2.5 与圆有关的比例线段 课件(人教A选修4-1)

合集下载

2.5 与圆有关的比例线段 课件(人教A选修4-1)(2)

2.5 与圆有关的比例线段 课件(人教A选修4-1)(2)

[研一题] [例2] 如图,AD是⊙O的直径,AB是⊙O的切线,
直线BMN交AD的延长线于点C,BM
=MN=NC,AB=2,求BC的长度和 ⊙O的半径. 分析:本题考查割线定理,切割 线定理以及勾股定理的综合应用,解答本题需利用切割线
定理求BC,利用割线定理求⊙O的半径.
解:∵AD 是⊙O 的直径,AB 是⊙O 的切线,直线 BMN 是 ⊙O 的割线, ∴∠BAC=90° ,AB2=BM· BN. ∵BM=MN=NC,AB=2,∴2BM2=4. ∴BM= 2,∴BC=3BM=3 2. ∴AB2+AC2=BC2,4+AC2=18,AC= 14. ∵CN· CM=CD· CA, 2 ∴ 2· 2=CD· 14,∴CD= 14. 2 7 1 5 ∴⊙O 的半径为 (CA-CD)= 14. 2 14
4 答案: 3
点击下图进入“创新演练”
[悟一法]
在实际应用中,若圆中有两条相交弦,要想到利
用相交弦定理.特别地,如果弦与直径垂直相交,那 么弦的一半是它分直径所成的两条线段的比例中项.
[通一类]
1.如图,正方形 ABCD 内接于⊙O,E 为 DC 中点,直线 BE 交⊙O 于点 F,若⊙O 的半 径为 2,求 BF 的长.
解:∵⊙O 的半径为 2, ∴CD=2,∴DE=CE=1,BE= 5. 由相交弦定理得 DE· CE=BE· EF. 5 6 ∴EF= .∴BF= 5. 5 5
[读教材·填要点] 1.相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积 相等 . 2.割线定理 从圆外一点引圆的两条割线,这一点到每条割线与圆
的交点的两条线段长的积 相等 .
3.切割线定理
从圆外一点引圆的切线和割线,切线长是这点到割线与 圆交点的两条线段长的 比例中项 . 4.切线长定理 从圆外一点引圆的两条切线,它们的切线长 相等 ,圆 心和这一点的连线 平分 两条切线的夹角.

2.5 与圆有关的比例线段 课件(人教A选修4-1)(2)

2.5 与圆有关的比例线段 课件(人教A选修4-1)(2)
2 2
1 14 4- = , 2 2
AB BE 又△ABE∽△FAB,所以 = , FA AB AB2 4 4 14 即 BE= = = . FA 7 14 2
[研一题]
[例3] 如图所示,已知PA与⊙O相切,A为切点,
PBC为割线,弦CD∥AP,AD、BC相交于E点,F为CE上
一点,且DE2=EF· EC.
∴∠EDF=∠C.
∵CD∥AP,∴∠C=∠P. ∴∠P=∠EDF.
(2)证明:∵∠P=∠EDF,∠DEF=∠PEA,
∴△DEF∽△PEA. ∴DE∶PE=EF∶EA. 即EF· EP=DE· EA. ∵弦AD、BC相交于点E,
∴DE· EA=CE· EB.
∴CE· EB=EF· EP.
(3)解:∵DE2=EF· EC,DE=6,EF=4, ∴EC=9.∵CE∶BE=3∶2,∴BE=6. ∵CE· EB=EF· EP, ∴9×6=4×EP. 27 解得:EP= . 2 15 45 ∴PB=PE-BE= ,PC=PE+EC= . 2 2 由切割线定理得:PA2=PB· PC, 15 45 ∴PA2= × . 2 2 15 ∴PA= 3. 2
4 答案: 3
点击下图进入“创新演练”
[研一题] [例2] 如图,AD是⊙O的直径,AB是⊙O的切线,
直线BMN交AD的延长线于点C,BM
=MN=NC,AB=2,求BC的长度和 ⊙O的半径. 分析:本题考查割线定理,切割 线定理以及勾股定理的综合应用,解答本题需利用切割线
定理求BC,利用割线定理求⊙O的半径.
解:∵AD 是⊙O 的直径,AB 是⊙O 的切线,直线 BMN 是 ⊙O 的割线, ∴∠BAC=90° ,AB2=BM· BN. ∵BM=MN=NC,AB=2,∴2BM2=4. ∴BM= 2,∴BC=3BM=3 2. ∴AB2+AC2=BC2,4+AC2=18,AC= 14. ∵CN· CM=CD· CA, 2 ∴ 2· 2=CD· 14,∴CD= 14. 2 7 1 5 ∴⊙O 的半径为 (CA-CD)= 14. 2 14

高中数学 2.5与圆有关的比例段课件 新人教A版选修4-1

高中数学 2.5与圆有关的比例段课件 新人教A版选修4-1

G,求证:DH=DG
A F1 D
H
3
C
D2
B
G
练习3 如图,⊙O的直径AB的延长 线与弦CD的延长线相交⌒于点⌒P,E为 ⊙O上一点,AE=AC,DE交AB于点F,
求证:PF ● PO=PA ● PB
E
A

F
B
P
D C
• 作业 第40页6---9题
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
五、与圆有关的比例线段
D
B P A
C
PC ● PD=PA ● PB 相交弦定理
圆内的两条相交弦, 被交点分成的两条线段长的积相等。
D C
P
A B
PC ● PD=PA ● PB 割线定理: 从圆外一点引圆的两条割线,这一 点到每条割线与圆的交点的两条线 段长的积相等
D C
P
A(B)
PC ● PD=PA2 切割线定理:从圆外一点引圆的切线和割线, 切线长是这点到割线与圆交点的两条线段长的 比例中项。
A
D
AC•CDAE•CG(9)
Q
C、E、B、Q四点共圆
G
(10)
P
C
练习1:如图, ⊙O和⊙O′都经过点 A和B,PQ切⊙O于点P,交⊙O′于
Q、M,交AB的延长线于N,
求证:PN2=NM ● NQ
A

O’

O
Q
MB
NP
练习2 如图,已知AD、BE、CF分 别是△ABC三边的高,H是垂心, AD的延长线交△ABC的外接圆于点
切线长定理: 从圆外一点引圆的两条切线,它们 的切线长相等,圆心和这一点的连 线平分两条切线的夹角。

2.5与圆有关的比例线段 课件(人教A版选修4-1)2

2.5与圆有关的比例线段 课件(人教A版选修4-1)2
答案:2
PA 8 =2. PB 4
割线定理、切割线定理及其应用 【技法点拨】 1.割线、切割线定理的应用 (1)割线定理、切割线定理常常与弦切角定理、相交弦定理、
平行线分线段成比例定理、相似三角形知识结合在一起解决数
学问题,有时切割线定理利用方程进行计算、求值等.
(2)切割线定理可以看成是割线定理的特殊情况,当两条割线中
由切割线定理,可得AQ2=QB·QC, ∴62=QB·(QB+5), 解得QB=4(负值舍去).„„„„„„„„„„„„„„„„8分 ∵∠QAB=∠QCA, ∴△QAB∽△QCA,
AB QA . „„„„„„„„„„„„„„„„„„10分 ∴ AC QC ∴ AB 6 ,解得AB 10 . „„„„„„„„„„„„12分 5 45 3
∴EA⊥AB,FB⊥AB,∴EA∥FB,∴ EA EP ,

EC EP , ∴CP∥FB, FC PB BF BP
∴∠EPC=∠EBF.
【规范解答】 切割线定理的综合应用
【典例】(12分)如图,P是⊙O外一点,
PA切⊙O于A,PBC为⊙O的割线.
2 AB PB 求证: . 2 AC PC
阻.
切线长定理及其应用 【技法点拨】 切线长定理的应用 运用切线长定理时,注意分析其中的等量关系,即①切线长相 等;②圆外点与圆心的连线平分两条切线的夹角.然后结合三 角形等图形的有关性质进行计算与证明.
【典例训练】 1.如图,PA,PB是⊙O的切线,切点分别为A,B,∠P=80°, 则∠C=_____.
需要 . 【解题设问】(1)本题需要求BC的长吗?______
证明∠ABC=∠BAC . (2)利用什么求BC呢?_________________

2.5 与圆有关的比例线段 课件(人教A选修4-1)(2)

2.5 与圆有关的比例线段 课件(人教A选修4-1)(2)
2
又∵∠PBC=∠DBP, ∴△BPC∽△BDP,∠BPC=∠D. 又∵∠E=∠D,∴∠BPC=∠E,EF∥PA.
本课时考点是高考的重点内容,题型既有选择题、 填空题,也有解答题,且是多个定理综合应用.2012年 天津高考将相交弦切割线定理与相似三角形的性质相 结合综合考查解决的问题的能力,是高考模拟命题的
本题主要考查相交弦、切割线定理的
应用,以及相似三角形的判定与性质.
解析:由相交弦定理可得 CF· FE=AF· FB,得 CF=2.又因 为 CF∥DB,所以
2
CF AF 8 = ,得 DB= ,且 AD=4CD,由切割 DB AB 3
2
4 线定理得 DB =DC· DA=4CD ,得 CD= . 3
[小问题·大思维] 1.切割线定理与割线定理之间有什么关系? 提示:切割线定理是割线定理的一种特殊情况. 2.从圆外一点引圆的切线,则这一点、两个切点及圆 心四点是否共圆?若共圆,圆的直径是什么?
提示:四点共圆.且圆心为圆外一点与原圆心连线的
中点,直径为圆外一点到原圆心的距离.
[研一题]
[例 1] 如图,AB、CD 是半径为 a
(1)求证:∠P=∠EDF;
(2)求证:CE· EB=EF· EP; (3)若CE∶BE=3∶2,DE=6,EF=4,求PA的长. 分析:本题考查切割线定理、相交弦定理.以及相似 三角形的判定与性质与切线长定理的综合应用.解答本题
需要分清各个定理的适用条件,并会合理利用.
解:(1)证明:∵DE2=EF· EC, ∴DE∶CE=EF∶ED. ∵∠DEF是公共角,∴△DEF∽△CED.
[研一题] [例2] 如图,AD是⊙O的直径,AB是⊙O的切线,
直线BMN交AD的延长线于点C,BM

2.5 与圆有关的比例线段 课件(人教A选修4-1)(2)

2.5 与圆有关的比例线段 课件(人教A选修4-1)(2)

本题主要考查相交弦、切割线定理的
应用,以及相似三角形的判定与性质.
解析:由相交弦定理可得 CF· FE=AF· FB,得 CF=2.又因 为 CF∥DB,所以
2
CF AF 8 = ,得 DB= ,且 AD=4CD,由切割 DB AB 3
2
4 线定理得 DB =DC· DA=4CD ,得 CD= . 3
[读教材·填要点] 1.相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积 相等 . 2.割线定理 从圆外一点引圆的两条割线,这一点到每条割线与圆
的交点的两条线段长的积 相等 .
3.切割线定理
从圆外一点引圆的切线和割线,切线长是这点到割线与 圆交点的两条线段长的 比例中项 . 4.切线长定理 从圆外一点引圆的两条切线,它们的切线长 相等 ,圆 心和这一点的连线 平分 两条切线的夹角.
[悟一法] 相交弦定理、割线定理和切割线定理涉及与圆有 关的比例线段问题,利用相交弦定理和割线定理能做
到知三求一,利用切割线定理能做到知二求一.
[通一类] 2.如图,三角形ABC中,AB=AC,⊙O 经过点A,与BC相切于B,与AC相交
于D,若AD=CD=1,求⊙O的半径r.
解:连接 BO 并延长交圆于点 E,连接 AE,过点 A 作 AF ⊥BC,垂足为点 F,则 F 为 BC 的中点, 由切割线定理得 CB2=CD· CA=1×2, 2 所以 BC= 2,BF= , 2 AF= AC -FC =
∴∠EDF=∠C.
∵CD∥AP,∴∠C=∠P. ∴∠P=∠EDF.
(2)证明:∵∠P=∠EDF,∠DEF=∠PEA,
∴△DEF∽△PEA. ∴DE∶PE=EF∶EA. 即EF· EP=DE· EA. ∵弦AD、BC相交于点E,

2.5 与圆有关的比例线段 课件(人教A选修4-1)(2)

2.5 与圆有关的比例线段 课件(人教A选修4-1)(2)

[小问题·大思维] 1.切割线定理与割线定理之间有什么关系? 提示:切割线定理是割线定理的一种特殊情况. 2.从圆外一点引圆的切线,则这一点、两个切点及圆 心四点是否共圆?若共圆,圆的直径是什么?
提示:四点共圆.且圆心为圆外一点与原圆心连线的
中点,直径为圆外一点到原圆心的距离.
[研一题]
[例 1] 如图,AB、CD 是半径为 a
[研一题] [例2] 如图,AD是⊙O的直径,AB是⊙O的切线,
ቤተ መጻሕፍቲ ባይዱ
直线BMN交AD的延长线于点C,BM
=MN=NC,AB=2,求BC的长度和 ⊙O的半径. 分析:本题考查割线定理,切割 线定理以及勾股定理的综合应用,解答本题需利用切割线
定理求BC,利用割线定理求⊙O的半径.
解:∵AD 是⊙O 的直径,AB 是⊙O 的切线,直线 BMN 是 ⊙O 的割线, ∴∠BAC=90° ,AB2=BM· BN. ∵BM=MN=NC,AB=2,∴2BM2=4. ∴BM= 2,∴BC=3BM=3 2. ∴AB2+AC2=BC2,4+AC2=18,AC= 14. ∵CN· CM=CD· CA, 2 ∴ 2· 2=CD· 14,∴CD= 14. 2 7 1 5 ∴⊙O 的半径为 (CA-CD)= 14. 2 14
(1)求证:∠P=∠EDF;
(2)求证:CE· EB=EF· EP; (3)若CE∶BE=3∶2,DE=6,EF=4,求PA的长. 分析:本题考查切割线定理、相交弦定理.以及相似 三角形的判定与性质与切线长定理的综合应用.解答本题
需要分清各个定理的适用条件,并会合理利用.
解:(1)证明:∵DE2=EF· EC, ∴DE∶CE=EF∶ED. ∵∠DEF是公共角,∴△DEF∽△CED.
一个新亮点.

2.5 与圆有关的比例线段 课件(人教A选修4-1)(2)

2.5 与圆有关的比例线段 课件(人教A选修4-1)(2)

[小问题·大思维] 1.切割线定理与割线定理之间有什么关系? 提示:切割线定理是割线定理的一种特殊情况. 2.从圆外一点引圆的切线,则这一点、两个切点及圆 心四点是否共圆?若共圆,圆的直径是什么?
提示:四点共圆.且圆心为圆外一点与原圆心连线的
中点,直径为圆外一点到原圆心的距离.
[研一题]
[例 1] 如图,AB、CD 是半径为 a
4 答案: 3
点击下图进入“创新演练”
2
又∵∠PBC=∠DBP, ∴△BPC∽△BDP,∠BPC=∠D. 又∵∠E=∠D,∴∠BPC=∠E,EF∥PA.
本课时考点是高考的重点内容,题型既有选择题、 填空题,也有解答题,且是多个定理综合应用.2012年 天津高考将相交弦切割线定理与相似三角形的性质相 结合综合考查解决的问题的能力,是高考模拟命题的
[通一类] 3.已知:从圆外一点P,作切线PA.A为 切点,从PA的中点B作割线BCD,交
圆于C、D,连接PC、PD,分别交圆
于E、F. 求证:EF∥PA.
证明:∵PBA 是圆的切线,BCD 是圆的割线. ∴BA2=BC· BD. 又∵B 为 PA 中点,∴PB=BA. PB BC 即 PB =BC· BD, = . BD PB
[悟一法]
在实际应用中,若圆中有两条相交弦,要想到利
用相交弦定理.特别地,如果弦与直径垂直相交,那 么弦的一半是它分直径所成的两条线段的比例中项.
[通一类]
1.如图,正方形 ABCD 内接于⊙O,E 为 DC 中点,直线 BE 交⊙O 于点 F,若⊙O 的半 径为 2,求 BF 的长.
解:∵⊙O 的半径为 2, ∴CD=2,∴DE=CE=1,BE= 5. 由相交弦定理得 DE· CE=BE· EF. 5 6 ∴EF= .∴BF= 5. 5 5

2.5 与圆有关的比例线段 课件(人教A选修4-1)(2)

2.5 与圆有关的比例线段 课件(人教A选修4-1)(2)

[小问题·大思维] 1.切割线定理与割线定理之间有什么关系? 提示:切割线定理是割线定理的一种特殊情况. 2.从圆外一点引圆的切线,则这一点、两个切点及圆 心四点是否共圆?若共圆,圆的直径是什么?
提示:四点共圆.且圆心为圆外一点与原圆心连线的
中点,直径为圆外一点到原圆心的距离.
[研一题]
[例 1] 如图,AB、CD 是半径为 a
本题主要考查相交弦、切割线定理的
应用,以及相似三角形的判定与性质.
解析:由相交弦定理可得 CF· FE=AF· FB,得 CF=2.又因 为 CF∥DB,所以
2
CF AF 8 = ,得 DB= ,且 AD=4CD,由切割 DB AB 3
2
4 线定理得 DB =DC· DA=4CD ,得 CD= . 3
的圆 O 的两条弦,它们相交于 AB 的中点 2 P,PD= a,∠OAP=30° ,求 CP 的长. 3
分析:本题考查相交弦定理及垂径定理、勾股定
理的综合应用.解决本题需要先在Rt△OAP中,求得 AP的长,然后利用相交弦定理求解.
解:∵P 为 AB 的中点, ∴由垂径定理得 OP⊥AB. 3 在 Rt△OAP 中,BP=AP=acos30° = a. 2 由相交弦定理,得 BP· AP=CP· DP, 3 2 2 9 即( a) =CP·a,解之得 CP= a. 2 3 8
[悟一法]
相交弦定理、割线定理、切割线定理及切线长定理 是最重要的定理,在与圆有关的问题中经常用到,这是 因为这四个定理可得到的线段的比例或线段的长,而圆
周角定理、弦切角定理以及圆内接四边形的性质定理得
到的是角的关系,这两者的结合,往往能综合讨论与圆 有关的相似三角形问题. 因此,在实际应用中,见到圆的两条相交弦要想到 相交弦定理;见到两条割线要想到割线定理;见到切线 和割线要想到切割线定理.

2.5 与圆有关的比例线段 课件(人教A选修4-1)

2.5 与圆有关的比例线段 课件(人教A选修4-1)

5. 两个等圆⊙O与⊙O′外切,过O作⊙O′的两条切线 OA、OB,A、B是切点,则∠AOB= A.90° C.45° B.60° D.30° ( )
解析:如图,连接OO′,O′A. ∵OA为⊙O′的切线, ∴∠OAO′=90° . 又∵⊙O与⊙O′为等圆且外切, ∴OO′=2O′A. AO′ 1 ∴sin ∠AOO′= = . OO′ 2 ∴∠AOO′=30° . 又由切线长定理知∠AOB=2∠AOO′=60° .
(2)切割线定理: ①文字叙述: 从圆外一点引圆的切线和割线,切线长是这点到割线 与圆交点的两条线段长的 比例中项 ; ②图形表示: 如图,⊙O的切线PA,切点为A, PC 割线PBC,则有 PA2=PB· .
ห้องสมุดไป่ตู้
3.切线长定理 (1)文字叙述: 从圆外一点引圆的两条切线,它们的 长相等 ,圆 心和这一点的连线平分 两条切线 的夹角.
(2)图形表示:
如图:⊙O的切线PA、PB,则PA = PB ,∠OPA= ∠OPB .
[例1]
如图,已知在⊙O中,P是弦AB的中点,过
点P作半径OA的垂线分别交⊙O于C、D两点,垂足是点E. 求证:PC· PD=AE· AO.
[思路点拨]
由相交弦定理知PC· PD=AP· PB,又P为AB
的中点,∴PC· PD=AP2.在Rt△PAO中再使用射影定理即可. [证明] 连接OP, ∵P为AB的中点, ∴OP⊥AB,AP=PB.
PM· MQ=AM· MB PN· NR=BN· AN ⇒PM· MQ=PN· NR.

[例2]
如图,AB是⊙O的一条切线,切点为B,
ADE,CFD,CGE都是⊙O的割线,已知AC=AB. 证明:(1)AD· AE=AC2; (2)FG∥AC. [思路点拨] (1)利用切割线定理;

《2.5与圆有关的比例线段》课件3-优质公开课-人教A版选修4-1精品

《2.5与圆有关的比例线段》课件3-优质公开课-人教A版选修4-1精品
第5课时
与圆有关的比例线段
【课标要求】 1.经历相交弦定理、割线定理、切割线定理、切线长定理的探 究过程,体会运动变化思想,认识四条定理的内在联系. 2.理解相交弦定理、割线定理、切割线定理、切线长定理,能 应用四条定理解决相关的几何问探究的过
程. 【核心扫描】 1.理解相交弦定理、割线定理、切割线定理及切线长定理. (重点)
[思维启迪] 利用切线长定理解决此题.
解 (1)PA=PD+DA,PB=PE+EB,DE=DC+CE. 由“切线长定理”可知PA=PB,DA=DC,EB=EC. 所以PA+PB=2PA=PD+PE+DA+EB=PD+PE+(DC+EC), 即2PA=PD+PE+DE.
例.
(3)深刻理解结论:由于圆是轴对称图形,在图中若再连接AB 与 OP 交于点 C ,则存在射影定理的基本图形,于是有 AC2 = BC2=PC·OC,PA2=PB2=PC·PO,AO2=BO2=OC·OP.
题型一 相交弦定理的应用
【例1】 在半径为12 cm的圆中,垂直平分半径的弦的长为 ( A.3 cm C.12 cm B.27 cm D.6 cm ).
[思维启迪] 准确使用相交弦定理解决此题.
解析 法一 如图所示, OA=12,CD 为 OA 的垂直平分线, 连接 OD. 在 Rt△POD 中, PD= OD2-OP2= 122-62=6 3, ∴CD=2PD=12 3 (cm).
法二 如图所示,延长 AO 交圆于 M,由相交弦定理得 PA· PM= PC· PD. 又∵CD 为线段 OA 的垂直平分线, ∴PD2=PA· PM. 又∵PA=6,PM=6+12=18, ∴PD2=6×18, ∴PD=6 3,∴CD=2PD=12 3 (cm).
2.割线定理是圆中的比例线段,在证明割线定理时所用的构造 相似三角形的方法十分重要,应注意很好地把握. 3.要真正弄懂切割线定理的数量关系,把握定理叙述中的 “从”、“引”、“切线长”、“两条线段长”等关键字

2.5 与圆有关的比例线段 课件(人教A选修4-1)(2)

2.5 与圆有关的比例线段 课件(人教A选修4-1)(2)

[悟一法] 相交弦定理、割线定理和切割线定理涉及与圆有 关的比例线段问题,利用相交弦定理和割线定理能做
到知三求一,利用切割线定理能做到知二求一.
[通一类] 2.如图,三角形ABC中,AB=AC,⊙O 经过点A,与BC相切于B,与AC相交
于D,若AD=CD=1,求⊙O的半径r.
解:连接 BO 并延长交圆于点 E,连接 AE,过点 A 作 AF ⊥BC,垂足为点 F,则 F 为 BC 的中点, 由切割线定理得 CB2=CD· CA=1×2, 2 所以 BC= 2,BF= , 2 AF= AC -FC =
[研一题] [例2] 如图,AD是⊙C,BM
=MN=NC,AB=2,求BC的长度和 ⊙O的半径. 分析:本题考查割线定理,切割 线定理以及勾股定理的综合应用,解答本题需利用切割线
定理求BC,利用割线定理求⊙O的半径.
解:∵AD 是⊙O 的直径,AB 是⊙O 的切线,直线 BMN 是 ⊙O 的割线, ∴∠BAC=90° ,AB2=BM· BN. ∵BM=MN=NC,AB=2,∴2BM2=4. ∴BM= 2,∴BC=3BM=3 2. ∴AB2+AC2=BC2,4+AC2=18,AC= 14. ∵CN· CM=CD· CA, 2 ∴ 2· 2=CD· 14,∴CD= 14. 2 7 1 5 ∴⊙O 的半径为 (CA-CD)= 14. 2 14
本题主要考查相交弦、切割线定理的
应用,以及相似三角形的判定与性质.
解析:由相交弦定理可得 CF· FE=AF· FB,得 CF=2.又因 为 CF∥DB,所以
2
CF AF 8 = ,得 DB= ,且 AD=4CD,由切割 DB AB 3
2
4 线定理得 DB =DC· DA=4CD ,得 CD= . 3

2.5 与圆有关的比例线段 课件(人教A选修4-1)(2)

2.5 与圆有关的比例线段 课件(人教A选修4-1)(2)

[悟一法]
相交弦定理、割线定理、切割线定理及切线长定理 是最重要的定理,在与圆有关的问题中经常用到,这是 因为这四个定理可得到的线段的比例或线段的长,而圆
周角定理、弦切角定理以及圆内接四边形的性质定理得
到的是角的关系,这两者的结合,往往能综合讨论与圆 有关的相似三角形问题. 因此,在实际应用中,见到圆的两条相交弦要想到 相交弦定理;见到两条割线要想到割线定理;见到切线 和割线要想到切割线定理.
一个新亮点.
[考题印证]
(2012· 天津高考)如图,已知 AB 和 AC 是圆的两条弦,过点 B 作圆的切线与 AC 的延长线相交于点 D.过点 C 作 BD 的平行 线与圆相交于点 E,与 AB 相交于点 F, 3 AF=3,FB=1,EF= ,则线段 CD 的长为________. 2
[命题立意]
(1)求证:∠P=∠EDF;
(2)求证:CE· EB=EF· EP; (3)若CE∶BE=3∶2,DE=6,EF=4,求PA的长. 分析:本题考查切割线定理、相交弦定理.以及相似 三角形的判定与性质与切线长定理的综合应用.解答本题
需要分清各个定理的适用条件,并会合理利用.
解:(1)证明:∵DE2=EF· EC, ∴DE∶CE=EF∶ED. ∵∠DEF是公共角,∴△DEF∽△CED.
[读教材·填要点] 1.相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积 相等 . 2.割线定理 从圆外一点引圆的两条割线,这一点到每条割线与圆
的交点的两条线段长的积 相等 .
3.切割线定理
从圆外一点引圆的切线和割线,切线长是这点到割线与 圆交点的两条线段长的 比例中项 . 4.切线长定理 从圆外一点引圆的两条切线,它们的切线长 相等 ,圆 心和这一点的连线 平分 两条切线的夹角.

人教A版高中数学选修4-1 第二讲 五 与圆相关的比例线段 课件(共30张PPT)优质课件PPT

人教A版高中数学选修4-1 第二讲  五 与圆相关的比例线段 课件(共30张PPT)优质课件PPT
重点
掌握相交弦定理、割线定理、切割 线定理、切线长定理.
难点
相交弦定理、割线定理、切割线定理、 切线长定理的探究过程及其在几何中应用.
AB是⊙O的直径,CD⊥AB,AB与CD相交于P 求证: PA•PB=PC•PD
证明: 连接AD,BC
D
∠A=∠C,
∴Rt△APD∽RT△CPB
PA PC
O AP
一定是个很棒的挥球手。接着男孩子又对自己喊:“我是世界上最棒的挥球手!”其实,大多数情况下,很多人做不到这看似荒谬的自我鼓励,可是,这故事却
下的执著,而这执著是很多人并不具备的……而许多奇迹往往是执著者造成的。许多人惊奇地发现,他们之所以达不到自己孜孜以求的目标,是因为他们的主要
自己失去动力。如果你的主要目标不能激发你的想象力,目标的实现就会遥遥无期。因此,真正能激励你奋发向上的是确立一个既宏伟又具体的远大目标。实现
课堂练习
1、从圆外一点P向圆引两条割线PAB、PCD,分别与
圆相交于A、B、C、D,如果PA=4,PC=3,CD=5,
那么AB ( )C
A.4 B. 3 C. 2 D. 1
解析 由割线定理 ,PA·PB=PC·PD
C
D
∴ 4*PB=3*(3+5)
P
O
∴PB=6,AB=PB-PA=2.
A
B
2、如图,AB为⊙O直径,弦CD垂直AB于P,CP=4,
知识要 点
相交弦定理:
圆内的两条相交弦,被交点分成的 两条线段长的积相等.
小练习
如图,圆内的两条弦AB、CD相交于圆内一点P,已知
PA=PB=4,PC=PD.求CD长.
解: 设CD=x,则PD=x,PC=x
C P
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5. 两个等圆⊙O与⊙O′外切,过O作⊙O′的两条切线 OA、OB,A、B是切点,则∠AOB= A.90° C.45° B.60° D.30° ( )
解析:如图,连接OO′,O′A. ∵OA为⊙O′的切线, ∴∠OAO′=90° . 又∵⊙O与⊙O′为等圆且外切, ∴OO′=2O′A. AO′ 1 ∴sin ∠AOO′= = . OO′ 2 ∴∠AOO′=30° . 又由切线长定理知∠AOB=2∠AOO′=60° .
答案:B
6. 已知:如图,四边形ABCD的边AB、BC、CD、DA和 ⊙O分别相切于L、M、N、P. 求证:AD+BC=AB+CD. 证明:由圆的切线长定理得 CM=CN,BL=BM,AP=AL,DP=DN, ∵AB=AL+LB,BC=BM+MC,
CD=CN+ND,AD=AP+PD,
∴AD+BC=(AP+PD)+(BM+MC) =(AL+ND)+(BL+CN)
(2)图形表示:
如图:⊙O的切线PA、PB,则PA = PB ,∠OPA= ∠OPB .
[例1]
如图,已知在⊙O中,P是弦AB的中点,过
点P作半径OA的垂线分别交⊙O于C、D两点,垂足是点E. 求证:PC· PD=AE· AO.
[思路点拨]
由相交弦定理知PC· PD=AP· PB,又P为AB
的中点,∴PC· PD=AP2.在Rt△PAO中再使用射影定理即可. [证明] 连接OP, ∵P为AB的中点, ∴OP⊥AB,AP=PB.
2
EC AE 故DA=BD,又AD=AE, 故AD2=DB· EC.
[例 3]
如图,AB 是⊙O 的直径,C 是
⊙O 上一点,过点 C 的切线与过 A、 B 两点的切线分别交于点 E、F, AF 与 BE 交于点 P. 求证:∠EPC=∠EBF. [ 思 路 点 拨 ] 切线长定理 → EA=EC,FC=FB
1.相交定理 圆内的两条 相交弦 ,被交点分成的两 条线段长的 积相等 .如图,弦AB与CD相
PD 交于P点,则PA· PB= PC· .
2.割线有关定理
(1)割线定理: ①文字叙述: 从圆外一点引圆的两条 割线 ,这一点到每条割线与圆 的 交点 的两条线段长 的积相等.
②图形表示:
如图,⊙O的割线PAB与PCD, PB=PC· . PD 则有: PA·
答案: 6
4.如图,PA切⊙O于点A,割线PBC交
⊙O于点B,C,∠APC的角平分线分
别与AB,AC相交于点D、E,求证:(1)AD=AE;
(2)AD2=DB· EC.
证明:(1)因为∠AED=∠EPC+∠C,
∠ADE=∠APD+∠PAB, PE是∠APC的角平分线, 故∠EPC=∠APD, 因为PA是⊙O的切线,故∠C=∠PAB. 所以∠AED=∠ADE.故AD=AE.
EC EP → FC=PB → CP∥FB → 结论
[证明]
∵EA,EF,FB是⊙O的切线,
∴EA=EC,FC=FB. ∵EA,FB切⊙O于A,B,AB是直径, ∴EA⊥AB,FB⊥AB. EA EP EC EP ∴EA∥FB.∴BF=BP.∴FC=PB. ∴CP∥FB.∴∠EPC=∠EBF.
运用切线长定理时,注意分析其中的等量关系, 即①切线长相等,②圆外点与圆心的连线平分两条切 线的夹角,然后结合三角形等图形的有关性质进行计 算与证明.
切割线定理常常与弦切角定理、相交弦定理、平行
线分线段成比例定理、相似三角形结合在一起解决数学
问题,有时切割线定理利用方程进行计算、求值等.
3.(2012· 湖南高考)如图,过点P的直线 与⊙O相交于A,B两点.若PA=1, AB=2,PO=3,则⊙O的半径等于________.
解析:设⊙O的半径为R,由割线定理得 PA· PB=(3-R)(3+R),即1×3=9-R2,∴R= 6.
∵PE⊥OA,
∴AP2=AE· AO. ∵PD· PC=PA· PB=AP2, ∴PD· PC=AE· AO.
相交弦定理的运用多与相似三角形联系在一起,
也经常与垂径定理、射影定理、直角三角形的性质相 结合证明某些结论.
1.已知圆中两条弦相交,第一条弦被交点分为12 cm和
16 cm两段,第二条弦的长为32 cm,求第二条弦被交 点分成的两段长. 解:设第二条弦被交点分成的一段长为x cm, 则另一段长为(32-x) cm. 由相交弦定理得:x(32-x)=12×16, 解得x=8或24,
∠PCE=∠PAD ⇒ (2) ∠CPE=∠APD EC PC △PCE∽△PAD⇒DA= PA ; ∠PEA=∠PDB AE PA ⇒△PAE∽△PBD⇒ BD=PB. ∠APE=∠BPD PA是切线,PBC是割线⇒ PA PC PA =PB· PC⇒PB= PA .
=(AL+BL)+(ND+CN)
=AB+CD, 即AD+BC=AB+CD.
点击下图进入应用创新演练
(2)切割线定理: ①文字叙述: 从圆外一点引圆的切线和割线,切线长是这点到割线 与圆交点的两条线段长的 比例中项 ; ②图形表示: 如图,⊙O的切线PA,切点为A, PC 割线PBC,则有 PA2=PB· .
3.切线长定理 (1)文字叙述: 从圆外一点引圆连线平分 两条切线 的夹角.
(2)证△ADC∽△ACE.
[证明]
(1)∵AB是⊙O的一条切线,
ADE是⊙O的割线, ∴由切割线定理得AD· AE=AB2. 又AC=AB,∴AD· AE=AC2. AD AC (2)由(1)得 AC=AE, 又∠EAC=∠DAC,∴△ADC∽△ACE. ∴∠ADC=∠ACE. 又∠ADC=∠EGF,∴∠EGF=∠ACE. ∴FG∥AC.
PM· MQ=AM· MB PN· NR=BN· AN ⇒PM· MQ=PN· NR.

[例2]
如图,AB是⊙O的一条切线,切点为B,
ADE,CFD,CGE都是⊙O的割线,已知AC=AB. 证明:(1)AD· AE=AC2; (2)FG∥AC. [思路点拨] (1)利用切割线定理;
故另一段长为32-8=24或32-24=8,
所以另一条弦被交点分成的两段长分别为8 cm和24 cm.
2.
如图,已知AB是⊙O的直径,OM=ON, P是⊙O上的点,PM、PN的延长线分别交 ⊙O于Q、R. 求证:PM· MQ=PN· NR.
证明: OM=ON
OA=OB
AM=BN ⇒ BM=AN
相关文档
最新文档