九年级(上)数学一元二次方程单元试题(创制五) -

合集下载

九年级上《一元二次方程》整章测试题

九年级上《一元二次方程》整章测试题

九年级上册第二十二章《一元二次方程》整章测试题一、选择题(每题3分)1. (2018山西省太原市)用配方法解方程2250x x --=时,原方程应变形为( ) A .()216x += B .()216x -= C .()229x +=D .()229x -=2 (2018成都)若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B 。

1k >-且0k ≠ C.。

1k < D 。

1k <且0k ≠3.(2018年潍坊)关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( ) A .6B .7C .8D .94. (2018青海)方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为( ) A .12 B .12或15C .15D .不能确定5(2018年烟台市)设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( )A .2018B .2018C .2018D .20186. (2018江西)为了让江西的山更绿、水更清,2018年省委、省政府提出了确保到2018年实现全省森林覆盖率达到63%的目标,已知2018年我省森林覆盖率为60.05%,设从2018年起我省森林覆盖率的年平均增长率为x ,则可列方程( ) A .()60.051263%x += B .()60.051263x += C .()260.05163%x += D .()260.05163x +=7. (2018襄樊市)如图5,在ABCD 中,AE BC ⊥于E ,AE EB EC a ===,且a 是一元二次方程2230x x +-=的根,则ABCD 的周长为( )A.4+ B.12+ C.2+ D.212+ADCEB 图58.(2018青海)在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图5所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( ) A .213014000x x +-= B .2653500x x +-= C .213014000x x --=D .2653500x x --=二、填空题:(每题3分)9. (2018重庆綦江)一元二次方程x 2=16的解是 .10. (2018威海)若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,则另一个根是 .11. (2018年包头)关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是 .12. (2018年甘肃白银)(6分)在实数范围内定义运算“⊕”,其法则为:22a b a b ⊕=-,则方程(4⊕3)⊕24x =的解为 .13 . (2018年包头)将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值 是 cm 2.14. (2018年兰州)阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=c a.根据该材料填空:已知x 1、x 2是方程x 2+6x +3=0的两实数根,则21x x +12x x 的值为 . 15. (2018年甘肃白银)(6分)在实数范围内定义运算“⊕”,其法则为:22a b a b ⊕=-,则方程(4⊕3)⊕24x =的解为 .16. (2018年广东省)小明用下面的方法求出方程30=的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.三、解答题:(52分)17.解方程(每小题5分,共10分)(1)x 2-4x -3=0 (2)(x -3)2+2x(x -3)=018.(2018北京)已知关于x 的一元二次方程x ²-4x +m -1=0有两个相等实数根,求的m 值19.(2018广东茂名)已知关于x 的一元二次方程2260x x k --=(k 为常数). (1)求证:方程有两个不相等的实数根;(2)设1x ,2x 为方程的两个实数根,且12214x x +=,试求出方程的两个实数根和k 的值.20. (2018年鄂州)22、关于x 的方程04)2(2=+++kx k kx 有两个不相等的实数根. (1)求k 的取值范围。

数学九年级上学期《一元二次方程》单元检测卷(带答案)

数学九年级上学期《一元二次方程》单元检测卷(带答案)

九年级上册数学《一元二次方程》单元测试卷(满分120分,考试用时120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1.若方程(m-1)x2+5x+m=0是关于x的一元二次方程,则m的取值不可能的是( )A . m>1B . m<1C . m=1D . m=02.已知x=2是关于x的一元二次方程A x2-3B x-5=0的一个根,则4A -6B +6的值是( )A . 1B . 6C . 11D . 123.某服装原价为200元,连续两次涨价A %后,售价为242元,则A 的值为( )A . 10B . 9C . 5D . 124.将方程3x2+6x-1=0配方,变形正确的是( )A . (3x+1)2-1=0B . (3x+1)2-2=0C . 3(x+1)2-4=0D . 3(x+1)2-1=05.用因式分解法把方程6x(x-7)=7-x分解成两个一次方程,正确的是( )A . x-7=0,6x-1=0B . 6x=0,x-7=0C . 6x+1=0,x-7=0D . 6x=7,x-7=7-x6.若一元二次方程(1-2k)x2+12x-10=0有实数根,则k的最大整数值为( )A . 1B . 2C . -1D . 07.x1,x2是方程x2+x+k=0的两个实根,若x12+x1x2+x22=2k2恰成立,则k的值为( )A . ﹣1B . 或﹣1C .D . ﹣或18.在一幅长80C m,宽50C m的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400C m2,设金色纸边的宽为xC m,那么x满足的方程是( )A . x2+130x﹣1400=0B . x2+65x﹣350=0C . x2﹣130x﹣1400=0D . x2﹣65x﹣350=09.如图,在▱A B C D 中,A E⊥B C 于E,A E=EB =EC =A ,且A 是一元二次方程x2+2x-3=0的根,则▱A B C D 的周长为( )A . 4+2B . 12+6C . 2+2D . 2+或12+610.如图,在长70m,宽40 m的矩形花园中,欲修宽度相等的观赏路(阴影部分),要使观赏路面积占总面积的,则路宽x应满足的方程是()A . (40-x)(70-x)=350B . (40-2x)(70-3x)=2450C . (40-2x)(70-3x)=350D . (40-x)(70-x)=2450二、填空题(本大题共4小题,每小题5分,满分20分)11.若关于x的一元二次方程4x2-2A x-A x-2A -6=0常数项为4,则一次项系数______.12.已知(A -1)x2-5x+3=0是一个关于x的一元二次方程,则不等式3A +6>0的解集_______.13.已知A ,B ,C 分别是三角形的三边,则方程(A +B )x2+2C x+(A +B )=0的根的情况是_____.14.已知实数x满足(x2-x)2-4(x2-x)-12=0,则代数式x2-x+1的值为▲三、(本大题共2小题,每小题8分,满分16分)15.已知关于x的方程(m2-1)x2+(m-1)x-2=0.(1)当m为何值时,该方程为一元二次方程?(2)当m为何值时,该方程为一元一次方程?16.解方程(1):2x2-4x-5=0.(公式法) (2) x2-4x+1=0.(配方法)(3)(y-1)2+2y(1-y)=0.(因式分解法)四、(本大题共2小题,每小题8分,满分16分)17.已知关于x的方程x2﹣2(k+1)x+k2=0有两个实数根x1、x2.(1)求k的取值范围;(2)若x1+x2=3x1x2﹣6,求k的值.18.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2015年盈利1500万元,到2017年盈利2160万元,且从2015年到2017年,每年盈利的年增长率相同.(1)该公司2016年盈利多少万元?(2)若该公司盈利的年增长率继续保持不变,预计2018年盈利多少万元?五、(本大题共2小题,每小题10分,满分20分)19.阅读以下材料,解答问题:例:设y=x2+6x-1,求y的最小值.解:y=x2+6x-1=x2+2·3·x+32-32-1=(x+3)2-10,∵(x+3)2≥0,∴(x+3)2-10≥-10即y的最小值是-10.问题:(1)设y=x2-4x+5,求y的最小值.(2)已知:A 2+2A +B 2-4B +5=0,求A B 的值.20.已知:关于x的方程x2﹣(k+2)x+2k=0(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形A B C 的一边长A =1,另两边长B ,C 恰好是这个方程的两个根,求△A B C 的周长.六、(本题满分12分)21.某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.求:(1)若商场每件衬衫降价4元,则商场每天可盈利多少元?(2)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(3)要使商场平均每天盈利1600元,可能吗?请说明理由.七、(本题满分12分)22.已知关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0.(1)判断方程根的情况;(2)若方程的两根x1,x2满足(x1-1)(x2-1)=5,求k值;(3)若△A B C 的两边A B ,A C 的长是方程的两根,第三边B C 的长为5,①则k为何值时,△A B C 是以B C 为斜边的直角三角形?②k为何值时,△A B C 是等腰三角形,并求出△A B C 的周长.八、(本题满分14分)23.合肥市某学校搬迁,教师和学生的寝室数量在增加,若该校今年准备建造三类不同的寝室,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.(1)若2015年学校寝室数为64个,2017年建成后寝室数为121个,求2015至2017年的平均增长率;(2)若建成后的寝室可供600人住宿,求单人间的数量;(3)若该校今年建造三类不同的寝室的总数为180个,则该校的寝室建成后最多可供多少师生住宿?参考答案一、选择题(本大题共10小题,每小题4分,满分40分)1.若方程(m-1)x2+5x+m=0是关于x的一元二次方程,则m的取值不可能的是( )A . m>1B . m<1C . m=1D . m=0[答案]C[解析][分析]根据一元二次方程的定义列式求出m的值,即可进行选择.[详解]∵(m−1)x2+5x+m=0是关于x的一元二次方程,∴m−1≠0,解得m≠1,∴说法m>1、m<1、m=0都是可以的,说法m=1错误.故选:C .[点睛]本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是A x2+B x+C =0(且A ≠0).特别要注意A ≠0的条件.2.已知x=2是关于x的一元二次方程A x2-3B x-5=0的一个根,则4A -6B +6的值是( )A . 1B . 6C . 11D . 12[答案]C[解析][分析]把x=2代入方程即可求得4A −6B 的值,然后将其整体代入所求的代数式并求值即可.[详解]∵x=2是关于x的一元二次方程A x2−3B x−5=0的一个根,∴4A −6B −5=0,∴4A −6B =5,∴4A −6B +6=5+6=11,即4A −6B +6=11.故选:C .[点睛]本题考查了一元二次方程的解.解题时,逆用一元二次方程解的定义易得出所求式子的值,在解题时要重视解题思路的逆向分析.3.某服装原价为200元,连续两次涨价A %后,售价为242元,则A 的值为( )A . 10B . 9C . 5D . 12[答案]A[解析][分析]本题中原价为200元,第一次涨价后价格变为200(1+A %)元,第二次在200(1+A %)元的基础之上又涨A %,变为200(1+A %)(1+A %)即200(1+A %)2元,从而可列出方程,进而求解.[详解]由题意得:200(1+A %)2=242,整理得(1+A %)2=1.21,解之得A %=0.1=10%或A %=−2.1(舍去).故A =10.故选:A .[点睛]此类题目旨在考查增长率的定义,要注意增长的基数,另外还要注意解的合理性,从而确定取舍.4.将方程3x2+6x-1=0配方,变形正确的是( )A . (3x+1)2-1=0B . (3x+1)2-2=0C . 3(x+1)2-4=0D . 3(x+1)2-1=0[答案]C[解析][分析]首先把二次项系数化为1,然后进行移项,再进行配方,方程左右两边同时加上一次项系数一半的平方,即可变形成左边是完全平方,右边是常数的形式.[详解]∵3x2+6x−1=0∴3(x2+2x)−1=0∴3(x2+2x+1−1)−1=0∴3(x2+2x+1)−3−1=0∴3(x+1)2−4=0故选:C .[点睛]先把二次项的系数化为1,再在等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.用因式分解法把方程6x(x-7)=7-x分解成两个一次方程,正确的是( )A . x-7=0,6x-1=0B . 6x=0,x-7=0C . 6x+1=0,x-7=0D . 6x=7,x-7=7-x[答案]C[解析][分析]先移项,再提公因式就可以求出结论.[详解]移项,得6x(x-7)+(x-7)=0,提公因式,得,(6x+1)(x−7)=0,∴6x+1=0或x−7=0故选:C .[点睛]本题考查了运用平方差公式分解因式,完全平方公式分解因式,提公因式法分解因式及“十字”相乘法分解因式的方法解一元二次方程的运用,解答时灵活运用分解因式的方法是关键.6.若一元二次方程(1-2k)x2+12x-10=0有实数根,则k的最大整数值为( )A . 1B . 2C . -1D . 0[答案]B[解析][分析]由方程根的情况可求得k的取值范围,再求其最大整数即可.[详解]∵一元二次方程(1−2k)x2+12x−10=0有实数根,∴△≥0且1−2k≠0,即122−4(1−2k)×(−10)≥0且1−2k≠0,解得k≤2.3且k≠0.5,∴k的最大整数值为2,故选:B .[点睛]本题主要考查根的判别式,掌握方程根的情况与根的判别式的关系是解题的关键.7.x1,x2是方程x2+x+k=0的两个实根,若x12+x1x2+x22=2k2恰成立,则k的值为( )A . ﹣1B . 或﹣1C .D . ﹣或1[答案]A[解析]分析:根据一元二次方程的根与系数的关系得到,两根之和与两根之积,再根据x12+x1x2+x22=(x1+x2)2﹣x1x2把已知条件代入,即可求得k的值.详解:根据根与系数的关系,得:x1+x2=﹣1,x1x2=k.又x12+x1x2+x22=2k2,则(x1+x2)2﹣x1x2=2k2,即1﹣k=2k2,解得:k=﹣1或.当k=时,△=1﹣2<0,方程没有实数根,应舍去,∴取k=﹣1.故选A .点睛:注意:利用根与系数的关系求得的字母的值一定要代入原方程,看方程是否有实数根.8.在一幅长80C m,宽50C m的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400C m2,设金色纸边的宽为xC m,那么x满足的方程是( )A . x2+130x﹣1400=0B . x2+65x﹣350=0C . x2﹣130x﹣1400=0D . x2﹣65x﹣350=0[答案]B[解析]试题分析:根据题意可得:挂图的长为(80+2x)C m,宽为(50+2x)C m,根据题意可得:(80+2x)(50+2x)=5400,化简得:+65x-350=0.考点:一元二次方程的应用9.如图,在▱A B C D 中,A E⊥B C 于E,A E=EB =EC =A ,且A 是一元二次方程x2+2x-3=0的根,则▱A B C D 的周长为( )A . 4+2B . 12+6C . 2+2D . 2+或12+6[答案]A[解析]先解方程求得A ,再根据勾股定理求得A B ,从而计算出□A B C D 的周长即可.解:∵A 是一元二次方程x2+2x﹣3=0的根,∴A 2+2A ﹣3=0,即(A ﹣1)(A +3)=0,解得,A =1或A =﹣3(不合题意,舍去).∴A E=EB =EC =A =1.在Rt△A B E中,A B =,∴B C =EB +EC =2,∴□A B C D 的周长═2(A B +B C )=2(+2)=4+2.故选A .10.如图,在长70m,宽40 m的矩形花园中,欲修宽度相等的观赏路(阴影部分),要使观赏路面积占总面积的,则路宽x应满足的方程是()A . (40-x)(70-x)=350B . (40-2x)(70-3x)=2450C . (40-2x)(70-3x)=350D . (40-x)(70-x)=2450[答案]B[解析]试题解析:由题意可得,(40-2x)(70-3x)=40×70×(1-),整理,得(40-2x)(70-3x)=2450,故选B .二、填空题(本大题共4小题,每小题5分,满分20分)11.若关于x的一元二次方程4x2-2A x-A x-2A -6=0常数项为4,则一次项系数______.[答案]15[解析][分析]根据常数项是不含x的项,可得关于A 的方程,根据解方程,可得A 的值,可得一次项系数.[详解]由题意,得−2A −6=4,解得A =−5.一次项的系数为−2A −A =−3A =−3×(−5)=15,故答案为:15.[点睛]本题考查了一元二次方程的一般形式,利用常数项为零得出关于A 的方程是解题关键.12.已知(A -1)x2-5x+3=0是一个关于x的一元二次方程,则不等式3A +6>0的解集_______.[答案]A >-2且A ≠1[解析][分析](A −1)x2−5x+3=0是一个关于x的一元二次方程,所以(A −1)x2是二次项A −1≠0,解得A ≠1;解得不等式3A +6>0,则A >−2,从而得到其解集是A >−2且A ≠1.[详解]∵(A −1)x2−5x+3=0是一个关于x的一元二次方程,∴(A −1)x2是二次项A −1≠0,∴A ≠1,∵不等式3A +6>0,∴A >−2,∴不等式3A +6>0的解集是A >−2且A ≠1.[点睛]要确定二次项系数和常数项,首先要把方程化成一般形式.确定A ≠1,结合不等式3A +6>0求出A 的解集.一元二次方程的一般形式是:A x2+B x+C =0(A ,B ,C 是常数且A ≠0)特别要注意A ≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中A x2叫二次项,B x叫一次项,C 是常数项.其中A ,B ,C 分别叫二次项系数,一次项系数,常数项.13.已知A ,B ,C 分别是三角形的三边,则方程(A +B )x2+2C x+(A +B )=0的根的情况是_____.[答案]方程没有实数根.[解析]解:△=(2C )2﹣4(A +B )(A +B )=4C 2﹣4(A +B )2=4(C +A +B )(C ﹣A ﹣B ).∵A ,B ,C 分别是三角形的三边,∴A +B >C ,∴C +A +B >0,C ﹣A ﹣B <0,∴△<0,则方程没有实数根.14.已知实数x满足(x2-x)2-4(x2-x)-12=0,则代数式x2-x+1的值为▲[答案]7[解析]设x2-x=m,则原方程可化为:m2-4m-12=0,解得m=-2,m=6;当m=-2时,x2-x=-2,即x2-x+2=0,△=1-8<0,原方程没有实数根,故m=-2不合题意,舍去;当m=6时,x2-x=6,即x2-x-6=0,△=1+24>0,故m的值为6;∴x2-x+1=m+1=7三、(本大题共2小题,每小题8分,满分16分)15.已知关于x的方程(m2-1)x2+(m-1)x-2=0.(1)当m为何值时,该方程为一元二次方程?(2)当m为何值时,该方程为一元一次方程?[答案](1)当m≠±1时,该方程为一元二次方程(2)当m=-1时,该方程为一元一次方程.[解析][分析](1)根据一元二次方程的定义得到:m2-1≠0,由此可以求得m的值;(2)由一元一次方程的定义得到:m2-1=0,且m-1≠0,由此可以求得m的值.[详解](1)∵关于x的方程(m2-1)x2+(m-1)x-2=0为一元二次方程,∴m2-1≠0,解得m≠±1,即当m≠±1时,该方程为一元二次方程;(2)∵关于x的方程(m2-1)x2+(m-1)x-2=0为一元一次方程,∴m2-1=0,且m-1≠0,解得m=-1,即当m=-1时,该方程为一元一次方程.[点睛]本题考查了一元二次方程、一元一次方程的定义.熟知一元一次方程的未知数的系数不等于零,一元二次方程的二次项系数不等于零是解题的关键.16.解方程(1):2x2-4x-5=0.(公式法) (2) x2-4x+1=0.(配方法)(3)(y-1)2+2y(1-y)=0.(因式分解法)[答案](1)x=;(2)x=; (3)y=[解析]分析: (1)先找A ,B ,C ,再求△,根据根的判别式判断方程根的情况,再代入公式计算即可;(2)先移项,再方程两边同加上一次项系数一般半的平方,再直接开平方即可;(3)先变形,再提公因式,得出两个一元一次方程求解即可.详解:(1):2x2-4x-5=0.∵A =2,B =−4,C =−5,B ²−4AC =(−4) ²−4×2×(−5)=56>0.∴x==.∴x₁=,x₂=.(2) x2-4x+1=0.x²−4x+4=4−1,即(x−2) ²=3.∴x₁=2+,x₂=2−.(3)∵(y−1) ²+2y(1−y)=0,∴(y−1) ²−2y(y−1)=0.∴(y−1)(y−1−2y)=0.∴y−1=0或y−1−2y=0.∴y₁=1,y₂=−1.点睛: 本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法和公式法解一元二次方程.四、(本大题共2小题,每小题8分,满分16分)17.已知关于x的方程x2﹣2(k+1)x+k2=0有两个实数根x1、x2.(1)求k的取值范围;(2)若x1+x2=3x1x2﹣6,求k的值.[答案](1)k≥﹣(2)k=2[解析]试题分析:(1)、根据方程有两个实数根,从而得出△=,得出k的取值范围;(2)、根据韦达定理得出两根之和和两根之积,然后代入代数式求出k的值,然后根据k的取值范围得出答案.试题解析:(1)∵方程x2﹣2(k+1)x+k2=0有两个实数根x1,x2,∴△≥0,即4(k+1)2﹣4×1×k2≥0,解得k≥﹣,∴k的取值范围为k≥﹣;(2)∵方程x2﹣2(k+1)x+k2=0有两个实数根x1,x2,∴x1+x2=2(k+1),x1x2=k2,∵x1+x2=3x1x2﹣6,∴2(k+1)=3k2﹣6,即3k2﹣2k﹣8=0,∴k1=2,k2=﹣,∵k≥﹣,∴k=2.18.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2015年盈利1500万元,到2017年盈利2160万元,且从2015年到2017年,每年盈利的年增长率相同.(1)该公司2016年盈利多少万元?(2)若该公司盈利的年增长率继续保持不变,预计2018年盈利多少万元?[答案](1)2016年该公司盈利1800万元(2)预计2008年该公司盈利2592万元[解析]试题分析:(1)设每年盈利的年增长率为x,根据相等关系是“2017年盈利=2015年盈利×(1+每年盈利的年增长率)2”,列出方程并解方程求得增长率,再由“2016年盈利=2015年盈利×每年盈利的年增长率”计算出2016年盈利即可;(2)由“2018年盈利=2017年盈利×每年盈利的年增长率”计算出2018年盈利即可.试题解析:(1)设每年盈利的年增长率为x,根据题意得1500(1+x)2=2160解得x1=0.2,x2=﹣2.2(不合题意,舍去)∴1500(1+x)=1500(1+0.2)=1800答:2016年该公司盈利1800万元.(2)2160(1+0.2)=2592答:预计2008年该公司盈利2592万元五、(本大题共2小题,每小题10分,满分20分)19.阅读以下材料,解答问题:例:设y=x2+6x-1,求y的最小值.解:y=x2+6x-1=x2+2·3·x+32-32-1=(x+3)2-10,∵(x+3)2≥0,∴(x+3)2-10≥-10即y的最小值是-10.问题:(1)设y=x2-4x+5,求y的最小值.(2)已知:A 2+2A +B 2-4B +5=0,求A B 的值.[答案](1) y的最小值是1;(2) -2.[解析][分析](1)先把要求的式子进行变形,得出y=(x−2)2+1,再根据(x−2)2≥0,即可求出y的最小值;(2)先把A 2+2A +B 2−4B +5=0变形为(A +1)2+(B −2)2=0,再根据(A +1)2≥0,(B −2)2≥0,求出A 与B 的值,然后代入计算即可.[详解](1)∵y=x2-4x+,∴y=x2-4x+4+1=(x-2)2+1.∵(x-2)2≥0,∴(x-2)2+1≥1,即y的最小值是1;(2)∵A 2+2A +B 2-4B +5=0,∴A 2+2A +1+B 2-4B +4=0,∴(A +1)2+(B -2)2=0,∵(A +1)2≥0,(B -2)2≥0,∴A +1=0,B -2=0,∴A =-1,B =2,∴A B =-1×2=-2.[点睛]此题考查了配方法的应用,关键是通过配方对要求的式子进行变形,再根据完全平方式的性质求值.20.已知:关于x的方程x2﹣(k+2)x+2k=0(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形A B C 的一边长A =1,另两边长B ,C 恰好是这个方程的两个根,求△A B C 的周长.[答案](1)无论取任何实数值,方程总有实数根;(2)△A B C 的周长为5.[解析]试题分析:(1)先计算出△=(k+2)2﹣4•2k=(k﹣2)2,然后根据非负数的性质和根的判别式的意义判断方程根的情况;(2)分类讨论:当B =C 时,△=0,则k=2,再把k代入方程,求出方程的解,然后计算三角形周长;当B =A =1或C =A =1时,把x=1代入方程解出k=1,再解此时的一元二次方程,然后根据三角形三边的关系进行判断.试题解析:(1)△=(k+2)2﹣4•2k=(k﹣2)2,∵(k﹣2)2≥0,即△≥0,∴无论取任何实数值,方程总有实数根;(2)当B =C 时,△=(k﹣2)2=0,则k=2,方程化为x2﹣4x+4=0,解得x1=x2=2,∴△A B C 的周长=2+2+1=5;当B =A =1或C =A =1时,把x=1代入方程得1﹣(k+2)+2k=0,解得k=1,方程化为x2﹣3x+2=0,解得x1=1,x2=2,不符合三角形三边的关系,此情况舍去,∴△A B C 的周长为5.[考点]根的判别式;根与系数的关系;三角形三边关系;等腰三角形的性质.视频六、(本题满分12分)21.某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.求:(1)若商场每件衬衫降价4元,则商场每天可盈利多少元?(2)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(3)要使商场平均每天盈利1600元,可能吗?请说明理由.[答案](1)商场每件衬衫降价4元,则商场每天可盈利1008元;(2)每件衬衫应降价20元;(3)不可能.理由见解析.[解析][分析](1)根据题意得到每天的销售量,然后由销售量×每件盈利进行解答;(2)利用衬衣平均每天售出的件数×每件盈利=每天销售这种衬衣利润列出方程解答即可;(3)同样列出方程,若方程有实数根则可以,否则不可以.[详解](1)×(40-4)=1008(元).答:商场每件衬衫降价4元,则商场每天可盈利1008元.(2)设每件衬衫应降价x元,根据题意,得(40-x)(20+2x)=1200,整理,得x2-30x+200=0,解得x1=10,x2=20,∵要尽量减少库存,∴x=20.答:每件衬衫应降价20元.(3)不可能.理由如下:令(40-x)(20+2x)=1600,整理得x2-30x+400=0,∵Δ=900-4×400<0,∴商场平均每天不可能盈利1600元.[点睛]此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.七、(本题满分12分)22.已知关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0.(1)判断方程根的情况;(2)若方程的两根x1,x2满足(x1-1)(x2-1)=5,求k值;(3)若△A B C 的两边A B ,A C 的长是方程的两根,第三边B C 的长为5,①则k为何值时,△A B C 是以B C 为斜边的直角三角形?②k为何值时,△A B C 是等腰三角形,并求出△A B C 的周长.[答案](1) 见解析;(2) k=;(3) 当k=3时,△A B C 是等腰三角形,此时△A B C 的周长为14;当k=4时,△A B C 是等腰三角形,此时△A B C 的周长为16.[解析][分析](1)根据方程的系数结合根的判别式即可得出△=1>0,由此即可得出方程有两个不相等的实数根;(2)根据根与系数的关系进行解答;(3)利用分解因式法可求出x1=k+1,x2=k+2.①不妨设A B =k+1,A C =k+2,根据B C =5利用勾股定理即可得出关于k的一元二次方程,解方程即可得出k的值;②根据(1)结论可得出A B ≠A C ,由此可找出△A B C 是等腰三角形分两种情况,分A B =B C 、A C =B C 两种情况考虑,根据两边相等找出关于k的一元一次方程,解方程求出k值,进而可得出三角形的三边长,再根据三角形的周长公式即可得出结论[详解](1)∵在方程x2-(2k+3)x+k2+3k+2=0中,Δ=B 2-4A C =[-(2k+3)]2-4(k2+3k+2)=1>0,∴方程有两个不相等的实数根;(2)∵x1+x2=2k+3,x1·x2=k2+3k+2,∴由(x1-1)(x2-1)=5,得x1·x2-(x1+x2)+1=5,即k2+3k+2-2k-3+1=5,整理得k2+k-5=0,解得k=;(3)∵x2-(2k+3)x+k2+3k+2=(x-k-1)(x-k-2)=0,∴x1=k+1,x2=k+2.①不妨设A B =k+1,A C =k+2,∴斜边B C =5时,有A B 2+A C 2=B C 2,即(k+1)2+(k+2)2=25,解得k1=2,k2=-5(舍去),∴当k=2时,△A B C 是直角三角形;②∵A B =k+1,A C =k+2,B C =5,由(1)知A B ≠A C ,故有两种情况:(Ⅰ)当A C =B C =5时,k+2=5,∴k=3,A B =3+1=4,∵4,5,5满足任意两边之和大于第三边,∴此时△A B C 的周长为4+5+5=14;(Ⅱ)当A B =B C =5时,k+1=5,∴k=4,A C =k+2=6,∵6,5,5满足任意两边之和大于第三边,∴此时△A B C 的周长为6+5+5=16.综上可知,当k=3时,△A B C 是等腰三角形,此时△A B C 的周长为14;当k=4时,△A B C 是等腰三角形,此时△A B C 的周长为16.[点睛]本题考查了根的判别式、因式分解法解一元二次方程以及等腰三角形的判定,熟练掌握“当根的判别式△>0时,方程有两个不等实数根.”是解题的关键.八、(本题满分14分)23.合肥市某学校搬迁,教师和学生的寝室数量在增加,若该校今年准备建造三类不同的寝室,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.(1)若2015年学校寝室数为64个,2017年建成后寝室数为121个,求2015至2017年的平均增长率;(2)若建成后的寝室可供600人住宿,求单人间的数量;(3)若该校今年建造三类不同的寝室的总数为180个,则该校的寝室建成后最多可供多少师生住宿?[答案](1) 2015至2017年的平均增长率为37.5%;(2)单人间的数量是28间;(3)该校的寝室建成后最多可供596名师生住宿.[解析][分析](1)可设2015至2017年的平均增长率是x,根据等量关系:2015年学校寝室数×(1+平均增长率)2=2017年学校寝室数,列出方程求解即可;(2)设双人间的数量为y间,则四人间的数量为5y间,根据不等量关系:单人间的数量在20至于30之间(包括20和30),列出不等式,再根据整数的性质即可求解;(3)由于四人间的数量是双人间的5倍,可知四人间和双人间的数量是5+1=6的倍数,找到150~160间6的最大倍数,再进一步求出双人间和四人间的数量,以及单人间的数量,从而求解.[详解](1)设2015至2017年的平均增长率是x,依题意有64(1+x)2=121,解得x1=0.375,x2=-2.375.故2015至2017年的平均增长率为37.5%;(2)设双人间的数量为y间,则四人间的数量为5y间,依题意有20≤600-2y-4×5y≤30,解得25≤y≤26,∵y为整数,∴y=26,600-2y-4×5y=600-52-520=28.故单人间的数量是28间;(3)由于四人间的数量是双人间的5倍,则四人间和双人间的数量是5+1=6的倍数,双人间与四人间总数量在150~160之间.∵150~160间6的最大倍数是156,∴双人间156÷6=26(间),四人间的数量26×5=130(间),单人间180-156=24(间),24+26×2+130×4=596(名).答:该校的寝室建成后最多可供596名师生住宿.[点睛]本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.。

九年级上学期数学《一元二次方程》单元综合检测卷含答案

九年级上学期数学《一元二次方程》单元综合检测卷含答案
[详解]∵ ,
∴x△(x-2)=x2+x(x-2)=12,
整理得:2x2-2x-12=0,
解得:x1=-2,x2=3.
故选A.
[点睛]本题考查了新定义运算及一元二次方程的解法,根据新定义的运算规则将所求方程化为一元二次方程方程是解决本题的关键.
10.若关于x的方程(m﹣2)x2﹣2x+1=0有两个不等的实根,则m的取值范围是( )
10.若关于x的方程(m﹣2)x2﹣2x+1=0有两个不等的实根,则m的取值范围是( )
A. m<3B. m≤3C. m<3且m≠2D. m≤3且m≠2
二、填空题(本题共计10小题,每题3分,共计30分,)
11.若 ,则: ________.
12.若关于 的方程 的一个根 的值是 .则另一根 ________, ________.
A.3B.3或-3C.-3D.不等于3的任意实数
[答案]B
[解析]
[分析]
根据一元二次方程的解的定义把x=0代入原方程得到m2-9=0,然后利用平方根的定义求出m即可.
[详解]把x=0代入2x2-x+m2-9=0得m2-9=0,
所以m=3或-3.
故选B.
[点睛]本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
[答案]B
[解析]
[分析]
配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
[详解]∵x2-4x+3=0
∴x2-4x=-3
∴x2-4x+4=-3+4
∴(x-2)2=1
故选B.

九年级上学期数学《一元二次方程》单元综合检测含答案

九年级上学期数学《一元二次方程》单元综合检测含答案
24.为了绿化学校附近的荒山,某校初三年级学生连续三年春季上山植树,至今已成活了 棵,已知这些学生在初一时种了 棵,若平均成活率 ,求这个年级两年来植树数的年平均增长率.(只列式不计算)
25.如图,为美化校园环境,某校计划在一块长为 米,宽为 米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为 米.
(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.
5.若α,β是方程x2+2x﹣2005=0的两个实数根,则α2+3α+β的值为()
A.2005B.2003C. ﹣2005D.4010
[答案]B
[解析]
[分析]
根据一元二次方程根的定义和根与系数的关系求解则可.设x1,x2是关于x的一元二次方程Ax2+Bx+C=0(A≠0,A,B,C为常数)的两个实数根,则x1+x2=- ,x1x2= .而α2+3α+β=α2+2α+(α+β),即可求解.
(1)若商场要求该服装部每天盈利 元,每件衬衫应降价多少元?
(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.
参考答案
一、选择题(本题共计10小题,每题3分 ,共计30分)
1.如果关于x的方程(m﹣3) ﹣x+3=0是关于x的一元二次方程,那么m的值为()
A.±3B.3C.﹣3D.都不对
[答案]C
10.把方程 的左边配方后可得方程()
A. B. C. D.
[答案]A
[解析]
[分析]
首先把常数项 移项后,再在左右两边同时加上一次项系数 的一半的平方,继而可求得答案.
[详解] ,

(完整版)人教版九年级数学上册第21章一元二次方程单元测试试题(含答案)

(完整版)人教版九年级数学上册第21章一元二次方程单元测试试题(含答案)

go 18.设 x1,x2 是方程 x2-4x+m=0 的两个根,且 x1+x2-x1x2=1,
re 则 x1+x2= ,m=

a 19.关于 x 的一元二次方程 x2-2x+m-1=0 有两个相等的实数根,
ing 则 m 的值为

e 20.设 m,n 分别为一元二次方程 x2+2x-2 018=0 的两个实数根,
解得 x1=3,x2=9. 10.解:∵2☆a 的值小于 0,∴22a+a=5a<0,解得 a<0.在方程 2x2-bx+a=0 中,b2-4ac=(-b)2-8a≥-8a>0,∴方程 2x2-bx+a=0 有两个不相等的实数根. 11.A 12.B
3 13. C【解析】根据题意,将 x=-2 代入方程 x2+2ax-a2= 0, 得 4-3a-a2=0,即 a2+3a-4=0, 左边因式分解,得(a-1)(a+4) =0, ∴a=1 或-4.故选 C. 14.B 15. B【解析】∵(a-c)2=a2+c2-2ac>a2+c2, ∴ac<0.在方程 ax2+bx+c=0 中,b2-4ac≥-4ac>0, ∴方程 ax2+bx+c=0 有两个不相等的实数根.故选B.
ll th 的取值范围是( )
A 3 d A.m≥-4
B.m≥0
t a time an C.m≥1
D.m≥2
3 13.若 x=-2 是关于 x 的一元二次方程x2+2ax-a2=0 的一个根,则
a 的值为( )
A.-1 或 4 B.-1 或-4
C.1 或-4
D.1 或 4
14.若关于 x 的一元二次方程的两根为 x1=1,x2=2,则这个方程是( )
ome 18. 3【解析】∵x1,x2 是方程 x2-4x+m=0 的两个根, r s ∴x1+x2=4,x1x2=m.代入 x1+x2-x1x2=1,得 4-m=1,∴m=3.

九年级上册数学《一元二次方程》单元检测卷带答案

九年级上册数学《一元二次方程》单元检测卷带答案

九年级上册数学《一元二次方程》单元测试卷(满分120分,考试用时120分钟)一、选择题1.将一元二次方程2316x x +=化为一般式后,二次项系数和一次项系数分别为( )A .3,-6B .3,6C .3,1D . 23,6x x -2.解一元二次方程x 2+4x -1=0,配方正确的是( )A .()223x +=B .()223x -=C .()225x +=D .()225x -= 3.关于x 的方程x 2﹣3x +k =0的一个根是2,则常数k 的值为( )A .1B .2C .﹣1D .﹣24.定义:如果一元二次方程20(a 0)++=≠ax bx c 满足0a b c ++=,那么我们称这个方程为“凤凰”方程. 已知20(a 0)++=≠ax bx c 是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( ). A .a c = B .a b = C .a b = D .a b c == 5.若关于x 的一元二次方程22(1)5320m x x m m -++-+=有一个根为0,则m 的值( ) A .0 B .1或2 C .1 D .26.若关于x 的一元二次方程(A +1)x 2+x +A 2-1=0的一个解是x =0,则A 的值为( ) A .1 B .-1 C .±1 D .07.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出( )A .2根小分支B .3根小分支C .4根小分支D .5根小分支8.关于x 的方程(m +n )x 2+mn 2-(m -n )x =0(m +n ≠0)的二次项系数与一次项系数的和为12,差为2,则常数项为( )A .18B .12C .116D .149.方程(x +1)2=0的根是( )A .x 1=x 2=1B .x 1=x 2=﹣1C .x 1=﹣1,x 2=1D .无实根10.若代数式2x 6x 5-+的值是12,则x 的值为( )A .7或-1B .1或-5C .-1或-5D .不能确定 11.将一元二次方程2230x x --=用配方法化成()2()0x h k k +=≥的形式为( )A .2 (1)4x -=B .2(1)1x -=C .2 (1)4x +=D .2 (1)1x +=12.如果关于x 的一元二次方程(m ﹣3)x 2+3x +m 2﹣9=0有一个解是0,那么m 的值是( )A .﹣3B .3C .±3D .0或﹣3二、填空题13.若方程2234mx x x +-=是关于x 的一元二次方程,则m 的取值范围是_____.14.在实数范围内定义一种运算“*”,其规则为A *B =A 2﹣B 2,根据这个规则,方程(x +2)*5=0的解为_____. 15.若方程2410x x -+=的两根12,x x ,则122(1)x x x 的值为__________.16.已知1x =是一元二次方程220x mx +-=的一根,则该方程的另一个根为_________.三、解答题17.已知:已知关于x 的方程220x mx m ++-=(1)求证:不论m 为何值,方程总有两个不相等的实数根.(2)若该方程的一个根为1,求m 的值及方程的另一个根.18.据统计某市农村2013年人均纯收入是10000元,预计2015年人均纯收入可达到12100元. ()1试求该市农村这两年人均纯收入的平均增长率;() 2按此增长速度2016年该市农村人均纯收入可达到多少元?19.选择适当方法解下列方程:(1)2510x x -+=(用配方法); (2)()()2322x x x -=-;(3)2250x --=;(4)()()22231y y +=-.20.已知关于x 的方程()()22110m x m x m --++=. ()1m 为何值时,此方程是一元一次方程?()2m 为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项. 21.先阅读理解下面的例题,再按要求解答下列问题.求代数式y 2+4y+8的最小值.解:y 2+4y+8=y 2+4y+4+4=(y+2)2+4∵(y+2)2≥0,∴(y+2)2+4≥4∴y 2+4y+8的最小值是4.(1)求代数式m 2+m+1的最小值;(2)求代数式4﹣x 2+2x 的最大值.22.一玩具城以49元/个的价格购进某种玩具进行销售,并预计当售价为50元/个时,每天能售出50个玩具,且在一定范围内,当每个玩具的售价平均每提高0.5元时,每天就会少售出3个玩具()1若玩具售价不超过60元/个,每天售出玩具总成本不高于686元,预计每个玩具售价的取值范围; ()2在实际销售中,玩具城以()1中每个玩具的最低售价及相应的销量为基础,进一步调整了销售方案,将每个玩具的售价提高了%a ,从而每天的销售量降低了2%a ,当每天的销售利润为147元时,求a 的值.23.某林场计划修一条长750m ,断面为等腰梯形的渠道,断面面积为21.6m ,上口宽比渠深多2m ,渠底比渠深多0.4m()1渠道的上口宽与渠底宽各是多少?()2如果计划每天挖土348m ,需要多少天才能把这条渠道挖完?24.阅读第(1)题的解题过程,再解答第(2)题:(1)例:解方程x 2﹣|x |﹣2=0.解:当x ≥0时,原方程可化为x 2﹣x ﹣2=0.解得:x 1=2,x 2=﹣1(不合题意.舍去)当x <0时,原方程可化为x 2+x ﹣2=0.解得:x 1=﹣2,x 2=1(不合题意.舍去)∴原方程的解是x 1=2,x 1=﹣2.(2)请参照上例例题的解法,解方程x 2﹣x |x ﹣1|﹣1=0.参考答案一、选择题1.将一元二次方程化为一般式后,二次项系数和一次项系数分别为( )A .3,-6B .3,6C .3,1D .[答案]A[解析][分析]一元二次方程的一般形式是:A x 2+B x+C =0(A ,B ,C 是常数且A ≠0)特别要注意A ≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中A x 2叫二次项,B x 叫一次项,C 是常数项.其中A ,B ,C 分别叫二次项系数,一次项系数,常数项.[详解]解化成一元二次方程一般形式是,则它的二次项系数是3,一次项系数是-6. 故选A .[点评]此题主要考查了一元二次方程的一般形式,关键把握要确定一次项系数,首先要把方程化成一般形式. 2316x x +=23,6x x -2316x x +=23-610x x +=2.解一元二次方程x 2+4x -1=0,配方正确的是( )A .B .C .D . [答案]C[解析][分析]根据一元二次方程的配方法即可求出答案.[详解]∵x 2+4x-1=0,∴x 2+4x+4=5,∴(x+2)2=5,故选:C .[点评]此题考查一元二次方程,解题关键是熟练运用一元二次方程的解法.3.关于x 的方程x 2﹣3x +k =0的一个根是2,则常数k 的值为( )A .1B .2C .﹣1D .﹣2 [答案]B[解析][分析]根据一元二次方程的解的定义,把x=2代入得4-6+k=0,然后解关于k 的方程即可.[详解]把x=2代入得,4-6+k=0,解得k=2.故答案为:B . ()223x +=()223x -=()225x +=()225x -=2x -3x+k=02x -3x+k=0[点评]本题主要考查了一元二次方程的解,掌握一元二次方程的定义,把已知代入方程,列出关于k 的新方程,通过解新方程来求k 的值是解题的关键.4.定义:如果一元二次方程满足,那么我们称这个方程为“凤凰”方程. 已知是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( ).A .B .C .D .[答案]A[解析] [分析]因为方程有两个相等的实数根,所以根的判别式△=B 2-4A C =0,又A +B +C =0,即B =-A -C ,代入B 2-4AC =0得(-A -C )2-4A C =0,化简即可得到A 与C 的关系.[详解]∵一元二次方程A x 2+B x+C =0(A ≠0)有两个相等的实数根∴△=B 2−4A C =0,又A +B +C =0,即B =−A −C ,代入B 2−4A C =0得(−A −C )2−4A C =0,即(A +C )2−4A C =A 2+2A C +C 2−4A C =A 2−2A C +C 2=(A −C )2=0,∴A =C故选:A[点评]本题考查了一元二次方程根的判别式的应用,根据方程根的情况确定方程中字母系数之间的关系. 5.若关于的一元二次方程有一个根为0,则的值( )A .0B .1或2C .1D .2[答案]D 20(a 0)++=≠ax bx c 0a b c ++=20(a 0)++=≠ax bx c a c =a b =a b =a b c ==x 22(1)5320m x x m m -++-+=m[解析][分析]把x=0代入已知方程得到关于m 的一元二次方程,通过解方程求得m 的值;注意二次项系数不为零,即m-1≠0.[详解]解:根据题意,将x=0代入方程,得:m 2-3m+2=0,解得:m=1或m=2,又m-1≠0,即m≠1,∴m=2,故选:D .[点评]本题考查了一元二次方程的解定义和一元二次方程的定义.注意:本题中所求得的m 的值必须满足:m-1≠0这一条件.6.若关于x 的一元二次方程(A +1)x 2+x +A 2-1=0的一个解是x =0,则A 的值为( )A .1B .-1C .±1D .0[答案]A[解析][分析]方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于A 的方程,从而求得A 的值,且(A +1)x 2+x +A 2-1=0为一元二次方程,即.[详解]把x=0代入方程得到:A 2-1=0解得:A =±1. (A +1)x 2+x +A 2-1=0为一元二次方程 即.+10a ≠-1a ≠∴+10a ≠-1a ≠综上所述A =1.故选:A .[点评]此题考查一元二次方程的解,解题关键在于掌握一元二次方程的求解方法.7.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出()A .2根小分支B .3根小分支C .4根小分支D .5根小分支[答案]B[解析][分析]先设每个支干长出x个分支,则每个分支又长出x个小分支,x个分支共长出x2个小分支;再根据主干有1个,分支有x个,小分支有x2个,列出方程;然后根据一元二次方程的解法求出符合题意的x的值即可. [详解]设每个支干长出x个分支,根据题意得1+x+x•x=13,整理得x2+x-12=0,解得x1=3,x2=-4(不符合题意舍去),即每个支干长出3个分支.故应选B .[点评]此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.8.关于x 的方程(m +n )x 2+-(m -n )x =0(m +n ≠0)的二次项系数与一次项系数的和为,差为2,则常数项为( )A .B .C .D . [答案]A[解析][分析]二次项系数与一次项系数的和为,差为2列方程组求出m 、n 的值,然后可求出常数项. [详解]由题意得 , 解之得, ∴. 故选A .[点评]本题考查了一元二次方程的定义,方程的两边都是整式,只含有一个未知数,并且整理后未知数的最高次数都是2,像这样的方程叫做一元二次方程.对于一元二次方程A x 2+B x +C =0(A ≠0),其中A 是二次项系数,B 是一次项系数,C 是常数项.本题也考查了二元一次方程组的解法. mn 21218121161412()()()()122m n m n m n m n ⎧+--=⎪⎨⎪++-=⎩114m n =⎧⎪⎨=⎪⎩1114=228mn ⨯=9.方程(x +1)2=0的根是( )A .x 1=x 2=1B .x 1=x 2=﹣1C .x 1=﹣1,x 2=1D .无实根[答案]B[解析][分析]根据平方根的意义,利用直接开平方法即可进行求解.[详解](x +1)2=0,解: x +1=0,所以x 1=x 2=﹣1,故选B .[点评]本题主要考查一元二次方程的解法,解决本题的关键是要熟练掌握一元二次方程的解法.10.若代数式的值是,则的值为( )A .7或-1B .1或-5C .-1或-5D .不能确定 [答案]A[解析][分析]首先把方程化为一般形式x 2-6x+5-12=0,即x 2-6x-7=0,用因式分解法求解.[详解]2x 6x 5-+12x 26512,x x -+=265120,x x -+-=2670,x x --=∴解得:故选:A .[点评]考查一元二次方程的解法,掌握一元二次方程的解法是解题的关键.11.将一元二次方程用配方法化成的形式为( ) A .B .C .D .[答案]A[解析] [分析]先移项得,x 2-2x=3,然后在方程的左右两边同时加上1,即可化成(x+h)2=k 的形式.[详解]移项,得x 2-2x=3,配方,得x 2-2x+1=3+1,即(x-1)2=4.故选A .[点评]本题考查了配方法的应用,将一元二次方程x 2-2x-3=0用配方法化成(x+h)2=k (k≥0)的形式,其关键步骤就是移项后,在方程的左右两边加上一次项系数一半的平方.12.如果关于x 的一元二次方程(m ﹣3)x 2+3x +m 2﹣9=0有一个解是0,那么m 的值是( ) A .﹣3B .3C .±3D .0或﹣3[答案]A ()()710,x x -+=70,x -=10,x +=127, 1.x x ==-2230x x --=()2()0x h k k +=≥2 (1)4x -=2(1)1x -=2 (1)4x +=2 (1)1x +=[解析][分析]把X=0代入方程(m-3)x +3x+m -9=0中,解关于m 的一元二次方程,注意m 的取值不能使原方程对二次项系数为0[详解]把x=0代入方程(m-3)x +3X+m -9=0中得:m -9=0解得m=-3或3当m=3时,原方程二次项系数m-3=0,舍去,故选A[点评]此题主要考查一元二次方程的定义,难度不大二、填空题13.若方程是关于的一元二次方程,则的取值范围是_____.[答案][解析][分析]将原方程化为一般式,根据一元二次方程中,二次项系数不能为零求解即可.[详解]原方程可化为:, ∵方程是关于的一元二次方程,∴,即,故答案为:.[点评]本题考查了一元二次方程的定义,掌握二次项系数不能为零这一点是解题关键.222222234mx x x +-=x m 1m ≠()21340m x x -+-=2234mx x x +-=x 10m -≠1m ≠1m ≠14.在实数范围内定义一种运算“*”,其规则为A *B =A 2﹣B 2,根据这个规则,方程(x +2)*5=0的解为_____.[答案]3或-7[解析]据题意得,∵(x+2)*5=(x+2)2-52∴x 2+4x-21=0,∴(x-3)(x+7)=0,∴x=3或x=-7.15.若方程的两根,则的值为__________.[答案]5[解析][分析]根据根与系数的关系求出,代入即可求解.[详解]∵是方程的两根∴=-=4,==1 ∴===4+1=5,故答案为:5.[点评]此题主要考查根与系数的关系,解题的关键是熟知=-,=的运用. 16.已知是一元二次方程的一根,则该方程的另一个根为_________.[答案]-2[解析][分析]由于该方程的一次项系数是未知数,所以求方程的另一解根据根与系数的关系进行计算即可.[详解]2410x x -+=12,x x 122(1)x x x 12x x +12x x ⋅12,x x 2410x x -+=12x x +b a 12x x ⋅c a122(1)x x x 1122x x x x ++1212x x x x ++12x x +b a 12x x ⋅c a1x =220x mx +-=设方程的另一根为x 1,由根与系数的关系可得:1×x 1=-2, ∴x 1=-2.故答案为:-2.[点评]本题考查一元二次方程根与系数的关系,明确根与系数的关系是解题的关键.三、解答题17.已知:已知关于的方程(1)求证:不论为何值,方程总有两个不相等的实数根.(2)若该方程的一个根为1,求的值及方程的另一个根.[答案](1)见解析;(2),方程的另一个根是. [解析][分析](1)由方程的各系数 结合根的判别式可得出△>0,由此即可得出结论(2)将x=1代入原方程,得出关于m 的一元一次方程,解方程求出m 的值,将其代入原方程得出关于x 的一元二次方程,结合根与系数的关系得出方程的另一个解.[详解]解:(1)证明:∵在关于x 的方程中, ,所以不论为何值,方程总有两个不相等的实数根;(2)将x=1代入方程中得出:1+m+m-2=0解得:, x 220x mx m ++-=m m 12m =32-220x mx m ++-=()()22412240m m m =-⨯⨯-=-+>m 1m 2=∴原方程为: ∴ ∵∴ ∴,方程的另一个根是. [点评]本题考查的知识点是根的判别式以及根与系数的关系,熟记每个公式是解题的关键.18.据统计某市农村年人均纯收入是元,预计年人均纯收入可达到元. 试求该市农村这两年人均纯收入的平均增长率;按此增长速度年该市农村人均纯收入可达到多少元?[答案](1);年该市农村人均纯收入可达到元.[解析][详解](1)设该市农村这两年人均纯收入的平均增长率为x,根据题意得:10000(1+x)2=12100,解得:x=0.1或x=﹣2.1(舍去),故该市农村这两年人均纯收入的平均增长率为;(元),答:年该市农村人均纯收入可达到元.[点评]本题主要考查一元二次方程的应用,解此题的关键在于先设出未知数x,再根据题意列出方程求解即可. 213022x x +-=1212b x x a +=-=-11x =232x =-12m =32-201310000201512100()1() 220161?0%()220161331010%()()212100110%13310⨯+=20161331019.选择适当方法解下列方程:(1)(用配方法);(2);(3); (4). [答案](1),;(2),;(3),;(4),.[解析][分析][详解]解:,移项得:,配方得:,即,∴,∴,;,移项,得 ,,或, 2510x x -+=()()2322x x x -=-2250x --=()()22231y y +=-152x +=252x =12x =23x=1x=22x =132y =214y =-()21510x x -+=251x x -=-225255144x x -+=-+2521()24x -=52x -=152x=252x =()()223(2)2x x x -=-()23(2)20x x x ---=()()2360x x x ---=20x -=260x -=,;; , ∵,,∴,∴, ∴,; ; .,,或,,. [点评]掌握一元二次方程的求根方法是解题的关键.20.已知关于的方程. 为何值时,此方程是一元一次方程?为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项.[答案](1)时,此方程是一元一次方程;(2).一元二次方程的二次项系数、一次项系数,常数项.;[解析]12x =23x =()23250x --=2a=b =-5c =-()842548=-⨯⨯-=x ==12x =22x =()224(2)(31)y y +=-()231y y +=±-231y y +=-()231y y +=--132y =214y =-x ()()22110m x m x m --++=()1m ()2m 1m =1m ≠±21m -()1m -+m试题分析:(1)根据一元一次方程的定义可得=0,且m+1≠0,解得m 的值;(2)根据一元二次方程的定义可得≠0,可得m 的取值范围,然后写出一元二次方程的二次项系数、一次项系数及常数项.试题解析:解:(1)=0,且m+1≠0,解得m=1,答:当m=1时,此方程是一元一次方程;(2)≠0,解得m≠±1,答:当m≠±1时,此方程是一元二次方程,其二次项系数为,一次项系数为-(m+1),常数项为m . 考点:一元一次方程的定义;一元二次方程的定义.21.先阅读理解下面的例题,再按要求解答下列问题.求代数式y 2+4y+8的最小值.解:y 2+4y+8=y 2+4y+4+4=(y+2)2+4∵(y+2)2≥0,∴(y+2)2+4≥4∴y 2+4y+8的最小值是4.(1)求代数式m 2+m+1的最小值;(2)求代数式4﹣x 2+2x 的最大值.[答案](1);(2)5. [解析][分析](1)根据题中的解法即可得到答案;(2)同理(1).[详解] 21m -21m -21m -21m -21m -34(1)m 2+m+1=m 2+m++=(m+)2+≥, 则m 2+m+1的最小值是; (2)4﹣x 2+2x=﹣x 2+2x ﹣1+5=﹣(x ﹣1)2+5≤5,则4﹣x 2+2x 的最大值是5.[点评]本题主要考查了配方法与偶次方的非负性,解此题的关键在于利用配方法得到完全平方式,再利用非负数的性质即可得解.22.一玩具城以元/个的价格购进某种玩具进行销售,并预计当售价为元/个时,每天能售出个玩具,且在一定范围内,当每个玩具的售价平均每提高元时,每天就会少售出个玩具若玩具售价不超过元/个,每天售出玩具总成本不高于元,预计每个玩具售价的取值范围; 在实际销售中,玩具城以中每个玩具的最低售价及相应的销量为基础,进一步调整了销售方案,将每个玩具的售价提高了,从而每天的销售量降低了,当每天的销售利润为元时,求的值.[答案]预计每个玩具售价的取值范围是; 或.[解析][分析]根据题意列不等式组即可得到结论;; 由知最低销售价为元/个,对应销售量为,根据题意列方程即可得到结论. [详解] 解:每个玩具售价元/个,根据题意得, 解得:, 1434123434344950500.53()160686()2()1%a 2%a 147a ()15660x ≤≤()225a =12.5a =()1()2()1565650503140.5--⨯=个()1x 6050495036860.5x x ≤⎧⎪-⎨⎛⎫-⨯≤ ⎪⎪⎝⎭⎩5660x ≤≤答:预计每个玩具售价的取值范围是;由知最低销售价为元/个,对应销售量为, 由题意得:,令,整理得:,解得:,, ∴或.[点评]考查一元二次方程的应用,解决问题的关键是读懂题意,根据题意列出方程和不等式进行求解即可. 23.某林场计划修一条长,断面为等腰梯形的渠道,断面面积为,上口宽比渠深多,渠底比渠深多渠道的上口宽与渠底宽各是多少?如果计划每天挖土,需要多少天才能把这条渠道挖完?[答案]渠道的上口与渠底宽各是米和米; 需要天才能把这条渠道的土挖完.[解析][分析](1)设渠道深x 米,则上口的宽度是(x+2)米,渠底宽(x+0.4)米,根据断面面积为1.6平方米,列出方程,求解即可;(2)根据渠道的长为750米,求出渠道的体积,再根据每天挖土48立方米,即可求出需要的天数.[详解]设渠道深米,则上口的宽度是米,渠底宽米,根据题意得:, 5660x ≤≤()2()1565650503140.5--⨯=个()()561%491412%147a a ⎡⎤+-⨯⨯-=⎣⎦%t a =2321210t t -==114t =218t =25a =12.5a =750m 21.6m 2m 0.4m ()1()2348m ()1 2.8 1.2()225()1x ()2x +()0.4x +()()120.4 1.62x x x ⎡⎤+++=⎣⎦解得:(舍去),,则渠道的上口宽是:(米),渠底宽是(米);答:渠道的上口与渠底宽各是米和米;∵渠道的长为米,∴渠道的体积为(立方米),∵每天挖土立方米,∴需要的天数是:(天),答:需要天才能把这条渠道的土挖完.[点评]考查了一元二次方程的应用,解题的关键是读懂题目,设出未知数,找出等量关系,列方程求解. 24.阅读第(1)题的解题过程,再解答第(2)题:(1)例:解方程x 2﹣|x |﹣2=0.解:当x ≥0时,原方程可化为x 2﹣x ﹣2=0.解得:x 1=2,x 2=﹣1(不合题意.舍去)当x <0时,原方程可化为x 2+x ﹣2=0.解得:x 1=﹣2,x 2=1(不合题意.舍去)∴原方程的解是x 1=2,x 1=﹣2.(2)请参照上例例题的解法,解方程x 2﹣x |x ﹣1|﹣1=0.[答案]x 1=﹣0.5,x 2=1[解析]12x =-20.8x =0.82 2.8+=0.80.4 1.2+= 2.8 1.2()2750750 1.61200⨯=4812004825÷=25[分析]解方程x2﹣|x﹣1|﹣1=0.方程中|x﹣1|的值有两个,所以就要分情况讨论,然后去掉绝对值.一种是当x ﹣1≥0时,求解;另一种情况是当x﹣1<0时,求解.[详解]解:当x﹣1≥0,即x≥1时,原方程可化为x2﹣x(x﹣1)﹣1=0即x﹣1=0,解得x=1当x﹣1<0,即x<1时,原方程可化为x2﹣x(1﹣x)﹣1=0即2x2﹣x﹣1=0,解得x1=﹣0.5,x2=1(不合题意.舍去)∴原方程的解为x1=﹣0.5,x2=1[点评]本题考查了解一元二次方程的应用,易出错的地方是要分情况而解,所以学生容易出现漏解的现象.。

数学九年级上学期《一元二次方程》单元测试(附答案)

数学九年级上学期《一元二次方程》单元测试(附答案)

九年级上册数学《一元二次方程》单元测试卷(满分120分,考试用时120分钟)一、选择题(30分)1. 若方程(m+2)x|m|+3mx+1=0 是关于x的一元二次方程,则m =()A . 0B . 2C . -2D . ± 22. 方程x2=x 的根是()A . x=0B . x=1C . x=0或x=-1D . x=0 或x=13. 若x1、x2是方程x2+x-1=0 的两根,则(x12+x1-2)×(x22+x2-2) 的值( )A . 2B . -2C . -1D . 14. 已知关于x的方程x2-px + q = 0 的两根是x1 = 1, x2 = -2, 则二次三项式x2-px + q可以分解为( )A . (x-1)(x +2)B . (x-1)(x-2)C . (x +1)(x-2)D . (x +1)(x +2)5. 对于任意实数x,多项式x2-5x+8的值是一个()A . 非负数B . 正数C . 负数D . 无法确定6. 若A -B +C =0,A ≠0,则方程A x2+B x+C =0 必有一个根是()A . 1B . 0C . –1D . 不能确定7. 如果关于x的方程A x 2+x–1= 0有实数根,则A 的取值范围是()A . A >–B . A ≥–C . A ≥–且A ≠0D . A >–且A ≠08. 一元二次方程(m-2)x2-4mx+2m-6=0 有两个相等的实数根,则m等于()A . -6B . 1C . 2D . -6或19. 某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂第二季度平均每月的增长率为,那么满足的方程是()A . 50(1+x)2=182B . 50+50(1+x)+50(1+x)2=182C . 50(1+x)+50(1+x)2=182D . 50+50(1+x)=18210. 如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是()A . 7mB . 8mC . 9mD . 10m二、填空题(共18分)11. 将方程化为一般形式:2x2-3x=3x-5是____________________12. 方程x(x-2)=0的解是___________________13. 若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为________.14. 方程x2-2x-1=0的判别式△=____________.15. 方程x2-4x+4=0的根的情况是__________________16. 关于x的一元二次方程x2+mx-3=0的一个根是1,则另一根为________.三、解答题(共52分)17. 解方程:(1)(x-5)2=16 (直接开平方法)(2)x2+5x=0 (因式分解法)(3)x2-4x+1=0 (配方法)(4)x2+3x-4=0 (公式法)18. 在实数范围内定义一种新运算“△”,其规则为:A △B =A 2﹣B 2,根据这个规则:(1)求4△3的值;(2)求(x+2)△5=0中x的值.19. 已知关于x的方程x2-(2m+1)x+m(m+1)=0.求证:方程总有两个不相等的实数根.20. 为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2015年市政府共投资3亿元人民币建设了廉租房12万平方米,2017年计划投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2017年建设了多少万平方米廉租房?21. 已知:如图,A 、B 、C 、D 为矩形的四个顶点,A B =16C m,A D =6C m,动点P、Q 分别从A 、C 同时出发,点P 以3C m/s的速度向点B 移动,一直到达点 B 为止,点 Q 以2C m/s的速度向点 D 移动.(1)P、Q 两点从出发点出发几秒时,四边形PB C Q 的面积是33C m2?(2)P、Q 两点从出发点出发几秒时,点P、Q 间的距离是10C m?参考答案一、选择题(30分)1. 若方程(m+2)x|m|+3mx+1=0 是关于x的一元二次方程,则m =()A . 0B . 2C . -2D . ± 2[答案]B[解析]由一元二次方程的定义可得,解得:m=2.故答案为:2.2. 方程x2=x 的根是()A . x=0B . x=1C . x=0或x=-1D . x=0 或x=1[答案]D[解析]解:移项得:x2﹣x=0,x(x﹣1)=0,∴x=0或x﹣1=0,x1=0,x2=1.故选C .3. 若x1、x2是方程x2+x-1=0 的两根,则(x12+x1-2)×(x22+x2-2) 的值( )A . 2B . -2C . -1D . 1[答案]D[解析]根据方根的根的定义得:故(x12+x1-2)×(x22+x2-2)= .故选D .4. 已知关于x的方程x2-px + q = 0 的两根是x1 = 1, x2 = -2, 则二次三项式x2-px + q可以分解为( )A . (x-1)(x +2)B . (x-1)(x-2)C . (x +1)(x-2)D . (x +1)(x +2)[答案]A[解析]根据方根的根的定义得:x2-px + q=(x -1)(x +2).故选A .5. 对于任意实数x,多项式x2-5x+8的值是一个()A . 非负数B . 正数C . 负数D . 无法确定[答案]B[解析]试题解析:x2-5x+8=x2-5x++=(x-)2+,任意实数的平方都是非负数,其最小值是0,所以(x-)2+的最小值是,故多项式x2-5x+8的值是一个正数,故选B .考点:1.配方法的应用;2.非负数的性质:偶次方.6. 若A -B +C =0,A ≠0,则方程A x2+B x+C =0 必有一个根是()A . 1B . 0C . –1D . 不能确定[答案]C[解析]由题意得:当A -B +C =0,即当x=-1时,A x2+B x+C =A -B +C =0,故选C .7. 如果关于x的方程A x 2+x–1= 0有实数根,则A 的取值范围是()A . A >–B . A ≥–C . A ≥–且A ≠0D . A >–且A ≠0[答案]B[解析]由题意得: .故选C .8. 一元二次方程(m-2)x2-4mx+2m-6=0 有两个相等的实数根,则m等于()A . -6B . 1C . 2D . -6或1[答案]C[解析]试题分析:根据一元二次方程A x2+B x+C =0(A ≠0)的根的判别式和定义得到m﹣2≠0且△=0,即16m2﹣4×(m﹣2)×(2m﹣6)=0,m2+5m﹣6=0,解得m1=﹣6,m2=1,即可得到m的值.∵一元二次方程(m﹣2)x2﹣4mx+2m﹣6=0有两个相等的实数根,∴m﹣2≠0且△=0,即16m2﹣4×(m﹣2)×(2m﹣6)=0,m2+5m﹣6=0,解得m1=﹣6,m2=1.∴m的值为﹣6或1.考点:根的判别式.9. 某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂第二季度平均每月的增长率为,那么满足的方程是()A . 50(1+x)2=182B . 50+50(1+x)+50(1+x)2=182C . 50(1+x)+50(1+x)2=182D . 50+50(1+x)=182[答案]B[解析]一个季度包括3个月,四月份产量+五月份产量+六月份产量=第二季度共生产零件182万个.易得:50+50(1+x)+50(1+x)2=182.故选B .10. 如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是()A . 7mB . 8mC . 9mD . 10m[答案]A视频二、填空题(共18分)11. 将方程化为一般形式:2x2-3x=3x-5是____________________[答案]2x2-6x+5=0[解析]原方程移项,得2x2-6x+5=0.故答案为2x2-6x+5=0.点睛:一元二次方程的一般形式为:A x2+B x+C =0(A ≠0).12. 方程x(x-2)=0的解是___________________[答案]x1=0,x2=2[解析]利用因式分解法解一元二次方程,易得:x=0或x-2=0,即x1=0,x2=2.故答案:x1=0,x2=2.13. 若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为________.[答案]-3[解析]试题分析:根据一元二次方程的根,可知把x=1代入原方程可得1+2+m=0,解得m=-3.考点:一元二次方程的解14. 方程x2-2x-1=0的判别式△=____________.[答案]8[解析]由题意得:A =1,B =-2,C =-1,故 .故答案:8.15. 方程x2-4x+4=0的根的情况是__________________[答案]有两个不相等实数根[解析]Δ=B 2-4A C =(-4)2-4×1×4=0,所以方程有两个相等的实数根.点睛:一元二次方程解的情况:(1)B 2-4A C >0,方程有两个不相等的实数根;(2)B 2-4A C =0,方程有两个相等的实数根;(3)B 2-4A C <0,方程没有实数根.16. 关于x的一元二次方程x2+mx-3=0的一个根是1,则另一根为________.[答案]-3[解析]设方程两根分别为x1,x2,其中x1=1,由韦达定理可得x1·x2=-3,∴x2=-3.故答案为-3.三、解答题(共52分)17. 解方程:(1)(x-5)2=16 (直接开平方法)(2)x2+5x=0 (因式分解法)(3)x2-4x+1=0 (配方法)(4)x2+3x-4=0 (公式法)[答案](1) x1=9, x2=1;(2)x1=0, x2=-5;(3)x1=2+, x2=2;(4)x1=-4 , x2=1[解析][试题分析](1)用直接开平方法求解;(2)用因式分解法求解;(3)用配方法求解;(4)用公式法求解.[试题解析](1)(x-5)2=16(2)x2+5x=0(3)x2-4x+1=0(4)x2+3x-4=0A =1,B =3,C =-4,则所以方程的根为:,即:x1=-4 , x2=1.[方法点睛]本题目是一道考查求一元二次方程的根的问题,四道题利用四种不同的方法求解,在于全面考查一元二次方程的解法,难度不大.18. 在实数范围内定义一种新运算“△”,其规则为:A △B =A 2﹣B 2,根据这个规则:(1)求4△3的值;(2)求(x+2)△5=0中x的值.[答案](1)7;(2)x1=3, x2=-7[解析]试题分析:(1)将A =4,B =3代入公式计算出结果即可;(2)根据运算规则计算出方程左边的结果,再解方程即可.试题解析:(1)4△3=42-32 =16-9=7.(2)(x+2)△5=0,(x+2)2-52=0,(x+2)2=52,x+2=±5,x1=3,x2=-7 .点睛:遇到新运算规则,理解题目的意思,套用公式即可.19. 已知关于x的方程x2-(2m+1)x+m(m+1)=0.求证:方程总有两个不相等的实数根.[答案]见解析[解析]试题分析:要证明方程总有两个不相等的实数根,即要证明Δ>0恒成立,将Δ用含m的式子表示出来,然后配方即可证明.试题解析:△=(2m+1)2-4 m(m+1) =4m2+4m+1-4m2-4m =1>0,所以方程有两个不相等实数根.点睛:(1)一元二次方程解的情况:①B 2-4A C >0,方程有两个不相等的实数根;②B 2-4A C =0,方程有两个相等的实数根;③B 2-4A C <0,方程没有实数根.(2要证明多项式恒大于0或者恒小于0可用配方法证明.20. 为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2015年市政府共投资3亿元人民币建设了廉租房12万平方米,2017年计划投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2017年建设了多少万平方米廉租房?[答案](1)每年市政府投资的增长率为50% ;(2)2017年预计建设了18万平方米的廉租房.[解析]试题分析:(1)设每年市政府投资的增长率为x,由3(1+x)2=2015年的投资,列出方程,解方程即可;(2)2015年的廉租房=12(1+50%)2,即可得出结果.解:(1)设每年市政府投资的增长率为x,依题意得:3(1+x)2=6.75解得x1=0.5=50% x2=-2.5(舍去)答:每年市政府投资的增长率为50%(2)12(1+50%)2=27答:2017年预计建设了27万平方米的廉租房.点睛:本题考查了一元一次方程的应用---增长率问题;本题的关键是掌握增长率问题中的一般公式为A (1+x)n =B ,其中n为共增长了几年,A 为第一年的原始数据,B 是增长后的数据,x是增长率.21. 已知:如图,A 、B 、C 、D 为矩形的四个顶点,A B =16C m,A D =6C m,动点P、Q 分别从A 、C 同时出发,点P 以3C m/s的速度向点B 移动,一直到达点 B 为止,点 Q 以2C m/s的速度向点 D 移动.(1)P、Q 两点从出发点出发几秒时,四边形PB C Q 的面积是33C m2?(2)P、Q 两点从出发点出发几秒时,点P、Q 间的距离是10C m?[答案](1)P、Q 两点出发5秒时,四边形PB C Q 的面积为33C m2;(2) P、Q 两点从出发点出发秒或秒时,点P 与点Q 的距离是10C m.[解析]解:(1)设P、Q两点从出发开始到x秒时四边形PB C Q的面积为33C m2,则PB =(16﹣3x)C m,QC =2xC m,根据梯形的面积公式得(16﹣3x+2x)×6=33,解之得x=5,(2)设P,Q两点从出发经过t秒时,点P,Q间的距离是10C m,作QE⊥A B ,垂足为E,则QE=A D =6,PQ=10,∵PA =3t,C Q=B E=2t,∴PE=A B ﹣A P﹣B E=|16﹣5t|,由勾股定理,得(16﹣5t)2+62=102,解得t1=4.8,t2=1.6.答:(1)P、Q两点从出发开始到5秒时四边形PB C Q的面积为33C m2;(2)从出发到1.6秒或4.8秒时,点P和点Q的距离是10C m.[点睛](1)根据梯形的面积公式可列方程:求解;(2)作QE⊥A B ,垂足为E,在Rt PEQ中,用勾股定理列方程求解.视频。

新人教版初中数学九年级数学上册第一单元《一元二次方程》测试题(包含答案解析)(5)

新人教版初中数学九年级数学上册第一单元《一元二次方程》测试题(包含答案解析)(5)

一、选择题1.已知三角形的两边长分别为4和6,第三边是方程217700x x -+=的根,则此三角形的周长是( )A .10B .17C .20D .17或20 2.用配方法解下列方程时,配方错误的是( )A .x 2﹣2x ﹣99=0化为(x ﹣1)2=100B .x 2+8x+9=0化为(x+4)2=25C .2x 2﹣7x ﹣4=0化为(x ﹣74)2=8116 D .3x 2﹣4x ﹣2=0化为(x ﹣23)2=109 3.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B .1k ≥-C .0k ≠D .1k >-且0k ≠ 4.用配方法解方程2x 4x 70+-=,方程应变形为( ) A .2(2)3x += B .2 (x+2)11= C .2 (2)3?x -= D .2()211x -= 5.小刚在解关于x 的方程20(a 0)++=≠ax bx c 时,只抄对了1a =,4b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是xD .有两个相等的实数根 6.一元二次方程2304y y +-=,配方后可化为( ) A .21()12y +=B .21()12y -=C .211()22y +=D .213()24y -= 7.当分式2369x x x --+的值为0时,则x 等于( ) A .3 B .0 C .3± D .-38.新冠肺炎是一种传染性极强的疾病,如果有一人患病,经过两轮传染后有81人患病,设每轮传染中平均一个人传染了x 个人,下列列式正确是( )A .(1)81x x x ++=B .2181x x ++=C .1(1)81x x x +++=D .(1)81x x +=9.用配方法解方程23620x x -+=时,方程可变形为( )A .21(3)3x -=B .21(1)33x -=C .21(1)3-=xD .2(31)1x -=10.某商品经过连续两次降价,售价由原来的每件100元降到每件64元,则平均每次降价的百分率为( )A .15%B .40%C .25%D .20% 11.若方程()200++=≠ax bx c a 中,,,a b c 满足420a b c ++=和420a b c -+=,则方程的根是( )A .1,0B .1,0-C .1,1-D .2,2-12.如图,BD 为矩形ABCD 的对角线,将△BCD 沿BD 翻折得到BC D '△,BC '与边AD 交于点E .若AB =x 1,BC =2x 2,DE =3,其中x 1、x 2是关于x 的方程x 2﹣4x+m =0的两个实根,则m 的值是( )A .165B .125C .3D .2二、填空题13.把方程2230x x --=化为2()x h k +=的形式来求解的方法我们叫配方法,其中h ,k 为常数,那么本题中h k +的值是_________.14.已知方程2230x x +-=的解是11x =,23x =-,则方程2(3)2(3)30x x +++-=的解是_____.15.将一元二次方程(32)(1)83x x x -+=-化成一般形式是_____.16.用因式分解法解关于x 的方程 260x px --=,将左边分解因式后有一个因式为3x -,则的p 值为_______17.已知()0n n ≠是一元二次方程240x mx n ++=的一个根,则m n +的值为______. 18.一件商品原价300元,连续两次降价后,现售价是243元,若每次降价的百分率相同,那么这个百分率为______.19.参加足球联赛的每两队之间都进行两场比赛,共要比赛90场,共有________个队参加比赛.20.关于x 的一元二次方程有两个根0和3,写出这个一元二次方程的一个一般式为______.参考答案三、解答题21.解方程:(1)26160x x +-=.(2)22430x x --=.22.先阅读理解下面的例题,再按要求解答下面的问题:例题:说明代数式m 2+2m+4的值一定是正数.解:m 2+2m+4=m 2+2m+1+3=(m+1)2+3.∵(m+1)2≥0,∴(m+1)2+3≥3,∴m 2+2m+4的值一定是正数.(1)说明代数式﹣a 2+6a ﹣10的值一定是负数.(2)设正方形面积为S 1,长方形的面积为S 2,正方形的边长为a ,如果长方形的一边长比正方形的边长少3,另一边长为4,请你比较S 1与S 2的大小关系,并说明理由. 23.已知关于x 的方程()22120x k x k ---=,求证:不论k 取何值,这个方程都有两个实数根.24.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件.(1)若每件衬衫降价5元,则每件商品盈利________元,每天可售出________件,商场每天盈利________元;(2)若每件衬衫降价x 元,则每件商品盈利________元,每天可售出________件(用含x 的代数式表示);(3)若商场平均每天盈利2100元,每件衬衫应降价多少元?25.某玩具店购进一批甲、乙两款乐高积木,它们的进货单价之和是720元.甲款积木零售单价比进货单价多80元.乙款积木零售价比进货单价的1.5倍少120元,按零售单价购买甲款积木4盒和乙款积木2盒,共需要2640元.(1)分别求出甲乙两款积木的进价.(2)该玩具店平均一个星期卖出甲款积木40盒和乙款积木24盒,经调查发现,甲款积木零售单价每降低2元,平均一个星期可多售出甲款积木4盒,商店决定把甲款积木的零售价下降()0m m >元,乙款积木的零售价和销量都不变.在不考虑其他因素的条件下,为了顾客能获取更多的优惠,当m 为多少时,玩具店一个星期销售甲、乙两款积木获取的总利润恰为5760元.26.(12. (2)解一元二次方程:x 2﹣4x ﹣5=0.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据第三边是方程x 2﹣17x +70=0的根,首先求出方程的根,再利用三角形三边关系求出即可.【详解】解:∵217700x x -+=,∴(10)(7)0x x --=,∴110x =,27x =,∵4610+=,无法构成三角形,∴此三角形的周长是:46717++=.故选B .【点睛】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,正确利用因式分解法解一元二次方程可以大大降低计算量.2.B解析:B【分析】将常数项移到方程的右边,然后将二次项系数化为1,继而两边都加上一次项系数一半的平方配成完全平方式后即可得出答案.【详解】解:A 、由x 2﹣2x ﹣99=0得x 2﹣2x=99,则x 2﹣2x+1=100,即(x ﹣1)2=100,故本选项正确,不符合题意;B 、由x 2+8x+9=0得x 2+8x=-9,则x 2+8x+16=-9+16即(x+4)2=7此选项错误,符合题意;C 、由2x 2﹣7x ﹣4=0得2x 2﹣7x=4,则x 2﹣72x =2,∴x 2﹣72x+4916=2+4916,即274x ⎛⎫- ⎪⎝⎭=8116,故本选项正确,不符合题意; D 、由3x 2﹣4x ﹣2=0,得3x 2﹣4x=2,则x 2﹣43x =23,∴故x 2﹣43x+49=23+49,即(x ﹣23)2=109,故本选项正确,不符合题意; 故选:B .【点睛】本题主要考查解一元二次方程−配方法,用配方法解一元二次方程的步骤:①把原方程化为a 2x +bx +c =0(a ≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边; ③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.3.D解析:D【分析】根据一元二次方程根的判别式得到关于k 的不等式,然后求解不等式即可.【详解】是一元二次方程,0k ∴≠.有两个不相等的实数根,则Δ0>,2Δ24(1)0k =-⨯-⨯>,解得1k >-.1k ∴>-且0k ≠.故选D【点睛】本题考查一元二次方程ax 2+bx +c =0(a ≠0)根的判别式:(1)当△=b 2﹣4ac >0时,方程有两个不相等的实数根;(2)当△=b 2﹣4ac =0时,方程有有两个相等的实数根;(3)当△=b 2﹣4ac <0时,方程没有实数根.4.B解析:B【分析】根据配方法解一元二次方程的方法解答即可.【详解】解:用配方法解方程2470x x ,方程应变形为24411x x ++=,即()2211x +=. 故选:B .【点睛】本题考查了一元二次方程的解法,熟练掌握配方的方法是解题的关键. 5.A解析:A【分析】直接把已知数据代入进而得出c 的值,再利用根的判别式求出答案.【详解】∵小刚在解关于x 的方程20ax bx c ++=(0a ≠)时,只抄对了1a =,4b =,解出其中一个根是1x =-,∴()()21410c -+⨯-+=, 解得:3c =,∵核对时发现所抄的c 比原方程的c 值小2,故原方程中5c =,则224441540b ac =-=-⨯⨯=-<,则原方程的根的情况是不存在实数根.故选:A .【点睛】本题主要考查了根的判别式,正确利用方程的解得出c 的值是解题关键.6.A解析:A【分析】根据配方法解一元二次方程的步骤计算可得.【详解】解:∵2304y y +-=, ∴y 2+y=34, 则y 2+y+14=34+14, 即(y+12)2=1, 故选:A .【点睛】本题主要考查解一元二次方程-配方法,用配方法解一元二次方程的步骤:①把原方程化为ax 2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边; ③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.7.D解析:D【分析】先根据分式的值为0的条件列出关于x 的不等式组,求出x 的值即可.【详解】 依题意得:230690x x x ⎧-⎨-+≠⎩=,解得x =−3.故选:D【点睛】本题考查的是分式的值为0的条件,熟知分式值为零的条件是分子等于零且分母不等于零是解答此题的关键.8.C解析:C【分析】平均一人传染了x 人,根据有一人患病,第一轮有(x+1)人患病,第二轮共有x+1+(x+1)x 人,即81人患病,由此列方程求解.【详解】解:设每轮传染中平均一个人传染了x 个人,根据题意得,x+1+(x+1)x=81故选:C .【点睛】本题考查了一元二次方程的应用,关键是得到两轮传染数量关系,从而可列方程求解. 9.C解析:C【分析】先移项得到2362x x -=-,再把方程两边都除以3,然后把方程两边加上1即可得到()2113x -=. 【详解】移项得:2362x x -=-,二次系数化为1得:2223x x -=-, 方程两边加上1得:222113x x -+=-+, 所以()2113x -=. 故选:C .【点睛】 本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键. 10.D解析:D【分析】设平均每次降价的百分率为x ,根据该商品的原价及经过两次降价后的价格,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:设平均每次降价的百分率为x ,依题意,得:100(1-x )2=64,解得:x 1=0.2=20%,x 2=1.8(不合题意,舍去).故选:D .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 11.D解析:D【分析】联立420a b c ++=和420a b c -+=,前式减后式,可得0b =,前式加后式,可得4c a =-,将a 、c 代入原方程计算求出方程的根.【详解】∵根据题意可得:420420a b c a b c ++=⎧⎨-+=⎩①②, ①-②=40b =,得0b =,①+②=820a c +=,∴解得:0b =,4c a =-.将a 、b 、c 代入原方程()200++=≠ax bx c a 可得, ∵240ax bx a +-=,240ax a -=24ax a =∴2x =±故选:D .【点睛】本题考查解一元二次方程,联立关于a 、b 、c 的方程组,由方程组推出a 、b 、c 的数量关系是解题关键.12.A解析:A【分析】利用根与系数的关系得到x 1+x 2=4,x 1x 2=m ,AB +12BC =4,m =AB×12BC ,再利用折叠的性质和平行线的性质得到∠EBD =∠EDB ,则EB =ED =3,所以AE =AD−DE =5−2AB ,利用勾股定理得到AB 2+(5−2AB )2=32,解得AB或AB(舍去),则BC,然后计算m 的值. 【详解】∵x 1、x 2是关于x 的方程x 2−4x +m =0的两个实根,∴x 1+x 2=4,x 1x 2=m ,即AB +12BC =4,m =AB×12BC , ∵△BCD 沿BD 翻折得到△BC′D ,BC′与边AD 交于点E ,∴∠CBD =∠EBD ,∵AD ∥BC ,∴∠CBD =∠EDB ,∴∠EBD =∠EDB ,∴EB =ED =3,在Rt △ABE 中,AE =AD−DE =BC−3=8−2AB−3=5−2AB ,∴AB 2+(5−2AB )2=32,解得AB =105-或AB =105+(舍去),∴BC =8−2AB =205+,∴m =12×105-×205+=165. 故选:A .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a≠0)的两根时,x 1+x 2=−b a ,x 1x 2=c a.也考查了矩形的性质和折叠的性质. 二、填空题13.3【分析】首先把常数项移到等号右边经配方h 和k 即可求得进而通过计算即可得到答案【详解】根据题意移项得配方得:即∴∴故答案是:3【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法 解析:3【分析】首先把常数项移到等号右边,经配方,h 和k 即可求得,进而通过计算即可得到答案.【详解】根据题意,移项得223x x -=,配方得:22131x x -+=+,即2(1)4x -=,∴1h =-,4k =∴143h k +=-+=故答案是:3.【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法的性质,从而完成求解.14.【分析】把(x+3)看成一个整体另一个方程和已知方程的结构形式完全相同所以x+3与已知方程的解也相同根据此题意解题即可【详解】解:∵是已知方程的解由于另一个方程与已知方程的形式完全相同∴x+3=1或解析:122,6x x =-=-【分析】把(x+3)看成一个整体,另一个方程和已知方程的结构形式完全相同,所以x+3与已知方程的解也相同,根据此题意解题即可.【详解】解:∵ 1213x x ==-,是已知方程2230x x +-=的解,由于另一个方程()()232330x x +++-=与已知方程的形式完全相同,∴x+3=1或x+3=﹣3,解得:1226x x =-=-,.故答案为:1226x x =-=-,.【点睛】本题考查了解一元二次方程,能根据方程的解得出x+3=1和x+3=-3是解此题的关键,此题属于换元法解方程. 15.【分析】先计算多项式乘以多项式并移项再合并同类项即可【详解】故答案为:【点睛】此题考查一元二次方程的一般形式掌握多项式乘以多项式合并同类项计算法则是解题的关键解析:23710x x -+=【分析】先计算多项式乘以多项式,并移项,再合并同类项即可.【详解】(32)(1)83x x x -+=-23322830x x x x +---+=23710x x -+=故答案为:23710x x -+=.【点睛】此题考查一元二次方程的一般形式,掌握多项式乘以多项式,合并同类项计算法则是解题的关键.16.1【分析】方法一:根据题意因式分解得到再展开去括号根据恒等式即可求出p 的值;方法二:将代入方程可得一个关于p 的一元一次方程解方程即可得【详解】方法一:由题意得解得则;方法二:由题意得是关于x 的方程的 解析:1【分析】方法一:根据题意因式分解得到26(3)()x px x x a --=-+,再展开去括号,根据恒等式即可求出p 的值;方法二:将3x =代入方程可得一个关于p 的一元一次方程,解方程即可得.【详解】方法一:由题意得,226(3)()(3)3x px x x a x a x a --=-+=+--,3p a ∴-=-,36a -=-,解得2a =,则1p =;方法二:由题意得,3x =是关于x 的方程260x px --=的一个解,则将3x =代入得:23360p --=,解得1p =,故答案为:1.【点睛】本题考查了多项式因式分解的方法、利用因式分解法解一元二次方程,熟练掌握多项式的运算法则和方程的解法是解题关键. 17.【分析】根据一元二次方程的解的定义把代入得到继而可得的值【详解】∵是关于x 的一元二次方程的一个根∴即∵∴即故答案为:【点睛】本题考查了一元二次方程的解的定义因式分解的应用注意:能使一元二次方程左右两 解析:4-【分析】根据一元二次方程的解的定义把x n =代入240x mx n ++=得到240n mn n ++=,继而可得m n +的值.【详解】∵n 是关于x 的一元二次方程240x mx n ++=的一个根,∴240n mn n ++=,即()40n n m ++=,∵0n ≠,∴4n m ++,即4m n +=-,故答案为:4-.【点睛】本题考查了一元二次方程的解的定义、因式分解的应用.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.18.10【分析】设这个百分率为x 然后根据题意列出一元二次方程最后求解即可【详解】解:设这个百分率为x 由题意得:300(1-x )2=243解得x=10或x=190(舍)故答案为10【点睛】本题主要考查了一解析:10%【分析】设这个百分率为x%,然后根据题意列出一元二次方程,最后求解即可.【详解】解:设这个百分率为x%,由题意得:300(1-x%)2=243,解得x=10或x=190(舍).故答案为10%.【点睛】本题主要考查了一元二次方程的应用—百分率问题,弄清题意、设出未知数、列出一元二次方程成为解答本题的关键.19.10【分析】设共有x 个队参加比赛根据每两队之间都进行两场比赛结合共比了90场即可得出关于x 的一元二次方程解之即可得出结论【详解】解:设共有x 个队参加比赛根据题意得:2×x (x-1)=90整理得:x2解析:10.【分析】设共有x 个队参加比赛,根据每两队之间都进行两场比赛结合共比了90场即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:设共有x 个队参加比赛,根据题意得:2×12x (x-1)=90, 整理得:x 2-x-90=0,解得:x=10或x=-9(舍去).故答案为:10.【点睛】本题考查了一元二次方程的应用,根据每两队之间都进行两场比赛结合共比了90场列出关于x 的一元二次方程是解题的关键.20.【分析】根据方程的解的定义可以得到方程【详解】解:根据题意知方程符合题意即:故答案是:【点睛】本题主要考查了一元二次方程的解的定义熟悉相关性质是解题的关键解析:230x x -=【分析】根据方程的解的定义可以得到方程-=(3)0x x .【详解】解:根据题意,知方程-=(3)0x x 符合题意,即:230x x -=.故答案是:230x x -=.【点睛】本题主要考查了一元二次方程的解的定义,熟悉相关性质是解题的关键.三、解答题21.(1)18x =-,22x =;(2)1x =,2x =. 【分析】(1)运用因式分解法求解即可;(2)运用公式法求解即可.【详解】解:(1)26160x x +-= ()()820x x +-=解得18x =-,22x =.(2)22430x x --=,∵2a =,4b =-,3c =-,∴224(4)42(3)162440b ac -=--⨯⨯-=+=,4422242x ±±===⨯,∴1x =,2x =. 【点睛】本题考查了解一元二次方程,在解答中注意计算的正确性.22.(1)见解析;(2)S 1>S 2,见解析【分析】(1)利用配方法,将原式化成含平方代数式形式﹣(a ﹣3)2﹣1,可判断其值为负数; (2)用a 分别表示出S 1与S 2,再作差比较即可.【详解】解:(1)﹣a 2+6a ﹣10=﹣(a 2﹣6a+9)﹣1=﹣(a ﹣3)2﹣1,∵(a ﹣3)2≥0,∴﹣(a ﹣3)2≤0,∴﹣(a ﹣3)2﹣1<0,∴代数式﹣a 2+6a ﹣10的值一定是负数;(2)S 1>S 2,理由是:∵S 1=a 2,S 2=4(a ﹣3),∴S 1﹣S 2=a 2﹣4(a ﹣3)=a 2﹣4a+12=a 2﹣4a+4+8=(a ﹣2)2+8,∵(a ﹣2)2≥0,∴(a ﹣2)2+8≥8,∴S 1﹣S 2>0,∴S 1>S 2.【点睛】本题主要考查配方法的应用,掌握配方法是解题的关键,注意两数比较大小时可用作差法.23.见解析.【分析】根据方程的系数结合根的判别式,可得出△=4k 2+4k+1≥0,进而即可证出:不论k 取何值方程都有两个不相等的实数根.【详解】证明:()()()2224124412211k k k k k -⨯⨯-∆=--⎡⎤⎣=+=+⎦+. ∵()2210k +≥,即0∆≥, ∴不论k 取何值,这个方程都有两个实数根.【点睛】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.24.(1)40,40,1600;(2)45x -,204x +;(3)每件衬衫应降价30元【分析】(1)每件衬衫降价5元,每件盈利=原来的盈利-5元;所售件数=20+多售出的件数;商场每天盈利=(原来的盈利-5元)×(20+多售出的件数);(2)每件衬衫降价x 元,每件盈利=原来的盈利-x 元;所售件数=20+多售出的件数; (3)商场平均每天盈利数=每件的盈利×售出件数;每件的盈利=原来每件的盈利-降价数.设每件衬衫应降价x 元,然后根据前面的关系式即可列出方程,解方程即可求出结果.【详解】解:(1)若每件衬衫降价5元,则每件商品盈利:45-5=40(元),每天可售出:20+4×5=40(件),商场每天盈利:40×40=1600(元),故答案为:40,40,1600;(2)若每件衬衫降价x 元,则每件商品盈利:45-x (元),每天可售出:20+4x (件)故答案为:45x -,204x +;(3)每件衬衫应降价x 元,根据题意得:(45)(20)2100x x --=2403000x x -+=解得:110x =,230x =当10x =时,20460x +=;当30x =时,204140x +=;∵要减少库存,∴应增加销售量,∴30x =∴每件衬衫应降价30元.【点睛】此题主要考查了一元二次方程的应用的销售问题,关键是正确理解题意,找出题目中等量关系,列出方方程.25.(1)(1)甲款每盒400元,乙款每盒320元;(2)40.【分析】(1)设甲款积木的进价为每盒x 元,乙款积木的进价为每盒y 元,列出二元一次方程组计算即可;(2)根据题意得出()()8040224405760m m -++⨯=,计算即可;【详解】(1)设甲款积木的进价为每盒x 元,乙款积木的进价为每盒y 元,则()()72048021.51202640x y x y +=⎧⎨++-=⎩, 解得:400320x y =⎧⎨=⎩. 答:甲款积木的进价为每盒400元,乙款积木的进价为每盒320元.(2)由题可得:()()8040224405760m m -++⨯=,解得120m =,240m =,因为顾客能获取更多的优惠,所以40m =.【点睛】本题主要考查了一元二次方程的应用,结合二元一次方程组求解计算是解题的关键.26.(1)2;(2)125, 1.x x ==-【分析】(1)根据二次根式的混合运算法则计算即可;(2)根据因式分解的方法解方程即可.【详解】解:(1|2|3+23=2 (2)x 2﹣4x ﹣5=0,(x ﹣5)(x +1)=0,∴x ﹣5=0或x +1=0,∴x1=5,x2=﹣1.【点睛】本题考查二次根式的混合运算以及解一元二次方程的方法,属于基础题。

九年级上册数学《一元二次方程》单元综合测试题(含答案)

九年级上册数学《一元二次方程》单元综合测试题(含答案)
【点睛】本题可根据一元二次方程根与系数的关系(韦达定理)来解答.
韦达定理:若一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,那么x1+x2=﹣ ,x1x2= .
19.某水果批发市场要经销一批热带水果,如果每千克该水果盈利5元,每天可售出200千克;经市场调查发现,在进货价不变的情况下,如果每千克水果涨价1元,日销售量将减少10千克;现该市场要保证每天盈利1500元,同时又要使顾客得到实惠,那么每千克水果应涨价多少元?
【点睛】本题主要考查了一元二次方程根与系数的关系(韦达定理),解此题的关键在于利用韦达定理得到m,n的另一个方程,然后通过解m,n的方程组得到m,n的值.
18.已知关于x的方程x2+2(m-3)x+m2+9=0两根的平方和比两根的积小71,求m的值.
【答案】m=4或m=20
【解析】
【分析】
利用一元二次方程的根与系数的关系整理得到x1+x2=-2(m-3),x1x2=m2+9,再根据题意可得(x1+x2)2-3x1x2=-71,然后整体代入求解即可.
人教版数学九年级上学期
《一元二次方程》单元测试
(满分120分,考试用时120分钟)
一、选择题
1.一元二次方程 的解是()
A. B. C. D.
2.把方程 化成 的形式时, 的值为()
A. 19B. -1C. 11D. -21
3.如果有一台电脑被感染,经过两轮感染后就会有100台电脑被感染.若每一轮感染中平均一台电脑会感染 台电脑,则下列所列方程中正确的是()
【答案】每千克应涨价5元.
【解析】
【分析】
设每千克应涨价x元,由题意可列方程(5+x)(200-10x)=1500,然后求解方程取符合题意的答案即可.

(完整版)人教版九年级上数学《第21章一元二次方程》单元测试题及答案,推荐文档

(完整版)人教版九年级上数学《第21章一元二次方程》单元测试题及答案,推荐文档

3《一元二次方程》单元测试题一、选择题 (共 8 题,每题有四个选项,其中只有一项符合题意。

每题 3 分,共 24 分):1.下列方程中不一定是一元二次方程的是( )2 2 3x 2 +3 x - 2 = 0A.(a-3)x =8 (a≠3)B.ax +bx+c=0C.(x+3)(x-2)=x+5D. 572 下列方程中,常数项为零的是( )A.x 2+x=1 B.2x 2-x-12=12;C.2(x 2-1)=3(x-1) D.2(x 2+1)=x+23. 一元二次方程 2x 2-3x+1=0 化为(x+a)2=b 的形式,正确的是()⎛ 3 ⎫2 ⎛ 3 ⎫2 1 ⎛ 3 ⎫2 1A. x - ⎪ = 16 ;B. 2 x - ⎪ = ;C. x - ⎪ = ;D.以上都不对⎝ 2 ⎭ ⎝ 4 ⎭ 16 ⎝ 4 ⎭ 164. 关于 x 的一元二次方程(a -1)x 2 + x + a 2 -1 = 0 的一个根是 0,则a 值为()A 1B -1C 1或-1D1/25. 已知三角形两边长分别为 2 和 9,第三边的长为二次方程 x 2-14x+48=0 的一根, 则这个三角形的周长为( ) A.11 B.17 C.17 或 19 D.196. 已知一个直角三角形的两条直角边的长恰好是方程2x 2 - 8x + 7 = 0 的两个根,则这个直角三角形的斜边长是( )A 、 B 、3 C 、6 D 、9 x 2 - 5x - 6 7. 使分式 的值等于零的 x 是() A.6 B.-1 或 6 C.-1 D.-6x +18. 若关于 y 的一元二次方程 ky 2-4y-3=3y+4 有实根,则 k 的取值范围是( ) A.k>-7/4 B.k≥-7/4 且 k≠0 C.k≥-7/4D.k>7/4 且 k≠09. 已知方程 x 2 + x = 2 ,则下列说中,正确的是()A 方程两根和是 1B 方程两根积是 2C 方程两根和是- 1D 方程两根积比两根和大 210. 某超市一月份的营业额为 200 万元,已知第一季度的总营业额共 1000 万元, 如果平均每月增长率为 x,则由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000 二、填空题:(每小题 4 分,共 20 分)211.用法解方程3(x-2)2=2x-4 比较简便. 12.如果2x2+1 与4x2-2x-5 互为相反数,则x 的值为. 13. x2 - 3x += (x -)214.若一元二次方程ax2+bx+c=0(a≠0)有一个根为-1,则a、b、c 的关系是.15.已知方程3ax2-bx-1=0 和ax2+2bx-5=0,有共同的根-1, 则a= , b= .16.一元二次方程x2-3x-1=0 与x2-x+3=0 的所有实数根的和等于.17.已知3- 是方程x2+mx+7=0 的一个根,则m= ,另一根为.18.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是.1+119.已知x1 ,x2 是方程x 2- 2x - 1 = 0 的两个根,则x1 x2 等于.20.关于x 的二次方程x2 +mx +n = 0 有两个相等实根,则符合条件的一组m, n 的实数值可以是m =,n =.三、用适当方法解方程:(每小题 5 分,共 10 分)21. (3 -x)2 +x2 = 5 22. x2 + 2 3x + 3 = 0四、列方程解应用题:(每小题 7 分,共 21 分)23.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.24.如图所示,在宽为 20m,长为 32m 的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为 570m2,道路应为多宽?2325. 某商场销售一批名牌衬衫,平均每天可售出 20 件,每件赢利 40 元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1 元,商场平均每天可多售出 2 件。

数学九年级上册 一元二次方程单元测试卷 (word版,含解析)

数学九年级上册 一元二次方程单元测试卷 (word版,含解析)

数学九年级上册 一元二次方程单元测试卷 (word 版,含解析)一、初三数学 一元二次方程易错题压轴题(难)1.如图,在长方形ABCD 中,边AB 、BC 的长(AB <BC )是方程x 2-7x +12=0的两个根.点P 从点A 出发,以每秒1个单位的速度沿△ABC 边 A →B →C →A 的方向运动,运动时间为t (秒).(1)求AB 与BC 的长;(2)当点P 运动到边BC 上时,试求出使AP 长为10时运动时间t 的值;(3)当点P 运动到边AC 上时,是否存在点P ,使△CDP 是等腰三角形?若存在,请求出运动时间t 的值;若不存在,请说明理由.【答案】(1) AB =3,BC =4;(2) t =4;(3) t 为10秒或9.5秒或535秒时,△CDP 是等腰三角形. 【解析】试题分析:(1)解一元二次方程即可求得边长; (2)结合图形,利用勾股定理求解即可;(3)根据题意,分为:PC =PD ,PD =PC ,PD =CD ,三种情况分别可求解. 试题解析:(1)∵x 2-7x +12=(x -3)(x -4)=0 ∴1x =3或2x =4 . 则AB =3,BC =4(2)由题意得()223t-310?+=() ∴14t =,22t =(舍去) 则t =4时,AP 10.(3)存在点P ,使△CDP 是等腰三角形. ①当PC =PD =3时, t =3431++ =10(秒). ②当PD =PC(即P 为对角线AC 中点)时,AB =3,BC =4. 2234+=5,CP 1= 12AC =2.5 ∴t=34 2.51++ =9.5(秒)③当PD =CD =3时,作DQ⊥AC 于Q. 1341221552DQ ⨯⨯==⨯,95PQ == ∴PC=2PQ =185∴183453515t ++==(秒) 可知当t 为10秒或9.5秒或535秒时,△CDP 是等腰三角形.2.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同) 【答案】详见解析 【解析】试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.试题解析:(1)设年平均增长率为x ,根据题意得: 10(1+x )2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2, 答:年平均增长率为20%;(2)设每年新增汽车数量最多不超过y 万辆,根据题意得: 2009年底汽车数量为14.4×90%+y ,2010年底汽车数量为(14.4×90%+y )×90%+y , ∴(14.4×90%+y )×90%+y≤15.464, ∴y≤2.答:每年新增汽车数量最多不超过2万辆. 考点:一元二次方程—增长率的问题3.如图,∠ AOB =90°,且点A ,B 分别在反比例函数1k y x =(x <0),2ky x=(x >0)的图象上,且k 1,k 2分别是方程x 2-x -6=0的两根.(1)求k1,k2的值;(2)连接AB,求tan∠OBA的值.【答案】(1)k1=-2,k2=3.(2)tan∠OBA=63.【解析】解:(1)∵k1,k2分别是方程x2-x-6=0的两根,∴解方程x2-x-6=0,得x1=3,x2=-2.结合图像可知:k1<0,k2>0,∴k1=-2,k2=3.(2)如图,过点A作AC⊥x轴于点C,过点B作BD⊥y轴于点D.[来源:学&科&网Z&X&X&K]由(1)知,点A,B分别在反比例函数2yx=-(x<0),3yx=(x>0)的图象上,∴S△ACO=12×2-=1 ,S△ODB=12×3=32.∵∠ AOB=90°,∴∠ AOC+∠ BOD=90°,∵∠ AOC+∠ OAC=90°,∴∠ OAC=∠ BOD.又∵∠ACO=∠ODB=90°,∴△ACO∽△ODB.∴SSACOODB∆∆=2OAOB⎛⎫⎪⎝⎭=23,∴OAOB=±63(舍负取正),即OAOB=63.∴在Rt△AOB中,tan∠OBA=OAOB=6.4.有n个方程:x2+2x﹣8=0;x2+2×2x﹣8×22=0;…x2+2nx﹣8n2=0.小静同学解第一个方程x2+2x﹣8=0的步骤为:“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=﹣2.”(1)小静的解法是从步骤开始出现错误的.(2)用配方法解第n个方程x2+2nx﹣8n2=0.(用含有n的式子表示方程的根)【答案】(1)⑤;(2)x1=2n,x2=﹣4n.【解析】【分析】(1)根据移项要变号,可判断;(2)先把常数项移到方程的右边,再把方程两边都加上一次项系数的一半,使左边是一个完全平方式,然后用直接开平方法求解.【详解】解:(1)小静的解法是从步骤⑤开始出现错误的,故答案为⑤;(2)x2+2nx﹣8n2=0,x2+2nx=8n2,x2+2nx+n2=8n2+n2,(x+n)2=9n2,x+n=±3n,x1=2n,x2=﹣4n.5.(本题满分10分)如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A、B,直线CD与x轴、y轴分别交于点C、D,AB与CD相交于点E,线段OA、OC的长是一元二次方程-18x+72=0的两根(OA>OC),BE=5,tan∠ABO=.(1)求点A,C的坐标;(2)若反比例函数y=的图象经过点E,求k的值;(3)若点P在坐标轴上,在平面内是否存在一点Q,使以点C,E,P,Q为顶点的四边形是矩形?若存在,请写出满足条件的点Q的个数,并直接写出位于x轴下方的点Q的坐标;若不存在,请说明理由.【答案】(1)、A(12,0),C(﹣6,0);(2)、k=36;(3)、6个;Q1(10,﹣12),Q2(﹣3,6﹣3).【解析】试题分析:(1)、首先求出方程的解,根据OA>OC求出两点的坐标;(2)、根据∠ABO的正切值求出OB的长度,根据Rt△AOB得出AB的长度,作EM⊥x轴,根据三角形相似得出点E的坐标,然后求出k的值;(3)、分别以CE为矩形的边,在点C、E处设计直角,垂线与两坐标轴相交,得到点P,进而得到点Q;以CE为矩形对角线,则以CE的中点为圆心做圆,与两坐标轴相交,得到点P,再得点Q.试题解析:(1)由题意,解方程得:x1=6,x2=12.∵OA>OC,∴OA=12,OC=6.∴A(12,0),C(﹣6,0);(2)∵tan∠ABO=,∠AOB=90°∴∴OB=16.在Rt△AOB中,由勾股定理,得AB=20∵BE=5,∴AE=15.如图1,作EM⊥x轴于点M,∴EM∥OB.∴△AEM∽△ABO,∴,即:∴EM=12,AM=9,∴OM=12﹣9=3.∴E(3,12).∴k=36;(3)满足条件的点Q的个数是6,x轴的下方的Q1(10,﹣12),Q2(﹣3,6﹣3);方法:如下图①分别以CE为矩形的边,在点C、E处设计直角,垂线与两坐标轴相交,得到点P,进而得到点Q;(有三种)②以CE为矩形对角线,则以CE的中点为圆心做圆,与两坐标轴相交,得到点P,再得点Q;(有三种)如图①∵E(3,12),C(﹣6,0),∴CG=9,EG=12,∴EG2=CG•GP,∴GP=16,∵△CPE与△PCQ是中心对称,∴CH=GP=16,QH=FG=12,∵OC=6,∴OH=10,∴Q(10,﹣12),如图②作MN∥x轴,交EG于点N,EH⊥y轴于点H ∵E(3,12),C(﹣6,0),∴CG=9,EG=12,∴CE=15,∵MN=CG=,可以求得PH=3﹣6,同时可得PH=QR,HE=CR ∴Q(﹣3,6﹣3),考点:三角形相似的应用、三角函数、一元二次方程.6.图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为△ABC和△DEF,其中∠B=90°,∠A=45°,BC=,∠F=90°,∠EDF=30°, EF=2.将△DEF 的斜边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)请回答李晨的问题:若CD=10,则AD= ;(2)如图2,李晨同学连接FC,编制了如下问题,请你回答:①∠FCD的最大度数为;②当FC∥AB时,AD= ;③当以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边时,AD= ;④△FCD的面积s的取值范围是 .【答案】(1)2;(2)① 60°;②;③;④.【解析】试题分析:(1)根据等腰直角三角形的性质,求出AC的长,即可得到AD的长.(2)①当点E与点C重合时,∠FCD的角度最大,据此求解即可.②过点F作FH⊥AC于点H,应用等腰直角三角形的判定和性质,含30度角直角三角形的性质求解即可.③过点F作FH⊥AC于点H,AD=x,应用含30度角直角三角形的性质把FC用x来表示,根据勾股定理列式求解.④设AD=x,把△FCD的面积s表示为x的函数,根据x的取值范围来确定s的取值范围.试题解析:(1)∵∠B=90°,∠A=45°,BC=,∴AC=12.∵CD=10,∴AD=2.(2)①∵∠F=90°,∠EDF=30°,∴∠DEF=60°.∵当点E与点C重合时,∠FCD的角度最大,∴∠FCD的最大度数=∠DEF="60°."② 如图,过点F作FH⊥AC于点H,∵∠EDF=30°, EF=2,∴DF=. ∴DH=3,FH=.∵FC∥AB,∠A=45°,∴∠FCH="45°." ∴HC=. ∴DC=DH+HC=.∵AC=12,∴AD=.③如图,过点F作FH⊥AC于点H,设AD=x,由②知DH=3,FH=,则HC=.在Rt△CFH中,根据勾股定理,得.∵以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边,∴,即,解得.④设AD=x,易知,即.而,当时,;当时,.∴△FCD的面积s的取值范围是.考点:1.面动平移问题;2.等腰直角三角形的判定和性质;3.平行的性质;4.含30度角直角三角形的性质;5.勾股定理;6.由实际问题列函数关系式;7.求函数值.7.如图直线y=kx+k交x轴负半轴于点A,交y轴正半轴于点B,且AB=2(1)求k的值;(2)点P从A出发,以每秒1个单位的速度沿射线AB运动,过点P作直线AB的垂线交x轴于点Q,连接OP,设△PQO的面积为S,点P运动时间为t,求S与t的函数关系式,并直接写出t的取值范围;(3)在(2)的条件下,当P在AB的延长线上,若OQ+AB=7(BQ﹣OP),求此时直线PQ的解析式.【答案】(1)k32)当0<t<12时,S=12•OQ•P y=12(1﹣2t3=﹣323.当t>12时,S=12OQ•P y=12(2t﹣13=323.(3)直线PQ的解析式为y=﹣33x+533.【解析】【分析】(1)求出点B的坐标即可解决问题;(2)分两种情形①当0<t<12时,②当t>12时,根据S =12OQ •P y ,分别求解即可;(3)根据已知条件构建方程求出t ,推出点P ,Q 的坐标即可解决问题. 【详解】解:(1)对于直线y =kx +k ,令y =0,可得x =﹣1, ∴A (﹣1,0), ∴OA =1,∵AB =2, ∴OB =223AB OA -=∴k =3. (2)如图,∵tan ∠BAO =3OBOA= ∴∠BAO =60°, ∵PQ ⊥AB , ∴∠APQ =90°, ∴∠AQP =30°, ∴AQ =2AP =2t , 当0<t <12时,S =12•OQ •P y =12(1﹣2t 3323. 当t >12时,S =12OQ •P y =12(2t ﹣13=323. (3)∵OQ +AB 7(BQ ﹣OP ),∴2t ﹣1+22221373(21)(1)24t t t +--+∴2t +1271t t -+∴4t 2+4t +1=7t 2﹣7t +7, ∴3t 2﹣11t +6=0, 解得t =3或23(舍弃),∴P (12,2),Q (5,0), 设直线PQ 的解析式为y =kx +b,则有1250k b k b ⎧+=⎪⎨⎪+=⎩解得3k b ⎧=⎪⎪⎨⎪=⎪⎩,∴直线PQ的解析式为y x =+. 【点睛】本题属于一次函数综合题,考查了一次函数的性质,三角形的面积,无理方程等知识,解题的关键是学会利用参数构建方程解决问题.8.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点. 己知函数222(3)y x mx m =--+(m m 为常数).(1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点; (3)设函数的两个零点分别为1x 和2x ,且121114x x +=-,此时函数图象与x 轴的交点分 别为A 、B(点A 在点B 左侧),点M 在直线10y x =-上,当MA+MB 最小时,求直线AM 的函数解析式.【答案】(1)当m =0和 (2)见解析,(3)AM 的解析式为112y x =--. 【解析】 【分析】(1)根据题中给出的函数的零点的定义,将m=0代入y=x 2-2mx-2(m+3),然后令y=0即可解得函数的零点;(2)令y=0,函数变为一元二次方程,要想证明方程有两个解,只需证明△>0即可; (3)根据题中条件求出函数解析式进而求得A 、B 两点坐标,个、作点B 关于直线y=x-10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB 最小时,直线AM 的函数解析式 【详解】(1)当m =0时,该函数的零点为6和6-.(2)令y=0,得△=∴无论m 取何值,方程总有两个不相等的实数根. 即无论m 取何值,该函数总有两个零点.(3)依题意有, 由解得.∴函数的解析式为. 令y=0,解得∴A(),B(4,0) 作点B 关于直线10y x =-的对称点B’,连结AB’,则AB’与直线10y x =-的交点就是满足条件的M 点.易求得直线10y x =-与x 轴、y 轴的交点分别为C (10,0),D (0,10).连结CB’,则∠BCD=45°∴BC=CB’=6,∠B’CD=∠BCD=45°∴∠BCB’=90°即B’(106-,)设直线AB’的解析式为y kx b =+,则20{106k b k b -+=+=-,解得112k b =-=-, ∴直线AB’的解析式为112y x =--, 即AM 的解析式为112y x =--.9.如图,在平面直角坐标系中,正方形ABCD 的顶点A 在y 轴正半轴上,顶点B 在x 轴正半轴上,OA 、OB 的长分别是一元二次方程x 2﹣7x+12=0的两个根(OA >OB ).(1)求点D 的坐标.(2)求直线BC 的解析式.(3)在直线BC 上是否存在点P ,使△PCD 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,说明理由.【答案】(1)D(4,7)(2)y=3944x (3)详见解析【解析】试题分析:(1)解一元二次方程求出OA、OB的长度,过点D作DE⊥y于点E,根据正方形的性质可得AD=AB,∠DAB=90°,然后求出∠ABO=∠DAE,然后利用“角角边”证明△DAE 和△ABO全等,根据全等三角形对应边相等可得DE=OA,AE=OB,再求出OE,然后写出点D的坐标即可;(2)过点C作CM⊥x轴于点M,同理求出点C的坐标,设直线BC的解析式为y=kx+b (k≠0,k、b为常数),然后利用待定系数法求一次函数解析式解答;(3)根据正方形的性质,点P与点B重合时,△PCD为等腰三角形;点P为点B关于点C 的对称点时,△PCD为等腰三角形,然后求解即可.试题解析:(1)x2﹣7x+12=0,解得x1=3,x2=4,∵OA>OB,∴OA=4,OB=3,过D作DE⊥y于点E,∵正方形ABCD,∴AD=AB,∠DAB=90°,∠DAE+∠OAB=90°,∠ABO+∠OAB=90°,∴∠ABO=∠DAE,∵DE⊥AE,∴∠AED=90°=∠AOB,∵DE⊥AE∴∠AED=90°=∠AOB,∴△DAE≌△ABO(AAS),∴DE=OA=4,AE=OB=3,∴OE=7,∴D(4,7);(2)过点C作CM⊥x轴于点M,同上可证得△BCM≌△ABO,∴CM=OB=3,BM=OA=4,∴OM=7,∴C(7,3),设直线BC的解析式为y=kx+b(k≠0,k、b为常数),代入B(3,0),C(7,3)得,,解得,∴y=x﹣;(3)存在.点P与点B重合时,P1(3,0),点P与点B关于点C对称时,P2(11,6).考点:1、解一元二次方程;2、正方形的性质;3、全等三角形的判定与性质;4、一次函数10.如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6 cm ,如果点P由B出发沿BA方向向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm /s,连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:(1)当t为何值时,PQ∥BC.(2)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在求出此时t的值;若不存在,请说明理由.(3)如图2,把△APQ沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.【答案】(1)当BF PC⊥s时,PQ∥BC.(2)不存在某时刻t,使线段PQ恰好把△ABC 的面积平分.(3)存在时刻t,使四边形AQPQ′为菱形,此时菱形的面积为137-cm2.【解析】(1)证△APQ∽△ABC,推出APAB=AQAC,代入得出10210t-=28t,求出方程的解即可;(2)假设存在某时刻t,使线段PQ恰好把△ABC的面积平分,得出方程-5 6t2+6t=12×12×8×6,求出此方程无解,即可得出答案.(3)首先根据菱形的性质及相似三角形比例线段关系,求得PQ、OD、和PD的长度;然后在Rt△PQD中,根据勾股定理列出方程(8-185t)2-(6-65t)2=(2t)2,求得时间t的值;最后根据菱形的面积等于△AQP的面积的2倍,进行计算即可.解:(1)BP=2t,则AP=10﹣2t.∵PQ∥BC,∴△APQ∽△ABC,∴APAB=AQAC,即10210t-=28t,解得:t=20 9,∴当t=209时,PQ∥BC.(2)如答图1所示,过P点作PD⊥AC于点D.∴PD∥BC,∴F ,即B ,解得6PD 6-5t =. 216625S PD AQ t t =⨯=-, 假设存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分,则有S △AQP = C S △ABC ,而S △ABC =12AC•BC=24,∴此时S △AQP =12. 而S △AQP 2665t t =-, ∴266125t t -=,化简得:t 2﹣5t+10=0, ∵△=(﹣5)2﹣4×1×10=﹣15<0,此方程无解,∴不存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分.(3)假设存在时刻t ,使四边形AQPQ′为菱形,则有AQ=PQ=BP=2t .如答图2所示,过P 点作PD⊥AC 于点D ,则有PD∥BC ,∴D ,即COD ∆,解得:OC ,h ,∴QD=AD﹣AQ=t .在Rt△PQD 中,由勾股定理得:QD 2+PD 2=PQ 2,即h ,化简得:13t 2﹣90t+125=0,解得:t 1=5,t 2=t ,∵t=5s 时,AQ=10cm >AC ,不符合题意,舍去,∴t=52. 由(2)可知,S △AQP =54∴S 菱形AQPQ′=2S △AQP =2×258=3372+cm 2. 所以存在时刻t ,使四边形137-cm 2. “点睛”本题考查了三角形的面积,勾股定理的逆定理,相似三角形的性质和判定的应用,主要考查学生综合运用进行推理和计算的能力.解决问题的关键是作辅助线构造相似三角形以及直角三角形,根据相似三角形的对应边成比例以及勾股定理进行列式求解.。

新人教版初中数学九年级数学上册第一单元《一元二次方程》测试(答案解析)(5)

新人教版初中数学九年级数学上册第一单元《一元二次方程》测试(答案解析)(5)

一、选择题1.关于x 的一元二次方程()25410a x x ---=有实数根,则a 满足( ). A .5a ≠ B .1a ≥且5a ≠ C .1a ≥ D .1a <且5a ≠ 2.若关于x 的一元二次方程2(2)210m x x --+=有实数根,则m 的取值范围是( ) A .3m < B .3m C .3m <且2m ≠ D .3m 且2m ≠3.若x=0是关于x 的一元二次方程(a+2)x 2x+a 2+a-6=0的一个根,则a 的值是( )A .a ≠2B .a=2C .a=-3D .a=-3或a=2 4.若m 是方程220x x c --=的一个根,设2(1)p m =-,2q c =+,则p 与q 的大小关系为( )A .p <qB .p =qC .p >qD .与c 的取值有关 5.小刚在解关于x 的方程20(a 0)++=≠ax bx c 时,只抄对了1a =,4b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是xD .有两个相等的实数根 6.若关于x 的一元二次方程260x x c -+=有两个相等的实数根,则常数c 的值为( ) A .3 B .6 C .8D .9 7.方程23x x =的根是( ) A .3x = B .0x = C .123,0x x =-= D .123,0x x ==8.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A .290x += B .24410x x -+= C .210x x ++= D .210x x +-=9.一元二次方程x 2=4x 的解是( ) A .x=4 B .x=0 C .x=0或-4D .x=0或4第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案10.不解方程,判断方程2x 2+3x ﹣4=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根11.如图,BD 为矩形ABCD 的对角线,将△BCD 沿BD 翻折得到BC D '△,BC '与边AD 交于点E .若AB =x 1,BC =2x 2,DE =3,其中x 1、x 2是关于x 的方程x 2﹣4x+m =0的两个实根,则m 的值是( )A .165B .125 C .3 D .2 12.若()()2222230xy x y ++--=,则22x y +的值是( ) A .3 B .-1 C .3或1 D .3或-1 二、填空题13.一元二次方程 x ( x +3)=0的根是__________________.14.已知实数α,β满足α2+3α﹣1=0,β2﹣3β﹣1=0,且αβ≠1,则21a +3β的值为________.15.若关于x 的一元二次方程()23x c -=有实根,则c 的值可以是_________________.(写出一个即可)16.将一元二次方程x 2﹣8x ﹣5=0化成(x +a )2=b (a ,b 为常数)的形式,则b =_____.17.已知(x 2+y 2)(x 2+y 2﹣5)=6,则x 2+y 2=_____.18.函数()2835m y m x -=+-是一次函数,则m =______.19.已知a 、b 、c 满足227a b +=,221b c -=-,2617c a -=-,则a b c ++=_______.20.如图,世纪广场有一块长方形绿地,AB =18m ,AD =15m ,在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m 2,则x =_____.三、解答题21.解方程:(1)()2316x -=(2)22410x x --=(用公式法解)22.某种品牌的衬衫,进货时的单价为50元.如果按每件60元销售,可销售800件;售价每提高1元,其销售量就减少20件.若要获得12000元的利润,则每件的售价为多少元?23.(1)()2120x --=;(2)21212t t += (3)()22x x x -=-(4)23520.x x --=24.先化简,再求值:(1﹣1a )21a a -,其中a 满足方程a 2﹣a ﹣2=0. 25.某地区2018年投入教育经费2000万元,2020年投入教育经费2420万元(1)求2018年至2020年该地区投入教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2022年需投入教育经费2900万元,如果按(1)中教育经费投入的增长率,到2022年该地区投入的教育经费是否能达到2900万元?请说明理由.26.解方程:(2)4x x x +=-【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由方程有实数根可知根的判别式b 2-4ac≥0,结合二次项的系数非零,可得出关于a 一元一次不等式组,解不等式组即可得出结论.【详解】解:由已知得:()()()25044510a a -≠⎧⎪⎨--⨯-⨯-≥⎪⎩, 解得:a≥1且a≠5.故选:B .【点睛】本题考查了根的判别式,解题的关键是得出关于a 的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,由根的判别式结合二次项系数非零得出不等式组是关键.2.D解析:D【分析】根据一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac 的意义得到m-2≠0且△≥0,即(-2)2-4×(m-2)×1≥0,然后解不等式组即可得到m 的取值范围.【详解】解:∵关于x 的一元二次方程(m-2)x 2-2x+1=0有实数根,∴m-2≠0且△≥0,即(-2)2-4×(m-2)×1≥0,解得m≤3,∴m 的取值范围是 m≤3且m≠2.故选:D .【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 3.B解析:B【分析】将x=0代入方程中,可得关于a 的一元二次方程方程,然后解方程即可,注意a≥2这一隐含条件.【详解】解:将x=0代入(a+2)x 2- 2+a-6=0中,得: a 2+a-6=0,解得:a 1=﹣3,a 2=2,∵a+2≠0且a ﹣2≥0,即a≥2,∴a=2,故选:B .【点睛】本题考查一元二次方程方程的解、解一元二次方程、二次根式有意义的条件,理解方程的解的意义,熟练掌握一元二次方程的解法是解答的关键,注意隐含条件a≥0.4.A解析:A【分析】结合m 是方程220x x c --=的一个根,计算p-q 的值即可解决问题.【详解】解:∵m 是方程220x x c --=的一个根,∴220m m c --=∵2(1)p m =-,2q c =+,∴222(1)(2)212211p q m c m m c m m c -=--+=-+--=---=-,∴p <q故选:A .【点睛】此题主要考查了一元二次方程的解以及整式的运算,熟练掌握一元二次方程的解的应用是解答此题的关键.5.A解析:A【分析】直接把已知数据代入进而得出c 的值,再利用根的判别式求出答案.【详解】∵小刚在解关于x 的方程20ax bx c ++=(0a ≠)时,只抄对了1a =,4b =,解出其中一个根是1x =-,∴()()21410c -+⨯-+=, 解得:3c =,∵核对时发现所抄的c 比原方程的c 值小2,故原方程中5c =,则224441540b ac =-=-⨯⨯=-<,则原方程的根的情况是不存在实数根.故选:A .【点睛】本题主要考查了根的判别式,正确利用方程的解得出c 的值是解题关键.6.D解析:D【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论.【详解】解:260x x c -+=有两个相等的实根,2(6)40c ∴∆=--=,解得:9c =故选:D .【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c 的一元一次方程是解题的关键.7.D解析:D【分析】先把方程化为一般式,再把方程左边因式分解得x (x ﹣3)=0,方程就可转化为两个一元一次方程x =0或x ﹣3=0,然后解一元一次方程即可.【详解】解:∵x 2=3x ,∴x 2﹣3x =0,∴x (x ﹣3)=0,∴x =0或x =3,故选:D .【点睛】本题考查了利用因式分解法解一元二次方程ax 2+bx +c =0的方法:先把方程化为一般式,再把方程左边因式分解,然后把方程转化为两个一元一次方程,最后解一元一次方程即可.8.D解析:D【分析】分别求出每个方程的根的判别式即可得到方程的根的情况.【详解】A 选项:2049360∆=-⨯=-<,∴该方程没有实数根,故A 错误;B 选项:()244410∆=--⨯⨯=,∴该方程有两个相等的实数根,故B 错误; C 选项:2141130∆=-⨯⨯=-<,∴该方程没有实数根,故C 错误;D 选项:()2141150∆=-⨯⨯-=>,∴方程有两个不相等的实数根,故D 正确; 故选:D.【点睛】此题考查一元二次方程的根的情况,正确求根的判别式的值,掌握一元二次方程的根的三种情况是解题的关键.9.D解析:D【分析】先移项,利用因式分解法解一元二次方程.【详解】解:x 2=4xx 2-4x=0x (x-4)=0x=0或x=4,故选:D.【点睛】此题考查解一元二次方程,直接开平方法,配方法,公式法,因式分解法,根据一元二次方程的特点选择恰当的解法是解题的关键.10.B解析:B【分析】求出根的判别式,只要看根的判别式△=b 2-4ac 的值的符号就可以了.【详解】解:∵△=b 2﹣4ac =9﹣4×2×(﹣4)=41>0,∴方程有两个不相等的实数根,故选:B .【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11.A解析:A【分析】利用根与系数的关系得到x 1+x 2=4,x 1x 2=m ,AB +12BC =4,m =AB×12BC ,再利用折叠的性质和平行线的性质得到∠EBD =∠EDB ,则EB =ED =3,所以AE =AD−DE =5−2AB ,利用勾股定理得到AB 2+(5−2AB )2=32,解得AB 或AB (舍去),则BC ,然后计算m 的值. 【详解】 ∵x 1、x 2是关于x 的方程x 2−4x +m =0的两个实根,∴x 1+x 2=4,x 1x 2=m ,即AB +12BC =4,m =AB×12BC , ∵△BCD 沿BD 翻折得到△BC′D ,BC′与边AD 交于点E ,∴∠CBD =∠EBD ,∵AD ∥BC ,∴∠CBD =∠EDB ,∴∠EBD =∠EDB ,∴EB =ED =3,在Rt △ABE 中,AE =AD−DE =BC−3=8−2AB−3=5−2AB ,∴AB 2+(5−2AB )2=32,解得AB =105-或AB =105+(舍去),∴BC =8−2AB =205+,∴m =12×105-×205+=165. 故选:A .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a≠0)的两根时,x 1+x 2=−b a ,x 1x 2=c a.也考查了矩形的性质和折叠的性质. 12.A解析:A【分析】用22a x y =+,解出关于a 的方程,取正值即为22x y +的值是.【详解】解:令22a x y =+,则(2)30a a --=,即2230a a --=,即(3)(1)0a a ,解得13a =,21a =-,又因为220a x y =+>,所以3a =故22x y +的值是3,故选:A .【点睛】本题考查解一元二次方程,掌握换元思想可以使做题简单,但需注意220a x y =+>. 二、填空题13.【分析】用因式分解法解方程即可【详解】解:x(x+3)=0x =0或x+3=0;故答案为:【点睛】本题考查了一元二次方程的解法掌握两个数的积为0这两个数至少有一个为0是解题关键解析:12x 0x -3==,【分析】用因式分解法解方程即可.【详解】解:x ( x +3)=0,x =0或 x +3=0,12x 0x -3==,;故答案为:12x 0x -3==,.【点睛】本题考查了一元二次方程的解法,掌握两个数的积为0,这两个数至少有一个为0是解题关键.14.10【分析】原方程变为()-3()-1=0得到β是方程x2-3x-1=0的两根根据根与系数的关系得到关系式代入求出即可【详解】解:∵α2+3α﹣1=0∴()-3()-1=0∵实数αβ满足α2+3α﹣解析:10【分析】 原方程变为(21a)-3(1a )-1=0,得到1a 、β是方程x 2-3x-1=0的两根,根据根与系数的关系得到关系式,代入求出即可.【详解】解:∵α2+3α﹣1=0, ∴(21a )-3(1a )-1=0, ∵实数α,β满足α2+3α﹣1=0,β2﹣3β﹣1=0,且αβ≠1, ∴1a 、β是方程x 2﹣3x ﹣1=0的两根, ∴1a +β=3, a β =﹣1,2131a a=+, ∴原式=1+3a +3β=1+3(1a+β)=1+3×3=10, 故答案为10.【点睛】 本题考查了根与系数的关系,熟练的根据根与系数的关系进行计算是解题的关键. 15.1(答案不唯一)【分析】根据非负数的性质可得于是只要使c 的值非负即可【详解】解:若关于的一元二次方程有实根则所以的值可以是1(答案不唯一)故答案为:1(答案不唯一)【点睛】本题考查了一元二次方程的解 解析:1(答案不唯一)【分析】根据非负数的性质可得0c ≥,于是只要使c 的值非负即可.【详解】解:若关于x 的一元二次方程()23x c -=有实根,则0c ≥,所以c 的值可以是1(答案不唯一).故答案为:1(答案不唯一).【点睛】本题考查了一元二次方程的解法,正确理解题意、掌握非负数的性质是关键. 16.21【分析】先把常数项移到等号的右边再等号两边同时加上16即可【详解】解:∵x2﹣8x =5∴x2﹣8x+16=5+16即(x ﹣4)2=21故答案为:21【点睛】本题主要考查一元二次方程的配方掌握完全解析:21【分析】先把常数项移到等号的右边,再等号两边同时加上16,即可.【详解】解:∵x2﹣8x=5,∴x2﹣8x+16=5+16,即(x﹣4)2=21,故答案为:21.【点睛】本题主要考查一元二次方程的配方,掌握完全平方公式,是解题的关键.17.6【分析】设x2+y2=m把原方程转化为含m的一元二次方程先用因式分解法求解再确定x2+y2的值【详解】设x2+y2=m原方程可变形为:m(m﹣5)=6即m2﹣5m﹣6=0∴(m﹣6)(m+1)=0解析:6【分析】设x2+y2=m,把原方程转化为含m的一元二次方程,先用因式分解法求解,再确定x2+y2的值.【详解】设x2+y2=m,原方程可变形为:m(m﹣5)=6,即m2﹣5m﹣6=0.∴(m﹣6)(m+1)=0,解得m1=6,m2=﹣1.∵m=x2+y2≥0,∴x2+y2=6.故答案为:6.【点睛】本题考查了一元二次方程的解法,掌握换元法和因式分解法解一元二次方程是解决本题的关键.18.3;【分析】根据一次函数的定义得到m2-8=1且m+3≠0据此求得m的值【详解】解:依题意得:m2-8=1且m+3≠0解得m=3 故答案是:3【点睛】本题考查了一次函数的定义一般地形如y=kx+b解析:3;【分析】根据一次函数的定义得到m2-8=1且m+3≠0,据此求得m的值.【详解】解:依题意得:m2-8=1且m+3≠0,解得m=3.故答案是:3.【点睛】本题考查了一次函数的定义.一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.会利用x 的指数构造方程,会解方程,会利用k 限定字母的值是解题关键 19.3【分析】题中三个等式左右两边分别相加后再移项可以通过配方法得到三个平方数的和为0然后根据非负数的性质可以得到abc 的值从而求得a+b+c 的值【详解】解:题中三个等式左右两边分别相加可得:即∴∴a=解析:3【分析】题中三个等式左右两边分别相加后再移项,可以通过配方法得到三个平方数的和为0.然后根据非负数的性质可以得到a 、b 、c 的值,从而求得a+b+c 的值.【详解】解:题中三个等式左右两边分别相加可得:2222267117a b b c c a ++-+-=--,即222226110a b b c c a ++-+-+=,∴()()()2223110a b c -+++-=, ∴a=3,b=-1,c=1,∴a+b+c=3-1+1=3,故答案为3.【点睛】本题考查配方法的应用,熟练掌握配方法的方法和步骤并灵活运用是解题关键. 20.【分析】由在绿地中开辟三条宽为xm 的道路后剩余绿地的面积为144m2即可得出关于x 的一元二次方程此题得解【详解】解:设道路的宽为xm 根据题意得:(18﹣2x )(15﹣x )=144解得:或(舍去)答:解析:3【分析】由在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m 2,即可得出关于x 的一元二次方程,此题得解.【详解】解:设道路的宽为xm ,根据题意得:(18﹣2x )(15﹣x )=144,解得:13x =或221x =(舍去),答:道路的宽为3m .故答案为:3.【点睛】此题考查一元二次方程的应用,根据题意找出等量关系,正确列方程是解题的关键.三、解答题21.(1)11x =21x =-2)112x =+,212x =-.【分析】(1)两边除以3后再开方,即可得出两个一元一次方程,求解即可;(2)求出24b ac -的值,代入公式求出即可.【详解】解:(1)()2316x -=方程两边除以3,得:()212x -=,两边开平方,得:1x -=则:11x =+21x =(2)22410x x --=∵2a =,4b =-,1c =-,∴()()224442124b ac -=--⨯⨯-=∴x ==,∴112x =+,212x =-; 【点睛】 本题考查了解一元二次方程的应用,熟悉相关的解法是解题的关键.22.每件的售价为70元或80元.【分析】要求衬衫的单价,就要设每件的售价为x 元,则每件衬衫的利润是(x-50)元,销售服装的件数是[800-20(x-60)]件,以此等量关系列出方程即可.【详解】解:设每件的售价为x 元,根据题意,得()()50800206012000 ,x x ⎡⎤⎣⎦---=化简整理,得215056000x x -+=()70800()x x --=1270,80x x ∴==答:每件的售价为70元或80元.【点睛】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.(1)1211==x x 2)1222t t =-=-3)1221x x ==,(4)12123x x ==-,.【分析】(1)利用直接开平方法求解即可;(2)利用配方法求解即可;(3)方程整理后,利用因式分解法求出解即可;(4)利用因式分解法解方程.【详解】解:(1)()212x -=,x-1=,11x x -=-=,1211x x ∴==(2)242t t +=,()226t ∴+=2t ∴+=1222t t ∴=-=-(3)()2(2)0x x x ---=,() 1)20(x x ∴--=122,1x x ∴==(4)23520.x x --=()2310()x x -+=1212,3x x ∴==-. 【点睛】本题考查了解一元二次方程-因式分解法,配方法,以及直接开平方法,熟练掌握各种解法是解题的关键.24.11a +,13. 【分析】 先根据分式的基本性质化简,再求解关于a 的一元二次方程,代入求解即可;【详解】 解:原式=()()11111a a a a a a -=++-, 解方程a 2﹣a ﹣2=0得,a 1=2,a 2=﹣1, 当a =2时,原式=11=2+13, 当a =﹣1时,分式无意义,则分式的值为13. 【点睛】 本题主要考查了分式化简求值,与一元二次方程的求解,准确分析计算是解题的关键. 25.(1)10%;(2)可以,理由见解析【分析】(1)设年平均增长率是x ,列式()2200012420x +=,求出结果;(2)利用(1)中算出的增长率算出2022年的教育经费,看是否超过2900万元.【详解】解:(1)设年平均增长率是x , ()2200012420x +=1 1.1x +=±10.1x =,2 2.1x =-(舍去),答:年平均增长率是10%;(2)2022年的教育经费是()2242010.12928.2⨯+=(万元), 2928.22900>,答:教育经费可以达到2900万元.【点睛】本题考查一元二次方程的应用,解题的关键是掌握增长率问题的列式方法.26.1241x x =-=,【分析】方程整理后,利用因式分解法求解即可.【详解】解:(2)4x x x +=-,方程整理得:2340x x +-=,因式分解得:()()410x x +-=,则40x +=或10x -=,∴1241x x =-=,.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.。

九年级上册数学《一元二次方程》单元综合检测卷带答案

九年级上册数学《一元二次方程》单元综合检测卷带答案

九年级上册数学《一元二次方程》单元测试卷[考试时间:90分钟满分:120分]第Ⅰ卷(选择题)一.选择题(共10小题,满分30分,每小题3分)1.(2017秋•合浦县校级期中)把方程(x+1)(3x﹣2)=10化为一元二次方程的一般形式后为()A .2x2+3x﹣10=0B .2x2+3x﹣10=0C .3x2﹣x+12=0D .3x2+x﹣12=02.(2018秋•淮安区期中)已知关于x的方程,(1)A x2+B x+C =0;(2)x2﹣4x=0;(3)3x2=0;(4)x+(1﹣x)(1+x)=0;中,一元二次方程的个数为()个.A .1B .2C .3D .43.(2018秋•桐梓县期中)m是方程x2+x﹣1=0的根,则式子m3+2m2+2018的值为()A .2017B .2018C .2019D .20204.(2019春•鄞州区期中)用配方法解下列方程时,配方错误的是()A .2x2﹣7x﹣4=0化为(x)2B .2t2﹣4t+2=0化为(t﹣1)2=0C .4y2+4y﹣1=0化为(y)2D .x2﹣x﹣4=0化为(x)25.(2018秋•花都区期中)下列一元二次方程中没有实数根是()A .x2﹣2x﹣4=0B .x2﹣4x+4=0C .x2﹣2x﹣5=0D .x2+3x+5=06.(2018秋•江阴市期中)若一个三角形的两边长分别为2和6,第三边是方程x2﹣8x+15=0的一根,则这个三角形的周长为()A .5B .3或5C .13D .11或137.(2017春•道里区校级期中)(m2+n2)(m2+n2﹣2)﹣8=0,则m2+n2=()A .4B .2C .4或﹣2D .4或28.(2018秋•昆山市期中)若α,β是方程x2+2x﹣2018=0的两个实数根,则α2+3α+β的值为()A .2015B .﹣2016C .2016D .20199.(2018秋•唐山期中)如图,在宽为20m,长为30m的矩形地面上修建两条宽均为xm的小路(阴影),余下部分作为草地,草地面积为551m2,根据图中数据,求得小路宽x的值为()A .1B .1.5C .2D .2.510.(2018秋•红桥区期中)在一次酒会上,每两人都只碰一次杯,一共碰杯55次,设参加酒会的人数为x,则可列方程为()A .x(x﹣1)=55B .x(x﹣1)=55C .x(x+1)=55D .x(x+1)=55第Ⅱ卷(非选择题)二.填空题(共8小题,满分24分,每小题3分)11.(2018秋•广水市期中)把方程3x(x﹣1)=(x+2)(x﹣2)+9化成A x2+B x+C =0的形式为.12.(2018秋•龙华区校级期中)关于x的方程3x﹣1=0是一元二次方程,则m的值为.13.(2019春•温州期中)若实数A 是一元二次方程x2﹣3x+1=0的一个根,则A 3的值为.14.(2018秋•清江浦区期中)若方程x2﹣4x+3=0的两根是等腰三角形的底和腰,则它的周长为.15.(2017秋•阜阳期中)代数式x2+8x+5的最小值是.16.(2018秋•泰兴市校级期中)关于x的一元二次方程(m﹣1)x2﹣(2m+1)x+(m+1)=0有实数根,则m的取值范围是.17.(2018春•开福区校级期中)在实数范围内定义一种运算“*”,其运算法则为A *B =A 2﹣A B .根据这个法则,下列结论中正确的是.(把所有正确结论的序号都填在横线上)①*2;②若A +B =0,则A *B =B *A ;③(x+2)*(x+1)=0是一元二次方程;④方程(x+3)*1=1的根是x1,x2.18.(2018秋•镇原县期中)某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价元.三.解答题(共6小题,满分46分)19.(12分)(2018秋•镇原县期中)用指定的方法解下列方程:(1)4(x﹣1)2﹣36=0(直接开平方法)(2)2x2﹣5x+1=0 (配方法)(3)(x+1)(x﹣2)=4(公式法)(4)2(x+1)﹣x(x+1)=0(因式分解法)20.(6分)(2017秋•新罗区校级期中)已知关于x的方程(m2﹣1)x2+(m﹣1)x﹣2=0.(1)当m为何值时,该方程为一元二次方程?(2)当m为何值时,该方程为一元一次方程?21.(6分)(2018秋•农安县期中)阅读下列例题的解答过程:解方程:3(x﹣2)2+7(x﹣2)+4=0.解:设x﹣2=y,则原方程化为:3y2+7y+4=0.∵A =3,B =7,C =4,∴B 2﹣4A C =72﹣4×3×4=1.∴y.∴y1=﹣1,y2.当y=﹣1时,x﹣2=﹣1,∴x=1;当y时,x﹣2,∴x.∴原方程的解为:x1=1,x2.(1)请仿照上面的例题解一元二次方程:2(x﹣3)2﹣5(x﹣3)﹣7=0;(2)若(A 2+B 2)(A 2+B 2﹣2)=3,求代数式A 2+B 2的值.22.(6分)(2017秋•武昌区校级期中)已知△A B C 的一边为5,另两边是方程x2﹣(2k﹣3)x+k2﹣3k+2=0的解(1)如果△A B C 是直角三角形,求k的值;(2)如果△A B C 是等腰三角形,求△A B C 的面积.23.(8分)(2018春•嵊州市期中)已知关于x的两个一元二次方程:方程①:(1)x2+(k+2)x﹣1=0;方程②:x2+(2k+1)x﹣2k﹣3=0.(1)若方程①有两个相等的实数根,求解方程②;(2)若方程①和②中只有一个方程有实数根,请说明此时哪个方程没有实数根;(3)若方程①和②有一个公共根A .求代数式(A 2+4A ﹣2)k+3A 2+5A 的值.24.(8分)(2018秋•建宁县期中)某汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为20万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆,根据市场调查,月销售量不会突破40辆.(1)设当月该型号汽车的销售量为x辆(x≤40且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;(2)已知该型号汽车的销售价为22万元/辆,公司计划当月销售利润45万元,那么该月需售出多少辆汽车?答案与解析一.选择题(共10小题,满分30分,每小题3分)1.(2017秋•合浦县校级期中)把方程(x+1)(3x﹣2)=10化为一元二次方程的一般形式后为()A .2x2+3x﹣10=0B .2x2+3x﹣10=0C .3x2﹣x+12=0D .3x2+x﹣12=0[解答]解:方程整理得:3x2+x﹣12=0,故选:C .[点评]此题考查了一元二次方程的一般形式,其一般形式为A x2+B x+C =0(A ≠0).2.(2018秋•淮安区期中)已知关于x的方程,(1)A x2+B x+C =0;(2)x2﹣4x=0;(3)3x2=0;(4)x+(1﹣x)(1+x)=0;中,一元二次方程的个数为()个.A .1B .2C .3D .4[解答]解:(1)A x2+B x+C =0中A 可能为0,故不是一元二次方程;(2)x2﹣4x=0符合一元二次方程的定义,故是一元二次方程;(3)3x2=0,符合一元二次方程的定义,是一元二次方程;(4)1+(x﹣1)(x+1)=0,去括号合并后为x2=0,是一元二次方程;所以是一元二次方程的有三个,故选:C .[点评]本题主要考查一元二次方程的定义,即只含有一个未知数且未知数的次数为2的整式方程,注意如果是字母系数的方程必须满足二次项的系数不等于0才可以.3.(2018秋•桐梓县期中)m是方程x2+x﹣1=0的根,则式子m3+2m2+2018的值为()A .2017B .2018C .2019D .2020[解答]解:∵m是方程x2+x﹣1=0的根,∴m2+m=1∵m3+2m2+2018=m3+m2+m2+2018=m(m2+m)+m2+2018=m+m2+2018=1+2018=2019.故选:C .[点评]本题考查了一元二次方程的解的定义及整体代入的思想,解决本题的关键是利用根的定义得关于m 的等式,变形m3+2m2+2018后整体代入.4.(2019春•鄞州区期中)用配方法解下列方程时,配方错误的是()A .2x2﹣7x﹣4=0化为(x)2B .2t2﹣4t+2=0化为(t﹣1)2=0C .4y2+4y﹣1=0化为(y)2D .x2﹣x﹣4=0化为(x)2[解答]解:A 、2x2﹣7x﹣4=0化为(x)2,故本选项错误;B 、2t2﹣4t+2=0化为(t﹣1)2=0,故本选项错误;C 、4y2+4y﹣1=0化为(y)2,故本选项错误;D 、x2﹣x﹣4=0化为(x)2,故本选项正确;故选:D .[点评]此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.(2018秋•花都区期中)下列一元二次方程中没有实数根是()A .x2﹣2x﹣4=0B .x2﹣4x+4=0C .x2﹣2x﹣5=0D .x2+3x+5=0[解答]解:A .x2﹣2x﹣4=0中△=4﹣4×1×(﹣4)=20>0,有两个不相等的实数根;B .x2﹣4x+4=0中△=16﹣4×1×4=0,有两个相等的实数根;C .x2﹣2x﹣5=0中△=4﹣4×1×(﹣5)=24>0,有两个不相等的实数根;D .x2+3x+5=0中△=9﹣4×1×5=﹣11<0,没有实数根;故选:D .[点评]本题考查了根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况.6.(2018秋•江阴市期中)若一个三角形的两边长分别为2和6,第三边是方程x2﹣8x+15=0的一根,则这个三角形的周长为()A .5B .3或5C .13D .11或13[解答]解:由方程x2﹣8x+15=0可得(x﹣3)(x﹣5)=0,∴x=3或x=5,当x=3时,2、3、6构不成三角形,舍去;当x=5时,三角形的周长为2+5+6=13;故选:C .[点评]本题主要考查解方程的能力和三角形三边间的关系,根据不同的方程选择合适的方法是解题的关键.7.(2017春•道里区校级期中)(m2+n2)(m2+n2﹣2)﹣8=0,则m2+n2=()A .4B .2C .4或﹣2D .4或2[解答]解:设m2+n2=t(t≥0),由原方程,得t(t﹣2)﹣8=0,整理,得(t﹣4)(t+2)=0,解得t=4或t=﹣2(舍去),所以m2+n2=4.故选:A .[点评]本题主要考查换元法在解一元二次方程中的应用.换元法是借助引进辅助元素,将问题进行转化的一种解题方法.这种方法在解题过程中,把某个式子看作一个整体,用一个字母去代表它,实行等量替换.这样做,常能使问题化繁为简,化难为易,形象直观.8.(2018秋•昆山市期中)若α,β是方程x2+2x﹣2018=0的两个实数根,则α2+3α+β的值为()A .2015B .﹣2016C .2016D .2019[解答]解:∵α,β是方程x2+2x﹣2018=0的两个实数根,∴α2+2α﹣2018=0,即α2+2α=2018,α+β=﹣2,则α2+3α+β=α2+2α+α+β=2018﹣2=2016,故选:C .[点评]本题主要考查方程的解得概念及韦达定理,熟练掌握韦达定理是解题的关键.9.(2018秋•唐山期中)如图,在宽为20m,长为30m的矩形地面上修建两条宽均为xm的小路(阴影),余下部分作为草地,草地面积为551m2,根据图中数据,求得小路宽x的值为()A .1B .1.5C .2D .2.5[解答]解:根据题意得:(30﹣x)(20﹣x)=551,化简得:x2﹣50x+49=0,解得:x1=1,x2=49.∵当x2=49时,20﹣x=﹣29<0,∴x2=49舍去.故选:A .[点评]本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.10.(2018秋•红桥区期中)在一次酒会上,每两人都只碰一次杯,一共碰杯55次,设参加酒会的人数为x,则可列方程为()A .x(x﹣1)=55B .x(x﹣1)=55C .x(x+1)=55D .x(x+1)=55[解答]解:设参加酒会的人数为x人,根据题意得:x(x﹣1)=55,故选:A .[点评]本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.二.填空题(共8小题,满分24分,每小题3分)11.(2018秋•广水市期中)把方程3x(x﹣1)=(x+2)(x﹣2)+9化成A x2+B x+C =0的形式为2x2﹣3x﹣5=0.[解答]解:方程整理得:3x2﹣3x=x2﹣4+9,即2x2﹣3x﹣5=0.故答案为:2x2﹣3x﹣5=0.[点评]此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:A x2+B x+C =0(A ,B ,C 是常数且A ≠0)特别要注意A ≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中A x2叫二次项,B x叫一次项,C 是常数项.其中A ,B ,C 分别叫二次项系数,一次项系数,常数项.12.(2018秋•龙华区校级期中)关于x的方程3x﹣1=0是一元二次方程,则m的值为﹣2.[解答]解:根据题意得:m2﹣2=2,解得:m1=2,m2=﹣2,m﹣2≠0,解得:m≠2,即m=﹣2,故答案为:﹣2.[点评]本题考查了一元二次方程的定义,正确掌握一元二次方程的定义是解题的关键.13.(2019春•温州期中)若实数A 是一元二次方程x2﹣3x+1=0的一个根,则A 3的值为21.[解答]解:∵实数A 是一元二次方程x2﹣3x+1=0的一个根,∴A 2﹣3A +1=0,A 2=3A ﹣1,A 2+1=3A ,1=3A ﹣A 2,∴A 3=A (3A ﹣1)=3A 2﹣A=3(3A ﹣1)﹣A=9A ﹣3﹣A +24﹣8A=21.故答案为:21.[点评]本题主要考查了一元二次方程的解的知识,解答本题的关键是求出A 2=3A ﹣1,A 2+1=3A ,1=3A ﹣A 2,利用整体法代值计算,此题难度较大.14.(2018秋•清江浦区期中)若方程x2﹣4x+3=0的两根是等腰三角形的底和腰,则它的周长为7.[解答]解:x2﹣4x+3=0,(x﹣3)(x﹣1)=0,x﹣3=0,x﹣1=0,解得x1=3,x2=1,当3为腰长时,三角形的三边分别为3,3,1,能组成三角形,周长=3+3+1=7,当3是底边时,三角形的三边分别为3,1,1,∵1+1<3不能够组成三角形,综上所述,这个等腰三角形的周长是7.故答案为:7.[点评]本题考查了因式分解法解一元二次方程,等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.15.(2017秋•阜阳期中)代数式x2+8x+5的最小值是﹣27.[解答]解:∵x2+8x+5(x2+16x)+5(x2+16x+64﹣64)+5,⇒x2+8x+5[(x+8)2﹣64]+5(x+8)2﹣27,∵(x+8)2≥0,∴代数式x2+8x+5的最小值是﹣27.[点评]此题考查了学生的应用能力,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.16.(2018秋•泰兴市校级期中)关于x的一元二次方程(m﹣1)x2﹣(2m+1)x+(m+1)=0有实数根,则m的取值范围是m且m≠1.[解答]解:∵一元二次方程(m﹣1)x2﹣(2m+1)x+(m+1)=0有实数根,∴△≥0,即(2m+1)2﹣4(m﹣1)(m+1)≥0,解得:m,∵m﹣1≠0,∴m≠1,则m的取值范围是m且m≠1,故答案为:m且m≠1.[点评]本题考查了一元二次方程A x2+B x+C =0(A ≠0)的根的判别式△=B 2﹣4A C :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.17.(2018春•开福区校级期中)在实数范围内定义一种运算“*”,其运算法则为A *B =A 2﹣A B .根据这个法则,下列结论中正确的是①②④.(把所有正确结论的序号都填在横线上)①*2;②若A +B =0,则A *B =B *A ;③(x+2)*(x+1)=0是一元二次方程;④方程(x+3)*1=1的根是x1,x2.[解答]解:*()22,①正确;若A +B =0,则A =﹣B ,∴A *B =A 2﹣A B =B 2﹣B A =B *A ,②正确;(x+2)*(x+1)=(x+2)2﹣(x+2)(x+1)=x+2,③错误;(x+3)*1=(x+3)2﹣(x+3)=x2+5x+6,∴(x+3)*1=1即为方程x2+5x+6=1,化简得x2+5x+5=0,解得x1,x2,④正确.故答案为:①②④[点评]本题考查一元二次方程的应用,实数的运算等知识,解题的关键是理解题意,学会利用新的定义解决问题,属于中考常考题型.18.(2018秋•镇原县期中)某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价5元.[解答]解:设每千克应涨价x元,由题意列方程得:(5+x)(200﹣10x)=1500,解得:x=5或x=10,为了使顾客得到实惠,那么每千克应涨价5元;故答案为:5.[点评]此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.三.解答题(共6小题,满分46分)19.(12分)(2018秋•镇原县期中)用指定的方法解下列方程:(1)4(x﹣1)2﹣36=0(直接开平方法)(2)2x2﹣5x+1=0 (配方法)(3)(x+1)(x﹣2)=4(公式法)(4)2(x+1)﹣x(x+1)=0(因式分解法)[解答]解:(1)方程变形得:(x﹣1)2=9,开方得:x﹣1=3或x﹣1=﹣3,解得:x1=4,x2=﹣2;(2)方程变形得:x2x,配方得:x2x(x)2,开方得:x±,则x1,x2;(3)方程整理得:x2﹣x﹣6=0,这里A =1,B =﹣1,C =﹣6,∵△=1+24=25,∴x,则x1=3,x2=﹣2;(4)分解因式得:(x+1)(2﹣x)=0,解得:x1=﹣1,x2=2.[点评]此题考查了解一元二次方程﹣因式分解法,配方法,公式法,以及直接开平方法,熟练掌握各自解法是解本题的关键.20.(6分)(2017秋•新罗区校级期中)已知关于x的方程(m2﹣1)x2+(m﹣1)x﹣2=0.(1)当m为何值时,该方程为一元二次方程?(2)当m为何值时,该方程为一元一次方程?[解答]解:(1)∵关于x的方程(m2﹣1)x2+(m﹣1)x﹣2=0为一元二次方程,∴m2﹣1≠0,解得m≠±1,即当m≠±1时,方程为一元二次方程;(2)∵关于x的方程(m2﹣1)x2+(m﹣1)x﹣2=0为一元一次方程,∴m2﹣1=0,且m﹣1≠0,解得m=﹣1,即当m为﹣1时,方程为一元一次方程.[点评]本题主要考查方程的定义,掌握一元一次方程、一元二次方程的定义是解题的关键.21.(6分)(2018秋•农安县期中)阅读下列例题的解答过程:解方程:3(x﹣2)2+7(x﹣2)+4=0.解:设x﹣2=y,则原方程化为:3y2+7y+4=0.∵A =3,B =7,C =4,∴B 2﹣4A C =72﹣4×3×4=1.∴y.∴y1=﹣1,y2.当y=﹣1时,x﹣2=﹣1,∴x=1;当y时,x﹣2,∴x.∴原方程的解为:x1=1,x2.(1)请仿照上面的例题解一元二次方程:2(x﹣3)2﹣5(x﹣3)﹣7=0;(2)若(A 2+B 2)(A 2+B 2﹣2)=3,求代数式A 2+B 2的值.[解答]解:(1)2(x﹣3)2﹣5(x﹣3)﹣7=0,设x﹣3=y,则原方程化为:2y2﹣5y﹣7=0,∵A =2,B =﹣5,C =﹣7,∴B 2﹣4A C =(﹣5)2﹣4×2×(7)=81,y,∴y1,y2=﹣1,当y时,x﹣3,解得:x;当y=﹣1时,x﹣3=﹣1,解得:x=2;所以原方程的解为:x1,x2=2;(2)(A 2+B 2)(A 2+B 2﹣2)=3,设A 2+B 2=y,则原方程化为:y(y﹣2)=3,即y2﹣2y﹣3=0,(y﹣3)(y+1)=0,y﹣3=0,y+1=0,y1=3,y2=﹣1,当y=3时,A 2+B 2=3;当y=﹣1时,A 2+B 2=﹣1,∵两个数的平方和具有非负性,∴此时不行,即代数式A 2+B 2的值为3.[点评]本题考查了解一元二次方程和根的判别式,能正确换元是解此题的关键.22.(6分)(2017秋•武昌区校级期中)已知△A B C 的一边为5,另两边是方程x2﹣(2k﹣3)x+k2﹣3k+2=0的解(1)如果△A B C 是直角三角形,求k的值;(2)如果△A B C 是等腰三角形,求△A B C 的面积.[解答]解:(1)∵x2﹣(2k﹣3)x+k2﹣3k+2=0∴[x﹣(k﹣1)][x﹣(k﹣2)]=0,解得,x1=k﹣1,x2=k﹣2,∵△A B C 的一边为5,另两边是方程x2﹣(2k﹣3)x+k2﹣3k+2=0的解,∴k﹣1>0,k﹣2>0,k﹣1>k﹣2,∵△A B C 是直角三角形,∴当斜边的长是5时,(k﹣1)2+(k﹣2)2=52,解得,k1=5,k2=﹣2(舍去),当斜边的长是k﹣1时,(k﹣2)2+52=(k﹣1)2,解得,k3=14,即如果△A B C 是直角三角形,k的值是5或14;(2)∵x2﹣(2k﹣3)x+k2﹣3k+2=0∴[x﹣(k﹣1)][x﹣(k﹣2)]=0,解得,x1=k﹣1,x2=k﹣2,∵△A B C 是等腰三角形,∴当k﹣2=5时,k=7,则k﹣1=6,此时△A B C 的面积是:,当k﹣1=5时,k=6,则k﹣2=4,此时△A B C 的面积是:2.[点评]本题考查解一元二次方程、等腰三角形的性质、勾股定理,解答本题得关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答.23.(8分)(2018春•嵊州市期中)已知关于x的两个一元二次方程:方程①:(1)x2+(k+2)x﹣1=0;方程②:x2+(2k+1)x﹣2k﹣3=0.(1)若方程①有两个相等的实数根,求解方程②;(2)若方程①和②中只有一个方程有实数根,请说明此时哪个方程没有实数根;(3)若方程①和②有一个公共根A .求代数式(A 2+4A ﹣2)k+3A 2+5A 的值.[解答]解:(1)∵方程①有两个相等实数根,∴10且△1=0,即(k+2)2﹣4(1)×(﹣1)=0,则(k+2)(k+4)=0,解此方程得k1=﹣2,k2=﹣4,而k+2≠0,∴k=﹣4,当k=﹣4时,方程②变形为:x2﹣7x+5=0,解得x1,x2;(2)∵△2=(2k+1)2+4(2k+3)=4k2+12k+13=(2k+3)2+4>0,∴无论k为何值时,方程②总有实数根,∵方程①、②只有一个方程有实数根,∴此时方程①没有实数根,(3)设A 是方程①和②的公共根,∴(1)A 2+(k+2)A ﹣1=0 ③,A 2+(2k+1)A ﹣2k﹣3=0④,由(③﹣④)×2得kA 2=2(k﹣1)A ﹣4k﹣4⑤,由④得:A 2=﹣(2k+1)A +2k+3⑥,将⑤、⑥代入,原式=kA 2+4A k﹣2k+3A 2+5A =2(k﹣1)A ﹣4k﹣4+4A k﹣2k﹣3(2k+1)A +6k+9+5A =5.[点评]本题考查了根的判别式:利用一元二次方程根的判别式(△=B 2﹣4A C )判断方程的根的情况.一元二次方程A x2+B x+C =0(A ≠0)的根与△=B 2﹣4A C 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.24.(8分)(2018秋•建宁县期中)某汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为20万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆,根据市场调查,月销售量不会突破40辆.(1)设当月该型号汽车的销售量为x辆(x≤40且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;(2)已知该型号汽车的销售价为22万元/辆,公司计划当月销售利润45万元,那么该月需售出多少辆汽车?[解答]解:(1)由题意可得当0<x≤5时,y=20;当5<x≤40时,y=20﹣0.1(x﹣5)=﹣0.1x+20.5,(2)当0<x≤5时,(22﹣20)×5=10<45,不合题意;当5<x≤40时,[22﹣(﹣0.1x+20.5)]x=45,解得x=30,或x=﹣10(舍去)∴需售出30辆汽车[点评]本题考查了分段函数的运用,一元二次方程的解法的运用,解答时求出分段函数的解析式是关键.。

数学九年级上册《一元二次方程》单元综合检测题带答案

数学九年级上册《一元二次方程》单元综合检测题带答案
详解:把x=1代入方程得1+k-3=0,
解得k=2.
故选B.
点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
4.一元二次方程(x+2017)2=1的解为( )
A. ﹣2016,﹣2018B. ﹣2016C. ﹣2018D. ﹣2017
【答案】A
【解析】
【分析】
A.7%B.10%C.11%D.21%
【答案】B
【解析】
【分析】
根据折线统计图可知,三岗村2015年底的林地面积为300公顷,2017年底的林地面积为363公顷.设2016,2017这两年三岗村林地面积年平均增长的百分率为x,则增长2次以后的林地面积是300(1+x)2公顷,列出一元二次方程求解即可.
D、∵x1•x2=﹣2,∴来自1<0,x2>0,结论D错误.
故选A.
点睛:本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.
8.一个等腰三角形的两条边长分别是方程 的两根,则该等腰三角形的周长是()
A. 12B. 9C. 13D. 12或9
【答案】A
【解析】
二、填空题(每题分,总计20分)
11.若关于x的一元二次方程 的一个根为1,则k的值为__________.
【答案】0
【解析】
把x=1代入方程得, ,
即 ,
解得 .
此方程为一元二次方程,
A.10×6﹣4×6x=32B.(10﹣2x)(6﹣2x)=32
C.(10﹣x)(6﹣x)=32D.10×6﹣4x2=32
10.随着退耕还林政策的进一步落实,三岗村从2015年底到2017年底林地面积变化如图所示,则2016,2017这两年三岗村林地面积年平均增长的百分率为( )

九年级数学上册一元二次方程单元测试卷(含答案解析)

九年级数学上册一元二次方程单元测试卷(含答案解析)

九年级数学上册一元二次方程单元测试卷(含答案解析)一、初三数学一元二次方程易错题压轴题(难)1.阅读与应用:阅读1:a,b为实数,且a>0,b>0,因为()2≥0,所以a﹣2+b≥0,从而a+b≥2(当a=b时取等号).阅读2:若函数y=x+(m>0,x>0,m为常数),由阅读1结论可知:x+≥2,所以当x=,即x=时,函数y=x+的最小值为2.阅读理解上述内容,解答下列问题:问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为2(x+),求当x=时,周长的最小值为;问题2:汽车的经济时速是汽车最省油的行驶速度,某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油()L.若该汽车以每小时x公里的速度匀速行驶,1h的耗油量为yL.(1)求y关于x的函数关系式(写出自变量x的取值范围);(2)求该汽车的经济时速及经济时速的百公里耗油量.【答案】问题1:2,8;问题2:(1)y=;(2)10.【解析】【分析】(1)利用题中的不等式得到x+=4,从而得到x=2时,周长的最小值为8;(2)根据耗油总量=每公里的耗油量×行驶的速度列出函数关系式即可,经济时速就是耗油量最小的形式速度.【详解】(1)∵x+≥2=4,∴当x=时,2(x+)有最小值8.即x=2时,周长的最小值为8;故答案是:2;8;问题2:,当且仅当,即x =90时,“=”成立,所以,当x =90时,函数取得最小值9,此时,百公里耗油量为,所以,该汽车的经济时速为每小时90公里,经济时速的百公里耗油量为10L .【点睛】本题考查了配方法及反比例函数的应用,最值问题,解题的关键是读懂题目提供的材料,易错点是了解“耗油总量=每公里的耗油量×行驶的速度”,难度中等偏上.2.为了满足师生的阅读需求,某校图书馆的藏书从2016年底到2018年底两年内由5万册增加到7.2万册.(1)求这两年藏书的年均增长率;(2)经统计知:中外古典名著的册数在2016年底仅占当时藏书总量的5.6%,在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书的年均增长率,那么到2018年底中外古典名著的册数占藏书总量的百分之几?【答案】(1)这两年藏书的年均增长率是20%;(2)到2018年底中外古典名著的册数占藏书总量的10%.【解析】【分析】(1)根据题意可以列出相应的一元二次方程,从而可以得到这两年藏书的年均增长率; (2)根据题意可以求出这两年新增加的中外古典名著,从而可以求得到2018年底中外古典名著的册数占藏书总量的百分之几.【详解】解:(1)设这两年藏书的年均增长率是x ,()2517.2x +=,解得,10.2x =,2 2.2x =-(舍去),答:这两年藏书的年均增长率是20%;(2)在这两年新增加的图书中,中外古典名著有()7.2520%0.44-⨯=(万册), 到2018年底中外古典名著的册数占藏书总量的百分比是:5 5.6%0.44100%10%7.2⨯+⨯=, 答:到2018年底中外古典名著的册数占藏书总量的10%.【点睛】本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答,这是一道典型的增长率问题.3.(1)课本情境:如图,已知矩形AOBC ,AB =6cm ,BC =16cm ,动点P 从点A 出发,以3cm/s 的速度向点O 运动,直到点O 为止;动点Q 同时从点C 出发,以2cm/s 的速度向点B 运动,与点P 同时结束运动,出发 时,点P 和点Q 之间的距离是10cm ;(2)逆向发散:当运动时间为2s时,P,Q两点的距离为多少?当运动时间为4s时,P,Q 两点的距离为多少?(3)拓展应用:若点P沿着AO→OC→CB移动,点P,Q分别从A,C同时出发,点Q从点C移动到点B停止时,点P随点Q的停止而停止移动,求经过多长时间△POQ的面积为12cm2?【答案】(1)85s或245s(2)62cm;213cm(3)4s或6s【解析】【分析】(1)过点P作PE⊥BC于E,得到AP=3t,CQ=2t,PE=6,EQ=16﹣3t﹣2t=16﹣5t,利用勾股定理得到方程,故可求解;(2)根据运动时间求出EQ、PE,利用勾股定理即可求解;(3) 分当点P在AO上时,当点P在OC上时和当点P在CB上时,根据三角形的面积公式列出方程即可求解.【详解】解:(1)设运动时间为t秒时,如图,过点P作PE⊥BC于E,由运动知,AP=3t,CQ=2t,PE=6,EQ=16﹣3t﹣2t=16﹣5t,∵点P和点Q之间的距离是10 cm,∴62+(16﹣5t)2=100,解得t1=85,t2=245,∴t=85s或245s.故答案为85s或245s(2)t=2时,由运动知AP =3×2=6 cm ,CQ =2×2=4 cm ,∴四边形APEB 是矩形,∴PE =AB =6,BE =6,∴EQ =BC ﹣BE ﹣CQ =16﹣6﹣4=6,根据勾股定理得PQ=2262PE EQ +=,∴当t =2 s 时,P ,Q 两点的距离为62 cm ;当t =4 s 时,由运动知AP =3×4=12 cm ,CQ =2×4=8cm ,∴四边形APEB 是矩形,∴PE =AB =6,BQ =8,CE=OP=4∴EQ =BC ﹣CE ﹣BQ =16﹣4﹣8=4,根据勾股定理得PQ=22213PE EQ +=,P ,Q 两点的距离为213cm .(3)点Q 从C 点移动到B 点所花的时间为16÷2=8s ,当点P 在AO 上时,S △POQ =2PO CO ⋅=(163)62t -⋅=12, 解得t =4.当点P 在OC 上时,S △POQ =2PO CQ ⋅=(316)22t t -⋅=12, 解得t =6或﹣23(舍弃). 当点P 在CB 上时,S △POQ =2PQ CO ⋅=(2223)62t t +-⨯=12, 解得t =18>8(不符合题意舍弃),综上所述,经过4 s 或6 s 时,△POQ 的面积为12 cm 2.【点睛】此题主要考查勾股定理的应用、一元二次方程与动点问题,解题的关键是熟知勾股定理的应用,根据三角形的面积公式找到等量关系列出方程求解.4.某连锁超市派遣调查小组在春节期间调查某种商品的销售情况,下面是调查后小张与其 他两位成员交流的情况.小张:“该商品的进价为 24元/件.”成员甲:“当定价为 40元/件时,每天可售出 480件.”成员乙:“若单价每涨 1元,则每天少售出 20件;若单价每降 1元,则每天多售出 40件.” 根据他们的对话,请你求出要使该商品每天获利 7680元,应该怎样合理定价?【答案】要使该商品每天获利7680元,应定价为36元/件、40元/件或48元/件【解析】【分析】设每件商品定价为x 元,则在每件40元的基础上涨价时每天的销售量是[]48020(40)x --件,每件商品的利润是(24)x -元,在每件40元的基础上降价时每天的销量是[]48040(40)x +-件,每件的利润是(24)x -元,从而可以得到答案.【详解】解:设每件商品定价为x 元.①当40x ≥时,[](24)48020(40)7680x x ---= ,解得:1240,48;x x ==②当40x <时,[](24)48040(40)7680x x -+-=,解得:1236,40x x ==(舍去),.答:要使该商品每天获利7680元,应定价为36元/件、40元/件或48元/件.【点睛】本题考查的是一元二次方程中的升降价对销售量产生影响方面的应用,用含有未知数的代数式表示销售量是这一类题的关键.5.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点.(1)求k 的取值范围;(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是32-,求k 的值. 【答案】(1)k <-34 ;(2)k=﹣1 【解析】试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.试题解析:(1)∵二次函数y=x 2-(2k-1)x+k 2+1的图象与x 轴有两交点,∴当y=0时,x 2-(2k-1)x+k 2+1=0有两个不相等的实数根.∴△=b 2-4ac=[-(2k-1)]2-4×1×(k 2+1)>0.解得k <-34;(2)当y=0时,x 2-(2k-1)x+k 2+1=0.则x 1+x 2=2k-1,x 1•x 2=k 2+1,∵=== 32-, 解得:k=-1或k= 13-(舍去),∴k=﹣16.计算题(1)先化简,再求值:21x x -÷(1+211x -),其中x=2017. (2)已知方程x 2﹣2x+m ﹣3=0有两个相等的实数根,求m 的值.【答案】(1)2018;(2)m=4【解析】分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用;(2)根据一元二次方程的根的判别式求解即可.详解:(1)21x x -÷(1+211x -) =2221111x x x x -+÷-- =()()22111x x x x x+-⋅- =x+1,当x=2017时,原式=2017+1=2018(2)解:∵方程x 2﹣2x+m ﹣3=0有两个相等的实数根,∴△=(﹣2)2﹣4×1×(m ﹣3)=0,解得,m=4点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用.7.如图,在ABC ∆中,90ACB ∠=︒,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD .(1)若28A ∠=︒,求ACD ∠的度数;(2)设BC a =,AC b =;①线段AD 的长度是方程2220x ax b +-=的一个根吗?说明理由.②若线段AD EC =,求a b的值. 【答案】(1)ACD ∠=31︒;(2)①是;②34a b =. 【解析】【分析】(1)根据三角形内角和定理求出∠B ,根据等腰三角形的性质求出∠BCD ,计算即可; (2)①根据勾股定理求出AD ,利用求根公式解方程,比较即可;②根据勾股定理列出算式,计算即可.【详解】(1)在ABC ∆中,90ACB ∠=︒.∴90B A ∠=︒-∠9028=︒-︒62=︒,∵BC BD =, ∴1802B BCD BDC ︒-∠∠=∠= 180622︒-︒= 59=︒.∴DCA ACB BCD ∠=∠-∠9059=︒-︒31=︒.(2)①BD BC a ==,∴AD AB BD =-AB a =-.在Rt ABC ∆中,90ACB ∠=︒,AB ==∵2220x ax b +-=,∴22a x -±=a =-a AB =-±.∴线段AD 的长度是方程2220x ax b +-=的一个根.②∵AE AD =,又∵AD EC =,∴2b AE EC ==, ∴2b AD =. 在Rt ABC ∆中,222AB AC BC =+,∴2222b a b a ⎛⎫+=+ ⎪⎝⎭, 22224b a ab b a ++=+, ∴234b ab =. ∵0b >,∴34b a =, ∴34a b =. 【点睛】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.8.如图,正方形ABCD 的四个顶点分别在正方形EFGH 的四条边上,我们称正方形EFGH 是正方形ABCD 的外接正方形.探究一:已知边长为1的正方形ABCD ,是否存在一个外接正方形EFGH ,它的面积是正方形ABCD 面积的2倍?如图,假设存在正方形EFGH ,它的面积是正方形ABCD 的2倍. 因为正方形ABCD 的面积为1,则正方形EFGH 的面积为2,所以EF =FG =GH =HE 2EB =x ,则BF 2﹣x ,∵Rt △AEB ≌Rt △BFC∴BF =AE 2﹣x在Rt△AEB中,由勾股定理,得x2+﹣x)2=12解得,x1=x2=2∴BE=BF,即点B是EF的中点.同理,点C,D,A分别是FG,GH,HE的中点.所以,存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍探究二:已知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍?(仿照上述方法,完成探究过程)探究三:已知边长为1的正方形ABCD,一个外接正方形EFGH,它的面积是正方形ABCD面积的4倍?(填“存在”或“不存在”)探究四:已知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的n倍?(n>2)(仿照上述方法,完成探究过程)【答案】不存在,详见解析【解析】【分析】探究二,根据探究一的解答过程、运用一元二次方程计算即可;探究三,根据探究一的解答过程、运用一元二次方程根的判别式解答;探究四,根据探究一的解答过程、运用一元二次方程根的判别式解答.【详解】探究二:因为正方形ABCD的面积为1,则正方形EFGH的面积为3,所以EF=FG=GH=HE,设EB=x,则BF x,∵Rt△AEB≌Rt△BFC,∴BF=AE﹣x,在Rt△AEB中,由勾股定理,得,x2+x)2=12,整理得x2x+1=0,b2﹣4ac=3﹣4<0,此方程无解,不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍;探究三:因为正方形ABCD的面积为1,则正方形EFGH的面积为4,所以EF=FG=GH=HE=2,设EB=x,则BF=2﹣x,∵Rt△AEB≌Rt△BFC,∴BF=AE=2﹣x,在Rt△AEB中,由勾股定理,得,x2+(2﹣x)2=12,整理得2x2﹣4x+3=0,b2﹣4ac=16﹣24<0,此方程无解, 不存在一个外接正方形EFGH ,它的面积是正方形ABCD 面积的3倍,故答案为不存在;探究四:因为正方形ABCD 的面积为1,则正方形EFGH 的面积为n ,所以EF =FG =GH =HE =n ,设EB =x ,则BF =n ﹣x ,∵Rt △AEB ≌Rt △BFC ,∴BF =AE =n ﹣x ,在Rt △AEB 中,由勾股定理,得,x 2+(n ﹣x )2=12,整理得2x 2﹣2n x +n ﹣1=0,b 2﹣4ac =8﹣4n <0,此方程无解,不存在一个外接正方形EFGH ,它的面积是正方形ABCD 面积的n 倍.【点睛】本题考查了正方形的性质、全等三角形的判定和性质、一元二次方程的解法等知识.读懂探究一的解答过程、正确运用一元二次方程根的判别式是解题的关键.9.如图1,已知△ABC 中,AB=10cm,AC=8cm,BC=6 cm ,如果点P 由B 出发沿BA 方向向点A 匀速运动,同时点Q 由A 出发沿AC 方向向点C 匀速运动,它们的速度均为2cm /s ,连接PQ ,设运动的时间为t (单位:s )(0≤t≤4).解答下列问题:(1)当t 为何值时,PQ∥BC.(2)是否存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分?若存在求出此时t 的值;若不存在,请说明理由.(3)如图2,把△APQ 沿AP 翻折,得到四边形AQPQ′.那么是否存在某时刻t 使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.【答案】(1)当BF PC ⊥s 时,PQ∥BC.(2)不存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分.(3)存在时刻t ,使四边形AQPQ′为菱形,此时菱形的面积为1372-cm 2. 【解析】(1)证△APQ∽△ABC,推出AP AB =AQ AC ,代入得出10210t -=28t ,求出方程的解即可;(2)假设存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分,得出方程-56t 2+6t=12×12×8×6,求出此方程无解,即可得出答案. (3)首先根据菱形的性质及相似三角形比例线段关系,求得PQ 、OD 、和PD 的长度;然后在Rt△PQD 中,根据勾股定理列出方程(8-185t )2-(6-65t )2=(2t )2,求得时间t 的值;最后根据菱形的面积等于△AQP 的面积的2倍,进行计算即可.解:(1)BP=2t ,则AP=10﹣2t .∵PQ∥BC,∴△APQ∽△ABC, ∴AP AB =AQ AC , 即10210t -=28t , 解得:t=209, ∴当t=209时,PQ∥BC. (2)如答图1所示,过P 点作PD⊥AC 于点D .∴PD∥BC,∴F ,即B ,解得6PD 6-5t =. 216625S PD AQ t t =⨯=-, 假设存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分,则有S △AQP = C S △ABC ,而S △ABC =12AC•BC=24,∴此时S △AQP =12. 而S △AQP 2665t t =-, ∴266125t t -=,化简得:t 2﹣5t+10=0, ∵△=(﹣5)2﹣4×1×10=﹣15<0,此方程无解,∴不存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分.(3)假设存在时刻t ,使四边形AQPQ′为菱形,则有AQ=PQ=BP=2t .如答图2所示,过P点作PD⊥AC于点D,则有PD∥BC,∴D,即COD∆,解得:OC,h,∴QD=AD﹣AQ=t.在Rt△PQD中,由勾股定理得:QD2+PD2=PQ2,即h,化简得:13t2﹣90t+125=0,解得:t1=5,t2=t,∵t=5s时,AQ=10cm>AC,不符合题意,舍去,∴t=52.由(2)可知,S△AQP=5 4∴S菱形AQPQ′=2S△AQP=2×258337+cm2.所以存在时刻t,使四边形AQPQ′为菱形,此时菱形的面积为1372-cm2.“点睛”本题考查了三角形的面积,勾股定理的逆定理,相似三角形的性质和判定的应用,主要考查学生综合运用进行推理和计算的能力.解决问题的关键是作辅助线构造相似三角形以及直角三角形,根据相似三角形的对应边成比例以及勾股定理进行列式求解.10.定南县某楼盘准备以每平方米4000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米3240元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【答案】(1)10%;(2)方案②【解析】试题分析:首先设下调的百分率为x,根据题意列出方程进行求解,得出答案;分别求出两种方案所需要花费的钱数,然后进行比较.试题解析:(1)设平均每次下调的百分率是x,依题意得,4000(1-x)2=3240解之得:x=0.1=10%或x=1.9(不合题意,舍去)答:平均每次下调的百分率是10%.(2)方案①实际花费=100×3240×98%=317520元方案②实际花费=100×3240-100×80=316000元∵317520>316000 ∴方案②更优惠考点:一元二次方程的应用。

新人教版初中数学九年级数学上册第一单元《一元二次方程》测试卷(有答案解析)(5)

新人教版初中数学九年级数学上册第一单元《一元二次方程》测试卷(有答案解析)(5)

一、选择题 1.27742322x -±+⨯⨯=⨯是下列哪个一元二次方程的根( ) A .22730x x ++=B .22730x x --=C .22730x x +-=D .22730x x -+= 2.若关于x 的方程kx²+4x-1=0有实数根,则k 的取值范围是( )A .k-4且k≠0B .k≥-4C .k>-4且k≠0D .k>-4 3.已知一元二次方程2210x x --=的两个根分别是1x ,2x ,则2112x x x -+的值为( ).A .-1B .0C .2D .34.若用配方法解方程24121x x +=,通常要在此方程两边同时加上一个“适当”的数,则下面变形恰当的是( )A .2221212412122x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭B .22241212112x x ++=+C .2412919x x ++=+D .241212112x x ++=+ 5.下列一元二次方程中,有两个不相等实数根的是( )A .2104x x -+= B .2390x x ++= C .2250x x -+= D .25130x x -= 6.当分式2369x x x --+的值为0时,则x 等于( ) A .3 B .0 C .3± D .-37.如图,在矩形ABCD 中,AB =a (a <2),BC =2.以点D 为圆心,CD 的长为半径画弧,交AD 于点E ,交BD 于点F .下列哪条线段的长度是方程2240x ax +-=的一个根( )A .线段AE 的长B .线段BF 的长C .线段BD 的长 D .线段DF 的长8.下列方程中是关于x 的一元二次方程的是( )A .210x x+= B .ax 2+bx +c =0 C .(x ﹣1)(x ﹣2)=0 D .3x 2+2=x 2+2(x ﹣1)2 9.若方程()200++=≠ax bx c a 中,,,a b c 满足420a b c ++=和420a b c -+=,则方程的根是( )A .1,0B .1,0-C .1,1-D .2,2-10.已知2x 2+x ﹣1=0的两根为x 1、x 2,则x 1•x 2的值为( )A .1B .﹣1C .12D .12- 11.下列方程是一元二次方程的是( )A .20ax bx c ++=B .22(1)x x x -=-C .2325x x y -+=D .2210x +=12.如图,BD 为矩形ABCD 的对角线,将△BCD 沿BD 翻折得到BC D '△,BC '与边AD 交于点E .若AB =x 1,BC =2x 2,DE =3,其中x 1、x 2是关于x 的方程x 2﹣4x+m =0的两个实根,则m 的值是( )A .165B .125C .3D .2二、填空题13.若关于x 的一元二次方程210(0)ax bx a +-=≠有一根为2020x =,则一元二次方程2(1)(1)1a x b x +++=必有一根为________.14.填空:(1)214x x ++________2(7)x =+;(2)29x x -+_______=(x-____)2 15.对于实数m ,n ,定义一种运算“*”为:*m n mn n =+.如果关于x 的方程()**1x a x 4=-有两个相等的实数根,则a =_______. 16.关于x 的方程222(1)0x m x m m +-+-=有两个实数根α,β,且2212αβ+=,那么m 的值为________.17.已知(x 2+y 2)(x 2+y 2﹣5)=6,则x 2+y 2=_____.18.等腰三角形ABC 中,8BC =,AB 、AC 的长是关于x 的方程2100x x m -+=的两根,则m 的值是___.19.已知1x ,2x 是关于x 的一元二次方程260x x a -+=的两个实数根,且221212x x -=,则a =________.20.当x=______时,−4x 2−4x+1有最大值.三、解答题21.已知关于x 的一元二次方程kx 2+6x ﹣1=0有两个不相等的实数根.(Ⅰ)求实数k 的取值范围;(Ⅱ)写出满足条件的k 的最小整数值,并求此时方程的根.22.解方程:(1)()2316x -=(2)22410x x --=(用公式法解)23.水果店张阿姨以每斤4元的价格购进某种水果若干斤,然后以每斤6元的价格出售,每天可售出150斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出30斤,为保证每天至少售出360斤,张阿姨决定降价销售.(1)设这种水果每斤的售价降低x 元(02x ≤≤),每天的销售量为y 斤,求y 与x 的关系式;(2)销售这种水果要想每天盈利450元,张阿姨需将每斤的售价降低多少元? 24.先化简,再求值:(1﹣1a )21a a -,其中a 满足方程a 2﹣a ﹣2=0. 25.用配方法解方程:22450x x +-=.26.把一个足球垂直水平地面向上踢,时间为t (秒)时该足球距离地面的高度h (米)适用公式2205h t t =-.(1)经过多少秒后足球回到地面,(2)经过多少秒时足球距离地面的高度为10米?(3)小明同学说:“足球高度不可能达到21米!”你认为他说得对吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据求根公式逐一列出每个方程根的算式即可得出答案.【详解】A 、22730x x ++=的解为x =B 、22730x x --=的解为x =C 、22730x x +-=的解为722x -±=⨯,符合题意;D 、22730x x -+=的解为x =故选:C .【点睛】 本题主要考查了一元二次方程的根,用求根公式解一元二次方程的方法是公式法. 2.B解析:B【分析】分k=0和k≠0两种情况考虑,当k=0时可以找出方程有一个实数根;当k≠0时,根据方程有实数根结合根的判别式可得出关于m 的一元一次不等式,解不等式即可得出k 的取值范围.结合上面两者情况即可得出结论.【详解】解:当k=0时,原方程为-4x+1=0,解得:x=14, ∴k=0符合题意;当k≠0时,∵方程kx 2-4x-1=0有实数根,∴△=(-4)2+4k≥0,解得:k≥-4且k≠0.综上可知:k 的取值范围是k≥-4.故选:B .【点睛】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3.D解析:D【分析】分别根据一元二次方程的根的意义和一元二次方程根与系数的关系分别得到21112210,2x x x x --=+=,变形代入求值即可得到答案.【详解】解:由题意得21112210,2x x x x --=+=,即21121x x -=, ∴原式211122123x x x x =-++=+=.故选:D .【点睛】此题主要考查了一元二次方程的解的根与系数的关系,灵活运用根与系数的关系是解答此4.C解析:C【分析】把原方程变形为2(2)621x x +⨯=,将2x 看成未知数,方程两边都加上一次项系数一半的平方即可.【详解】解:方程24121x x +=变形为2(2)621x x +⨯=, 2(2)62+91+9x x +⨯=∴2412919x x ++=+故选:C【点睛】本题考查了解一元二次方程的应用,关键是能正确配方.5.D解析:D【分析】先把各方程化为一般式,再分别计算方程根的判别式,然后根据判别式的意义对各选项进行判断.【详解】A 、()221414104b ac =-=--⨯⨯=,方程有两个相等的两个实数根; B 、2243419270b ac =-=-⨯⨯=-<,方程没有实数根;C 、()2242415160b ac =-=--⨯⨯=-<,方程没有实数根;D 、()224134501690b ac =-=--⨯⨯=>,方程有两个不相等的两个实数根; 故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根. 6.D解析:D【分析】先根据分式的值为0的条件列出关于x 的不等式组,求出x 的值即可.【详解】 依题意得:230690x x x ⎧-⎨-+≠⎩=,故选:D【点睛】本题考查的是分式的值为0的条件,熟知分式值为零的条件是分子等于零且分母不等于零是解答此题的关键.7.B解析:B【分析】根据勾股定理求出BF ,利用求根公式解方程,比较即可.【详解】解:∵四边形ABCD 是矩形∴CD=AB=a在Rt △BCD 中,由勾股定理得,BD =∴a ,解方程2240x ax +-=得x a =±=- ∴线段BF 的长是方程2240x ax +-=的一个根.故选:B .【点睛】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.8.C解析:C【分析】根据一元二次方程的定义解答:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A 、是分式方程.错误;B 、当a =0时不是一元二次方程,错误;C 、是,一元二次方程,正确;D 、3x 2+2=x 2+2(x ﹣1)2整理后为x=0,是一元一次方程,错误;故选:C .【点睛】考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.9.D解析:D【分析】联立420a b c ++=和420a b c -+=,前式减后式,可得0b =,前式加后式,可得4c a =-,将a 、c 代入原方程计算求出方程的根.【详解】∵根据题意可得:420420a b c a b c ++=⎧⎨-+=⎩①②, ①-②=40b =,得0b =,①+②=820a c +=,∴解得:0b =,4c a =-.将a 、b 、c 代入原方程()200++=≠ax bx c a 可得, ∵240ax bx a +-=,240ax a -=24ax a =∴2x =±故选:D .【点睛】本题考查解一元二次方程,联立关于a 、b 、c 的方程组,由方程组推出a 、b 、c 的数量关系是解题关键.10.D解析:D【分析】直接利用根与系数的关系解答.【详解】解:∵2x 2+x ﹣1=0的两根为x 1、x 2,∴x 1•x 2=12-=﹣12. 故选:D .【点睛】 此题主要考查了根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a. 11.D解析:D【分析】根据“只含有一个未知数,并且未知数的最高次数是2的整式方程:进行判断即可.【详解】解:A 、当a=0时,该方程不是一元二次方程,故本选项不符合题意.B 、该方程化简整理后是一元一次方程,故本选项不符合题意.C 、该方程含有2个未知数,不是一元二次方程,故本选项不符合题意.D 、该方程符合一元二次方程的定义,故本选项符合题意.故选:D .【点睛】本题主要考查了一元二次方程,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.12.A解析:A【分析】利用根与系数的关系得到x 1+x 2=4,x 1x 2=m ,AB +12BC =4,m =AB×12BC ,再利用折叠的性质和平行线的性质得到∠EBD =∠EDB ,则EB =ED =3,所以AE =AD−DE =5−2AB ,利用勾股定理得到AB 2+(5−2AB )2=32,解得AB 或AB (舍去),则BC =205+,然后计算m 的值. 【详解】 ∵x 1、x 2是关于x 的方程x 2−4x +m =0的两个实根,∴x 1+x 2=4,x 1x 2=m ,即AB +12BC =4,m =AB×12BC , ∵△BCD 沿BD 翻折得到△BC′D ,BC′与边AD 交于点E ,∴∠CBD =∠EBD ,∵AD ∥BC ,∴∠CBD =∠EDB ,∴∠EBD =∠EDB ,∴EB =ED =3,在Rt △ABE 中,AE =AD−DE =BC−3=8−2AB−3=5−2AB ,∴AB 2+(5−2AB )2=32,解得AB 或AB (舍去),∴BC =8−2AB ,∴m =12=165. 故选:A .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a≠0)的两根时,x 1+x 2=−b a ,x 1x 2=c a.也考查了矩形的性质和折叠的性质. 二、填空题13.x=2019【分析】对于一元二次方程设t=x+1得到at2+bt=1利用at2+bt-1=0有一个根为t=2020得到x+1=2020从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一解析:x=2019【分析】对于一元二次方程2(1)(1)1a x b x +++=,设t=x+1得到at 2+bt=1,利用at 2+bt-1=0有一个根为t=2020得到x+1=2020,从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一根为x=2019.【详解】解:对于一元二次方程2(1)(1)1a x b x +++=,设t=x+1,所以at 2+bt=1,即at 2+bt-1=0,而关于x 的一元二次方程ax 2+bx-1=0(a≠0)有一根为x=2020,所以at 2+bt-1=0有一个根为t=2020,则x+1=2020,解得x=2019,所以2(1)(1)1a x b x +++=必有一根为x=2019.故答案为:x=2019.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 14.49【分析】运用配方法的运算方法填写即可【详解】解:(1)x2+14x+49=(x+7)2故答案为:49;(2)x2-9x+=(x-)2故答案为:【点睛】此题主要考查了配方法的应用熟练掌握完全平方公解析:49814 92 【分析】运用配方法的运算方法填写即可.【详解】解:(1)x 2+14x+49=(x+7)2故答案为:49;(2)x 2-9x+814=(x-92)2,故答案为:814,92.【点睛】此题主要考查了配方法的应用,熟练掌握完全平方公式是关键.15.0【分析】由于定义一种运算*为:m*n=mn+n所以关于x的方程x*(a*x)=变为(a+1)x2+(a+1)x+=0而此方程有两个相等的实数根所以根据判别式和一元二次方程的一般形式的定义可以得到关解析:0【分析】由于定义一种运算“*”为:m*n=mn+n,所以关于x的方程x*(a*x)=14-变为(a+1)x2+(a+1)x+14=0,而此方程有两个相等的实数根,所以根据判别式和一元二次方程的一般形式的定义可以得到关于a的关系式,即可解决问题.【详解】解:由x*(a*x)=14-得(a+1)x2+(a+1)x+14=0,依题意有a+1≠0,△=(a+1)2-(a+1)=0,解得,a=0,或a=-1(舍去).故答案为:0.【点睛】此题考查了新定义,一元二次方程的判别式,解题时首先正确理解新定义的运算法则得到关于x的方程,然后根据判别式和一元二次方程的定义得到关系式解决问题.16.-1【分析】根据方程的根的判别式得出m的取值范围然后根据根与系数的关系可得α+β=-2(m-1)α•β=m2-m结合α2+β2=12即可得出关于m的一元二次方程解之即可得出结论【详解】解:∵关于x的解析:-1【分析】根据方程的根的判别式,得出m的取值范围,然后根据根与系数的关系可得α+β=-2(m-1),α•β=m2-m,结合α2+β2=12即可得出关于m的一元二次方程,解之即可得出结论.【详解】解:∵关于x的方程x2+2(m-1)x+m2-m=0有两个实数根,∴△=[2(m-1)]2-4×1×(m2-m)=-4m+4≥0,解得:m≤1.∵关于x的方程x2+2(m-1)x+m2-m=0有两个实数根α,β,∴α+β=-2(m-1),α•β=m2-m,∴α2+β2=(α+β)2-2α•β=[-2(m-1)]2-2(m2-m)=12,即m2-3m-4=0,解得:m=-1或m=4(舍去).故答案为:-1.【点睛】本题考查了根与系数的关系、根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系得出关于m 的一元二次方程.17.6【分析】设x2+y2=m 把原方程转化为含m 的一元二次方程先用因式分解法求解再确定x2+y2的值【详解】设x2+y2=m 原方程可变形为:m(m ﹣5)=6即m2﹣5m ﹣6=0∴(m ﹣6)(m+1)=0解析:6【分析】设x 2+y 2=m ,把原方程转化为含m 的一元二次方程,先用因式分解法求解,再确定x 2+y 2的值.【详解】设x 2+y 2=m ,原方程可变形为:m (m ﹣5)=6,即m 2﹣5m ﹣6=0.∴(m ﹣6)(m +1)=0,解得m 1=6,m 2=﹣1.∵m =x 2+y 2≥0,∴x 2+y 2=6.故答案为:6.【点睛】本题考查了一元二次方程的解法,掌握换元法和因式分解法解一元二次方程是解决本题的关键.18.或【分析】等腰三角形ABC 中边可能是腰也可能是底应分两种情况进行讨论分别利用根与系数的关系三角形三边关系定理求得方程的两个根进而求得答案【详解】解:∵关于x 的方程∴∴∵是等腰三角形的长是关于x 的方程 解析:25或16【分析】等腰三角形ABC 中,边BC 可能是腰也可能是底,应分两种情况进行讨论,分别利用根与系数的关系、三角形三边关系定理求得方程的两个根,进而求得答案.【详解】解:∵关于x 的方程2100x x m -+=∴1a =,10b =-,c m = ∴1210b x x a +=-=,12c x x m a == ∵ABC 是等腰三角形,AB 、AC 的长是关于x 的方程2100x x m -+=的两根 ∴①当8BC =为底、两根AB 、AC 均为等腰三角形的腰时,有1210AB AC x x +=+=且AB AC =即5AB AC ==,此时等腰三角形的三边分别为5、5、8,根据三角形三边关系定理可知可以构成三角形,则1225m x x AB AC ==⋅=;②当8BC =为腰、两根AB 、AC 中一个为腰一个为底时,有122810x x x +=+=,即22x =,此时此时等腰三角形的三边分别为2、8、8,根据三角形三边关系定理可知可以构成三角形,则1216m x x AB AC ==⋅=.∴综上所述,m 的值为25或16.故答案是:25或16【点睛】本题考查了一元二次方程根与系数的关系、等腰三角形的性质、三角形三边关系定理等,熟练掌握相关知识点是解题的关键.19.8【分析】由一元二次方程根与系数的关系得:解方程可得进一步可得结论【详解】解:由一元二次方程根与系数的关系得:又∴∴∴解得故答案为:8【点睛】本题考查了根与系数的关系牢记两根之和等于-两根之积等于是 解析:8【分析】由一元二次方程根与系数的关系得:126x x +=,12x x a =,解方程221212x x -=可得122x x -=,进一步可得结论.【详解】解:由一元二次方程根与系数的关系得:126x x +=,12x x a =,又221212x x -=,∴1212()()12x x x x +-=∴122x x -=,∴22121212()()43644x x x x x x a -=+-=-=解得,8a =,故答案为:8.【点睛】本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于c a”是解题的关键. 20.【分析】先根据完全平方公式将原式配方进而利用非负数的性质求出即可【详解】解:∵-4x2-4x+1=-(4x2+4x-1)=-(2x+1)2+2-(2x+1)2≤0∴当x=-时4x2-4x+1有最大值 解析:12- 【分析】先根据完全平方公式将原式配方,进而利用非负数的性质求出即可.【详解】解:∵-4x 2-4x+1=-(4x 2+4x-1)=-(2x+1)2+2,-(2x+1)2≤0,∴当x=-12时,4x 2-4x+1有最大值是2. 故答案为:-12. 【点睛】此题主要考查了配方法的应用以及非负数的性质,正确配方得出是解题关键.三、解答题21.(Ⅰ)k >﹣9且k ≠0;(Ⅱ)8k =-,112x =,214x = 【分析】(Ⅰ)根据一元二次方程的定义以及根的判别式得到k ≠0,且△>0,然后解两个不等式即可得到实数k 的取值范围;(Ⅱ)根据(Ⅰ)中k 的取值范围,任取一k 的值,然后解方程即可.【详解】解:(Ⅰ)根据题意得,k ≠0,且△>0,即2640k +>,解得k >﹣9,∴实数k 的取值范围为k >﹣9且k ≠0;(Ⅱ)由(1)知,实数k 的取值范围为k >﹣9且k ≠0,故取8k =-,所以该方程为28610x x -+-=,解得112x =,214x =. 【点睛】本题考查一元二次方程的根的判别式和解一元二次方程,解题的关键是熟练运用根的判别式和解一元二次方程的方法.22.(1)11x =21x =-2)11x =+,21x =. 【分析】(1)两边除以3后再开方,即可得出两个一元一次方程,求解即可;(2)求出24b ac -的值,代入公式求出即可.【详解】解:(1)()2316x -=方程两边除以3,得:()212x -=,两边开平方,得:1x -=则:11x =+21x =(2)22410x x --=∵2a =,4b =-,1c =-,∴()()224442124b ac -=--⨯⨯-=∴x ==,∴11x =21x =; 【点睛】 本题考查了解一元二次方程的应用,熟悉相关的解法是解题的关键.23.(1)300150y x =+;(2)只需将每斤的售价降低1元.【分析】(1)销售量=原来销售量+下降销售量,据此列式即可;(2)根据销售量×每斤利润=总利润列出方程求解即可.【详解】(1)当02x ≤≤时,150303001500.1x y x =+⨯=+ (2)由题意得:()()64300150450x x --+=解得:112x =,21x = 当12x =时,13001503003602y =⨯+=<(舍去) 当1x =时,3001150450360y =⨯+=> ∴只需将每斤的售价降低1元.【点睛】本题考查了理解解题的能力,销售量×每斤利润=总利润,掌握利润公式是解题的关键.24.11a +,13. 【分析】 先根据分式的基本性质化简,再求解关于a 的一元二次方程,代入求解即可;【详解】 解:原式=()()11111a a a a a a -=++-, 解方程a 2﹣a ﹣2=0得,a 1=2,a 2=﹣1,当a =2时,原式=11=2+13, 当a =﹣1时,分式无意义,则分式的值为13. 【点睛】本题主要考查了分式化简求值,与一元二次方程的求解,准确分析计算是解题的关键.25.121122x x =-+=-- 【分析】 利用完全平方公式进行配方解一元二次方程即可得.【详解】22450x x +-=,2245x x +=,2522x x +=, 252112x x ++=+, ()2712x +=,1x +=,12x =-±,即121,122x x =-+=--. 【点睛】 本题考查了利用配方法解一元二次方程,熟练掌握配方法是解题关键.26.(1)4;(2)(2+秒或(2-秒;(3)小明说得对,理由见解析【分析】(1)求出0h =时t 的值即可得多少秒后足球回到地面;(2)根据高度为10米列方程可得;(3)列方程由根的判别式可作出判断.【详解】解:(1)当0h =时,22050t t -=,解得:0t =或4t =,答:经4秒后足球回到地面;(2)令220510h t t =-=,解得:2t =+2t =即经过(2+秒或(2-秒时足球距离地面的高度为10米.(3)小明说得对,理由如下:假设足球高度能够达到21米,即21h =,将21h =代入公式得:221205t t =-由判别式计算可知:2(20)4521200=--⨯⨯=-<△, 方程无解,假设不成立,所以足球确实无法到达21米的高度.【点睛】本题主要考查一元二次方程的应用,解题的关键是熟练掌握一元二次方程的解法.。

新人教版初中数学九年级数学上册第一单元《一元二次方程》测试卷(答案解析)(5)

新人教版初中数学九年级数学上册第一单元《一元二次方程》测试卷(答案解析)(5)

一、选择题1.方程22(1)110m x m x -++-=是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠±lB .m≥-l 且m≠1C .m≥-lD .m >-1且m≠1 2.若关于x 的方程kx²+4x-1=0有实数根,则k 的取值范围是( )A .k-4且k≠0B .k≥-4C .k>-4且k≠0D .k>-4 3.下列方程属于一元二次方程的是( )A .222-=x x xB .215x x +=C .220++=ax bx cD .223x x +=4.一个大正方形内放入两个同样大小的小正方形纸片,按如图1放置,两个小正方形纸片的重叠部分面积为4;按如图2放置(其中一小张正方形居大正方形的正中),大正方形中没有被小正方形覆盖的部分(阴影部分)的面积为44,则把两张小正方形按如图3放置时,两个小正方形重叠部分的面积为( )A .10B .12C .14D .165.若用配方法解方程24121x x +=,通常要在此方程两边同时加上一个“适当”的数,则下面变形恰当的是( )A .2221212412122x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭B .22241212112x x ++=+C .2412919x x ++=+D .241212112x x ++=+6.方程(2)2x x x -=-的解是( ) A .2 B .2-,1 C .1-D .2,1- 7.若整数a 使得关于x 的一元二次方程()222310a x a x -++=有两个实数根,并且使得关于y 的分式 方程32133ay y y y -+=--有整数解,则符合条件的整数a 的个数为( ) A .2 B .3C .4D .5 8.若关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根,则a 的取值范围是( )A .a <-2B .a >-2C .-2<a <0D .-2≤a <0 9.为促进消费,重庆市政府开展发放政府补贴消费的“消费券活动”,某超市的月销售额逐步增加;据统计4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元,若设5月、6月每月的增长率为x ,则可列方程为( )A .()2001500x +=B .()2002001500x ++=C .()22001500+=xD .()20012500+=x10.若关于x 的一元二次方程260x x c -+=有两个相等的实数根,则常数c 的值为( ) A .3 B .6 C .8 D .911.实数,m n 分别满足方程2199910m m ++=和219990n n ++=,且1mn ≠,求代数式41mn m n++的值( ) A .5- B .5 C .10319- D .1031912.已知方程2202030x x +-=的根分别为a 和b ,则代数式2a a 2020a b ++的值为( )A .0B .2020C .1D .-2020二、填空题13.生物学家研究发现,很多植物的生长都有这样的规律:即主干长出若干数目的支干后,每个支干又会长出同样数目的小分支.现有符合上述生长规律的某种植物,它的主干、支干和小分支的总数是91,则这种植物每个支干长出多少个小分支?设这种植物每个支干长出x 个小分支,可列方程___________.14.已知x a =是方程2350x x --=的根,则代数式234a a -++的值为________. 15.填空:(1)214x x ++________2(7)x =+;(2)29x x -+_______=(x-____)2 16.已知0x =是关于x 的一元二次方程()()22213340m x m x m m -+++-=的一个根,则m =__________.17.若一元二次方程ax 2﹣bx ﹣2016=0有一根为x =﹣1,则a +b =_____.18.已知a 为方程210x x -+=的一个根,则代数式2233a a -+的值为_____19.已知x 1和x 2是方程2x 2-5x+1=0的两个根,则1212x x x x +的值为_____. 20.已知1x ,2x 是方程2250x x --=的两个实数根,则2212123x x x x ++=__________.三、解答题21.(1)()2120x --=;(2)21212t t += (3)()22x x x -=-(4)23520.x x --=22.解方程:(1)2237x x +=;(2)x(2x+5)=2x+5.23.解方程:(1)2340x x --=;(2)()()2151140x x -+--=.24.解下列方程(1)2280x x +-=;(2)(2y +1)2-25=0;(3)24430t t --=;(4)2(m +3)=m 2-9 .25.解方程:212270x x -+=26.阅读下列材料:对于任意的正实数a ,b ,总有2a b ab +≥成立(当且仅当a b =时,等号成立),这个不等式称为“基本不等式”利用“基本不等式”可求一些代数式的最小值.例如:若0x >,求式子1x x +的最小值. 解:∵0x >,∴112212x x x x+≥⋅==,∴1x x +的最小值为2.(1)若0x >,求9x x+的最小值; (2)已知1x >,求2251x x x -+-的最小值. (3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,AOB 、COD △的面积分别为4和9,求四边形ABCD 面积的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据一元二次方程的定义及二次根式有意义的条件求解可得.【详解】∵方程22(1)10m x -+-=是关于x 的一元二次方程,∴210m -≠,解得1m ≠±,10m +≥,解得:1m ≥-,∴1m >-且1m ≠,故选:D .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.B解析:B【分析】分k=0和k≠0两种情况考虑,当k=0时可以找出方程有一个实数根;当k≠0时,根据方程有实数根结合根的判别式可得出关于m 的一元一次不等式,解不等式即可得出k 的取值范围.结合上面两者情况即可得出结论.【详解】解:当k=0时,原方程为-4x+1=0,解得:x=14, ∴k=0符合题意;当k≠0时,∵方程kx 2-4x-1=0有实数根,∴△=(-4)2+4k≥0,解得:k≥-4且k≠0.综上可知:k 的取值范围是k≥-4.故选:B .【点睛】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3.D解析:D【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.据此判断即可.【详解】解:A 、移项得:20x -=,是一元一次方程,不是一元二次方程,故本选项错误; B 、不是整式方程,即不是一元二次方程,故本选项错误;C 、ax 2+bx+c=0,当a=0时,它不是一元二次方程,故C 错误;D 223x x +=符合一元二次方程的定义,故D 正确;故选:D .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.4.B解析:B【分析】设大正方形的边长为 a ,小正方形的边长为 b ,利用图1得到一个 a 与 b 关系式,再利用图2得到一个 a 与 b 关系式,即可求出 a 和 b ,然后再求图3阴影面积即可.【详解】图1中重叠部分的为正方形且其面积为4,∴重叠部分的边长为2,设大正方形边长为a ,小正方形的边长为b ,∴a -b +2=b ,如图2,阴影部分面积=a 2-2b 2+(b -2a b -)2=44,解得:b =6,∴a =10, 如图3,两个小正方形重叠部分的面积=()2b b a ⨯-=12.故答案为:B .【点睛】此题考查的是代数式的运算,正方形的性质,解一元二次方程,找到每个图中的等量关系式是解决此题的关键.5.C解析:C【分析】把原方程变形为2(2)621x x +⨯=,将2x 看成未知数,方程两边都加上一次项系数一半的平方即可.【详解】解:方程24121x x +=变形为2(2)621x x +⨯=, 2(2)62+91+9x x +⨯=∴2412919x x ++=+故选:C【点睛】本题考查了解一元二次方程的应用,关键是能正确配方.6.D解析:D【分析】先移项得到x (2﹣x )+(2﹣x )=0,然后利用因式分解法解方程.【详解】解:x (2﹣x )+(2﹣x )=0,(2﹣x )(x +1)=0,2﹣x =0或x +1=0,所以x 1=2,x 2=﹣1.故选:D .【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).7.B解析:B【分析】对于关于x 的一元二次方程()2210a x -+=有两个实数根,利用判别式的意义得到a-2≠0且2a+3≥0且△=2-4(a-2)≥0,解不等式组得到整数a 为:-1,0,1,3,4,5;接着解分式方程得到y=61a -,而y≠3,则61a -≠3,解得a≠3,从而得到当a=-1,0,4时,分式方程有整数解,然后求符合条件的所有a 的个数.【详解】解:∵整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根, ∴a-2≠0且2a+3≥0且△=2-4(a-2)≥0, ∴31122a -≤≤且a≠2, ∴整数a 为:-1,0,1,3,4,5;去分母得3-ay+3-y=-2y ,解得y=61a -, 而y≠3,则61a -≠3,解得a≠3, 当a=-1,0,4时,分式方程有整数解,∴符合条件的所有a 的个数是3.故选:B .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.8.C解析:C【分析】由关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根可得2214244202b ac a a ⎛⎫∆=-=-⨯⨯-=+> ⎪⎝⎭,解不等式即可求出a 的取值范围. 【详解】∵关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根, ∴2214244202b ac a a ⎛⎫∆=-=-⨯⨯-=+> ⎪⎝⎭, 解得:a >−2,∵a <0,∴−2<a <0.故选C .【点睛】本题考查一元二次方程根的判别式,掌握根的判别式的应用为解题关键. 9.C解析:C【分析】根据“4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元”,可以列出相应的一元二次方程,本题得以解决.【详解】解:由题意可得,200(1+x )2=500,故选:C .【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题,是中考常考题.10.D解析:D【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论.【详解】解:260x x c -+=有两个相等的实根,2(6)40c ∴∆=--=,解得:9c =故选:D .【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c 的一元一次方程是解题的关键.11.A解析:A【分析】由219990n n ++=可得211199910n n⋅+⋅+=,进而可得1,m n 是方程2199910x x ++=的两个根,然后根据一元二次方程的根与系数的关系可求解.【详解】 解:由219990n n ++=可得211199910n n ⋅+⋅+=, ∴1,m n是方程2199910x x ++=的两个根, ∴19911,1919m m n n +=-⋅=, ∴4119914451919mn m m m n n n ++=+⋅+=-+⨯=-; 故选A .【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.12.A解析:A【分析】将a 代入方程,可得2202030a a +-=,即220302a a =-,代入要求的式子,即可得到3+ab ,而a 、b 是方程的两个根,根据韦达定理,可求出ab 的值,即可求出答案.【详解】解:∵方程2202030x x +-=的根分别为a 和b∴2202030a a +-=,即220302a a =-∴2a a 2020a b ++=32020a -+ab+2020a=3+ab∵ab=-3∴2a a 2020a b ++=32020a -+ab+2020a=3+ab=3-3=0故选:A .【点睛】本题主要考查一元二次方程的解以及韦达定理,熟练解代入方程以及观察式子特点,抵消部分式子是解决本题的关键.二、填空题13.1+x+x2=91【分析】如果设每个支干分出x 个小分支根据每个支干又长出同样数目的小分支可知:支干的数量为x 个小分支的数量为x•x=x2个然后根据主干支干和小分支的总数是91就可以列出方程【详解】解解析:1+x+x 2=91【分析】如果设每个支干分出x 个小分支,根据“每个支干又长出同样数目的小分支”可知:支干的数量为x 个,小分支的数量为x•x=x 2个,然后根据主干、支干和小分支的总数是91就可以列出方程.【详解】解:依题意得支干的数量为x 个,小分支的数量为x•x=x 2个,那么根据题意可列出方程为:1+x+x 2=91,故答案为:1+x+x 2=91.【点睛】本题考查了由实际问题抽象出一元二次方程的知识,找到关键描述语,找到等量关系是解决问题的关键.14.-1【分析】利用x=a 是方程x2-3x-5=0的根得到a2-3a=5然后利用整体代入的方法计算代数式的值【详解】解:∵x=a 是方程x2-3x-5=0的根∴a2-3a-5=0∴a2-3a=5∴故答案为解析:-1【分析】利用x=a 是方程x 2-3x-5=0的根得到a 2-3a=5,然后利用整体代入的方法计算代数式的值.【详解】解:∵x=a 是方程x 2-3x-5=0的根,∴a 2-3a-5=0,∴a 2-3a=5,∴()223434541a a a a -++=--+=-+=-.故答案为-1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 15.49【分析】运用配方法的运算方法填写即可【详解】解:(1)x2+14x+49=(x+7)2故答案为:49;(2)x2-9x+=(x-)2故答案为:【点睛】此题主要考查了配方法的应用熟练掌握完全平方公解析:49814 92 【分析】运用配方法的运算方法填写即可.【详解】解:(1)x 2+14x+49=(x+7)2故答案为:49;(2)x 2-9x+814=(x-92)2, 故答案为:814,92. 【点睛】此题主要考查了配方法的应用,熟练掌握完全平方公式是关键. 16.-4【分析】根据方程根的定义把代入原方程求出m 的值【详解】解:将代入原方程得解得∵该方程是一元二次方程∴即∴故答案是:【点睛】本题考查一元二次方程根的定义和解一元二次方程需要注意一元二次方程的二次项 解析:-4【分析】根据方程根的定义,把0x =代入原方程,求出m 的值.【详解】解:将0x =代入原方程,得2340m m +-=,解得14m =-,21m =,∵该方程是一元二次方程,∴10m -≠,即1m ≠,∴4m =-.故答案是:4-.【点睛】本题考查一元二次方程根的定义和解一元二次方程,需要注意一元二次方程的二次项系数不能为0.17.2016【分析】将x=-1代入ax2﹣bx ﹣2016=0得到a+b ﹣2016=0然后将a+b 当作一个整体解答即可【详解】解:把x =﹣1代入一元二次方程ax2﹣bx ﹣2016=0得:a+b ﹣2016=解析:2016.【分析】将x=-1代入ax 2﹣bx ﹣2016=0得到a +b ﹣2016=0,然后将a+b 当作一个整体解答即可.【详解】解:把x =﹣1代入一元二次方程ax 2﹣bx ﹣2016=0得:a +b ﹣2016=0,即a +b =2016.故答案是2016.【点睛】本题主要考查了一元二次方程的解,理解一元二次方程的解的概念是解答本题的关键. 18.【分析】把代入已知方程求得然后将其整体代入所求的代数式求值【详解】由题意得:则所以故答案为:【点睛】本题考查了一元二次方程的解的定义解题时注意整体代入数学思想的应用解析:5【分析】把x a =代入已知方程,求得21a a =-,然后将其整体代入所求的代数式求值.【详解】由题意,得:210a a -+=,则21a a =-,所以,()2233231323335a a a a a a -+=--+=-++=. 故答案为:5.【点睛】本题考查了一元二次方程的解的定义.解题时,注意“整体代入”数学思想的应用. 19.5【分析】直接根据根与系数的关系求出再代入求值即可【详解】解:∵x1x2是方程2x2-5x+1=0的两个根∴x1+x2=-∴故答案为:5【点睛】本题考查了根与系数的关系:若x1x2是一元二次方程ax解析:5【分析】直接根据根与系数的关系,求出12x x +,12x x 再代入求值即可.【详解】解:∵x 1,x 2是方程2x 2-5x+1=0的两个根,∴x 1+x 2=--55-=22,121=2x x . ∴121252==512x x x x + 故答案为:5.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a. 20.—1【分析】根据根与系数之间的关系解题即可【详解】∵是方程的两个实数根∴∴故答案为:-1【点睛】本题考查了一元二次方程根与系数之间的关系解题的关键是根据公式正确计算解析:—1【分析】根据根与系数之间的关系解题即可.【详解】∵1x ,2x 是方程2250x x --=的两个实数根,∴122x x +=,125x x =,∴()()2222112*********x x x x x x x x ++++=+-=-=, 故答案为:-1【点睛】本题考查了一元二次方程根与系数之间的关系,解题的关键是根据公式正确计算.三、解答题21.(1)1211==x x 2)1222t t =-=-3)1221x x ==,(4)12123x x ==-,.【分析】(1)利用直接开平方法求解即可;(2)利用配方法求解即可;(3)方程整理后,利用因式分解法求出解即可;(4)利用因式分解法解方程.【详解】解:(1)()212x -=,x-1=,11x x -=-=,1211x x ∴==(2)242t t +=,()226t ∴+=2t ∴+=1222t t ∴=-=-(3)()2(2)0x x x ---=,() 1)20(x x ∴--=122,1x x ∴==(4)23520.x x --=()2310()x x -+=1212,3x x ∴==-. 【点睛】本题考查了解一元二次方程-因式分解法,配方法,以及直接开平方法,熟练掌握各种解法是解题的关键.22.(1)112x =,23x =;(2)11x =,252x =- 【分析】(1)先把方程化为一般式,然后利用因式分解法解方程;(2)利用因式分解法求解.【详解】解:(1)2x 2-7x+3=0,(2x-1)(x-3)=0,2x-1=0或x-3=0,所以x 1=12,x 2=3; (3)移项得,x (2x+5)-(2x+5)=0,因式分解得,(2x+5)(x-1)=0,∴x-1=0,2x+5=0,∴11x =,252x =-; 【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.23.(1)14x =,21x =-;(2)16x =-,23x =.【分析】(1)用十字相乘法分解因式求解即可;(2)把x-1看作一个整体,用十字相乘法分解因式求解即可;【详解】解:(1)2340x x --=, ()()410x x -+=,40x ∴-=或10x +=,14x ∴=,21x =-;(2)()()2151140x x -+--=,()()17120 x x-+-⎡⎤⎡⎤⎣⎦⎣⎦-=,60x∴+=或30x-=,16x∴=-,23x=.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,熟练掌握各种方法是解答本题的关键.24.(1)x1=-4,x2=2;(2)y1=2,y2=-3;(3)t1=32,t2=12-;(4)m1=-3,m2=5【分析】(1)根据因式分解法即可求解;(2)可以变形为:(2y+1)2=25,直接开方求解(3)常数项移到右边,两边加上一次项系数一半的平方,开方即可求出解;(4)先移项,使方程右边为零,然后将方程左边进行因式分解,使分解后的两个一次因式分别为零,即可解答.【详解】(1)x2+2x-8=0,(x+4)(x-2)=0,则x+4=0或x-2=0,解得x=-4或x=2(2) (2y+1)2-25=0;(2y+1)2=25,∴2y+1=±5,∴y1=2,y2=-3;(3)24430t t--=;4t2−4t=3,4t2−4t+1=3+1,(2t−1)2=4,∴2t−1=±2,∴t1=32 ,t2=12-(4)2(m+3)=m2-92(m+3)-(m+3)(m-3)=0(m+3)(2-m+3)=0∴m+3=0或5−m=0,∴m1=-3,m2=5.【点睛】此题考查解一元二次方程-直接开平方法,解一元二次方程-配方法,解一元二次方程-因式分解法,解题关键在于掌握运算法则.25.13x =,29x =.【分析】利用因式分解法解此一元二次方程,即可求解.【详解】解:212270x x -+=分解因式,得(3)(9)0x x --=,则30x -=或90x -=,∴13x =,29x =.【点睛】本题考查了解一元二次方程,熟练掌握一元二次方程的解法并能结合方程特点选择适当的解法是解题的关键.26.(1)6;(2)4;(3)25.【分析】(1)将原式变形为9x x +≥ (2)结合阅读材料将原式变形为()411x x -+-后即可确定最小值; (3)设S △BOC =x ,已知S △AOB =4,S △COD =9,则由等高三角形可知:BOC AOB COD AOD S S S S =△△△△,用含x 的式子表示出36AOD S x =△,再按照题中所给公式求得最小值,加上常数即可. 【详解】解:(1)∵0x >,∴9x x +≥又∵6=, ∴96x x+≥ ∴9x x+的最小值为6; (2)∵1x >∴10x ->, ∴222521411x x x x x x -+-++=--()2141x x -+=-()411x x =-+-≥∵∴22541x x x -+≥- ∴2251x x x -+-的最小值为4. (3)设(0)BOC S x x =>△, 则由等高三角形可知:BOC AOB COD AOD S S S S =△△△△ ∴49AOD x S =△,即36AOD S x=△, ∴四边形ABCD面积364913x x =+++≥,∵13=25,当且仅当x=6时,取等号, ∴四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用,同时本题还考查了等高三角形的在面积计算中的应用.对不能直接应用公式的,需要正确变形才可以应用,本题中等难度略大.。

新人教版初中数学九年级数学上册第一单元《一元二次方程》测试题(含答案解析)(5)

新人教版初中数学九年级数学上册第一单元《一元二次方程》测试题(含答案解析)(5)

一、选择题1.如图,若将上图正方形剪成四块,恰能拼成下图的矩形,设1a =,则b =( )A 51- B 51+ C 53+ D 212.用配方法解方程2x 4x 70+-=,方程应变形为( ) A .2(2)3x +=B .2 (x+2)11=C .2 (2)3?x -= D .2()211x -=3.若m 是方程220x x c --=的一个根,设2(1)p m =-,2q c =+,则p 与q 的大小关系为( ) A .p <qB .p =qC .p >qD .与c 的取值有关4.新冠肺炎是一种传染性极强的疾病,如果有一人患病,经过两轮传染后有81人患病,设每轮传染中平均一个人传染了x 个人,下列列式正确是( ) A .(1)81x x x ++= B .2181x x ++= C .1(1)81x x x +++=D .(1)81x x +=5.为促进消费,重庆市政府开展发放政府补贴消费的“消费券活动”,某超市的月销售额逐步增加;据统计4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元,若设5月、6月每月的增长率为x ,则可列方程为( ) A .()2001500x += B .()2002001500x ++= C .()22001500+=xD .()20012500+=x6.若关于x 的一元二次方程260x x c -+=有两个相等的实数根,则常数c 的值为( ) A .3 B .6 C .8 D .9 7.关于x 的方程2mx 0x +=的一个根是1-,则m 的值为( ) A .1B .0C .1-D .1或08.关于x 的方程x 2﹣kx ﹣2=0的根的情况是( ) A .有两个相等的实数根 B .没有实数根 C .有两个不相等的实数根 D .无法确定9.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A .290x +=B .24410x x -+=C .210x x ++=D .210x x +-= 10.下列方程是一元二次方程的是( )A .20ax bx c ++=B .22(1)x x x -=-C .2325x x y -+=D .2210x += 11.一元二次方程x 2=4x 的解是( ) A .x=4B .x=0C .x=0或-4D .x=0或4第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案12.实数,m n 分别满足方程2199910m m ++=和219990n n ++=,且1mn ≠,求代数式41mn m n++的值( ) A .5-B .5C .10319-D .10319二、填空题13.一元二次方程-+=(5)(2)0x x 的解是______________. 14.设a ,b 是方程220190x x +-=的两个实数根,则11a b+=_____. 15.一件商品原价300元,连续两次降价后,现售价是243元,若每次降价的百分率相同,那么这个百分率为______.16.等腰三角形ABC 中,8BC =,AB 、AC 的长是关于x 的方程2100x x m -+=的两根,则m 的值是___.17.当m =___________时,方程()21350mm xmx -+-+=是一元二次方程.18.如图,将一张矩形纸片ABCD 折叠,使两个顶点A C 、重合,折痕为FG ,若4,8AB BC ==,则线段BF 的长为_________.19.若()22214x y +-=,则22x y +=________.20.若关于x 的一元二次方程x 2+2x ﹣m 2﹣m =0(m >0),当m =1、2、3、…2020时,相应的一元二次方程的两个根分别记为α1、β1,α2、β2,…,α2020、β2020,则112220202020111111αβαβαβ++++++的值为_____.三、解答题21.解方程. (1)2560x x -+=.(2)23(21)(21)x x -=-.(3)23139x x x -=--. 22.火锅是重庆人民钟爱的美食之一;解放碑某老火锅店为抓住“十一黄金周”这个商机,通过网上广告宣传和实地派发传单等一系列促销手段吸引了不少本地以及外地游客,火锅店门庭若市.据店员统计;仅“十一黄金周”前来店内就餐选择红汤火锅和清汤火锅的游客共2500人,其中红汤火锅和清汤火锅的人均消费分别为80元和60元.(1)“十一”期间,若选择红汤火锅的人数不超过清汤火锅人数的1.5倍,求至少有多少人选择清汤火锅?(2)随着“十一”的结束,前来店内就餐的人数逐渐减少,据接下来的第二周统计数据显示,与(1)选择清汤火锅的人数最少时相比,选择红汤火锅的人数下降了a %,选择清汤火锅的人数不变,但选择红汤火锅的人均消费增长了a %,选择清汤火锅的人均消费增长了1%5a ,最终第二周两种火锅的销售总额与(1)中选择清汤火锅的人数最少时两种火锅的销售总额相等,求a 的值.23.水果店张阿姨以每斤4元的价格购进某种水果若干斤,然后以每斤6元的价格出售,每天可售出150斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出30斤,为保证每天至少售出360斤,张阿姨决定降价销售.(1)设这种水果每斤的售价降低x 元(02x ≤≤),每天的销售量为y 斤,求y 与x 的关系式;(2)销售这种水果要想每天盈利450元,张阿姨需将每斤的售价降低多少元? 24.定义:若关于x 的一元二次方程()200++=≠ax bx c a 的两个实数根1x ,()212x x x <,分别以1x ,2x 为横坐标和纵坐标得到点()12,M x x ,则称点M 为该一元二次方程的衍生点.(1)若关于x 的一元二次方程为()22210x m x m m --+-=.①求证:不论m 为何值,该方程总有两个不相等的实数根,并求出该方程的衍生点M 的坐标;②由①得到的衍生点M 在直线l :3y x =-+与坐标轴围成的区域上,求m 的取值范围.(2)是否存在b ,c ,使得不论()0k k ≠为何值,关于x 的方程20x bx c ++=的衍生点M 始终在直线()25y kx k =+-的图象?若有,求出b ,c 的值:若没有,说明理由.25.物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销,销售量持续走高.在售价不变的基础上,三月底的销售量达到400件,设二、三这两个月月平均增长率不变. (1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顺客,经调查发现,销售单价与月平均销售的关系如下表:26.解下列方程: (1)x (x -1)=1-x (2)(x-3) 2 = (2x-1) (x +3)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据上图可知正方形的边长为a+b ,下图长方形的长为a+b+b ,宽为b ,并且它们的面积相等,由此可列出(a+b )2=b(a+b+b),解方程即可求得结论. 【详解】解:根据题意得:正方形的边长为a+b ,长方形的长为a+b+b ,宽为b , 则(a+b )2=b(a+b+b),即a 2﹣b 2+ab=0, ∴2)10a abb+-=(,解得:12a b -±=, ∵ab>0,∴12a b -+=,∴当a=1时,b ==, 故选:B .【点睛】本题考查了图形的拼接、解一元二次方程、正方形的面积、长方形的面积,正确理解题意,找到隐含的数量关系列出方程是解答的关键.2.B解析:B 【分析】根据配方法解一元二次方程的方法解答即可. 【详解】解:用配方法解方程2470x x ,方程应变形为24411x x ++=,即()2211x +=.故选:B . 【点睛】本题考查了一元二次方程的解法,熟练掌握配方的方法是解题的关键.3.A解析:A 【分析】结合m 是方程220x x c --=的一个根,计算p-q 的值即可解决问题. 【详解】解:∵m 是方程220x x c --=的一个根, ∴220m m c --= ∵2(1)p m =-,2q c =+,∴222(1)(2)212211p q m c m m c m m c -=--+=-+--=---=-, ∴p <q 故选:A . 【点睛】此题主要考查了一元二次方程的解以及整式的运算,熟练掌握一元二次方程的解的应用是解答此题的关键.4.C解析:C 【分析】平均一人传染了x 人,根据有一人患病,第一轮有(x+1)人患病,第二轮共有x+1+(x+1)x 人,即81人患病,由此列方程求解. 【详解】解:设每轮传染中平均一个人传染了x 个人,根据题意得, x+1+(x+1)x=81 故选:C . 【点睛】本题考查了一元二次方程的应用,关键是得到两轮传染数量关系,从而可列方程求解.5.C解析:C 【分析】根据“4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元”,可以列出相应的一元二次方程,本题得以解决. 【详解】 解:由题意可得, 200(1+x )2=500, 故选:C . 【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题,是中考常考题.6.D解析:D 【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论. 【详解】 解:260x x c -+=有两个相等的实根,2(6)40c ∴∆=--=,解得:9c = 故选:D . 【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c 的一元一次方程是解题的关键.7.A解析:A 【分析】由关于x 的方程x 2+mx=0的一个根为-1,得出将x=-1,代入方程x 2+mx=0求出m 即可. 【详解】解:∵-1是方程x 2+mx=0的根, ∴1-m=0, ∴m=1, 故答案为:A. 【点睛】此题主要考查了一元二次方程的解,由方程的根为-1,代入方程是解决问题的关键.8.C解析:C【分析】根据一元二次方程根的判别式可得△=(﹣k )2﹣4×1×(﹣2)=k 2+8>0,即可得到答案. 【详解】解:△=(﹣k )2﹣4×1×(﹣2)=k 2+8. ∵k 2≥0,∴k 2+8>0,即△>0,∴该方程有两个不相等的实数根. 故选:C . 【点睛】本题考查一元二次方程根的判别式, 24b ac ∆=-,当0∆>时方程有两个不相等的实数根,当0∆=时方程有两个相等的实数根,当∆<0时方程没有实数根.9.D解析:D 【分析】分别求出每个方程的根的判别式即可得到方程的根的情况. 【详解】A 选项:2049360∆=-⨯=-<,∴该方程没有实数根,故A 错误;B 选项:()244410∆=--⨯⨯=,∴该方程有两个相等的实数根,故B 错误; C 选项:2141130∆=-⨯⨯=-<,∴该方程没有实数根,故C 错误;D 选项:()2141150∆=-⨯⨯-=>,∴方程有两个不相等的实数根,故D 正确;故选:D. 【点睛】此题考查一元二次方程的根的情况,正确求根的判别式的值,掌握一元二次方程的根的三种情况是解题的关键.10.D解析:D 【分析】根据“只含有一个未知数,并且未知数的最高次数是2的整式方程:进行判断即可. 【详解】解:A 、当a=0时,该方程不是一元二次方程,故本选项不符合题意. B 、该方程化简整理后是一元一次方程,故本选项不符合题意. C 、该方程含有2个未知数,不是一元二次方程,故本选项不符合题意. D 、该方程符合一元二次方程的定义,故本选项符合题意. 故选:D . 【点睛】本题主要考查了一元二次方程,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.11.D解析:D 【分析】先移项,利用因式分解法解一元二次方程. 【详解】 解:x 2=4x x 2-4x=0 x (x-4)=0 x=0或x=4, 故选:D. 【点睛】此题考查解一元二次方程,直接开平方法,配方法,公式法,因式分解法,根据一元二次方程的特点选择恰当的解法是解题的关键.12.A解析:A 【分析】由219990n n ++=可得211199910n n⋅+⋅+=,进而可得1,m n 是方程2199910x x ++=的两个根,然后根据一元二次方程的根与系数的关系可求解. 【详解】解:由219990n n ++=可得211199910n n⋅+⋅+=, ∴1,m n是方程2199910x x ++=的两个根, ∴19911,1919m m n n +=-⋅=, ∴4119914451919mn m m m n n n ++=+⋅+=-+⨯=-; 故选A . 【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.二、填空题13.x1=5x2=-2【分析】直接利用因式分解法得出方程的根【详解】解:∵(x-5)(x+2)=0∴x-5=0或x+2=0∴x1=5x2=-2故答案为:x1=5x2=-2【点睛】此题主要考查了一元二次方解析:x 1=5,x 2=-2 【分析】直接利用因式分解法得出方程的根. 【详解】解:∵(x-5)(x+2)=0, ∴x-5=0或x+2=0, ∴x 1=5,x 2=-2, 故答案为:x 1=5,x 2=-2. 【点睛】此题主要考查了一元二次方程的解法,正确理解因式分解法解方程是解题关键.14.【分析】根据根与系数关系即可得出a+b 和ab 的值再对代数式变形整体代入即可【详解】解:∵ab 是方程的两个实数根∴∴故答案为:【点睛】本题考查根与系数关系熟记根与系数关系的公式是解题关键 解析:22019【分析】根据根与系数关系即可得出a+b 和ab 的值,再对代数式11a b+变形整体代入即可. 【详解】解:∵a ,b 是方程2220190+-=x x 的两个实数根, ∴2a b +=-,2019ab =-,∴112220192019a b a b ab +-+===-. 故答案为:22019.【点睛】本题考查根与系数关系.熟记根与系数关系的公式是解题关键.15.10【分析】设这个百分率为x 然后根据题意列出一元二次方程最后求解即可【详解】解:设这个百分率为x 由题意得:300(1-x )2=243解得x=10或x=190(舍)故答案为10【点睛】本题主要考查了一解析:10% 【分析】设这个百分率为x%,然后根据题意列出一元二次方程,最后求解即可. 【详解】解:设这个百分率为x%,由题意得:300(1-x%)2=243,解得x=10或x=190(舍). 故答案为10%. 【点睛】本题主要考查了一元二次方程的应用—百分率问题,弄清题意、设出未知数、列出一元二次方程成为解答本题的关键.16.或【分析】等腰三角形ABC 中边可能是腰也可能是底应分两种情况进行讨论分别利用根与系数的关系三角形三边关系定理求得方程的两个根进而求得答案【详解】解:∵关于x 的方程∴∴∵是等腰三角形的长是关于x 的方程解析:25或16 【分析】等腰三角形ABC 中,边BC 可能是腰也可能是底,应分两种情况进行讨论,分别利用根与系数的关系、三角形三边关系定理求得方程的两个根,进而求得答案. 【详解】解:∵关于x 的方程2100x x m -+= ∴1a =,10b =-,c m = ∴1210b x x a +=-=,12cx x m a== ∵ABC 是等腰三角形,AB 、AC 的长是关于x 的方程2100x x m -+=的两根∴①当8BC =为底、两根AB 、AC 均为等腰三角形的腰时,有1210AB AC x x +=+=且AB AC =即5AB AC ==,此时等腰三角形的三边分别为5、5、8,根据三角形三边关系定理可知可以构成三角形,则1225m x x AB AC ==⋅=;②当8BC =为腰、两根AB 、AC 中一个为腰一个为底时,有122810x x x +=+=,即22x =,此时此时等腰三角形的三边分别为2、8、8,根据三角形三边关系定理可知可以构成三角形,则1216m x x AB AC ==⋅=. ∴综上所述,m 的值为25或16. 故答案是:25或16 【点睛】本题考查了一元二次方程根与系数的关系、等腰三角形的性质、三角形三边关系定理等,熟练掌握相关知识点是解题的关键.17.【分析】根据一元二次方程的定义解答【详解】∵是一元二次方程∴且解得故答案为:【点睛】本题考查了一元二次方程的概念只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程一般形式是(且)特别要注意【分析】根据一元二次方程的定义解答. 【详解】∵(2150mm xmx -+-+=是一元二次方程,∴212m -=且0m +≠,解得m =,【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是20ax bx c ++=(且0a ≠).特别要注意0a ≠的条件.这是在做题过程中容易忽视的知识点.18.3【分析】根据折叠性质可得AF=FC 设AF=x 则BF=8-x 则根据勾股定理可以得到关于x 的方程解方程得到x 的值后即可得到8-x 即BF 的值【详解】∵将一矩形纸片折叠使两个顶点重合折痕为∴是的垂直平分线解析:3【分析】根据折叠性质可得AF=FC ,设AF=x ,则BF=8-x ,则根据勾股定理可以得到关于x 的方程,解方程得到x 的值后即可得到8-x 即BF 的值 .【详解】∵将一矩形纸片ABCD 折叠,使两个顶点,A C 重合,折痕为FG ,∴FG 是AC 的垂直平分线,∴AF CF =,设AF FC x ==,在Rt ABF ∆中,由勾股定理得:222AB BF AF +=,即()22248x x +-=解得:5x =,即5,853CF BF ==-=,故答案为:3.【点睛】本题考查矩形与折叠的综合运用,综合运用折叠性质、方程思想和勾股定理求解是解题关键. 19.3【分析】根据题意将两边开方即可分情况得出的值【详解】解:两边开方得或故答案为:3【点睛】本题考查开方运算熟练掌握开方运算以及整体代换思想是解题的关键解析:3【分析】根据题意将()22214x y +-=两边开方,即可分情况得出22x y +的值.【详解】解:两边开方得2212x y +-=±,223x y ∴+=或221x y +=-,220x y +≥,223x y ∴+=.故答案为:3.【点睛】本题考查开方运算,熟练掌握开方运算以及整体代换思想是解题的关键.20.【分析】由一元二次方程根与系数的关系解题即【详解】解:∵x2+2x ﹣m2﹣m =0m =123…2020∴由根与系数的关系得:α1+β1=﹣2α1β1=﹣1×2;α2+β2=﹣2α2β2=﹣2×3;…α 解析:40402021【分析】 由一元二次方程根与系数的关系解题,即+=-b c a aαβαβ=,. 【详解】解:∵x 2+2x ﹣m 2﹣m =0,m =1,2,3, (2020)∴由根与系数的关系得:α1+β1=﹣2,α1β1=﹣1×2;α2+β2=﹣2,α2β2=﹣2×3;…α2020+β2020=﹣2,α2020β2021=﹣2020×2021; ∴原式=3320202020112211223320202020++++++++αβαβαβαβαβαβαβαβ 2222=++++12233420202021⨯⨯⨯⨯ 1111111=2(1)2233420202021⨯-+-+-++- 1=2(1)2021⨯-4040=2021故答案为:40402021. 【点睛】本题考查一元二次方程根与系数的关系,是重要考点,难度较易,掌握相关知识是解题关键.三、解答题21.(1)12x =,23x =;(2)112x =,22x =;(3)2x =- 【分析】(1)利用因式分解法解方程,即可得到答案;(2)先移项,然后利用因式分解法解方程,即可得到答案;(3)先把分式方程化为整式方程,然后解方程即可得到答案.【详解】解:(1)2560x x -+=,(2)(3)0x x --=,∴12x =,23x =,∴原方程的解为:12x =,23x =.(2)23(21)(21)x x -=-,∴2(21)3(21)0x x ---=,∴(21)(213)0x x ---=,∴(21)(24)0x x --=, ∴112x =,22x =. ∴原方程的解为:112x =,22x =. (3)23139x x x -=--, ∴2(3)39x x x +-=-,∴22339x x x +-=-,∴36x =-,∴2x =-,经检验:2x =-为原方程的解,∴原方程的解为2x =-.【点睛】本题考查了解一元二次方程,解分式方程,解题的关键是熟练掌握解方程的方法,注意解分式方程时组要检验.22.(1)至少有1000人选择清汤火锅;(2)a 的值为10【分析】(1)设有x 人选择清汤火锅,则有(2500﹣x )人选择红汤火锅,根据选择红汤火锅的人数不超过清汤火锅人数的1.5倍列出一元一次不等式,然后解不等式取其最小值即可; (2)根据第二周两种火锅的销售总额与(1)中选择清汤火锅的人数最少时两种火锅的销售总额相等列出关于a 的一元二次方程,然后解方程取其正值即可解答.【详解】解:(1)设有x 人选择清汤火锅,则有(2500﹣x )人选择红汤火锅,根据题意, 得:2500﹣x≤1.5x ,解得:x≥1000,答:至少有1000人选择清汤火锅;(2)根据题意,得:80(1+a%)×(2500﹣1000)(1﹣a%)+60(1+15a%)×1000=80×(2500﹣1000)+60×1000,整理,得:12x 2﹣120a=0,解得:a 1=10,a 2=0(不合题意,舍去),答:a 的值为10.【点睛】本题考查一元一次不等式的应用、一元二次方程的应用,解答的关键是理解题意,找准数量间的关系,正确列出不等式和方程.23.(1)300150y x =+;(2)只需将每斤的售价降低1元.【分析】(1)销售量=原来销售量+下降销售量,据此列式即可;(2)根据销售量×每斤利润=总利润列出方程求解即可.【详解】(1)当02x ≤≤时,150303001500.1x y x =+⨯=+ (2)由题意得:()()64300150450x x --+=解得:112x =,21x = 当12x =时,13001503003602y =⨯+=<(舍去) 当1x =时,3001150450360y =⨯+=> ∴只需将每斤的售价降低1元.【点睛】本题考查了理解解题的能力,销售量×每斤利润=总利润,掌握利润公式是解题的关键. 24.(1)①见解析,()1,M m m -;②12m ≤≤;(2)存在,12b =-,20c =【分析】(1)①根据根的判别式和衍生点的定义,即可得出结论;②先确定点出点M 在在直线y=x+1上,借助图象即可得出结论;(2)求出定点,利用根与系数的关系解决问题即可.【详解】解:(1)①()22210x m x m m --+-=,∵()()2221410m m m ⎡⎤∆=----=>⎣⎦, ∴不论x 为何值,该方程总有两个不相等的实数根,()22210x m x m m --+-=,解得:11x m =-,2x m =,方程()22210x m x m m --+-=的衍生点为()1,M m m -.②由①得,()1,M m m -,令1-=m x ,m y =,∴1y x =+,∴点M 在在直线1y x =+上,与y 轴交于A 点,当x=0时,y=1,∴()0,1A ,∵直线1l :3y x =-+与直线1y x =+交于B 点,解31y x y x =-+⎧⎨=+⎩, 解得12x y =⎧⎨=⎩, ∴()1,2B ,∵点M 的在直线l :3y x =-+与坐标轴围成的区域上∴12m ≤≤;(2)存在.直线()()25210y kx k k x =+-=-+,过定点()2,10M ,∴20x bx c ++=两个根为12x =,210x =,∴210b +=-,210c ⨯=,∴12b =-,20c =.【点睛】本题考查了新定义,一元二次方程根的判别式,一元二次方程的根与系数的关系,两条直线相交问题,解题的关键是理解题意,学会用转化的思想思考问题.25.(1)25%;(2)35元【分析】(1)由题意可得,1月份的销售量为:256件;设2月份到3月份销售额的月平均增长率,则二月份的销售量为:256(1+x );三月份的销售量为:256(1+x )(1+x ),又知三月份的销售量为:400元,由此等量关系列出方程求出x 的值,即求出平均增长率; (2)利用销量×每件商品的利润=4250求出即可.【详解】解:(1)设二、三这两个月的月平均增长率为x ,根据题意可得:256(1+x )2=400,解得:x 1=14=25%,x 2=94(不合题意舍去). 答:二、三这两个月的月平均增长率为25%; (2)由表可知:该商品每降价1元,销售量增加5件,设当商品降价m 元时,商品获利4250元,根据题意可得:(40-25-m )(400+5m )=4250,解得:m 1=5,m 2=-70(不合题意舍去),40-5=35元.答:销售单价应定为35元,商品获利4250元.【点睛】此题主要考查了一元二次方程的应用,本题的关键在于理解题意,找到等量关系准确的列出方程是解决问题的关键.26.(1)12x 1x -1==,;(2)12x 12x 1=-=,.【分析】(1)根据因式分解法,可得答案;(2)根据因式分解法,可得答案.【详解】解:(1)x (x -1)=1-x方程整理,得,x (x ﹣1)+(x ﹣1)=0,因式分解,得,(x ﹣1)(x +1)=0于是,得,x ﹣1=0或x +1=0,解得x 1=1,x 2=﹣1;(2)(x-3) 2 = (2x-1) (x +3)方程整理,得,x 2+11x ﹣12=0因式分解,得,(x +12)(x ﹣1)=0于是,得,x +12=0或x ﹣1=0,解得x 1=﹣12,x 2=1.【点睛】本题考查了解一元二次方程,因式分解是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学(上)学习质量测评一元二次方程单元试题(五)温馨提示:亲爱的同学,勤奋好学的你很想显露自己的数学才华吧!老师提供了展示自我的平台,请你在限定时间内完成答卷,老师会给你作出恰当的评价!一、单选题(共10题;共30分)1.已知反比例函数y=abx ,当x>0时,y随x的增大而增大,则关于x的方程ax2-2x+b=0的根的情况是()A、有两个正根B、有两个负根C、有一个正根一个负根D、没有实数根2.若x1 ,x2是一元二次方程x2-7x+5的两根,则x1 +x2的值是()A、7B、-7C、5D、-53.已知三角形两边的长分别是3和6,第三边的长是方程x2-6x+8=0的根,则这个三角形的周长等于()A、13 B、11 C、11或13 D、12或154.方程x2+ax+1=0和x2-x-a=0有一个公共根,则a的值是()A、0 B、1 C、2 D、35.(2015•长春)方程x2﹣2x+3=0的根的情况是()A、有两个相等的实数根B、只有一个实数根C、没有实数根D、有两个不相等的实数根6.已知一次函数y=ax+c的图象如图所示,那么一元二次方程ax2+bx+c=0的根的情况是()A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D.无法判断7.关于x的方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤94B.k≥﹣94 且k≠0C.k≥﹣94D.k>﹣94 且k≠08.一元二次方程x(x﹣2)=0的解是()A.x=0 B.x1=2 C.x1=0,x2=2 D.x=29.已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k<4B.k≤4C.k<4且k≠3D.k≤4且k≠310.奉节特产专卖店销售2015年良种夏季脐橙,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.若该专卖店销售这种脐橙要想平均每天获利2240元,为减少库存,每千克脐橙应降价多少元?()A、4元B、6元C、4元或6元D、5元二、填空题(共8题;共24分)11.一元二次方程x2=3x的解是:________ .12.已知关于x的一元二次方程3(x﹣1)(x﹣m)=0的两个根是1和2,则m的值是________动两步后踏板的位置,弧AB 是踏板移动的轨迹.已知AC=1尺,CD=EB=10尺,人的身高BD=5尺.设绳索长OA=OB=x 尺,则可列方程为 。

14.将一元二次方程x 2+4x+1=0化成(x+a )2=b 的形式,其中a ,b 是常数,则a+b=________ 15.若关于x 的方程x 2+3x+a=0有一个根为﹣1,则另一个根为________. 16.已知x=﹣2是方程x 2+mx ﹣6=0的一个根,则方程的另一个根是________. 17.若关于x 的一元二次方程x 2+4x ﹣k=0有实数根,则k 的最小值为________. 18.已知x=1是方程ax 2+x ﹣6=0的一个根,则a=________.三、解答题(共6题;共46分)19.试比较下列两个方程的异同, +2x-3=0,+2x+3=0.20.利用一面墙(墙的长度不限),另三边用58m 长的篱笆围成一个面积为200m 2的矩形场地,求矩形的长和宽.21.已知:m 是方程x 2﹣x ﹣1=0的一个根,求代数式5m 2﹣5m+2008的值.22.随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A ,B 两种型号的空气净化器,已知一台A 型空气净化器的进价比一台B 型空气净化器的进价多300元,用7500元购进A 型空气净化器和用6000元购进B 型空气净化器的台数相同. (1)求一台A 型空气净化器和一台B 型空气净化器的进价各为多少元?(2)在销售过程中,A 型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B 型空气净化器的销量,商社电器决定对B 型空气净化器进行降价销售,经市场调查,当B 型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B 型空气净化器的利润为3200元,请问商社电器应将B 型空气净化器的售价定为多少元?23.方程17+15x=245,x-503=x+705 , 2(x+1.5x )=24都只含有一个未知数,未知数的指数都是1,它们是一元一次方程,方程x 2+3=4,x 2+2x+1=0,x+y=5是一元一次方程吗?若不是,它们各是几元几次方程?24.若方程(m ﹣1)xm +1+2mx ﹣3=0是关于x 的一元二次方程,求m 的值.答案解析一、单选题1、【答案】C【考点】根的判别式,根与系数的关系,反比例函数的图象 【解析】【解答】因为反比例函数y=abx , 当x >0时,y 随x 的增大而增大, 所以ab <0, 所以△=4-4ab >0, 所以方程有两个实数根, 再根据x 1x 2=ba <0,故方程有一个正根和一个负根. 故选C .【分析】本题是对反比例函数的图象性质,一元二次方程的根的判别式以及根与系数的关系的综合考查,可以根据反比例函数的图象性质判断出ab 的符号,从而得出解的个数,然后利用根与系数的关系求出两个根的符号关系.本题重点考查了反比例函数的性质及一元二次方程根的判别式和根与系数的关系,是一个综合性的题目,也是一个难度中等的题目. 2、【答案】A 【考点】根与系数的关系 【解析】【分析】由题意可得x 1x 2, x 1x 2, 再化1x1+1x2x2+x1x1x2 , 即可求得结果.【解答】由题意得x 1x 2=7,x 1x 2=5则1x1+1x2=x2+x1x1x2=75 故选A.3、【答案】A【考点】解一元二次方程-因式分解法,三角形三边关系 【解析】【分析】由方程x 2-6x+8=0 用十字交叉相乘法因式分解,得(x-2)(x-4)=0: 解得x 1=2或x 2=4,当第三边的长是2时,2+3<6,不能构成三角形,应舍去; 当第三边的长是4时,三角形的周长为4+3+6=13。

故选A 。

4、【答案】C【考点】一元二次方程的定义,一元二次方程的解 【解析】【解答】∵方程x 2+ax+1=0和x 2-x-a=0有一个公共根, ∴(a+1)x+a+1=0,解得x=-1,当x=-1时, a=2,【分析】因为方程有一个公共根,两方程联立,解得x与a的关系,故可以解得公共解x ,然后求出a .5、【答案】C【考点】根的判别式【解析】【解答】∵a=1,b=﹣2,c=3,∴△=b2﹣4ac=(﹣2)2﹣4×1×3=﹣8<0,所以方程没有实数根.故选C.【分析】把a=1,b=﹣2,c=3代入△=b2﹣4ac进行计算,然后根据计算结果判断方程根的情况.6、【答案】A【考点】根的判别式【解析】【解答】解:由图象知:a<0,c>0,∵△=b2﹣4ac>0,∴一元二次方程ax2+bx+c=0有两个不相等的实数根,故选A.【分析】根据函数的图象得出a、c的取值,进而求得b2﹣4ac的取值,即可判定一元二次方程ax2+bx+c=0的根的情况7、【答案】C【考点】根的判别式【解析】【解答】解:当k=0时,方程为3x﹣1=0,有实数根,当k≠0时,△=b2﹣4ac=32﹣4×k×(﹣1)=9+4k≥0,解得k≥﹣94 .综上可知,当k≥﹣94 时,方程有实数根;故选C.【分析】关于x的方程可以是一元一次方程,也可以是一元二次方程;当方程为一元一次方程时,k=0;是一元二次方程时,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根下必须满足△=b2﹣4ac ≥0.8、【答案】C【考点】解一元二次方程-因式分解法【解析】【解答】解:方程x(x﹣2)=0,可得x=0或x﹣2=0,解得:x1=0,x2=2.故选C.【分析】方程利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.9、【答案】B【考点】根的判别式,抛物线与x轴的交点,一次函数的性质【解析】【解答】解:①当k﹣3≠0时,(k﹣3)x2+2x+1=0,k ≤4;②当k ﹣3=0时,y=2x+1,与x 轴有交点. 故选B .【分析】分为两种情况:①当k ﹣3≠0时,(k ﹣3)x 2+2x+1=0,求出△=b 2﹣4ac=﹣4k+16≥0的解集即可;②当k ﹣3=0时,得到一次函数y=2x+1,与x 轴有交点;即可得到答案. 10、【答案】B【考点】一元二次方程的应用【解析】【解答】解:设每千克橙降应降价x 元. 根据题意,得 (60﹣x ﹣40)(100+ ×20)=2240.化简,得 x 2﹣10x+24=0 解得:x 1=4,x 2=6, ∵为减少库存,∴每千克脐橙应降价6元. 故选:B .【分析】设每千克脐橙降价x 元,利用销售量×每件利润=2240元列出方程求解即可. 二、填空题11、【答案】x 1=0,x 2=3【考点】解一元二次方程-因式分解法 【解析】【解答】由原方程,得 x 2-3x=0, 则x (x-3)=0, 解得x 1=0,x 2=3.【分析】先移项,然后通过提取公因式x 对等式的左边进行因式分解. 12、【答案】2 【考点】一元二次方程的解 【解析】【解答】解:∵3(x ﹣1)(x ﹣m )=0, ∴x ﹣1=0,x ﹣m=0, ∴x 1=1,x 2=m ,∵关于x 的一元二次方程3(x ﹣1)(x ﹣m )=0的两个根是1和2, ∴m=2, 故答案为:2.【分析】根据已知方程即可得出m=2,得出答案为即可. 13、【答案】102+(x ﹣5+1)2=x2【考点】一元二次方程的定义,一元二次方程的应用 【解析】【解答】解:设绳索长OA=OB=x 尺,故答案为:102+(x﹣5+1)2=x2.【分析】设绳索有x尺长,此时绳索长,向前推出的10尺,和秋千的上端为端点,垂直地面的线可构成直角三角形,根据勾股定理列出方程.14、【答案】5【考点】解一元二次方程-配方法【解析】【解答】解:方程x2+4x+1=0,移项得:x2+4x=﹣1,配方得:x2+4x+4=3,即(x+2)2=3,∴a=2,b=3,则a+b=5,故答案为:5【分析】方程配方得到结果,确定出a与b的值,即可求出a+b的值.15、【答案】-2【考点】根与系数的关系【解析】【解答】解:设关于x的方程x2+3x+a=0的两根分别为m、n,由已知得:{m+n=−3m=−1 ,解得:n=﹣2.故答案为:﹣2.【分析】设关于x的方程x2+3x+a=0的两根分别为m、n,由根与系数的关系可得出m+n=﹣3,结合m=﹣1,即可得出结论.16、【答案】3【考点】根与系数的关系【解析】【解答】解:设方程另一个根为x1,根据题意得﹣2•x1=﹣6,所以x1=3.故答案为3.【分析】根据根与系数的关系得到﹣2•x1=﹣6,然后解一次方程即可.17、【答案】﹣4【考点】根的判别式【解析】【解答】解:根据题意得△=42﹣4(﹣k)≥0,解得k≥﹣4,所以k的最小值为﹣4.故答案为﹣4.【分析】根据判别式的意义得到△=42﹣4(﹣k)≥0,然后解不等式确定k的范围,再找出k的最小值即可.18、【答案】5【考点】一元二次方程的解【解析】【解答】解:把x=1代入方程得a+1﹣6=0,解得a=5.故答案为5.三、解答题19、【答案】相同点:①都是一元二次方程;②都化成了一元二次方程的一般形式;③二次项系数均为1;④一次项系数均为2;⑤常数项的绝对值相等;⑥都是整系数方程等.不同点:①常数项符号相反;②前者方程左边可因式分解,后者实数范围内不能分解【考点】一元二次方程的定义【解析】【解答】相同点:①都是一元二次方程;②都化成了一元二次方程的一般形式;③二次项系数均为1;④一次项系数均为2;⑤常数项的绝对值相等;⑥都是整系数方程等.不同点:①常数项符号相反;②前者方程左边可因式分解,后者实数范围内不能分解【分析】从一元二次方程的概念、系数等进行比较.20、【答案】解:设垂直于墙的一边为x米,得:x(58﹣2x)=200解得:x1=25,x2=4∴另一边为8米或50米.答:当矩形长为25米是宽为8米,当矩形长为50米是宽为4米.【考点】一元二次方程的应用【解析】【分析】设垂直于墙的一边为x米,则邻边长为(58﹣2x),利用矩形的面积公式列出方程并解答.21、【答案】解:把x=m代入方程x2﹣x﹣1=0可得:m2﹣m﹣1=0,即m2﹣m=1,所以5m2﹣5m+2008=5(m2﹣m)+2008=5+2008=2013.【考点】一元二次方程的解【解析】【分析】由m是方程x2﹣x﹣1=0的一个根,将x=m代入方程得到关于m的等式,变形后即可求出所求式子的值.由题意得,=,解得:x=1200,经检验x=1200是原方程的根,则x+300=1500,答:每B型空气净化器、每台A型空气净化器的进价分别为1200元,1500元;(2)设B型空气净化器的售价为x元,根据题意得;(x﹣1200)(4+)=3200,解得:x=1600,答:如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为1600元.【考点】一元二次方程的应用,分式方程的应用【解析】【分析】(1)设每台B种空气净化器为x元,A种净化器为(x+300)元,根据用6000元购进B种空气净化器的数量与用7500元购进A种空气净化器的数量相同,列方程求解;(2)根据总利润=单件利润×销量列出一元二次方程求解即可.23、【答案】解:方程x2+3=4,x2+2x+1=0,x+y=5不是一元一次方程;x2+3=4和x2+2x+1=0是一元二次方程;x+y=5是二元一次方程.【考点】一元一次方程的定义,一元二次方程的定义【解析】【分析】根据一元一次方程的定义,一元二次方程的定义,二元一次方程的定义进行求解.24、【答案】解:由题意,得m2+1=2且m﹣1≠0,解得m=﹣1.【考点】一元二次方程的定义【解析】【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.。

相关文档
最新文档