正弦定理和余弦定理的应用2

合集下载

正玄定理余弦定理及应用

正玄定理余弦定理及应用

正玄定理余弦定理及应用正玄定理和余弦定理是三角学中的重要定理,它们可以通过使用三角函数关系来描述和求解三角形中的各边和角度。

下面将详细介绍正玄定理和余弦定理的定义、推导过程以及应用。

一、正玄定理:正玄定理也称为正弦定理,它描述了三角形中边和其对应角的关系。

设一个三角形的三个边长分别为a、b、c,对应的角度为A、B、C,则正弦定理的表达式为:sin A / a = sin B / b = sin C / c正弦定理的推导如下:对于任意一个三角形ABC,假设BC边上的高为h,且h与AB的延长线交于点D,如下图所示:A/ \b/ \c/ \/______\B a Cd在ABC中,根据三角形面积公式,有:S = 1/2 * AB * h = 1/2 * AC * d其中S为ABC的面积。

进一步化简可得:AB * h = AC * d由图可知,sin A = h / b,sin C = d / a将上面的等式代入,可以得到:a * sin A =b * sin C即正弦定理的表达式。

正弦定理的应用:正弦定理可以应用于解决以下问题:1. 已知三角形的一个角和与之对应的两边,求解其它两个角和未知的边;2. 已知三角形的一个角和与之对应的一边,以及三角形的另一个角,求解其它两边和未知的角;3. 已知三角形的三个边,求解三个内角的大小;4. 已知三角形的三个内角,求解三个边的大小。

二、余弦定理:余弦定理描述了三角形中边和夹角的关系。

设一个三角形的三个边长分别为a、b、c,夹角为C,则余弦定理的表达式为:c^2 = a^2 + b^2 - 2ab * cos C余弦定理的推导如下:设ABC的三个边长为a、b、c,角A对应的高为h,如下图所示:A/ \c/ \b/ \/______\B a Ch在ABC中,根据三角形的余弦关系,有:cos A = h / ch = c * cos A同时,由ABC的直角边关系可知,h = b * sin C将上面两个等式联立,可以得到:b * sin C =c * cos Asin C / a = cos A / b由三角形的正弦定理可知:sin C / a = sin A / c通过比较可以得到:sin A / c = cos A / b化简可得:b * sin A =c * cos A对等式两边平方,可以得到:b^2 * sin^2 A = c^2 * cos^2 A由于sin^2 A = 1 - cos^2 A,将其代入,可以得到:b^2 - b^2 * cos^2 A = c^2 * cos^2 A化简可得:b^2 = c^2 * cos^2 A + c^2 * sin^2 A即余弦定理的表达式。

余弦定理和正弦定理的应用

余弦定理和正弦定理的应用

余弦定理和正弦定理的应用余弦定理和正弦定理是初中数学中非常重要的定理,它们在解决三角形相关问题时起到了至关重要的作用。

在本文中,我将为大家详细介绍余弦定理和正弦定理的应用,并通过实例来说明它们的实用性和重要性。

一、余弦定理的应用余弦定理是用来求解三角形的边长或角度的定理。

它的数学表达式为:c² = a²+ b² - 2abcosC,其中a、b、c为三角形的边长,C为夹角。

1. 求解三角形的边长假设我们已知一个三角形的两边和它们之间的夹角,想要求解第三边的长度。

这时,我们可以利用余弦定理来解决这个问题。

例如,已知一个三角形的两边长分别为5cm和8cm,夹角为60°,我们可以利用余弦定理来计算第三边的长度。

根据余弦定理,我们可以得到c² = 5² + 8² - 2×5×8×cos60°,即c² = 25 + 64 -80cos60°。

进一步计算可得c² = 89 - 80cos60°,再开方可得c ≈ 2.92cm。

因此,这个三角形的第三边长约为2.92cm。

2. 求解三角形的角度除了求解边长外,余弦定理还可以用来求解三角形的角度。

例如,已知一个三角形的三边长分别为3cm、4cm和5cm,我们可以利用余弦定理来计算它的夹角。

根据余弦定理,我们可以得到cosC = (3² + 4² - 5²) / (2×3×4),即cosC = (9 + 16 - 25) / 24。

计算可得cosC = 0,因此C的值为90°。

通过以上两个例子,我们可以看到余弦定理在求解三角形边长和角度时的实用性和重要性。

它为我们解决各种三角形相关问题提供了有力的工具。

二、正弦定理的应用正弦定理是用来求解三角形的边长或角度的定理。

高中数学-正弦定理与余弦定理综合应用二

高中数学-正弦定理与余弦定理综合应用二
能熟练利用正弦定理、余弦 定理将三角形的边角转化;掌握 三角形形状的判断,有关解三角 形中高、中线、角平分线的解法 与结论。
1.判断三角形的形状特征
三角形形状的判断依据:
(1)等腰三角形:a=b 或 A=B; (2)直角三角形:b2+c2=a2 或 A= 90°; (3)钝角三角形:a2>b2+c2,A>90°; (4)锐角三角形:若 a 为最大边,且 满足 a2<b2+c2 或 A 为最大角,且 A<90°.
6+ 2
2. (2)由余弦定理得
a2=b2+c2-2bccosA,
所以 49=25+c2-2×5×c×cos60°,
即 c2-5c-24=0,解得 c=8(c=-3 舍
去).
素材2
在△ABC 中,内角 A,B,C 对边的边长分 别是 a,b,c,已知 c=2,C=π3.
(1)若△ABC 的面积等于 3,求 a,b; (2)若 sinC+sin(B-A)=2sin2A,求△ ABC 的面积.
⇔a2+b2=c2 或 a=b.
故△ABC 的形状为直角三角形或等腰
三角形.
素材1
在△ABC 中,已知 a,b,c 分别是角 A, B,C 的对边,若ab=ccoossAB,试确定△ABC 的 形状.





a b

cosB cosA


acosA =
bcosB,
所以 a·b2+2cb2c-a2=b·a2+2ca2c-b2,
【解析】(1)由余弦定理及已知条件,得 a2 +b2-ab=4.
又因为△ABC 的面积等于 3,
所以12absinC= 3,得 ab=4.

余弦定理与正弦定理的应用

余弦定理与正弦定理的应用

余弦定理与正弦定理的应用余弦定理和正弦定理是数学中的两个重要的三角函数定理,它们在解决各种几何和数学问题时具有广泛的应用。

本文将介绍余弦定理和正弦定理的公式及其应用,帮助读者更好地理解和运用这两个定理。

一、余弦定理的应用余弦定理是解决三角形中边和角之间关系的重要定理。

设三角形的三边分别为a、b、c,对应的角分别为A、B、C,那么根据余弦定理可以得出以下公式:a² = b² + c² - 2bc·cosAb² = a² + c² - 2ac·cosBc² = a² + b² - 2ab·cosC余弦定理可以用来求解未知边长或角度的问题。

下面通过几个实际问题来展示余弦定理的应用。

【例1】已知一个三角形的两边长度分别为5cm和6cm,夹角为60°,求第三边的长度。

解:根据余弦定理,可得c² = 5² + 6² - 2×5×6·cos60°c² = 25 + 36 - 60c² = 61c = √61因此,第三边的长度约为7.81cm。

【例2】已知一个三角形的两边长度分别为7cm和9cm,夹角为30°,求夹角的余弦值。

解:根据余弦定理,可得cosA = (7² + 9² - 2×7×9·cos30°) / (2×7×9)cosA = (49 + 81 - 63) / 126cosA = 67 / 126所以,夹角A的余弦值约为0.532。

二、正弦定理的应用正弦定理是另一个求解三角形边与角关系的重要定理。

与余弦定理类似,设三角形的三边分别为a、b、c,对应的角分别为A、B、C,那么根据正弦定理可以得出以下公式:a / sinA =b / sinB =c / sinC通过正弦定理可以求解未知边长或角度的问题。

余弦定理和正弦定理的应用

余弦定理和正弦定理的应用

余弦定理和正弦定理的应用余弦定理和正弦定理是解决三角形问题中常用的数学定理。

它们可以帮助我们求解三角形的边长、角度和面积等。

本文将分别介绍余弦定理和正弦定理的应用,并通过实例来说明它们的具体使用方法。

一、余弦定理的应用余弦定理是一个用来描述三角形边长和夹角之间关系的定理。

在任意三角形ABC中,假设边长分别为a、b、c,而对应的夹角为A、B、C,则余弦定理可以表示为:c² = a² + b² - 2ab·cosC1. 求解三角形边长假设我们已知一个三角形的两个边长a和b,以及它们夹角C的大小。

我们可以通过余弦定理来求解第三个边长c。

例如,已知三角形ABC中,边AB的长度为5,边AC的长度为8,而夹角B的大小为60度。

按照余弦定理,我们可以用下式来计算边BC的长度:BC² = AB² + AC² - 2·AB·AC·cosB代入具体数值,即可求得:BC² = 5² + 8² - 2·5·8·cos60°BC² = 25 + 64 - 80·0.5BC² = 89 - 40BC² = 49BC = √49 = 7因此,边BC的长度为7。

2. 求解三角形夹角在某些情况下,我们已知三角形的三个边长,但需要求解其中一个夹角的大小。

余弦定理同样可以解决这个问题。

例如,已知三角形ABC的边长分别为a=4、b=7、c=9。

我们想要求解夹角C的大小。

根据余弦定理,我们可以得到:c² = a² + b² - 2ab·cosC代入具体数值,我们可以得到:9² = 4² + 7² - 2·4·7·cosC81 = 16 + 49 - 56·cosC16 + 49 - 81 = 56·cosC-16 = 56·cosCcosC = -16 / 56 = -0.2857由于余弦函数的定义域为[-1, 1],该结果无解,即无法构成三角形。

余弦定理及正弦定理的应用

余弦定理及正弦定理的应用

余弦定理及正弦定理的应用余弦定理和正弦定理是解决三角形相关问题的重要工具。

它们被广泛应用于测量、导航、工程等领域。

下面将分别介绍余弦定理和正弦定理,并说明它们在实际应用中的具体运用。

一、余弦定理余弦定理描述了一个三角形的边与夹角之间的关系。

对于任意一个三角形 ABC,其边长分别为 a、b、c,对应的夹角分别为 A、B、C。

根据余弦定理,可以得到以下等式:a² = b² + c² - 2bc * cosAb² = a² + c² - 2ac * cosBc² = a² + b² - 2ab * cosC余弦定理可以用于解决以下问题:1. 测量三角形边长:如果已知三角形的两个边长和它们之间的夹角,可以利用余弦定理计算出第三条边的长度。

2. 计算三角形的夹角:如果已知三角形的三条边长,可以利用余弦定理的逆运算求解三个夹角的大小。

3. 解决航海导航问题:根据已知的方位角和航程,可以利用余弦定理计算船只的坐标位置。

二、正弦定理正弦定理描述了三角形边与其对应角的正弦值之间的关系。

对于任意一个三角形 ABC,其边长分别为 a、b、c,对应的夹角分别为 A、B、C。

根据正弦定理,可以得到以下等式:a/sinA = b/sinB = c/sinC正弦定理可以用于解决以下问题:1. 求解三角形的面积:如果已知三角形的两边和它们之间的夹角,可以利用正弦定理求解三角形的面积。

2. 判定三角形类型:根据三边的长度和正弦定理,可以判断三角形是锐角三角形、直角三角形还是钝角三角形。

3. 解决建筑工程问题:在建筑测量中,需利用正弦定理计算高度、距离等未知量。

综上所述,余弦定理和正弦定理是解决三角形相关问题的重要工具。

通过运用这些定理,我们可以计算三角形的边长、夹角,求解三角形的面积,判断三角形的类型等。

在测量、导航、工程等领域,都离不开这两个定理的应用。

正弦定理与余弦定理的应用

正弦定理与余弦定理的应用

正弦定理与余弦定理的应用正弦定理和余弦定理是中学数学中重要的几何定理,它们在解决三角形相关问题时起着关键作用。

本文将以实际例子为基础,详细介绍正弦定理和余弦定理的应用。

一、正弦定理的应用正弦定理是解决三角形边长和角度之间关系的重要工具。

它的表达式为:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$,其中$a$、$b$、$c$分别为三角形的边长,$A$、$B$、$C$为对应的角度。

例子一:已知三角形$ABC$中,$AB=5$,$BC=8$,$\angle B=45^\circ$,求$\angle A$和$\angle C$的大小。

解析:根据正弦定理可得:$\frac{5}{\sin A}=\frac{8}{\sin 45^\circ}$。

通过求解可得$\sin A=\frac{5\sin 45^\circ}{8}$,进而得到$\angle A=\sin^{-1}\left(\frac{5\sin 45^\circ}{8}\right)$。

同理,可以求得$\angle C=180^\circ-\angle A-\angle B$。

通过计算可得$\angle A\approx 28.07^\circ$,$\angle C\approx106.93^\circ$。

例子二:已知三角形$ABC$中,$AB=6$,$BC=9$,$\angle A=30^\circ$,求$AC$的长度。

解析:根据正弦定理可得:$\frac{6}{\sin 30^\circ}=\frac{AC}{\sin C}$。

通过求解可得$\sin C=\frac{AC\sin 30^\circ}{6}$,进而得到$AC=\frac{6\sin C}{\sin30^\circ}$。

由于$\sin C=\sin (180^\circ-\angle A-\angle B)$,可以通过计算得到$AC\approx 10.39$。

余弦定理与正弦定理的应用

余弦定理与正弦定理的应用

余弦定理与正弦定理的应用在数学中,余弦定理和正弦定理是解决三角形的边长和角度关系的重要工具。

它们的应用范围广泛,不仅限于几何学,还可以在物理学、工程学以及实际生活中的各种测量和计算问题中使用。

本文将介绍余弦定理和正弦定理的基本原理,并通过一些实际应用例子来展示它们的实用性。

一、余弦定理余弦定理是指在任意三角形中,三条边和它们所对的角之间存在着一个关系,即:c^2 = a^2 + b^2 - 2abcosC其中,a、b、c为三角形的三条边,C为夹角。

该定理可以用于计算三角形的边长或夹角大小,特别适用于已知两边和夹角,求解第三边或第三个角的情况。

例如,我们有一个三角形,已知两条边分别为a=5cm,b=7cm,夹角C为60度。

我们可以利用余弦定理来计算第三条边c的长度:c^2 = 5^2 + 7^2 - 2×5×7×cos60°c^2 = 25 + 49 - 70×0.5c^2 = 24c = √24c ≈ 4.9cm通过余弦定理,我们可以得到这个三角形的第三边c约为4.9cm。

除了计算边长,余弦定理还可以用于计算三角形的角度。

例如,我们有一个三角形,已知三边分别为a=6cm,b=8cm,c=10cm。

我们可以利用余弦定理来计算各个角的大小:cosA = (b^2 + c^2 - a^2) / (2bc)cosB = (a^2 + c^2 - b^2) / (2ac)cosC = (a^2 + b^2 - c^2) / (2ab)通过上述公式,我们可以求得角A,角B和角C的余弦值,再利用反余弦函数求得它们的度数。

二、正弦定理正弦定理是指在任意三角形中,三条边和对应的角的正弦之间存在着一个关系,即:a / sinA =b / sinB =c / sinC正弦定理可以用于解决已知一个角和与之对应的两个边,求解其他角和边长的问题。

例如,我们有一个三角形,已知角A为30度,边a为5cm,边b 为7cm。

正弦定理余弦定理二级结论

正弦定理余弦定理二级结论

正弦定理、余弦定理及其二级结论一、正弦定理概念和适用情况1、正弦定理(law of sines )概念在任何一个三角形ABC ∆中,各边和它所对角的正弦的比相等,即sin sin sin a b c A B C==。

【注】其中号a 、b 、c 分别为ABC ∆中角A 、B 、C 的对边。

2、正弦定理适用情况(1)已知两角和一边,解三角形。

(2)已知两边和其中一边的对角,解三角形。

【注】ABC ∆的三个角和三个边叫做ABC ∆的元素,已知ABC ∆的几个元素,求其他元素的过程叫做解三角形(solving triangles )。

二、正弦定理的相关推论和二级结论1、(1)2sin sin sin a b c R A B C===。

(2)sin sin a A b B =,sin sin a A c C =,sin sin b B c C=。

(3)2sin sin sin sin sin sin sin a b a c b c a R A B A C B C A+++====+++。

(4)2sin sin sin a b c R A B C ++=++。

(5)“边化角”公式:2sin a R A =,2sin b R B =,2sin c R C =。

(6)“角化边”公式:sin 2a A R =,sin 2b B R =,sin 2c C R=。

(7)“边角互化”公式:::sin :sin :sin a b c A B C=【注】其中R 为ABC ∆的外接圆半径。

2、(1)sin sin a B b A =,sin sin a C c A =,sin sin b C c B =。

(2)sin sin b A a B =,sin sin a B b A =,sin sin a C c A=,sin sin c A a C =,sin sin c B b C =,sin sin b C c B=。

(3)sin sin a B A b =,sin sin b C B c =等。

正弦定理与余弦定理的应用

 正弦定理与余弦定理的应用

正弦定理和余弦定理在三角学及相关领域中具有广泛的应用,通过这两个定理,我们可以解决许多与三角形相关的问题。

以下是关于正弦定理和余弦定理的应用的详细探讨。

一、正弦定理的应用正弦定理是三角学中的一个基本定理,它表达了三角形中任意一边与其对应的角的正弦值之间的关系。

正弦定理在实际应用中具有广泛的用途,以下是几个具体的应用示例:1. 航海与测量:在航海和大地测量中,正弦定理被用来计算地球上两点之间的距离。

由于地球表面可以近似为一个球体,因此可以通过测量两点的纬度和经度,利用正弦定理计算出两点之间的实际距离。

2. 电气工程:在电气工程中,正弦定理被用来分析交流电路中的电压、电流和电阻之间的关系。

通过正弦定理,我们可以推导出各种电气元件(如电阻、电容和电感)的等效电路模型,从而简化电路分析。

3. 通信与信号处理:在通信和信号处理领域,正弦定理被用来分析信号的频谱特性和传输特性。

通过正弦定理,我们可以将复杂的信号分解为一系列正弦波的组合,从而更容易地理解和处理信号。

二、余弦定理的应用余弦定理是另一个重要的三角定理,它表达了三角形中任意一边的平方等于其他两边平方之和减去这两边夹角的余弦值乘以这两边乘积的2倍。

余弦定理同样具有广泛的应用,以下是几个具体的应用示例:1. 几何学:在几何学中,余弦定理被用来解决与三角形边长和角度相关的问题。

例如,在已知三角形的两边及其夹角时,我们可以利用余弦定理求出第三边的长度。

此外,余弦定理还可以用于判断三角形的形状(如锐角三角形、直角三角形或钝角三角形)以及求解三角形的内角。

2. 物理学:在力学中,余弦定理被用来求解连接杆件的长度和角度问题。

例如,在机器人学和机械设计中,我们需要确定各个杆件之间的相对位置和角度,以便实现预期的运动轨迹。

余弦定理可以帮助我们解决这个问题。

此外,余弦定理还在许多其他领域中得到应用,如航空航天、土木工程、计算机图形学等。

在这些领域中,余弦定理通常被用来求解与空间几何和三维变换相关的问题。

新教材苏教版必修第二册113余弦定理正弦定理的应用课件2

新教材苏教版必修第二册113余弦定理正弦定理的应用课件2

南偏东 60°,则 A,B 之间距离为
()
A. 2a km C.a km
B. 3a km D.2a km
解析:△ABC 中,AC=BC=a,∠ACB=90°,所以 AB= 2a.故选 A.
答案:A
4.一船以每小时 15 km 的速度向东行驶,船在 A 处看到一灯塔 B 在北偏东 60°,行驶 4 h 后,船到达 C 处,看到这个灯塔在北偏东 15°,这时船与灯塔的距离为 ________km.
[跟踪训练] 某海上养殖基地 A 接到气象部门预报,位于基地南偏东 60°相距 20( 3+1)海里的海面 上有一台风中心,影响半径为 20 海里,正以每小时 10 2 海里的速度沿某一方向匀速 直线前进,预计台风中心将从基地东北方向刮过且 3+1 小时后开始持续影响基地 2 小时.求台风移动的方向. 解:如图所示,设预报时台风中心为 B,开始影响基地时台风中心为 C,基地刚好不受 影响时台风中心为 D,则 B,C,D 在一直线上,且 AD=20,AC=20. 由题意 AB=20( 3+1),DC=20 2, BC=( 3+1)×10 2.在△ADC 中, 因为 DC2=AD2+AC2, 所以∠DAC=90°,∠ADC=45°.
[解] 设所需时间为 t 小时,则 AB=10 3t,CB=10t, 在△ABC 中,根据余弦定理,得 AB2=AC2+BC2-2AC·BCcos 120°,
可得(10 3t)2=102+(10t)2-2×10×10tcos 120°,
整理得 2t2-t-1=0,解得 t=1 或 t=-12(舍去). 所以护航舰需要 1 小时靠近货船.
此时 AB=10 3,BC=10,
在△ABC 中,由正弦定理得sin∠BCCAB=sinA12B0°,

正弦定理与余弦定理的使用

正弦定理与余弦定理的使用

正弦定理与余弦定理的使用三角函数是数学中的重要概念,其中正弦定理与余弦定理是常用的三角函数定理。

本文将对正弦定理与余弦定理的使用进行探讨。

1. 正弦定理的使用正弦定理是指在任意三角形ABC中,三条边a、b、c与其对应的角A、B、C之间的关系。

其数学表达式为:a/sinA = b/sinB = c/sinC正弦定理可以用于求解三角形内部元素的相关问题。

例如,已知三角形两边长度和夹角时,可以利用正弦定理求解第三边的长度。

又或者已知两边长度和夹角时,可以通过正弦定理求解夹角的大小。

2. 余弦定理的使用余弦定理是指在任意三角形ABC中,三条边a、b、c与其对应的角A、B、C之间的关系。

其数学表达式为:c² = a² + b² - 2abcosC余弦定理也常用于求解三角形内部元素的相关问题。

例如,已知三边长度时,可以通过余弦定理求解夹角的大小。

又或者已知两边长度和夹角时,可以利用余弦定理求解第三边的长度。

3. 使用示例现假设有一个三角形ABC,已知边长a=5,边长b=7,夹角C=60度。

我们可以通过正弦定理和余弦定理来求解其他未知量。

首先应用正弦定理,根据a/sinA = b/sinB = c/sinC,我们可以得到c/sinC = a/sinA,带入已知条件可得:c/sin60 = 5/sinA进一步化简可得:c = 5*sin60 / sinA对于未知角A,我们可以通过求反正弦函数来得到其大小。

接下来,我们可以应用余弦定理来求解角C的大小。

根据c² = a² +b² - 2abcosC,带入已知条件可得:5² = 7² + c² - 2*7*c*cos60进一步化简可得:c² - 7c + 21 = 0通过解一元二次方程,我们可以求解得到c的值。

通过以上的例子,我们可以看到正弦定理与余弦定理在解决三角形相关问题时的重要性。

数学解题技巧之余弦定理与正弦定理的应用

数学解题技巧之余弦定理与正弦定理的应用

数学解题技巧之余弦定理与正弦定理的应用在数学解题中,余弦定理与正弦定理是两个非常重要且经常被使用的定理。

它们能够帮助我们求解各种三角形相关的问题。

本文将探讨余弦定理与正弦定理的定义、应用以及解题技巧。

一、余弦定理余弦定理是描述三角形边与角之间关系的定理。

它可以用来解决一些已知三边或两边一角的三角形问题。

假设有一个三角形ABC,边长分别为a、b、c,角A对应于边a,角B对应于边b,角C对应于边c。

则余弦定理可以表示为:c^2 = a^2 + b^2 - 2abcosC其中,^2表示乘方,cosC表示角C的余弦值。

余弦定理可以应用于以下几种情况:1. 已知三边求角度:如果已知三角形的三个边长a、b、c,我们可以利用余弦定理计算角A、角B、角C的大小。

2. 已知两边一角求边长:如果已知三角形的两个边长a、b和它们夹角C,我们可以利用余弦定理计算第三个边c的长度。

3. 已知两边和夹角求第三边:如果已知三角形的两个边长a、b和它们夹角C,我们可以利用余弦定理计算第三个边c的可能范围。

二、正弦定理正弦定理也是解决三角形相关问题的重要工具。

它可以描述三角形的边和角之间的关系。

对于一个三角形ABC,边长分别为a、b、c,角A对应于边a,角B对应于边b,角C对应于边c。

正弦定理可以表示为:a/sinA = b/sinB = c/sinC正弦定理的应用有以下几种情况:1. 已知两角一边求另外一边:如果已知三角形的两个角A、B和一边c的长度,我们可以利用正弦定理计算另外两个边a、b的长度。

2. 已知两边一角求角度:如果已知三角形的两个边长a、b和夹角C 的大小,我们可以利用正弦定理计算另外两个角A、B的大小。

3. 已知三边求角度:如果已知三角形的三个边长a、b、c,我们可以利用正弦定理计算三个角A、B、C的大小。

三、解题技巧1. 判断何时使用余弦定理或正弦定理:根据已知条件的不同,确定使用何种定理。

如果已知两边一角,则通常使用余弦定理;如果已知两角一边,则通常使用正弦定理。

高考数学一轮复习 正弦定理、余弦定理及其应用

高考数学一轮复习 正弦定理、余弦定理及其应用
=__________,cosA2=__________,tanA2=__________.tanA+tanB +tanC=____________.
(3)若三角形三边 a,b,c 成等差数列,则 2b=____________

2sinB

____________

2sin
B 2

cos
A-C 2
解:由正弦定理得ab=ssiinnAB,所以
sinB=
2× 7
sinπ3=
721,
由余弦定理得 a2=b2+c2-2bccosA,所以 7= 4+c2-2c,所
以 c=3(负值舍去).故填 721;3.
(2018·全国卷Ⅰ) △ABC 的内角 A,B,C 的对边 分别为 a,b,c,已知 bsinC+csinB=4asinBsinC,b2+c2
-a2=8,则△ABC 的面积为________.
解:根据题意,结合正弦定理
可得 sinBsinC+sinCsinB=4sinAsinBsinC,即 sinA=12, 结合余弦定理可得 b2+c2-a2=2bccosA=8,
所以 A 为锐角,且 cosA= 23,从而求得 bc=8 3 3,
所以△ABC 的面积为 S=12bcsinA=12×8 3 3×
所 以 AB2 = BC2 + AC2 - 2BC·AC·cosC = 1 + 25 -
2×1×5×-35=32,所以 AB=4 2.故选 A.
(2017·山东)在△ABC 中,角 A,B,C 的对边分
别为 a,b,c.若△ABC 为锐角三角形,且满足 sinB(1+2cosC)
=2sinAcosC+cosAsinC,则下列等式成立的是( )

正弦定理与余弦定理的使用

正弦定理与余弦定理的使用

正弦定理与余弦定理的使用数学是一门需要掌握基本概念和公式的学科,而在初中数学中,正弦定理和余弦定理是非常重要的两个定理。

它们可以帮助我们解决各种与三角形相关的问题,比如求边长、角度等。

在本文中,我将详细介绍正弦定理和余弦定理的使用方法,希望能够帮助中学生及其家长更好地理解和应用这两个定理。

一、正弦定理的使用正弦定理是指在任意三角形ABC中,边长a、b、c与其对应的角A、B、C之间的关系。

具体公式如下:\[\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\]利用正弦定理,我们可以解决以下几类问题:1. 已知两边和夹角,求第三边长度例如,已知三角形ABC中,边AB=5cm,边AC=7cm,夹角BAC为60度,求边BC的长度。

根据正弦定理,我们可以得到:\[\frac{BC}{\sin 60^\circ}=\frac{5}{\sin B}\]进一步化简,得到:\[BC=\frac{5\sin 60^\circ}{\sin B}\]由此,我们可以利用三角函数表或计算器求得角B的正弦值,然后代入上式计算得到BC的长度。

2. 已知两边长度和夹角,求第三边夹角例如,已知三角形ABC中,边AB=3cm,边BC=4cm,夹角ABC为45度,求角BAC的度数。

根据正弦定理,我们可以得到:\[\frac{3}{\sin B}=\frac{4}{\sin 45^\circ}\]进一步化简,得到:\[\sin B=\frac{3\sin 45^\circ}{4}\]通过求解这个方程,我们可以得到角B的正弦值,然后利用反正弦函数求得角B的度数。

二、余弦定理的使用余弦定理是指在任意三角形ABC中,边长a、b、c与其对应的角A、B、C之间的关系。

具体公式如下:\[c^2=a^2+b^2-2ab\cos C\]利用余弦定理,我们可以解决以下几类问题:1. 已知三边长度,求夹角的余弦值例如,已知三角形ABC中,边AB=5cm,边BC=7cm,边AC=9cm,求角B 的余弦值。

高中数学教案:余弦定理与正弦定理的应用

高中数学教案:余弦定理与正弦定理的应用

高中数学教案:余弦定理与正弦定理的应用一、引言数学是一门重要的科学学科,它在人们的日常生活中有着广泛的应用。

在高中数学教学中,余弦定理和正弦定理是数学的重要内容之一。

它们不仅是解决三角形相关问题的基础,还可以在实际生活中的测量和计算中发挥重要的作用。

本文将详细介绍余弦定理和正弦定理的定义、推导及其在实际应用中的具体运用。

二、余弦定理的应用1. 什么是余弦定理余弦定理是解决三角形的边和角问题的基本工具。

它描述了三角形的边和角之间的关系,可以用来求解未知边长或角度的值。

余弦定理的定义如下:在三角形ABC中,设a、b、c分别为三边的长度,∠A、∠B、∠C分别为三个对应的角度。

则有以下等式成立:c^2 = a^2 + b^2 - 2ab*cosC2. 余弦定理的推导为了更好地理解余弦定理的推导过程,我们来看一个具体的例子:已知三角形ABC,∠ABC为90°,∠CAB为30°,AB=5,BC=8。

我们需要求解边AC的长度。

根据余弦定理,我们可以得到以下等式:AC^2 = AB^2 + BC^2 - 2*AB*BC*cos∠ABC代入已知条件,可得:AC^2 = 5^2 + 8^2 - 2*5*8*cos90化简得到:AC^2 = 25 + 64 - 0AC^2 = 89因此,边AC的长度为√89。

3. 余弦定理的应用案例余弦定理在实际生活中有着广泛的应用。

例如,通过测量两个已知长度的边与它们之间的夹角,可以使用余弦定理来计算第三条边的长度。

此外,当我们需要确定两个物体之间的距离时,也可以使用余弦定理来进行计算。

三、正弦定理的应用1. 什么是正弦定理正弦定理也是解决三角形的边和角问题的重要工具。

它描述了三角形的边和角之间的关系,可以用来求解未知边长或角度的值。

正弦定理的定义如下:在三角形ABC中,设a、b、c分别为三边的长度,∠A、∠B、∠C分别为三个对应的角度。

则有以下等式成立:a/sinA = b/sinB = c/sinC2. 正弦定理的推导我们来展示正弦定理的推导过程,以便更好地理解它的应用。

余弦定理与正弦定理

余弦定理与正弦定理

余弦定理与正弦定理余弦定理和正弦定理是解决三角形中边长和角度之间关系的重要定理。

它们在三角学中有着广泛的应用,能够帮助我们计算未知边长或角度。

本文将介绍余弦定理和正弦定理的定义、公式以及应用,并探讨它们的区别和联系。

一、余弦定理的定义和公式余弦定理是在三角形中,通过已知边长和夹角计算其他边长的定理。

它的定义如下:在三角形ABC中,设三条边分别为a、b、c,对应的夹角分别为A、B、C,则余弦定理的公式为:c² = a² + b² - 2abcosC其中,c为三角形对应于角C的边长,a和b为与角C相邻的两条边长,cosC为角C的余弦值。

二、正弦定理的定义和公式正弦定理是在三角形中,通过已知两个角度和一个边长计算其他边长的定理。

它的定义如下:在三角形ABC中,设三条边分别为a、b、c,对应的夹角分别为A、B、C,则正弦定理的公式为:a/sinA = b/sinB = c/sinC其中,a、b、c为三角形的边长,A、B、C为对应的角度。

三、余弦定理和正弦定理的应用1. 通过余弦定理计算未知边长或角度:- 已知两边长和夹角:可以使用余弦定理计算第三条边长,或者计算其他两个角度。

- 已知三边长:可以使用余弦定理计算其中一个角度。

2. 通过正弦定理计算未知边长或角度:- 已知两角度和一个边长:可以使用正弦定理计算其他两条边长。

- 已知一个角度和两边长:可以使用正弦定理计算另外两个角度。

四、余弦定理与正弦定理的区别和联系余弦定理和正弦定理在解决三角形问题时具有不同的应用场景。

余弦定理适用于已知边长和夹角的情况,可以求解缺失的边长或角度。

而正弦定理适用于已知两个角度和一个边长的情况,同样可以求解其他边长或角度。

此外,两个定理之间也存在一定的联系。

通过余弦定理可以推导出正弦定理,而正弦定理也可以推导出余弦定理。

在解决问题时,可以根据具体情况选择使用其中一个定理进行计算。

总结:余弦定理和正弦定理是解决三角形中边长和角度之间关系的重要定理。

正弦定理与余弦定理的应用

正弦定理与余弦定理的应用

正弦定理与余弦定理的应用正弦定理与余弦定理是中学数学中常见且常用的公式之一。

这两个公式的应用非常广泛,从三角形的测量和构建到机械工程和电子学都可以看到它们的身影。

本文将介绍正弦定理和余弦定理的概念及其应用。

一、正弦定理正弦定理用于求三角形中的一个角的正弦值,通常用于确定三角形的大小和形状。

正弦定理说:一个三角形的任何一条边与该边所对面的角的正弦成比例。

也就是说,如果一个三角形有三个边a、b和c,分别对应的角为A、B和C,则有:sin A / a = sin B / b = sin C / c现在我们考虑一个具体的示例。

假设我们想找到一个三角形中的一个角,已知它所对面的边为10,另外两条边分别为8和6。

我们可以通过正弦定理来解决这个问题:sin A / 10 = sin B / 8 = sin C / 6我们知道,正弦函数的值是相对边与斜边的比值。

因此,我们可以用三角形的边长长度和正弦函数的值来解出角A、B和C的值。

具体操作方法可以参考三角函数表。

正弦定理的应用不仅仅限于求解角的大小,还可以用于确定三角形的面积。

面积等于1/2ab sin C。

因此,如果我们知道三角形的三个边长,则可以通过正弦定理来计算它的面积。

二、余弦定理该定理源于海伦定理(三角形面积公式),后被欧拉称之为余弦定理。

它通常用于确定三角形中的一个角的余弦值。

与正弦定理不同的是,余弦定理提供了一种更加通用的方法来计算三角形中的一个角的大小。

余弦定理说:一个三角形的每个角的余弦都等于在该角的两条边的平方和与这两条边所对的夹角的余弦乘积,再用它们的和减去这个余弦乘积。

即:cos A = (b² + c² - a²) / 2bc 或者 a² = b² + c² - 2bc cos A。

如果我们知道三角形的三个边长,则可以使用余弦定理来计算其各角的大小。

与正弦定理一样,余弦定理同样可用于计算面积。

正弦定理和余弦定理的应用

正弦定理和余弦定理的应用

精心整理第二节应用举例题型一测量距离问题A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是衍生1★★如图所示,客轮以速度v 2由A 至B 再到C 匀速航行,货轮从AC 的中点D 出发,以速度V 沿直线匀速航行,将货物送达客轮,已知BC AB ⊥,且50=-BC AB 海里。

若两船同时启航出发,则两船相遇之处距C 点海里。

(结果精确到小数点后1位)解析 AB DB 2<∴两船相遇点在BC 上,可设为E ,设x CE =,则VBEAB DE 22+=故Vx x 45cos 2252)225(22⨯⨯-+V x 2)50(50-+=得350002=x ,∴8.40≈x 答案8.40衍生B 两点在∆因测出,,,,γθβα=∠=∠=∠=∠AED BCE ADE BCE再分别在BCE ∆、AED ∆中用余弦定理就可求出BE 、AE 求解过程如下:在BCE ∆中, 在AED ∆中, 在AEB ∆中,点拨求解三角形中的基本元素,应由确定三角形的条件个数,选择合适的三角形求解,如本题法一选择的是ADC ∆和BDC ∆.衍生3★★★如图,隔河看两目标A 、B ,但不能到达,在岸边选取相距3千米的两点,并测得,45,75 =∠=∠BCD ACB ,30 =∠ADC45=∠ADB (A 、B 、C 、D 在同一平面内)求两目标A 、B 之间的距离。

中,AC ,在∆∴AB 在为一些特殊三角形,如正三角形、直角三角形、等腰三角形等. 题型二测量高度问题PO 的高度,但不能到达铁塔的底部,在只能使用简单的测量工具的前提下,你能设计出哪些测量方法?并提供每种方法的计算公式。

分析要测量铁塔的高度,只能在铁塔底部所在的平面上选取两点,量出两点间的距离,再测量有关角,从而构造三角形求解。

解答测量方法1、如右图所示,在地面上引一条基线AB,这条基线和塔底在同一水平面上,且AB不过点O,测出AB的长,)(θAOB∠及BA,对塔顶P的仰角βα,,则可求出铁塔PO的高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
科目
课题
正弦定理和余弦定理的应用
课型
班级
课时
第二节
时间
三维目标
1、知识目标:了解并掌握仰角和俯角及方位角和方向角的定义
2、能力目标:A培养学生解题思路及易错点的掌握
B提高学生的解题速度
3、情感目标:培养高考意、重点:了解并掌握仰角和俯角
2、难点:方位角和方向角的定义
解析:∠ABC=180°-75°-45°=60°,
所以由正弦定理得,=,
∴AB===20(m).
即A,B两点间的距离为20m.
答案:20
[典例引领]
在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12 n mile的水面上,有蓝方一艘小艇正以每小时10 n mile的速度沿南偏东75°方向前进,若红方侦察艇以每小时14 n mile的速度,沿北偏东45°+α方向拦截蓝方的小艇.若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.
由正弦定理,得=⇒sin∠ACB=·sin∠BAC=.
由∠BAC=120°,知∠ACB为锐角,则cos∠ACB=.
由θ=∠ACB+30°,得cosθ=cos(∠ACB+30°)=cos∠ACBcos 30°-sin∠ACBsin 30°=.
答题技巧归类
求距离问题的2个注意事项
选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求
本课时知识体系构建
1.了解并掌握仰角和俯角
2.方位角和方向角的定义
教师授课及学生学习过程
教师
授课
及学
生学
习过

教学过程
课堂活
动、反思、评价
角度二:两点不相通的距离
2.如图所示,要测量一水塘两侧A,B两点间的距离,其方法先选定适当的位置C,用经纬仪测出角α,再分别测出AC,BC的长b,a,则可求出A,B两点间的距离.即AB=.
答案:200
角度三:两点间可视但有一点不可到达
3. 如图所示,A,B两点在一条河的两岸,测量者在A的同侧,且B点不可到达,要测出A,B的距离,其方法在A所在的岸边选定一点C,可以测出A,C的距离m,再借助仪器,测出∠ACB=α,∠CAB=β,在△ABC中,运用正弦定理就可以求出AB.
若测出AC=60 m,∠BAC=75°,∠BCA=45°,则A,B两点间的距离为________m.
若测得CA=400 m,CB=600 m,∠ACB=60°,则A,B两点的距离为________m.
解析:在△ABC中,由余弦定理得
AB2=AC2+BC2-2AC·BCcos∠ACB,
∴AB2=4002+6002-2×400×600cos 60°=280 000.
∴AB=200(m).
即A,B两点间的距离为200m.
A.10 kmB.10km
C.10kmD.10km
2.一艘船以每小时15 km的速度向东航行,船在A处看到一个灯塔M在北偏东60°方向,行驶4 h后,船到达B处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为()
A.15kmB.30km
C.45kmD.60km
重点知识预习设计
(一)了解并掌握仰角和俯角
(二)方位角和方向角的定义
考纲研究(课标研究)
以选择和填空形式出现
考情分析
近5年中高考试题
5.(2014·全国卷Ⅰ)如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100 m,则山高MN=________m.
解:如图,设红方侦察艇经过x小时后在C处追上蓝方的小艇,
则AC=14x,BC=10x,∠ABC=120°.
根据余弦定理得(14x)2=122+(10x)2-240xcos 120°,
解得x=2.
故AC=28,BC=20.
根据正弦定理得=,
解得sinα==.
所以红方侦察艇所需要的时间为2小时,角α的正弦值为
解决测量角度问题的3个注意事项
(1)测量角度时,首先应明确方位角及方向角的含义.
(2)求角的大小时,先在三角形中求出其正弦或余弦值.
(3)在解应用题时,要根据题意正确画出示意图,通过这一步可将实际问题转化为可用数学方法解决的问题,解题中也要注意体会正、余弦定理“联袂”使用的优点.
拓展模拟、课后练习
1.已知A,B两地间的距离为10 km,B,C两地间的距离为20 km,现测得∠ABC=120°,则A,C两地间的距离为()

重点知识考查、题型研究与归类
如图,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向沿直线CB前往B处救援,求cosθ的值.
解:在△ABC中,AB=40,AC=20,∠BAC=120°,由余弦定理得,BC2=AB2+AC2-2AB·AC·cos 120°=2 800,解得BC=20.
相关文档
最新文档