2015年中考总复习第12讲 一元一次不等式
2014-2015(下)八年级数学一元一次不等式与一元一次不等式组教案汤恒星
第一节.不等关系教学目标:1、知识与技能目标①理解不等式的意义。
②能根据条件列出不等式。
③能用实际生活背景和数学背景解释简单不等式的意义。
2、过程与方法目标经历由具体实例建立不等式模型的过程,进一步发展学生的符号感与数学化的能力。
3、情感与态度目标感受生活中存在着的大量不等关系,通过用不等式解决实际问题,使学生进一步认识数学与人类生活的密切联系,激发学生学习数学的信心和兴趣。
教学重点:①通过探寻实际问题中的不等式关系,认识不等式。
②根据实际问题建立合理的不等关系。
教学过程一. 创设情景,引入新课展示图片(目的:感受生活中的不等关系):(1)甲乙两名同学升高、体重不相等;(2)汤老师的年龄和体重基本都大于你们的(3)跷跷板二.问题提出师:相等关系是用等式表示的,不等关系呢?生:不等式师:你学过那些不等号呢?生:>,<,≤,≥,≠三.小试牛刀(学生初步感受不等式表示不等关系)1. a是负数2. m与2的和小于33. c的两倍不大于a与b的差4. x的平方是非负数师:不大于,不小于表示的含义四.不等式的定义a<0 m+2<3 2c≤a-b x²≥0五.概念辨析指出下列式子是否为不等式?(概念基本辨析)(1)a+1>3 (2)x²+y²(3)2m≠n-1 (4)x+3=2x六.随堂练习1. x 的3倍与8的和比x的5倍大2. x除以2的商加上2至少为53. a与b两数和的平方不小于34. m与4的和的20%至多为9七.实际运用(1)铁路部门对旅客随身携带的行李有如下规定:每件行李的长、宽、高三边之和不得超过160cm。
设行李的长、宽、高分别为 a cm、b cm、c cm,请你列出行李的长、宽、高满足的关系式(2)通过测量一棵树的树围(树干的周长)可以计算出它的树龄,通常规定以树干离地面1.5m的地方作为测量部位。
某树栽种时的树围为6cm,以后树围每年增加约3cm。
一元一次不等式应用题解法
⑴找关键词——不等量⑵找对比(两种情况),设未知数⑶找总量⑷总量已知:两种情况各自与总量比较(两个不等式)【习题1】某旅游团有48人到某宾馆住宿,若全安排住宾馆的底层,每间住4人,房间不够;每间住5人,有一个房间没有住满5人。
问该宾馆底层有客房多少间?【例2】把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
问这些书有多少本?学生有多少人?⑴找关键词——不等量⑵找对比(两种情况),设未知数⑶找总量⑷总量未知:两种情况相互比较(其中一种情况可计算总量,另一种情况有上下限)【习题2】某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。
【例3】某校校长暑假将带领该校“市级三好学生”去三峡旅游,甲旅行社说:如果校长买全票一张,则其余学生可享受半价优惠;乙旅行社说:包括校长在内全部按全票的6折优惠。
已知两家旅行社的全票价都是240元,哪家旅行社比较好?解两种“方案比较”应用题的方法⑴找出两种方案的,设未知数⑵分别列出两种方案的费用⑶分情况讨论(结合人数)【习题3】某单位计划10月份组织员工到H地旅游人数估计在10~25人之间,甲、乙两旅行社的服务质量相同,且组织到H地旅游的价格都是每人200元.该单位联系时,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用,其余游客八折优惠;问该单位应怎样选择,使其支付的旅游总费用较少?【练习】1、用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。
请问:有多少辆汽车?2、用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。
B型抽水机比A型抽水机每分钟约多抽多少吨水?3、A城有化肥200吨,B城有化肥300吨,现要把化肥运往C、D两农村,如果从A城运往C、D两地运费分别是20元/吨与25元/吨,从B城运往C、D两地运费分别是15元/吨与22元/3吨,现已知C地需要220吨,D地需要280吨,如果个体户承包了这项运输任务,请帮他算一算,怎样调运花钱最小?练习题:1.爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?2.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?3.已知李红比王丽大3岁,又知李红和王丽年龄之和大于30且小于33,求李红的年龄。
第12讲 一次函数
【即时应用】
若直线y=x+3与直线y=2x-1的交点坐标为(4,7),
x 4, x y 3, 则方程组 的解为______ y 7. 2x y 1
【核心点拨】
1.理解一次函数的定义应注意以下三个方面:
(1)形式:y=kx+b;(2)条件:k≠0;(3)实质:函数y是自变量x 的一次式. 2.正比例函数都是一次函数,但一次函数不一定是正比例函数. 3.一次函数的增减性由k的符号决定,与b的符号无关.
2
3.①y=x2+5x;②y=2π r;③y=
②⑤⑥ ⑤y=( 2 3 )x+1;⑥s=30t.其中是一次函数的是_______,是 ②⑥ 正比例函数的是_____.(只填序号)
10 ;④y=kx+b; x
二、一次函数的图象和性质
1.一次函数y=kx+b(k,b是常数,k≠0)的图象和性质
k,b符号
4.(2012·怀化中考)如果点P1(3,y1),P2(2,y2)在一次函数y=2x-
1的图象上,则y1_______y2(填“>”“<”或“=”).
【解析】∵一次函数关系式为y=2x-1,∴y随x的增大而增大, 又∵3>2,∴y1>y2. 答案:>
5.如图,直线y=- 3 x+3与x轴、y轴分别交于A,B两点,则△AOB
【即时应用】 0 1.一次函数y=-2x+b的图象过原点,则b=__.
2.在直线y=2x+1上有两个点(x1,y1)和(x2,y2),且x1>x2,则 > y1___y2. 3.将直线y=-x+1向下平移两个单位后,所得直线的解析式为 y=-x-1 _______. > > 4.直线y=(k-2)x+b+1经过第一、二、三象限,则k___2,b___-1.
中考专题复习-一元一次方程(组)含答案
中考数学总复习-方程与不等式一次方程(组)【基础知识回顾】一、等式的概念及性质:1、等式:用“=”连接表示关系的式子叫做等式2、等式的性质:①、性质1:等式两边都加(减)所得结果仍是等式,即:若a=b,那么a±c=②、性质2:等式两边都乘以或除以(除数不为0)所得结果仍是等式即:若a=b,那么a c= ,若a=b(c≠o)那么a c =【名师提醒:①用等式性质进行等式变形,必须注意“都",不能漏项②等式两边都除以一个数或式时必须保证它的值】二、方程的有关概念:1、含有未知数的叫做方程2、使方程左右两边相等的的值,叫做方程的组3、叫做解方程4、一个方程两边都是关于未知数的,这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是的方程叫做一元一次方程,一元一次方程一般可以化成的形式。
2、解一元一次方程的一般步骤:1。
2。
3。
4。
5。
【名师提醒:1、一元一次方程的解法的各个步骤的依据分别是等式的性质和合并同类法则,要注意灵活准确运用;2、特别提醒:去分母时应注意不要漏乘项,移项时要注意.】四、二元一次方程组及解法:1、二元一次方程的一般形式:ax+by+c=0(a.b 。
c 是常数,a≠0,b≠0);2、由几个含有相同未知数的 合在一起,叫做二元一次方程组;3、 二元一次方程组中两个方程的 叫做二元一次方程组的解;4、 解二元一次方程组的基本思路是: ;5、 二元一次方程组的解法:① 消元法 ② 消元法【名师提醒:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解2、二元一次方程组的解应写成五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知量和未知量2、设:直接或间接设未知数3、列:根据题意寻找等量关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出答案(包括单位名称)【名师提醒:1、列方程(组)解应用题的关键是: 2、几个常用的等量关系:①路程= × ②工作效率= 】 【重点考点例析】考点一:二元一次方程组的解法对应训练 1.(2016•湘西州)解方程组: 213211x y x y +=⎧⎨-=⎩①②. .x=a y=b 的形式考点二:一(二)元一次方程的应用例2 (2016•齐齐哈尔)假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案()A.5种B.4种C.3种D.2种故选:C.例3 (2016•张家界)为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2。
专题3.3一元一次不等式(组)含参问题八年级数学上册全章复习与专题突破讲与练(浙教版)[含答案]
专题3.3 一元一次不等式(组)含参问题(12大类型)(全章知识梳理与考点分类讲解)第一部分【题型目录】【题型1】已知含参方程的解的正负性,求参数取值范围............................1;【题型2】已知含参一元一次不等式的解集,求参数取值范围........................2;【题型3】已知含参一元一次不等式整数解,求参数取值范围........................2;【题型4】已知含参一元一次不等式组有解,求参数取值范围........................2;【题型5】已知含参一元一次不等式组无解,求参数取值范围........................2;【题型6】已知含参一元一次不等式组有且只有几个整数解,求参数取值范围......3;【题型7】已知含参一元一次不等式组至少(多)有几个整数解,求参数取值范围......3;【题型8】已知含参一元一次不等式组解集,求参数值或取值范围.............3;【题型9】由含参一元一次不等式组解集和分式方程解的情况,求参数取值范围........4;【题型10】由含参一元一次不等式组解集和二元一次方程解的情况,求参数取值范围...4;【题型11】直通中考...........................................................5;【题型12】拓展延伸...........................................................5.第二部分【题型展示与方法点拨】【题型1】已知含参方程的解的正负性,求参数取值范围【例1】(23-24八年级下·陕西汉中·期末)1.关于x 的分式方程32211x mx x -=+++的解为负数,则m 的取值范围是( )A .0m <B .4m >-C .4m <-D .4m <-且5m ¹-【变式1】(20-21八年级下·江苏扬州·期中)2.已知关于x 的方程232x mx -=-的解是非负数,则m 的取值范围为 .【变式2】(23-24七年级下·贵州黔东南·阶段练习)3.若关于x 的方程528x a -=的解是非正数,则a 的取值范围是( )A .4a >-B .4a <-C .4a ³-D .4a £-【题型2】已知含参一元一次不等式的解集,求参数取值范围【例2】(23-24七年级下·全国·期中)4.已知关于x 的不等式 413x a +>的解都是不等式 2103x +>的解,则a 的取值范围是( )A .5a £B .<5a C .3a £D .>5a 【变式1】(23-24七年级下·黑龙江齐齐哈尔·期末)5.如果关于x 的不等式(1)1a x -³解集为11x a³-,则a 的取值范围是 .【变式2】6.如果关于x 的不等式()11a x a +>+的解集为1x <,那么a 的取值范围是 .【题型3】已知含参一元一次不等式整数解,求参数取值范围【例3】(2024七年级下·江苏·专题练习)7.若关于x 的一元一次不等式1x m +£只有1个正整数解,则m 的取值范围是 .【变式1】(23-24八年级下·陕西宝鸡·期中)8.若关于x 的不等式57x m x +³的正整数解是1234、、、.则m 的取值范围为( )A .10m <B .8m ³C .810m ££D .810m £<【变式2】(23-24六年级下·上海浦东新·期末)9.若关于x 的不等式0x m -³的最小整数解是2x =,则m 的取值范围是⋯( )A .12m £<B .12m <£C .23m <£D .23m £<【题型4】已知含参一元一次不等式组有解,求参数取值范围【例4】(23-24七年级下·河南南阳·期末)10.已知关于x 的不等式组()12432x mx x -ì<-ïíï-£-î有解,则实数m 的取值范围是( )A .3m >B .2m ≥C .1m <D .1m £-【变式1】(23-24七年级下·全国·单元测试)11.若不等式组12x x k <£ìí>î有解,则k 的取值范围是( )A .2k <B .2k ³C .1k <D .12k £<【变式2】(23-24七年级下·湖南衡阳·期中)12.关于x 的不等式组3284a x x a ->ìí+>î有解且每一个x 的值均不在26x -££的范围中,则a 的取值范围是 .【题型5】已知含参一元一次不等式组无解,求参数取值范围【例5】(23-24八年级下·陕西西安·期末)13.若关于x 的一元一次不等式组11340x xx a ì-³-ïíï->î无解,则a 的取值范围是 .【变式1】(23-24六年级下·上海杨浦·期末)14.若关于x 的不等式组62x x m m -<<ìí-<î无解,那么m 的取值范围是【变式2】(24-25八年级上·湖南长沙·开学考试)15.已知不等式组40329x a x x -<ìí-³-+î无解,则a 的取值范围是.【题型6】已知含参一元一次不等式组有且只有几个整数解,求参数取值范围【例6】(24-25八年级上·湖南衡阳·开学考试)16.若关于x 的不等式组()()324122x x x m x ì-<-í-£-î,恰好有三个整数解,则m 的取值范围是 .【变式1】(22-23八年级下·四川达州·期中)17.若关于x 的不等式组()213644x x m x +<ìí-³+î只有3个整数解,则m 的取值范围是 .【变式2】(23-24八年级下·全国·单元测试)18.关于x 的不等式组()1023544133x x k x x k +ì+>ïïí+ï+>++ïî恰有三个整数解,则k 的取值范围是( )A .112k <£B .112k £<C .312k £<D .312k <£【题型7】已知含参一元一次不等式组至少(多)有几个整数解,求参数取值范围【例7】(22-23七年级下·湖北武汉·阶段练习)19.如果关于x 的不等式组2030x m n x -³ìí-³î仅有四个整数解;1-、0、1、2,那么适合这个不等式组的整数m 、n 组成的有序实数对(),m n 最多共有( )A .4个B .6个C .8个D .9个【变式】(23-24七年级下·四川资阳·期末)20.已知关于x 的不等式组0217x a x -<ìí-³î至少有两个整数解,且存在以3,a ,6为边的三角形,则整数a 的值有个【题型8】已知含参一元一次不等式组解集,求参数值或取值范围【例8】(2024·湖北·模拟预测)21.若关于x 的一元一次不等式组63(1)51x x x m -+<-ìí->-î的解集是2x >,则m 的取值范围是( )A .3m >B .3m …C .3m <D .3m …【变式1】(23-24八年级下·全国·单元测试)22.若关于x 的不等式组220x a b x ->ìí->î的解集为11x -<<,则2019()a b +的值是( )A .1B .12C .1-D .12-【变式2】(22-23七年级下·江苏盐城·阶段练习)23.不等式组29612x x x k +>+ìí-<î的解集为2x <.则k 的取值范围为 .【题型9】由含参一元一次不等式组解集和分式方程解的情况,求参数取值范围【例9】(22-23八年级下·重庆忠县·期中)24.如果关于x 的不等式组441113(22m x x x ->ìïí-<+ïî有且仅有三个整数解,且关于x 的分式方程26122mx x x --=--有非负数解,则符合条件的所有整数m 的和为 .【变式1】(23-24七年级下·重庆北碚·期末)25.已知关于y 的分式方程52211a y y --=---解为非负整数,且关于y 的不等式组2311122y a y ->ìïí+£ïî有解且至多三个整数解,则所有满足条件的整数a 的和为( )A .6B .5C .9D .13【变式2】(22-23八年级下·江苏无锡·阶段练习)26.已知方程21144a a a +=--,且关于x 的不等式组x a x b>ìí£î只有2个整数解,那么b 的取值范围是( )A .13b -<£B .23b <£C .45b £<D .34b £<【题型10】由含参一元一次不等式组解集和二元一次方程解的情况,求参数取值范围【例10】(24-25八年级上·湖南长沙·开学考试)27.若存在一个整数m ,使得关于,x y 的方程组432173453x y m x y m +=+ìí+=-î的解满足1x y +£,且让不等式5041x m x ->ìí-<-î只有3个整数解,则满足条件的所有整数m 的和是( )A .12B .6C .—14D .—15【变式】(23-24七年级下·山东威海·期末)28.已知关于x ,y 的方程组3454331x y m x y m +=-ìí+=+î的解满足0,0x y x y +<->,求m 的取值范围.第三部分【中考链接与拓展延伸】【题型11】直通中考【例1】(2024·四川南充·中考真题)29.若关于x 的不等式组2151x x m -<ìí<+î的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m £【例2】(2023·四川眉山·中考真题)30.关于x 的不等式组35241x m x x >+ìí-<+î的整数解仅有4个,则m 的取值范围是( )A .54m -£<-B .54m -<£-C .43m -£<-D .43m -<£-【题型12】拓展延伸【例1】(22-23七年级下·重庆江津·期中)31.已知关于x 、y 的方程组3453x y ax y a +=-ìí-=î,下列结论中正确的个数有( )① 当3a =时,41x y =ìí=î是方程组的解;② 不存在一个实数a ,使得x 、y 的值互为相反数;③ 当方程组的解是52x y =ìí=-î时,方程组()()()()391232106m n m n a m n m n a ì++-=-ïí+--=ïî的解为3272m n ì=ïïíï=ïî;④ x 、y 都为自然数的解有3对.A .1个B .2个C .3个D .4个【例2】(23-24九年级上·重庆九龙坡·阶段练习)32.关于x 的分式方程23133a x x x -+=++的解为整数,且关于y 的不等式组1313212y y a y y +ì+³ïïí+ï<-ïî有解且最多有六个整数解,则所有满足条件的整数a 的值之和为 .1.D【分析】本题考查了分式方程的解,分式方程的解为负数的条件是有解且解为负数,解题的关键是能正确解分式方程并理解分式方程的解为负数的条件为有解且解为负数.【详解】解:322,11x mx x -=+++方程两边同乘以()1x +得:()3221,x x m -=++解得:4,x m =+∵关于x 的分式方程32211x mx x -=+++的解为负数,10x \+¹且 0,x <即410m ++¹且40,m +<解得:4m <-且 5.m ¹-故选:D .2.6m £且4m ¹##4m ¹且6m £【分析】本题考查了分式方程的解,解不等式等知识,首先求出关于x 的方程232x mx -=-的解,然后根据解是非负数,再解不等式求出m 的取值范围..【详解】解:关于x 的方程232x mx -=-得6x m =-+,20x -¹Q ,2x \¹,Q 方程的解是非负数,60m \-+³且62m -+¹,解这个不等式得6m £且4m ¹.故答案为:6m £且4m ¹.3.D【分析】本题考查了解一元一次方程和解一元一次不等式,熟练掌握解方程和不等式的方法是解题的关键.先解一元一次方程,再根据题意构建一元一次不等式,最后解不等式即可.【详解】∵528x a -=,∴825ax +=,∵关于x 的方程528x a -=的解是非正数,∴8205ax +=£,解得4a £-,故选:D .4.A【分析】考查不等式的解集,掌握一元一次不等式的求法是解题的关键. 先把a 看作常数求出两个不等式的解集,再根据同大取大列出不等式求解即可.【详解】解:解不等式 413x a +>得,34ax ->,解不等式2103x +>得,12x >-,Q 关于x 的不等式 413x a +>的解都是不等式 2103x +>的解,3142a -\³-,解得:5a £,故选:A ;5.1a <【分析】本题考查了不等式的性质,根据题意可知关于x 的不等式(1)1a x -³解集为11x a³-,则x 的系数的正数,再根据这个结果求出a 的取值范围,解题的关键是正确理解不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【详解】解:∵关于x 的不等式(1)1a x -³解集为11x a³-,∴10a ->,∴1a <,故答案为:1a <.6.1a <-【分析】本题考查了不等式的性质和解不等式,根据不等式的性质求解即可,解题的关键是正确理解不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【详解】∵关于x 的不等式()11a x a +>+的解集为1x <,∴10a +<,解得:1a <-,故答案为:1a <-.7.2<3m £【分析】先解一元一次不等式可得x ≤m−1,然后根据题意可得11<2m £-,进行计算即可解答.本题考查了一元一次不等式的整数解,准确熟练地进行计算是解题的关键.【详解】解:1x m +£,解得x ≤m−1,∵一元一次不等式1x m +£只有1个正整数解,∴11<2m £-,∴2<3m £,故答案为:2<3m £.8.D【分析】本题考查解不等式,解57x m x +³得2m x £,再由题意可得452m£<,解这个不等数组即可得出答案.【详解】解:解57x m x +³得2mx £,∵该不等式的正整数解为1、2、3、4,∴452m £<解得810m £<.故选:D .9.B【分析】本题主要考查解一元一次不等式的基本能力,解关于x 的不等式求得x m ³,根据不等式的最小整数解是2x =即可作答.【详解】解:0x m -³,移项,得:x m ³,Q 不等式的最小整数解是2x =,12m \<£,故选:B .10.A【分析】本题考查了求不等式的解集及其参数,先求出不等式组的解集,再根据不等式组有解的情况得到关于m 的不等式,求解即可,理解题意,熟练掌握求不等式组的解集是解题的关键.【详解】解:()12432x mx x -ì<-ïíï-£-î①②,解不等式①得,2x m <-,解不等式②得,1x ³,∵关于x 的不等式组()12432x mx x -ì<-ïíï-£-î有解,∴21m ->,解得:3m >故选:A .11.A【分析】本题考查已知不等式的解集求参数,根据求不等式组解集的方法“大中取大,小中取小,大小小大中间找,大大小小找不到” 的原则求解即可.【详解】Q 不等式组有解,\两个不等式的解有公共部分,2.k \<故选:A .12.1a <【分析】本题考查了解一元一次不等式组,根据不等式组的解的情况求参数的取值范围,先求出不等式组的解集为243a x a -<<-,再结合题意得出243246a a a -<-ìí-³î或24332a a a -<-ìí-£-î,求解即可得出答案.【详解】解:3284a x x a ->ìí+>î①②,解不等式①得:3x a <-,解不等式②得:24x a >-,Q 不等式组有解,243a x a \-<<-,Q 每一个x 的值均不在26x -££的范围中,\243246a a a -<-ìí-³î或24332a a a -<-ìí-£-î,解得:1a <,故答案为:1a <.13.0a ³【分析】本题考查了解一元一次不等式组,不等式组解集的情况求参数,先对不等式进行求解,再根据关于x 的一元一次不等式组11340x x x a ì-³-ïíï->î无解即可解答,熟练掌握知识点的应用是解题的关键.【详解】解:11340x x x a ì-³-ïíï->î①②解不等式①得,0x £,解不等式②得,x a >,∵关于x 的一元一次不等式组11340x x x a ì-³-ïíï->î无解,∴0a ³,故答案为:0a ³.14.3m £-【分析】本题考查了不等式的解集,先解不等式x m m -<,然后根据不等式组无解,即可求出m 的取值范围.【详解】解:解不等式x m m -<,得2x m <,∵62x x m m -<<ìí-<î无解,∴26m £-,∴3m £-,故答案为:3m £-.15.16a £【分析】本题考查了解一元一次不等式组.熟练掌握解一元一次不等式组是解题的关键.解40x a -<得4a x <,解329x x -³-+得4x ³,由不等式组40329x a x x -<ìí-³-+î无解,可得44a £,计算求解即可.【详解】解:40329x a x x -<ìí-³-+î,40x a -<,解得,4a x <,329x x -³-+,解得,4x ³,∵不等式组40329x a x x -<ìí-³-+î无解,∴44a £,解得,16a £,故答案为:16a £.16.14m £<##41m >³【分析】本题考查不等式组的整数解问题,正确理解恰有3个整数解得意义是解题的关键.先解不等式组,写出不等式组的解集,再根据恰有三个整数解,可求出m 的范围.【详解】解:()()324122x x x m x ì-<-í-£-î①②解不等式①得:2x >-,解不等式②得:23m x +£,Q 不等式组有解,\不等式组的解集是:223m x +-<£.Q 不等式组恰好有3个整数解,则整数解是1,0,1-,\2123m +£<.14m \£<,故答案为:14m £<.17.5433m -<£-【分析】本题考查了根据一元一次不等式组解的情况求参数的取值范围,先求出不等式组的解集,再根据不等式组的解集只有3个整数解可得3322m -<+£-,解不等式即可求解,掌握解一元一次不等式组是解题的关键.【详解】解:()213644x x m x +<ìïí-³+ïî①②,由①得,x <1,由②得,32x m ³+,∴不等式组的解集为321m x +£<,∵关于x 的不等式组()213644x x m x +<ìí-³+î只有3个整数解,∴3322m -<+£-,即322323m m +£-ìí+>-î,解得5433m -<£-,故答案为:5433m -<£-.18.D【分析】本题主要考查了根据不等式组的解集情况求参数,先分别求出不等式组中两个不等式得解集,再根据原不等式组只有三个整数解建立关于k 的不等式组,解之即可得到答案.【详解】解:()1023544133x x k x x k +ì+>ïïí+ï+>++ïî①② 解不等式①得:25x >-,解不等式②得:2x k <,∵原不等式组恰有三个整数解,∴223k <£,∴312k £<,故选:D .19.B【分析】先求出不等式组的解,得出关于m 、n 的不等式组,求出整数m 、n 的值,即可得出答案.【详解】解:∵解不等式20x m -³得:2m x ³,解不等式30n x -³得:3n x £,∴不等式组的解集是23m n x ££,∵关于x 的不等式组的整数解仅有1-,0,1,2,∴212m -<-≤,233n £<,解得:4269m n -<£-£<,,即m 的值是32--,,n 的值是6,7,8,即适合这个不等式组的整数m ,n 组成的有序数对(),mn 共有6个,是()()()()()()363738262728------,,,,,,,,,,,.故选:B .【点睛】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出m 、n 的值.20.3【分析】此题考查的是一元一次不等式组的解法和三角形的三边关系的运用,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.依据不等式组至少有两个整数解,即可得到a 5>,再根据存在以3,a ,6为边的三角形,可得39a <<,进而得出a 的取值范围是59a <<,即可得到a 的整数解有3个.【详解】解:解不等式组得:4x a £<,∵至少有两个整数解,则整数解至少为4和5,∴5a >,又∵存在以3,a ,6为边的三角形,∴39a <<,∴a 的取值范围为59a <<,∴整数a 的值为:6,7,8,有3个故答案为:3.21.D【分析】本题考查的是解一元一次不等式组,求出第一个不等式的解集,根据口诀:“同大取大、同小取小、大小小大中间找、大大小小无解”即可确定m 的范围.【详解】解:解不等式63(1)5x x -+<-得x >2,解不等式1x m ->-得1x m >-,∵解集是2x >,∴12m -£,解得3m £,故选D .22.C【分析】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.分别求出每一个不等式的解集,根据不等式组的解集得到a 、b 的值,代入计算即可.【详解】解:220x a b x ->ìí->î①②,解①得:2x a >+,解②得:2b x <,∵不等式组220x a b x ->ìí->î的解集为11x -<<,∴2112a b +=-ìïí=ïî,解得:32a b =-ìí=î,∴()20192019()321a b +=-+=-.故选:C .23.0k ³##0k £【分析】本题考查了根据不等式组的解集求参数,先分别求解两个不等式,再根据口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”得出22k £+,求解即可.【详解】解:29612x x x k +>+ìí-<î①②,由①可得:2x <,由②可得:2x k <+,∵该不等式组的解集为2x <,∴22k £+,解得:0k ³,故答案为:0k ³.24.5【分析】本题主要考查解一元一次不等式组,分式方程的综合,掌握不等式的性质,不等式组的取值方法,解分式方程的方法是解题的关键.根据不等式的性质分别求解,根据不等式组的取值方法“同大取大,同小取小,大小小大中间找,大大小小无解”及不等式组的解集的情况可得04m <£,再根据解分式方程的方法得到61x m =-,由分式方程有非负数解,可得14m <<,由此即可求解.【详解】解:441113(22m x x x ->ìïí-<+ïî,解不等式44m x ->,得:44m x -<,解不等式111322x x æö-<+ç÷èø,得:72x >-,∵不等式组有且仅有三个整数解,∴4104m --<£,解得:04m <£,解关于x 的分式方程26122mx x x --=--,得:61x m =-,∵分式方程有非负数解,∴601m ³-,且621m ¹-,10m -¹,解得:1m ³且4m ¹且1m ¹,综上,14m <<,所以所有满足条件的整数m 的值为2,3,∴符合条件的所有整数m 的和为235+=.故答案为:5.25.A【分析】本题主要考查解分式方程和一元一次不等式方程组,首先解得不等式方程组的解,根据题意找到a 的范围,再解的分式方程的解,结合分式方程的解和a 的范围求得a 的可能值即可.【详解】解:2311122y a y ->ìïí+£ïî由23y a ->,解得32a y +>,由11122y +£,解得5y £,则不等式方程组的解为,352a y +<£,∵关于y 的不等式组2311122y a y ->ìïí+£ïî有解且至多三个整数解,∴3252a +££,解得17a ££,52211a y y --=---,去分母得,()()2152y a ---=,去括号、移项得,25y a -=-,系数化为1得,52a y -=,∵1y =为分式方程的增根,∴512a -¹,解得3a ¹,∵y 的分式方程52211a y y --=---解为非负整数,∴502a y -=³,解得5a £,∴15a £<且3a ¹,∴当1a =时,2y =;当2a =时,32y =,舍去;当3a =时,1y =,舍去;当4a =时,12y =,舍去;当5a =时,0y =;则所有满足条件的整数a 的和为156+=.故选:A .26.D【分析】此题考查了解分式方程,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.先解分式方程,得到a 的值,代入不等式组确定出b 的范围即可.【详解】解:解方程21144a a a+=--,得1a =,经检验,1a =是该分式方程的解,∵关于x 的不等式组x a x b >ìí£î,即1x x b >ìí£î只有2个整数解,∴34b £<.故选:D .27.D【分析】根据方程组的解的情况,以及不等式组的解集情况,求出m 的取值范围,再进行求解即可.本题主要考查了解二元一次方程组、解不等式组,求不等式的整数解等知识点,掌握解方程组和不等式组的方法是解题的关键.【详解】解:432173453x y m x y m +=+ìí+=-î①②,+①②,得:77714x y m +=+,∴2x y m +=+,∵1x y +£,∴21m +£, 解得:1m £-,解不等式50x m ->,得:5m x >, 解不等式41x -<-,得:3x <,故不等式组的解集是:35m x <<∵不等式组只有3个整数解,∴105m -£<,解得50m -£<,∴51m -££-,∴符合条件的整数m 的值的和为5432115-----=-,故选:D .28.31m -<<【分析】本题考查根据方程组的解集的情况求参数的范围,求不等式组的解集,根据方程组的解集的情况,得到关于m 的不等式组,求解即可.【详解】解:3454331x y m x y m +=-ìí+=+î①②,+①②得:7744x y m +=-,即447m x y -+=,-②①得:26x y m -=+,∵00x y x y +-,,∴4407260m m -ì<ïíï+>î∴31m -<<,故答案为:31m -<<.29.B【分析】本题考查根据不等式组的解集求参数的范围,先解不等式组,再根据不等式组的解集,得到关于参数的不等式,进行求解即可.【详解】解:解2151x x m -<ìí<+î,得:31x x m <ìí<+î,∵不等式组的解集为:3x <,∴13m +³,∴2m ≥;故选B .30.A【分析】不等式组整理后,表示出不等式组的解集,根据整数解共有4个,确定出m 的范围即可.【详解】解:35241x m x x >+ìí-<+î①②,由②得:3x <,解集为33m x +<<,由不等式组的整数解只有4个,得到整数解为2,1,0,1-,∴231m -£+<-,∴54m -£<-;故选:A .【点睛】本题主要考查解一元一次不等式组,一元一次不等式组的整数解等知识点的理解和掌握,能根据不等式组的解集得到231m -£+<-是解此题的关键.31.B【分析】此题考查了二元一次方程组的解,一元一次不等式组,①把3a =代入方程组求出解,即可做出判断;②根据题意得到0x y +=,代入方程组求出a 的值,即可做出判断;③()()()()391232106m n m n a m n m n aì++-=-ïí+--=ïî的各项和原方程成比例,故可得方程52m n m n +=ìí-=-î,即可解答;④用a 表示,x y ,可得一元一次不等式组,再根据a 的取值范围,即可解答,熟知方程的各项成比例时,两个方程的解相同,是解题的关键.【详解】解:当3a =时,原方程为343533x y x y +=-ìí-=´î,解得41x y =ìí=-î,故①错误;x 、y 的值互为相反数时,可得0x y +=,可得方程3453y y a y y a-+=-ìí--=î,方程无解,故②正确;()()()()391232106m n m n a m n m n a ì++-=-ïí+--=ïîQ 的各项和原方程成比例,故可得52m n m n +=ìí-=-î,解得3272m n ì=ïïíï=ïî,故③正确;解3453x y a x y a +=-ìí-=î,可得5212a x a y +ì=ïïí-ï=ïî,当,x y 为自然数时,可得502102a a +ì³ïïí-ï³ïî,解得51a -££且a 为奇数,故5,3,1,1a =---,即x 、y 都为自然数的解有4对,故④错误;故选:B .32.20-【分析】本题考查了分式方程的解,一元一次不等式组的整数解,由分式方程得12a x +=,由一元一次不等式组得23a y +<£-,根据不等式组1313212y y a y y +ì+³ïïí+ï<-ïî有解且最多有六个整数解,即可得到125a -<<-,再由12a x +=为整数,即可得到a 的值,正确掌握解一元一次不等式组和解分式方程得方法是解题的关键.【详解】解:∵23133a x x x-+=++,∴12a x +=,由1313212y y a y y +ì+³ïïí+ï<-ïî得23a y +<£-,∵不等式组1313212y y a y y +ì+³ïïí+ï<-ïî有解且最多有六个整数解,∴125a -<<-,∵12a x +=为整数,∴11a =-或9-或―7,又∵30x +¹,∴1302a ++¹,∴7a ¹-,∴11a =-或9-,∴所有满足条件的整数a 的值之和()11920=-+-=-,故答案为:20-.。
初中数学《一元一次不等式和一元一次不等式组》单元教学设计以及思维导图
一元一次不等式和一元一次不等式组
主题单元学习目标
知识与技能:
1、经历将一些实际问题抽象成不等式的过程,体会不等式也是刻画现实世界中量与量之间关系的有效数学模型进一步发展符号感。
2、能够根据具体问题中的大小关系了解不等式的意义。
3、掌握不等式的基本性质。
4、理解不等式组的解及解集的含义,会解简单的一元一次不等式并能在数轴上表示一元一次不等式的解集,会解一元一次不等式组并会在数轴上确定其解集,初步体会数形结合的思想。
其他:纸、笔
学习活动设计
活动一、
如下图,正方形的边长和圆的直径都是acm。
1、如果要使正方形的周长不大于25cm,那么 a 应满足怎样的关系式?
2、如果要使圆的周长不小于100cm,那么a 应满足怎样的关系式?
3、当 a= 8 时,正方形和圆的周长哪个大?a = 12 呢?
4、你能得到什么猜想?改变a的取值再试一试。
观察由上述问题得到的关系式,它们有什么共同特点?
由4a 4a4a≤25, πa ≥100 ,3x+5>240得,这些关系式都是用不等号连接的式子.由此
一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式
活动二、。
一元一次不等式应用题专题
一元一次不等式应用题专题(附答案)1、某校王校长暑假将带领该校市级三好学生去北京旅游。
甲旅行社说如果校长买全票一张,则其余学生可享受半价优惠,乙旅行社说包括校长在内全部按全票价的6折优惠(按全票价的60%收费,且全票价为1200元) ①设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(写出表达式) ②当学生数是多少时,两家旅行社的收费一样? ③就学生数x讨论哪家旅行社更优惠。
解:设设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,根据题意,得①y甲=1200+1200×50%×x=1200+600xy乙=(x+1)×1200×60%=720(x+1)=720x+720②当学生数是多少时,两家旅行社的收费一样?当y甲=y乙时,即1200+600x=720x+720120x=480x=4所以,当学生数为4人时,两家旅行社的收费一样!③就学生数x讨论哪家旅行社更优惠。
若y甲>y乙,即1200+600x>720x+720120x<480x<4,此时乙旅行社便宜。
若y甲<y乙,即1200+600x<720x+720解得,x>4,此时甲旅行社便宜。
答:当学生人数少于4人时,乙旅行社更优惠;当学生人数多于4人时,甲旅行社更优惠;当学生人数等于4人时,两个旅行社一样优惠。
2、李明有存款600元,王刚有存款2000元,从本月开始李明每月存款500元,王刚每月存款200元,试问到第几个月,李明的存款能超过王刚的存款。
解:设到第x个月李明的存款超过王刚的存款,根据题意,得600+500x>2000+200x300x>1400x>14/3因为x为整数,所以x=5答:到第5个月李明的存款超过王刚的存款。
3、暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价为每人500元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折;乙旅行社的优惠条件是:家长,学生都按八折收费。
中考数学 一元一次不等式易错压轴解答题(含答案)100
中考数学一元一次不等式易错压轴解答题(含答案)100一、一元一次不等式易错压轴解答题1.某电器商城销售、两种型号的电风扇,进价分别为元、元,下表是近两周的销售情况:销售时段销售型号销售收入种型号种型号第一周台台元第二周台台元(1)求A、B两种型号的电风扇的销售单价;(2)若商城准备用不多于元的金额再采购这两种型号的电风扇共台,求种型号的电风扇最多能采购多少台?(3)在(2)的条件下商城销售完这台电风扇能否实现利润超过元的目标?若能,请给出相应的采购方案;若不能,请说明理由.2.某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:总利润单件利润销售量商品价格A B进价元件12001000售价元件13501200B两种商品各多少件?(2)商场第2次以原进价购进A、B两种商品,购进A商品的件数不变,而购进B商品的件数是第1次的2倍,A商品按原售价销售,而B商品按原售价打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于54000元,则B种商品是打几折销售的?3.对非负实数x“四舍五入”到个位的值记作<x>,即:当n为非负整数时,若n-≤x<n+,则<x>=n.如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…. (1)填空:①<π>=________;②如果<2x-1>=3,则实数x的取值范围为________;(2)举例说明<x+y>=<x>+<y>不恒成立;(3)求满足<x>= x的所有非负实数x的值.4.某服装厂生产一种西装和领带,西装每套定价400元,领带每条定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案①:买一套西装送一条领带;方案②:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20)(1)若该客户按方案①购买,需付款________元(用含x的代数式表示);若该客户按方案②购买,需付款________元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法并计算出此种方案的付款金额.5.(1)①如果 a-b<0,那么 a________b;②如果 a-b=0,那么 a________b;③如果 a-b>0,那么 a________b;(2)由(1)你能归纳出比较a与b大小的方法吗?请用文字语言叙述出来.(3)用(1)的方法你能否比较3x2-3x+7与4x2-3x+7的大小?如果能,请写出比较过程.6.某公园的门票每张20元,一次性使用.考虑到人们的不同需求,也为了吸引更多的游客,该公园除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法.年票分A,B,C三类,A类年票每张240元,持票进入该园区时,无需再购买门票;B类年票每张120元,持票者进入该园区时,需再购买门票,每次4元;C类年票每张80元,持票者进入该园区时,需再购买门票,每次6元. (1)如果只能选择一种购买年票的方式,并且计划在一年中花费160元在该公园的门票上,通过计算,找出可进入该园区次数最多的方式.(2)一年中进入该公园超过多少次时,A类年票比较合算?7.在一次知识竞赛中,甲、乙两人进入了“必答题”环节.规则是:两人轮流答题,每人都要回答20个题,每个题回答正确得a分,回答错误或放弃回答扣b分.当甲、乙两人恰好都答完12个题时,甲答对了8个题,得分为64分;乙答对了9个题,得分为78分. (1)求a和b的值;(2)规定此环节得分不低于120分能晋级,甲在剩下的比赛中至少还要答对多少个题才能顺利晋级?8.某小区准备新建60 个停车位,以解决小区停车难的问题。
2015年河北中考数学总复习课件(第12课时_一次函数的应用)
解 析
冀考解读
课前热身
考点聚焦
冀考探究
第12课时┃ 一次函数的应用
2. [2014· 保定二模] 如图 12-2, 直线 l1: y=x+3 与直线 l2: y=ax+b 相交于点 A(m,4),则关于 x 的不等式 x+3≤ax+b 的 解集是 ( D )
图 12-2 A.x≥4 B.x≤4 C.x≥m D.x≤1 解 析 首先利用待定系数法 m 的值,然后根据图像 写出不等式的解集,应选 D.
冀考解读 课前热身 考点聚焦 冀考探究
第12课时┃ 一次函数的应用
考 点 聚 焦
考点1 一次函数与方程(组)及不等式的关系
一次函数与 一次方程 一次函数与 一元一次不 等式
一次函数 y=kx+b(k,b 是常数,k≠0)的值为 0 时,相应的自变量的值为方程 kx+b=0 的根 一次函数 y=kx+b(k, b 是常数, k≠0)的值大 于(或小于 )0 时,相应的自变量的值为不等式 kx+b>0(或 kx+b<0) 的解集 两直线的交点坐标是两个一次函数表达式 y= 一次函数与 k1x+b1 和 y=k2x+b2 所组成的关于 x,y 的方 y=k1x+b1, 方程组 程组 的解 y=k2x+b2
冀考解读
课前热身
考点聚焦
冀考探究
第12课时┃ 一次函数的应用
课 前 热 身
1.[2013· 哈尔滨] 梅凯种子公司以一定价格销售“黄金 1 号”玉米种子,如果一次购买 10 千克以上(不含 10 千克)的种 子,超过 10 千克的那部分种子的价格将打折,并依此得到付 款金额 y(单位:元)与一次购买种子数量 x(单位:千克)之间的 函数关系如图 12-1 所示.下列四种说法: ①一次购买种子数量不超过 10 千克时,销售价格为 5 元/ 千克; ②一次购买 30 千克种子时,付款金额为 100 元; ③一次购买 10 千克以上种子时, 超过 10 千克的那部分种 子的价格打五折; ④一次购买 40 千克种子比分两次购买且每次购买 20 千克 种子少花 25 元钱.
含参数的一元一次不等式组讲课教案
自主学习
1. 不等式 x ? 4 ? 2(1? x) 的解集为 x ? 2 .
2. 问题1中不等式的解集表示在数轴上为( B )
A
B
C
D
3. 问题1 中不等式非负的整数解为 0 ,1 .
类型1:系数含参数的一元一次不等式
问题1 :求关于x 的一元一次不等式 mx ? 2的解集.
不等式式 x ? a(x ? a )
分析: (1)如果 m ? 0,那么 x ? 2 m
(2)如果 m ? 0,那么 x ? 2 m
练习
1. 已知a ? 3 ,求不等式 2 xa? x ??2
0 的解集.
x
?
2 2?a
变式
1. 关于x 的不等式 (3 ? a )x ?
求a 的范围.
2
的解集为 x ?
问题3 :关于x 的不等式组
?5? 2x ? ?1
? ?
x
?
a
?
0
无解,
求a 的取值范围.
变
式:关于x 的不等式组
?2x ??3 x
? ?
3x a?
? 5
3
有解,
求a 的取值范围.
a? 4
类型2:已知不等式组的特殊解,确定参数取值范围
问题1 :关于x 的不等式组
?x? m ? 0
? ?7
?
2
x
?
1
?x?a ? 0 ??? 2x ? 2 ?
?6
的解集为
x
?
4
求a 的取值范围.
练习
1 :关于x 的不等式组
?x
? ?
x
? ?
2 ?m
第12讲+变种二人组的玄幻杀机—不等式的应用
第12讲变种二人组的玄幻杀机—不等式的应用学习目标1.会用一元一次不等式解决简单的实际问题.入门测单选题练习1.某种记事本零售价每本6元,凡一次性购买两本以上给予优惠,优惠方式有两种,第一种:“两本按原价,其余按七折优惠”;第二种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买记事本()A.5本B.6本C.7本D.8本填空题练习1.在一次“人与自然”知识竞赛中,竞赛题共25道,每道题都给出4个答案,其中只有一个答案正确,选对得4分,不选或选错扣2分,得分不低于60分得奖,那么,要得奖至少应选对____道题。
练习2.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打___折.解答题练习1.'五一期间,某校由4位教师和若干名学生组成的旅游团,拟到国家4A级旅游风景区—闽西冠豸山旅游.甲旅行社的收费标准是:如果买4张全票,则其余人按七折优惠;乙旅游行社的收费标准是:5人以上(含5人)可购团体票,旅游团体票按原价的八折优惠.这两家旅行社的全票价格均为每人300元.(1)若有10名学生参加该旅游团,问选择哪家旅行社更省钱?(2)参加该旅游团的学生人数在什么范围内时,选择乙旅行社更省钱?'练习2.'某单位要制作一批宣传资料,甲公司提出:每份材料收费20元另外3000元的设计费;乙公司提出:每份材料收费30元,不收设计费。
请问该单位选择那家公司制作这批宣传材料更合算?'情景导入同学们你能根据图中熊猫爸爸、熊猫妈妈和熊猫宝宝的对话帮助熊猫宝宝解决这个问题么?知识精讲比赛积分问题知识讲解在比赛问题中,经常会出现答对的题数,答错的题数,不答的题数,倒扣分的情况,要根据已知条件分清这些量之间的关系,正确建立不等式,通过解不等式解决实际问题。
例题精讲比赛积分问题例1.某射击运动员在一次比赛中(共10次射击,每次射击最多是10环),前6次射击共中52环,如果他要打破89环的记录,则第七次射击不能少于()环.A.5B.6C.7D.8例2.'在比赛中每名射手打10枪,每命中一次得5分,每脱靶一次扣1分,得到的分数不少于35分的射手为优胜者,要成为优胜者,至少要中靶多少次?'例3.'一次知识竞赛共有15道题,竞赛规则是:答对1题记8分,答错1题扣4分,不答记0分。
(中考数学复习)第12讲-一次函数及其图象-课件-解析
课堂回顾 · 巩固提升
(2)由题意,得xy=2 000,
浙派名师中考
-x2+130x-4 000=0, 解得x1=50,x2=80>70(舍去). 答:该机器的生产数量为50台. (3)设每月销售量z(台)与售价a(万元∕台)之间的函数关系式为z= ka+b,由函数图象,得
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考 6.如图12-3所示,直线y=kx+b经过点A(-1,-2)和点B(-
2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为 __-__2_<__x_<__-__1___.
图12-3
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
B.x>0
C.x<2
D.x>2
图12-2
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
5.(2013·泰安)把直线y=-x+3向上平移m个单位后,与直线y =2x+4的交点在第一象限,则m的取值范围是 ( C ) A.1<m<7 B.3<m<4 C.m>1 D.m<4 解析:把直线y=-x+3向上平移m个单位后可得:y=-x +3+m,求出直线y=-x+3+m与直线y=2x+4的交点, 再由此点在第一象限可得出m的取值范围.解得m>1.
浙派名师中考
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考
题组三 函数、方程、不等式的结合 【例4】 (2012·乐山)已知一次函数y=ax+b的图象过第一、
一元一次不等式与一元一次不等式组典型例题
一元一次不等式与一元一次不等式组的解法知识点回顾1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。
解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。
说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a b >,那么__a c b c ±±(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果,0a b c >>,那么__ac bc (或___a b c c) (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b >,0c <那么__ac bc (或___a b c c) 说明:常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b≤0,则a 不大于b ;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号。
任意两个实数a 、b 的大小关系:①a -b>O ⇔a>b ;②a -b=O ⇔a=b ;③a-b<O ⇔a<b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。
4.一元一次不等式(重点)只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式. 注:其标准形式:ax+b <0或ax+b ≤0,ax+b >0或ax+b ≥0(a ≠0). 5.解一元一次不等式的一般步骤(重难点)(1)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)化系数为1.例:131321≤---x x 解不等式:6.一元一次不等式组含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组.说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.7.一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.9.解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.(三)常见题型归纳和经典例题讲解 1.常见题型分类(加粗体例题需要作答) 1.下列不等式中,是一元一次不等式的是( ) A.x1+1>2 B.x 2>9 C.2x +y ≤5D.21(x -3)<0 2.若51)2(12>--+m x m 是关于x 的一元一次不等式,则该不等式的解集为 .a 与6的和小于5; x 与2的差小于-1;1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空:a __________b ; |a |__________|b |; a +b __________0 a -b __________0; a +b __________a -b ; ab __________a .2.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( )A 、ab >0B 、a b >C 、a -b >0D 、a +b >01.与2x <6不同解的不等式是( )A.2x +1<7B.4x <12C.-4x >-12D.-2x <-6): (这类试题在中考中很多见)1.(2010湖北随州)解不等式组110334(1)1x x +⎧-⎪⎨⎪--<⎩≥ 2.(2010福建宁德)解不等式215312+--x x ≤1,并把它的解集在数轴上表示出来. 3.(2006年绵阳市)12(1)1,1.23x x x -->⎧⎪⎨-≥⎪⎩此类试题易错知识辨析(1)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式ax b >(或ax b <)(0a ≠)的形式的解集:当0a >时,b x a >(或b x a<) 当0a <时,bx a <(或b x a >)当0a <时,b x a <(或b x a>) 4 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <15 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.6.如果不等式(m -2)x >2-m 的解集是x <-1,则有( ) A.m >2 B.m <2 C.m =2 D.m ≠27.如果不等式(a -3)x <b 的解集是x <3-ab,那么a 的取值范围是________. 1.不等式3(x -2)≤x +4的非负整数解有几个.( ) A.4 B.5 C.6D.无数个2.不等式4x -41141+<x 的最大的整数解为( ) A.1B.0C.-1D.不存在|x |<37的整数解是________.不等式|x |<1的解集是________. 已知ax <2a (a ≠0)是关于x 的不等式,那么它的解集是( )A.x <2B.x >-2C.当a >0时,x <2D.当a >0时,x <2;当a <0时,x >21. 若x +y >x -y ,y -x >y ,那么(1)x +y >0,(2)y -x <0,(3)xy ≤0,(4)yx<0中,正确结论的序号为________。
一元一次不等式知识点总结
一元一次不等式知识点一:不等式的概念1. 不等式:用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号的类型:①“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;②“>”读作“大于”,它表示左边的数比右边的数大;③“<”读作“小于”,它表示左边的数比右边的数小;④“≥”读作“大于或等于”,它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”,它表示左边的数不大于右边的数;(2) 等式与不等式的关系:等式与不等式都用来表示现实世界中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。
(3) 要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。
2.不等式的解:能使不等式成立的未知数的值,叫做不等式的解。
要点诠释:由不等式的解的定义可以知道,当对不等式中的未知数取一个数,若该数使不等式成立,则这个数就是不等式的一个解,我们可以和方程的解进行对比理解,要判断一个数是否为不等式的解,可将此数代入不等式的左边和右边利用不等式的概念进行判断。
3.不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。
求不等式的解集的过程叫做解不等式。
如:不等式x-4<1的解集是x<5. 不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的解是使不等式成立的未知数的值.二者的关系是:解集包括解,所有的解组成了解集。
要点诠释:不等式的解集必须符合两个条件:(1)解集中的每一个数值都能使不等式成立;(2)能够使不等式成立的所有的数值都在解集中。
知识点二:不等式的基本性质基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
最新华东师大初中数学中考总复习:一元一次不等式(组)--知识讲解
中考总复习:一元一次不等式(组)—知识讲解【考纲要求】1.会解一元一次不等式(组),理解一元一次不等式(组)的解集的含义,进一步体会数形结合的思想;2.会用不等式(组)进行解题,能利用不等式(组)解决生产、生活中的实际问题.【知识网络】【考点梳理】考点一、不等式的相关概念 1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点:解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左. 3.解不等式求不等式的解集的过程或证明不等式无解的过程,叫做解不等式. 要点诠释:不等式的解与一元一次方程的解是有区别的:不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值.考点二、不等式的性质概念 基本性质不等式的定义 不等式的解法 一元一次不等式 的解法一元一次不等式组 的解法 不等式 实际应用 不等式的解集性质1:不等式两边加上(或减去)同一个数(或式子),不等号的方向不变,即如a >b ,那么a ±c >b ±c . 性质2:不等式两边乘以(或除以)同一个正数,不等号的方向不变,即如果a >b ,c >0,那么ac >bc (或a c >bc). 性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,即如果a >b ,c <0,那么ac <bc (或a c <b c). 要点诠释:(1)不等式的其他性质:①若a >b ,则b <a ;②若a >b ,b >c ,则a >c ;③若a ≥b ,且b ≥a ,•则a=b ;④若a 2≤0,则a=0;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号.(2)任意两个实数a 、b 的大小关系:①a -b >O ⇔a >b ;②a -b=O ⇔a=b ;③a-b <O ⇔a <b . 不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c .考点三、一元一次不等式(组) 1.一元一次不等式的概念只含有一个未知数,且未知数的次数是1,系数不等于0的不等式叫做一元一次不等式.其标准形式:ax+b >0(a ≠0)或ax+b ≥0(a ≠0) ,ax+b <0(a ≠0)或ax+b ≤0(a ≠0). 2.一元一次不等式的解法一元一次不等式的解法与一元一次方程的解法类似,•但要特别注意不等式的两边都乘以(或除以)同一个负数时,不等号要改变方向.解一元一次不等式的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化系数为1. 要点诠释:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方. 3.一元一次不等式组及其解集含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组. 一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定. 要点诠释:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多. 4.一元一次不等式组的解法由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.注:不等式有等号的在数轴上用实心圆点表示. 要点诠释:解不等式组时,一般先分别求出不等式组中各个不等式的解集并表示在数轴上,再求出它们的公共部分,就得到不等式组的解集. 5.一元一次不等式(组)的应用列一元一次不等式(组)解实际应用问题,可类比列一元一次方程解应用问题的方法和技巧,不同的是,列不等式(组)解应用题,寻求的是不等关系,因此,根据问题情境,抓住应用问题中不等式组 (其中a >b )图示解集口诀x ax b >⎧⎨>⎩ bax a > (同大取大)x ax b <⎧⎨<⎩ b ax b <(同小取小) x ax b <⎧⎨>⎩ bab x a << (大小取中间)x ax b>⎧⎨<⎩ ba无解 (空集) (大大、小小 找不到)“不等”关系的关键词语,或从题意中体会、感悟出不等关系显得十分重要. 要点诠释:列一元一次不等式组解决实际问题是中考考查的一个重要内容,在列不等式解决实际问题时,应掌握以下三个步骤:(1)•找出实际问题中的所有不等关系或相等关系(有时要通过不等式与方程综合来解决),设出未知数,列出不等式组(•或不等式与方程的混合组);(2)解不等式组;(3)从不等式组(或不等式与方程的混合组)•的解集中求出符合题意的答案. 6.一元一次不等式、一元一次方程和一次函数的关系一次函数(0)y kx b k =+≠,当函数值0y =时,一次函数转化为一元一次方程;当函数值0y >或0y <时,一次函数转化为一元一次不等式,利用函数图象可以确定x 的取值范围.【典型例题】类型一、解不等式(组)1.(2014春•巴中期中)解不等式(组),并把它们的解集在数轴上表示出来 (1)2x ﹣1<3x+2; (2).【思路点拨】(1)先移项,再合并同类项、系数化为1即可; (2)先求两个不等式的解集,再求公共部分即可. 【答案与解析】解:(1)移项得,2x ﹣3x <2+1, 合并同类项得,﹣x <3,系数化为1得,x >﹣3在数轴上表示出来:.(2),解①得,x <1, 解②得,x≥﹣4.5 在数轴上表示出来:不等式组的解集为﹣4.5≤x<1.【总结升华】解不等式(组)是中考中易考查的考点,必须熟练掌握. 举一反三:【变式】131321≤---x x 解不等式:.【答案】解:去分母,得 6)13(2)13≤---x x ( (不要漏乘!每一项都得乘) 去括号,得 62633≤+--x x (注意符号,不要漏乘!)移 项,得 23663-+≤-x x (移项要变号) 合并同类项,得 73≤-x (计算要正确) 系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了)2.解不等式组352,1212x x x x -<⎧⎪⎨-≤+⎪⎩并将其解集在数轴上表示出来.【思路点拨】分别解出两个不等式的解集,再求出公共的解集即可.【答案与解析】解:由(1)式得x <5, 由(2)式得x ≥-1, ∴ -1≤x <5数轴上表示如图:【总结升华】注意解不等式组的解题步骤. 举一反三:【变式1】解不等式组312(1)2(1)4x x x x +≥-⎧⎨+>⎩,并把它的解集在数轴上表示出来.【答案】不等式组的解集为-3≤x <1,数轴上表示如图:【高清课程名称:不等式(组)及应用 高清ID 号: 370028关联的位置名称(播放点名称):经典例题2】【变式2】解不等式组24x ≤⎧⎪⎨+⎪⎩(x-1)+33x x-2>3,并写出不等式组的整数解;【答案】不等式组的解集为1≤x <5,故其整数解为:1,2,3,4. 类型二、一元一次不等式(组)的特解问题3.(2014•青羊区校级自主招生)若不等式组的正整数解有3个,那么a 必须满足( )A .5<a <6B .5≤a<6C .5<a≤6D .5≤a≤6【思路点拨】首先解得不等式组的解集,然后根据不等式组只有三个正整数解即可确定a 的范围. 【答案】C ;【解析】解不等式5≤2x﹣1≤11得:3≤x≤6.若不等式组有3个正整数解则不等式组的解集是:3≤x<a . 则正整数解是:3,4,5. ∴5<a≤6.故选C . 【总结升华】本题主要考查学生是否会利用逆向思维法解决含有待定字母的一元一次不等式组的特解问题. 举一反三:【高清课程名称:不等式(组)及应用高清ID 号:370028 关联的位置名称(播放点名称):经典例题3-4】 【变式1】关于x 的方程,如果3(x +4)-4=2a +1的解大于3)43(414-=+x a x a 的解,求a 的取值范围. 【答案】718a >. 【变式2】若不等式-3x+n >0的解集是x <2,则不等式-3x+n <0的解集是_______. 【答案】∵-3x+n >0,∴x <3n ,∴3n =2 即n=6代入-3x+n <0得:-3x+6<0,∴x >2.类型三、一元一次不等式(组)的应用4.仔细观察下图,认真阅读对话:根据对话内容,试求出一盒饼干和一袋牛奶的标价各是多少元.【思路点拨】根据对话找到下列关系:①饼干的标价+牛奶的标价>10元;②饼干的标价<10;③饼干标价的90%+牛奶的标价=10元-0.8元,然后设未知数列不等式组.【答案与解析】解:设饼干的标价为每盒x元,牛奶的标价为每袋y元.则10(1) 0.9100.8(2)10(3) x yx yx+>⎧⎪+=-⎨⎪<⎩由(2)得 y=9.2-0.9x (4)把(4)代入(1)得:9.2-0.9x+x>10,解得x>8.由(3)综合得 8<x<10.又∵x是整数,∴x=9.把x=9代入(4)得:y=9.2-0.9×9=1.1(元)答:一盒饼干标价9元,一袋牛奶标价1.1元.【总结升华】不等式、方程与实际生活相联系的问题,主要是审好题,计算准确.举一反三:【变式】某牛奶乳业有限公司经过市场调研,决定从明年起对甲、乙两种产品实行“限产压库”,要求这两种产品全年共新增产量20件,这20件的总产值p(万元)满足:110<p<120.已知有关数据如表所示,•那么该公司明年应怎样安排新增产品的产量?产品每件产品的产值甲 4.5万元乙7.5万元【答案】解:设该公司安排生产新增甲产品x 件,那么生产新增乙产品(20-x )件,由题意得:110<4.5x+7.5(20-x )<120 ∴10<x <403,依题意,得x=11,12,13 当x=11时,20-11=9;当x=12时,20-12=8;当x=13时,20-13=7.所以该公司明年可安排生产新增甲产品11件,乙产品9件;或生产新增甲产品12件,乙产品8件;或生产新增甲产品13件,乙产品7件.类型四、一元一次不等式(组)与方程的综合应用5.某钱币收藏爱好者,想把3.50元纸币兑换成的1分,2•分,5分的硬币;他要求硬币总数为150枚,2分硬币的枚数不少于20枚且是4的倍数,5•分的硬币要多于2分的硬币;请你根据此要求,设计所有的兑换方案.【思路点拨】题目中包含的相等关系有:①所有硬币的总价值是3.50元;②共有硬币150枚.•不等关系有:①2分的硬币的枚数不少于20枚;②5分的硬币要多于2分的硬币.且硬币的枚数为整数,2分的硬币的数量是4的倍数. 【答案与解析】解:(法一)设兑换成1分,2分,5分硬币分别为x 枚,y 枚,z 枚,依据题意,得150,(1)25350,(2),(3)20,(4)x y z x y z z y y ++=⎧⎪++=⎪⎨>⎪⎪≥⎩由(1),(2)得 将y 代入(3),(4)得2004,200420,z z z >-⎧⎨-≥⎩解得40<z ≤45,∵z 为正整数,∴z 只能取41,42,43,44,45,由此得出x ,y 的对应值, 共有5种兑换方案.73,76,79,82,85,36,32,28,24,20,41.42.43,44.45.x x x x x y y y y y z z z z z =====⎧⎧⎧⎧⎧⎪⎪⎪⎪⎪=====⎨⎨⎨⎨⎨⎪⎪⎪⎪⎪=====⎩⎩⎩⎩⎩(法二):设兑换成的1分,2分,5分硬币分别为x 枚,y 枚,z 枚,依据题意可得150,(1)25350,(2)(3)x y z x y z z y ++=⎧⎪++=⎨⎪>⎩∵y 是4的倍数,可设y=4k (k 为自然数), ∵y ≥20,∴4k ≥20,即k ≥5. 将y=4k 代入(1),(2)可解得z=50-k , ∵z >y ,∴50-k >4k ,即k <10.∴5≤k <10,又k 为自然数,∴k 取5,6,7,8,9.由此得出x ,y 的对应值,共有5种兑换方案:73,76,79,82,85,36,32,28,24,20,41.42.43,44.45.x x x x x y y y y y z z z z z =====⎧⎧⎧⎧⎧⎪⎪⎪⎪⎪=====⎨⎨⎨⎨⎨⎪⎪⎪⎪⎪=====⎩⎩⎩⎩⎩【总结升华】这是一道方案设计题,•是涉及到方程和不等式的综合应用题.6.某校组织学生到外地进行综合实践活动,共有680名学生参加,并携带300件行李.学校计划租用甲、乙两种型号的汽车共20辆.经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.⑴ 如何安排甲、乙两种汽车可一次性地将学生和行李全部运走?有哪几种方案?⑵ 如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案【思路点拨】根据题意列出不等式组,解出未知数的取值范围,分类讨论各种方案. 【答案与解析】解:(1)设安排x 辆甲型汽车,安排(20-x )辆乙型汽车.由题意得:⎩⎨⎧≥-+≥-+300)20(2010680)20(3040x x x x 解得108≤≤x ,∴整数x 可取8、9、10. ∴共有三种方案:①租用甲型汽车8辆、乙型汽车12辆; ②租用甲型汽车9辆、乙型汽车11辆; ③租用甲型汽车10辆、乙型汽车10辆.(2)设租车总费用为w 元,则)20(18002000x x w -+=36000200+=x w 随x 的增大而增大,∴当8=x 时,37600360008200=+⨯=最小w ,∴最省钱的租车方案是:租用甲型汽车8辆、乙型汽车12辆. 【总结升华】考查不等式与方程综合应用问题,体现了分类讨论的思想.。
2015年广西中考数学总复习课件第12课时 一元一次不等式组的应用(共73张PPT)
第12课时
一元一次不等式(组)的应用
(3)因为甲种纪念品获利较高,所以甲种纪念品的数量越多 总利润越高,因此选择购进甲种纪念品60件,购进乙种纪念品 40件利润最高,总利润=60×30+40×12=2280(元),则购进 甲种纪念品60件,购进乙种纪念品40件时,可获得最大利润, 最大利润是2280元.
品需甲种原料4千克,乙种原料10千克,可获利1200元.设生产A ,B两种产品可获总利润是y元,其中A种产品的生产件数是x.
(1)写出y与x之间的函数解析式;
(2)如何安排A,B两种产品的生产件数,使总利润y有最大值
?并求出y的最大值.
第12课时
一元一次不等式(组)的应用
解:(1)∵A种产品的生产件数是x,∴B种产品的生产件数 是50-x,由题意,得 y=700x+1200(50-x)=-500x+60000.
第12,生产全部桌椅并运往该校的总费用 (总 费用=生产成本+运费)为y元.
(1)求y与x之间的关系式,并指出x的取值范围;
(2)当总费用y最小时,求相应的x值及此时y的值.
第12课时
一元一次不等式(组)的应用
解:(1)由题意,得生产B型桌椅(500-x)套,则y=(100+ 2)x+(120+4)(500-x)=-22x+62000. 又
┃考向互动探究┃ 类型题展 ► 类型 不等式(组)的运用
第12课时
一元一次不等式(组)的应用
(3) 若销售每件甲种纪念品可获利 30 元,每件乙种纪念品可 获利12元,在第(2) 问中的各种进货方案中,哪种方案获利最大
?最大利润是多少元?
解:(1)设购进甲、乙两种纪念品每件各需要x元和y元,根 据题意,得
x+2y=160, x=80, 解得 2x+3y=280, y=40,
人教版初中数学中考复习 一轮复习 —一元一次不等式(组)解法及含字母(参数)问题
8
4
.
解:(2)去分母,得:8﹣(7x﹣1)>2(3x﹣2),
去括号,得:8﹣7x+1>6x﹣4,
移项,得:﹣7x﹣6x>﹣4﹣1﹣8,
合并同类项,得:﹣13x>﹣13,
系数化1,得:x<1.
考点二:解不等式(组)并在数轴上表示解(集)
5.(2021•武汉)解不等式组
2x x 1 ① 4x 10 x 1 ②
考点一:不等式的性质
C 1.(2021•常德)若a>b,下列不等式不一定成立的是( )
A.a﹣5>b﹣5
B.﹣5a<﹣5b
C. a b
cc
D.a+c>b+c
考点一:不等式的性质
2.(2021•临沂)已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,
A 则a+b<2b;④若b>0,则 1 1 ,其中正确的个数是( ) ab
性质3:不等式两边同时乘或除同一个负数,不等号的。方向改变
知识点梳理:
二、一元一次不等式(组)及其解法
一元一次不等 含有一个未知数,未知数的次数是
1
式定义
的不等式
解一元一次不 等式的步骤
去分母→去括号→移项→合并同类项→系数化为1
一元一次 一般地,关于同一个未知数的几个一元一次不等式合在一起,
不等式组 就组成一个一元一次不等式组
3.(2021•南京)解不等式1+2(x﹣1)≤3,并在数轴上表示解集. 解: 1+2(x﹣1)≤3, 去括号,得1+2x﹣2≤3. 移项、合并同类项,得2x≤4. 化系数为1,得x≤2.
表示在数轴上为:
考点二:解不等式(组)并在数轴上表示解(集)
Hale Waihona Puke 4.(2021•泰安)(2)解不等式: 1- 7x 1 3x 2
《解一元一次不等式》课件2
特点: (1)不等号的两边都是整式.
(2)只含有一个未知数. (3)未知数的最高次数是1次.
认一认
下列式子哪些是一元一次不等 式?哪些不是一元一次不等式? 1、x x>0 >0 √
1 2、 1 x
3、x >2 √ 4、x x+ +y>-3 5、x x=-1 =-1
例1
1 解不等式 x+1<5,并把解集在数轴上表示出来. 2 1 x<5-1, 2
总结:用数轴表示不等式的解集的步骤:
第一步:画数轴;第二步:定界点; 第三步:定方向.
大于向右画,小于向左画;
有等号(≥ ,≤)画实心点,无等号(>,<)画空心圆.
试一试:
在数轴上表示x≥-2正确的是 ( D )
●
●
-2
A
○
-2
0 B
●
-2
0 C
-2
0 D
一元一次方程: 方程的两边都是整式,只含有一个未知数;并且 未知数的指数是一次,这样的方程叫做一元一次 方程. 特点: 1、方程的两边都是整式. 2、只有一个未知数. 3、未知数的指数是一次.
解:不等式两边都减去1,得
即
x<4.
1 两边都乘2(或除以 2 ),得
x<8.
解集在数轴上表示,如图10一3一3所示.
解不等式7x-2≤9x+3,把解表示在数轴上. 并求出不等式的负整数解. 不等式的解表示在数轴上如图所示.
5 2
4 3 2 1
012Fra bibliotek3不等式的负整数解是x=-1和x=-2.
x<a)来表示.
第二种:用数轴,标出数轴上某一区间,其中的点 对应的数值都是不等式的解.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第12讲 一元一次不等式
教学过程
一:【课前预习】
(一):【知识梳理】
1.不等式:用不等号(<、≤、>、≥、≠)表示 的式子叫不等式。
2.不等式的基本性质:(1)不等式的两边都加上(或减去) ,不等号的 .(2)不等式的两边都乘以(或除以) ,不等号的 .(3)不等式的两边都乘以(或除以) ,不等号的方向 .
3.不等式的解:能使不等式成立的 的值,叫做不等式的解.
4.不等式的解集:一个含有未知数的不等式的 ,组成这个不等式的解集.
5.解不等式:求不等式 的过程叫做解不等式.
6.一元一次不等式:只含有 ,并且未知数的最高次数是 ,系数不为零的不等式叫做一元一次不等式.
7.解一元一次不等式易错点:(1)不等式两边部乘以(或除以)同一个负数时,不等号的方向要改变,这是同学们经常忽略的地方,一定要注意;(2)在不等式两边不能同时乘以0.
8.一元一次不等式的解法:解一元一次不等式的步骤:① ,② ,③ ,④ ,⑤ (不等号的改变问题)
9.求不等式(组)的正整数解或负整数解等特解时,可先求出这个不等式(组)的所有解,再从中找出所需特解.
10.一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.
11.一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的 ,叫做这个一元一次不等式组的解集.
12.解不等式组:求不等式组解集的过程,叫做解不等式组.
13.一元一次不等式组的解.
(1)分别求出不等式组中各个不等式的解集;(2)利用数轴或口诀求出这些解集的公共部分,即这个不等式的解。
(口诀:同大取大,同小取小;大于小的小于大的,
取两者之间;大于大的小于小的,无解。
)
14.不等式组的分类及解集(a <b ).
(二):【课前练习】
1. 下列式子中是一元一次不等式的是( )
A.-2>-5
B.x 2>4
C.xy>0
D.2
x –x< -1错误!未指定书签。
2.下列说法正确的是( )
A.不等式两边都乘以同一个数,不等号的方向不变;
B.不等式两边都乘以同一个不为零的数,不等号的方向不变;
C.不等式两边都乘以同一个非负数,不等号的方向不变;
D.不等式两边都乘以(或除以)同一个正数,不等号的方向不变;
3. 关于x 的不等式2x -a ≤-1的解集如图所示,则a 的取值是( )
A.0
B.-3
C.-2
D.-1
4. 不等式2x ≥x+2的解集是_________.
5. 把不等式组x+1>0x-10⎧⎨
≤⎩
的解集表示在数轴上,确的是图中的( )
二:【经典考题剖析】
1. 解不等式1111326
y y y +---≥-,并在数轴上表示出它的解集。
分析:按基本步骤进行,注意避免漏乘、移项变号,特别注意当不等式两边同时乘以或除以一个负数时,不等号的方向要改变。
答案:6y ≤
2. 解不等式组2(1)3253
x x x x --≤⎧⎪+⎨>⎪⎩,并在数轴上表示出它的解集。
分析:不等式组的解集是各不等式解集的公共部分,故应将不等式组里各不等式分别求出解集,标到数轴上找出公共部分,数轴上要注意空心点与实心点的区别,与方程组的解法相比较可见思路不同。
答案:-1≤x <5
3. 求方程组5326x y k x y +=⎧⎨+=⎩
的正整数解。
分析:由题设知,k 必为正整数,由方程组可解得用含k 的代数式表示x y 、,又x y 、 均大于零,可得出不等式组,解出k 的范围,再由k 为正整数可得k =6、7、8,分
别代入可得解。
答案:当k =6时,42x y =⎧⎨=⎩;当k =8时,17x y =⎧⎨=⎩
4. 已知不等式3x a -≤0,的正整数解只有1、2、3,求a 。
略解:先解3x a -≤0可得:3a x ≤,考虑整数解的定义,并结合数轴确定3a 允许的范围,可得3≤3
a <4,解得9≤a <12。
不要被“求a ”二字误导,以为a 只是某个值。
5. 某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A 、B 两种产品共50件,已知生产一件A 种产品用甲种原料9千克,乙种原料3千克,可获利700元;生产一件B 种产品用甲种原料4千克,乙种原料10千克,可获利1200元。
(1)按要求安排A 、B 两种产品的生产件数,有哪几种方案?请你设计出来;
(2)设生产A 、B 两种产品总利润为y 元,其中一种产品生产件数为x 件,试写出y 与x 之间的函数关系式,并利用函数的性质说明那种方案获利最大?最大利润是多少?略
解:(1)设生产A 种产品x 件,那么B 种产品(50)x -件,则: 解得30≤x ≤32
∴x =30、31、32,依x 的值分类,可设计三种方案;
94(50)360310(50)290
x x x x +-≤⎧⎨+-≤⎩
(2)设安排生产A 种产品x 件,那么:7001200(50)y x x =+-
整理得:50060000y x =-+(x =30、31、32)
根据一次函数的性质,当x =30时,对应方案的利润最大,最大利润为45 000元。
三:【课后训练】
1.如图⑴所示,天平右盘中的每个破码的质量
都是1g ,则物体 A 的质量m(g)的取值范围.
在数轴上:可表示为图⑵中的( )
2.使不等式x -5>4x —l 成立的值中的最大的整数是( )
A .2
B .-1
C .-2
D .0
3.不等式2(x -2)≤x —2的非负整数解的个数为( )
A .1
B .2
C .3
D .4
4.使1x +、1x
、(x -3)0三个式子都有意义,x 的取值范围是( ) A .x >0 B .x ≥0且x ≠3 C .x >0且x ≠3 D .一l ≤x ≤0
5.不等式组2x+4>0x-1<0
⎧⎨⎩的解集为( ) A .x >l 或x <-2 B .x >l C 、-2 <x <1 D 、x <2 6.不等式组2x-3<03x+2>0⎧⎨
⎩的整数解是______________. 7.解不等式并把解集在数轴上表示出来;
(1)2(1)12x x ---<;(2)x-73x-2+1<22;(3)111326
y y y +---≥ 8.解不等式组
34(2)32x+4<03x+2>2(x-1)2x-1<x+1(1);(2);(3);(4)2114x-33x-2x+8>4x-11(x+8)-2>02
32x x x x --≥⎧⎧⎧⎧⎪⎪-⎨⎨⎨⎨≤-<⎩⎩⎪⎪⎩⎩ 9.已知33a a -=-,当a 为何整数时,方程组361511x y x y a -=⎧⎨-=⎩
的解都是负数? 10.将若干只鸟放入若干个笼子,若每个笼子里只放4只,则有一只鸟无笼可放;若每个笼子放5只,则有一个笼子无鸟可放。
问至少有几只鸟?几个鸟笼?。