CA =CB ,即(a +1)2+1=(a -1)2+9, 解得a =2, ∴圆心为C (2,0),半径CA =(2+1)2+1=10,∴圆C 的方程为(x -2)2+y 2=10,即x 2+y 2-4x -6=0.5.(2016·浙江)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________,半径是________. 答案 (-2,-4) 5解析 由已知方程表示圆,则a 2=a +2, 解得a =2或a =-1.当a =2时,方程不满足表示圆的条件,故舍去. 当a =-1时,原方程为x 2+y 2+4x +8y -5=0, 化为标准方程为(x +2)2+(y +4)2=25, 表示以(-2,-4)为圆心,半径为5的圆.题型一 求圆的方程例1 (1)(2016·天津)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________________.(2)(2015·课标全国Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.答案 (1)x 2+y 2-4x -5=0 (2)⎝⎛⎭⎫x -322+y 2=254解析 (1)因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0, 所以圆心到直线2x -y =0的距离d =2a 5=455,解得a =2,所以圆C 的半径r =CM =4+5=3,所以圆C 的方程为(x -2)2+y 2=9, 即x 2+y 2-4x -5=0.(2)由题意知圆过(4,0),(0,2),(0,-2)三点, (4,0),(0,-2)两点的垂直平分线方程为 y +1=-2(x -2),令y =0,解得x =32,圆心为⎝⎛⎭⎫32,0,半径为52. 所以圆的标准方程为(x -32)2+y 2=254.思维升华 (1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.(2016·苏北四市联考)已知圆C 关于y 轴对称,经过点A (1,0),且被x 轴分成两段弧,弧长之比为1∶2,则圆C 的标准方程为________________. 答案 x 2+(y ±33)2=43解析 ∵圆C 关于y 轴对称,∴可设C (0,b ),设圆C 的半径为r ,则圆C 的标准方程为x 2+(y -b )2=r 2, 依题意,得⎩⎪⎨⎪⎧12+(-b )2=r 2,|b |=12r ,解得⎩⎨⎧r 2=43,b =±33,于是圆C 的标准方程为x 2+(y ±33)2=43.题型二 与圆有关的最值问题例2 (2016·盐城检测)已知点(x ,y )在圆(x -2)2+(y +3)2=1上,求x +y 的最大值和最小值. 解 设t =x +y ,则y =-x +t ,t 可视为直线y =-x +t 的纵截距,∴x +y 的最大值和最小值就是直线与圆有公共点时直线纵截距的最大值和最小值,即直线与圆相切时的纵截距.由直线与圆相切得圆心到直线的距离等于半径, 即|2+(-3)-t |2=1, 解得t =2-1或t =-2-1.∴x +y 的最大值为2-1,最小值为-2-1. 引申探究1.在例2的条件下,求yx的最大值和最小值.解 y x 可视为点(x ,y )与原点连线的斜率,y x 的最大值和最小值就是与该圆有公共点的过原点的直线斜率的最大值和最小值,即直线与圆相切时的斜率.设过原点的直线的方程为y =kx ,由直线与圆相切得圆心到直线的距离等于半径,即|2k +3|k 2+1=1,解得k =-2+233或k =-2-233.∴y x 的最大值为-2+233,最小值为-2-233. 2.在例2的条件下,求x 2+y 2+2x -4y +5的最大值和最小值. 解x 2+y 2+2x -4y +5=(x +1)2+(y -2)2,求它的最值可视为求点(x ,y )到定点(-1, 2)的距离的最值,可转化为圆心(2,-3)到定点(-1,2)的距离与半径的和或差.又圆心到定点(-1,2)的距离为34,∴x 2+y 2+2x -4y +5的最大值为34+1,最小值为34-1. 思维升华 与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法.①形如u =y -b x -a 型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离平方的最值问题.(2016·扬州模拟)已知实数x ,y 满足方程x 2+y 2-4x +1=0.求:(1)yx 的最大值和最小值; (2)y -x 的最小值; (3)x 2+y 2的最大值和最小值.解 (1)如图,方程x 2+y 2-4x +1=0表示以点(2,0)为圆心,以3为半径的圆.设yx =k ,即y =kx ,则圆心(2,0)到直线y =kx 的距离为半径,即直线与圆相切时,斜率取得最大值、最小值. 由|2k -0|k 2+1=3,解得k 2=3, ∴k max =3,k min =- 3.(2)设y -x =b ,则y =x +b ,当且仅当直线y =x +b 与圆切于第四象限时,截距b 取最小值, 由点到直线的距离公式,得|2-0+b |2=3, 即b =-2±6, 故(y -x )min =-2- 6.(3)x 2+y 2是圆上的点与原点的距离的平方,故连结OC , 与圆交于B 点,并延长交圆于C ′,则 (x 2+y 2)max =(OC ′)2=(2+3)2=7+43, (x 2+y 2)min =OB 2=(2-3)2=7-4 3. 题型三 与圆有关的轨迹问题例3 (2016·盐城模拟)已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程. 解 (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上, 所以(2x -2)2+(2y )2=4,故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设PQ 的中点为N (x ,y ),在Rt △PBQ 中, PN =BN .设O 为坐标原点,连结ON ,则ON ⊥PQ , 所以OP 2=ON 2+PN 2=ON 2+BN 2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.思维升华 求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法 (1)直接法,直接根据题目提供的条件列出方程. (2)定义法,根据圆、直线等定义列方程. (3)几何法,利用圆的几何性质列方程.(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.(2016·天津模拟)设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM 、ON为两边作平行四边形MONP ,求点P 的轨迹.解 如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝⎛⎭⎫x 2,y 2,线段MN 的中点坐标为⎝⎛⎭⎫x 0-32,y 0+42.由于平行四边形的对角线互相平分,故x 2=x 0-32,y 2=y 0+42.从而⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4. 又N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4. 因此所求轨迹为圆:(x +3)2+(y -4)2=4,但应除去两点⎝⎛⎭⎫-95,125和⎝⎛⎭⎫-215,285(点P 在直线OM 上的情况).21.利用几何性质巧设方程求半径典例 在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上,求圆C 的方程.思想方法指导 本题可采用两种方法解答,即代数法和几何法.(1)一般解法(代数法):可以求出曲线y =x 2-6x +1与坐标轴的三个交点,设圆的方程为一般式,代入点的坐标求解析式.(2)巧妙解法(几何法):利用圆的性质,知道圆心一定在圆上两点连线的垂直平分线上,从而设圆的方程为标准式,简化计算,显然几何法比代数法的计算量小,因此平时训练多采用几何法解题. 规范解答解 一般解法 (代数法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0),设圆的方程是x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则有⎩⎨⎧1+E +F =0,(3+22)2+D (3+22)+F =0,(3-22)2+D (3-22)+F =0,解得⎩⎪⎨⎪⎧D =-6,E =-2,F =1,故圆的方程是x 2+y 2-6x -2y +1=0.巧妙解法 (几何法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0).故可设C 的圆心为(3,t ),则有32+(t -1)2=(22)2+t 2,解得t =1. 则圆C 的半径为32+(t -1)2=3, 所以圆C 的方程为(x -3)2+(y -1)2=9, 即x 2+y 2-6x -2y +1=0.1.(2017·南京检测)圆心在y 轴上,且过点(3,1)的圆与x 轴相切,则该圆的方程是______. 答案 x 2+y 2-10y =0解析 根据题意,设圆心坐标为(0,r ),半径为r ,则32+(r -1)2=r 2,解得r =5,所以圆的方程为x 2+y 2-10y =0.2.已知圆M 的圆心M 在y 轴上,半径为1,直线l :y =2x +2被圆M 所截得的弦长为455,且圆心M 在直线l 的下方,则圆M 的标准方程是__________. 答案 x 2+(y -1)2=1 解析 点M 到l 的距离d = 1-(255)2=55.设M (0,a ),所以|2-a |5=55,所以a =1或a =3.又因为a <2×0+2=2,所以a =1. 所以圆M 的标准方程为x 2+(y -1)2=1.3.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2b 的最小值为________. 答案 3+2 2解析 由题意知圆心C (2,1)在直线ax +2by -2=0上, ∴2a +2b -2=0,整理得a +b =1,∴1a +2b =(1a +2b )(a +b )=3+b a +2a b ≥3+2b a ×2ab=3+22, 当且仅当b a =2ab ,即b =2-2,a =2-1时,等号成立.∴1a +2b的最小值为3+2 2. 4.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是________________. 答案 (x -2)2+(y +1)2=1解析 设圆上任一点坐标为(x 0,y 0),x 20+y 20=4,连线中点坐标为(x ,y ),则⎩⎪⎨⎪⎧ 2x =x 0+4,2y =y 0-2⇒⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2,代入x 20+y 20=4,得(x -2)2+(y +1)2=1.5.圆C 的圆心在y 轴正半轴上,且与x 轴相切,被双曲线x 2-y 23=1的渐近线截得的弦长为3,则圆C 的标准方程为______________. 答案 x 2+(y -1)2=1解析 依题意得,题中的双曲线的一条渐近线的斜率为3,倾斜角为60°,结合图形(图略)可知,所求的圆C 的圆心坐标是(0,1),半径是1,因此其方程是x 2+(y -1)2=1.6.(2016·淮安模拟)已知P 是直线l :3x -4y +11=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线(A ,B 是切点),C 是圆心,那么四边形P ACB 的面积的最小值是__________. 答案3解析 圆的方程可化为(x -1)2+(y -1)2=1,则C (1,1),当PC 最小时,四边形P ACB 的面积最小, (PC )min =|3-4+11|32+42=2,此时P A =PB = 3.所以四边形P ACB 的面积S =2×12×3×1= 3.7.(2016·常州模拟)已知圆C 过点(-1,0),且圆心在x 轴的负半轴上,直线l :y =x +1被该圆所截得的弦长为22,则过圆心且与直线l 平行的直线方程为________________. 答案 x -y +3=0解析 设圆的方程为(x -a )2+y 2=r 2(a <0),因为圆C 过点(-1,0),且直线l :y =x +1被该圆所截得的弦长为22,所以⎩⎪⎨⎪⎧(-1-a )2=r 2,(|a +1|2)2+(2)2=r 2, 解得⎩⎪⎨⎪⎧a =-3,r 2=4,即圆心坐标为(-3,0),则所求直线为y =x +3,即x -y +3=0.8.过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为______________. 答案 x +y -2=0解析 当圆心与点P 的连线和过点P 的直线垂直时,符合条件.圆心O 与点P 连线的斜率k =1,所求直线方程为y -1=-(x -1),即x +y -2=0.9.已知D 是由不等式组⎩⎪⎨⎪⎧x -2y ≥0, x +3y ≥0所确定的平面区域,则圆x 2+y 2=4在区域D 内的弧长为________. 答案 π2解析 作出可行域D 及圆x2+y 2=4,如图所示,图中阴影部分所在圆心角θ=α-β所对的弧长即为所求. 易知图中两直线的斜率分别为12,-13,即tan α=12,tan β=-13,tan θ=tan(α-β)=12+131-12×13=1,得θ=π4,故弧长l =θ·R =π4×2=π2(R 为圆的半径).10.在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________. 答案7+1解析 设D (x ,y ),由CD →=(x -3,y )及|CD →|=1, 知(x -3)2+y 2=1,即动点D 的轨迹为以点C 为圆心的单位圆,又OA →+OB →+OD →=(-1,0)+(0,3)+(x ,y )=(x-1,y +3),∴|OA →+OB →+OD →|=(x -1)2+(y +3)2.问题转化为圆(x -3)2+y 2=1上的点与点P (1,-3)间距离的最大值.∵圆心C (3,0)与点P (1,-3)之间的距离为d =(3-1)2+(0+3)2=7, 故(x -1)2+(y +3)2的最大值为7+1.11.已知圆C 经过P (4,-2),Q (-1,3)两点,且在y 轴上截得的线段的长为43,半径小于5.(1)求直线PQ 与圆C 的方程;(2)若直线l ∥PQ ,且l 与圆C 交于点A ,B ,且以线段AB 为直径的圆经过坐标原点,求直线l 的方程.解 (1)由题意知直线PQ 的方程为x +y -2=0.设圆心C (a ,b ),半径为r ,由于线段PQ 的垂直平分线的方程是y -12=x -32, 即y =x -1,所以b =a -1.① 由圆C 在y 轴上截得的线段的长为43,知r 2=(23)2+a 2,可得(a +1)2+(b -3)2=12+a 2,② 由①②得a =1,b =0或a =5,b =4.当a =1,b =0时,r 2=13,满足题意,当a =5,b =4时,r 2=37,不满足题意.故圆C 的方程为(x -1)2+y 2=13.(2)设直线l 的方程为y =-x +m (m ≠2),A (x 1,m -x 1),B (x 2,m -x 2).由题意可知OA ⊥OB ,即OA →·OB →=0,∴x 1x 2+(m -x 1)(m -x 2)=0,化简得2x 1x 2-m (x 1+x 2)+m 2=0.③ 由⎩⎪⎨⎪⎧y =-x +m ,(x -1)2+y 2=13得 2x 2-2(m +1)x +m 2-12=0,∴x 1+x 2=m +1,x 1x 2=m 2-122, 代入③,得m 2-12-m ·(1+m )+m 2=0,∴m =4或m =-3,经检验都满足题意,∴直线l 的方程为x +y -4=0或x +y +3=0.12.在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程. 解 (1)设P (x ,y ),圆P 的半径为r .则y 2+2=r 2,x 2+3=r 2.∴y 2+2=x 2+3,即y 2-x 2=1.∴圆心P 的轨迹方程为y 2-x 2=1.(2)设P 点的坐标为(x 0,y 0), 则|x 0-y 0|2=22,即|x 0-y 0|=1. ∴y 0-x 0=±1,即y 0=x 0±1.①当y 0=x 0+1时,由y 20-x 20=1,得(x 0+1)2-x 20=1.∴⎩⎪⎨⎪⎧x 0=0,y 0=1,∴r 2=3. ∴圆P 的方程为x 2+(y -1)2=3.②当y 0=x 0-1时,由y 20-x 20=1,得(x 0-1)2-x 20=1.∴⎩⎪⎨⎪⎧x 0=0,y 0=-1,∴r 2=3. ∴圆P 的方程为x 2+(y +1)2=3.综上所述,圆P 的方程为x 2+(y ±1)2=3.*13.已知M 为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3).(1)求MQ 的最大值和最小值;(2)若M (m ,n ),求n -3m +2的最大值和最小值. 解 (1)由圆C :x 2+y 2-4x -14y +45=0,可得(x -2)2+(y -7)2=8,所以圆心C 的坐标为(2,7),半径r =2 2.又QC =(2+2)2+(7-3)2=4 2.所以(MQ )max =42+22=62,(MQ )min =42-22=2 2.(2)可知n -3m +2表示直线MQ 的斜率, 设直线MQ 的方程为y -3=k (x +2),即kx -y +2k +3=0,n -3m +2=k . 由直线MQ 与圆C 有交点, 所以|2k -7+2k +3|1+k 2≤22, 可得2-3≤k ≤2+3,所以n -3m +2的最大值为2+3,最小值为2- 3.。
2018年高考数学总复习教师用书第九章 平面解析几何 第9讲 圆锥曲线的综合问题 Word版含答案
第讲圆锥曲线的综合问题最新考纲.掌握解决直线与椭圆、抛物线的位置关系的思想方法;.了解圆锥曲线的简单应用;.理解数形结合的思想.知识梳理.直线与圆锥曲线的位置关系判断直线与圆锥曲线的位置关系时,通常将直线的方程++=(,不同时为)代入圆锥曲线的方程(,)=,消去(也可以消去)得到一个关于变量(或变量)的一元方程,即消去,得++=.,设一元二次方程++=的判别式为时当Δ()≠则相交,直线与圆锥曲线⇔;Δ>=Δ⇔;直线与圆锥曲线相切⇔Δ<.相离直线与圆锥曲线()当=,≠时,即得到一个一次方程,则直线与圆锥曲线相交,且只有一个交点,此时,若为则直线与双曲线的渐近线的位置关系是双曲线平行,;若为抛物线,则直线与抛物线的对称轴平行或重合的位置关系是..圆锥曲线的弦长设斜率为(≠)的直线与圆锥曲线相交于,两点,(,),(,),则=-=·=·.-=·诊断自测.判断正误(在括号内打“√”或“×”) ()直线与椭圆相切的充要条件是:直线与椭圆只有一个公共点.( ) ()直线与双曲线相切的充要条件是:直线与双曲线只有一个公共点.( )()直线与抛物线相切的充要条件是:直线与抛物线只有一个公共点.( ) ()如果直线=+与圆锥曲线相交于(,),(,)两点,则弦长=-.( ) ()若抛物线上存在关于直线对称的两点,则需满足直线与抛物线的方程联立消元后得到的一元二次方程的判别式Δ>.( )解析()因为直线与双曲线的渐近线平行时,也只有一个公共点,是相交,但并不相切.()因为直线与抛物线的对称轴平行或重合时,也只有一个公共点,是相交,但不相切. ()应是以为垂直平分线的线段所在的直线′与抛物线方程联立,消元后所得一元二次方程的判别式Δ>.答案()√()×()×()√()×.直线=-+与椭圆+=的位置关系为( ).相交.相切 .相离 .不确定解析直线=-+=(-)+恒过定点(,),又点(,)在椭圆内部,故直线与椭圆相交.答案.若直线=与双曲线-=相交,则的取值范围是( )∪解析双曲线-=的渐近线方程为=±,若直线与双曲线相交,数形结合,得∈.答案.过点(,)作直线,使它与抛物线=仅有一个公共点,这样的直线有( )条条条条解析过(,)与抛物线=相切的直线有条,过(,)与对称轴平行的直线有一条,这三条直线与抛物线都只有一个公共点.答案.已知,是椭圆+=的两个焦点,是椭圆上一点,且⊥,则△的面积为.解析由题意可得+==,+====(+)-·=-·,解得·=,所以△的面积为·=×=.答案.(·嘉兴七校联考)椭圆+=的左焦点为,直线=与椭圆相交于点,,当=时,△的周长最大,此时△的面积是.解析设椭圆+=的右焦点为′,则(-,),′(,).由椭圆的定义和性质易知,当直线=过′(,)时△的周长最大,此时=,把=代入+=得=,=±,△==××=.答案第课时直线与圆锥曲线考点一直线与圆锥曲线的位置关系【例】在平面直角坐标系中,已知椭圆:+=(>>)的左焦点为(-,),且点(,)在上.()求椭圆的方程;()设直线同时与椭圆和抛物线:=相切,求直线的方程.解()椭圆的左焦点为(-,),∴=,又点(,)在曲线上,∴+=,得=,则=+=,所以椭圆的方程为+=.。
高考数学大一轮复习 第九章 平面解析几何 9.8 圆锥曲线的综合问题 第2课时 范围、最值问题教师用
2018版高考数学大一轮复习第九章平面解析几何9.8 圆锥曲线的综合问题第2课时范围、最值问题教师用书文新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学大一轮复习第九章平面解析几何9.8 圆锥曲线的综合问题第2课时范围、最值问题教师用书文新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学大一轮复习第九章平面解析几何9.8 圆锥曲线的综合问题第2课时范围、最值问题教师用书文新人教版的全部内容。
第2课时范围、最值问题题型一范围问题例1 (2015·天津)已知椭圆错误!+错误!=1(a>b>0)的左焦点为F(-c,0),离心率为错误!,点M在椭圆上且位于第一象限,直线FM被圆x2+y2=错误!截得的线段的长为c,|FM|=错误!.(1)求直线FM的斜率;(2)求椭圆的方程;(3)设动点P在椭圆上,若直线FP的斜率大于错误!,求直线OP(O为原点)的斜率的取值范围.解(1)由已知,有错误!=错误!,又由a2=b2+c2,可得a2=3c2,b2=2c2。
设直线FM的斜率为k(k>0),F(-c,0),则直线FM的方程为y=k(x+c).由已知,有错误!2+错误!2=错误!2,解得k=错误!.(2)由(1)得椭圆方程为错误!+错误!=1,直线FM的方程为y=错误!(x+c),两个方程联立,消去y,整理得3x2+2cx-5c2=0,解得x=-错误!c或x=c.因为点M在第一象限,可得M的坐标为错误!.由|FM|=错误!=错误!。
解得c=1,所以椭圆的方程为错误!+错误!=1。
(3)设点P的坐标为(x,y),直线FP的斜率为t,得t=错误!,即直线FP的方程为y=t(x+1)(x≠-1),与椭圆方程联立,错误!消去y,整理得2x2+3t2(x+1)2=6,又由已知,得t=错误!>错误!,解得-错误!<x<-1或-1<x<0.设直线OP的斜率为m,得m=错误!,即y=mx(x≠0),与椭圆方程联立,整理得m2=错误!-错误!。
江苏2018版高考数学复习第九章平面解析几何9
9.5椭圆1.椭圆的概念平面内到两个定点F 1,F 2的距离的和等于常数(大于F 1F 2)的点的轨迹叫做椭圆,两个定点F 1,F 2叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P ={M |MF 1+MF 2=2a },F 1F 2=2c ,其中a >0,c >0,且a ,c 为常数:(1)若a >c ,则集合P 为椭圆;(2)若a =c ,则集合P 为线段;(3)若a <c ,则集合P 为空集.2.椭圆的标准方程和几何性质标准方程x 2y 2+=1(a >b >0)a 2b 2y 2x 2+=1(a >b >0)a 2b2图形范围对称性顶点轴焦距离心率-a ≤x ≤a -b ≤y ≤b -b ≤x ≤b -a ≤y ≤a 对称轴:坐标轴对称中心:原点A 1(-a,0),A 2(a,0)B 1(0,-b ),B 2(0,b )A 1(0,-a ),A 2(0,a )B 1(-b,0),B 2(b,0)性质长轴A 1A 2的长为2a ;短轴B 1B 2的长为2bF 1F 2=2c ce =∈(0,1)a a 2=b 2+c 2a ,b ,c 的关系【知识拓展】点P (x 0,y 0)和椭圆的关系x 2y 200(1)点P (x 0,y 0)在椭圆内2+2<1.a bx2y200(2)点P(x,y)在椭圆上⇔2+2=1.a bx2y200(3)点P(x,y)在椭圆外⇔2+2>1.a b【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内到两个定点F1,F2的距离的和等于常数的点的轨迹叫做椭圆.(×)(2)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c 为椭圆的半焦距).(√)(3)椭圆的离心率e越大,椭圆就越圆.(×)(4)方程mx+ny=1(m>0,n>0,m≠n)表示的曲线是椭圆.(√)22y2x2(5)2+2=1(a≠b)表示焦点在y轴上的椭圆.(×)a bx2y2y2x2(6)2+2=1(a>b>0)与2+2=1(a>b>0)的焦距相等.(√)a b a b1.(教材改编)椭圆+=1的焦距为4,则m=________.10-m m-2答案4或8⎧⎪10-m>m-2>0,解析由题意知⎨⎪⎩10-m-m-2x2y2=4⎧⎪m-2>10-m>0,或⎨⎪⎩m-2-10-m=4,解得m=4或m=8.2.(2016·苏州检测)在平面直角坐标系xOy内,动点P到定点F(-1,0)的距离与P到定直线x=-4的距离的比值为.则动点P的轨迹C的方程为__________.答案12x2y24+=13解析设点P(x,y),由题意知化简得3x+4y=12,22x+12+y21=,|x+4|2所以动点P的轨迹C的方程为+=1.433.(2016·全国乙卷改编)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为1其短轴长的,则该椭圆的离心率为________.4x2y21答案211解析如图,由题意得,BF=a,OF=c,OB=b,OD=·2b=b.421在Rt△FOB中,OF·OB=BF·OD,即cb=a·b,2c1解得a=2c,故椭圆离心率e==.a214.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是__________.2答案x2y24+=13c1x2y2222解析由题意知c=1,e==,所以a=2,b=a-c=3.故所求椭圆方程为+=1.a2435.(教材改编)已知点P是椭圆+=1上y轴右侧的一点,且以点P及焦点F1,F2为顶点的54三角形的面积等于1,则点P的坐标为__________________.答案x2y2⎛15⎫⎛15⎫,1⎪或 ,-1⎪⎝2⎭⎝2⎭222解析设P(x,y),由题意知c=a-b=5-4=1,所以c=1,则F1(-1,0),F2(1,0),由题意可得点P到x轴的距离为1,所以y=±1,把y1515⎛15⎫=±1代入+=1,得x=±,又x>0,所以x=,所以P点坐标为 ,1⎪或5422⎝2⎭x2y2⎛15⎫,-1⎪.⎝2⎭题型一椭圆的定义及标准方程命题点1利用定义求轨迹例1(2016·徐州模拟)如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P 的轨迹是________.答案椭圆解析由条件知PM =PF ,∴PO +PF =PO +PM =OM =R >OF .∴P 点的轨迹是以O ,F 为焦点的椭圆.命题点2利用待定系数法求椭圆方程例2(1)已知椭圆以坐标轴为对称轴,且长轴长是短轴长的3倍,并且过点P (3,0),则椭圆的方程为___________________________________________.(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 1(6,1),P 2(-3,-2),则椭圆的方程为_____________________________________.答案(1)+y =1或+=19819(2)+=193解析(1)若焦点在x 轴上,x 22y 2x 2x 2y 2x 2y 2设方程为2+2=1(a >b >0).a b30∵椭圆过P (3,0),∴2+2=1,即a =3,22a b又2a =3×2b ,∴b =1,∴椭圆方程为+y =1.9x 22y 2x 2若焦点在y 轴上,设方程为2+2=1(a >b >0).a b03∵椭圆过点P (3,0),∴2+2=1,即b =3.22a b又2a =3×2b ,∴a =9,∴椭圆方程为+=1.819∴所求椭圆的方程为+y =1或+=1.9819(2)设椭圆方程为mx +ny =1(m >0,n >0且m ≠n ).∵椭圆经过点P 1,P 2,∴点P 1,P 2的坐标适合椭圆方程.⎧6m +n =1,①⎪即⎨⎪⎩3m +2n =1,②22y 2x 2x 22y 2x 21m =,⎧⎪9①②两式联立,解得⎨1n =⎪⎩3.∴所求椭圆方程为+=1.93命题点3利用定义解决“焦点三角形”问题x 2y 2x 2y 2→→例3已知F 1,F 2是椭圆C :2+2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1⊥PF 2.a b若△PF 1F 2的面积为9,则b =________.答案3解析设PF 1=r 1,PF 2=r 2,则⎨⎧r 1+r 2=2a ,⎪222⎪⎩r 1+r 2=4c ,222222因为2r 1r 2=(r 1+r 2)-(r 1+r 2)=4a -4c =4b ,又因为S△PF 1F 2=所以b =3.引申探究1.在例3中,若增加条件“△PF 1F 2的周长为18”,其他条件不变,求该椭圆的方程.解由原题得b =a -c =9,又2a +2c =18,所以a -c =1,解得a =5,故椭圆方程为+=1.259→→2.在例3中,若将条件“PF 1⊥PF 2”“△PF 1F 2的面积为9”分别改为“∠F 1PF 2=60°”“S△PF 1F 2=33”,结果如何?解PF 1+PF 2=2a ,又∠F 1PF 2=60°,所以PF 1+PF 2-2PF 1·PF 2cos 60°=F 1F 2,即(PF 1+PF 2)-3PF 1·PF 2=4c ,所以3PF 1·PF 2=4a -4c =4b ,42所以PF 1·PF 2=b ,3又因为S△PF 1F 2=2222222222212rr 12=b =9,2x 2y 21PF 1·PF 2·sin 60︒2142332=·b ·=b =33,2323所以b =3.思维升华(1)求椭圆的方程多采用定义法和待定系数法,利用椭圆的定义定形状时,一定要注意常数2a >F 1F 2这一条件.(2)求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a ,b 的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx +ny =1(m >0,n >0,m ≠n )的形式.(3)当P 在椭圆上时,与椭圆的两焦点F 1,F 2组成的三角形通常称为“焦点三角形”,利用定义可求其周长;利用定义和余弦定理可求PF 1·PF 2;通过整体代入可求其面积等.(1)(2016·盐城模拟)已知两圆C 1:(x -4)+y =169,C 2:(x +4)+y =9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为_________.(2)(2016·镇江模拟)设F 1、F 2分别是椭圆+y =1的左、右焦点,若椭圆上存在一点P ,使4→→→(OP +OF 2)·PF 2=0(O 为坐标原点),则△F 1PF 2的面积是______.答案(1)+=1(2)16448解析(1)设圆M 的半径为r ,则MC 1+MC 2=(13-r )+(3+r )=16>8=C 1C 2,所以M 的轨迹是以C 1,C 2为焦点的椭圆,且2a =16,2c =8,故所求的轨迹方程为+=1.6448→→→→→→→→(2)∵(OP +OF 2)·PF 2=(OP +F 1O )·PF 2=F 1P ·PF 2=0,∴PF 1⊥PF 2,∠F 1PF 2=90°.设PF 1=m ,PF 2=n ,则m +n =4,m +n =12,2mn =4,22222222x 22x 2y 2x 2y 21∴S △F 1PF 2=mn =1.2题型二椭圆的几何性质例4(1)已知点F 1,F 2是椭圆x +2y =2的左,右焦点,点P 是该椭圆上的一个动点,那么→→|PF 1+PF 2|的最小值是________.22x 2y 2(2)(2016·全国丙卷改编)已知O 为坐标原点,F 是椭圆C :2+2=1(a >b >0)的左焦点,A ,a bB 分别为椭圆C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为________.1答案(1)2(2)3→→解析(1)设P (x 0,y 0),则PF 1=(-1-x 0,-y 0),PF 2=(1-x 0,-y 0),→→∴PF 1+PF 2=(-2x 0,-2y 0),→→22∴|PF 1+PF 2|=4x 0+4y 0=22-2y 0+y 0=2-y 0+2.∵点P 在椭圆上,∴0≤y 0≤1,→→2∴当y 0=1时,|PF 1+PF 2|取最小值2.(2)设M (-c ,m ),则E 0,又B ,D ,M 三点共线,所以22222⎛⎝am ⎫am ⎛⎫,,OE 的中点为D ,则D 0,⎪⎪a -c ⎭⎝2a -c ⎭m m 1=,a =3c ,e =.a -c a +c 3思维升华(1)利用椭圆几何性质的注意点及技巧①注意椭圆几何性质中的不等关系在求与椭圆有关的一些量的范围,或者最大值、最小值时,经常用到椭圆标准方程中x ,y 的范围,离心率的范围等不等关系.②利用椭圆几何性质的技巧求解与椭圆几何性质有关的问题时,要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的内在联系.(2)求椭圆的离心率问题的一般思路求椭圆的离心率或其范围时,一般是依据题设得出一个关于a ,b ,c 的等式或不等式,利用a 2=b 2+c 2消去b ,即可求得离心率或离心率的范围.x 2y 2(2016·江苏)如图,在平面直角坐标系xOy 中,F 是椭圆2+2=1(a >b >0)的a b右焦点,直线y =与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.2b答案63⎧⎪解析联立方程组⎨b y =⎪⎩2,x 2y 2+=1,a 2b 2解得B ,C 两点坐标为B -⎛⎝3b ⎫⎛3b ⎫a ,⎪,C a ,⎪,22⎭2⎭⎝23b ⎫→⎛3a b ⎫→⎛又F (c,0),则FB = -a -c ,⎪,FC = -c ,⎪,2⎭2⎭⎝2⎝2→→又由∠BFC =90°,可得FB ·FC =0,代入坐标可得3b c -a 2+=0,4422①又因为b =a -c .222c 22代入①式可化简为2=,a 3则椭圆离心率为e ==题型三直线与椭圆ca26=.33x 2y 2113e例5(2016·天津)设椭圆2+=1(a >3)的右焦点为F ,右顶点为A .已知+=,其a 3OF OA FA中O 为原点,e 为椭圆的离心率.(1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF ⊥HF ,且∠MOA =∠MAO ,求直线l 的斜率.113e解(1)设F (c,0),由+=,OF OA FA11即+=22c a a 3c222,可得a -c =3c .a -c222又a -c =b =3,所以c =1,因此a =4.所以椭圆的方程为+=1.43(2)设直线l 的斜率为k (k ≠0),则直线l 的方程为y =k (x -2).x 2y 2x y ⎧⎪+=1,设B (x B ,y B ),由方程组⎨43⎪⎩y =k x -2222222消去y ,整理得(4k +3)x -16k x +16k -12=0,8k -6解得x =2或x =2.4k +38k -6-12k由题意,得x B =2,从而y B =2.4k +34k +3由(1)知,F (1,0),设H (0,y H ),12k ⎫→→⎛9-4k 有FH =(-1,y H ),BF = 2,2⎪.⎝4k +34k +3⎭→→由BF ⊥HF ,得BF ·FH =0,4k -912ky H 9-4k 所以2+2=0,解得yH =.4k +34k +312k 9-4k 因此直线MH 的方程为y =-x +.k 12k1222222y =k x -2,⎧⎪2设M (x M ,y M ),由方程组⎨19-4k y =-x +⎪k 12k⎩20k +9解得x M =.212k +1在△MAO 中,∠MOA =∠MAO MA =MO ,即(x M -2)+y M =x M +y M,20k +9化简得x M =1,即=1,212k +1解得k =-66或k =.4466或.44222222消去y ,所以直线l 的斜率为-思维升华(1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题时用“点差法”解决,往往会更简单.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则AB ==1+121+k 2[x 1+x 22-4x 1x 2]k[y 1+y 22-4y 1y 2](k 为直线斜率).提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.如图,已知椭圆O :+y =1的右焦点为F ,B ,C 分别为椭圆O 的上,下顶点,4x 22P 是直线l :y =-2上的一个动点(与y 轴交点除外),直线PC 交椭圆O 于另一点M .(1)当直线PM过椭圆的右焦点F时,求△FBM的面积;(2)①记直线BM,BP的斜率分别为k1,k2,求证:k1·k2为定值;→→②求PB·PM的取值范围.(1)解由题意知B(0,1),C(0,-1),焦点F(3,0),当直线PM过椭圆O的右焦点F时,直线PM的方程为x3+3=1,即y=x-1.-13y⎧⎪4+y=1,联立⎨3y=⎪⎩3x-1,2x283⎧x=⎪7,解得⎨1y=⎪⎩7⎧⎪x=0,或⎨⎪y=-1⎩(舍去),831即点M的坐标为(,).77连结BF,则直线BF的方程为x+=1,31y即x+3y-3=0.又BF=a=2,点M到直线BF的距离为83123|+3×-3|7773d===,22271+31133故△FBM的面积为S△MBF=·BF·d=×2×=.2277-1--21 (2)方法一①证明设P(m,-2),且m≠0,则直线PM的斜率为k==-,0-m m1则直线PM 的方程为y =-x -1.m1y =-x -1,⎧⎪m 联立⎨x ⎪⎩4+y =1,22428消去y ,得(1+2)x +x =0,m m8m 4-m 解得点M 的坐标为(-2,2),m +4m +44-m -12m 2+4-2m 11--23所以k 1===m ,k 2==-,8m -8m 40-mm -2m +4313所以k 1·k 2=-·m =-为定值.m 44→②解由①知,PB =(-m,3),→8m 4-m PM =(-2-m ,2+2)m +4m +4-m -12m m +12=(2,2),m +4m +432222m +12m m +12→→所以PB ·PM =(-m,3)·(-2,2)m +4m +4m 2+12m 2+3=.m 2+4令m +4=t >4,→→则PB ·PM =232t +8tt -1t 2+7t -88==t -+7.t t8因为y =t -+7在t ∈(4,+∞)上单调递增,t88→→所以PB ·PM =t -+7>4-+7=9,t 4→→故PB ·PM 的取值范围为(9,+∞).方法二①证明设点M 的坐标为(x 0,y 0)(x 0≠0),则直线PM 的方程为y =y 0+1x -1,x 0x 0y 0+1,-2),令y =-2,得点P 的坐标为(-所以k 1=y 0-1-2-13y 0+1,k 2==,x 0x 0x 0-y 0+12y 0-13y 0+13y 0-1所以k 1·k 2=·=x 0x 0x 23y 0-13==-为定值.241-y 042x 0→②解由①知,PB =(,3),y 0+1→x 0PM =(x 0+,y 0+2),y 0+1x 0x 0→→所以PB ·PM =(x 0+)+3(y 0+2)y 0+1y 0+1x 2y 0+20=+3(y 0+2)y 0+12==41-y 02y 0+22y 0+17-y 0+3(y 0+2).y 0+2y 0+1令t =y 0+1∈(0,2),→→则PB ·PM =8-tt +1t8=-t ++7.t8因为y =-t ++7在t ∈(0,2)上单调递减,t88→→所以PB ·PM =-t ++7>-2++7=9,t 2→→故PB ·PM 的取值范围为(9,+∞).8.高考中求椭圆的离心率问题考点分析离心率是椭圆的重要几何性质,是高考重点考查的一个知识点,这类问题一般有两类:一类是根据一定的条件求椭圆的离心率;另一类是根据一定的条件求离心率的取值范围,无论是哪类问题,其难点都是建立关于a ,b ,c 的关系式(等式或不等式),并且最后要把其中的b 用a ,c 表示,转化为关于离心率e 的关系式,这是化解有关椭圆的离心率问题难点的根本方法.x 2y 2典例1(2015·福建改编)已知椭圆E :2+2=1(a >b >0)的右焦点为F ,短轴的一个端点a b4为M,直线l:3x-4y=0交椭圆E于A,B两点.若AF+BF=4,点M到直线l的距离不小于,5则椭圆E的离心率的取值范围是__________.解析左焦点F,连结FA,FB,则四边形AFBF为平行四边形.∵AF+BF=4,∴AF+AF=4,∴a=2.4b4设M(0,b),则≥,∴1≤b<2.55c离心率e==a答案 0,c2=a2a2-b2=a24-b⎛3⎤∈ 0,⎥.42⎦⎝2⎛⎝3⎤⎥2⎦x22典例2(14分)(2016·浙江)如图,设椭圆2+y=1(a>1).a(1)求直线y=kx+1被椭圆截得的线段长(用a,k表示);(2)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.规范解答解(1)设直线y=kx+1被椭圆截得的线段为AM,y=kx+1,⎧⎪2由⎨x22+y=1,⎪⎩a2得(1+a k)x+2a kx=0,22222a k故x1=0,x2=-22,1+a k2a|k|2因此AM=1+k|x1-x2|=1+k.22·1+a k22[6分](2)假设圆与椭圆的公共点有4个,由对称性可设y轴左侧的椭圆上有两个不同的点P,Q,满足AP=AQ.记直线AP,AQ的斜率分别为k1,k2,且k1,k2>0,k1≠k2.2a|k1|1+k12a|k2|1+k2由(1)知AP=,AQ=,22221+a k11+a k22222[8分]2a|k1|1+k12a|k2|1+k2故=,22221+a k11+a k2所以(k1-k2)[1+k1+k2+a(2-a)k1k2]=0.由k1≠k2,k1,k2>0,得1+k1+k2+a(2-a)k1k2=0,222222222222222222⎛1⎫⎛1⎫22因此2+1⎪2+1⎪=1+a(a-2),⎝k1⎭⎝k2⎭22①因为①式关于k1,k2的方程有解的充要条件是1+a(a-2)>1,所以a> 2.[12分]因此,任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a≤2,c a2-12由e==,得0<e≤.a a2所以离心率的取值范围是(0,2].2[14分]x2y21.(2016·盐城模拟)已知椭圆C:+=1(m>0)的左、右焦点分别为F1、F2,过F2的直线l3m2m交C于A、B两点,若△AF1B的周长为43,则椭圆C的方程为________.答案x2y23+=12解析∵△AF1B的周长=AF1+BF1+AF2+BF2=4a,∴4a=43,故a=3,即3m=(3),∴m=1.∴椭圆的方程为+=1.322x2y2x2y22.(2016·苏北四市一模)已知椭圆2+2=1(a>b>0),点A、B1、B2、F依次为其左顶点、下a ba2顶点、上顶点和右焦点.若直线AB2与直线B1F的交点恰在直线x=上,则椭圆的离心率为c____.1答案2解析由题意知直线AB2:-+=1,直线B1F:-=1,联立解得x=2x ya bx yc b2ac,若交点在椭a-c2ac a1222圆的右准线上,则=,即2c+ac-a=0,所以2e+e-1=0,解得e=.a-c c2x 2y 23.若对任意k ∈R ,直线y -kx -1=0与椭圆+=1恒有公共点,则实数m 的取值范围是2m__________.答案[1,2)∪(2,+∞)解析联立直线与椭圆的方程,消去y 得(2k +m )x +4kx +2-2m =0,因为直线与椭圆恒有公共点,所以Δ=16k -4(2k +m )(2-2m )≥0,即2k +m -1≥0恒成立,因为k ∈R ,所以k ≥0,则222222m -1≥0,所以m ≥1,又m ≠2,所以实数m 的取值范围是[1,2)∪(2,+∞).1124.(2016·南昌模拟)已知椭圆:+x =1,过点P (,)的直线与椭圆相交于A ,B 两点,且922弦AB 被点P 平分,则直线AB 的方程为________________.答案9x +y -5=0+x =1,⎧⎪9y解析设A (x ,y ),B (x ,y ),因为A ,B 在椭圆+x =1上,所以⎨9y ⎪⎩9+x =1,221211222222y 2y 21两式相减,得即2y 21-y 29+x 1-x 2=0,+(x 1-x 2)(x 1+x 2)=0,22y 1-y 29y 1+y 211又弦AB 被点P (,)平分,22所以x 1+x 2=1,y 1+y 2=1,将其代入上式,得得y 1-y 29+x 1-x 2=0,y 1-y 2=-9,x 1-x 2即直线AB 的斜率为-9,所以直线AB 的方程为y -=-9(x -),即9x +y -5=0.5.(2016·宿迁模拟)已知F 1、F 2是椭圆+y =1的两个焦点,P 为椭圆上一动点,则使PF 1·PF 24取得最大值的点P 为__________.答案(0,1)或(0,-1)解析由椭圆定义得PF 1+PF 2=2a =4,1212x 22∴PF 1·PF 2≤(PF 1+PF 22)=4,2当且仅当PF 1=PF 2=2,即P (0,-1)或(0,1)时,PF 1·PF 2取得最大值.6.已知两定点A (-2,0)和B (2,0),动点P (x ,y )在直线l :y =x +3上移动,椭圆C 以A ,B 为焦点且经过点P ,则椭圆C 的离心率的最大值为________.答案226132解析由题意知,椭圆C 的离心率e =,a求e 的最大值,即求a 的最小值.由于A ,B 两点是椭圆的焦点,所以PA +PB =2a ,即在直线l 上找一点P ,使PA +PB 的值最小,设点A (-2,0)关于直线l :y =x +3的对称点为Q (x 0,y 0),y ⎧⎪x +2=-1,则⎨y x -2⎪⎩2=2+3,000解得⎨⎧x 0=-3,⎪⎪⎩y 0=1,即Q (-3,1),则PA +PB ≥QB =[-3-2]+21-026,22=26,即2a ≥26,∴a ≥24226∴e =≤=.a 1326x 2y 2227.若椭圆2+2=1(a >0,b >0)的焦点在x 轴上,过点(2,1)作圆x +y =4的切线,切点分别a b为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程为________________.答案+=12016x 2y 2解析设切点坐标为(m ,n ),则n -1n ·=-1,m -2m22即m +n -n -2m =0.∵m +n =4,∴2m +n -4=0,即直线AB 的方程为2x +y -4=0.22∵直线AB 恰好经过椭圆的右焦点和上顶点,∴2c -4=0,b -4=0,解得c =2,b =4,∴a =b +c =20,∴椭圆方程为+=1.20168.已知P 为椭圆+=1上的一点,M ,N 分别为圆(x +3)+y =1和圆(x -3)+y =4上2516的点,则PM +PN 的最小值为________.答案7解析由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且PF 1+PF 2=10,从而PM +PN 的最小值为PF 1+PF 2-1-2=7.9.(2017·连云港质检)椭圆+y =1的左,右焦点分别为F 1,F 2,点P 为椭圆上一动点,若4∠F 1PF 2为钝角,则点P 的横坐标的取值范围是________________.2626答案(-,)33解析设椭圆上一点P 的坐标为(x ,y ),→→则F 1P =(x +3,y ),F 2P =(x -3,y ).→→∵∠F 1PF 2为钝角,∴F 1P ·F 2P <0,即x -3+y <0,222222x 2y 2x 2y 22222x 22①23228∵y =1-,代入①,得x -3+1-<0,x <2,∴x <.444326262626解得-<x <,∴x ∈(-,).3333x 2x 2x 2y 2110.已知椭圆2+2=1(a >b >0)的离心率等于,其焦点分别为A ,B ,C 为椭圆上异于长轴端a b 3sin A +sin B点的任意一点,则在△ABC 中,=________.sin C 答案3sin A +sin B CB +CA解析在△ABC 中,由正弦定理得=,因为点C 在椭圆上,所以由椭圆sin C AB sin A +sin B 2a 1定义知CA +CB =2a ,而AB =2c ,所以===3.sin C 2c ex 2y 211.(2016·南京模拟)如图,椭圆C :2+2=1(a >b >0)的右焦点为F ,右顶点,上顶点分别a b为A ,B ,且AB =5BF .2(1)求椭圆C 的离心率;(2)若斜率为2的直线l 过点(0,2),且l 交椭圆C 于P ,Q 两点,OP ⊥OQ ,求直线l 的方程及椭圆C 的方程.解(1)由已知AB =222,255BF ,即a 2+b 2=a ,222224a +4b =5a 4a +4(a -c )=5a ,∴e ==c a 3.222x 2y 2(2)由(1)知a =4b ,∴椭圆C :2+2=1.4b b设P (x 1,y 1),Q (x 2,y 2),直线l 的方程为y -2=2(x -0),即2x -y +2=0.2x -y +2=0,⎧⎪2由⎨x y 22+2=1⎪⎩4b b 2222消去y ,得x +4(2x +2)-4b =0,即17x +32x +16-4b =0.2Δ=322+16×17(b 2-4)>0,解得b >3216-4b x 1+x 2=-,x 1x 2=.1717→→∵OP ⊥OQ ,∴OP ·OQ =0,2217.17即x 1x 2+y 1y 2=0,x 1x 2+(2x 1+2)(2x 2+2)=0,5x 1x 2+4(x 1+x 2)+4=0.5从而16-4b 172-128+4=0,17217解得b =1,满足b >.17∴椭圆C 的方程为+y =1.4x 22x 2y 212.(2015·安徽)设椭圆E 的方程为2+2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a,0),a b点B 的坐标为(0,b ),点M 在线段AB 上,满足BM =2MA ,直线OM 的斜率为(1)求E 的离心率e ;5.107(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为,2求E 的方程.⎛21⎫解(1)由题设条件知,点M 的坐标为 a ,b ⎪,⎝33⎭又k OM =5b 5,从而=,102a 10c 2522进而得a =5b ,c =a -b =2b ,故e ==.a 5(2)由题设条件和(1)的计算结果可得,直线AB 的方程为1⎫⎛5 b ,-b ⎪.2⎭⎝27⎫⎛设点N 关于直线AB 的对称点S 的坐标为 x 1,⎪,2⎭⎝则线段NS 的中点T 的坐标为 17⎫⎛5x 1b +,-b +⎪.244⎭⎝4x5b +=1,点N 的坐标为yb又点T 在直线AB 上,且k NS ·k AB =-1,⎧⎪5b 从而有⎨71+b22⎪x -5b=⎩215x 1b +4217-b +44+=1,b 5.y 2解得b =3.所以a =35,故椭圆E 的方程为+=1.459x 2x 2y 2213.(2016·南京市学情调研)如图,已知椭圆2+2=1 (a >b >0)的离心率e =,一条准线a b 2方程为x =2.过椭圆的上顶点A 作一条与x 轴、y 轴都不垂直的直线交椭圆于另一点P ,P 关于x 轴的对称点为Q .(1)求椭圆的方程;(2)若直线AP ,AQ 与x 轴交点的横坐标分别为m ,n ,求证:mn 为常数,并求出此常数.2c 2a 解(1)因为=,=2,a 2c所以a =2,c =1,所以b =a -c =1.故椭圆的方程为+y =1.2(2)方法一设P 点坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1).因为k AP =22x 22y 1-1y 1-1=,x 1-0x 1y 1-1x +1.x 1.所以直线AP 的方程为y =令y =0,解得m =-x 1y 1-1-y 1-1y 1+1因为k AQ ==-,x 1-0x 1所以直线AQ 的方程为y =-令y =0,解得n =y 1+1x +1.x 1x 1y 1+1.2-x 1x 1x 1所以mn =·=2.y 1-1y 1+11-y 1又因为(x 1,y 1)在椭圆+y =1上,2所以+y =1,即1-y =,22所以2=2,即mn =2,1-y 1所以mn 为常数,且常数为2.方法二设直线AP 的斜率为k (k ≠0),则AP 的方程为y =kx +1,1令y =0得m =-.x 22x 212121x 21x 21ky =kx +1,⎧⎪2联立方程组⎨x 2+y =1,⎪⎩222消去y 得(1+2k )x +4kx =0,解得x A =0,x P =-4k 2,1+2k 21-2k 所以y P =k ·x P +1=2,1+2k 4k 1-2k 则Q 点的坐标为(-2,-2),1+2k 1+2k 1-2k -2-11+2k 1所以k AQ ==,4k 2k -21+2k 1故直线AQ 的方程为y =x +1.2k令y =0得n =-2k ,1所以mn =(-)·(-2k )=2,22k所以mn 为常数,且常数为2.。
【K12教育学习资料】2018版高考数学大一轮复习第九章平面解析几何9.9圆锥曲线的综合问题第3课时
第3课时 定点、定值、探索性问题题型一 定点问题例1 (2016·镇江模拟)已知椭圆x 2a 2+y 2b2=1(a >0,b >0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l 与x 轴正半轴和y 轴分别交于点Q 、P ,与椭圆分别交于点M 、N ,各点均不重合且满足PM →=λ1MQ →,PN →=λ2NQ →.(1)求椭圆的标准方程;(2)若λ1+λ2=-3,试证明:直线l 过定点并求此定点.(1)解 设椭圆的焦距为2c ,由题意知b =1,且(2a )2+(2b )2=2(2c )2, 又a 2=b 2+c 2,∴a 2=3. ∴椭圆的方程为x 23+y 2=1.(2)证明 由题意设P (0,m ),Q (x 0,0),M (x 1,y 1),N (x 2,y 2),设l 方程为x =t (y -m ),由PM →=λ1MQ →知(x 1,y 1-m )=λ1(x 0-x 1,-y 1), ∴y 1-m =-y 1λ1,由题意y 1≠0,∴λ1=m y 1-1.同理由PN →=λ2NQ →知λ2=m y 2-1.∵λ1+λ2=-3,∴y 1y 2+m (y 1+y 2)=0,①联立⎩⎪⎨⎪⎧x 2+3y 2=3,x =t y -m 得(t 2+3)y 2-2mt 2y +t 2m 2-3=0,∴由题意知Δ=4m 2t 4-4(t 2+3)(t 2m 2-3)>0,② 且有y 1+y 2=2mt 2t 2+3,y 1y 2=t 2m 2-3t 2+3,③将③代入①得t 2m 2-3+2m 2t 2=0, ∴(mt )2=1,由题意mt <0,∴mt =-1,满足②,得直线l 方程为x =ty +1,过定点(1,0),即Q 为定点. 思维升华 圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.(2016·河北衡水中学调研)如图,已知椭圆C 的中心在原点,焦点在x 轴上,离心率e =22,F 是右焦点,A 是右顶点,B 是椭圆上一点,BF ⊥x 轴,BF =22.(1)求椭圆C 的方程;(2)设直线l :x =ty +λ是椭圆C 的一条切线,点M (-2,y 1),点N (2,y 2)是切线l 上两个点,证明:当t ,λ变化时,以MN 为直径的圆过x 轴上的定点,并求出定点坐标.解 (1)由题意设椭圆方程为x 2a 2+y 2b2=1(a >b >0),①焦点F (c,0),因为c a =22,② 将点B (c ,22)的坐标代入方程①得c 2a 2+12b 2=1.③由②③结合a 2=b 2+c 2,得a =2,b =1. 故所求椭圆方程为x 22+y 2=1.(2)由⎩⎪⎨⎪⎧x 22+y 2=1,x =ty +λ得(2+t 2)y 2+2t λy +λ2-2=0.因为l 为切线,所以Δ=(2t λ)2-4(t 2+2)(λ2-2)=0, 即t 2-λ2+2=0.④设圆与x 轴的交点为T (x 0,0),则TM →=(-2-x 0,y 1),TN →=(2-x 0,y 2). 因为MN 为圆的直径, 故TM →·TN →=x 20-2+y 1y 2=0.⑤ 当t =0时,不符合题意,故t ≠0. 因为y 1=-2-λt ,y 2=2-λt,所以y 1y 2=λ2-2t2,代入⑤结合④得TM →·TN →=x 20-t 2+λ2-2t 2t 2要使上式为零,当且仅当x 20=1,解得x 0=±1.所以T 为定点,故动圆过x 轴上的定点(-1,0)与(1,0), 即椭圆的两个焦点. 题型二 定值问题例2 如图,已知椭圆C :x 212+y 24=1,点B 是其下顶点,过点B 的直线交椭圆C 于另一点A (点A 在x 轴下方),且线段AB 的中点E 在直线y =x 上.(1)求直线AB 的方程;(2)若点P 为椭圆C 上异于A ,B 的动点,且直线AP ,BP 分别交直线y =x 于点M ,N ,证明:OM ·ON 为定值.(1)解 由已知得B (0,-2). 设E (λ,λ),则A (2λ,2λ+2). 把A 的坐标代入椭圆方程,得 λ23+(λ+1)2=1, 即43λ2+2λ=0. 则λ=-32(λ=0舍去),得A (-3,-1).由k AB =-2--0--=-13,得直线AB 的方程为y =-13x -2,即x +3y +6=0.(2)证明 设M (m ,m ),N (n ,n ),P (x 0,y 0), 则x 20+3y 20=12.由A ,P ,M 共线,即AP →∥AM →, 得(x 0+3)(m +1)=(y 0+1)(m +3), 则m =3y 0-x 0x 0-y 0+2.由B ,P ,N 共线,即BP →∥BN →,得x 0(n +2)=(y 0+2)n ,x 0-y 0-2所以mn =2x 20-6x 0y 0x 20-2x 0y 0+y 20-4=2x 20-6x 0y 0x 20-2x 0y 0-13x 20=x 20-3x 0y 023x 20-3x 0y 0=3.从而OM ·ON =2|m |·2|n |=6为定值.思维升华 圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值.(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得.(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.(2016·扬州模拟)如图,在平面直角坐标系xOy 中,点F (12,0),直线l :x =-12,点P 在直线l 上移动,R 是线段PF 与y 轴的交点,RQ ⊥FP ,PQ ⊥l .(1)求动点Q 的轨迹C 的方程;(2)设圆M 过A (1,0),且圆心M 在曲线C 上,TS 是圆M 在y 轴上截得的弦,当M 运动时,弦长TS 是否为定值?请说明理由.解 (1)依题意知,点R 是线段FP 的中点,且RQ ⊥FP , ∴RQ 是线段FP 的垂直平分线.∵点Q 在线段FP 的垂直平分线上,∴PQ =QF , 又PQ 是点Q 到直线l 的距离,故动点Q 的轨迹是以F 为焦点,l 为准线的抛物线,其方程为y 2=2x (x >0). (2)弦长TS 为定值.理由如下:取曲线C 上点M (x 0,y 0),M 到y 轴的距离为d =|x 0|=x 0,圆的半径r =MA =x 0-2+y 20,则TS =2r 2-d 2=2y 20-2x 0+1, ∵点M 在曲线C 上,∴x 0=y 202,∴TS =2y 20-y 20+1=2是定值. 题型三 探索性问题例3 (2015·四川)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD上,且PC →·PD →=-1.(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λPA →·PB →为定值?若存在,求λ的值;若不存在,请说明理由. 解 (1)由已知,点C ,D 的坐标分别为(0,-b ),(0,b ), 又点P 的坐标为(0,1),且PC →·PD →=-1,于是⎩⎪⎨⎪⎧1-b 2=-1,c a =22,a 2-b 2=c 2,解得a =2,b =2,所以椭圆E 的方程为x 24+y 22=1.(2)当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).联立⎩⎪⎨⎪⎧x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0,其判别式Δ=(4k )2+8(2k 2+1)>0, 所以x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1, 从而,OA →·OB →+λPA →·PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1-1)(y 2-1)] =(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1=-2λ-k 2+-2λ-2k 2+1=-λ-12k 2+1-λ-2.所以当λ=1时,-λ-12k 2+1-λ-2=-3,此时OA →·OB →+λPA →·PB →=-3为定值.当直线AB 斜率不存在时,直线AB 即为直线CD ,此时,OA →·OB →+λPA →·PB →=OC →·OD →+PC →·PD →=-2-1=-3. 故存在常数λ=1,使得OA →·OB →+λPA →·PB →为定值-3. 思维升华 解决探索性问题的注意事项探索性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当条件和结论都不知,按常规方法解题很难时,要开放思维,采取另外合适的方法.(2016·苏锡常镇四市调研)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点分别为F 1,F 2,右顶点,上顶点分别为A ,B ,原点O 到直线AB 的距离等于ab .(1)若椭圆C 的离心率等于63,求椭圆C 的方程; (2)若过点(0,1)的直线l 与椭圆有且只有一个公共点P ,且P 在第二象限,直线PF 2交y 轴于点Q .试判断以PQ 为直径的圆与点F 1的位置关系,并说明理由.解 (1)由题意,得点A (a,0),B (0,b ),直线AB 的方程为x a +y b=1,即bx +ay -ab =0. 由题设,得|ab |a 2+b2=ab ,化简得a 2+b 2=1.①∵e =c a =63,∴a 2-b 2a 2=23,即a 2=3b 2.② 由①②,解得⎩⎪⎨⎪⎧a 2=34,b 2=14.∴椭圆C 的方程为4x 23+4y 2=1.(2)点F 1在以PQ 为直径的圆上.由题设,直线l 与椭圆相切且l 的斜率存在,设直线l 的方程为y =kx +1,由⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =kx +1,得(b 2+a 2k 2)x 2+2ka 2x +a 2-a 2b 2=0,(*) 则Δ=(2ka 2)2-4(b 2+a 2k 2)(a 2-a 2b 2)=0, 化简得1-b 2-a 2k 2=0,∴k 2=1-b2a2=1,∵点P 在第二象限,∴k =1.把k =1代入方程(*),得x 2+2a 2x +a 4=0, 解得x =-a 2,从而y =b 2,∴P (-a 2,b 2).从而直线PF 2的方程为y -b 2=b 2-a 2-c(x +a 2),令x =0,得y =b 2c a 2+c ,∴Q (0,b 2ca 2+c).从而F 1P →=(-a 2+c ,b 2),F 1Q →=(c ,b 2ca 2+c),又a 2+b 2=1,a 2=b 2+c 2,从而F 1P →·F 1Q →=c (-a 2+c )+b 4ca 2+c=c -a 4+c 2+b 4a +c =c -a 4+b 4+c 2a +c=c b 2-a 2b 2+a 2+c 2]a 2+c=0,∴F 1P →·F 1Q →=0.∴点F 1在以PQ 为直径的圆上.23.设而不求,整体代换典例 (16分)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1、F 2,离心率为32,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1.(1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,连结PF 1,PF 2,设∠F 1PF 2的角平分线PM 交C 的长轴于点M (m,0),求m 的取值范围;(3)在(2)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线PF 1、PF 2的斜率分别为k 1、k 2,若k 2≠0,证明1kk 1+1kk 2为定值,并求出这个定值.思想方法指导 对题目涉及的变量巧妙地引进参数(如设动点坐标、动直线方程等),利用题目的条件和圆锥曲线方程组成二元二次方程组,再化为一元二次方程,从而利用根与系数的关系进行整体代换,达到“设而不求,减少计算”的效果,直接得定值. 规范解答解 (1)由于c 2=a 2-b 2,将x =-c 代入椭圆方程x 2a 2+y 2b 2=1,得y =±b 2a.由题意知2b 2a=1,即a =2b 2.又e =c a =32,所以a =2,b =1. 所以椭圆C 的方程为x 24+y 2=1.[4分](2)设P (x 0,y 0)(y 0≠0), 又F 1(-3,0),F 2(3,0), 所以直线PF 1,PF 2的方程分别为1RF l :y 0x -(x 0+3)y +3y 0=0,2RF l :y 0x -(x 0-3)y -3y 0=0.由题意知|my 0+3y 0|y 20+x 0+32=|my 0-3y 0|y 2+x 0-32.由于点P 在椭圆上,所以x 204+y 20=1.所以|m +3|⎝ ⎛⎭⎪⎫32x 0+22=|m -3|⎝ ⎛⎭⎪⎫32x 0-22.[8分]因为-3<m <3,-2<x 0<2, 可得m +332x 0+2=3-m2-32x 0,所以m =34x 0,因此-32<m <32.[10分](3)设P (x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k (x -x 0).联立得⎩⎪⎨⎪⎧x 24+y 2=1,y -y 0=k x -x 0.整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2kx 0y 0+k 2x 20-1)=0.[12分] 由题意Δ=0,即(4-x 20)k 2+2x 0y 0k +1-y 20=0. 又x 204+y 20=1, 所以16y 20k 2+8x 0y 0k +x 20=0,故k =-x 04y 0.由(2)知1k 1+1k 2=x 0+3y 0+x 0-3y 0=2x 0y 0,所以1kk 1+1kk 2=1k ⎝ ⎛⎭⎪⎫1k 1+1k 2=⎝ ⎛⎭⎪⎫-4y 0x 0·2x 0y 0=-8,因此1kk 1+1kk 2为定值,这个定值为-8.[16分]1.已知椭圆x 2a 2+y 2b 2=1 (a >b >0)的离心率为32,且过点A (0,1).(1)求椭圆的标准方程;(2)过点A 作两条互相垂直的直线分别交椭圆于M ,N 两点.求证:直线MN 恒过定点P (0,-35). (1)解 由题意知,e =c a =32,b =1, 所以a 2-c 2=1,解得a =2, 所以椭圆的标准方程为x 24+y 2=1.(2)证明 设直线l 1的方程为y =kx +1.联立方程组⎩⎪⎨⎪⎧y =kx +1,x 24+y 2=1,得(4k 2+1)x 2+8kx =0,解得x 1=-8k4k 2+1,x 2=0, 所以x M =-8k 4k 2+1,y M =1-4k24k 2+1.同理可得x N =8k k 2+4,y N =k 2-4k 2+4.则k MP =1-4k 24k 2+1+35-8k 4k 2+1=-8k 25+85-8k =k 2-15k ,k NP =k 2-4k 2+4+358k k 2+4=8k 25-858k =k 2-15k ,所以k MP =k NP ,故直线MN 恒过定点P (0,-35).2.(2016·云南师范大学附属中学月考)已知椭圆C 的焦点在x 轴上,离心率等于255,且过点(1,255).(1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点F 作直线l 交椭圆C 于A ,B 两点,交y 轴于点M ,若MA →=λ1AF →,MB →=λ2BF →,求证:λ1+λ2为定值.(1)解 设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),∴⎩⎪⎨⎪⎧c a =255,1a 2+2552b 2=1,a 2=b 2+c 2,∴a 2=5,b 2=1,∴椭圆C 的标准方程为x 25+y 2=1.(2)证明 设点A ,B ,M 的坐标分别为A (x 1,y 1),B (x 2,y 2),M (0,y 0),点F 的坐标为(2,0). 显然直线l 的斜率存在,设直线l 的斜率为k , 则直线l 的方程是y =k (x -2),联立⎩⎪⎨⎪⎧ y =k x -,x 25+y 2=1, 得(1+5k 2)x 2-20k 2x +20k 2-5=0,∴x 1+x 2=20k 21+5k 2,x 1x 2=20k 2-51+5k 2. 又∵MA →=λ1AF →,MB →=λ2BF →,将各点坐标代入,得λ1=x 12-x 1,λ2=x 22-x 2, ∴λ1+λ2=x 12-x 1+x 22-x 2=x 1+x 2-2x 1x 24-x 1+x 2+x 1x 2=20k 21+5k 2-20k 2-51+5k 24-2·20k 21+5k +20k 2-51+5k=-10.故λ1+λ2为定值. 3.椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为33,点(3,2)为椭圆上的一点. (1)求椭圆E 的标准方程;(2)若斜率为k 的直线l 过点A (0,1),且与椭圆E 交于C ,D 两点,B 为椭圆E 的下顶点,求证:对于任意的k ,直线BC ,BD 的斜率之积为定值.(1)解 因为e =33,所以c =33a ,a 2=b 2+(33a )2.① 又椭圆过点(3,2),所以3a 2+2b2=1.② 由①②,解得a 2=6,b 2=4,所以椭圆E 的标准方程为x 26+y 24=1. (2)证明 设直线l :y =kx +1,C (x 1,y 1),D (x 2,y 2), 联立⎩⎪⎨⎪⎧ x 26+y 24=1,y =kx +1,得(3k 2+2)x 2+6kx -9=0.x 1+x 2=-6k 3k 2+2,x 1x 2=-93k 2+2, 易知B (0,-2),故k BC ·k BD =y 1+2x 1·y 2+2x 2 =kx 1+3x 1·kx 2+3x 2=k 2x 1x 2+3k x 1+x 2+9x 1x 2=k 2+3k x 1+x 2x 1x 2+9x 1x 2=k 2+3k ·2k 3-(3k 2+2) =-2.所以对于任意的k ,直线BC ,BD 的斜率之积为定值.4.(2017·江苏命题专家原创)已知椭圆C :x 2a 2+y 2b 2=1 (a >b >0)的左,右焦点分别为F 1,F 2,椭圆C 过点M (0,3),且△MF 1F 2为正三角形.(1)求椭圆C 的方程;(2)垂直于x 轴的直线与椭圆C 交于A ,B 两点,过点P (4,0)的直线PB 交椭圆C 于另一点E ,证明:直线AE 与x 轴相交于定点.(1)解 ∵椭圆C 过点M (0,3),∴b =3,又△MF 1F 2为正三角形,且MF 1=MF 2=a ,∴a =b sin 60°=2,c =12a =1, ∴椭圆C 的方程为x 24+y 23=1. (2)证明 由题意知,直线PB 的斜率存在,且过点P (4,0).设直线PB 的方程为y =k (x -4), B (x 1,y 1),E (x 2,y 2),则A (x 1,-y 1).由⎩⎪⎨⎪⎧ y =k x -,3x 2+4y 2=12,得(3+4k 2)x 2-32k 2x +64k 2-12=0,则x 1+x 2=32k 23+4k 2,x 1x 2=64k 2-123+4k 2,① 直线AE 的方程为y -y 2=y 2+y 1x 2-x 1(x -x 2),令y =0,得x =x 2-y 2x 2-x 1y 1+y 2,② 将y 1=k (x 1-4),y 2=k (x 2-4),代入②式,得x =2x 1x 2-x 1+x 2x 1+x 2-8,③ 将①式代入③式,整理得x =1.∴直线AE 与x 轴相交于定点(1,0). *5.(2016·南京模拟)已知半椭圆x 2a 2+y 2b 2=1(x ≥0)与半椭圆y 2b 2+x 2c 2=1(x <0)组成的曲线称为“果圆”,其中a 2=b 2+c 2,a >b >c >0.如图,设点F 0,F 1,F 2是相应椭圆的焦点,A 1,A 2和B 1,B 2是“果圆”与x ,y 轴的交点.(1)若△F 0F 1F 2是边长为1的等边三角形,求“果圆”的方程;(2)若A 1A 2>B 1B 2,求b a的取值范围;(3)一条直线与果圆交于两点,两点的连线段称为果圆的弦.是否存在实数k ,使得斜率为k 的直线交果圆于两点,得到的弦的中点M 的轨迹方程落在某个椭圆上?若存在,求出所有k 的值;若不存在,说明理由.解 (1)∵F 0(c,0),F 1(0,-b 2-c 2),F 2(0,b 2-c 2),∴F 0F 2=b 2-c 2+c 2=b =1,F 1F 2=2b 2-c 2=1,∴c 2=34,a 2=b 2+c 2=74, ∴所求“果圆”的方程为⎩⎪⎨⎪⎧ 47x 2+y 2=1,x ≥0,y 2+43x 2=1,x <0.(2)由题意,得a +c >2b , 即a 2-b 2>2b -a , ∴a 2-b 2>(2b -a )2,得b a <45.又b 2>c 2=a 2-b 2,∴b 2a 2>12. ∴b a ∈(22,45). (3)设“果圆”C 的方程为⎩⎪⎨⎪⎧ x 2a 2+y 2b 2=1,x ≥0,y 2b 2+x 2c 2=1,x <0,记平行弦的斜率为k ,当k =0时,直线y =t (-b ≤t ≤b )与半椭圆x 2a +y 2b=1(x ≥0)的交点是P (a 1-t 2b 2,t ),与半椭圆y 2b +x 2c =1(x <0)的交点是Q (-c 1-t 2b2,t ). ∴P ,Q 的中点M (x ,y )满足x =a -c2·1-t 2b2,y =t ,得 x 2a -c22+y 2b 2=1. ∵a 2=b 2+c 2<2b 2,∴a <2b ,∴(a -c2)2-b 2=a -c -2b 2·a -c +2b2<0.综上所述,当k =0时,“果圆”平行弦的中点轨迹总是落在某个椭圆上.当k >0时,过B 1的直线l 与半椭圆x 2a 2+y 2b 2=1(x ≥0)的交点是(2ka 2b k 2a 2+b 2,k 2a 2b -b 3k 2a 2+b 2). 因此,在直线l 右侧,以k 为斜率的平行弦的中点为(ka 2b k 2a 2+b 2,-b 3k 2a 2+b 2), 轨迹在直线y =-b 2ka2x 上,即不在某一椭圆上. 当k <0时,可类似讨论得到平行弦的中点的轨迹不在某一椭圆上.。
2018版高考数学文江苏专用大一轮复习讲义文档 第九章
圆的定义与方程【知识拓展】1.确定圆的方程的方法和步骤确定圆的方程主要方法是待定系数法,大致步骤为 (1)根据题意,选择标准方程或一般方程;(2)根据条件列出关于a ,b ,r 或D ,E ,F 的方程组; (3)解出a ,b ,r 或D ,E ,F 代入标准方程或一般方程. 2.点与圆的位置关系 点和圆的位置关系有三种.圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0) (1)点在圆上:(x 0-a )2+(y 0-b )2=r 2; (2)点在圆外:(x 0-a )2+(y 0-b )2>r 2; (3)点在圆内:(x 0-a )2+(y 0-b )2<r 2.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)确定圆的几何要素是圆心与半径.( √ )(2)已知点A (x 1,y 1),B (x 2,y 2),则以AB 为直径的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.( √ )(3)方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是A =C ≠0,B =0,D 2+E 2-4AF >0.( √ )(4)方程x 2+2ax +y 2=0一定表示圆.( × )(5)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.( √ )1.(教材改编)圆心是(-2,3),且经过原点的圆的标准方程为______________. 答案 (x +2)2+(y -3)2=13 解析 易得r =13.2.方程x 2+y 2+mx -2y +3=0表示圆,则m 的范围是________________. 答案 (-∞,-22)∪(22,+∞)解析 将x 2+y 2+mx -2y +3=0化为圆的标准方程得(x +m 2)2+(y -1)2=m 24+1-3. 由其表示圆可得m 24-2>0,解得m <-22或m >2 2.3.(2016·扬州检测)当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以点C 为圆心,5为半径的圆的方程为______________. 答案 x 2+y 2+2x -4y =0解析 将方程分离参数a 可得a (x +1)-(x +y -1)=0,方程表示过两直线的交点,由⎩⎪⎨⎪⎧x +1=0,x +y -1=0得交点为(-1,2),故圆的方程为(x +1)2+(y -2)2=5,即x 2+y 2+2x -4y =0. 4.(教材改编)圆C 的圆心在x 轴上,并且过点A (-1,1)和B (1,3),则圆C 的方程为________. 答案 x 2+y 2-4x -6=0 解析 设圆心坐标为C (a,0),∵点A (-1,1)和B (1,3)在圆C 上,∴CA =CB ,即(a +1)2+1=(a -1)2+9,解得a =2, ∴圆心为C (2,0),半径CA =(2+1)2+1=10, ∴圆C 的方程为(x -2)2+y 2=10,即x 2+y 2-4x -6=0.5.(2016·浙江)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是______,半径是______. 答案 (-2,-4) 5解析 由已知方程表示圆,则a 2=a +2, 解得a =2或a =-1.当a =2时,方程不满足表示圆的条件,故舍去. 当a =-1时,原方程为x 2+y 2+4x +8y -5=0, 化为标准方程为(x +2)2+(y +4)2=25, 表示以(-2,-4)为圆心,半径为5的圆.题型一 求圆的方程例1 (1)(2016·天津)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________________.(2)(2015·课标全国Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.答案 (1)x 2+y 2-4x -5=0 (2)⎝⎛⎭⎫x -322+y 2=254解析 (1)因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0, 所以圆心到直线2x -y =0的距离d =2a 5=455,解得a =2,所以圆C 的半径r =CM =4+5=3, 所以圆C 的方程为(x -2)2+y 2=9, 即x 2+y 2-4x -5=0.(2)由题意知圆过(4,0),(0,2),(0,-2)三点, (4,0),(0,-2)两点的垂直平分线方程为 y +1=-2(x -2),令y =0,解得x =32,圆心为⎝⎛⎭⎫32,0,半径为52. 所以圆的标准方程为(x -32)2+y 2=254.思维升华 (1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.(2016·苏州一模)圆心在直线2x -y -7=0上的圆C 与y 轴交于A (0,-4),B (0,-2)两点,则圆C 的标准方程为________________. 答案 (x -2)2+(y +3)2=5解析 设圆的标准方程为(x -a )2+(y -b )2=r 2, 故⎩⎪⎨⎪⎧2a -b -7=0,a 2+(4+b )2=r 2,a 2+(2+b )2=r 2,解得⎩⎪⎨⎪⎧a =2,b =-3,半径r =22+12=5,故圆C 的标准方程为(x -2)2+(y +3)2=5. 题型二 与圆有关的最值问题例2 (2016·盐城检测)已知点(x ,y )在圆(x -2)2+(y +3)2=1上,求x +y 的最大值和最小值. 解 设t =x +y ,则y =-x +t ,t 可视为直线y =-x +t 的纵截距,∴x +y 的最大值和最小值就是直线与圆有公共点时直线纵截距的最大值和最小值,即直线与圆相切时的纵截距. 由直线与圆相切得圆心到直线的距离等于半径, 即|2+(-3)-t |2=1, 解得t =2-1或t =-2-1.∴x +y 的最大值为2-1,最小值为-2-1. 引申探究1.在例2的条件下,求yx的最大值和最小值.解 y x 可视为点(x ,y )与原点连线的斜率,yx的最大值和最小值就是与该圆有公共点的过原点的直线斜率的最大值和最小值,即直线与圆相切时的斜率.设过原点的直线的方程为y =kx ,由直线与圆相切得圆心到直线的距离等于半径,即|2k +3|k 2+1=1,解得k =-2+233或k =-2-233.∴y x 的最大值为-2+233,最小值为-2-233. 2.在例2的条件下,求x 2+y 2+2x -4y +5的最大值和最小值. 解x 2+y 2+2x -4y +5=(x +1)2+(y -2)2,求它的最值可视为求点(x ,y )到定点(-1, 2)的距离的最值,可转化为圆心(2,-3)到定点(-1,2)的距离与半径的和或差.又圆心到定点(-1,2)的距离为34,∴x 2+y 2+2x -4y +5的最大值为34+1,最小值为34-1. 思维升华 与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法.①形如u =y -bx -a 型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离平方的最值问题.(2016·扬州模拟)已知实数x ,y 满足方程x 2+y 2-4x +1=0.求:(1)yx 的最大值和最小值; (2)y -x 的最小值; (3)x 2+y 2的最大值和最小值.解 (1)如图,方程x 2+y 2-4x +1=0表示以点(2,0)为圆心,以3为半径的圆.设yx =k ,即y =kx ,则圆心(2,0)到直线y =kx 的距离为半径,即直线与圆相切时,斜率取得最大值、最小值.由|2k-0|k2+1=3,解得k2=3,∴k max=3,k min=- 3.(2)设y-x=b,则y=x+b,当且仅当直线y=x+b与圆切于第四象限时,截距b取最小值,由点到直线的距离公式,得|2-0+b|2=3,即b=-2±6,故(y-x)min=-2- 6.(3)x2+y2是圆上的点与原点的距离的平方,故连结OC,与圆交于B点,并延长交圆于C′,则(x2+y2)max=(OC′)2=(2+3)2=7+43,(x2+y2)min=OB2=(2-3)2=7-4 3.题型三与圆有关的轨迹问题例3(2016·盐城模拟)已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.(1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.解(1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).因为P点在圆x2+y2=4上,所以(2x-2)2+(2y)2=4,故线段AP中点的轨迹方程为(x-1)2+y2=1.(2)设PQ的中点为N(x,y),在Rt△PBQ中,PN=BN.设O为坐标原点,连结ON,则ON⊥PQ,所以OP2=ON2+PN2=ON2+BN2,所以x2+y2+(x-1)2+(y-1)2=4.故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.思维升华求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法(1)直接法,直接根据题目提供的条件列出方程.(2)定义法,根据圆、直线等定义列方程.(3)几何法,利用圆的几何性质列方程.(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.(2016·天津模拟)设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM 、ON 为两边作平行四边形MONP ,求点P 的轨迹. 解 如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝⎛⎭⎫x 2,y 2,线段MN 的中点坐标为⎝⎛⎭⎫x 0-32,y 0+42. 由于平行四边形的对角线互相平分, 故x 2=x 0-32,y 2=y 0+42. 从而⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4.又N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4. 因此所求轨迹为圆:(x +3)2+(y -4)2=4,但应除去两点⎝⎛⎭⎫-95,125和⎝⎛⎭⎫-215,285(点P 在直线OM 上的情况).19.利用几何性质巧设方程求半径典例 在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上,求圆C 的方程.思想方法指导 本题可采用两种方法解答,即代数法和几何法.(1)一般解法(代数法):可以求出曲线y =x 2-6x +1与坐标轴的三个交点,设圆的方程为一般式,代入点的坐标求解析式.(2)巧妙解法(几何法):利用圆的性质,知道圆心一定在圆上两点连线的垂直平分线上,从而设圆的方程为标准式,简化计算,显然几何法比代数法的计算量小,因此平时训练多采用几何法解题.规范解答解 一般解法 (代数法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0),设圆的方程是x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则有⎩⎨⎧1+E +F =0,(3+22)2+D (3+22)+F =0,(3-22)2+D (3-22)+F =0,解得⎩⎪⎨⎪⎧D =-6,E =-2,F =1,故圆的方程是x 2+y 2-6x -2y +1=0.巧妙解法 (几何法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0).故可设C 的圆心为(3,t ),则有32+(t -1)2=(22)2+t 2,解得t =1. 则圆C 的半径为32+(t -1)2=3, 所以圆C 的方程为(x -3)2+(y -1)2=9, 即x 2+y 2-6x -2y +1=0.1.(2016·南通模拟)已知点A (1,-1),B (-1,1),则以线段AB 为直径的圆的标准方程是________. 答案 x 2+y 2=2解析 AB 的中点坐标为(0,0), AB =[1-(-1)]2+(-1-1)2=22, ∴圆的标准方程为x 2+y 2=2.2.已知圆M 的圆心M 在y 轴上,半径为1,直线l :y =2x +2被圆M 所截得的弦长为455,且圆心M 在直线l 的下方,则圆M 的标准方程是__________. 答案 x 2+(y -1)2=1 解析 点M 到l 的距离d = 1-(255)2=55.设M (0,a ),所以|2-a |5=55,所以a =1或a =3.又因为a <2×0+2=2,所以a =1.所以圆M 的标准方程为x 2+(y -1)2=1.3.(2016·徐州质检)设圆的方程是x 2+y 2+2ax +2y +(a -1)2=0,若0<a <1,则原点与圆的位置关系是________________. 答案 原点在圆外解析 将圆的一般方程化成标准方程为(x +a )2+(y +1)2=2a ,因为0<a <1, 所以(0+a )2+(0+1)2-2a =(a -1)2>0, 即(0+a )2+(0+1)2>2a ,所以原点在圆外.4.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是________________. 答案 (x -2)2+(y +1)2=1解析 设圆上任一点坐标为(x 0,y 0),x 20+y 20=4,连线中点坐标为(x ,y ),则⎩⎪⎨⎪⎧ 2x =x 0+4,2y =y 0-2⇒⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2,代入x 20+y 20=4,得(x -2)2+(y +1)2=1.5.已知圆M 的圆心在x 轴上,且圆心在直线l 1:x =-2的右侧,若圆M 截直线l 1所得的弦长为23,且与直线l 2:2x -5y -4=0相切,则圆M 的标准方程为_____________. 答案 (x +1)2+y 2=4解析 由已知,可设圆M 的圆心坐标为(a,0),a >-2, 半径为r ,得⎩⎪⎨⎪⎧(a +2)2+(3)2=r 2,|2a -4|4+5=r ,解得⎩⎪⎨⎪⎧a =-1,r =2满足条件,所以圆M 的标准方程为(x +1)2+y 2=4.6.若圆x 2+y 2-2x +6y +5a =0关于直线y =x +2b 成轴对称图形,则a -b 的取值范围是________. 答案 (-∞,4)解析 圆的方程可化为(x -1)2+(y +3)2=10-5a , 可知圆心为(1,-3),且10-5a >0,即a <2. ∵圆关于直线y =x +2b 成轴对称图形,∴点(1,-3)在直线上,则b =-2. ∴a -b =2+a <4.7.(2016·常州模拟)已知圆C 过点(-1,0),且圆心在x 轴的负半轴上,直线l :y =x +1被该圆所截得的弦长为22,则过圆心且与直线l 平行的直线方程为________________. 答案 x -y +3=0解析 设圆的方程为(x -a )2+y 2=r 2(a <0),因为圆C 过点(-1,0),且直线l :y =x +1被该圆所截得的弦长为22, 所以⎩⎪⎨⎪⎧(-1-a )2=r 2,(|a +1|2)2+(2)2=r 2, 解得⎩⎪⎨⎪⎧a =-3,r 2=4,即圆心坐标为(-3,0),则所求直线为y =x +3,即x -y +3=0.8.过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为______________. 答案 x +y -2=0解析 当圆心与点P 的连线和过点P 的直线垂直时,符合条件.圆心O 与点P 连线的斜率k =1,所求直线方程为y -1=-(x -1),即x +y -2=0.9.圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为______________________. 答案 (x -2)2+(y -1)2=4解析 设圆C 的圆心为(a ,b )(a >0,b >0), 由题意得a =2b >0,且a 2=(3)2+b 2, 解得a =2,b =1.∴所求圆的标准方程为(x -2)2+(y -1)2=4.10.(2016·无锡模拟)已知两点A (-1,0),B (0,2),点P 是圆(x -1)2+y 2=1上任意一点,则△P AB 面积的最大值与最小值分别是________________. 答案 2+52,2-52解析 如图,圆心(1,0)到直线AB :2x -y +2=0的距离d =45,故圆上的点P 到直线AB 的距离的最大值是45+1,最小值是45-1, 又AB =5,故△P AB 面积的最大值和最小值分别是2+52,2-52. 11.已知圆C 经过P (4,-2),Q (-1,3)两点,且在y 轴上截得的线段的长为43,半径小于5.(1)求直线PQ 与圆C 的方程;(2)若直线l ∥PQ ,且l 与圆C 交于点A ,B ,且以线段AB 为直径的圆经过坐标原点,求直线l 的方程.解 (1)由题意知直线PQ 的方程为x +y -2=0.设圆心C (a ,b ),半径为r ,由于线段PQ 的垂直平分线的方程是y -12=x -32, 即y =x -1,所以b =a -1.①由圆C 在y 轴上截得的线段的长为43,知r 2=(23)2+a 2,可得(a +1)2+(b -3)2=12+a 2,②由①②得a =1,b =0或a =5,b =4.当a =1,b =0时,r 2=13,满足题意,当a =5,b =4时,r 2=37,不满足题意.故圆C 的方程为(x -1)2+y 2=13.(2)设直线l 的方程为y =-x +m (m ≠2),A (x 1,m -x 1),B (x 2,m -x 2).由题意可知OA ⊥OB ,即OA →·OB →=0,∴x 1x 2+(m -x 1)(m -x 2)=0,化简得2x 1x 2-m (x 1+x 2)+m 2=0.③由⎩⎪⎨⎪⎧y =-x +m ,(x -1)2+y 2=13得2x 2-2(m +1)x +m 2-12=0,∴x 1+x 2=m +1,x 1x 2=m 2-122, 代入③,得m 2-12-m ·(1+m )+m 2=0,∴m =4或m =-3,经检验都满足题意,∴直线l 的方程为x +y -4=0或x +y +3=0.12.在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程. 解 (1)设P (x ,y ),圆P 的半径为r .则y 2+2=r 2,x 2+3=r 2.∴y 2+2=x 2+3,即y 2-x 2=1.∴圆心P 的轨迹方程为y 2-x 2=1.(2)设P 点的坐标为(x 0,y 0), 则|x 0-y 0|2=22,即|x 0-y 0|=1. ∴y 0-x 0=±1,即y 0=x 0±1.①当y 0=x 0+1时,由y 20-x 20=1,得(x 0+1)2-x 20=1.∴⎩⎪⎨⎪⎧x 0=0,y 0=1,∴r 2=3. ∴圆P 的方程为x 2+(y -1)2=3.②当y 0=x 0-1时,由y 20-x 20=1,得(x 0-1)2-x 20=1.∴⎩⎪⎨⎪⎧x 0=0,y 0=-1,∴r 2=3. ∴圆P 的方程为x 2+(y +1)2=3.综上所述,圆P 的方程为x 2+(y ±1)2=3.13.已知M 为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3).(1)求MQ 的最大值和最小值;(2)若M (m ,n ),求n -3m +2的最大值和最小值.解 (1)由圆C :x 2+y 2-4x -14y +45=0, 可得(x -2)2+(y -7)2=8,所以圆心C 的坐标为(2,7),半径r =2 2. 又QC =(2+2)2+(7-3)2=4 2.所以(MQ )max =42+22=62,(MQ )min =42-22=2 2.(2)可知n -3m +2表示直线MQ 的斜率, 设直线MQ 的方程为y -3=k (x +2),即kx -y +2k +3=0,n -3m +2=k . 由直线MQ 与圆C 有交点, 所以|2k -7+2k +3|1+k 2≤22, 可得2-3≤k ≤2+3,所以n -3m +2的最大值为2+3,最小值为2- 3.。
2018届高三数学一轮复习 第九章 平面解析几何 第九节 圆锥曲线的综合问题夯基提能作业本 文
第九节圆锥曲线的综合问题A组基础题组1.(2015课标Ⅱ,20,12分)已知椭圆C:+=1(a>b>0)的离心率为,点(2,)在C上.(1)求C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.2.(2016山西太原模拟)已知椭圆M:+=1(a>0)的一个焦点为F(-1,0),左,右顶点分别为A,B.经过点F 的直线l与椭圆M交于C,D两点.(1)当直线l的倾斜角为45°时,求线段CD的长;(2)记△ABD与△ABC的面积分别为S1和S2,求|S1-S2|的最大值.3.(2016吉林长春模拟)设F1、F2分别是椭圆E:+=1(b>0)的左、右焦点,若P是该椭圆上的一个动点,且·的最大值为1.(1)求椭圆E的方程;(2)设直线l:x=ky-1与椭圆E交于不同的两点A、B,且∠AOB为锐角(O为坐标原点),求k的取值范围.B组提升题组4.已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,△ADF为正三角形.(1)求C的方程;(2)若直线l1∥l,且l1和C有且只有一个公共点E,证明直线AE过定点,并求出定点坐标.5.已知椭圆C:+=1(a>b>0)的右焦点为F2(2,0),点P在椭圆C上.(1)求椭圆C的标准方程;(2)是否存在斜率为-1的直线l与椭圆C相交于M,N两点,使得|F1M|=|F1N|(F1为椭圆的左焦点)?若存在,求出直线l的方程;若不存在,说明理由.答案全解全析A组基础题组1.解析(1)由题意有=,+=1,解得a2=8,b2=4.所以C的方程为+=1.(2)证明:设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M).将y=kx+b代入+=1得(2k2+1)x2+4kbx+2b2-8=0.故x M==,y M=k·x M+b=.于是直线OM的斜率k OM==-,即k OM·k=-.所以直线OM的斜率与直线l的斜率的乘积为定值.2.解析(1)由题意知c=1,b2=3,所以a2=4,所以椭圆M的方程为+=1,易求得直线方程为y=x+1,联立方程,得消去y,得7x2+8x-8=0,Δ=288>0,设C(x1,y1),D(x2,y2),所以x1+x2=-,x1x2=-,所以|CD|=|x1-x2|=.(2)当直线l的斜率不存在时,直线方程为x=-1,此时△ABD与△ABC的面积相等,|S1-S2|=0;当直线l的斜率存在时,设直线方程为y=k(x+1)(k≠0),联立方程,得消去y,得(3+4k2)x2+8k2x+4k2-12=0,Δ=(8k2)2-4(3+4k2)(4k2-12)=144k2+144>0,故x1+x2=-,x1x2=, 此时|S1-S2|=2||y2|-|y1||=2|y2+y1|=2|k(x2+1)+k(x1+1)|=2|k(x2+x1)+2k|=,因为k≠0,所以|S1-S2|=≤==k=±时等号成立,所以|S1-S2|的最大值为.3.解析(1)解法一:易知a=2,c=,0<b2<4,所以F1(-,0),F2(,0),设P(x,y),则·=(--x,-y)·(-x,-y)=x2+y2-4+b2=x2+b2--4+b2=x2+2b2-4.因为x∈[-2,2],所以当x=±2,即点P为椭圆长轴端点时,·有最大值1,即1=×4+2b2-4,解得b2=1.故所求椭圆E的方程为+y2=1.解法二:由题意知a=2,c=,0<b2<4,所以F1(-,0),F2(,0),设P(x,y),则·=||·||·cos∠F1PF2=||·||·=[(x+)2+y2+(x-)2+y2 -16+4b2]=x2+2b2-4.因为x∈[-2,2],所以当x=±2,即点P为椭圆长轴端点时,·有最大值1,即1=×4+2b2-4,解得b2=1.故所求椭圆E的方程为+y2=1.(2)设A(x1,y1),B(x2,y2),由得(k2+4)y2-2ky-3=0,Δ=(-2k)2+12(4+k2)=16k2+48>0,故y1+y2=,y1·y2=.又∠AOB为锐角,故·=x1x2+y1y2>0,又x1x2=(ky1-1)(ky2-1)=k2y1y2-k(y1+y2)+1,所以x1x2+y1y2=(1+k2)y1y2-k(y1+y2)+1=(1+k2)·-+1==>0,所以k2<,解得-<k<,故k的取值范围是.B组提升题组4.解析(1)由题意知F.设D(t,0)(t>0),则FD的中点坐标为.又|FA|=|FD|,则由抛物线的定义知,当点A的横坐标为3时,有3+=,解得t=3+p或t=-3(舍去).此时,由题意得=3,可得p=2.所以抛物线C的方程为y2=4x.(2)由(1)知F(1,0),设A(x0,y0)(x0y0≠0),D(x D,0)(x D>0),因为|FA|=|FD|,所以x0+1=|x D-1|,结合x D>0,x0>0得x D=x0+2,故D(x0+2,0).故直线AB的斜率k AB=-.因为直线l1和直线AB平行,所以可设直线l1的方程为y=-x+b,与抛物线方程联立,消去x得y2+y-=0,由题意可知Δ=+=0,得b=-.设E(x E,y E),则y E=-,x E=,当≠4时,k AE==-=,可得直线AE的方程为y-y0=(x-x0),结合=4x0,整理可得y=(x-1),则直线AE恒过点F(1,0).当=4时,直线AE的方程为x=1,过点F(1,0).所以直线AE过定点F(1,0).5.解析(1)解法一:∵椭圆C的右焦点为F 2(2,0),∴c=2,椭圆C的左焦点为(-2,0). 由于点P在椭圆上,故由椭圆的定义可得2a=+=+=2,解得a=,∴b2=a2-c2=6-4=2,∴椭圆C的标准方程为+=1.解法二:∵椭圆C的右焦点为F2(2,0),∴c=2,故a2-b2=4,又点P在椭圆C上,则+=1,故+=1,化简得3b4+4b2-20=0,得b2=2,所以a2=6,∴椭圆C的标准方程为+=1.(2)不存在.理由如下:假设存在满足条件的直线l,设直线l的方程为y=-x+t,由得x2+3(-x+t)2-6=0,即4x2-6tx+(3t2-6)=0,由Δ=(-6t)2-4×4×(3t2-6)=96-12t2>0,解得-2<t<2.设M(x1,y1),N(x2,y2),则x1+x2=,x1x2=,设线段MN的中点为E,由于|F1M|=|F1N|,则F1E⊥MN,故=-=1,又F1(-2,0),E,即E, ∴==1,解得t=-4.不满足-2<t<2,∴不存在满足条件的直线l.。
高三数学一轮复习圆锥曲线的综合问题
备考例题 3
已知
F1,F2
为椭圆x2+y2=1(a>b>0)的左、右焦点,A a2 b2
是椭圆上位于第一象限内的一点,点
B
也在椭圆上,且满足O→A+O→B=
0(O 为坐标原点),且A→F2·F→1F2=0,若椭圆的离心率等于 2. 2
(1)求直线 AB 的方程;
(2)若△ABF2 的面积为 4 2,求椭圆的方程;
则 P 到直线 y= 2x 的距离为 2
|2
2cosθ-2 6
2sinθ|=4 3
6|cos(θ+π)|≤4 43
6<4,故椭圆上不存在点 M 使△MAB 面积为 8
3.
2
题型四
圆锥曲线与其他知识交汇的问 题
1-ky0-1+ky0
∴kEF=yxEE- -yxFF=(1-kky
-k 0)2-(1+ky
0)2
k2
k2
2
= k =- 1 (定值), -4ky0 2y0
k2 所以直线 EF 的斜率为定值.
题型二 最值与范围问题
①正确理解圆锥曲线的定义、标 思维提 准方程;
示 ②联立方程组,对有关参数进行 讨论.
[解] (1)∵F0(c,0),F1(0, b2-c2),F2(0,- b2-c2),
∴|F0F1|= (b2-c2)+c2=b=1,
|F1F2|=2 b2-c2=1⇒c2=3, 4
于是 a=1 (x≥0) 7
所求“果圆”的方程为 y2+4x2=1 (x≤0)
.
m2 m2-1
(2)设 Q(x1,y1), ∵P(m,y0),P→F=λF→Q,
2
1-m=λ(x1-1)
∴2
,
-y0=λy1
2018届高考(新课标)数学(理)大一轮复习课件:第九章 平面解析几何 9-8
-8km 4m2-12 ∴x1+x2= 2 ,x1x2= .① 4k +3 4k2+3 ∵以 MN 为直径的圆过点 A,A 点的坐标为(2,0), → ·AN → =0,即(x -2)(x -2)+y y =0.② ∴AM 1 2 1 2 ∵y1=kx1+m,y2=kx2+m, ∴y1y2=k2x1x2+km(x1+x2)+m2.③ 将①③代入②得 7m2+16km+4k2=0. m 2 m ∴ k =-7或 k =-2,且都满足 Δ>0.
(1)由曲线方程的定义可知,两条曲线交点的坐标应该是两个曲线方程的公共解,即两个曲 线方程组成的方程组的实数解;反过来,方程组有几组解,两条曲线就有几个交点;方程组无 解,两条曲线就没有交点. (2)两条曲线有交点的充要条件是它们的方程所组成的方程组有实数解.可见,求曲线的交
点问题,就是求由它们的方程所组成的方程组的实数解问题.
【答案】 (x-2)2+y2=4(0≤x<1)
题型一 定义法求轨迹方程
【例1】 已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切 ,圆心P的轨迹为曲线C.求C的方程.
【解析】 由已知得圆 M 的圆心为 M(-1,0),半径 r1=1; 圆 N 的圆心为 N(1,0),半径 r2=3.设圆 P 的圆心为 P(x,y),半 径为 R.因为圆 P 与圆 M 外切并且与圆 N 内切,所以|PM|+|PN| =(R+r1)+(r2-R)=r1+r2=4>2=|MN|. 由椭圆的定义可知,曲线 C 是以 M,N 为左,右焦点,长半 x2 y2 轴长为 2, 短半轴长为 3的椭圆(左顶点除外), 其方程为 4 + 3 = 1(x≠-2).
线叫做___________.
这个方程的解 曲线上的点 曲线的方程 方程的曲线
精选江苏专用2018版高考数学大一轮复习第九章平面解析几何9.6双曲线教师用书理苏教版
第九章平面解析几何 9.6 双曲线教师用书理苏教版1.双曲线定义平面内到两个定点F1,F2的距离的差的绝对值等于常数(小于F1F2的正数)的点的轨迹叫做双曲线,两个定点F1,F2叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P={M||MF1-MF2|=2a},F1F2=2c,其中a,c为常数且a>0,c>0.(1)当2a<F1F2时,P点的轨迹是双曲线;(2)当2a=F1F2时,P点的轨迹是两条射线;(3)当2a>F1F2时,P点不存在.2.双曲线的标准方程和几何性质【知识拓展】巧设双曲线方程(1)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b 2=t (t ≠0).(2)过已知两个点的双曲线方程可设为x 2m +y 2n=1(mn <0).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( × )(2)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( × )(3)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±yn=0.( √ )(4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ )(5)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22=1(此结论中两条双曲线称为共轭双曲线).( √ )1.(教材改编)若双曲线x 2a 2-y 2b2=1 (a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为________. 答案5解析 由题意得b =2a ,又a 2+b 2=c 2,∴5a 2=c 2.∴e 2=c 2a2=5,∴e = 5.2.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,AB =43,则C 的实轴长为________.答案 4解析 由题设C :x 2a 2-y 2a2=1.∵抛物线y 2=16x 的准线为x =-4,联立x 2a 2-y 2a2=1和x =-4,得A (-4,16-a 2),B (-4,-16-a 2),∴AB =216-a 2=43, ∴a =2,∴2a =4.∴C 的实轴长为4.3.(2016·无锡一模)已知焦点在x 轴上的双曲线的渐近线方程为y =±13x ,那么双曲线的离心率为________. 答案103解析 根据题意,设双曲线的方程为x 2a 2-y 2b 2=1,则b a =13,所以ca=1+b a2=103,即双曲线的离心率为103. 4.(2016·江苏)在平面直角坐标系xOy 中,双曲线x 27-y 23=1的焦距是________.答案 210解析 由已知,a 2=7,b 2=3,则c 2=7+3=10,故焦距为2c =210. 5.双曲线x 24-y 2=1的顶点到其渐近线的距离等于________.答案255解析 双曲线的一个顶点坐标为(2,0), 一条渐近线方程是y =12x ,即x -2y =0,则顶点到渐近线的距离d =|2-0|5=255.题型一 双曲线的定义及标准方程 命题点1 利用定义求轨迹方程例1 已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为____________________. 答案 x 2-y 28=1(x ≤-1)解析 如图所示,设动圆M 与圆C 1及圆C 2分别外切于A 和B .根据两圆外切的条件, 得MC 1-AC 1=MA ,MC 2-BC 2=MB ,因为MA =MB , 所以MC 1-AC 1=MC 2-BC 2,即MC 2-MC 1=BC 2-AC 1=2,所以点M 到两定点C 1、C 2的距离的差是常数且小于C 1C 2=6.又根据双曲线的定义,得动点M 的轨迹为双曲线的左支(点M 与C 2的距离大,与C 1的距离小), 其中a =1,c =3,则b 2=8.故点M 的轨迹方程为x 2-y 28=1(x ≤-1).命题点2 利用待定系数法求双曲线方程 例2 根据下列条件,求双曲线的标准方程: (1)虚轴长为12,离心率为54;(2)焦距为26,且经过点M (0,12);(3)经过两点P (-3,27)和Q (-62,-7). 解 (1)设双曲线的标准方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1(a >0,b >0). 由题意知,2b =12,e =c a =54.∴b =6,c =10,a =8.∴双曲线的标准方程为x 264-y 236=1或y 264-x 236=1.(2)∵双曲线经过点M (0,12),∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a =12. 又2c =26,∴c =13,∴b 2=c 2-a 2=25. ∴双曲线的标准方程为y 2144-x 225=1.(3)设双曲线方程为mx 2-ny 2=1(mn >0).∴⎩⎪⎨⎪⎧9m -28n =1,72m -49n =1,解得⎩⎪⎨⎪⎧m =-175,n =-125.∴双曲线的标准方程为y 225-x 275=1.命题点3 利用定义解决焦点三角形问题例3 已知F 1,F 2为双曲线C :x 2-y 2=2的左,右焦点,点P 在C 上,PF 1=2PF 2,则cos∠F 1PF 2=________. 答案 34解析 ∵由双曲线的定义有PF 1-PF 2 =PF 2=2a =22, ∴PF 1=2PF 2=42,则cos∠F 1PF 2=PF 21+PF 22-F 1F 222PF 1·PF 2=22+22-422×42×22=34.引申探究1.本例中,若将条件“PF 1=2PF 2”改为“∠F 1PF 2=60°”,则△F 1PF 2的面积是多少? 解 不妨设点P 在双曲线的右支上, 则PF 1-PF 2=2a =22, 在△F 1PF 2中,由余弦定理,得cos∠F 1PF 2=PF 21+PF 22-F 1F 222PF 1·PF 2=12,所以PF 1·PF 2=8, 所以12F PF S △=12PF 1·PF 2·sin 60°=2 3.2.本例中,若将条件“PF 1=2PF 2”改为“PF 1→·PF 2→=0”,则△F 1PF 2的面积是多少? 解 不妨设点P 在双曲线的右支上, 则PF 1-PF 2=2a =22,由于PF 1→·PF 2→=0,所以PF 1→⊥PF 2→, 所以在△F 1PF 2中,有PF 21+PF 22=F 1F 22, 即PF 21+PF 22=16, 所以PF 1·PF 2=4, 所以12F PF S △=12PF 1·PF 2=2.思维升华 (1)利用双曲线的定义判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出双曲线方程.(2)在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合|PF 1-PF 2|=2a ,运用平方的方法,建立与PF 1·PF 2的联系.(3)待定系数法求双曲线方程具体过程中先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值,如果已知双曲线的渐近线方程,求双曲线的标准方程,可设有公共渐近线的双曲线方程为x 2a 2-y 2b2=λ(λ≠0),再由条件求出λ的值即可.(1)已知F 1,F 2为双曲线x 25-y 24=1的左,右焦点,P (3,1)为双曲线内一点,点A在双曲线上,则AP +AF 2的最小值为__________.(2)设F 1,F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,双曲线上存在一点P 使得PF 1+PF 2=3b ,PF 1·PF 2=94ab ,则该双曲线的离心率为________.答案 (1)37-2 5 (2)53解析 (1)由题意知,AP +AF 2=AP +AF 1-2a ,要求AP +AF 2的最小值,只需求AP +AF 1的最小值,当A ,P ,F 1三点共线时,取得最小值, 则AP +AF 1=PF 1=[3--2+-2=37,∴AP +AF 2的最小值为AP +AF 1-2a =37-2 5.(2)不妨设P 为双曲线右支上一点,PF 1=r 1,PF 2=r 2.根据双曲线的定义,得r 1-r 2=2a , 又r 1+r 2=3b ,故r 1=3b +2a 2,r 2=3b -2a2.又r 1·r 2=94ab ,所以3b +2a 2·3b -2a 2=94ab ,解得b a =43(负值舍去),故e =ca =a 2+b 2a 2=b a2+1432+1=53.题型二 双曲线的几何性质例4 (1)(2016·盐城三模)若圆x 2+y 2=r 2过双曲线x 2a 2-y 2b2=1的右焦点F ,且圆与双曲线的渐近线在第一、四象限的交点分别为A ,B ,当四边形OAFB 为菱形时,双曲线的离心率为________.(2)(2015·山东)在平面直角坐标系xOy 中,双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线C 2:x 2=2py (p >0)交于点O ,A ,B .若△OAB 的垂心为C 2的焦点,则C 1的离心率为________. 答案 (1)2 (2)32解析 (1)若四边形OAFB 为菱形,且点A 在圆x 2+y 2=r 2上,则点A 坐标为(c 2,32c ),此时r =c .又点A 在渐近线上,所以32c =b a ·c 2,即ba=3,所以e = 1+ba2=2.(2)由题意,不妨设直线OA 的方程为y =b a x ,直线OB 的方程为y =-b ax .由⎩⎪⎨⎪⎧y =b a x ,x 2=2py ,得x 2=2p ·bax ,∴x =2pb a,y =2pb 2a2,∴A ⎝ ⎛⎭⎪⎫2pb a ,2pb 2a 2.设抛物线C 2的焦点为F ,则F ⎝ ⎛⎭⎪⎫0,p 2,∴k AF =2pb2a 2-p22pba.∵△OAB 的垂心为F ,∴AF ⊥OB ,∴k AF ·k OB =-1, 即2pb2a 2-p22pb a·⎝ ⎛⎭⎪⎫-b a =-1,∴b 2a 2=54.设C 1的离心率为e ,则e 2=c 2a 2=a 2+b 2a 2=1+54=94.∴e =32.思维升华 双曲线的几何性质中重点是渐近线方程和离心率,在双曲线x 2a 2-y 2b2=1(a >0,b >0)中,离心率e 与双曲线的渐近线的斜率k =±b a满足关系式e 2=1+k 2.(2016·全国甲卷改编)已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左,右焦点,点M在E 上,MF 1与x 轴垂直,sin∠MF 2F 1=13,则E 的离心率为________.答案2解析 离心率e =F 1F 2MF 2-MF 1,由正弦定理得e =F 1F 2MF 2-MF 1=sin∠F 1MF 2sin∠MF 1F 2-sin∠MF 2F 1=2231-13= 2.题型三 直线与双曲线的综合问题例5 (2016·苏州模拟)已知椭圆C 1的方程为x 24+y 2=1,双曲线C 2的左,右焦点分别是C 1的左,右顶点,而C 2的左,右顶点分别是C 1的左,右焦点. (1)求双曲线C 2的方程;(2)若直线l :y =kx +2与双曲线C 2恒有两个不同的交点A 和B ,且OA →·OB →>2(其中O 为原点),求k 的取值范围.解 (1)设双曲线C 2的方程为x 2a 2-y 2b2=1(a >0,b >0),则a 2=4-1=3,c 2=4, 再由a 2+b 2=c 2,得b 2=1. 故C 2的方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线C 2有两个不同的交点,得⎩⎨⎧1-3k 2≠0,Δ=-62k2+-3k2=-k2,∴k 2≠13且k 2<1.①设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=62k 1-3k 2,x 1x 2=-91-3k 2.∴x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2) =(k 2+1)x 1x 2+2k (x 1+x 2)+2 =3k 2+73k 2-1. 又∵OA →·OB →>2,得x 1x 2+y 1y 2>2, ∴3k 2+73k 2-1>2,即-3k 2+93k 2-1>0, 解得13<k 2<3,②由①②得13<k 2<1.故k 的取值范围为(-1,-33)∪(33,1).思维升华 (1)研究直线与双曲线位置关系问题的通法:将直线方程代入双曲线方程,消元,得关于x 或y 的一元二次方程.当二次项系数等于0时,直线与双曲线相交于某支上一点,这时直线平行于一条渐近线;当二次项系数不等于0时,用判别式Δ来判定. (2)用“点差法”可以解决弦中点和弦斜率的关系问题,但需要检验.在平面直角坐标系xOy 中,已知双曲线C :x 24-y 23=1.设过点M (0,1)的直线l 与双曲线C 交于A ,B 两点.若AM →=2MB →,则直线l 的斜率为________. 答案 ±12解析 设A (x 1,y 1),B (x 2,y 2), 则x 214-y 213=1,x 224-y 223=1. 又AM →=2MB →,AM →=(-x 1,1-y 1),MB →=(x 2,y 2-1).所以⎩⎪⎨⎪⎧-x 1=2x 2,1-y 1=2y 2-2,即⎩⎪⎨⎪⎧x 1=-2x 2,y 1=3-2y 2,代入双曲线方程联立解得⎩⎪⎨⎪⎧x 2=-2,y 2=0或⎩⎪⎨⎪⎧x 2=2,y 2=0,所以A (4,3),B (-2,0)或A (-4,3),B (2,0),故k =3-04+2=12或k =3-0-4-2=-12,即直线l 的斜率为±12.10.直线与圆锥曲线的交点典例 已知双曲线x 2-y 22=1,过点P (1,1)能否作一条直线l ,与双曲线交于A ,B 两点,且点P 是线段AB 的中点? 错解展示现场纠错解 设点A (x 1,y 1),B (x 2,y 2)在双曲线上,且线段AB 的中点为(x 0,y 0), 若直线l 的斜率不存在,显然不符合题意. 设经过点P 的直线l 的方程为y -1=k (x -1), 即y =kx +1-k .由⎩⎪⎨⎪⎧y =kx +1-k ,x 2-y 22=1,得(2-k 2)x 2-2k (1-k )x -(1-k )2-2=0(2-k 2≠0).①∴x 0=x 1+x 22=k-k2-k2. 由题意,得k-k2-k2=1,解得k =2. 当k =2时,方程①可化为2x 2-4x +3=0. Δ=16-24=-8<0,方程①没有实数解.∴不能作一条直线l 与双曲线交于A ,B 两点,且点P (1,1)是线段AB 的中点. 纠错心得 (1)“点差法”解决直线与圆锥曲线的交点问题,要考虑变形的条件. (2)“判别式Δ≥0”是判断直线与圆锥曲线是否有公共点的通用方法.1.(2016·泰州联考)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的焦距为10,点P (2,1)在C 的一条渐近线上,则C 的方程为________________. 答案x 220-y 25=1 解析 依题意⎩⎪⎨⎪⎧a 2+b 2=25,1=ba×2,解得⎩⎪⎨⎪⎧a 2=20,b 2=5,∴双曲线C 的方程为x 220-y 25=1.2.(2016·全国乙卷改编)已知方程x 2m 2+n -y 23m 2-n=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是________. 答案 (-1,3)解析 ∵方程x 2m 2+n -y 23m 2-n=1表示双曲线,∴(m 2+n )·(3m 2-n )>0,解得-m 2<n <3m 2,由双曲线性质,知c 2=(m 2+n )+(3m 2-n )=4m 2(其中c 是半焦距),∴焦距2c =2×2|m |=4,解得|m |=1,∴-1<n <3.3.(2016·盐城模拟)已知双曲线x 216-y 29=1的左,右焦点分别为F 1,F 2,过F 2的直线与该双曲线的右支交于A ,B 两点,若AB =5,则△ABF 1的周长为________. 答案 26解析 由双曲线x 216-y 29=1,知a =4.由双曲线定义AF 1-AF 2=BF 1-BF 2=2a =8,∴AF 1+BF 1=AF 2+BF 2+16=21,∴△ABF 1的周长为AF 1+BF 1+AB =21+5=26.4.(2016·北京)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线为2x +y =0,一个焦点为(5,0),则a =________,b =________. 答案 1 2解析 由2x +y =0,得y =-2x ,所以b a=2. 又c =5,a 2+b 2=c 2,解得a =1,b =2.5.已知点F 是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是____________. 答案 (1,2)解析 由题意易知点F 的坐标为(-c,0),A (-c ,b 2a ),B (-c ,-b 2a),E (a,0),∵△ABE 是锐角三角形,∴EA →·EB →>0,即EA →·EB →=(-c -a ,b 2a)·(-c -a ,-b 2a)>0,整理得3e 2+2e >e 4,∴e (e 3-3e -3+1)<0, ∴e (e +1)2(e -2)<0,解得e ∈(0,2),又e >1,∴e ∈(1,2).6.(2016·浙江)设双曲线x 2-y 23=1的左,右焦点分别为F 1,F 2,若点P 在双曲线上,且△F 1PF 2为锐角三角形,则PF 1+PF 2的取值范围是________. 答案 (27,8)解析 如图,由已知可得a =1,b =3,c =2,从而F 1F 2=4,由对称性不妨设P 在右支上,设PF 2=m ,则PF 1=m +2a =m +2, 由于△PF 1F 2为锐角三角形,结合实际意义需满足⎩⎪⎨⎪⎧m +2<m 2+42,42<m +2+m 2,解得-1+7<m <3,又PF 1+PF 2=2m +2, ∴27<2m +2<8.7.(2016·南京三模)设F 是双曲线的一个焦点,点P 在双曲线上,且线段PF 的中点恰为双曲线虚轴的一个端点,则双曲线的离心率为________. 答案5解析 不妨设双曲线方程为x 2a 2-y 2b 2=1 (a >0,b >0),设F (-c,0),线段PF 的中点为(0,b ),则P (c,2b ).由点P 在双曲线上,得c 2a2-4=1,所以e = 5.8.设双曲线x 24-y 25=1的左,右焦点分别为F 1,F 2,P 为双曲线上位于第一象限内的一点,且△PF 1F 2的面积为6,则点P 的坐标为____________. 答案 (655,2)解析 由双曲线x 24-y 25=1的左,右焦点分别为F 1,F 2,所以F 1F 2=6,设P (x ,y ) (x >0,y >0),因为△PF 1F 2的面积为6,所以12F 1F 2·y =12×6×y =6,解得y =2,将y =2代入x 24-y25=1得x=655.所以P (655,2). 9.已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,若在双曲线的右支上存在一点M ,使得(OM →+OF 2→)·F 2M →=0(其中O 为坐标原点),且|MF 1→|=3|MF 2→|,则双曲线的离心率为______. 答案3+1解析 ∵F 2M →=OM →-OF 2→,∴(OM →+OF 2→)·F 2M →=(OM →+OF 2→)·(OM →-OF 2→)=0, 即OM →2-OF 2→2=0,∴|OF 2→|=|OM →|=c ,在△MF 1F 2中,边F 1F 2上的中线等于F 1F 2的一半,可得MF 1→⊥MF 2→. ∵|MF 1→|=3|MF 2→|,∴可设|MF 2→|=λ(λ>0),|MF 1→|=3λ,得(3λ)2+λ2=4c 2,解得λ=c , ∴|MF 1→|=3c ,|MF 2→|=c ,∴根据双曲线定义得2a =|MF 1→|-|MF 2→|=(3-1)c , ∴双曲线的离心率e =2c2a=3+1.10.(2015·课标全国Ⅰ改编)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是______________. 答案 ⎝ ⎛⎭⎪⎫-33,33 解析 由题意知a =2,b =1,c =3, ∴F 1(-3,0),F 2(3,0),∴MF 1→=(-3-x 0,-y 0),MF 2→=(3-x 0,-y 0). ∵MF 1→·MF 2→<0,∴(-3-x 0)(3-x 0)+y 20<0,即x 20-3+y 20<0.∵点M (x 0,y 0)在双曲线上, ∴x 202-y 20=1,即x 20=2+2y 20, ∴2+2y 20-3+y 20<0,∴-33<y 0<33. 11.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,点P 在双曲线的右支上,且PF 1=4PF 2,则此双曲线的离心率e 的最大值为________.答案 53解析 由定义,知PF 1-PF 2=2a . 又PF 1=4PF 2,∴PF 1=83a ,PF 2=23a .在△PF 1F 2中,由余弦定理,得 cos∠F 1PF 2=649a 2+49a 2-4c 22·83a ·23a =178-98e 2.要求e 的最大值,即求cos∠F 1PF 2的最小值,∴当cos∠F 1PF 2=-1时,得e =53,即e 的最大值为53.12.(2015·课标全国Ⅰ)已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 的周长最小时,该三角形的面积为________.答案 12 6解析 设左焦点为F 1,PF -PF 1=2a =2,∴PF =2+PF 1,△APF 的周长为AF +AP +PF =AF +AP +2+PF 1,△APF 周长最小即为AP +PF 1最小,当A 、P 、F 1三点在一条直线时最小,过AF 1的直线方程为x -3+y66=1,与x 2-y 28=1联立,解得P 点坐标为(-2,26),此时S △APF =S △AF 1F -S △F 1PF =12 6.13.(2016·江西丰城中学模拟)一条斜率为1的直线l 与离心率为3的双曲线x 2a 2-y 2b 2=1(a >0,b >0)交于P ,Q 两点,直线l 与y 轴交于R 点,且OP →·OQ →=-3,PR →=3RQ →,求直线和双曲线的方程.解 ∵e =3,∴b 2=2a 2, ∴双曲线方程可化为2x 2-y 2=2a 2. 设直线l 的方程为y =x +m .由⎩⎪⎨⎪⎧y =x +m ,2x 2-y 2=2a 2,得x 2-2mx -m 2-2a 2=0,∴Δ=4m 2+4(m 2+2a 2)>0, ∴直线l 一定与双曲线相交. 设P (x 1,y 1),Q (x 2,y 2), 则x 1+x 2=2m ,x 1x 2=-m 2-2a 2.∵PR →=3RQ →,x R =x 1+3x 24=0,∴x 1=-3x 2,∴x 2=-m ,-3x 22=-m 2-2a 2. 消去x 2,得m 2=a 2.OP →·OQ →=x 1x 2+y 1y 2=x 1x 2+(x 1+m )(x 2+m ) =2x 1x 2+m (x 1+x 2)+m 2=m 2-4a 2=-3, ∴m =±1,a 2=1,b 2=2.直线l 的方程为y =x ±1,双曲线的方程为x 2-y 22=1.*14.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点是F 2(2,0),且b =3a .(1)求双曲线C 的方程;(2)设经过焦点F 2的直线l 的一个法向量为(m,1),当直线l 与双曲线C 的右支交于不同的两点A ,B 时,求实数m 的取值范围,并证明AB 中点M 在曲线3(x -1)2-y 2=3上; (3)设(2)中直线l 与双曲线C 的右支交于A ,B 两点,问是否存在实数m ,使得∠AOB 为锐角?若存在,请求出m 的取值范围;若不存在,请说明理由. 解 (1)由已知,得c =2,c 2=a 2+b 2,b =3a , ∴4=a 2+3a 2,∴a 2=1,b 2=3, ∴双曲线C 的方程为x 2-y 23=1.(2)由题意,得直线l :m (x -2)+y =0,由⎩⎪⎨⎪⎧y =-mx +2m ,x 2-y 23=1,得(3-m 2)x 2+4m 2x -4m 2-3=0. 由Δ>0,得4m 4+(3-m 2)(4m 2+3)>0, 12m 2+9-3m 2>0,即m 2+1>0恒成立. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4m 2m 2-3,x 1x 2=4m 2+3m 2-3.又⎩⎪⎨⎪⎧x 1+x 2>0,x 1·x 2>0,∴⎩⎪⎨⎪⎧4m2m 2-3>0,4m 2+3m 2-3>0,∴m 2>3,∴m ∈(-∞,-3)∪(3,+∞). ∵x 1+x 22=2m 2m 2-3,y 1+y 22=-2m 3m 2-3+2m=-6mm 2-3, ∴AB 的中点M (2m 2m 2-3,-6mm 2-3),∵3(2m 2m 2-3-1)2-36m 2m 2-2 =3×m 2+2m 2-2-36m 2m 2-2=3×m 4+6m 2+9-12m 2m 2-2=3,∴M 在曲线3(x -1)2-y 2=3上. (3)设A (x 1,y 1),B (x 2,y 2),假设存在实数m ,使∠AOB 为锐角,则OA →·OB →>0, ∴x 1x 2+y 1y 2>0.∵y 1y 2=(-mx 1+2m )(-mx 2+2m ) =m 2x 1x 2-2m 2(x 1+x 2)+4m 2, ∴(1+m 2)x 1x 2-2m 2(x 1+x 2)+4m 2>0, ∴(1+m 2)(4m 2+3)-8m 4+4m 2(m 2-3)>0,即7m 2+3-12m 2>0,∴m 2<35,与m 2>3矛盾,∴不存在实数m ,使得∠AOB 为锐角.。
2018版高考数学文江苏专用大一轮复习讲义文档 第九章
1.椭圆的概念平面内到两个定点F 1,F 2的距离的和等于常数(大于F 1F 2)的点的轨迹叫做椭圆,两个定点F 1,F 2叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P ={M |MF 1+MF 2=2a },F 1F 2=2c ,其中a >0,c >0,且a ,c 为常数: (1)若a >c ,则集合P 为椭圆; (2)若a =c ,则集合P 为线段; (3)若a <c ,则集合P 为空集. 2.椭圆的标准方程和几何性质【知识拓展】点P (x 0,y 0)和椭圆的关系(1)点P (x 0,y 0)在椭圆内⇔x 20a 2+y 20b 2<1.(2)点P (x 0,y 0)在椭圆上⇔x 20a 2+y 20b 2=1.(3)点P (x 0,y 0)在椭圆外⇔x 20a 2+y 20b2>1.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内到两个定点F 1,F 2的距离的和等于常数的点的轨迹叫做椭圆.( × )(2)椭圆上一点P 与两焦点F 1,F 2构成△PF 1F 2的周长为2a +2c (其中a 为椭圆的长半轴长,c 为椭圆的半焦距).( √ )(3)椭圆的离心率e 越大,椭圆就越圆.( × )(4)方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( √ ) (5)y 2a 2+x 2b 2=1(a ≠b )表示焦点在y 轴上的椭圆.( × ) (6)x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2b2=1(a >b >0)的焦距相等.( √ )1.(教材改编)椭圆x 210-m +y 2m -2=1的焦距为4,则m =________.答案 4或8解析 由题意知⎩⎪⎨⎪⎧ 10-m >m -2>0,(10-m )-(m -2)=4或⎩⎪⎨⎪⎧m -2>10-m >0,(m -2)-(10-m )=4,解得m =4或m =8.2.(2016·苏州检测)在平面直角坐标系xOy 内,动点P 到定点F (-1,0)的距离与P 到定直线x =-4的距离的比值为12.则动点P 的轨迹C 的方程为__________.答案 x 24+y 23=1解析 设点P (x ,y ),由题意知(x +1)2+y 2|x +4|=12,化简得3x 2+4y 2=12,所以动点P 的轨迹C 的方程为x 24+y 23=1.3.(2016·全国乙卷改编)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为________.答案 12解析 如图,由题意得,BF =a ,OF =c ,OB =b ,OD =14·2b =12b .在Rt △FOB 中,OF ·OB =BF ·OD ,即cb =a ·12b ,解得a =2c ,故椭圆离心率e =c a =12.4.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是__________.答案 x 24+y 23=1解析 由题意知c =1,e =c a =12,所以a =2,b 2=a 2-c 2=3.故所求椭圆方程为x 24+y 23=1.5.(教材改编)已知点P 是椭圆x 25+y 24=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为__________________. 答案 ⎝⎛⎭⎫152,1或⎝⎛⎭⎫152,-1 解析 设P (x ,y ),由题意知c 2=a 2-b 2=5-4=1,所以c =1,则F 1(-1,0),F 2(1,0),由题意可得点P 到x 轴的距离为1,所以y =±1,把y =±1代入x 25+y 24=1,得x =±152,又x >0,所以x =152,所以P 点坐标为⎝⎛⎭⎫152,1或⎝⎛⎭⎫152,-1.题型一 椭圆的定义及标准方程 命题点1 利用定义求轨迹例1 (2016·徐州模拟)如图所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,则点P 的轨迹是________.答案 椭圆解析 由条件知PM =PF , ∴PO +PF =PO +PM =OM =R >OF . ∴P 点的轨迹是以O ,F 为焦点的椭圆. 命题点2 利用待定系数法求椭圆方程例2 (1)已知椭圆以坐标轴为对称轴,且长轴长是短轴长的3倍,并且过点P (3,0),则椭圆的方程为___________________________________________.(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 1(6,1),P 2(-3,-2),则椭圆的方程为_____________________________________. 答案 (1)x 29+y 2=1或y 281+x 29=1(2)x 29+y 23=1 解析 (1)若焦点在x 轴上, 设方程为x 2a 2+y 2b2=1(a >b >0).∵椭圆过P (3,0),∴32a 2+02b 2=1,即a =3,又2a =3×2b ,∴b =1,∴椭圆方程为x 29+y 2=1.若焦点在y 轴上,设方程为y 2a 2+x 2b 2=1(a >b >0).∵椭圆过点P (3,0),∴02a 2+32b 2=1,即b =3.又2a =3×2b ,∴a =9,∴椭圆方程为y 281+x 29=1.∴所求椭圆的方程为x 29+y 2=1或y 281+x 29=1.(2)设椭圆方程为mx 2+ny 2=1(m >0,n >0且m ≠n ). ∵椭圆经过点P 1,P 2,∴点P 1,P 2的坐标适合椭圆方程.即⎩⎪⎨⎪⎧6m +n =1, ①3m +2n =1, ②①②两式联立,解得⎩⎨⎧m =19,n =13.∴所求椭圆方程为x 29+y 23=1.命题点3 利用定义解决“焦点三角形”问题例3 已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________. 答案 3解析 设PF 1=r 1,PF 2=r 2,则⎩⎪⎨⎪⎧r 1+r 2=2a ,r 21+r 22=4c 2, 因为2r 1r 2=(r 1+r 2)2-(r 21+r 22)=4a 2-4c 2=4b 2,又因为1221219,2PF F S rr b ===△ 所以b =3. 引申探究1.在例3中,若增加条件“△PF 1F 2的周长为18”,其他条件不变,求该椭圆的方程. 解 由原题得b 2=a 2-c 2=9, 又2a +2c =18,所以a -c =1,解得a =5, 故椭圆方程为x 225+y 29=1.2.在例3中,若将条件“PF 1→⊥PF 2→”“△PF 1F 2的面积为9”分别改为“∠F 1PF 2=60°”“12PF F S =△,结果如何?解 PF 1+PF 2=2a ,又∠F 1PF 2=60°,所以PF 21+PF 22-2PF 1·PF 2cos 60°=F 1F 22,即(PF 1+PF 2)2-3PF 1·PF 2=4c 2, 所以3PF 1·PF 2=4a 2-4c 2=4b 2, 所以PF 1·PF 2=43b 2,又因为12121··sin 602PF F S PF PF =︒△=12·43b 2·32=33b 2=33, 所以b =3.思维升华 (1)求椭圆的方程多采用定义法和待定系数法,利用椭圆的定义定形状时,一定要注意常数2a >F 1F 2这一条件.(2)求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a ,b 的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx 2+ny 2=1(m >0,n >0,m ≠n )的形式.(3)当P 在椭圆上时,与椭圆的两焦点F 1,F 2组成的三角形通常称为“焦点三角形”,利用定义可求其周长;利用定义和余弦定理可求PF 1·PF 2;通过整体代入可求其面积等.(1)(2016·盐城模拟)已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为_________. (2)(2016·镇江模拟)设F 1、F 2分别是椭圆x 24+y 2=1的左、右焦点,若椭圆上存在一点P ,使(OP→+OF 2→)·PF 2→=0(O 为坐标原点),则△F 1PF 2的面积是______. 答案 (1)x 264+y 248=1 (2)1解析 (1)设圆M 的半径为r ,则MC 1+MC 2=(13-r )+(3+r )=16>8=C 1C 2, 所以M 的轨迹是以C 1,C 2为焦点的椭圆, 且2a =16,2c =8,故所求的轨迹方程为x 264+y 248=1.(2)∵(OP →+OF 2→)·PF 2→=(OP →+F 1O →)·PF 2→=F 1P →·PF 2→=0, ∴PF 1⊥PF 2,∠F 1PF 2=90°. 设PF 1=m ,PF 2=n ,则m +n =4,m 2+n 2=12,2mn =4,121= 1.2F PF S mn ∴=△题型二 椭圆的几何性质例4 (1)已知点F 1,F 2是椭圆x 2+2y 2=2的左,右焦点,点P 是该椭圆上的一个动点,那么|PF 1→+PF 2→|的最小值是________.(2)(2016·全国丙卷改编)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B分别为椭圆C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为________. 答案 (1)2 (2)13解析 (1)设P (x 0,y 0),则PF 1→=(-1-x 0,-y 0),PF 2→=(1-x 0,-y 0), ∴PF 1→+PF 2→=(-2x 0,-2y 0), ∴|PF 1→+PF 2→|=4x 20+4y 20=22-2y 20+y 20=2-y 20+2.∵点P 在椭圆上,∴0≤y 20≤1, ∴当y 20=1时,|PF 1→+PF 2→|取最小值2.(2)设M (-c ,m ),则E ⎝⎛⎭⎫0,am a -c ,OE 的中点为D ,则D ⎝⎛⎭⎫0,am2(a -c ),又B ,D ,M 三点共线,所以m 2(a -c )=m a +c,a =3c ,e =13.思维升华 (1)利用椭圆几何性质的注意点及技巧 ①注意椭圆几何性质中的不等关系在求与椭圆有关的一些量的范围,或者最大值、最小值时,经常用到椭圆标准方程中x ,y 的范围,离心率的范围等不等关系. ②利用椭圆几何性质的技巧求解与椭圆几何性质有关的问题时,要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的内在联系. (2)求椭圆的离心率问题的一般思路求椭圆的离心率或其范围时,一般是依据题设得出一个关于a ,b ,c 的等式或不等式,利用a 2=b 2+c 2消去b ,即可求得离心率或离心率的范围.(2016·江苏)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.答案63解析 联立方程组⎩⎨⎧x 2a 2+y 2b 2=1,y =b2,解得B ,C 两点坐标为B ⎝⎛⎭⎫-32a ,b 2,C ⎝⎛⎭⎫32a ,b 2, 又F (c,0),则FB →=⎝⎛⎭⎫-32a -c ,b 2,FC →=⎝⎛⎭⎫3a 2-c ,b 2,又由∠BFC =90°,可得FB →·FC →=0,代入坐标可得 c 2-34a 2+b 24=0,①又因为b 2=a 2-c 2. 代入①式可化简为c 2a 2=23,则椭圆离心率为e =ca =23=63. 题型三 直线与椭圆例5 (2016·天津)设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A .已知1OF +1OA =3eF A ,其中O 为原点,e 为椭圆的离心率. (1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF ⊥HF ,且∠MOA =∠MAO ,求直线l 的斜率. 解 (1)设F (c,0),由1OF +1OA =3e F A, 即1c +1a =3c a (a -c ),可得a 2-c 2=3c 2. 又a 2-c 2=b 2=3,所以c 2=1,因此a 2=4. 所以椭圆的方程为x 24+y 23=1.(2)设直线l 的斜率为k (k ≠0), 则直线l 的方程为y =k (x -2).设B (x B ,y B ),由方程组⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -2)消去y ,整理得(4k 2+3)x 2-16k 2x +16k 2-12=0, 解得x =2或x =8k 2-64k 2+3.由题意,得x B =8k 2-64k 2+3,从而y B =-12k4k 2+3.由(1)知,F (1,0),设H (0,y H ),有FH →=(-1,y H ),BF →=⎝ ⎛⎭⎪⎫9-4k24k 2+3,12k 4k 2+3.由BF ⊥HF ,得BF →·FH →=0,所以4k 2-94k 2+3+12ky H 4k 2+3=0,解得yH =9-4k 212k .因此直线MH 的方程为y =-1k x +9-4k212k.设M (x M ,y M ),由方程组⎩⎪⎨⎪⎧y =k (x -2),y =-1k x +9-4k 212k 消去y ,解得x M =20k 2+912(k 2+1).在△MAO 中,∠MOA =∠MAO ⇔MA =MO ,即(x M -2)2+y 2M =x 2M +y 2M ,化简得x M =1,即20k 2+912(k 2+1)=1,解得k =-64或k =64. 所以直线l 的斜率为-64或64. 思维升华 (1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题时用“点差法”解决,往往会更简单.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则AB =(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+1k2)[(y 1+y 2)2-4y 1y 2](k 为直线斜率).提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.如图,已知椭圆O :x 24+y 2=1的右焦点为F ,B ,C 分别为椭圆O 的上,下顶点,P 是直线l :y =-2上的一个动点(与y 轴交点除外),直线PC 交椭圆O 于另一点M .(1)当直线PM 过椭圆的右焦点F 时,求△FBM 的面积; (2)①记直线BM ,BP 的斜率分别为k 1,k 2,求证:k 1·k 2为定值; ②求PB →·PM →的取值范围.(1)解 由题意知B (0,1),C (0,-1),焦点F (3,0),当直线PM 过椭圆O 的右焦点F 时, 直线PM 的方程为x 3+y -1=1,即y =33x -1.联立⎩⎨⎧x 24+y 2=1,y =33x -1,解得⎩⎨⎧x =837,y =17或⎩⎪⎨⎪⎧x =0,y =-1(舍去),即点M 的坐标为(837,17).连结BF ,则直线BF 的方程为x 3+y1=1, 即x +3y -3=0.又BF =a =2, 点M 到直线BF 的距离为d =|837+3×17-3|12+(3)2=2372=37, 故△FBM 的面积为S △MBF =12·BF ·d =12×2×37=37.(2)方法一 ①证明 设P (m ,-2),且m ≠0,则直线PM 的斜率为k =-1-(-2)0-m =-1m ,则直线PM 的方程为y =-1mx -1.联立⎩⎨⎧y =-1mx -1,x24+y 2=1,消去y ,得(1+4m 2)x 2+8mx =0,解得点M 的坐标为(-8mm 2+4,4-m 2m 2+4),所以k 1=4-m 2m 2+4-1-8m m 2+4=-2m 2-8m =14m ,k 2=1-(-2)0-m =-3m ,所以k 1·k 2=-3m ·14m =-34为定值.②解 由①知,PB →=(-m,3), PM →=(-8m m 2+4-m ,4-m 2m 2+4+2)=(-m 3-12m m 2+4,m 2+12m 2+4),所以PB →·PM →=(-m,3)·(-m 3+12m m 2+4,m 2+12m 2+4)=(m 2+12)(m 2+3)m 2+4.令m 2+4=t >4, 则PB →·PM →=(t +8)(t -1)t=t 2+7t -8t =t -8t+7.因为y =t -8t +7在t ∈(4,+∞)上单调递增,所以PB →·PM →=t -8t +7>4-84+7=9,故PB →·PM →的取值范围为(9,+∞).方法二 ①证明 设点M 的坐标为(x 0,y 0)(x 0≠0), 则直线PM 的方程为y =y 0+1x 0x -1,令y =-2,得点P 的坐标为(-x 0y 0+1,-2),所以k 1=y 0-1x 0,k 2=-2-1-x 0y 0+1=3(y 0+1)x 0,所以k 1·k 2=y 0-1x 0·3(y 0+1)x 0=3(y 20-1)x 20=3(y 20-1)4(1-y 20)=-34为定值. ②解 由①知,PB →=(x 0y 0+1,3),PM →=(x 0+x 0y 0+1,y 0+2),所以PB →·PM →=x 0y 0+1(x 0+x 0y 0+1)+3(y 0+2)=x 20(y 0+2)(y 0+1)2+3(y 0+2) =4(1-y 20)(y 0+2)(y 0+1)2+3(y 0+2)=(7-y 0)(y 0+2)y 0+1.令t =y 0+1∈(0,2),则PB →·PM →=(8-t )(t +1)t =-t +8t +7.因为y =-t +8t +7在t ∈(0,2)上单调递减,所以PB →·PM →=-t +8t +7>-2+82+7=9,故PB →·PM →的取值范围为(9,+∞).8.高考中求椭圆的离心率问题考点分析 离心率是椭圆的重要几何性质,是高考重点考查的一个知识点,这类问题一般有两类:一类是根据一定的条件求椭圆的离心率;另一类是根据一定的条件求离心率的取值范围,无论是哪类问题,其难点都是建立关于a ,b ,c 的关系式(等式或不等式),并且最后要把其中的b 用a ,c 表示,转化为关于离心率e 的关系式,这是化解有关椭圆的离心率问题难点的根本方法.典例1 (2015·福建改编)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若AF +BF =4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是__________.解析 左焦点F 0,连结F 0A ,F 0B ,则四边形AFBF 0为平行四边形.∵AF +BF =4, ∴AF +AF 0=4,∴a =2.设M (0,b ),则4b 5≥45,∴1≤b <2.离心率e =ca =c 2a 2= a 2-b 2a 2= 4-b 24∈⎝⎛⎦⎤0,32. 答案 ⎝⎛⎦⎤0,32典例2 (14分)(2016·浙江)如图,设椭圆x 2a2+y 2=1(a >1).(1)求直线y =kx +1被椭圆截得的线段长(用a ,k 表示);(2)若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围. 规范解答解 (1)设直线y =kx +1被椭圆截得的线段为AM , 由⎩⎪⎨⎪⎧y =kx +1,x 2a 2+y 2=1,得(1+a 2k 2)x 2+2a 2kx =0, 故x 1=0,x 2=-2a 2k 1+a 2k 2,因此AM =1+k 2|x 1-x 2|=2a 2|k |1+a 2k2·1+k 2. [6分](2)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足AP =AQ .记直线AP ,AQ 的斜率分别为k 1,k 2,且k 1,k 2>0,k 1≠k 2. [8分]由(1)知AP =2a 2|k 1|1+k 211+a 2k 21,AQ =2a 2|k 2|1+k 221+a 2k 22, 故2a 2|k 1|1+k 211+a 2k 21=2a 2|k 2|1+k 221+a 2k 22,所以(k 21-k 22)[1+k 21+k 22+a 2(2-a 2)k 21k 22]=0.由k 1≠k 2,k 1,k 2>0,得1+k 21+k 22+a 2(2-a 2)k 21k 22=0,因此⎝⎛⎭⎫1k 21+1⎝⎛⎭⎫1k 22+1=1+a 2(a 2-2), ①因为①式关于k 1,k 2的方程有解的充要条件是1+a 2(a 2-2)>1, 所以a > 2.[12分]因此,任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a ≤2, 由e =c a =a 2-1a ,得0<e ≤22.所以离心率的取值范围是(0,22]. [14分]1.(2016·盐城模拟)已知椭圆C :x 23m +y 22m =1(m >0)的左、右焦点分别为F 1、F 2,过F 2的直线l交C 于A 、B 两点,若△AF 1B 的周长为43,则椭圆C 的方程为________. 答案 x 23+y 22=1解析 ∵△AF 1B 的周长=AF 1+BF 1+AF 2+BF 2=4a ,∴4a =43,故a =3, 即3m =(3)2,∴m =1. ∴椭圆的方程为x 23+y 22=1.2.(2016·苏北四市一模)已知椭圆x 2a 2+y 2b 2=1(a >b >0),点A 、B 1、B 2、F 依次为其左顶点、下顶点、上顶点和右焦点.若直线AB 2与直线B 1F 的交点恰在直线x =a 2c 上,则椭圆的离心率为____.答案 12解析 由题意知直线AB 2:-x a +y b =1,直线B 1F :x c -y b =1,联立解得x =2aca -c ,若交点在椭圆的右准线上,则2ac a -c =a 2c,即2c 2+ac -a 2=0,所以2e 2+e -1=0,解得e =12.3.若对任意k ∈R ,直线y -kx -1=0与椭圆x 22+y 2m =1恒有公共点,则实数m 的取值范围是__________.答案 [1,2)∪(2,+∞)解析 联立直线与椭圆的方程,消去y 得(2k 2+m )x 2+4kx +2-2m =0, 因为直线与椭圆恒有公共点,所以Δ=16k 2-4(2k 2+m )(2-2m )≥0,即2k 2+m -1≥0恒成立,因为k ∈R ,所以k 2≥0,则m -1≥0,所以m ≥1,又m ≠2,所以实数m 的取值范围是[1,2)∪(2,+∞).4.(2016·南昌模拟)已知椭圆:y 29+x 2=1,过点P (12,12)的直线与椭圆相交于A ,B 两点,且弦AB 被点P 平分,则直线AB 的方程为________________. 答案 9x +y -5=0解析 设A (x 1,y 1),B (x 2,y 2),因为A ,B 在椭圆y 29+x 2=1上,所以⎩⎨⎧y 219+x 21=1,y 229+x 22=1,两式相减,得y 21-y 229+x 21-x 22=0, 即(y 1-y 2)(y 1+y 2)9+(x 1-x 2)(x 1+x 2)=0,又弦AB 被点P (12,12)平分,所以x 1+x 2=1,y 1+y 2=1,将其代入上式,得y 1-y 29+x 1-x 2=0,得y 1-y 2x 1-x 2=-9, 即直线AB 的斜率为-9,所以直线AB 的方程为 y -12=-9(x -12),即9x +y -5=0. 5.(2016·宿迁模拟)已知F 1、F 2是椭圆x 24+y 2=1的两个焦点,P 为椭圆上一动点,则使PF 1·PF 2取得最大值的点P 为__________. 答案 (0,1)或(0,-1)解析 由椭圆定义得PF 1+PF 2=2a =4, ∴PF 1·PF 2≤(PF 1+PF 22)2=4,当且仅当PF 1=PF 2=2,即P (0,-1)或(0,1)时,PF 1·PF 2取得最大值.6.已知两定点A (-2,0)和B (2,0),动点P (x ,y )在直线l :y =x +3上移动,椭圆C 以A ,B 为焦点且经过点P ,则椭圆C 的离心率的最大值为________. 答案22613解析 由题意知,椭圆C 的离心率e =2a ,求e 的最大值,即求a 的最小值. 由于A ,B 两点是椭圆的焦点,所以P A +PB =2a ,即在直线l 上找一点P , 使P A +PB 的值最小,设点A (-2,0)关于直线l :y =x +3的对称点为Q (x 0,y 0),则⎩⎨⎧y 0x 0+2=-1,y 02=x 0-22+3,解得⎩⎪⎨⎪⎧x 0=-3,y 0=1,即Q (-3,1),则P A +PB ≥QB =[(-3)-2]2+(1-0)2=26, 即2a ≥26,∴a ≥262, ∴e =2a ≤426=22613.7.若椭圆x 2a 2+y 2b 2=1(a >0,b >0)的焦点在x 轴上,过点(2,1)作圆x 2+y 2=4的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程为________________. 答案 x 220+y 216=1解析 设切点坐标为(m ,n ), 则n -1m -2·nm=-1, 即m 2+n 2-n -2m =0.∵m 2+n 2=4,∴2m +n -4=0, 即直线AB 的方程为2x +y -4=0.∵直线AB 恰好经过椭圆的右焦点和上顶点, ∴2c -4=0,b -4=0,解得c =2,b =4, ∴a 2=b 2+c 2=20, ∴椭圆方程为x 220+y 216=1.8.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则PM +PN 的最小值为________. 答案 7解析 由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且PF 1+PF 2=10,从而PM +PN 的最小值为PF 1+PF 2-1-2=7.9.(2017·连云港质检)椭圆x 24+y 2=1的左,右焦点分别为F 1,F 2,点P 为椭圆上一动点,若∠F 1PF 2为钝角,则点P 的横坐标的取值范围是________________. 答案 (-263,263)解析 设椭圆上一点P 的坐标为(x ,y ), 则F 1P →=(x +3,y ),F 2P →=(x -3,y ). ∵∠F 1PF 2为钝角,∴F 1P →·F 2P →<0, 即x 2-3+y 2<0,①∵y 2=1-x 24,代入①,得x 2-3+1-x 24<0,34x 2<2,∴x 2<83.解得-263<x <263,∴x ∈(-263,263).10.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率等于13,其焦点分别为A ,B ,C 为椭圆上异于长轴端点的任意一点,则在△ABC 中,sin A +sin Bsin C =________.答案 3解析 在△ABC 中,由正弦定理得sin A +sin B sin C =CB +CAAB ,因为点C 在椭圆上,所以由椭圆定义知CA +CB =2a ,而AB =2c ,所以sin A +sin B sin C =2a 2c =1e=3.11.(2016·南京模拟)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,右顶点,上顶点分别为A ,B ,且AB =52BF .(1)求椭圆C 的离心率;(2)若斜率为2的直线l 过点(0,2),且l 交椭圆C 于P ,Q 两点,OP ⊥OQ ,求直线l 的方程及椭圆C 的方程. 解 (1)由已知AB =52BF ,即a 2+b 2=52a , 4a 2+4b 2=5a 2,4a 2+4(a 2-c 2)=5a 2, ∴e =c a =32.(2)由(1)知a 2=4b 2,∴椭圆C :x 24b 2+y 2b2=1.设P (x 1,y 1),Q (x 2,y 2),直线l 的方程为y -2=2(x -0),即2x -y +2=0. 由⎩⎪⎨⎪⎧2x -y +2=0,x 24b 2+y 2b 2=1消去y , 得x 2+4(2x +2)2-4b 2=0, 即17x 2+32x +16-4b 2=0.Δ=322+16×17(b 2-4)>0,解得b >21717.x 1+x 2=-3217,x 1x 2=16-4b 217.∵OP ⊥OQ ,∴OP →·OQ →=0,即x 1x 2+y 1y 2=0,x 1x 2+(2x 1+2)(2x 2+2)=0, 5x 1x 2+4(x 1+x 2)+4=0. 从而5(16-4b 2)17-12817+4=0,解得b =1,满足b >21717.∴椭圆C 的方程为x 24+y 2=1.12.(2015·安徽)设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足BM =2MA ,直线OM 的斜率为510. (1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.解 (1)由题设条件知,点M 的坐标为⎝⎛⎭⎫23a ,13b , 又k OM =510,从而b 2a =510, 进而得a =5b ,c =a 2-b 2=2b ,故e =c a =255.(2)由题设条件和(1)的计算结果可得,直线AB 的方程为x 5b +y b=1,点N 的坐标为⎝⎛⎭⎫52b ,-12b .设点N 关于直线AB 的对称点S 的坐标为⎝⎛⎭⎫x 1,72, 则线段NS 的中点T 的坐标为⎝⎛⎭⎫54b +x 12,-14b +74.又点T 在直线AB 上,且k NS ·k AB =-1,从而有⎩⎪⎨⎪⎧54b +x 125b+-14b +74b =1,72+12b x 1-52b = 5.解得b =3.所以a =35,故椭圆E 的方程为x 245+y 29=1.13.(2016·南京市学情调研)如图,已知椭圆x 2a 2+y 2b 2=1 (a >b >0)的离心率e =22,一条准线方程为x =2.过椭圆的上顶点A 作一条与x 轴、y 轴都不垂直的直线交椭圆于另一点P ,P 关于x 轴的对称点为Q .(1)求椭圆的方程;(2)若直线AP ,AQ 与x 轴交点的横坐标分别为m ,n ,求证:mn 为常数,并求出此常数. 解 (1)因为c a =22,a 2c=2,所以a =2,c =1,所以b =a 2-c 2=1. 故椭圆的方程为x 22+y 2=1.(2)方法一 设P 点坐标为(x 1,y 1), 则Q 点坐标为(x 1,-y 1). 因为k AP =y 1-1x 1-0=y 1-1x 1,所以直线AP 的方程为y =y 1-1x 1x +1.令y =0,解得m =-x 1y 1-1.因为k AQ =-y 1-1x 1-0=-y 1+1x 1,所以直线AQ 的方程为y =-y 1+1x 1x +1. 令y =0,解得n =x 1y 1+1.所以mn =-x 1y 1-1·x 1y 1+1=x 211-y 21.又因为(x 1,y 1)在椭圆x 22+y 2=1上,所以x 212+y 21=1,即1-y 21=x 212,所以x 211-y 21=2,即mn =2,所以mn 为常数,且常数为2.方法二 设直线AP 的斜率为k (k ≠0), 则AP 的方程为y =kx +1, 令y =0得m =-1k .联立方程组⎩⎪⎨⎪⎧y =kx +1,x 22+y 2=1, 消去y 得(1+2k 2)x 2+4kx =0, 解得x A =0,x P =-4k1+2k 2, 所以y P =k ·x P +1=1-2k 21+2k 2,则Q 点的坐标为(-4k1+2k 2,-1-2k 21+2k 2),所以k AQ =-1-2k 21+2k 2-1-4k 1+2k 2=12k ,故直线AQ 的方程为y =12k x +1.令y =0得n =-2k , 所以mn =(-1k )·(-2k )=2,所以mn 为常数,且常数为2.。
【配套K12】2018版高考数学大一轮复习第九章平面解析几何第9讲圆锥曲线的综合问题第2课时定点定值
2018版高考数学大一轮复习 第九章 平面解析几何 第9讲 圆锥曲线的综合问题 第2课时 定点、定值、范围、最值问题试题 理 新人教版基础巩固题组 (建议用时:40分钟)一、选择题1.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤-12,12 B.[-2,2] C.[-1,1]D.[-4,4]解析 Q (-2,0),设直线l 的方程为y =k (x +2),代入抛物线方程,消去y 整理得k 2x 2+(4k 2-8)x +4k 2=0,由Δ=(4k 2-8)2-4k 2·4k 2=64(1-k 2)≥0,解得-1≤k ≤1. 答案 C2.(2017·石家庄模拟)已知P 为双曲线C :x 29-y 216=1上的点,点M 满足|OM →|=1,且OM →·PM→=0,则当|PM →|取得最小值时点P 到双曲线C 的渐近线的距离为( ) A.95B.125C.4D.5解析 由OM →·PM →=0,得OM ⊥PM ,根据勾股定理,求|MP |的最小值可以转化为求|OP |的最小值,当|OP |取得最小值时,点P 的位置为双曲线的顶点(±3,0),而双曲线的渐近线为4x ±3y =0,∴所求的距离d =125,故选B.答案 B3.已知椭圆C 的方程为x 216+y 2m 2=1(m >0),如果直线y =22x 与椭圆的一个交点M 在x 轴上的射影恰好是椭圆的右焦点F ,则m 的值为( ) A.2B.2 2C.8D.2 3解析 根据已知条件得c =16-m 2,则点(16-m 2,2216-m 2)在椭圆x 216+y 2m 2=1(m >0)上,∴16-m 216+16-m22m 2=1,可得m =2 2.答案 B4.若双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线y =x 2+2有公共点,则此双曲线的离心率的取值范围是( ) A.[3,+∞) B.(3,+∞) C.(1,3]D.(1,3)解析 依题意可知双曲线渐近线方程为y =±b ax ,与抛物线方程联立消去y 得x 2±b ax +2=0.∵渐近线与抛物线有交点,∴Δ=b 2a2-8≥0,求得b 2≥8a 2,∴c =a 2+b 2≥3a ,∴e =c a≥3. 答案 A5.(2016·丽水一模)斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( ) A.2B.455C.4105D.8105解析 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t 消去y ,得5x 2+8tx +4(t 2-1)=0, 则x 1+x 2=-85t ,x 1x 2=4(t 2-1)5.∴|AB |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =2·⎝ ⎛⎭⎪⎫-85t 2-4×4(t 2-1)5 =425·5-t 2, 当t =0时,|AB |max =4105.答案 C 二、填空题6.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点与抛物线y 2=16x 的焦点相同,则双曲线的方程为________. 解析 由条件知双曲线的焦点为(4,0),所以⎩⎪⎨⎪⎧a 2+b 2=16,b a=3,解得a =2,b =23,故双曲线方程为x 24-y 212=1.答案x 24-y 212=1 7.已知动点P (x ,y )在椭圆x 225+y 216=1上,若A 点坐标为(3,0),|AM →|=1,且PM →·AM →=0,则|PM →|的最小值是________. 解析 ∵PM →·AM →=0,∴AM →⊥PM →. ∴|PM →|2=|AP →|2-|AM →|2=|AP →|2-1, ∵椭圆右顶点到右焦点A 的距离最小, 故|AP →|min =2,∴|PM →|min = 3. 答案38.(2017·平顶山模拟)若双曲线x 2-y 2b2=1(b >0)的一条渐近线与圆x 2+(y -2)2=1至多有一个公共点,则双曲线离心率的取值范围是________. 解析 双曲线的渐近线方程为y =±bx ,则有|0-2|1+b2≥1,解得b 2≤3,则e 2=1+b 2≤4,∵e >1,∴1<e ≤2. 答案 (1,2]三、解答题9.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD 上,且PC →·PD →=-1.(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB→+λPA →·PB →为定值?若存在,求λ的值;若不存在,请说明理由. 解 (1)由已知,点C ,D 的坐标分别为(0,-b ),(0,b ). 又点P 的坐标为(0,1),且PC →·PD →=-1,于是⎩⎪⎨⎪⎧1-b 2=-1,c a =22,a 2-b 2=c 2.解得a =2,b = 2.所以椭圆E 方程为x 24+y 22=1.(2)当直线AB 的斜率存在时, 设直线AB 的方程为y =kx +1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2). 联立⎩⎪⎨⎪⎧x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0.其判别式Δ=(4k )2+8(2k 2+1)>0, 所以,x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1. 从而,OA →·OB →+λPA →·PB →=x 1x 2+y 1y 2 +λ[x 1x 2+(y 1-1)(y 2-1)] =(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1=(-2λ-4)k 2+(-2λ-1)2k 2+1=-λ-12k 2+1-λ-2. 所以,当λ=1时,-λ-12k 2+1-λ-2=-3. 此时,OA →·OB →+λPA →·PB →=-3为定值. 当直线AB 斜率不存在时,直线AB 即为直线CD ,此时OA →·OB →+λPA →·PB →=OC →·OD →+PC →·PD →=-2-1=-3, 故存在常数λ=1,使得OA →·OB →+λPA →·PB →为定值-3.10.(2016·浙江卷)如图,设椭圆x 2a2+y 2=1(a >1).(1)求直线y =kx +1被椭圆截得的线段长(用a ,k 表示);(2)若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.解 (1)设直线y =kx +1被椭圆截得的线段为AM ,由⎩⎪⎨⎪⎧y =kx +1,x 2a2+y 2=1,得(1+a 2k 2)x 2+2a 2kx =0.故x 1=0,x 2=-2a 2k1+a 2k2,因此|AM |=1+k 2|x 1-x 2|=2a 2|k |1+a 2k2·1+k 2. (2)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足|AP |=|AQ |.记直线AP ,AQ 的斜率分别为k 1,k 2,且k 1,k 2>0,k 1≠k 2. 由(1)知|AP |=2a 2|k 1|1+k 211+a 2k 21,|AQ |=2a 2|k 2|1+k 221+a 2k 22, 故2a 2|k 1|1+k 211+a 2k 21=2a 2|k 2|1+k 221+a 2k 22, 所以(k 21-k 22)[1+k 21+k 22+a 2(2-a 2)k 21k 22]=0.由于k 1≠k 2,k 1,k 2>0得1+k 21+k 22+a 2(2-a 2)k 21k 22=0,因此⎝ ⎛⎭⎪⎫1k 21+1⎝ ⎛⎭⎪⎫1k 22+1=1+a 2(a 2-2),①因为①式关于k 1,k 2的方程有解的充要条件是1+a 2(a 2-2)>1,所以a > 2.因此,任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a ≤2,由e =c a =a 2-1a 得,所求离心率的取值范围是⎝⎛⎭⎪⎫0,22.能力提升题组 (建议用时:25分钟)11.(2016·湖南师大附中月考)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线与抛物线y 2=x 的一个交点的横坐标为x 0,若x 0>1,则双曲线C 的离心率e 的取值范围是( )A.⎝ ⎛⎭⎪⎫1,62 B.(2,+∞) C.(1,2)D.⎝⎛⎭⎪⎫62,+∞ 解析 不妨联立y =b a x 与y 2=x 的方程,消去y 得b 2a 2x 2=x ,由x 0>1知b 2a 2<1,即c 2-a 2a2<1,故e 2<2,又e >1,所以1<e <2,故选C. 答案 C12.(2017·河南省八市质检)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,它的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若△AOB 的面积为3,则抛物线的准线方程为( ) A.x =-2 B.x =2 C.x =1D.x =-1解析 因为e =c a=2,所以c =2a ,b =3a ,双曲线的渐近线方程为y =±3x ,又抛物线的准线方程为x =-p 2,联立双曲线的渐近线方程和抛物线的准线方程得A ⎝ ⎛⎭⎪⎫-p2,3p 2,B ⎝ ⎛⎭⎪⎫-p2,-3p 2,在△AOB 中,|AB |=3p ,点O 到AB 的距离为p 2,所以12·3p ·p 2=3,所以p =2,所以抛物线的准线方程为x =-1,故选D. 答案 D13.(2017·绵阳诊断)若点O 和点F 分别为椭圆x 29+y 28=1的中点和左焦点,点P 为椭圆上的任一点,则OP →·FP →的最小值为________.解析 点P 为椭圆x 29+y 28=1上的任意一点,设P (x ,y )(-3≤x ≤3,-22≤y ≤22),依题意得左焦点F (-1,0),∴OP →=(x ,y ),FP →=(x +1,y ),∴OP →·FP →=x (x +1)+y 2=x 2+x +72-8x 29=19⎝ ⎛⎭⎪⎫x +922+234.∵-3≤x ≤3,∴32≤x +92≤152,∴94≤⎝ ⎛⎭⎪⎫x +922≤2254, ∴14≤19⎝ ⎛⎭⎪⎫x +922≤22536,∴6≤19⎝ ⎛⎭⎪⎫x +922+234≤12,即6≤OP →·FP →≤12,故最小值为6.答案 614.(2017·衡水中学高三联考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)短轴的两个顶点与右焦点的连线构成等边三角形,直线3x +4y +6=0与圆x 2+(y -b )2=a 2相切. (1)求椭圆C 的方程;(2)已知过椭圆C 的左顶点A 的两条直线l 1,l 2分别交椭圆C 于M ,N 两点,且l 1⊥l 2,求证:直线MN 过定点,并求出定点坐标; (3)在(2)的条件下求△AMN 面积的最大值.解 (1)由题意,得⎩⎪⎨⎪⎧a =2b ,|4b +6|5=a ,∴⎩⎪⎨⎪⎧a =2,b =1,即C :x 24+y 2=1.(2)由题意得直线l 1,l 2的斜率存在且不为0. ∵A (-2,0),设l 1:x =my -2,l 2:x =-1my -2,由⎩⎪⎨⎪⎧x =my -2,x 2+4y 2-4=0,得(m 2+4)y 2-4my =0, ∴M ⎝ ⎛⎭⎪⎫2m 2-8m 2+4,4m m 2+4.同理,N ⎝ ⎛⎭⎪⎫2-8m 24m 2+1,-4m 4m 2+1. ①m ≠±1时,k MN =5m 4(m 2-1), l MN :y =5m 4(m 2-1)⎝ ⎛⎭⎪⎫x +65.此时过定点⎝ ⎛⎭⎪⎫-65,0.②m =±1时,l MN :x =-65,过点⎝ ⎛⎭⎪⎫-65,0.∴l MN 恒过定点⎝ ⎛⎭⎪⎫-65,0.(3)由(2)知S △AMN =12×45|y M -y N |=25⎪⎪⎪⎪⎪⎪4m m 2+4+4m 4m 2+1=8⎪⎪⎪⎪⎪⎪m 3+m 4m 4+17m 2+4=8⎪⎪⎪⎪⎪⎪m +1m 4⎝⎛⎭⎪⎫m +1m 2+9=84⎪⎪⎪⎪⎪⎪m +1m +9⎪⎪⎪⎪⎪⎪m +1m .令t =⎪⎪⎪⎪⎪⎪m +1m ≥2,当且仅当m =±1时取等号,∴S △AMN ≤1625,且当m =±1时取等号.∴(S △AMN )max =1625.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2
1
2
3
4
5
6
7
8
9
6.已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧, → → OA· OB=2 (其中O为坐标原点),则△ABO与△AFO面积之和的最小值 3 是____.
答案 解析
1
2
3
4
5
6
7
8
9
7.已知椭圆C的中心为坐标原点O,一个长轴顶点为(0,2),它的两个短 轴顶点和焦点所组成的四边形为正方形,直线l与y轴交于点P(0,m), → → 与椭圆C交于异于椭圆顶点的两点A,B,且 AP=2PB. (1)求椭圆的方程; 解答
解析
2 2 设直线 AB 的倾斜角为 θ,可得 AF= ,BF= , 1-cos θ 1+cos θ 2 2 4 则 AF· BF= × =sin2θ≥4. 1-cos θ 1+cos θ
命题点2 数形结合利用几何性质求最值 例3 (2015· 江苏)在平面直角坐标系 xOy中,P为双曲线x2-y2=1右支
解答
1
2
3
4
5
6
7
8
9
x2 y2 9.已知椭圆a2+b2=1(a>b>0)的右焦点为 F2(3,0),离心率为 e. 3 (1)若 e= 2 ,求椭圆的方程; 解答
由右焦点F2(3,0),知c=3,
3 c 又 e= 2 =a,所以 a=2 3.
又由a2=b2+c2,解得b2=3.
x2 y2 所以椭圆的方程为12+ 3 =1.
解答
思维升华
解决圆锥曲线中的取值范围问题应考虑的五个方面
(1) 利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数
的取值范围.
(2) 利用已知参数的范围,求新参数的范围,解这类问题的核心是建
立两个参数之间的等量关系.
(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围.
(4)利用已知的不等关系构造不等式,从而求出参数的取值范围.
(1,3] 的取值范围是______.
答案
解析
1
2
3
4
5
6
7
8
9
4.已知M是抛物线x2=4y上一点,F为其焦点,点A在圆C:(x+1)2+(y-5)2 =1上,则MA+MF的最小值是____. 5
答案 解析
依题意,由点M向抛物线x2=4y的准线l:y=-1引垂线,垂足为M1,
则有MA+MF=MA+MM1,
解答
(2) 过动点 M(0 , m)(m > 0) 的直线交 x 轴于点 N ,交 C 于点 A , P(P 在第一 象限),且M是线段PN的中点.过点P作x轴的垂线交C于另一点Q,延长 QM交C于点B.
k′ ①设直线 PM,QM 的斜率分别为 k,k′,证明 k 为定值; 证明
设P(x0,y0)(x0>0,y0>0). 由M(0,m),可得P(x0,2m),Q(x0,-2m). 2m-m m 所以直线 PM 的斜率 k= x =x . 0 0 -2m-m 3m 直线 QM 的斜率 k′= =- . x0 x0 k′ k′ 此时 k =-3.所以 k 为定值-3.
上的一个动点.若点P到直线x-y+1=0的距离大于c恒成立,则实数c 2 的最大值为______. 答案 解析 2
命题点3 转化为函数利用基本不等式或二次函数求最值
例 4 x y (2016· 山东)已知椭圆 C:a2+b2=1(a>b>0)的长轴长为 4,焦距
2 2
为 2 2.
(1)求椭圆C的方程.
跟踪训练2
解答
(2016· 苏州模拟)已知椭圆C:x2+2y2=4.
(1)求椭圆C的离心率;
x2 y2 由题意,椭圆 C 的标准方程为 4 + 2 =1,
所以a2=4,b2=2,从而c2=a2-b2=2.
因此 a=2,c= 2. 2 c 故椭圆 C 的离心率 e=a= 2 .
(2)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB, 求线段AB长度的最小值.
§9.8 圆锥曲线的综合问题
第2课时 范围、最值问题
内容索引
题型分类 课时作业
深度剖析
题型分类
深度剖析
题型一 范围问题
例1 x2 y2 (2015· 天津)已知椭圆a2+b2=1(a>b>0)的左焦点为 F(-c,0),离心
2 3 b 率为 3 ,点 M 在椭圆上且位于第一象限,直线 FM 被圆 x2+y2= 4 截得的
②求直线AB的斜率的最小值.
解答
思维升华
处理圆锥曲线最值问题的求解方法 圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两 种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平 面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值 的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用 函数方法、不等式方法等进行求解.
(5) 利用求函数的值域的方法将待求量表示为其他变量的函数,求其
值域,从而确定参数的取值范围.
跟踪训练 1
x2 y2 (2016· 扬州模拟)如图,已知椭圆a2+b2=1(a>b>0)的左,右焦
→ → 点分别为 F1, F2, P 是椭圆上一点, 点 M 在 PF1 上, 且满足F1M=λMP (λ∈R), PO⊥F2M,O 为坐标原点.
x2 y2 (1)若椭圆的方程为 8 + 4 =1, 且点 P 的坐标为(2, 2), 求点 M 的横坐标;
解答
(2)若λ=2,求椭圆离心率e的取值范围.
解答
题型二 最值问题 命题点1 利用三角函数有界性求最值 例2 两点,点O是坐标原点,则AF· BF的最小值是____. 4
答案
几何画板展示
(2016· 徐州模拟)过抛物线y2=4x的焦点F的直线交抛物线于A,B
1
2
3
4
5
6
7
8
9
(2) 已 知 P 为 AD 的 中 点 , 是 否 存 在 定 点 Q , 对 于 任 意 的 k(k≠0) 都 有
OP⊥EQ?若存在,求出点Q的坐标;若不存在,请说明理由.
解答
1
2
3
4
5
6
7
8
9
AD+AE (3)若过点 O 作直线 l 的平行线交椭圆 C 于点 M,求 OM 的最小值.
由题意,知椭圆的焦点在y轴上, y2 x2 设椭圆方程为a2+b2=1(a>b>0),
由题意,知 a=2,b=c,又 a2=b2+c2,则 b= 2,
y2 x2 所以椭圆方程为 4 + 2 =1.
1 2 3 4 5 6 7 8 9
(2)求m的取值范围.
解答
1
2
3
4
5
6
7
8
9
8. (2016· 苏北四市联考)如图,在平面直角坐标系xOy中,已知椭圆C: x2 y2 1 (a>b>0) 的离心率 e = ,左顶点为 A( - 4,0) ,过点 A 作斜率为 a2+b2=1 2 k(k≠0)的直线l交椭圆C于点D,交y轴于点E. (1)求椭圆C的标准方程; 解答
解得-1≤k≤1.
1
2
3
4
5
6
7
8
9
x2 y2 → → → 2.已知 P 为双曲线 C: 9 -16=1 上的点,点 M 满足|OM|=1,且OM· PM 12 → 5 =0,则当|PM|取得最小值时点 P 到双曲线 C 的渐近线的距离为_____.
答案 解析
1
2
3
4
5
6
7
8
9
x2 y2 3.已知 F1,F2 分别是双曲线a2-b2=1(a>0,b>0)的左,右焦点,对于左支 上任意一点 P 都有 PF2 PF1(a 为实半轴长),则此双曲线的离心率 e 2=8a·
因为点 M 在第一象限,可得 M
由 FM= c+c
2
2 3 的坐标为 c , c . 3
x y 解得 c=1,所以椭圆的方程为 3 + 2 =1.
2 3 4 3 2 + c-0 = 3 . 3 2 2
(3)设动点 P 在椭圆上, 若直线 FP 的斜率大于 2, 求直线 OP(O 为原点) 的斜率的取值范围.
1
2
3
Hale Waihona Puke 4567
8
9
2 3 → → (2)设直线 y=kx 与椭圆相交于 A, B 两点, 若AF2· BF2=0, 且 2 <e≤ 2 , 求 k 的取值范围.
解答
1
2
3
4
5
6
7
8
9
解答
课时作业
1.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公 [-1,1] 共点,则直线l的斜率的取值范围是_______.
答案 解析
Q(-2,0),设直线l的方程为y=k(x+2),代入抛物线方程,消去y整理
得k2x2+(4k2-8)x+4k2=0,
由Δ=(4k2-8)2-4k2· 4k2=64(1-k2)≥0,
4 3 线段的长为 c,FM= 3 .
(1)求直线FM的斜率; 解答
几何画板展示
(2)求椭圆的方程; 解答
x2 y2 由(1)得椭圆方程为3c2+2c2=1, 3 直线 FM 的方程为 y= 3 (x+c),两个方程联立,消去 y, 5 2 2 整理得 3x +2cx-5c =0,解得 x=-3c 或 x=c.
结合图形(图略)可知MA+MM1的最小值等于圆心C(-1,5)到y=-1的
距离再减去圆C的半径,