2014高考数学一轮 一课双测A B精练(五十五)几何概型 文

合集下载

2014高考数学一轮 一课双测A B精练(三十三)数列的综合应用 文

2014高考数学一轮 一课双测A B精练(三十三)数列的综合应用 文

2014高考数学(文)一轮:一课双测A+B精练(三十三) 数列的综合应用1.数列{a n}是公差不为0的等差数列,且a1,a3,a7为等比数列{b n}中连续的三项,则数列{b n}的公比为( )A. 2 B.4C.2 D.1 22.已知等差数列{a n}的前n项和为S n,S9=-36,S13=-104,等比数列{b n}中,b5=a5,b7=a7,则b6的值为( )A.±4 2 B.-4 2C.4 2 D.无法确定3.已知数列{a n},{b n}满足a1=1且a n,a n+1是函数f(x)=x2-b n x+2n的两个零点,则b10等于( )A.24 B.32C.48 D.644.列,那么x+y+z的值为( )A.1 B.2C.3 D.45.(2011·上海高考)设{a n}是各项为正数的无穷数列,A i是边长为a i,a i+1的矩形的面积(i=1,2,…),则{A n}为等比数列的充要条件为( )A.{a n}是等比数列B.a1,a3,…,a2n-1,…或a2,a4,…,a2n,…是等比数列C.a1,a3,…,a2n-1,…和a2,a4,…,a2n,…均是等比数列D.a1,a3,…,a2n-1,…和a2,a4,…,a2n,…均是等比数列,且公比相同6.已知数列{a n }满足3a n +1+a n =4且a 1=9,其前n 项之和为S n ,则满足不等式|S n -n -6|<1125的最小整数n 是( )A .5B .6C .7D .87.等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则等比数列{a n }的公比为________.8.(2011·陕西高考)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米.开始时需将树苗集中放置在某一树坑旁边.使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为________米.9.(2012·安徽模拟)在数列{a n }中,若a 2n -a 2n -1=p (n ≥2,n ∈N *,p 为常数),则称{a n }为“等方差数列”.下列是对“等方差数列”的判断:①若{a n }是等方差数列,则{a 2n }是等差数列;②已知数列{a n }是等方差数列,则数列{a 2n }是等方差数列. ③{(-1)n}是等方差数列;④若{a n }是等方差数列,则{a kn }(k ∈N *,k 为常数)也是等方差数列; 其中正确命题的序号为________.10.已知数列{a n }的前n 项和为S n ,且S n =n 2,数列{b n }为等比数列,且首项b 1=1,b 4=8.(1)求数列{a n },{b n }的通项公式;(2)若数列{c n }满足c n =ab n ,求数列{c n }的前n 项和T n .11.已知各项均为正数的数列{a n }满足:a 2n +1=2a 2n +a n a n +1,且a 2+a 4=2a 3+4,其中n ∈N *.(1)求数列{a n }的通项公式; (2)设数列{b n }满足:b n =na n2n +12n,是否存在正整数m ,n (1<m <n ),使得b 1,b m ,b n成等比数列?若存在,求出所有的m ,n 的值,若不存在,请说明理由.12.设同时满足条件:①b n +b n +22≥b n +1;②b n ≤M (n ∈N *,M 是常数)的无穷数列{b n }叫“嘉文”数列.已知数列{a n }的前n 项和S n 满足S n =aa -1(a n -1)(a 为常数,且a ≠0,a ≠1).(1)求数列{a n }的通项公式;(2)设b n =2S na n+1,若数列{b n }为等比数列,求a 的值,并证明数列⎩⎨⎧⎭⎬⎫1b n 为“嘉文”数列.1.设f (x )是定义在R 上恒不为零的函数,对任意实数x ,y ∈R ,都有f (x )f (y )=f (x +y ),若a 1=12,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围是( )A.⎣⎢⎡⎭⎪⎫12,2B.⎣⎢⎡⎦⎥⎤12,2C.⎣⎢⎡⎭⎪⎫12,1D.⎣⎢⎡⎦⎥⎤12,1 2.(2012·安庆模拟)设关于x 的不等式x 2-x <2nx (n ∈N *)的解集中整数的个数为a n ,数列{a n }的前n 项和为S n ,则S 100的值为________.3.祖国大陆允许台湾农民到大陆创业以来,在11个省区设立了海峡两岸农业合作试验区和台湾农民创业园,台湾农民在那里申办个体工商户可以享受“绿色通道”的申请、受理、审批一站式服务,某台商到大陆一创业园投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,以后每年增加4万美元,每年销售蔬菜收入50万美元,设f (n )表示前n 年的纯收入.(f (n )=前n 年的总收入-前n 年的总支出-投资额)(1)从第几年开始获取纯利润?(2)若干年后,该台商为开发新项目,有两种处理方案:①年平均利润最大时以48万美元出售该厂;②纯利润总和最大时,以16万美元出售该厂,问哪种方案较合算?[答 题 栏]答 案2014高考数学(文)一轮:一课双测A+B 精练(三十三)A 级1.C 2.A 3.D 4.B5.选D ∵A i =a i a i +1,若{A n }为等比数列,则A n +1A n =a n +1a n +2a n a n +1=a n +2a n 为常数,即A 2A 1=a 3a 1,A 3A 2=a 4a 2,…. ∴a 1,a 3,a 5,…,a 2n -1,…和a 2,a 4,…,a 2n ,…成等比数列,且公比相等.反之,若奇数项和偶数项分别成等比数列,且公比相等,设为q ,则A n +1A n =a n +2a n=q ,从而{A n }为等比数列.6.选C 由递推式变形得 3(a n +1-1)=-(a n -1),则a n -1=8·⎝ ⎛⎭⎪⎫-13n -1,所以|S n-n -6|=|a 1-1+a 2-1+…+a n-1-6|⎪⎪⎪⎪⎪⎪8⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13n1+13-6=6×⎝ ⎛⎭⎪⎫13n<1125,即3n -1>250,所以满足条件的最小整数n 是7. 7.解析:设等比数列{a n }的公比为q (q ≠0),由4S 2=S 1+3S 3,得4(a 1+a 1q )=a 1+3(a 1+a 1q +a 1q 2),即3q 2-q =0, 故q =13.答案:138.解析:当放在最左侧坑时,路程和为2×(0+10+20+…+190);当放在左侧第2个坑时,路程和为2×(10+0+10+20+…+180)(减少了360米);当放在左侧第3个坑时,路程和为2×(20+10+0+10+20+…+170)(减少了680米);依次进行,显然当放在中间的第10、11个坑时,路程和最小,为2×(90+80+…+0+10+20+…+100)=2 000米.答案:2 0009.解析:对于①,由等方差数列的定义可知,{a 2n }是公差为p 的等差数列,故①正确.对于②,取a n =n ,则数列{a n }是等方差数列,但数列{a 2n }不是等方差数列,故②错.对于③,因为[(-1)n ]2-[(-1)n -1]2=0(n ≥2,n ∈N *)为常数,所以{(-1)n}是等方差数列,故③正确.对于④,若a 2n -a 2n -1=p (n ≥2,n ∈N *),则a 2kn -a 2k n -1=(a 2kn -a 2kn -1)+(a 2kn -1-a 2kn -2)+…+(a 2kn -k +1-a 2k n -1)=kp 为常数,故④正确.答案:①③④10.解:(1)∵数列{a n }的前n 项和为S n ,且S n =n 2, ∴当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1. 当n =1时,a 1=S 1=1亦满足上式, 故a n =2n -1(n ∈N *).又数列{b n }为等比数列,设公比为q , ∵b 1=1,b 4=b 1q 3=8,∴q =2. ∴b n =2n -1(n ∈N *).(2)c n =ab n =2b n -1=2n-1.T n =c 1+c 2+c 3+…+c n =(21-1)+(22-1)+…+(2n -1)=(21+22+…+2n )-n =21-2n1-2-n .所以T n =2n +1-2-n .11.解:(1)因为a 2n +1=2a 2n +a n a n +1, 即(a n +a n +1)(2a n -a n +1)=0. 又a n >0,所以2a n -a n +1=0, 即2a n =a n +1.所以数列{a n }是公比为2的等比数列.由a 2+a 4=2a 3+4,得2a 1+8a 1=8a 1+4,解得a 1=2. 故数列{a n }的通项公式为a n =2n(n ∈N *). (2)因为b n =na n2n +12n=n2n +1, 所以b 1=13,b m =m 2m +1,b n =n2n +1.若b 1,b m ,b n 成等比数列, 则⎝ ⎛⎭⎪⎫m 2m +12=13⎝ ⎛⎭⎪⎫n 2n +1, 即m 24m 2+4m +1=n 6n +3.由m 24m 2+4m +1=n6n +3,可得3n =-2m 2+4m +1m2, 所以-2m 2+4m +1>0, 从而1-62<m <1+62. 又n ∈N *,且m >1,所以m =2, 此时n =12.故当且仅当m =2,n =12时,b 1,b m ,b n 成等比数列. 12.解:(1)因为S 1=aa -1(a 1-1)=a 1,所以a 1=a .当n ≥2时,a n =S n -S n -1=a a -1(a n -a n -1),整理得a na n -1=a ,即数列{a n }是以a 为首项,a为公比的等比数列.所以a n =a · a n -1=a n.(2)由(1)知,b n =2×aa -1a n -1a n +1=3a -1a n -2aa -1a n,(*)由数列{b n }是等比数列,则b 22=b 1·b 3,故⎝ ⎛⎭⎪⎫3a +2a 2=3·3a 2+2a +2a 2,解得a =13,再将a =13代入(*)式得b n =3n,故数列{b n }为等比数列,所以a =13.由于1b n +1b n +22=13n +13n +22>213n ·13n +22=13n +1=1b n +1,满足条件①;由于1b n =13n ≤13,故存在M ≥13满足条件②.故数列⎩⎨⎧⎭⎬⎫1b n 为“嘉文”数列.B 级1.选C 由题意得a n +1=f (n +1)=f (1)f (n )=12a n ,故S n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=1-⎝ ⎛⎭⎪⎫12n .则数列{a n }的前n 项和的取值范围是⎣⎢⎡⎭⎪⎫12,1.2.解析:由x 2-x <2nx (n ∈N *), 得0<x <2n +1, 因此知a n =2n . 故S 100=1002+2002=10 100.答案:10 1003.解:由题意知,每年的经费是以12为首项,4为公差的等差数列. 则f (n )=50n -⎣⎢⎡⎦⎥⎤12n +n n -12×4-72=-2n 2+40n -72.(1)获取纯利润就是要求f (n )>0,故有-2n 2+40n -72>0,解得2<n <18. 又n ∈N *,故从第三年开始获利. (2)①平均利润为f n n =40-2⎝⎛⎭⎪⎫n +36n ≤16,当且仅当n =6时取等号.故此方案获利6×16+48=144万美元,此时n =6.②f (n )=-2n 2+40n -72=-2(n -10)2+128,当n =10时,f (n )max =128.故此方案共获利128+16=144万美元.比较两种方案,在获利相同的前提下,第①种方案只需6年,第②种方案需要10年,故选择第①种方案.。

2014高考数学(理)一轮:一课双测A+B精练(六十二) 古典概型

2014高考数学(理)一轮:一课双测A+B精练(六十二)    古典概型

高考数学(理)一轮:一课双测A+B 精练(六十二) 古 典 概 型1.(2013·惠州调研)一个袋中装有2个红球和2个白球,现从袋中取出1个球,然后放回袋中再取出1个球,则取出的2个球同色的概率为( ) A.12 B.13 C.14D.252.(2012·鸡西模拟)在40根纤维中,有12根的长度超过30 mm ,从中任取一根,取到长度超过30 mm 的纤维的概率是( ) A.34 B.310C.25D .以上都不对3.(2013·宿州质检)一颗质地均匀的正方体骰子,其六个面上的点数分别为1、2、3、4、5、6,将这一颗骰子连续抛掷三次,观察向上的点数,则三次点数依次构成等差数列的概率为( ) A.112 B.118 C.136D.71084.已知某车间在三天内,每天生产10件某产品,其中第一天,第二天分别生产出了1件,n 件次品,而质检部每天要从生产的10件产品中随意抽取4件进行检查,若发现有次品,则当天的产品不能通过.则第一天通过检查的概率为( ) A.25 B.35 C.23D.675.(2012·宁波模拟)设a ∈{1,2,3,4},b ∈{2,4,8,12},则函数f (x)=x3+ax -b 在区间[1,2]上有零点的概率为( ) A.12B.58C.1116D.346.某种饮料每箱装6听,其中有4听合格,2听不合格,现质检人员从中随机抽取2听进行检测,则检测出至少有一听不合格饮料的概率是( ) A.115 B.35 C.815D.14157.(2012·上海高考)三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是________(结果用最简分数表示).8.(2012·重庆高考)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其它三门艺术课各1节,则在课表上的相邻两节文化课之间至少间隔1节艺术课的概率为________(用数字作答). 9.(2012·江苏高考)现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________.10.箱中有a 个正品,b 个次品,从箱中随机连续抽取3次,在以下两种抽样方式: (1)每次抽样后不放回;(2)每次抽样后放回.求取出的3个全是正品的概率. 11.(2012·济南模拟)将一个质地均匀的正方体(六个面上分别标有数字0,1,2,3,4,5)和一个正四面体(四个面分别标有数字1,2,3,4)同时抛掷1次,规定“正方体向上的面上的数字为a ,正四面体的三个侧面上的数字之和为b ”.设复数为z =a +bi. (1)若集合A ={z|z 为纯虚数},用列举法表示集合A ;(2)求事件“复数在复平面内对应的点(a ,b)满足a2+(b -6)2≤9”的概率. 12.(2012·福州模拟)已知A 、B 、C 三个箱子中各装有2个完全相同的球,每个箱子里的球,有一个球标着号码1,另一个球标着号码2.现从A 、B 、C 三个箱子中各摸出1个球.(1)若用数组(x ,y ,z)中的x ,y ,z 分别表示从A 、B 、C 三个箱子中摸出的球的号码,请写出数组(x ,y ,z)的所有情形,并回答一共有多少种;(2)如果请您猜测摸出的这三个球的号码之和,猜中有奖,那么猜什么数获奖的可能性最大?请说明理由.1.(2012·广东高考)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ) A.49 B.13 C.29D.192.设连续掷两次骰子得到的点数分别为m 、n 则直线y =mn x 与圆(x -3)2+y2=1相交的概率为________.3.某中学高三(1)班共有学生50名,其中男生30名、女生20名,采用分层抽样的方法选出5人参加一个座谈会.(1)求选出的男、女同学的人数;(2)座谈会结束后,决定选出2名同学作典型发言,方法是先从5人中选出1名同学发言,发言结束后再从剩下的同学中选出1名同学发言,求选出的2名同学中恰好有1名为女同学的概率.答 案高考数学(理)一轮:一课双测A+B 精练(六十二)A 级1.选A 把红球标记为红1、红2,白球标记为白1、白2,本试验的基本事件共有16个,其中2个球同色的事件有8个:红1,红1,红1、红2,红2、红1,红2、红2,白1、白1,白1、白2,白2、白1,白2、白2,故所求概率为P =816=12.2.选B 在40根纤维中,有12根的长度超过30 mm ,即基本事件总数为40,且它们是等可能发生的,所求事件包含12个基本事件,故所求事件的概率为310.3.选A 基本事件总数为6×6×6,事件“三次点数依次成等差数列”包含的基本事件有(1,1,1),(1,2,3),(3,2,1),(2,2,2),(1,3,5),(5,3,1),(2,3,4),(4,3,2),(3,3,3),(2,4,6),(6,4,2),(3,4,5),(5,4,3),(4,4,4),(4,5,6),(6,5,4),(5,5,5),(6,6,6)共18个,所求事件的概率P =186×6×6=112.4.选B 因为随意抽取4件产品检查是随机事件,而第一天有1件次品,所以第一天通过检查的概率P =C49C410=35.5.选C 因为f(x)=x3+ax -b ,所以f ′(x)=3x2+a.因为a ∈{1,2,3,4},因此f ′(x)>0,所以函数f(x)在区间[1,2]上为增函数.若存在零点,则⎩⎪⎨⎪⎧f 1≤0,f 2≥0,解得a +1≤b ≤8+2a.因此可使函数在区间[1,2]上有零点的有a =1,2≤b ≤10,故b =2,b =4,b =8;a =2,3≤b ≤12,故b =4,b=8,b =12;a =3,4≤b ≤14,故b =4,b =8,b =12;a =4,5≤b ≤16,故b =8,b =12.根据古典概型可得有零点的概率为1116.6.选B 从“6听饮料中任取2听饮料”这一随机试验中所有可能出现的基本事件共有15个,而“抽到不合格饮料”含有9个基本事件,所以检测到不合格饮料的概率为P =915=35. 7.解析:三位同学每人选择三项中的两项有C23C23C23=3×3×3=27(种)选法,其中有且仅有两人所选项目完全相同的有C23C13C12=3×3×2=18(种)选法. 故所求概率为P =1827=23.答案:238.解析:基本事件是对这6门课排列,故基本事件的个数为A66.“课表上的相邻两节文化课之间至少间隔1节艺术课”就是“任何两节文化课不能相邻”,利用“插空法”,可得其排列方法种数为A33A34.根据古典概型的概率计算公式可得事件“课表上的相邻两节文化课之间至少间隔1节艺术课”发生的概率为A33A34A66=15.答案:159.解析:由题意得an =(-3)n -1,易知前10项中奇数项为正,偶数项为负,所以小于8的项为第一项和偶数项,共6项,即6个数,所以P =610=35. 答案:3510.解:(1)法一:若把不放回抽样3次看做有顺序,则从a +b 个产品中不放回抽样3次共有A3a +b 种方法,从a 个正品中不放回抽样3次共有A3a 种方法,所以抽出3个正品的概率P =A3aA3a +b. 法二:若不放回抽样3次看做无顺序,则从a +b 个产品中不放回抽样3次共有C3a +b 种方法,从a 个正品中不放回抽样3次共有C3a 种方法,所以取出3个正品的概率P =C3a C3a +b =A3a A3a +b .(2)从a +b 个产品中有放回地抽取3次,每次都有a +b 种方法,所以共有(a +b)3种不同的方法,而3个全是正品的抽法共有a3种,所以3个全是正品的概率P =a3a +b 3=⎝⎛⎭⎫a a +b 3.11.解:(1)A ={6i,7i,8i,9i}.(2)满足条件的基本事件的个数为24.设满足“复数在复平面内对应的点(a ,b)满足a2+(b -6)2≤9”的事件为B. 当a =0时,b =6,7,8,9满足a2+(b -6)2≤9; 当a =1时,b =6,7,8满足a2+(b -6)2≤9; 当a =2时,b =6,7,8满足a2+(b -6)2≤9; 当a =3时,b =6满足a2+(b -6)2≤9.即B 为(0,6),(0,7),(0,8),(0,9),(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6)共计11个. 所以所求概率P =1124.12.解:(1)数组(x ,y ,z)的所有情形为(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1),(2,2,2),共8种.(2)记“所摸出的三个球号码之和为i ”为事件Ai(i =3,4,5,6),易知,事件A3包含有1个基本事件,事件A4包含有3个基本事件,事件A5包含有3个基本事件,事件A6包含有1个基本事件,所以,P(A3)=18,P(A4)=38,P(A5)=38,P(A6)=18.故所摸出的两球号码之和为4或5的概率相等且最大.故猜4或5获奖的可能性最大. B 级1.选D 由个位数与十位数之和为奇数,则个位数与十位数分别为一奇一偶.若个位数为奇数时,这样的两位数共有C15C14=20个;若个位数为偶数时,这样的两位数共有C15C15=25个;于是,个位数与十位数之和为奇数的两位数共有20+25=45个.其中,个位数是0的有C15×1=5个.于是,所求概率为545=19.2.解析:由题意知,m ∈{1,2,3,4,5,6},n ∈{1,2,3,4,5,6},故(m ,n)所有可能的取法共36种.由直线与圆的位置关系得,d =|3m|m2+n2<1,即m n <24,共有13,14,15,16,26,5种,所以直线y =m n x 与圆(x -3)2+y2=1相交的概率为536. 答案:5363.解:(1)男同学人数为30×550=3,女同学人数为20×550=2.即应抽取男同学3名,女同学2名.(2)先从5人中选1名同学发言,再从剩下的同学中选1名同学发言有A15·A14=20种方法,其中恰有1名女同学的选法有A13·A12+A12·A13=12种. 故所求的概率P =1220=35.。

2014高考数学(理)一轮:一课双测A+B精练(一) 集合

2014高考数学(理)一轮:一课双测A+B精练(一)    集合

高考数学(理)一轮:一课双测A+B 精练(一) 集 合1.(2012·新课标全国卷)已知集合A ={x|x2-x -2<0},B ={x|-1<x<1},则( )A .AB B .B AC .A =BD .A ∩B =∅2.(2012·山西四校联考)已知集合M ={0,1},则满足M ∪N ={0,1,2}的集合N 的个数是( )A .2B .3C .4D .83.设集合P ={3,log2a},Q ={a ,b},若P ∩Q ={0},则P ∪Q =( )A .{3,0}B .{3,0,1}C .{3,0,2}D .{3,0,1,2}4.(2012·辽宁高考)已知全集U ={0,1,2,3,4,5,6,7,8,9},集合A ={0,1,3,5,8},集合B ={2,4,5,6,8},则(∁UA)∩(∁UB)=( )A .{5,8}B .{7,9}C .{0,1,3}D .{2,4,6}5.(2013·合肥质检)已知集合A ={-2,-1,0,1,2},集合B ={x ∈Z||x|≤a},则满足A B 的实数a 的一个值为( )A .0B .1C .2D .36.已知全集U =R ,集合A ={x|3≤x<7},B ={x|x2-7x +10<0},则∁U(A ∩B)=( )A .(-∞,3)∪(5,+∞)B .(-∞,3]∪[5,+∞)C .(-∞,3)∪[5,+∞)D .(-∞,3]∪(5,+∞)7.(2012·大纲全国卷)已知集合A ={1,3,m},B ={1,m},A ∪B =A ,则m =( )A .0或 3B .0或3C .1或 3D .1或38.设S ={x|x<-1,或x>5},T ={x|a<x<a +8},S ∪T =R ,则a 的取值范围是( )A .(-3,-1)B .[-3,-1]C .(-∞,-3]∪(-1,+∞)D .(-∞,-3)∪(-1,+∞)9.若集合U =R ,A ={x|x +2>0},B ={x|x ≥1},则A ∩(∁UB)=________.10.(2012·武汉适应性训练)已知A ,B 均为集合U ={1,2,3,4,5,6}的子集,且A ∩B ={3},(∁UB)∩A ={1},(∁UA)∩(∁UB)={2,4},则B ∩(∁UA)=________.11.已知R 是实数集,M =⎩⎨⎧x ⎪⎪⎭⎬⎫2x <1,N ={y|y =x -1},则N ∩(∁RM)=________. 12.(2012·吉林模拟)已知U =R ,集合A ={x|x2-x -2=0},B ={x|mx +1=0},B ∩(∁UA)=∅,则m =________.13.(2012·苏北四市调研)已知集合A ={x|x2+a ≤(a +1)x ,a ∈R},存在a ∈R ,使得集合A 中所有整数元素的和为28,则实数a 的取值范围是________.14.(2012·安徽名校模拟)设集合Sn ={1,2,3,…,n},若X ⊆Sn ,把X 的所有元素的乘积称为X 的容量(若X 中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若X 的容量为奇(偶)数,则称X 为Sn 的奇(偶)子集.则S4的所有奇子集的容量之和为________.1.(2012·杭州十四中月考)若集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪y =lg x ,110≤x ≤10,B ={-2,-1,1,2},全集U =R ,则下列结论正确的是( )A .A ∩B ={-1,1} B .(∁UA)∪B =[-1,1]C .A ∪B =(-2,2)D .(∁UA)∩B =[-2,2]2.设A 是自然数集的一个非空子集,对于k ∈A ,如果k2∉A ,且k ∉A ,那么k 是A 的一个“酷元”,给定S ={x ∈N|y =lg(36-x2)},设M ⊆S ,且集合M 中的两个元素都是“酷元”,那么这样的集合M 有( )A .3个B .4个C .5个D .6个3.(2013·河北质检)已知全集U =R ,集合M ={x|x +a ≥0},N ={x|log2(x -1)<1},若M ∩(∁UN)={x|x =1,或x ≥3},那么( )A .a =-1B .a ≤1C .a =1D .a ≥14.给定集合A ,若对于任意a ,b ∈A ,有a +b ∈A ,且a -b ∈A ,则称集合A 为闭集合,给出如下三个结论:①集合A ={-4,-2,0,2,4}为闭集合;②集合A ={n|n =3k ,k ∈Z}为闭集合;③若集合A1,A2为闭集合,则A1∪A2为闭集合.其中正确结论的序号是________.5.已知集合A ={x|x2-2x -3≤0,x ∈R},B ={x|m -2≤x ≤m +2}.(1)若A ∩B =[1,3],求实数m 的值;(2)若A ⊆∁RB ,求实数m 的取值范围.6.(2012·衡水模拟)设全集I =R ,已知集合M ={x|(x +3)2≤0},N ={x|x2+x -6=0}.(1)求(∁IM)∩N ;(2)记集合A =(∁IM)∩N ,已知集合B ={x|a -1≤x ≤5-a ,a ∈R},若B ∪A =A ,求实数a 的取值范围.答 案高考数学(理)一轮:一课双测A+B 精练(一)A 级1.B 2.C 3.B 4.B5.选D 当a =0时,B ={0};当a =1时,B ={-1,0,1};当a =2时,B ={-2,-1,0,1,2};当a =3时,B ={-3,-2,-1,0,1,2,3},显然只有a =3时满足条件.6.选C x2-7x +10<0⇔(x -2)·(x -5)<0⇒2<x<5,A ∩B ={x|3≤x<5},故∁U(A ∩B)=(-∞,3)∪[5,+∞).7.选B 法一:∵A ∪B =A ,∴B ⊆A.又A ={1,3,m},B ={1,m},∴m =3或m =m. 由m =m 得m =0或m =1.但m =1不符合集合中元素的互异性,故舍去,故m =0或m =3.法二:∵B ={1,m},∴m ≠1,∴可排除选项C 、D.又当m =3时,A ={1,3,3},B ={1,3},满足A ∪B ={1,3,3}=A ,故选B.8.选A 在数轴上表示两个集合,因为S ∪T =R ,由图可得⎩⎪⎨⎪⎧a<-1,a +8>5,解得-3<a<-1. 9.解析:由题意得∁UB =(-∞,1),又因为A ={x|x +2>0}={x|x>-2},于是A ∩(∁UB)=(-2,1).答案:(-2,1)10.解析:依题意及韦恩图得,B ∩(∁UA)={5,6}.答案:{5,6}11.解析:M ={x|x<0,或x>2},所以∁RM =[0,2],又N =[0,+∞),所以N ∩(∁RM)=[0,2].答案:[0,2]12.解析:A ={-1,2},B =∅时,m =0;B ={-1}时,m =1;B ={2}时,m =-12.答案:0,1,-1213.解析:不等式x2+a ≤(a +1)x 可化为(x -a)(x -1)≤0,由题意知不等式的解集为{x|1≤x ≤a}.A中所有整数元素构成以1为首项,1为公差的等差数列,其前7项和为7×1+72=28,所以7≤a<8,即实数a 的取值范围是[7,8).答案:[7,8)14.解析:∵S4={1,2,3,4},∴X =∅,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}.其中是奇子集的为X ={1},{3},{1,3},其容量分别为1,3,3,所以S4的所有奇子集的容量之和为7.答案:7B 级1.选A ∵x ∈⎣⎡⎦⎤110,10,∴y ∈[-1,1], ∴A ∩B ={-1,1}.2.选C 由36-x2>0,解得-6<x<6.又因为x ∈N ,所以S ={0,1,2,3,4,5}.依题意,可知若k 是集合M 的“酷元”是指k2与k 都不属于集合M.显然k =0,1都不是“酷元”. 若k =2,则k2=4;若k =4,则k =2.所以2与4不同时在集合M 中,才能成为“酷元”. 显然3与5都是集合S 中的“酷元”.综上,若集合M 中的两个元素都是“酷元”,则这两个元素的选择可分为两类:(1)只选3与5,即M ={3,5};(2)从3与5中任选一个,从2与4中任选一个,即M ={3,2}或{3,4}或{5,2}或{5,4}. 所以满足条件的集合M 共有5个.3.选A 由题意得M ={x|x ≥-a},N ={x|1<x<3},所以∁UN ={x|x ≤1,或x ≥3},又M ∩(∁UN)={x|x =1,或x ≥3},因此-a =1,a =-1.4.解析:①中,-4+(-2)=-6∉A ,所以不正确;②中设n1,n2∈A ,n1=3k1,n2=3k2,k1,k2∈Z ,则n1+n2∈A ,n1-n2∈A ,所以②正确;③令A1={-4,0,4},A2={-2,0,2},则A1,A2为闭集合,但A1∪A2不是闭集合,所以③不正确.答案:②5.解:A ={x|-1≤x ≤3},B ={x|m -2≤x ≤m +2}.(1)∵A ∩B =[1,3],∴⎩⎪⎨⎪⎧m -2=1,m +2≥3, 得m =3.(2)∁RB ={x|x <m -2,或x >m +2}.∵A ⊆∁RB ,∴m -2>3或m +2<-1.∴m >5或m <-3.即m 的取值范围为(-∞,-3)∪(5,+∞).6.解:(1)∵M ={x|(x +3)2≤0}={-3},N ={x|x2+x -6=0}={-3,2},∴∁IM ={x|x ∈R 且x ≠-3},∴(∁IM)∩N ={2}.(2)A =(∁IM)∩N ={2},∵A ∪B =A ,∴B ⊆A ,∴B =∅或B ={2},当B =∅时,a -1>5-a ,∴a>3;当B ={2}时,⎩⎪⎨⎪⎧a -1=2,5-a =2,解得a =3, 综上所述,所求a 的取值范围为{a|a ≥3}.。

2014高考数学一轮:一课双测A+B精练----函数的图象

2014高考数学一轮:一课双测A+B精练----函数的图象

高考数学(理)一轮:一课双测A+B 精练(八) 函数的图象 1.函数f(x)=2x3的图象( )A .关于y 轴对称B .关于x 轴对称C .关于直线y =x 对称D .关于原点对称2.函数y =⎩⎪⎨⎪⎧x2,x<0,2x -1,x≥0的图象大致是( )3.(2012·北京海淀二模)为了得到函数y =12log2(x -1)的图象,可将函数y =log2x的图象上所有的点的( )A .纵坐标缩短到原来的12,横坐标不变,再向右平移1个单位长度B .纵坐标缩短到原来的12,横坐标不变,再向左平移1个单位长度C .横坐标伸长到原来的2倍,纵坐标不变,再向右平移1个单位长度D .横坐标伸长到原来的2倍,纵坐标不变,再向左平移1个单位长度4.(2011·陕西高考)设函数f(x)(x ∈R)满足f(-x)=f(x),f(x +2)=f(x),则y =f(x)的图象可能是( )5.(2012·新课标全国卷)已知函数f(x)=1ln x +1-x ,则y =f(x)的图象大致为( )6.(2011·天津高考)对实数a 和b ,定义运算“?”:a?b =⎩⎪⎨⎪⎧a ,a -b≤1,b ,a -b>1.设函数f(x)=(x2-2)?(x -x2),x ∈R.若函数y =f(x)-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A.(]-∞,-2∪⎝ ⎛⎭⎪⎫-1,32B.(]-∞,-2∪⎝ ⎛⎭⎪⎫-1,-34C.⎝ ⎛⎭⎪⎫-1,14∪⎝ ⎛⎭⎪⎫14,+∞D.⎝ ⎛⎭⎪⎫-1,-34∪⎣⎢⎡⎭⎪⎫14,+∞log 2f(x)的定7.已知函数f(x)的图象如图所示,则函数g(x)=义域是________.8.函数f(x)=x +1x图象的对称中心为________.9.如图,定义在[-1,+∞)上的函数f(x)的图象由一条线段及抛物线的一部分组成,则f(x)的解析式为________.10.已知函数f(x)=⎩⎪⎨⎪⎧3-x2,x ∈[-1,2],x -3,x ∈2,5].(1)在如图所示给定的直角坐标系内画出f(x)的图象; (2)写出f(x)的单调递增区间;(3)由图象指出当x 取什么值时f(x)有最值.11.若直线y =2a 与函数y =|ax -1|(a >0且a≠1)的图象有两个公共点,求a 的取值范围.12.已知函数f(x)的图象与函数h(x)=x +1x +2的图象关于点A(0,1)对称.(1)求函数f(x)的解析式;(2)若g(x)=f(x)+ax ,g(x)在区间(0,2]上的值不小于6,求实数a 的取值范围.1.(2013·威海质检)函数y =f(x)(x ∈R)的图象如图所示,下列说法正确的是( )①函数y =f(x)满足f(-x)=-f(x); ②函数y =f(x)满足f(x +2)=f(-x); ③函数y =f(x)满足f(-x)=f(x); ④函数y =f(x)满足f(x +2)=f(x). A .①③ B .②④ C .①② D .③④2.若函数f(x)的图象经过变换T 后所得图象对应函数的值域与函数f(x)的值域相同,则称变换T 是函数f(x)的同值变换.下面给出四个函数及其对应的变换T ,其中变换T 不属于函数f(x)的同值变换的是( )A .f(x)=(x -1)2,变换T 将函数f(x)的图象关于y 轴对称B .f(x)=2x -1-1,变换T 将函数f(x)的图象关于x 轴对称C .f(x)=2x +3,变换T 将函数f(x)的图象关于点(-1,1)对称D .f(x)=sin ⎝⎛⎭⎪⎫x +π3,变换T 将函数f(x)的图象关于点(-1,0)对称3.已知函数y =f(x)的定义域为R ,并对一切实数x ,都满足f(2+x)=f(2-x). (1)证明:函数y =f(x)的图象关于直线x =2对称;(2)若f(x)是偶函数,且x ∈[0,2]时,f(x)=2x -1,求x ∈[-4,0]时的f(x)的表达式.[答 题 栏]A 级1._________2._________3._________4._________5.__________6._________B 级1.______2.______7. __________ 8. __________ 9. __________答 案高考数学(理)一轮:一课双测A+B 精练(八) A 级1.D 2.B 3.A 4.B5.选 B 函数的定义域是(-1,0)∪(0,+∞),值域是(-∞,0),所以其图象为B. 6.选B由题意可知 f(x)==⎩⎪⎨⎪⎧x2-2,-1≤x≤32,x -x2,x<-1或x>32作出图象,由图象可知y =f(x)与y =c 有两个交点时,c≤-2或-1<c<-34,即函数y =f(x)-c 的图象与x 轴恰有两个公共点时实数c 的取值范围是(-∞,-2]∪⎝⎛⎭⎪⎫-1,-34.7.解析:当f(x)>0时,函数g(x)=log 2f(x)有意义, 由函数f(x)的图象知满足f(x)>0的x ∈(2,8]. 答案:(2,8]8.解析:f(x)=x +1x =1+1x ,把函数y =1x 的图象向上平移1个单位,即得函数f(x)的图象.由y =1x 的对称中心为(0,0),可得平移后的f(x)图象的对称中心为(0,1).答案:(0,1)9.解析:当-1≤x≤0时,设解析式为 y =kx +b ,则⎩⎪⎨⎪⎧-k +b =0,b =1,得⎩⎪⎨⎪⎧k =1,b =1.∴y =x +1.当x>0时,设解析式为y =a(x -2)2-1, ∵图象过点(4,0),∴0=a(4-2)2-1,得a =14.答案:f(x)=⎩⎪⎨⎪⎧x +1,-1≤x≤0,14x -22-1,x>010.解:(1)函数f(x)的图象如图所示. (2)由图象可知,函数f(x)的单调递增区间为[-1,0],[2,5]. (3)由图象知当x =2时,f(x)min =f(2)=-1, 当x =0时,f(x)max =f(0)=3.11.解:当0<a <1时,y =|ax -1|的图象如图1所示, 由已知得0<2a <1,即0<a <12.当a >1时,y =|ax -1|的图象如图2所示, 由已知可得0<2a <1,即0<a <12,但a >1,故a ∈∅.综上可知,a 的取值范围为⎝⎛⎭⎪⎫0,12.12.解:(1)设f(x)图象上任一点坐标为(x ,y),∵点(x ,y)关于点A(0,1)的对称点(-x,2-y)在h(x)的图象上, ∴2-y =-x +1-x +2,∴y =x +1x ,即f(x)=x +1x.(2)由题意g(x)=x +a +1x ,且g(x)=x +a +1x ≥6,x ∈(0,2].∵x ∈(0,2], ∴a +1≥x(6-x), 即a≥-x2+6x -1.令q(x)=-x2+6x -1,x ∈(0,2],q(x)=-x2+6x -1=-(x -3)2+8, ∴x ∈(0,2]时,q(x)max =q(2)=7, 故a 的取值范围为[7,+∞). B 级1.选C 由图象可知,函数f(x)为奇函数且关于直线x =1对称,所以f(1+x)=f(1-x),所以f[1+(x +1)]=f[1-(x +1)],即f(x +2)=f(-x).故①②正确. 2.选B 对于A ,与f(x)=(x -1)2的图象关于y 轴对称的图象对应的函数解析式为g(x)=(-x -1)2=(x +1)2,易知两者的值域都为[0,+∞);对于B ,函数f(x)=2x -1-1的值域为(-1,+∞),与函数f(x)的图象关于x 轴对称的图象对应的函数解析式为g(x)=-2x -1+1,其值域为(-∞,1);对于C ,与f(x)=2x +3的图象关于点(-1,1)对称的图象对应的函数解析式为2-g(x)=2(-2-x)+3,即g(x)=2x +3,易知值域相同;对于D ,与f(x)=sin ⎝ ⎛⎭⎪⎫x +π3的图象关于点(-1,0)对称的图象对应的函数解析式为g(x)=sin ⎝ ⎛⎭⎪⎫x -π3+2,其值域为[-1,1],易知两函数的值域相同.3.解:(1)证明:设P(x0,y0)是函数y =f(x)图象上任一点,则y0=f(x0),点P 关于直线x =2的对称点为P′(4-x0,y0).因为f(4-x0)=f(2+(2-x0))=f(2-(2-x0))=f(x0)=y0,所以P′也在y =f(x)的图象上,所以函数y =f(x)的图象关于直线x =2对称.(2)因为当x ∈[-2,0]时,-x ∈[0,2],所以f(-x)=-2x -1. 又因为f(x)为偶函数,所以f(x)=f(-x)=-2x -1,x ∈[-2,0]. 当x ∈[-4,-2]时,4+x ∈[0,2], 所以f(4+x)=2(4+x)-1=2x +7. 而f(4+x)=f(-x)=f(x),所以f(x)=2x +7,x ∈[-4,-2].所以f(x)=⎩⎪⎨⎪⎧2x +7,x ∈[-4,-2],-2x -1,x ∈[-2,0]. 2020-2-8。

高考数学文一轮:一课双测A+B精练五十五几何概型

高考数学文一轮:一课双测A+B精练五十五几何概型

高考数学(文)一轮:一课双测A+B 精练(五十五)几何概型1.(·北京模拟)在区间⎣⎡⎦⎤-π2,π2上随机取一个x ,sinx 的值介于-12与12之间的概率为( )A.13B.2π C.12D.232.(·辽宁高考)在长为12cm 的线段AB 上任取一点C.现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm2的概率为( )A.16B.13C.23D.453.(·滨州模拟)在区间[0,1]上任取两个数a ,b ,则函数f(x)=x2+ax +b2无零点的概率为( )A.12B.23C.34D.144.(·北京西城二模)已知函数f(x)=kx +1,其中实数k 随机选自区间[-2,1].∀x ∈[0,1],f(x)≥0的概率是( )A.13B.12C.23D.345.(·盐城摸底)在水平放置的长为5米的木杆上挂一盏灯,则悬挂点与木杆两端的距离都大于2米的概率为( )A.15B.25C.35D.126.(·沈阳四校联考)一只昆虫在边长分别为6,8,10的三角形区域内随机爬行,则其到三角形任一顶点的距离小于2的概率为( )1210C.π6D.π247.(·郑州模拟)若不等式组⎩⎪⎨⎪⎧y ≤x ,y ≥-x ,2x -y -3≤0表示的平面区域为M ,x2+y2≤1所表示的平面区域为N ,现随机向区域M 内抛一粒豆子,则豆子落在区域N 内的概率为________.8.(·孝感统考)如图所示,图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD 是边长为1的正方形.若向图2中虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,则此长方体的体积是________.9.(·宜春模拟)投镖游戏中的靶子由边长为1米的四方板构成,并将此板分成四个边长为12米的小方块.试验是向板中投镖,事件A 表示投中阴影部分,则事件A 发生的概率为________.10.已知|x|≤2,|y|≤2,点P 的坐标为(x ,y),求当x ,y ∈R 时,P 满足(x -2)2+(y -2)2≤4的概率.11.已知集合A =[-2,2],B =[-1,1],设M ={(x ,y)|x ∈A ,y ∈B},在集合M 内随机取出一个元素(x ,y).(1)求以(x ,y)为坐标的点落在圆x2+y2=1内的概率; (2)求以(x ,y)为坐标的点到直线x +y =0的距离不大于22的概率. 12.(·长沙模拟)已知向量a =(-2,1),b =(x ,y).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a ·b =-1的概率;(2)若x ,y 在连续区间[1,6]上取值,求满足a ·b <0的概率.1.在区间[0,π]上随机取一个数x ,则事件“sinx +3cosx ≤1”发生的概率为( ) A.14B.13232.有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________.3.(·晋中模拟)设AB =6,在线段AB 上任取两点(端点A 、B 除外),将线段AB 分成了三条线段.(1)若分成的三条线段的长度均为正整数,求这三条线段可以构成三角形的概率; (2)若分成的三条线段的长度均为正实数,求这三条线段可以构成三角形的概率. [答 题 栏]A 级1._________2._________3._________4._________5._________6._________B 级1.______2.______7.__________8.__________9.__________答 案高考数学(文)一轮:一课双测A+B 精练(五十五)A 级1.A2.C3.C4.C5.选A 如图,线段AB 长为5米,线段AC 、BD 长均为2米,线段CD 长为1米,满足题意的悬挂点E 在线段CD 上,故所求事件的概率P =15.6.选A 记昆虫所在三角形区域为△ABC ,且AB =6,BC =8,CA =10,则有AB2+BC2=CA2,AB ⊥BC ,该三角形是一个直角三角形,其面积等于12×6×8=24.在该三角形区域内,到三角形任一顶点的距离小于2的区域的面积等于A +B +C 2π×π×22=π2×22=2π,因此所求的概率等于2π24=π12.7.∵y =x 与y =-x 互相垂直, ∴M 的面积为3,而N 的面积为π4,所以概率为π43=π12.128.解析:设题图1长方体的高为h ,由几何概型的概率计算公式可知,质点落在长方体的平面展开图内的概率P =2+4h 2h +22h +1=14,解得h =3或h =-12(舍去), 故长方体的体积为1×1×3=3. 答案:39.解析:∵事件A 所包含的基本事件与阴影正方形中的点一一对应,事件组中每一个基本事件与大正方形区域中的每一个点一一对应.∴由几何概型的概率公式得P(A)=⎝ ⎛⎭⎪⎫12212=14. 答案:1410.解:如图,点P 所在的区域为正方形ABCD 的内部(含边界),满足(x -2)2+(y -2)2≤4的点的区域为以(2,2)为圆心,2为半径的圆面(含边界).故所求的概率P1=14π×224×4=π16.11.解:(1)集合M 内的点形成的区域面积S =8.因x2+y2=1的面积S1=π,故所求概率为P1=S1S =π8.(2)由题意|x +y|2≤22即-1≤x +y ≤1,形成的区域如图中阴影部分,面积S2=4,所求概率为P =S2S =12.12.解:(1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36个;由a ·b =-1有-2x +y =-1,所以满足a ·b =-1的基本事件为(1,1),(2,3),(3,5)共3个. 故满足a ·b =-1的概率为336=112.(2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x ,y)|1≤x ≤6,1≤y ≤6};满足a ·b <0的基本事件的结果为A ={(x ,y)|1≤x ≤6,1≤y ≤6,且-2x +y <0}; 画出图形,矩形的面积为S 矩形=25,阴影部分的面积为S 阴影=25-12×2×4=21,故满足a ·b <0的概率为2125.B 级1.选C 由sinx +3cosx ≤1得 2sin ⎝⎛⎭⎫x +π3≤1,即sin ⎝⎛⎭⎫x +π3≤12. 由于x ∈[0,π],故x +π3∈⎣⎢⎡⎦⎥⎤π3,4π3,因此当sin ⎝⎛⎭⎫x +π3≤12时,x +π3∈⎣⎢⎡⎦⎥⎤5π6,4π3,于是x ∈⎣⎡⎦⎤π2,π.由几何概型公式知事件“sinx +3cosx ≤1”发生的概率为P =π-π2π-0=12.2.解析:先求点P 到点O 的距离小于或等于1的概率,圆柱的体积V 圆柱=π×12×2=2π,以O 为球心,1为半径且在圆柱内部的半球的体积V 半球=12×43π×13=2π3.则点P 到点O 的距离小于或等于1的概率为2π32π=13,故点P 到点O 的距离大于1的概率为1-13=23.答案:233.解:(1)若分成的三条线段的长度均为正整数,则三条线段的长度的所有可能情况是1,1,4;1,2,3;2,2,2共3种情况,其中只有三条线段长为2,2,2时,能构成三角形,故构成三角形的概率为P =13.(2)设其中两条线段长度分别为x ,y ,则第三条线段长度为6-x -y ,故全部试验结果所构成的区域为⎩⎪⎨⎪⎧0<x <6,0<y <6,0<6-x -y <6,即⎩⎪⎨⎪⎧0<x <6,0<y <6,0<x +y <6所表示的平面区域为△OAB.若三条线段x ,y,6-x -y 能构成三角形, 则还要满足⎩⎪⎨⎪⎧x +y >6-x -y ,x +6-x -y >y ,y +6-x -y >x ,即为⎩⎪⎨⎪⎧x +y >3,y <3,x <3所表示的平面区域为△DEF ,由几何概型知,所求概率为 P =S △DEF S △AOB =14.高考数学(文)一轮:一课双测A+B精练(四十四) 直线、平面垂直的判定与性质1.(·杭州模拟)设a,b,c是三条不同的直线,α,β是两个不同的平面,则a⊥b的一个充分条件是( )A.a⊥c,b⊥cB.α⊥β,a⊂α,b⊂βC.a⊥α,b∥αD.a⊥α,b⊥α2.设α,β,γ是三个不重合的平面,l是直线,给出下列命题①若α⊥β,β⊥γ,则α⊥γ;②若l上两点到α的距离相等,则l∥α;③若l⊥α,l∥β,则α⊥β;④若α∥β,l⊄β,且l∥α,则l∥β.其中正确的命题是( )A.①②B.②③C.②④D.③④3.给出命题:(1)在空间里,垂直于同一平面的两个平面平行;(2)设l,m是不同的直线,α是一个平面,若l⊥α,l∥m,则m⊥α;(3)已知α,β表示两个不同平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的充要条件;(4)a,b是两条异面直线,P为空间一点,过P总可以作一个平面与a,b之一垂直,与另一个平行.其中正确命题个数是( )A.0B.1C.2D.34.(·济南模拟)如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在( )A.直线AB上B.直线BC上C.直线AC上D.△ABC内部5.(·曲阜师大附中质检)如图所示,直线PA垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面PAC的距离等于线段BC的长.其中正确的是( )A.①②B.①②③C.①D.②③6.(·济南名校模拟)如图,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下面命题正确的是( )A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC7.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)8.(·忻州一中月考)正四棱锥S-ABCD的底面边长为2,高为2,E是BC的中点,动点P在四棱锥的表面上运动,并且总保持PE⊥AC,则动点P的轨迹的长为________.9.(·蚌埠模拟)点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,给出下列四个命题:①三棱锥A-D1PC的体积不变;②A1P∥平面ACD1;③DP⊥BC1;④平面PDB1⊥平面ACD1.其中正确的命题序号是________.10.如图所示,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.(1)求证:DM∥平面APC;(2)求证:平面ABC⊥平面APC.11.(·北京海淀二模)如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在AB 上,且OM∥AC.(1)求证:平面MOE∥平面PAC;(2)求证:平面PAC⊥平面PCB.12.(·珠海摸底)如图,在多面体ABCDEF 中,四边形ABCD 是梯形,AB ∥CD ,四边形ACFE 是矩形,平面ACFE ⊥平面ABCD ,AD =DC =CB =AE =a ,∠ACB=π2.(1)求证:BC ⊥平面ACFE ;(2)若M 是棱EF 上一点,AM ∥平面BDF ,求EM 的长.1.如图,在立体图形D -ABC 中,若AB =CB ,AD =CD ,E 是AC 的中点,则下列正确的是( )A .平面ABC ⊥平面ABDB .平面ABD ⊥平面BDCC .平面ABC ⊥平面BDE ,且平面ADC ⊥平面BDED .平面ABC ⊥平面ADC ,且平面ADC ⊥平面BDE2.如图所示,b ,c 在平面α内,a ∩c =B ,b ∩c =A ,且a ⊥b ,a ⊥c ,b ⊥c ,若C ∈a ,D ∈b ,则△ACD 是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形3.(·莆田模拟)如图,在三棱锥P -ABC 中,△PAC ,△ABC 分别是以A ,B 为直角顶点的等腰直角三角形,AB =1.(1)现给出三个条件:①PB =3;②PB ⊥BC ;③平面PAB ⊥平面A BC.试从中任意选取一个作为已知条件,并证明:PA ⊥平面ABC ;(2)在(1)的条件下,求三棱锥P -ABC 的体积. [答 题 栏]A 级1._________2._________3._________4._________5._________6._________B 级1.______2.______7.__________8.__________9.__________答 案高考数学(文)一轮:一课双测A+B 精练(四十四)A级1.C2.D3.B4.A5.选B对于①,∵PA⊥平面ABC,∴PA⊥BC.∵AB为⊙O的直径,∴BC⊥AC.∴BC⊥平面PAC.又PC⊂平面PAC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM∥PA.∵PA⊂平面PAC,∴OM∥平面PAC;对于③,由①知BC⊥平面PAC,∴线段BC的长即是点B到平面PAC的距离,故①②③都正确.6.选D在平面图形中CD⊥BD,折起后仍有CD⊥BD,由于平面ABD⊥平面BCD,故CD⊥平面ABD,CD⊥AB,又AB⊥AD,故AB⊥平面ADC,所以平面ABC⊥平面ADC.7.解析:由定理可知,BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD.而PC⊂平面PCD,∴平面MBD⊥平面PCD.答案:DM⊥PC(或BM⊥PC等)8.解析:如图,设AC∩BD=O,连接SO,取CD的中点F,SC的中点G,连接EF,EG,FG,设EF交AC于点H,连接GH,易知AC⊥EF,GH∥SO,∴GH⊥平面ABCD,∴AC⊥GH,∴AC⊥平面EFG,故动点P的轨迹是△EFG,由已知易得EF=2,GE=GF=62,∴△EFG的周长为2+6,故动点P的轨迹长为2+ 6.答案:2+69.解析:连接BD交AC于O,连接DC1交D1C于O1,连接OO1,则OO1∥BC1.∴BC1∥平面AD1C,动点P到平面AD1C的距离不变,∴三棱锥P-AD1C的体积不变.又VP-AD1C=VA-D1PC,∴①正确.∵平面A1C1B∥平面AD1C,A1P⊂平面A1C1B,∴A1P∥平面ACD1,②正确.由于DB不垂直于BC1显然③不正确;由于DB1⊥D1C ,DB1⊥AD1,D1C ∩AD1=D1, ∴DB1⊥平面AD1C.DB1⊂平面PDB1, ∴平面PDB1⊥平面ACD1,④正确. 答案:①②④10.证明:(1)由已知,得MD 是△ABP 的中位线,所以MD ∥AP. 又MD ⊄平面APC ,AP ⊂平面APC , 故MD ∥平面APC.(2)因为△PMB 为正三角形,D 为PB 的中点, 所以MD ⊥PB.所以AP ⊥PB.又AP ⊥PC ,PB ∩PC =P ,所以AP ⊥平面PBC. 因为BC ⊂平面PBC ,所以AP ⊥BC.又BC ⊥AC ,AC ∩AP =A ,所以BC ⊥平面APC. 因为BC ⊂平面ABC ,所以平面ABC ⊥平面APC.11.证明:(1)因为点E 为线段PB 的中点,点O 为线段AB 的中点, 所以OE ∥PA.因为PA ⊂平面PAC ,OE ⊄平面PAC , 所以OE ∥平面PAC. 因为OM ∥AC ,且AC ⊂平面PAC ,OM ⊄平面PAC , 所以OM ∥平面PAC.因为OE ⊂平面MOE ,OM ⊂平面MOE ,OE ∩OM =O , 所以平面MOE ∥平面PAC.(2)因为点C 在以AB 为直径的⊙O 上,所以∠ACB =90°,即BC ⊥AC. 因为PA ⊥平面ABC ,BC ⊂平面ABC ,所以PA ⊥BC. 因为AC ⊂平面PAC ,PA ⊂平面PAC , PA ∩AC =A , 所以BC ⊥平面PAC. 因为BC ⊂平面PCB , 所以平面PAC ⊥平面PCB.12.解:(1)证明:因为∠ACB =π2,所以BC ⊥AC.又因为BC ⊂平面ABCD ,平面ACFE ∩平面ABCD =AC ,平面ACFE ⊥平面ABCD ,所以BC ⊥平面ACFE.(2)记AC ∩BD =O ,在梯形ABCD 中,因为AD =DC =CB =a ,AB ∥CD ,所以∠ACD =∠CAB=∠DAC.所以π=∠ABC +∠BCD =∠DAB +∠ACD +∠ACB =3∠DAC +π2,所以∠DAC =π6,即∠CBO =π6.又因为∠ACB =π2,CB =a ,所以CO =33a.连接FO ,由AM ∥平面BDF 得AM ∥FO ,因为四边形ACFE 是矩形, 所以EM =CO =33a. B 级1.选C 要判断两个平面的垂直关系,就需固定其中一个平面,找另一个平面内的一条直线与第一个平面垂直.因为AB =CB ,且E 是AC 的中点,所以BE ⊥AC ,同理有DE ⊥AC ,于是AC ⊥平面BDE.因为AC 在平面ABC 内,所以平面ABC ⊥平面BDE.又由于AC ⊂平面ACD ,所以平面ACD ⊥平面BDE.2.解析:选B ∵a ⊥b ,b ⊥c ,a ∩c =B , ∴b ⊥面ABC ,∴AD ⊥AC ,故△ACD 为直角三角形. 3.解:法一:(1)选取条件① 在等腰直角三角形ABC 中, ∵AB =1, ∴BC =1,AC = 2. 又∵PA =AC ,∴PA = 2. ∴在△PAB 中,AB =1,PA = 2. 又∵PB =3, ∴AB2+PA2=PB2.∴∠PAB =90°,即PA ⊥AB. 又∵PA ⊥AC ,AB ∩AC =A , ∴PA ⊥平面ABC.(2)依题意得,由(1)可知PA ⊥平面ABC ,V 三棱锥P -ABC =13PA ·S △ABC =13×2×12×12=26.法二:(1)选取条件② ∵PB ⊥BC ,又AB ⊥BC ,且PB ∩AB =B ,∴BC⊥平面PAB.∵PA⊂平面PAB,∴BC⊥PA.又∵PA⊥AC,且BC∩AC=C,∴PA⊥平面ABC.(2)依题意得,由(1)可知PA⊥平面ABC.∵AB=BC=1,AB⊥BC,∴AC=2,∴PA=2,∴V三棱锥P-ABC=13PA·S△ABC=13×12AB·BC·PA=13×12×1×1×2=26.法三:(1)选取条件③若平面PAB⊥平面ABC,∵平面PAB∩平面ABC=AB,BC⊂平面ABC,BC⊥AB,∴BC⊥平面PAB.∵PA⊂平面PAB,∴BC⊥PA.∵PA⊥AC,且BC∩AC=C,∴PA⊥平面ABC.(2)同法二.高考数学(文)一轮:一课双测A+B精练(四十)空间几何体的结构特征及三视图和直观图1.(·青岛摸底)如图,在下列四个几何体中,其三视图(正视图、侧视图、俯视图)中有且仅有两个相同的是( )A.②③④B.①②③C.①③④D.①②④2.有下列四个命题:①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.其中真命题的个数是( )A.1B.2C.3D.43.一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )4.如图是一几何体的直观图、正视图和俯视图.在正视图右侧,按照画三视图的要求画出的该几何体的侧视图是( )5.如图△A′B′C′是△ABC的直观图,那么△ABC是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形6.(·东北三校一模)一个几何体的三视图如图所示,则侧视图的面积为( )A.2+3B.1+3C.2+23D.4+37.(·昆明一中二模)一个几何体的正视图和侧视图都是边长为1的正方形,且体积为1,则这个几何体的俯视图可能是下列图形中的________.(填入所有可能的图形前的编号) 2①锐角三角形;②直角三角形;③四边形;④扇形;⑤圆8.(·安徽名校模拟)一个几何体的三视图如图所示,则该几何体的体积为________.9.正四棱锥的底面边长为2,侧棱长均为3,其正视图(主视图)和侧视图(左视图)是全等的等腰三角形,则正视图的周长为________.10.已知:图1是截去一个角的长方体,试按图示的方向画出其三视图;图2是某几何体的三视图,试说明该几何体的构成.11.(·银川调研)正四棱锥的高为3,侧棱长为7,求侧面上斜高(棱锥侧面三角形的高)为多少?12.(·四平模拟)已知正三棱锥V-ABC的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图;(2)求出侧视图的面积.1.(·江西八所重点高中模拟)底面水平放置的正三棱柱的所有棱长均为2,当其正视图有最大面积时,其侧视图的面积为( )A.23B.3C.3D.42.(·深圳模拟)如图所示的几何体中,四边形ABCD是矩形,平面ABCD⊥平面ABE,已知AB=2,AE=BE=3,且当规定正视方向垂直平面ABCD时,该几何体的侧视图的面积为22.若M,N分别是线段DE,CE上的动点,则AM+MN+NB的最小值为________.3.一个多面体的直观图、正视图、侧视图如图1和2所示,其中正视图、侧视图均为边长为a的正方形.(1)请在图2指定的框内画出多面体的俯视图;(2)若多面体底面对角线AC,BD交于点O,E为线段AA1的中点,求证:OE∥平面A1C1C;(3)求该多面体的表面积.[答题栏]A级1._________2._________3._________4._________5._________6._________B级 1.______2.______ 7.__________8.__________9.__________答案高考数学(文)一轮:一课双测A+B精练(四十)A级1.A2.A3.C4.B5.选B由斜二测画法知B正确.6.选D依题意得,该几何体的侧视图的面积等于22+12×2×3=4+ 3.7.解析:如图1所示,直三棱柱ABE-A1B1E1符合题设要求,此时俯视图△A BE是锐角三角形;如图2所示,直三棱柱ABC-A1B1C1符合题设要求,此时俯视图△ABC是直角三角形;如图3所示,当直四棱柱的八个顶点分别是正方体上、下各边的中点时,所得直四棱柱ABCD-A1B1C1D1符合题设要求,此时俯视图(四边形ABCD)是正方形;若俯视图是扇形或圆,体积中会含有π,故排除④⑤.答案:①②③8.解析:结合三视图可知,该几何体为底面边长为2、高为2的正三棱柱除去上面的一个高为1的三棱锥后剩下的部分,其直观图如图所示,故该几何体的体积为12×2×2sin60°×2-13×12×2×2sin60°×1=533.答案:5339.解析:由题意知,正视图就是如图所示的截面PEF ,其中E 、F 分别是AD 、BC 的中点,连接AO ,易得AO =2,而PA =3,于是解得PO =1,所以PE =2,故其正视图的周长为2+2 2.答案:2+2210.解:图1几何体的三视图为:图2所示的几何体是上面为正六棱柱,下面为倒立的正六棱锥的组合体. 11.解:如图所示,正四棱锥S -ABCD 中, 高OS =3,侧棱SA =SB =SC =SD =7, 在Rt △SOA 中,OA =SA2-OS2=2,∴AC =4. ∴AB =BC =CD =DA =2 2. 作OE ⊥AB 于E ,则E 为AB 中点. 连接SE ,则SE 即为斜高, 在Rt △SOE 中,∵OE =12BC =2,SO =3,∴SE =5,即侧面上的斜高为 5.12.解:(1)三棱锥的直观图如图所示. (2)根据三视图间的关系可得BC =23, ∴侧视图中VA =42-⎝ ⎛⎭⎪⎫23×32×232=12=23,∴S △VBC =12×23×23=6.B 级1.选A 当正视图的面积达最大时可知其为正三棱柱某个侧面的面积,可以按如图所示位置放置,此时侧视图的面积为2 3.2.解析:依题意得,点E 到直线AB 的距离等于32-⎝ ⎛⎭⎪⎫222=2,因为该几何体的左(侧)视图的面积为12·BC ×2=22,所以BC =1,DE =EC =DC =2.所以△DEC 是正三角形,∠DEC =60°,tan ∠DEA =AD AE =33,∠DEA =∠CEB =30°.把△DAE ,△DEC 与△CEB 展在同一平面上,此时连接AB ,AE =BE =3,∠AEB =∠DEA +∠DEC +∠CEB =120°,AB2=AE2+BE2-2AE ·BEcos120°=9,即AB =3,即AM +MN +NB 的最小值为3.答案:33.解:(1)根据多面体的直观图、正视图、侧视图,得到俯视图如下:(2)证明:如图,连接AC ,BD ,交于O 点,连接OE. ∵E 为AA1的中点,O 为AC 的中点, ∴在△AA1C 中,OE 为△AA1C 的中位线. ∴OE ∥A1C.∵OE ⊄平面A1C1C ,A1C ⊂平面A1C1C , ∴OE ∥平面A1C1C.(3)多面体表面共包括10个面,SABCD =a2, SA1B1C1D1=a22,S △ABA1=S △B1BC =S △C 1DC =S △ADD1=a22,S △AA1D1=S △B1A1B =S △C1B1C =S △DC1D1 =12×2a 2×32a 4=3a28, ∴该多面体的表面积S =a2+a22+4×a22+4×3a28=5a2.。

高考数学文一轮:一课双测A+B精练五十五几何概型

高考数学文一轮:一课双测A+B精练五十五几何概型

高考数学(文)一轮:一课双测A+B 精练(五十五)几何概型1.(·北京模拟)在区间⎣⎡⎦⎤-π2,π2上随机取一个x ,sinx 的值介于-12与12之间的概率为( )A.13B.2π C.12D.232.(·辽宁高考)在长为12cm 的线段AB 上任取一点C.现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm2的概率为( )A.16B.13C.23D.453.(·滨州模拟)在区间[0,1]上任取两个数a ,b ,则函数f(x)=x2+ax +b2无零点的概率为( )A.12B.23C.34D.144.(·北京西城二模)已知函数f(x)=kx +1,其中实数k 随机选自区间[-2,1].∀x ∈[0,1],f(x)≥0的概率是( )A.13B.12C.23D.345.(·盐城摸底)在水平放置的长为5米的木杆上挂一盏灯,则悬挂点与木杆两端的距离都大于2米的概率为( )A.15B.25C.35D.126.(·沈阳四校联考)一只昆虫在边长分别为6,8,10的三角形区域内随机爬行,则其到三角形任一顶点的距离小于2的概率为( )A.π12B.π10C.π6D.π247.(·郑州模拟)若不等式组⎩⎪⎨⎪⎧y ≤x ,y ≥-x ,2x -y -3≤0表示的平面区域为M ,x2+y2≤1所表示的平面区域为N ,现随机向区域M 内抛一粒豆子,则豆子落在区域N 内的概率为________.8.(·孝感统考)如图所示,图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD 是边长为1的正方形.若向图2中虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,则此长方体的体积是________.9.(·宜春模拟)投镖游戏中的靶子由边长为1米的四方板构成,并将此板分成四个边长为12米的小方块.试验是向板中投镖,事件A 表示投中阴影部分,则事件A 发生的概率为________.10.已知|x|≤2,|y|≤2,点P 的坐标为(x ,y),求当x ,y ∈R 时,P 满足(x -2)2+(y -2)2≤4的概率.11.已知集合A =[-2,2],B =[-1,1],设M ={(x ,y)|x ∈A ,y ∈B},在集合M 内随机取出一个元素(x ,y).(1)求以(x ,y)为坐标的点落在圆x2+y2=1内的概率; (2)求以(x ,y)为坐标的点到直线x +y =0的距离不大于22的概率. 12.(·长沙模拟)已知向量a =(-2,1),b =(x ,y).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a ·b =-1的概率;(2)若x ,y 在连续区间[1,6]上取值,求满足a ·b <0的概率.1.在区间[0,π]上随机取一个数x ,则事件“sinx +3cosx ≤1”发生的概率为( ) A.14B.13 C.12D.232.有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________.3.(·晋中模拟)设AB =6,在线段AB 上任取两点(端点A 、B 除外),将线段AB 分成了三条线段.(1)若分成的三条线段的长度均为正整数,求这三条线段可以构成三角形的概率; (2)若分成的三条线段的长度均为正实数,求这三条线段可以构成三角形的概率. [答 题 栏]A 级1._________2._________3._________4._________5._________6._________B 级1.______2.______7.__________8.__________9.__________答 案高考数学(文)一轮:一课双测A+B 精练(五十五)A 级1.A2.C3.C4.C5.选A 如图,线段AB 长为5米,线段AC 、BD 长均为2米,线段CD 长为1米,满足题意的悬挂点E 在线段CD 上,故所求事件的概率P =15.6.选A 记昆虫所在三角形区域为△ABC ,且AB =6,BC =8,CA =10,则有AB2+BC2=CA2,AB ⊥BC ,该三角形是一个直角三角形,其面积等于12×6×8=24.在该三角形区域内,到三角形任一顶点的距离小于2的区域的面积等于A +B +C 2π×π×22=π2×22=2π,因此所求的概率等于2π24=π12.7.∵y =x 与y =-x 互相垂直, ∴M 的面积为3,而N 的面积为π4,所以概率为π43=π12.答案:π128.解析:设题图1长方体的高为h ,由几何概型的概率计算公式可知,质点落在长方体的平面展开图内的概率P =2+4h 2h +22h +1=14,解得h =3或h =-12(舍去), 故长方体的体积为1×1×3=3.答案:39.解析:∵事件A 所包含的基本事件与阴影正方形中的点一一对应,事件组中每一个基本事件与大正方形区域中的每一个点一一对应.∴由几何概型的概率公式得P(A)=⎝ ⎛⎭⎪⎫12212=14. 答案:1410.解:如图,点P 所在的区域为正方形ABCD 的内部(含边界),满足(x -2)2+(y -2)2≤4的点的区域为以(2,2)为圆心,2为半径的圆面(含边界).故所求的概率P1=14π×224×4=π16.11.解:(1)集合M 内的点形成的区域面积S =8.因x2+y2=1的面积S1=π,故所求概率为P1=S1S =π8.(2)由题意|x +y|2≤22即-1≤x +y ≤1,形成的区域如图中阴影部分,面积S2=4,所求概率为P =S2S =12.12.解:(1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36个;由a ·b =-1有-2x +y =-1,所以满足a ·b =-1的基本事件为(1,1),(2,3),(3,5)共3个. 故满足a ·b =-1的概率为336=112.(2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x ,y)|1≤x ≤6,1≤y ≤6};满足a ·b <0的基本事件的结果为A ={(x ,y)|1≤x ≤6,1≤y ≤6,且-2x +y <0}; 画出图形,矩形的面积为S 矩形=25,阴影部分的面积为S 阴影=25-12×2×4=21,故满足a ·b <0的概率为2125.B 级1.选C 由sinx +3cosx ≤1得 2sin ⎝⎛⎭⎫x +π3≤1,即sin ⎝⎛⎭⎫x +π3≤12.由于x ∈[0,π],故x +π3∈⎣⎢⎡⎦⎥⎤π3,4π3,因此当sin ⎝⎛⎭⎫x +π3≤12时,x +π3∈⎣⎢⎡⎦⎥⎤5π6,4π3,于是x ∈⎣⎡⎦⎤π2,π. 由几何概型公式知事件“sinx +3cosx ≤1”发生的概率为P =π-π2π-0=12.2.解析:先求点P 到点O 的距离小于或等于1的概率,圆柱的体积V 圆柱=π×12×2=2π,以O 为球心,1为半径且在圆柱内部的半球的体积V 半球=12×43π×13=2π3.则点P 到点O 的距离小于或等于1的概率为2π32π=13,故点P 到点O 的距离大于1的概率为1-13=23.答案:233.解:(1)若分成的三条线段的长度均为正整数,则三条线段的长度的所有可能情况是1,1,4;1,2,3;2,2,2共3种情况,其中只有三条线段长为2,2,2时,能构成三角形,故构成三角形的概率为P =13.(2)设其中两条线段长度分别为x ,y ,则第三条线段长度为6-x -y ,故全部试验结果所构成的区域为⎩⎪⎨⎪⎧ 0<x <6,0<y <6,0<6-x -y <6,即⎩⎪⎨⎪⎧0<x <6,0<y <6,0<x +y <6所表示的平面区域为△OAB.若三条线段x ,y,6-x -y 能构成三角形,则还要满足⎩⎪⎨⎪⎧x +y >6-x -y ,x +6-x -y >y ,y +6-x -y >x ,即为⎩⎪⎨⎪⎧x +y >3,y <3,x <3所表示的平面区域为△DEF ,由几何概型知,所求概率为 P=S △DEFS △AOB =14.高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s= (A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为 (AB )32(CD )2(12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。

高考数学文一轮:一课双测A+B精练五十五几何概型

高考数学文一轮:一课双测A+B精练五十五几何概型

高考数学(文)一轮:一课双测A+B 精练(五十五)几何概型1.(·北京模拟)在区间⎣⎡⎦⎤-π2,π2上随机取一个x ,sinx 的值介于-12与12之间的概率为( )A.13B.2π C.12D.232.(·辽宁高考)在长为12cm 的线段AB 上任取一点C.现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm2的概率为( )A.16B.13C.23D.453.(·滨州模拟)在区间[0,1]上任取两个数a ,b ,则函数f(x)=x2+ax +b2无零点的概率为( )A.12B.23C.34D.144.(·北京西城二模)已知函数f(x)=kx +1,其中实数k 随机选自区间[-2,1].∀x ∈[0,1],f(x)≥0的概率是( )A.13B.12C.23D.345.(·盐城摸底)在水平放置的长为5米的木杆上挂一盏灯,则悬挂点与木杆两端的距离都大于2米的概率为( )A.15B.25C.35D.126.(·沈阳四校联考)一只昆虫在边长分别为6,8,10的三角形区域内随机爬行,则其到三角形任一顶点的距离小于2的概率为( )1210C.π6D.π247.(·郑州模拟)若不等式组⎩⎪⎨⎪⎧y ≤x ,y ≥-x ,2x -y -3≤0表示的平面区域为M ,x2+y2≤1所表示的平面区域为N ,现随机向区域M 内抛一粒豆子,则豆子落在区域N 内的概率为________.8.(·孝感统考)如图所示,图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD 是边长为1的正方形.若向图2中虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,则此长方体的体积是________.9.(·宜春模拟)投镖游戏中的靶子由边长为1米的四方板构成,并将此板分成四个边长为12米的小方块.试验是向板中投镖,事件A 表示投中阴影部分,则事件A 发生的概率为________.10.已知|x|≤2,|y|≤2,点P 的坐标为(x ,y),求当x ,y ∈R 时,P 满足(x -2)2+(y -2)2≤4的概率.11.已知集合A =[-2,2],B =[-1,1],设M ={(x ,y)|x ∈A ,y ∈B},在集合M 内随机取出一个元素(x ,y).(1)求以(x ,y)为坐标的点落在圆x2+y2=1内的概率; (2)求以(x ,y)为坐标的点到直线x +y =0的距离不大于22的概率. 12.(·长沙模拟)已知向量a =(-2,1),b =(x ,y).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a ·b =-1的概率;(2)若x ,y 在连续区间[1,6]上取值,求满足a ·b <0的概率.1.在区间[0,π]上随机取一个数x ,则事件“sinx +3cosx ≤1”发生的概率为( ) A.14B.13232.有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________.3.(·晋中模拟)设AB =6,在线段AB 上任取两点(端点A 、B 除外),将线段AB 分成了三条线段.(1)若分成的三条线段的长度均为正整数,求这三条线段可以构成三角形的概率; (2)若分成的三条线段的长度均为正实数,求这三条线段可以构成三角形的概率. [答 题 栏]A 级1._________2._________3._________4._________5._________6._________B 级1.______2.______7.__________8.__________9.__________答 案高考数学(文)一轮:一课双测A+B 精练(五十五)A 级1.A2.C3.C4.C5.选A 如图,线段AB 长为5米,线段AC 、BD 长均为2米,线段CD 长为1米,满足题意的悬挂点E 在线段CD 上,故所求事件的概率P =15.6.选A 记昆虫所在三角形区域为△ABC ,且AB =6,BC =8,CA =10,则有AB2+BC2=CA2,AB ⊥BC ,该三角形是一个直角三角形,其面积等于12×6×8=24.在该三角形区域内,到三角形任一顶点的距离小于2的区域的面积等于A +B +C 2π×π×22=π2×22=2π,因此所求的概率等于2π24=π12.7.∵y =x 与y =-x 互相垂直, ∴M 的面积为3,而N 的面积为π4,所以概率为π43=π12.128.解析:设题图1长方体的高为h ,由几何概型的概率计算公式可知,质点落在长方体的平面展开图内的概率P =2+4h 2h +22h +1=14,解得h =3或h =-12(舍去), 故长方体的体积为1×1×3=3. 答案:39.解析:∵事件A 所包含的基本事件与阴影正方形中的点一一对应,事件组中每一个基本事件与大正方形区域中的每一个点一一对应.∴由几何概型的概率公式得P(A)=⎝ ⎛⎭⎪⎫12212=14. 答案:1410.解:如图,点P 所在的区域为正方形ABCD 的内部(含边界),满足(x -2)2+(y -2)2≤4的点的区域为以(2,2)为圆心,2为半径的圆面(含边界).故所求的概率P1=14π×224×4=π16.11.解:(1)集合M 内的点形成的区域面积S =8.因x2+y2=1的面积S1=π,故所求概率为P1=S1S =π8.(2)由题意|x +y|2≤22即-1≤x +y ≤1,形成的区域如图中阴影部分,面积S2=4,所求概率为P =S2S =12.12.解:(1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36个;由a ·b =-1有-2x +y =-1,所以满足a ·b =-1的基本事件为(1,1),(2,3),(3,5)共3个. 故满足a ·b =-1的概率为336=112.(2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x ,y)|1≤x ≤6,1≤y ≤6};满足a ·b <0的基本事件的结果为A ={(x ,y)|1≤x ≤6,1≤y ≤6,且-2x +y <0}; 画出图形,矩形的面积为S 矩形=25,阴影部分的面积为S 阴影=25-12×2×4=21,故满足a ·b <0的概率为2125.B 级1.选C 由sinx +3cosx ≤1得 2sin ⎝⎛⎭⎫x +π3≤1,即sin ⎝⎛⎭⎫x +π3≤12. 由于x ∈[0,π],故x +π3∈⎣⎢⎡⎦⎥⎤π3,4π3,因此当sin ⎝⎛⎭⎫x +π3≤12时,x +π3∈⎣⎢⎡⎦⎥⎤5π6,4π3,于是x ∈⎣⎡⎦⎤π2,π.由几何概型公式知事件“sinx +3cosx ≤1”发生的概率为P =π-π2π-0=12.2.解析:先求点P 到点O 的距离小于或等于1的概率,圆柱的体积V 圆柱=π×12×2=2π,以O 为球心,1为半径且在圆柱内部的半球的体积V 半球=12×43π×13=2π3.则点P 到点O 的距离小于或等于1的概率为2π32π=13,故点P 到点O 的距离大于1的概率为1-13=23.答案:233.解:(1)若分成的三条线段的长度均为正整数,则三条线段的长度的所有可能情况是1,1,4;1,2,3;2,2,2共3种情况,其中只有三条线段长为2,2,2时,能构成三角形,故构成三角形的概率为P =13.(2)设其中两条线段长度分别为x ,y ,则第三条线段长度为6-x -y ,故全部试验结果所构成的区域为⎩⎪⎨⎪⎧0<x <6,0<y <6,0<6-x -y <6,即⎩⎪⎨⎪⎧0<x <6,0<y <6,0<x +y <6所表示的平面区域为△OAB.若三条线段x ,y,6-x -y 能构成三角形, 则还要满足⎩⎪⎨⎪⎧x +y >6-x -y ,x +6-x -y >y ,y +6-x -y >x ,即为⎩⎪⎨⎪⎧x +y >3,y <3,x <3所表示的平面区域为△DEF ,由几何概型知,所求概率为 P =S △DEF S △AOB =14.高考数学(文)一轮:一课双测A+B精练(四十八) 直线与圆、圆与圆的位置关系1.(·人大附中月考)设m>0,则直线2(x+y)+1+m=0与圆x2+y2=m的位置关系为( )A.相切B.相交C.相切或相离D.相交或相切2.(·福建高考)直线x+3y-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于( )A.25B.23C.3D.13.(·安徽高考)若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是( )A.[-3,-1]B.[-1,3]C.[-3,1]D.(-∞,-3]∪[1,+∞)4.过圆x2+y2=1上一点作圆的切线与x轴,y轴的正半轴交于A,B两点,则|AB|的最小值为( )A.2B.3C.2D.35.(·兰州模拟)若圆x2+y2=r2(r>0)上仅有4个点到直线x-y-2=0的距离为1,则实数r的取值范围为( )A.(2+1,+∞) B.(2-1, 2+1)C.(0, 2-1) D.(0, 2+1)6.(·临沂模拟)已知点P(x,y)是直线kx+y+4=0(k>0)上一动点,PA,PB是圆C:x2+y2-2y=0的两条切线,A,B是切点,若四边形PACB的最小面积是2,则k的值为( )A.2B.21 2C.22D.27.(·朝阳高三期末)设直线x-my-1=0与圆(x-1)2+(y-2)2=4相交于A、B两点,且弦AB的长为23,则实数m的值是________.8.(·东北三校联考)若a,b,c是直角三角形ABC三边的长(c为斜边),则圆C:x2+y2=4被直线l:ax+by+c=0所截得的弦长为________.9.(·江西高考)过直线x +y -22=0上点P 作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.10.(·福州调研)已知⊙M :x2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB|=423,求|MQ|及直线MQ 的方程;(2)求证:直线AB 恒过定点.11.已知以点C ⎝ ⎛⎭⎪⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M 、N ,若|OM|=|ON|,求圆C 的方程. 12.在平面直角坐标系xOy 中,已知圆x2+y2-12x +32=0的圆心为Q ,过点P(0,2),且斜率为k 的直线与圆Q 相交于不同的两点A 、B.(1)求k 的取值范围;(2)是否存在常数k ,使得向量OA +OB 与PQ ―→共线?如果存在,求k 值;如果不存在,请说明理由.1.已知两圆x2+y2-10x -10y =0,x2+y2+6x -2y -40=0,则它们的公共弦所在直线的方程为________________;公共弦长为________.2.(·上海模拟)已知圆的方程为x2+y2-6x -8y =0,a1,a2,…,a11是该圆过点(3,5)的11条弦的长,若数列a1,a2,…,a11成等差数列,则该等差数列公差的最大值是________.3.(·江西六校联考)已知抛物线C :y2=2px(p >0)的准线为l ,焦点为F ,圆M 的圆心在x 轴的正半轴上,圆M 与y 轴相切,过原点O 作倾斜角为π3的直线n ,交直线l 于点A ,交圆M 于不同的两点O 、B ,且|AO|=|BO|=2.(1)求圆M 和抛物线C 的方程;(2)若P 为抛物线C 上的动点,求PM ―→,·PF ―→,的最小值;(3)过直线l 上的动点Q 向圆M 作切线,切点分别为S 、T ,求证:直线ST 恒过一个定点,并求该定点的坐标.[答 题 栏] A 级1._________2._________3._________4._________5B 级1.______2.______.__________6._________7.__________8.__________9.__________答 案高考数学(文)一轮:一课双测A+B 精练(四十八)A 级1.C2.B3.C4.C5.选A 计算得圆心到直线l 的距离为22= 2>1,如图.直线l :x -y -2=0与圆相交,l1,l2与l 平行,且与直线l 的距离为1,故可以看出,圆的半径应该大于圆心到直线l2的距离2+1.6.选D 圆心C(0,1)到l 的距离 d =5k2+1,所以四边形面积的最小值为2×⎝ ⎛⎭⎪⎫12×1×d2-1=2, 解得k2=4,即k =±2. 又k >0,即k =2.7.解析:由题意得,圆心(1,2)到直线x -my -1=0的距离d =4-3=1, 即|1-2m -1|1+m2=1,解得m =±33.答案:±338.解析:由题意可知圆C :x2+y2=4被直线l :ax +by +c =0所截得的弦长为24-⎝⎛⎭⎪⎫c a2+b22,由于a2+b2=c2,所以所求弦长为2 3.答案:239.解析:∵点P 在直线x +y -22=0上,∴可设点P(x0,-x0+22),且其中一个切点为M.∵两条切线的夹角为60°, ∴∠OPM =30°.故在Rt △OPM 中,有OP =2OM =2.由两点间的距离公式得OP =x20+-x0+222=2,解得x0= 2.故点P 的坐标是( 2,2).答案:( 2, 2)10.解:(1)设直线MQ 交AB 于点P ,则|AP|=223,又|AM|=1,AP ⊥MQ ,AM ⊥AQ ,得|MP|=12-89=13,又∵|MQ|=|MA|2|MP|,∴|MQ|=3.设Q(x,0),而点M(0,2),由x2+22=3,得x =±5, 则Q 点的坐标为(5,0)或(-5,0).从而直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.(2)证明:设点Q(q,0),由几何性质,可知A ,B 两点在以Q M 为直径的圆上,此圆的方程为x(x -q)+y(y -2)=0,而线段AB 是此圆与已知圆的公共弦,相减可得AB 的方程为qx -2y +3=0,所以直线AB 恒过定点⎝ ⎛⎭⎪⎫0,32. 11.解:(1)证明:由题设知,圆C 的方程为 (x -t)2+⎝ ⎛⎭⎪⎫y -2t 2=t2+4t2, 化简得x2-2tx +y2-4t y =0,当y =0时,x =0或2t ,则A(2t,0); 当x =0时,y =0或4t ,则B ⎝ ⎛⎭⎪⎫0,4t , 所以S △AOB =12|OA|·|OB|=12|2t|·⎪⎪⎪⎪⎪⎪4t =4为定值.(2)∵|OM|=|ON|,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN , ∴C 、H 、O 三点共线,则直线OC 的斜率 k =2t t =2t2=12,∴t =2或t =-2. ∴圆心为C(2,1)或C(-2,-1),∴圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5,由于当圆方程为(x +2)2+(y +1)2=5时,直线2x +y -4=0到圆心的距离d >r ,此时不满足直线与圆相交,故舍去,∴圆C 的方程为(x -2)2+(y -1)2=5.12.解:(1)圆的方程可写成(x -6)2+y2=4,所以圆心为Q(6,0).过P(0,2)且斜率为k 的直线方程为y =kx +2,代入圆的方程得x2+(kx +2)2-12x +32=0,整理得(1+k2)x2+4(k -3)x +36=0.①直线与圆交于两个不同的点A 、B 等价于Δ=[4(k -3)]2-4×36(1+k2)=42(-8k2-6k)>0,解得-34<k<0,即k 的取值范围为⎝ ⎛⎭⎪⎫-34,0. (2)设A(x1,y1)、B(x2,y2) 则OA +OB =(x1+x2,y1+y2), 由方程①得x1+x2=-4k -31+k2.②又y1+y2=k(x1+x2)+4.③因P(0,2)、Q(6,0),PQ =(6,-2),所以OA +OB 与PQ 共线等价于-2(x1+x2)=6(y1+y2),将②③代入上式, 解得k =-34.而由(1)知k ∈⎝ ⎛⎭⎪⎫-34,0,故没有符合题意的常数k. B 级1.解析:由两圆的方程x2+y2-10x -10y =0,x2+y2+6x -2y -40=0,相减并整理得公共弦所在直线的方程为2x +y -5=0.圆心(5,5)到直线2x +y -5=0的距离为105=25,弦长的一半为50-20=30,得公共弦长为230.答案:2x +y -5=02302.解析:容易判断,点(3,5)在圆内部,过圆内一点最长的弦是直径,过该点与直径垂直的弦最短,因此,过(3,5)的弦中,最长为10,最短为46,故公差最大为10-4610=5-265. 答案:5-2653.解:(1)易得B(1,3),A(-1,-3),设圆M 的方程为(x -a)2+y2=a2(a >0),将点B(1,3)代入圆M 的方程得a =2,所以圆M 的方程为(x -2)2+y2=4,因为点A(-1,-3)在准线l 上,所以p2=1,p =2,所以抛物线C 的方程为y2=4x.(2)由(1)得,M(2,0),F(1,0),设点P(x ,y),则PM ,=(2-x ,-y),PF ,=(1-x ,-y),又点P 在抛物线y2=4x 上,所以PM ,·PF ,=(2-x)(1-x)+y2=x2-3x +2+4x =x2+x +2,因为x ≥0,所以PM ,·PF ,≥2,即PM ,·PF ,的最小值为2.(3)证明:设点Q(-1,m),则|QS|=|QT|=m2+5,以Q 为圆心,m2+5为半径的圆的方程为(x +1)2+(y -m)2=m2+5,即x2+y2+2x -2my -4=0,①又圆M 的方程为(x -2)2+y2=4,即x2+y2-4x =0,② 由①②两式相减即得直线ST 的方程3x -my -2=0,显然直线ST 恒过定点⎝ ⎛⎭⎪⎫23,0.高考数学(文)一轮:一课双测A+B精练(四十)空间几何体的结构特征及三视图和直观图1.(·青岛摸底)如图,在下列四个几何体中,其三视图(正视图、侧视图、俯视图)中有且仅有两个相同的是( )A.②③④B.①②③C.①③④D.①②④2.有下列四个命题:①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.其中真命题的个数是( )A.1B.2C.3D.43.一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )4.如图是一几何体的直观图、正视图和俯视图.在正视图右侧,按照画三视图的要求画出的该几何体的侧视图是( )5.如图△A′B′C′是△ABC的直观图,那么△ABC是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形6.(·东北三校一模)一个几何体的三视图如图所示,则侧视图的面积为( )A.2+3B.1+3C.2+23D.4+37.(·昆明一中二模)一个几何体的正视图和侧视图都是边长为1的正方形,且体积为1,则这个几何体的俯视图可能是下列图形中的________.(填入所有可能的图形前的编号) 2①锐角三角形;②直角三角形;③四边形;④扇形;⑤圆8.(·安徽名校模拟)一个几何体的三视图如图所示,则该几何体的体积为________.9.正四棱锥的底面边长为2,侧棱长均为3,其正视图(主视图)和侧视图(左视图)是全等的等腰三角形,则正视图的周长为________.10.已知:图1是截去一个角的长方体,试按图示的方向画出其三视图;图2是某几何体的三视图,试说明该几何体的构成.11.(·银川调研)正四棱锥的高为3,侧棱长为7,求侧面上斜高(棱锥侧面三角形的高)为多少?12.(·四平模拟)已知正三棱锥V-ABC的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图;(2)求出侧视图的面积.1.(·江西八所重点高中模拟)底面水平放置的正三棱柱的所有棱长均为2,当其正视图有最大面积时,其侧视图的面积为( )A.23B.3C.3D.42.(·深圳模拟)如图所示的几何体中,四边形ABCD是矩形,平面ABCD⊥平面ABE,已知AB=2,AE=BE=3,且当规定正视方向垂直平面ABCD时,该几何体的侧视图的面积为22.若M,N分别是线段DE,CE上的动点,则AM+MN+NB的最小值为________.3.一个多面体的直观图、正视图、侧视图如图1和2所示,其中正视图、侧视图均为边长为a的正方形.(1)请在图2指定的框内画出多面体的俯视图;(2)若多面体底面对角线AC,BD交于点O,E为线段AA1的中点,求证:OE∥平面A1C1C;(3)求该多面体的表面积.[答题栏]A级1._________2._________3._________4._________5._________6._________B级 1.______2.______ 7.__________8.__________9.__________答案高考数学(文)一轮:一课双测A+B精练(四十)A级1.A2.A3.C4.B5.选B由斜二测画法知B正确.6.选D依题意得,该几何体的侧视图的面积等于22+12×2×3=4+ 3.7.解析:如图1所示,直三棱柱ABE-A1B1E1符合题设要求,此时俯视图△A BE是锐角三角形;如图2所示,直三棱柱ABC-A1B1C1符合题设要求,此时俯视图△ABC是直角三角形;如图3所示,当直四棱柱的八个顶点分别是正方体上、下各边的中点时,所得直四棱柱ABCD-A1B1C1D1符合题设要求,此时俯视图(四边形ABCD)是正方形;若俯视图是扇形或圆,体积中会含有π,故排除④⑤.答案:①②③8.解析:结合三视图可知,该几何体为底面边长为2、高为2的正三棱柱除去上面的一个高为1的三棱锥后剩下的部分,其直观图如图所示,故该几何体的体积为12×2×2sin60°×2-13×12×2×2sin60°×1=533.答案:5339.解析:由题意知,正视图就是如图所示的截面PEF ,其中E 、F 分别是AD 、BC 的中点,连接AO ,易得AO =2,而PA =3,于是解得PO =1,所以PE =2,故其正视图的周长为2+2 2.答案:2+2210.解:图1几何体的三视图为:图2所示的几何体是上面为正六棱柱,下面为倒立的正六棱锥的组合体. 11.解:如图所示,正四棱锥S -ABCD 中, 高OS =3,侧棱SA =SB =SC =SD =7, 在Rt △SOA 中,OA =SA2-OS2=2,∴AC =4. ∴AB =BC =CD =DA =2 2. 作OE ⊥AB 于E ,则E 为AB 中点. 连接SE ,则SE 即为斜高, 在Rt △SOE 中,∵OE =12BC =2,SO =3,∴SE =5,即侧面上的斜高为 5.12.解:(1)三棱锥的直观图如图所示. (2)根据三视图间的关系可得BC =23, ∴侧视图中VA =42-⎝ ⎛⎭⎪⎫23×32×232=12=23,∴S △VBC =12×23×23=6.B 级1.选A 当正视图的面积达最大时可知其为正三棱柱某个侧面的面积,可以按如图所示位置放置,此时侧视图的面积为2 3.2.解析:依题意得,点E 到直线AB 的距离等于32-⎝ ⎛⎭⎪⎫222=2,因为该几何体的左(侧)视图的面积为12·BC ×2=22,所以BC =1,DE =EC =DC =2.所以△DEC 是正三角形,∠DEC =60°,tan ∠DEA =AD AE =33,∠DEA =∠CEB =30°.把△DAE ,△DEC 与△CEB 展在同一平面上,此时连接AB ,AE =BE =3,∠AEB =∠DEA +∠DEC +∠CEB =120°,AB2=AE2+BE2-2AE ·BEcos120°=9,即AB =3,即AM +MN +NB 的最小值为3.答案:33.解:(1)根据多面体的直观图、正视图、侧视图,得到俯视图如下:(2)证明:如图,连接AC ,BD ,交于O 点,连接OE. ∵E 为AA1的中点,O 为AC 的中点, ∴在△AA1C 中,OE 为△AA1C 的中位线. ∴OE ∥A1C.∵OE ⊄平面A1C1C ,A1C ⊂平面A1C1C , ∴OE ∥平面A1C1C.(3)多面体表面共包括10个面,SABCD =a2, SA1B1C1D1=a22,S △ABA1=S △B1BC =S △C 1DC =S △ADD1=a22,S △AA1D1=S △B1A1B =S △C1B1C =S △DC1D1 =12×2a 2×32a 4=3a28, ∴该多面体的表面积S =a2+a22+4×a22+4×3a28=5a2.。

高考数学文一轮:一课双测A+B精练五十五几何概型

高考数学文一轮:一课双测A+B精练五十五几何概型

高考数学(文)一轮:一课双测A+B 精练(五十五)几何概型1.(·北京模拟)在区间⎣⎡⎦⎤-π2,π2上随机取一个x ,sinx 的值介于-12与12之间的概率为( )A.13B.2π C.12D.232.(·辽宁高考)在长为12cm 的线段AB 上任取一点C.现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm2的概率为( )A.16B.13C.23D.453.(·滨州模拟)在区间[0,1]上任取两个数a ,b ,则函数f(x)=x2+ax +b2无零点的概率为( )A.12B.23C.34D.144.(·北京西城二模)已知函数f(x)=kx +1,其中实数k 随机选自区间[-2,1].∀x ∈[0,1],f(x)≥0的概率是( )A.13B.12C.23D.345.(·盐城摸底)在水平放置的长为5米的木杆上挂一盏灯,则悬挂点与木杆两端的距离都大于2米的概率为( )A.15B.25C.35D.126.(·沈阳四校联考)一只昆虫在边长分别为6,8,10的三角形区域内随机爬行,则其到三角形任一顶点的距离小于2的概率为( )A.π12B.π10C.π6D.π247.(·郑州模拟)若不等式组⎩⎪⎨⎪⎧y ≤x ,y ≥-x ,2x -y -3≤0表示的平面区域为M ,x2+y2≤1所表示的平面区域为N ,现随机向区域M 内抛一粒豆子,则豆子落在区域N 内的概率为________.8.(·孝感统考)如图所示,图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD 是边长为1的正方形.若向图2中虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,则此长方体的体积是________.9.(·宜春模拟)投镖游戏中的靶子由边长为1米的四方板构成,并将此板分成四个边长为12米的小方块.试验是向板中投镖,事件A 表示投中阴影部分,则事件A 发生的概率为________.10.已知|x|≤2,|y|≤2,点P 的坐标为(x ,y),求当x ,y ∈R 时,P 满足(x -2)2+(y -2)2≤4的概率.11.已知集合A =[-2,2],B =[-1,1],设M ={(x ,y)|x ∈A ,y ∈B},在集合M 内随机取出一个元素(x ,y).(1)求以(x ,y)为坐标的点落在圆x2+y2=1内的概率; (2)求以(x ,y)为坐标的点到直线x +y =0的距离不大于22的概率. 12.(·长沙模拟)已知向量a =(-2,1),b =(x ,y).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a ·b =-1的概率;(2)若x ,y 在连续区间[1,6]上取值,求满足a ·b <0的概率.1.在区间[0,π]上随机取一个数x ,则事件“sinx +3cosx ≤1”发生的概率为( ) A.14B.13 C.12D.232.有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________.3.(·晋中模拟)设AB =6,在线段AB 上任取两点(端点A 、B 除外),将线段AB 分成了三条线段.(1)若分成的三条线段的长度均为正整数,求这三条线段可以构成三角形的概率; (2)若分成的三条线段的长度均为正实数,求这三条线段可以构成三角形的概率. [答 题 栏]A 级1._________2._________3._________4._________5._________6._________B 级1.______2.______7.__________8.__________9.__________答 案高考数学(文)一轮:一课双测A+B 精练(五十五)A 级1.A2.C3.C4.C5.选A 如图,线段AB 长为5米,线段AC 、BD 长均为2米,线段CD 长为1米,满足题意的悬挂点E 在线段CD 上,故所求事件的概率P =15.6.选A 记昆虫所在三角形区域为△ABC ,且AB =6,BC =8,CA =10,则有AB2+BC2=CA2,AB ⊥BC ,该三角形是一个直角三角形,其面积等于12×6×8=24.在该三角形区域内,到三角形任一顶点的距离小于2的区域的面积等于A +B +C 2π×π×22=π2×22=2π,因此所求的概率等于2π24=π12.7.∵y =x 与y =-x 互相垂直, ∴M 的面积为3,而N 的面积为π4,所以概率为π43=π12.答案:π128.解析:设题图1长方体的高为h ,由几何概型的概率计算公式可知,质点落在长方体的平面展开图内的概率P =2+4h 2h +22h +1=14,解得h =3或h =-12(舍去), 故长方体的体积为1×1×3=3. 答案:39.解析:∵事件A 所包含的基本事件与阴影正方形中的点一一对应,事件组中每一个基本事件与大正方形区域中的每一个点一一对应.∴由几何概型的概率公式得P(A)=⎝ ⎛⎭⎪⎫12212=14.答案:1410.解:如图,点P 所在的区域为正方形ABCD 的内部(含边界),满足(x -2)2+(y -2)2≤4的点的区域为以(2,2)为圆心,2为半径的圆面(含边界).故所求的概率P1=14π×224×4=π16.11.解:(1)集合M 内的点形成的区域面积S =8.因x2+y2=1的面积S1=π,故所求概率为P1=S1S =π8.(2)由题意|x +y|2≤22即-1≤x +y ≤1,形成的区域如图中阴影部分,面积S2=4,所求概率为P =S2S =12.12.解:(1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36个;由a ·b =-1有-2x +y =-1,所以满足a ·b =-1的基本事件为(1,1),(2,3),(3,5)共3个. 故满足a ·b =-1的概率为336=112.(2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x ,y)|1≤x ≤6,1≤y ≤6};满足a ·b <0的基本事件的结果为A ={(x ,y)|1≤x ≤6,1≤y ≤6,且-2x +y <0}; 画出图形,矩形的面积为S 矩形=25,阴影部分的面积为S 阴影=25-12×2×4=21, 故满足a ·b <0的概率为2125.B 级1.选C 由sinx +3cosx ≤1得 2sin ⎝⎛⎭⎫x +π3≤1,即sin ⎝⎛⎭⎫x +π3≤12.由于x ∈[0,π],故x +π3∈⎣⎢⎡⎦⎥⎤π3,4π3,因此当sin ⎝⎛⎭⎫x +π3≤12时,x +π3∈⎣⎢⎡⎦⎥⎤5π6,4π3,于是x ∈⎣⎡⎦⎤π2,π.由几何概型公式知事件“sinx +3cosx ≤1”发生的概率为P =π-π2π-0=12.2.解析:先求点P 到点O 的距离小于或等于1的概率,圆柱的体积V 圆柱=π×12×2=2π,以O 为球心,1为半径且在圆柱内部的半球的体积V 半球=12×43π×13=2π3.则点P 到点O 的距离小于或等于1的概率为2π32π=13,故点P 到点O 的距离大于1的概率为1-13=23.答案:233.解:(1)若分成的三条线段的长度均为正整数,则三条线段的长度的所有可能情况是1,1,4;1,2,3;2,2,2共3种情况,其中只有三条线段长为2,2,2时,能构成三角形,故构成三角形的概率为P =13.(2)设其中两条线段长度分别为x ,y ,则第三条线段长度为6-x -y ,故全部试验结果所构成的区域为⎩⎪⎨⎪⎧ 0<x <6,0<y <6,0<6-x -y <6,即⎩⎪⎨⎪⎧0<x <6,0<y <6,0<x +y <6所表示的平面区域为△OAB.若三条线段x ,y,6-x -y 能构成三角形, 则还要满足⎩⎪⎨⎪⎧x +y >6-x -y ,x +6-x -y >y ,y +6-x -y >x ,即为⎩⎪⎨⎪⎧x +y >3,y <3,x <3所表示的平面区域为△DEF ,由几何概型知,所求概率为 P=S △DEFS △AOB=14.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。

高考数学文一轮:一课双测A+B精练五十五几何概型1

高考数学文一轮:一课双测A+B精练五十五几何概型1

高考数学(文)一轮:一课双测A+B 精练(五十五)几何概型1.(·北京模拟)在区间⎣⎡⎦⎤-π2,π2上随机取一个x ,sinx 的值介于-12与12之间的概率为( )A.13B.2π C.12D.232.(·辽宁高考)在长为12cm 的线段AB 上任取一点C.现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm2的概率为( )A.16B.13C.23D.453.(·滨州模拟)在区间[0,1]上任取两个数a ,b ,则函数f(x)=x2+ax +b2无零点的概率为( )A.12B.23C.34D.144.(·北京西城二模)已知函数f(x)=kx +1,其中实数k 随机选自区间[-2,1].∀x ∈[0,1],f(x)≥0的概率是( )A.13B.12C.23D.345.(·盐城摸底)在水平放置的长为5米的木杆上挂一盏灯,则悬挂点与木杆两端的距离都大于2米的概率为( )A.15B.25C.35D.126.(·沈阳四校联考)一只昆虫在边长分别为6,8,10的三角形区域内随机爬行,则其到三角形任一顶点的距离小于2的概率为( )1210C.π6D.π247.(·郑州模拟)若不等式组⎩⎪⎨⎪⎧y ≤x ,y ≥-x ,2x -y -3≤0表示的平面区域为M ,x2+y2≤1所表示的平面区域为N ,现随机向区域M 内抛一粒豆子,则豆子落在区域N 内的概率为________.8.(·孝感统考)如图所示,图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD 是边长为1的正方形.若向图2中虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,则此长方体的体积是________.9.(·宜春模拟)投镖游戏中的靶子由边长为1米的四方板构成,并将此板分成四个边长为12米的小方块.试验是向板中投镖,事件A 表示投中阴影部分,则事件A 发生的概率为________.10.已知|x|≤2,|y|≤2,点P 的坐标为(x ,y),求当x ,y ∈R 时,P 满足(x -2)2+(y -2)2≤4的概率.11.已知集合A =[-2,2],B =[-1,1],设M ={(x ,y)|x ∈A ,y ∈B},在集合M 内随机取出一个元素(x ,y).(1)求以(x ,y)为坐标的点落在圆x2+y2=1内的概率; (2)求以(x ,y)为坐标的点到直线x +y =0的距离不大于22的概率. 12.(·长沙模拟)已知向量a =(-2,1),b =(x ,y).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a ·b =-1的概率;(2)若x ,y 在连续区间[1,6]上取值,求满足a ·b <0的概率.1.在区间[0,π]上随机取一个数x ,则事件“sinx +3cosx ≤1”发生的概率为( ) A.14B.13232.有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________.3.(·晋中模拟)设AB =6,在线段AB 上任取两点(端点A 、B 除外),将线段AB 分成了三条线段.(1)若分成的三条线段的长度均为正整数,求这三条线段可以构成三角形的概率; (2)若分成的三条线段的长度均为正实数,求这三条线段可以构成三角形的概率. [答 题 栏]A 级1._________2._________3._________4._________5._________6._________B 级1.______2.______7.__________8.__________9.__________答 案高考数学(文)一轮:一课双测A+B 精练(五十五)A 级1.A2.C3.C4.C5.选A 如图,线段AB 长为5米,线段AC 、BD 长均为2米,线段CD 长为1米,满足题意的悬挂点E 在线段CD 上,故所求事件的概率P =15.6.选A 记昆虫所在三角形区域为△ABC ,且AB =6,BC =8,CA =10,则有AB2+BC2=CA2,AB ⊥BC ,该三角形是一个直角三角形,其面积等于12×6×8=24.在该三角形区域内,到三角形任一顶点的距离小于2的区域的面积等于A +B +C 2π×π×22=π2×22=2π,因此所求的概率等于2π24=π12.7.∵y =x 与y =-x 互相垂直, ∴M 的面积为3,而N 的面积为π4,所以概率为π43=π12.128.解析:设题图1长方体的高为h ,由几何概型的概率计算公式可知,质点落在长方体的平面展开图内的概率P =2+4h 2h +22h +1=14,解得h =3或h =-12(舍去), 故长方体的体积为1×1×3=3. 答案:39.解析:∵事件A 所包含的基本事件与阴影正方形中的点一一对应,事件组中每一个基本事件与大正方形区域中的每一个点一一对应.∴由几何概型的概率公式得P(A)=⎝ ⎛⎭⎪⎫12212=14. 答案:1410.解:如图,点P 所在的区域为正方形ABCD 的内部(含边界),满足(x -2)2+(y -2)2≤4的点的区域为以(2,2)为圆心,2为半径的圆面(含边界).故所求的概率P1=14π×224×4=π16.11.解:(1)集合M 内的点形成的区域面积S =8.因x2+y2=1的面积S1=π,故所求概率为P1=S1S =π8.(2)由题意|x +y|2≤22即-1≤x +y ≤1,形成的区域如图中阴影部分,面积S2=4,所求概率为P =S2S =12.12.解:(1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36个;由a ·b =-1有-2x +y =-1,所以满足a ·b =-1的基本事件为(1,1),(2,3),(3,5)共3个. 故满足a ·b =-1的概率为336=112.(2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x ,y)|1≤x ≤6,1≤y ≤6};满足a ·b <0的基本事件的结果为A ={(x ,y)|1≤x ≤6,1≤y ≤6,且-2x +y <0}; 画出图形,矩形的面积为S 矩形=25,阴影部分的面积为S 阴影=25-12×2×4=21,故满足a ·b <0的概率为2125.B 级1.选C 由sinx +3cosx ≤1得 2sin ⎝⎛⎭⎫x +π3≤1,即sin ⎝⎛⎭⎫x +π3≤12. 由于x ∈[0,π],故x +π3∈⎣⎢⎡⎦⎥⎤π3,4π3,因此当sin ⎝⎛⎭⎫x +π3≤12时,x +π3∈⎣⎢⎡⎦⎥⎤5π6,4π3,于是x ∈⎣⎡⎦⎤π2,π.由几何概型公式知事件“sinx +3cosx ≤1”发生的概率为P =π-π2π-0=12.2.解析:先求点P 到点O 的距离小于或等于1的概率,圆柱的体积V 圆柱=π×12×2=2π,以O 为球心,1为半径且在圆柱内部的半球的体积V 半球=12×43π×13=2π3.则点P 到点O 的距离小于或等于1的概率为2π32π=13,故点P 到点O 的距离大于1的概率为1-13=23.答案:233.解:(1)若分成的三条线段的长度均为正整数,则三条线段的长度的所有可能情况是1,1,4;1,2,3;2,2,2共3种情况,其中只有三条线段长为2,2,2时,能构成三角形,故构成三角形的概率为P =13.(2)设其中两条线段长度分别为x ,y ,则第三条线段长度为6-x -y ,故全部试验结果所构成的区域为⎩⎪⎨⎪⎧0<x <6,0<y <6,0<6-x -y <6,即⎩⎪⎨⎪⎧0<x <6,0<y <6,0<x +y <6所表示的平面区域为△OAB.若三条线段x ,y,6-x -y 能构成三角形, 则还要满足⎩⎪⎨⎪⎧x +y >6-x -y ,x +6-x -y >y ,y +6-x -y >x ,即为⎩⎪⎨⎪⎧x +y >3,y <3,x <3所表示的平面区域为△DEF ,由几何概型知,所求概率为 P =S △DEF S △AOB =14.高考数学(文)一轮:一课双测A+B精练(四十)空间几何体的结构特征及三视图和直观图1.(·青岛摸底)如图,在下列四个几何体中,其三视图(正视图、侧视图、俯视图)中有且仅有两个相同的是( )A.②③④B.①②③C.①③④D.①②④2.有下列四个命题:①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.其中真命题的个数是( )A.1B.2C.3D.43.一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )4.如图是一几何体的直观图、正视图和俯视图.在正视图右侧,按照画三视图的要求画出的该几何体的侧视图是( )5.如图△A′B′C′是△ABC的直观图,那么△ABC是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形6.(·东北三校一模)一个几何体的三视图如图所示,则侧视图的面积为( )A.2+3B.1+3C.2+23D.4+37.(·昆明一中二模)一个几何体的正视图和侧视图都是边长为1的正方形,且体积为1,则这个几何体的俯视图可能是下列图形中的________.(填入所有可能的图形前的编号) 2①锐角三角形;②直角三角形;③四边形;④扇形;⑤圆8.(·安徽名校模拟)一个几何体的三视图如图所示,则该几何体的体积为________.9.正四棱锥的底面边长为2,侧棱长均为3,其正视图(主视图)和侧视图(左视图)是全等的等腰三角形,则正视图的周长为________.10.已知:图1是截去一个角的长方体,试按图示的方向画出其三视图;图2是某几何体的三视图,试说明该几何体的构成.11.(·银川调研)正四棱锥的高为3,侧棱长为7,求侧面上斜高(棱锥侧面三角形的高)为多少?12.(·四平模拟)已知正三棱锥V-ABC的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图;(2)求出侧视图的面积.1.(·江西八所重点高中模拟)底面水平放置的正三棱柱的所有棱长均为2,当其正视图有最大面积时,其侧视图的面积为( )A.23B.3C.3D.42.(·深圳模拟)如图所示的几何体中,四边形ABCD是矩形,平面ABCD⊥平面ABE,已知AB=2,AE=BE=3,且当规定正视方向垂直平面ABCD时,该几何体的侧视图的面积为22.若M,N分别是线段DE,CE上的动点,则AM+MN+NB的最小值为________.3.一个多面体的直观图、正视图、侧视图如图1和2所示,其中正视图、侧视图均为边长为a的正方形.(1)请在图2指定的框内画出多面体的俯视图;(2)若多面体底面对角线AC,BD交于点O,E为线段AA1的中点,求证:OE∥平面A1C1C;(3)求该多面体的表面积.[答题栏]A级1._________2._________3._________4._________5._________6._________B级 1.______2.______ 7.__________8.__________9.__________答案高考数学(文)一轮:一课双测A+B精练(四十)A级1.A2.A3.C4.B5.选B由斜二测画法知B正确.6.选D依题意得,该几何体的侧视图的面积等于22+12×2×3=4+ 3.7.解析:如图1所示,直三棱柱ABE-A1B1E1符合题设要求,此时俯视图△A BE是锐角三角形;如图2所示,直三棱柱ABC-A1B1C1符合题设要求,此时俯视图△ABC是直角三角形;如图3所示,当直四棱柱的八个顶点分别是正方体上、下各边的中点时,所得直四棱柱ABCD-A1B1C1D1符合题设要求,此时俯视图(四边形ABCD)是正方形;若俯视图是扇形或圆,体积中会含有π,故排除④⑤.答案:①②③8.解析:结合三视图可知,该几何体为底面边长为2、高为2的正三棱柱除去上面的一个高为1的三棱锥后剩下的部分,其直观图如图所示,故该几何体的体积为12×2×2sin60°×2-13×12×2×2sin60°×1=533.答案:5339.解析:由题意知,正视图就是如图所示的截面PEF ,其中E 、F 分别是AD 、BC 的中点,连接AO ,易得AO =2,而PA =3,于是解得PO =1,所以PE =2,故其正视图的周长为2+2 2.答案:2+2210.解:图1几何体的三视图为:图2所示的几何体是上面为正六棱柱,下面为倒立的正六棱锥的组合体. 11.解:如图所示,正四棱锥S -ABCD 中, 高OS =3,侧棱SA =SB =SC =SD =7, 在Rt △SOA 中,OA =SA2-OS2=2,∴AC =4. ∴AB =BC =CD =DA =2 2. 作OE ⊥AB 于E ,则E 为AB 中点. 连接SE ,则SE 即为斜高, 在Rt △SOE 中,∵OE =12BC =2,SO =3,∴SE =5,即侧面上的斜高为 5.12.解:(1)三棱锥的直观图如图所示. (2)根据三视图间的关系可得BC =23, ∴侧视图中VA =42-⎝ ⎛⎭⎪⎫23×32×232=12=23,∴S △VBC =12×23×23=6.B 级1.选A 当正视图的面积达最大时可知其为正三棱柱某个侧面的面积,可以按如图所示位置放置,此时侧视图的面积为2 3.2.解析:依题意得,点E 到直线AB 的距离等于32-⎝ ⎛⎭⎪⎫222=2,因为该几何体的左(侧)视图的面积为12·BC ×2=22,所以BC =1,DE =EC =DC =2.所以△DEC 是正三角形,∠DEC =60°,tan ∠DEA =AD AE =33,∠DEA =∠CEB =30°.把△DAE ,△DEC 与△CEB 展在同一平面上,此时连接AB ,AE =BE =3,∠AEB =∠DEA +∠DEC +∠CEB =120°,AB2=AE2+BE2-2AE ·BEcos120°=9,即AB =3,即AM +MN +NB 的最小值为3.答案:33.解:(1)根据多面体的直观图、正视图、侧视图,得到俯视图如下:(2)证明:如图,连接AC ,BD ,交于O 点,连接OE. ∵E 为AA1的中点,O 为AC 的中点, ∴在△AA1C 中,OE 为△AA1C 的中位线. ∴OE ∥A1C.∵OE ⊄平面A1C1C ,A1C ⊂平面A1C1C , ∴OE ∥平面A1C1C.(3)多面体表面共包括10个面,SABCD =a2, SA1B1C1D1=a22,S △ABA1=S △B1BC =S △C 1DC =S △ADD1=a22,S △AA1D1=S △B1A1B =S △C1B1C =S △DC1D1 =12×2a 2×32a 4=3a28, ∴该多面体的表面积S =a2+a22+4×a22+4×3a28=5a2.高考数学(文)一轮:一课双测A+B 精练(四十五) 直线的倾斜角与斜率、直线的方程1.若k ,-1,b 三个数成等差数列,则直线y =kx +b 必经过定点( ) A .(1,-2) B .(1,2) C .(-1,2) D .(-1,-2)2.直线2x +11y +16=0关于点P(0,1)对称的直线方程是( ) A .2x +11y +38=0B .2x +11y -38=0 C .2x -11y -38=0D .2x -11y +16=03.(·衡水模拟)直线l1的斜率为2,l1∥l2,直线l2过点(-1,1)且与y 轴交于点P ,则P 点坐标为( )A .(3,0)B .(-3,0)C .(0,-3)D .(0,3)4.(·佛山模拟)直线ax +by +c =0同时要经过第一、第二、第四象限,则a ,b ,c 应满足( )A .ab >0,bc <0B .ab >0,bc >0C .ab <0,bc >0D .ab <0,bc <05.将直线y =3x 绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为( )A .y =-13x +13B .y =-13x +1C .y =3x -3D .y =13x +16.已知点A(1,-2),B(m,2),且线段AB 的垂直平分线的方程是x +2y -2=0,则实数m 的值是( )A .-2B .-7C .3D .17.(·贵阳模拟)直线l 经过点A(1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是________.8.(·常州模拟)过点P(-2,3)且在两坐标轴上的截距相等的直线l 的方程为________.9.(·天津四校联考)不论m 取何值,直线(m -1)x -y +2m +1=0恒过定点________. 10.求经过点(-2,2),且与两坐标轴所围成的三角形面积为1的直线l 的方程. 11.(·莆田月考)已知两点A(-1,2),B(m,3).(1)求直线AB 的方程; (2)已知实数m ∈⎣⎢⎡⎦⎥⎤-33-1,3-1,求直线AB 的倾斜角α的取值范围. 12.如图,射线OA 、OB 分别与x 轴正半轴成45°和30°角,过点P(1,0)作直线AB 分别交OA 、OB 于A 、B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.1.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( )A.⎣⎡⎭⎫π6,π3B.⎝⎛⎭⎫π6,π2C.⎝⎛⎭⎫π3,π2D.⎣⎡⎦⎤π6,π22.(·洛阳模拟)当过点P(1,2)的直线l 被圆C :(x -2)2+(y -1)2=5截得的弦最短时,直线l 的方程为________________.3.已知直线l :kx -y +1+2k =0(k ∈R). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.[答 题 栏]A 级1._________2._________3._________4._________5._________6._________B 级1.______2.______7.__________8.__________9.__________ 答 案高考数学(文)一轮:一课双测A+B 精练(四十五)A 级1.A2.B3.D4.A5.选A 将直线y =3x 绕原点逆时针旋转90°得到直线y =-13x ,再向右平移1个单位,所得直线的方程为y =-13(x -1),即y =-13x +13.6.选C 线段AB 的中点⎝⎛⎭⎪⎫1+m 2,0代入直线x +2y -2=0中,得m =3.7.解析:设直线l 的斜率为k ,则方程为y -2=k(x -1),在x 轴上的截距为1-2k ,令-3<1-2k <3,解得k <-1或k >12.答案:(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞8.解析:直线l 过原点时,l 的斜率为-32,直线方程为y =-32x ;l 不过原点时,设方程为x a +ya=1,将点(-2,3)代入,得a =1,直线方程为x +y =1.综上,l 的方程为x +y -1=0或2y +3x =0. 答案:x +y -1=0或3x +2y =09.解析:把直线方程(m -1)x -y +2m +1=0,整理得 (x +2)m -(x +y -1)=0,则⎩⎪⎨⎪⎧x +2=0,x +y -1=0,得⎩⎪⎨⎪⎧x =-2,y =3.答案:(-2,3)10.解:设所求直线方程为x a +yb =1,由已知可得⎩⎪⎨⎪⎧-2a +2b=1,12|a||b|=1,解得⎩⎪⎨⎪⎧a =-1,b =-2或⎩⎪⎨⎪⎧a =2,b =1.故直线l 的方程为2x +y +2=0或x +2y -2=0. 11.解:(1)当m =-1时,直线AB 的方程为x =-1; 当m ≠-1时,直线AB 的方程为y -2=1m +1(x +1).(2)①当m =-1时,α=π2;②当m ≠-1时,m +1∈⎣⎢⎡⎭⎪⎫-33,0∪(0, 3 ],∴k =1m +1∈(-∞,- 3 ]∪⎣⎢⎡⎭⎪⎫33,+∞,∴α∈⎣⎡⎭⎫π6,π2∪⎝ ⎛⎦⎥⎤π2,2π3. 综合①②知,直线AB 的倾斜角α∈⎣⎢⎡⎦⎥⎤π6,2π3.12.解:由题意可得kOA =tan45°=1, kOB =tan(180°-30°)=-33, 所以直线lOA :y =x ,lOB :y =-33x. 设A(m ,m),B(-3n ,n), 所以AB 的中点C ⎝⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在y =12x 上,且A 、P 、B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n2,m -0m -1=n -0-3n -1,解得m =3,所以A(3,3). 又P(1,0), 所以kAB =kAP =33-1=3+32, 所以lAB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.B 级1.选B 由⎩⎨⎧y =kx -3,2x +3y -6=0,解得⎩⎪⎨⎪⎧x =32+32+3k ,y =6k -232+3k .∵两直线交点在第一象限,∴⎩⎪⎨⎪⎧x >0,y >0,解得k >33. ∴直线l 的倾斜角的范围是⎝⎛⎭⎫π6,π2.2.解析:易知圆心C 的坐标为(2,1),由圆的几何性质可知,当圆心C 与点P 的连线与直线l 垂直时,直线l 被圆C 截得的弦最短.由C(2,1),P(1,2)可知直线PC 的斜率为2-11-2=-1,设直线l 的斜率为k ,则k ×(-1)=-1,得k =1,又直线l 过点P ,所以直线l 的方程为x -y +1=0.答案:x -y +1=03.解:(1)证明:法一:直线l 的方程可化为y =k(x +2)+1, 故无论k 取何值,直线l 总过定点(-2,1).法二:设直线过定点(x0,y0),则kx0-y0+1+2k =0对任意k ∈R 恒成立, 即(x0+2)k -y0+1=0恒成立, ∴x0+2=0,-y0+1=0,解得x0=-2,y0=1,故直线l 总过定点(-2,1).(2)直线l 的方程为y =kx +2k +1,则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k 的取值范围是[0,+∞).(3)依题意,直线l 在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,∴A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B(0,1+2k). 又-1+2k k <0且1+2k>0,∴k>0.故S =12|OA||OB|=12×1+2k k (1+2k)=12⎝⎛⎭⎪⎫4k +1k +4≥12(4+4)=4,当且仅当4k =1k ,即k =12时,取等号.故S 的最小值为4,此时直线l 的方程为 x -2y +4=0.。

2014高考数学(理)一轮:一课双测A+B精练(八)----函数的图象

2014高考数学(理)一轮:一课双测A+B精练(八)----函数的图象

2014高考数学(理)一轮:一课双测A+B精练(八)----函数的图象D10.已知函数f(x)=⎩⎨⎧3-x2,x ∈[-1,2],x -3,x ∈2,5].(1)在如图所示给定的直角坐标系内画出f(x)的图象;(2)写出f(x)的单调递增区间;(3)由图象指出当x 取什么值时f(x)有最值.11.若直线y =2a 与函数y =|ax -1|(a >0且a≠1)的图象有两个公共点,求a 的取值范围.12.已知函数f(x)的图象与函数h(x)=x +1x +2的图象关于点A(0,1)对称.(1)求函数f(x)的解析式;(2)若g(x)=f(x)+a x ,g(x)在区间(0,2]上的值不小于6,求实数a 的取值范围.1.(2013·威海质检)函数y =f(x)(x ∈R)的图象如图所示,下列说法正确的是( )①函数y =f(x)满足f(-x)=-f(x);②函数y =f(x)满足f(x +2)=f(-x);③函数y =f(x)满足f(-x)=f(x);④函数y =f(x)满足f(x +2)=f(x).A .①③B .②④C .①②D .③④2.若函数f(x)的图象经过变换T 后所得图象对应函数的值域与函数f(x)的值域相同,则称变换T 是函数f(x)的同值变换.下面给出四个函数及其对应的变换T ,其中变换T 不属于函数f(x)的同值变换的是( )A .f(x)=(x -1)2,变换T 将函数f(x)的图象关于y 轴对称B .f(x)=2x -1-1,变换T 将函数f(x)的图象关于x 轴对称C .f(x)=2x +3,变换T 将函数f(x)的图象关于点(-1,1)对称D .f(x)=sin ⎝⎛⎭⎪⎪⎫x +π3,变换T 将函数f(x)的图象关于点(-1,0)对称3.已知函数y =f(x)的定义域为R ,并对一切实数x ,都满足f(2+x)=f(2-x).(1)证明:函数y=f(x)的图象关于直线x=2对称;(2)若f(x)是偶函数,且x∈[0,2]时,f(x)=2x-1,求x∈[-4,0]时的f(x)的表达式.[答题栏]A级1._________2._________3._________4._________5.__________6._________B级1.______2.______ 7. __________ 8.__________ 9.__________答案高考数学(理)一轮:一课双测A+B精练(八)A 级1.D 2.B 3.A 4.B5.选B 函数的定义域是(-1,0)∪(0,+∞),值域是(-∞,0),所以其图象为B.6.选B由题意可知f(x)=错误!=⎩⎪⎨⎪⎧ x2-2,-1≤x≤32,x -x2,x<-1或x>32作出图象,由图象可知y =f(x)与y =c 有两个交点时,c≤-2或-1<c<-34,即函数y =f(x)-c 的图象与x 轴恰有两个公共点时实数c 的取值范围是(-∞,-2]∪⎝⎛⎭⎪⎪⎫-1,-34. 7.解析:当f(x)>0时,函数g(x)=log 2f(x)有意义,由函数f(x)的图象知满足f(x)>0的x ∈(2,8].答案:(2,8]8.解析:f(x)=x +1x =1+1x ,把函数y =1x 的图象向上平移1个单位,即得函数f(x)的图象.由y=1x 的对称中心为(0,0),可得平移后的f(x)图象的对称中心为(0,1).答案:(0,1)9.解析:当-1≤x≤0时,设解析式为y =kx +b ,则⎩⎨⎧ -k +b =0,b =1,得⎩⎨⎧k =1,b =1. ∴y =x +1.当x>0时,设解析式为y =a(x -2)2-1,∵图象过点(4,0),∴0=a(4-2)2-1,得a =14.答案:f(x)=⎩⎨⎧ x +1,-1≤x≤0,14x -22-1,x>010.解:(1)函数f(x)的图象如图所示.(2)由图象可知,函数f(x)的单调递增区间为[-1,0],[2,5].(3)由图象知当x =2时,f(x)min =f(2)=-1, 当x =0时,f(x)max =f(0)=3.11.解:当0<a <1时,y =|ax -1|的图象如图1所示,由已知得0<2a <1,即0<a <12.当a >1时,y =|ax -1|的图象如图2所示, 由已知可得0<2a <1,即0<a <12,但a >1,故a ∈∅.综上可知,a 的取值范围为⎝⎛⎭⎪⎪⎫0,12. 12.解:(1)设f(x)图象上任一点坐标为(x ,y),∵点(x ,y)关于点A(0,1)的对称点(-x,2-y)在h(x)的图象上,∴2-y=-x+1-x+2,∴y=x+1 x,即f(x)=x+1 x.(2)由题意g(x)=x+a+1 x,且g(x)=x+a+1x≥6,x∈(0,2].∵x∈(0,2],∴a+1≥x(6-x),即a≥-x2+6x-1.令q(x)=-x2+6x-1,x∈(0,2],q(x)=-x2+6x-1=-(x-3)2+8,∴x∈(0,2]时,q(x)max=q(2)=7,故a的取值范围为[7,+∞).B级1.选C由图象可知,函数f(x)为奇函数且关于直线x=1对称,所以f(1+x)=f(1-x),所以f[1+(x+1)]=f[1-(x+1)],即f(x+2)=f(-x).故①②正确.2.选B 对于A ,与f(x)=(x -1)2的图象关于y 轴对称的图象对应的函数解析式为g(x)=(-x -1)2=(x +1)2,易知两者的值域都为[0,+∞);对于B ,函数f(x)=2x -1-1的值域为(-1,+∞),与函数f(x)的图象关于x 轴对称的图象对应的函数解析式为g(x)=-2x -1+1,其值域为(-∞,1);对于C ,与f(x)=2x +3的图象关于点(-1,1)对称的图象对应的函数解析式为2-g(x)=2(-2-x)+3,即g(x)=2x +3,易知值域相同;对于D ,与f(x)=sin ⎝⎛⎭⎪⎪⎫x +π3的图象关于点(-1,0)对称的图象对应的函数解析式为g(x)=sin ⎝⎛⎭⎪⎪⎫x -π3+2,其值域为[-1,1],易知两函数的值域相同.3.解:(1)证明:设P(x0,y0)是函数y =f(x)图象上任一点,则y0=f(x0),点P 关于直线x =2的对称点为P′(4-x0,y0).因为f(4-x0)=f(2+(2-x0))=f(2-(2-x0))=f(x0)=y0,所以P′也在y =f(x)的图象上,所以函数y =f(x)的图象关于直线x =2对称.(2)因为当x ∈[-2,0]时,-x ∈[0,2], 所以f(-x)=-2x -1.又因为f(x)为偶函数,所以f(x)=f(-x)=-2x -1,x ∈[-2,0]. 当x ∈[-4,-2]时,4+x ∈[0,2],所以f(4+x)=2(4+x)-1=2x +7.而f(4+x)=f(-x)=f(x),所以f(x)=2x +7,x ∈[-4,-2].所以f(x)=⎩⎨⎧2x +7,x ∈[-4,-2],-2x -1,x ∈[-2,0].。

2014届高考数学(理)一轮复习【配套文档】:第十一篇 第5讲 几何概型 含答案

2014届高考数学(理)一轮复习【配套文档】:第十一篇 第5讲 几何概型 含答案

第5讲几何概型A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1.在1 L高产小麦种子中混入了一粒带麦锈病的种子,从中随机取出10 mL,则含有麦锈病种子的概率是().A.1 B.0。

1 C.0.01 D.0。

001解析设事件A为“10 mL小麦种子中含有麦锈病种子”,由几何概型的概率计算公式得P(A)=错误!=0。

01,所以10 mL小麦种子中含有麦锈病种子的概率是0.01。

答案C2. (2013·哈尔滨二模)如图的矩形长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,由此我们可以估计出阴影部分的面积约为().A.错误!B.错误!C。

错误! D.错误!解析由几何概型的概率公式,得错误!=错误!,所以阴影部分面积约为错误!,故选C.答案C3.(2011·福建)如图,矩形ABCD中,点E为边CD 的中点.若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于().A。

错误! B.错误!C.错误!D。

错误!解析S△ABE=错误!|AB|·|AD|,S矩形ABCD=|AB||AD|.故所求概率P=错误!=错误!.答案C4.(2012·辽宁)在长为12 cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积小于32 cm2的概率为().A。

错误! B.错误!C。

错误!D。

错误!解析设出AC的长度,先利用矩形面积小于32 cm2求出AC长度的范围,再利用几何概型的概率公式求解.设AC=x cm,CB=(12-x)cm,0<x<12,所以矩形面积小于32 cm2即为x(12-x)<32⇒0<x<4或8<x<12,故所求概率为错误!=错误!.答案C二、填空题(每小题5分,共10分)5.(2013·长沙模拟)在区间错误!上随机取一个数x,cos x的值介于0至错误!之间的概率为________.解析根据题目条件,结合几何概型的概率公式可得所求的概率为P=错误!=错误!。

高考数学文一轮:一课双测A+B精练五十五几何概型

高考数学文一轮:一课双测A+B精练五十五几何概型

高考数学(文)一轮:一课双测A+B 精练(五十五)几何概型1.(·北京模拟)在区间⎣⎡⎦⎤-π2,π2上随机取一个x ,sinx 的值介于-12与12之间的概率为( )A.13B.2π C.12D.232.(·辽宁高考)在长为12cm 的线段AB 上任取一点C.现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm2的概率为( )A.16B.13C.23D.453.(·滨州模拟)在区间[0,1]上任取两个数a ,b ,则函数f(x)=x2+ax +b2无零点的概率为( )A.12B.23C.34D.144.(·北京西城二模)已知函数f(x)=kx +1,其中实数k 随机选自区间[-2,1].∀x ∈[0,1],f(x)≥0的概率是( )A.13B.12C.23D.345.(·盐城摸底)在水平放置的长为5米的木杆上挂一盏灯,则悬挂点与木杆两端的距离都大于2米的概率为( )A.15B.25C.35D.126.(·沈阳四校联考)一只昆虫在边长分别为6,8,10的三角形区域内随机爬行,则其到三角形任一顶点的距离小于2的概率为( )1210C.π6D.π247.(·郑州模拟)若不等式组⎩⎪⎨⎪⎧y ≤x ,y ≥-x ,2x -y -3≤0表示的平面区域为M ,x2+y2≤1所表示的平面区域为N ,现随机向区域M 内抛一粒豆子,则豆子落在区域N 内的概率为________.8.(·孝感统考)如图所示,图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD 是边长为1的正方形.若向图2中虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,则此长方体的体积是________.9.(·宜春模拟)投镖游戏中的靶子由边长为1米的四方板构成,并将此板分成四个边长为12米的小方块.试验是向板中投镖,事件A 表示投中阴影部分,则事件A 发生的概率为________.10.已知|x|≤2,|y|≤2,点P 的坐标为(x ,y),求当x ,y ∈R 时,P 满足(x -2)2+(y -2)2≤4的概率.11.已知集合A =[-2,2],B =[-1,1],设M ={(x ,y)|x ∈A ,y ∈B},在集合M 内随机取出一个元素(x ,y).(1)求以(x ,y)为坐标的点落在圆x2+y2=1内的概率; (2)求以(x ,y)为坐标的点到直线x +y =0的距离不大于22的概率. 12.(·长沙模拟)已知向量a =(-2,1),b =(x ,y).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a ·b =-1的概率;(2)若x ,y 在连续区间[1,6]上取值,求满足a ·b <0的概率.1.在区间[0,π]上随机取一个数x ,则事件“sinx +3cosx ≤1”发生的概率为( ) A.14B.13232.有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________.3.(·晋中模拟)设AB =6,在线段AB 上任取两点(端点A 、B 除外),将线段AB 分成了三条线段.(1)若分成的三条线段的长度均为正整数,求这三条线段可以构成三角形的概率; (2)若分成的三条线段的长度均为正实数,求这三条线段可以构成三角形的概率. [答 题 栏]A 级1._________2._________3._________4._________5._________6._________B 级1.______2.______7.__________8.__________9.__________答 案高考数学(文)一轮:一课双测A+B 精练(五十五)A 级1.A2.C3.C4.C5.选A 如图,线段AB 长为5米,线段AC 、BD 长均为2米,线段CD 长为1米,满足题意的悬挂点E 在线段CD 上,故所求事件的概率P =15.6.选A 记昆虫所在三角形区域为△ABC ,且AB =6,BC =8,CA =10,则有AB2+BC2=CA2,AB ⊥BC ,该三角形是一个直角三角形,其面积等于12×6×8=24.在该三角形区域内,到三角形任一顶点的距离小于2的区域的面积等于A +B +C 2π×π×22=π2×22=2π,因此所求的概率等于2π24=π12.7.∵y =x 与y =-x 互相垂直, ∴M 的面积为3,而N 的面积为π4,所以概率为π43=π12.128.解析:设题图1长方体的高为h ,由几何概型的概率计算公式可知,质点落在长方体的平面展开图内的概率P =2+4h 2h +22h +1=14,解得h =3或h =-12(舍去), 故长方体的体积为1×1×3=3. 答案:39.解析:∵事件A 所包含的基本事件与阴影正方形中的点一一对应,事件组中每一个基本事件与大正方形区域中的每一个点一一对应.∴由几何概型的概率公式得P(A)=⎝ ⎛⎭⎪⎫12212=14. 答案:1410.解:如图,点P 所在的区域为正方形ABCD 的内部(含边界),满足(x -2)2+(y -2)2≤4的点的区域为以(2,2)为圆心,2为半径的圆面(含边界).故所求的概率P1=14π×224×4=π16.11.解:(1)集合M 内的点形成的区域面积S =8.因x2+y2=1的面积S1=π,故所求概率为P1=S1S =π8.(2)由题意|x +y|2≤22即-1≤x +y ≤1,形成的区域如图中阴影部分,面积S2=4,所求概率为P =S2S =12.12.解:(1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36个;由a ·b =-1有-2x +y =-1,所以满足a ·b =-1的基本事件为(1,1),(2,3),(3,5)共3个. 故满足a ·b =-1的概率为336=112.(2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x ,y)|1≤x ≤6,1≤y ≤6};满足a ·b <0的基本事件的结果为A ={(x ,y)|1≤x ≤6,1≤y ≤6,且-2x +y <0}; 画出图形,矩形的面积为S 矩形=25,阴影部分的面积为S 阴影=25-12×2×4=21,故满足a ·b <0的概率为2125.B 级1.选C 由sinx +3cosx ≤1得 2sin ⎝⎛⎭⎫x +π3≤1,即sin ⎝⎛⎭⎫x +π3≤12. 由于x ∈[0,π],故x +π3∈⎣⎢⎡⎦⎥⎤π3,4π3,因此当sin ⎝⎛⎭⎫x +π3≤12时,x +π3∈⎣⎢⎡⎦⎥⎤5π6,4π3,于是x ∈⎣⎡⎦⎤π2,π.由几何概型公式知事件“sinx +3cosx ≤1”发生的概率为P =π-π2π-0=12.2.解析:先求点P 到点O 的距离小于或等于1的概率,圆柱的体积V 圆柱=π×12×2=2π,以O 为球心,1为半径且在圆柱内部的半球的体积V 半球=12×43π×13=2π3.则点P 到点O 的距离小于或等于1的概率为2π32π=13,故点P 到点O 的距离大于1的概率为1-13=23.答案:233.解:(1)若分成的三条线段的长度均为正整数,则三条线段的长度的所有可能情况是1,1,4;1,2,3;2,2,2共3种情况,其中只有三条线段长为2,2,2时,能构成三角形,故构成三角形的概率为P =13.(2)设其中两条线段长度分别为x ,y ,则第三条线段长度为6-x -y ,故全部试验结果所构成的区域为⎩⎪⎨⎪⎧0<x <6,0<y <6,0<6-x -y <6,即⎩⎪⎨⎪⎧0<x <6,0<y <6,0<x +y <6所表示的平面区域为△OAB.若三条线段x ,y,6-x -y 能构成三角形, 则还要满足⎩⎪⎨⎪⎧x +y >6-x -y ,x +6-x -y >y ,y +6-x -y >x ,即为⎩⎪⎨⎪⎧x +y >3,y <3,x <3所表示的平面区域为△DEF ,由几何概型知,所求概率为 P =S △DEF S △AOB =14.高考数学(文)一轮:一课双测A +B 精练(四十六) 两直线的位置关系1.(·海淀区期末)已知直线l1:k1x +y +1=0与直线l2:k2x +y -1=0,那么“k1=k2”是“l1∥l2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.当0<k <12时,直线l1:kx -y =k -1与直线l2:ky -x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限3.(·长沙检测)已知直线l1的方程为3x +4y -7=0,直线l2的方程为6x +8y +1=0,则直线l1与l2的距离为( )A.85B.32 C .4D .84.若直线l1:y =k(x -4)与直线l2关于点(2,1)对称,则直线l2恒过定点( ) A .(0,4) B .(0,2) C .(-2,4)D .(4,-2)5.已知直线l1:y =2x +3,若直线l2与l1关于直线x +y =0对称,又直线l3⊥l2,则l3的斜率为( )A .-2B .-12C.12D .2 6.(·岳阳模拟)直线l 经过两直线7x +5y -24=0和x -y =0的交点,且过点(5,1).则l 的方程是( )A .3x +y +4=0B .3x -y +4=0C .x +3y -8=0D .x -3y -4=07.(·郑州模拟)若直线l1:ax +2y =0和直线l2:2x +(a +1)y +1=0垂直,则实数a 的值为________.8.已知平面上三条直线x +2y -1=0,x +1=0,x +ky =0,如果这三条直线将平面划分为六部分,则实数k 的所有取值为________.9.(·临沂模拟)已知点P(4,a)到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________.10.(·舟山模拟)已知1a +1b =1(a >0,b >0),求点(0,b)到直线x -2y -a =0的距离的最小值.11.(·荆州二检)过点P(1,2)的直线l 被两平行线l1:4x +3y +1=0与l2:4x +3y +6=0截得的线段长|AB|=2,求直线l 的方程.12.已知直线l :3x -y +3=0,求: (1)点P(4,5)关于l 的对称点;(2)直线x -y -2=0关于直线l 对称的直线方程.1.点P 到点A(1,0)和直线x =-1的距离相等,且点P 到直线y =x 的距离为22,这样的点P 的个数是( )A .1B .2C .3D .42.(·福建模拟)若点(m ,n)在直线4x +3y -10=0上,则m2+n2的最小值是( ) A .2B .22 C .4D .233.在直线l :3x -y -1=0上求一点P ,使得P 到A(4,1)和B(0,4)的距离之差最大. [答 题 栏]A 级1._________2._________3._________4._________5.__________6._________B 级1.______2.______7.__________8.__________9.__________ 答 案高考数学(文)一轮:一课双测A+B 精练(四十六)A 级1.C2.B3.B4.B5.选A 依题意得,直线l2的方程是-x =2(-y)+3, 即y =12x +32,其斜率是12,由l3⊥l2,得l3的斜率等于-2.6.选C 设l 的方程为7x +5y -24+λ(x -y)=0,即(7+λ)x +(5-λ)y -24=0,则(7+λ)×5+5-λ-24=0.解得λ=-4.l 的方程为x +3y -8=0.7.解析:由2a +2(a +1)=0得a =-12.答案:-128.解析:若三条直线有两条平行,另外一条与这两条直线相交,则符合要求,此时k =0或2;若三条直线交于一点,也符合要求,此时k =1,故实数k 的所有取值为0,1,2.答案:0,1,29.解析:由题意得,点到直线的距离为|4×4-3×a -1|5=|15-3a|5.又|15-3a|5≤3,即|15-3a|≤15,解得,0≤a ≤10,所以a ∈[0,10].答案:[0,10]10.解:点(0,b)到直线x -2y -a =0的距离为d =a +2b 5=15(a +2b)⎝ ⎛⎭⎪⎫1a +1b =15⎝⎛⎭⎪⎫3+2b a +a b ≥15(3+22)=35+2105,当且仅当a2=2b2,a +b =ab ,即a =1+2,b =2+22时取等号.所以点(0,b)到直线x -2y -a =0的距离的最小值为35+2105. 11.解:设直线l 的方程为y -2=k(x -1),由⎩⎪⎨⎪⎧ y =kx +2-k ,4x +3y +1=0,解得A ⎝⎛⎭⎪⎫3k -73k +4,-5k +83k +4;由⎩⎪⎨⎪⎧y =kx +2-k ,4x +3y +6=0,解得B ⎝⎛⎭⎪⎫3k -123k +4,8-10k 3k +4.∵|AB|=2, ∴⎝ ⎛⎭⎪⎫53k +42+⎝ ⎛⎭⎪⎫5k 3k +42=2, 整理,得7k2-48k -7=0, 解得k1=7或k2=-17.因此,所求直线l 的方程为x +7y -15=0或7x -y -5=0.12.解:设P(x ,y)关于直线l :3x -y +3=0的对称点为P ′(x ′,y ′).∵kPP ′·kl =-1,即y ′-yx ′-x ×3=-1.①又PP ′的中点在直线3x -y +3=0上, ∴3×x ′+x 2-y ′+y 2+3=0.②由①②得⎩⎪⎨⎪⎧x ′=-4x +3y -95,③ y ′=3x +4y +35.④(1)把x =4,y =5代入③④得x ′=-2, y ′=7,∴P(4,5)关于直线l 的对称点P ′的坐标为(-2,7).(2)用③④分别代换x -y -2=0中的x ,y ,得关于l 的对称直线方程为-4x +3y -95-3x +4y +35-2=0, 化简得7x +y +22=0.B 级1.选C ∵点P 到点A 和定直线距离相等, ∴P 点轨迹为抛物线,方程为y2=4x. 设P(t2,2t),则22=|t2-2t|2,解得t1=1,t2=1+2,t3=1-2,故P 点有三个.2.选C 设原点到点(m ,n)的距离为d ,所以d2=m2+n2,又因为(m ,n)在直线4x +3y -10=0上,所以原点到直线4x +3y -10=0的距离为d 的最小值,此时d =|-10|42+32=2,所以m2+n2的最小值为4.3.解:如图所示,设点B 关于l 的对称点为B ′,连接AB ′并延长交l 于P ,此时的P 满足|PA|-|PB|的值最大.设B ′的坐标为(a ,b),则kBB ′·kl =-1, 即3·b -4a =-1.则a +3b -12=0.①又由于线段BB ′的中点坐标为⎝ ⎛⎭⎪⎫a 2,b +42,且在直线l 上,则3×a 2-b +42-1=0,即3a -b -6=0.②解①②,得a =3,b =3,即B ′(3,3). 于是AB ′的方程为y -13-1=x -43-4,即2x +y -9=0.解⎩⎪⎨⎪⎧3x -y -1=0,2x +y -9=0,得⎩⎪⎨⎪⎧x =2,y =5,即l 与AB ′的交点坐标为P(2,5).高考数学(文)一轮:一课双测A+B精练(四十)空间几何体的结构特征及三视图和直观图1.(·青岛摸底)如图,在下列四个几何体中,其三视图(正视图、侧视图、俯视图)中有且仅有两个相同的是( )A.②③④B.①②③C.①③④D.①②④2.有下列四个命题:①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.其中真命题的个数是( )A.1B.2C.3D.43.一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )4.如图是一几何体的直观图、正视图和俯视图.在正视图右侧,按照画三视图的要求画出的该几何体的侧视图是( )5.如图△A′B′C′是△ABC的直观图,那么△ABC是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形6.(·东北三校一模)一个几何体的三视图如图所示,则侧视图的面积为( )A.2+3B.1+3C.2+23D.4+37.(·昆明一中二模)一个几何体的正视图和侧视图都是边长为1的正方形,且体积为1,则这个几何体的俯视图可能是下列图形中的________.(填入所有可能的图形前的编号) 2①锐角三角形;②直角三角形;③四边形;④扇形;⑤圆8.(·安徽名校模拟)一个几何体的三视图如图所示,则该几何体的体积为________.9.正四棱锥的底面边长为2,侧棱长均为3,其正视图(主视图)和侧视图(左视图)是全等的等腰三角形,则正视图的周长为________.10.已知:图1是截去一个角的长方体,试按图示的方向画出其三视图;图2是某几何体的三视图,试说明该几何体的构成.11.(·银川调研)正四棱锥的高为3,侧棱长为7,求侧面上斜高(棱锥侧面三角形的高)为多少?12.(·四平模拟)已知正三棱锥V-ABC的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图;(2)求出侧视图的面积.1.(·江西八所重点高中模拟)底面水平放置的正三棱柱的所有棱长均为2,当其正视图有最大面积时,其侧视图的面积为( )A.23B.3C.3D.42.(·深圳模拟)如图所示的几何体中,四边形ABCD是矩形,平面ABCD⊥平面ABE,已知AB=2,AE=BE=3,且当规定正视方向垂直平面ABCD时,该几何体的侧视图的面积为22.若M,N分别是线段DE,CE上的动点,则AM+MN+NB的最小值为________.3.一个多面体的直观图、正视图、侧视图如图1和2所示,其中正视图、侧视图均为边长为a的正方形.(1)请在图2指定的框内画出多面体的俯视图;(2)若多面体底面对角线AC,BD交于点O,E为线段AA1的中点,求证:OE∥平面A1C1C;(3)求该多面体的表面积.[答题栏]A级1._________2._________3._________4._________5._________6._________B级 1.______2.______ 7.__________8.__________9.__________答案高考数学(文)一轮:一课双测A+B精练(四十)A级1.A2.A3.C4.B5.选B由斜二测画法知B正确.6.选D依题意得,该几何体的侧视图的面积等于22+12×2×3=4+ 3.7.解析:如图1所示,直三棱柱ABE-A1B1E1符合题设要求,此时俯视图△A BE是锐角三角形;如图2所示,直三棱柱ABC-A1B1C1符合题设要求,此时俯视图△ABC是直角三角形;如图3所示,当直四棱柱的八个顶点分别是正方体上、下各边的中点时,所得直四棱柱ABCD-A1B1C1D1符合题设要求,此时俯视图(四边形ABCD)是正方形;若俯视图是扇形或圆,体积中会含有π,故排除④⑤.答案:①②③8.解析:结合三视图可知,该几何体为底面边长为2、高为2的正三棱柱除去上面的一个高为1的三棱锥后剩下的部分,其直观图如图所示,故该几何体的体积为12×2×2sin60°×2-13×12×2×2sin60°×1=533.答案:5339.解析:由题意知,正视图就是如图所示的截面PEF ,其中E 、F 分别是AD 、BC 的中点,连接AO ,易得AO =2,而PA =3,于是解得PO =1,所以PE =2,故其正视图的周长为2+2 2.答案:2+2210.解:图1几何体的三视图为:图2所示的几何体是上面为正六棱柱,下面为倒立的正六棱锥的组合体. 11.解:如图所示,正四棱锥S -ABCD 中, 高OS =3,侧棱SA =SB =SC =SD =7, 在Rt △SOA 中,OA =SA2-OS2=2,∴AC =4. ∴AB =BC =CD =DA =2 2. 作OE ⊥AB 于E ,则E 为AB 中点. 连接SE ,则SE 即为斜高, 在Rt △SOE 中,∵OE =12BC =2,SO =3,∴SE =5,即侧面上的斜高为 5.12.解:(1)三棱锥的直观图如图所示. (2)根据三视图间的关系可得BC =23, ∴侧视图中VA =42-⎝ ⎛⎭⎪⎫23×32×232=12=23,∴S △VBC =12×23×23=6.B 级1.选A 当正视图的面积达最大时可知其为正三棱柱某个侧面的面积,可以按如图所示位置放置,此时侧视图的面积为2 3.2.解析:依题意得,点E 到直线AB 的距离等于32-⎝ ⎛⎭⎪⎫222=2,因为该几何体的左(侧)视图的面积为12·BC ×2=22,所以BC =1,DE =EC =DC =2.所以△DEC 是正三角形,∠DEC =60°,tan ∠DEA =AD AE =33,∠DEA =∠CEB =30°.把△DAE ,△DEC 与△CEB 展在同一平面上,此时连接AB ,AE =BE =3,∠AEB =∠DEA +∠DEC +∠CEB =120°,AB2=AE2+BE2-2AE ·BEcos120°=9,即AB =3,即AM +MN +NB 的最小值为3.答案:33.解:(1)根据多面体的直观图、正视图、侧视图,得到俯视图如下:(2)证明:如图,连接AC ,BD ,交于O 点,连接OE. ∵E 为AA1的中点,O 为AC 的中点, ∴在△AA1C 中,OE 为△AA1C 的中位线. ∴OE ∥A1C.∵OE ⊄平面A1C1C ,A1C ⊂平面A1C1C , ∴OE ∥平面A1C1C.(3)多面体表面共包括10个面,SABCD =a2, SA1B1C1D1=a22,S △ABA1=S △B1BC =S △C 1DC =S △ADD1=a22,S △AA1D1=S △B1A1B =S △C1B1C =S △DC1D1 =12×2a 2×32a 4=3a28, ∴该多面体的表面积S =a2+a22+4×a22+4×3a28=5a2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014高考数学(文)一轮:一课双测A+B 精练(五十五) 几 何 概

1.(2012·北京模拟)在区间⎣⎢⎡⎦⎥⎤-π2,π2上随机取一个x ,sin x 的值介于-12与12之间的
概率为( )
A.13
B.2
π C.1
2
D.23
2.(2012·辽宁高考)在长为12 cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32 cm 2
的概率为( )
A.1
6 B.13 C.2
3
D.45
3.(2013·滨州模拟)在区间[0,1]上任取两个数a ,b ,则函数f (x )=x 2
+ax +b 2
无零点的概率为( )
A.1
2 B.2
3 C.3
4
D.14
4.(2012·北京西城二模)已知函数f (x )=kx +1,其中实数k 随机选自区间[-2,1].∀
x ∈[0,1],f (x )≥0的概率是( )
A.1
3 B.12 C.2
3
D.34
5.(2012·盐城摸底)在水平放置的长为5米的木杆上挂一盏灯,则悬挂点与木杆两端的距离都大于2米的概率为( )
A.1
5 B.25 C.3
5
D.12
6.(2012·沈阳四校联考)一只昆虫在边长分别为6,8,10的三角形区域内随机爬行,则
其到三角形任一顶点的距离小于2的概率为( )
A.π
12 B.π10 C.π
6
D.π24
7.(2012·郑州模拟)若不等式组⎩⎪⎨⎪

y ≤x ,y ≥-x ,
2x -y -3≤0
表示的平面区域为M ,x 2+y 2
≤1所
表示的平面区域为N ,现随机向区域M 内抛一粒豆子,则豆子落在区域N 内的概率为________.
8.(2012·孝感统考)如图所示,图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD 是边长为1的正方形.若向图2中虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是1
4
,则此长方体的体积是________.
9.(2012·宜春模拟)投镖游戏中的靶子由边长为1米的四方板
构成,并将此板分成四个边长为1
2米的小方块.试验是向板中投镖,
事件A 表示投中阴影部分,则事件A 发生的概率为________.
10.已知|x |≤2,|y |≤2,点P 的坐标为(x ,y ),求当x ,y ∈R 时,P 满足(x -2)2
+(y -2)2
≤4的概率.
11.已知集合A =[-2,2],B =[-1,1],设M ={(x ,y )|x ∈A ,y ∈B },在集合M 内随机取出一个元素(x ,y ).
(1)求以(x ,y )为坐标的点落在圆x 2
+y 2
=1内的概率; (2)求以(x ,y )为坐标的点到直线x +y =0的距离不大于
2
2
的概率. 12.(2012·长沙模拟)已知向量a =(-2,1),b =(x ,y ).
(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a·b =-1的概率;
(2)若x ,y 在连续区间[1,6]上取值,求满足a·b <0的概率.
1.在区间[0,π]上随机取一个数x ,则事件“sin x +3cos x ≤1”发生的概率为( )
A.1
4 B.13 C.1
2
D.23
2.有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________.
3.(2012·晋中模拟)设AB =6,在线段AB 上任取两点(端点A 、B 除外),将线段AB 分成了三条线段.
(1)若分成的三条线段的长度均为正整数,求这三条线段可以构成三角形的概率; (2)若分成的三条线段的长度均为正实数,求这三条线段可以构成三角形的概率. [答 题 栏]
答 案
2014高考数学(文)一轮:一课双测A+B 精练(五十五)
A 级
1.A 2.C 3.C 4.C
5.选A 如图,线段AB 长为5米,线段AC 、BD 长均为2米,线段CD 长为1米,满足题意的悬挂点E 在线段CD 上,故所求事件的概率P =1
5
.
6.选A 记昆虫所在三角形区域为△ABC ,且AB =6,BC =8,CA =10,则有AB 2
+BC 2

CA 2,AB ⊥BC ,该三角形是一个直角三角形,其面积等于12
×6×8=24.在该三角形区域内,到
三角形任一顶点的距离小于2的区域的面积等于A +B +C
2
π×π×22=π2
×22
=2π,因此所求
的概率等于2π24=π
12
.
7.∵y =x 与y =-x 互相垂直, ∴M 的面积为3,而N 的面积为π
4

所以概率为π43=π
12.
答案:π12
8.解析:设题图1长方体的高为h ,由几何概型的概率计算公式可知,质点落在长方体的平面展开图内的概率P =
2+4h
h +h +
=14,解得h =3或h =-1
2
(舍去), 故长方体的体积为1×1×3=3. 答案:3
9.解析:∵事件A 所包含的基本事件与阴影正方形中的点一一对应,事件组中每一个基
本事件与大正方形区域中的每一个点一一对应.∴由几何概型的概率公式得P (A )=
⎝ ⎛⎭⎪⎫122
1
2
=1
4
. 答案:1
4
10.解:如图,点P 所在的区域为正方形ABCD 的内部(含边界),满足(x -2)2
+(y -2)2
≤4的点的区域为以(2,2)为圆心,2为半径的圆面(含边界).
故所求的概率P 1=14π×224×4=π
16
.
11.解:(1)集合M 内的点形成的区域面积S =8.因x 2+y 2
=1的面积S 1=π,故所求概
率为P 1=S 1S =π
8
.
(2)由题意
|x +y |2
≤2
2即-1≤x +y ≤1,形成的区域如图中阴影部分,面积S 2=4,所求概率为P =S 2S =1
2
.
12.解:(1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36个;
由a·b =-1有-2x +y =-1,
所以满足a·b =-1的基本事件为(1,1),(2,3),(3,5)共3个. 故满足a·b =-1的概率为336=1
12
.
(2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为Ω=
{(
x ,
y )|1≤x ≤6,1≤y ≤6};
满足a·b <0的基本事件的结果为
A ={(x ,y )|1≤x ≤6,1≤y ≤6,且-2x +y <0};
画出图形, 矩形的面积为S 矩形
=25,阴影部分的面积为S
阴影
=25-
12
×2×4=21,
故满足a·b <0的概率为21
25
.
B 级
1.选C 由sin x +3cos x ≤1得
2sin ⎝ ⎛⎭⎪⎫x +π3≤1,
即sin ⎝
⎛⎭⎪⎫x +π3≤1
2.
由于x ∈[0,π],故x +π3∈⎣⎢⎡⎦⎥⎤
π3
,4π3,
因此当sin ⎝ ⎛⎭⎪⎫x +π3≤12时,x +π3∈⎣⎢⎡⎦⎥⎤5π6,4π3,于是x ∈⎣⎢⎡⎦⎥⎤π2,π. 由几何概型公式知事件“sin x +3cos x ≤1”发生的概率为P =π-
π
2π-0=1
2
.
2.解析:先求点P 到点O 的距离小于或等于1的概率,圆柱的体积V 圆柱=π×12
×2=2π,以O 为球心,1为半径且在圆柱内部的半球的体积V 半球=12×43π×13
=2π3.则点P 到点O 的
距离小于或等于1的概率为2π
32π=13,故点P 到点O 的距离大于1的概率为1-13=2
3
.
答案:2
3
3.解:(1)若分成的三条线段的长度均为正整数,则三条线段的长度的所有可能情况是1,1,4;1,2,3;2,2,2共3种情况,其中只有三条线段长为2,2,2时,能构成三角形,故构成三角形的概率为P =1
3
.
(2)设其中两条线段长度分别为x ,y ,则第三条线段长度为6-x -y ,故全部试验结果所构成的区域为
⎩⎪⎨⎪
⎧ 0<x <6,0<y <6,0<6-x -y <6,
即⎩⎪⎨⎪

0<x <6,0<y <6,0<x +y <6
所表示的平面区域为△OAB .
若三条线段x ,y,6-x -y 能构成三角形,
则还要满足⎩⎪⎨⎪

x +y >6-x -y ,x +6-x -y >y ,
y +6-x -y >x ,
即为⎩⎪⎨⎪

x +y >3,y <3,
x <3
所表示的平面区域为△DEF ,
由几何概型知,所求概率为
P =S △DEF S △AOB =1
4
.。

相关文档
最新文档