数列练习题

合集下载

数列专题练习

数列专题练习

数列(专题练习)(一)等差数列1.设等差数列{a n }的前n 项和是S n ,公差d 不等于零.若a 1,a 2,a 5成等比数列,则( )A .a 1d >0,dS 3>0B .a 1d >0,dS 3<0C .a 1d <0,dS 3>0D .a 1d <0,dS 3<0 2.记等差数列{a n }的前n 项和为S n ,若a 6=16,S 5=35,则{a n }的公差为( )A .-3B .-2C .3D .2 3.已知数列{a n }满足2a n+1=a n +a n+2.若a 7+a 5=12,且a 7=7,则a 8=( )A .6B .12C .10D .84.我国明代珠算家程大位的名著《直指算法统宗》中有如下问题今有白米一百八十石,令三人从上及和减率分之,只云甲多丙米三十六石,问:各该若干?”其意思为:“今有白米一百八十石,甲、乙、丙三人来分,他们分得的白米数构成等差数列,只知道甲比丙多分三十六石,那么三人各分得多少白米?”请问甲应该分得白米为( )A .96石B .78石C .60石D .42石 5.在a ,b 中插入n 个数,使它们和a 、b 组成等差数列a ,a 1,a 2,…a n ,b ,则a 1+a 2+…+a n =( ) A .n (a+b ) B .2b a n )(+ C .2b a 1n ))((++ D .2b a 2n ))((++ 6.在等差数列{a n }中,a 1011=5,a 1+2a 4=9则a 2019=( )A .9B .8C .7D .6 7.数列{a n }满足a n +a n+2=2a n+1(n∈N*),且a 1+a 2+a 3=9,a 4=8,则a 5=( ) A .221 B .9 C .217D .7 8.已知等差数列{a n }的公差为d ,若b n =2an ,且b 1+b 3=17,b 2+b 4=68,则d=( )A .1B .2C .3D .49.设等差数列{a n }的前n 项和为S n ,首项a 1>0,公差d <0,a 10•S 21<0,则S n 最大时,n 的值为( ) A .11 B .10 C .9 D .810.已知数列{a n }、{b m }的通项公式分别为a n =4n -2(1≤n≤100,n∈N *),b m =6m -4(m∈N*),由这两个数列的公共项按从小到大的顺序组成一个新的数列,求新数列的各项和( )A .6788B .6800C .6812D .6824 11.已知函数f (x )(x∈R )满足f (2-x )=2-f (x ),若函数y=1-x 1x +与y=f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑=+m1i i i y x )(=( )A .0B .mC .2mD .4m 12.等差数列a 1,a 2…,a n (n∈N *),满足|a 1|+|a 2|+…+|a n |=|a 1+1|+|a 2+1|+…+|a n +1|=|a 1+2|+|a 2+2|+…+|a n +2|=|a 1+3|+|a 2+3|+…+|a n +3|=2010,则( ) A .n 的最大值是50 B .n 的最小值是50 C .n 的最大值是51 D .n 的最小值是5113.设等差数列{a n }的前n 项和为S n ,若a 2=-3,S 5=-10,则a 5=__________,S n 的最小值为__________. 14.已知数列{a n }与{na 2n }均为等差数列(n∈N*),且a 1=1,则a 10=__________.15.若数列{a n }满足a 1=2,a n+1=a n -2,则a 2019=__________.16.等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若1n 22-n 3n n +=T S ,则99b a=__________.17.设{a n }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列. (1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,求S n 的最小值.18.在等差数列{a n }中,已知a 1+a 3=12,a 2+a 4=18,n∈N *. (1)求数列{a n }的通项公式; (2)求a 3+a 6+a 9+…+a 3n .19.等差数列{a n }中,公差d <0,a 2+a 6=-8,a 3a 5=7. (1)求{a n }的通项公式;(2)记T n 为数列{b n }前n 项的和,其中b n =|a n |,n∈N *,若T n ≥1464,求n 的最小值.20.在等差数列{a n }中,a 15+a 16+a 17=-45,a 9=-36,S n 为其前n 项和. (1)求S n 的最小值,并求出相应的n 值;(2)求T n =|a 1|+|a 2|+…+|a n |.21.设{a n }为递增等差数列,S n 为其前n 项和,满足a 1a 3-a 5=S 10,S 11=33. (1)求数列{a n }的通项公式a n 及前n 项和S n ;(2)试求所有的正整数m ,使2m 3m 1m a aa +++为正整数.22.数列{a n }的前n 项和记为S n ,a 1=1,a n+1=2S n +1(n≥1). (1)求a 2,a 3;(2)求数列{a n }的通项公式;(3)等差数列{b n }的前n 项和T n 有最大值,且T 3=15,又a 1+b 1,a 2+b 2,a 3+b 3成等比数列,求T n .(二)等比数列1.在等比数列{a n }中,a 4、a 12是方程x 2+3x+1=0的两根,则a 8=( )A .1B .-1C .±1D .±32.已知等比数列{a n }的各项均为正数,且a 1008a 1011+a 1009a 1010=8,则log 2a 1+log 2a 2+…+log 2a 2018等于( ) A .2016 B .2017 C .2018 D .20193.正项等比数列{a n }中,存在两项a m ,a n ,使得n m a a =1a 3,且a 7=a 6+6a 5,则n4m 1+的最小值是( ) A .3 B .23 C .625 D .37 4.若a ,b 是方程x 2-px+q=0(p <0,q >0)的两个根,且a ,b ,2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值为( )A .-4B .-3C .-2D .-1 5.已知数列{a n }是公比为2的正项等比数列,若a m ,a n 满足2a n <a m <1024a n ,则(m -1)2+n 的最小值为( ) A .3 B .5 C .6 D .10 6.已知各项为正的等比数列{a n },其公比为q ,且对任意n∈N *有a n+2=a n+1+2a n ,则q=( ) A .2 B .23C .2D .1 7.设等比数列{a n }的前n 项和为S n ,则下列等式中一定成立的是( )A .S n +S 2n =S 3nB .S 22n =S n S 3nC .S 22n =S n +S 2n -S 3nD .S 2n +S 22n =S n (S 2n +S 3n )8.《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长1尺.蒲生日自半,莞生日自倍.问几何日而长等?意思是:今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍.若蒲、莞长度相等,则所需时间为( )(结果精确到0.1.参考数据:lg2=0.3010,lg3=0.4771.)A .2.2天B .2.4天C .2.6天D .2.8天 9.一个放射性物质不断衰变为其他物质,每经过一年就有43的质量发生衰变.若该物质余下质量不超过原有的1%,则至少需要的年数是( )A .6B .5C .4D .3 10.设{a n }为等比数列,给出四个数列:∈{2a n };∈{a n2};∈{2a n };∈{log 2|a n |},一定为等比数列的是( ) A .∈∈ B .∈∈ C .∈∈ D .∈∈11.记S n 为数列{a n }的前n 项和;已知{a n }和{S n -k}(k 为常数)均为等比数到,则k 的值可能为( ) A .a 1 B .a 2 C .a 3 D .a 1+a 3 12.若存在等比数列{a n },使得a 1(a 2+a 3)=6a 1-9,则公比q 的最大值为( )A .451+ B .251+ C .451-+ D .251-+ 13.已知等比数列{a n }的前n 项和为S n ,则下列结论中一定成立的( )A .若a 5>0,则S 2019<0B .若a 5>0,则S 2019>0C .若a 6>0,则S 2018<0D .若a 6>0,则S 2018>014.已知无穷等比数列{a n }满足:对任意的n∈N *,sin a n =1,则数列{a n }公比q 的取值集合为__________.15.已知正项等比数列{a n }的前n 项和为S n .若S 9=S 3+2S 6,则S 6+31S 取得最小值时,S 9的值为__________.16.设S n 是等比数列{a n }的前n 项的和,若63a a =−21,则63S S =__________. 17.设无穷等比数列{a n }的公比为q ,若{a n }的各项和等于q ,则首项a 1的取值范围是__________.18.已知单调递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n log 21a n ,S n =b 1+b 2+b 3+…+b n ,对任意正整数n ,S n +(n+m )a n+1<0恒成立,试求m 的取值范围.19.设数列{a n }的首项a 1为常数,且a n+1=3n -2a n (n∈N *).(1)判断数列{a n −53n}是否为等比数列,请说明理由;(2)S n 是数列{a n }的前n 项的和,若{S n }是递增数列,求a 1的取值范围.20.已知数列{a n }的前n 项和S n =n (n+1)+2,其中n∈N *. (1)求数列{a n }的通项公式;(2)若a 2,a k+2,a 3k+2(k∈N *)为等比数列{b n }的前三项,求数列{b n }的通项公式.21.已知数列{a n },{b n }的前n 项和分别为S n ,T n ,b n −a n =2n +1,且S n +T n =2n+1+n 2−2. (1)求T n -S n ; (2)求数列{nn2b }的前n 项和R n .22.已知数列{a n }的前n 项和为S n ,且满足S n =2a n -n ,(n∈N *) (1)证明:{a n +1}是等比数列;并求数列{a n }的通项公式; (2)若b n =(2n+1)a n +2n+1,求数列{b n }的前n 项和为T n ;(3)若c n =3n +(-1)n -1λ•(a n +1)(λ为非零常数,n∈N *),问是否存在整数λ,使得对任意n∈N *,都有c n+1>c n ?专题(三)数列的递推式1.设a ,b∈R ,数列{a n }满足a 1=a ,a n+1=a n 2+b ,n∈N *,则( ) A .当b=21时,a 10>10 B .当b=41时,a 10>10 C .当b=-2时,a 10>10 D .当b=-4时,a 10>102.在数列{a n }中,a 1=-41,a n =1-1-a 1n (n >1),则a 2019的值为( ) A .41-B .54C .5D .以上都不对 3.在数列{a n }中,已知a 1=1,a n+1-a n =2n ,则a n =( )A .2n -1B .2n -1C .2n+1-3D .2n+1-1 4.已知数列{a n }满足a 1=21,a n+1=a n +nn 12+,则a n =( ) A .n 1-23 B .2-1n 3+ C .1−1n 1+ D .n123+5.已知等比数列{a n }满足:a 1=4,S n =pa n+1+m (p >0),则p −m 1取最小值时,数列{a n }的通项公式为( )A .a n =4•3n -1B .a n =3•4n -1C .a n =2n+1D .a n =4n 6.数列{a n }满足a n+2=a n+1+2a n ,且a 1=1,a 2=2,则a 6=( )A .24B .25C .26D .277.已知数列{a n }满足(n+1)a n =na n+1,a 2=4,等比数列{b n }满足b 1=a 1,b 2=a 2,则{b n }的前6项和为( ) A .-63 B .-126 C .63 D .126 8.各项均正的数列{a n }满足a 1=4,a n+1=2a n +2n+1,则a n 等于( )A .n •2n -1B .(n+1)•2nC .n •2n+1D .(n -1)•2n 9.已知S n 是数列{a n }的前n 项和,且S n+1=S n +a n +1,a 2+a 6=10,则S 7=( )A .20B .25C .30D .35 10.已知数列{a n }满足2a n ≤a n -1+a n+1(n ∈N *,n ≥2),则( )A .a 5≤4a 2-3a 1B .a 2+a 7≤a 3+a 6C .3(a 7-a 6)≥a 6-a 3D .a 2+a 3≥a 6+a 711.设数列{a n }的前n 项和为S n ,且a 1=2,a n +a n+1=2n (n ∈N *),则S 13=( )A .34213-B .32213+C .34214-D .32214+12.若数列{a n }的前n 项和为S n ,且a 1=1,a 2=2,(S n +1)(S n+2+1)=(S n+1+1)2,则S n =( )A .21n n )(+ B .2n+1 C .2n -1 D .2n+1+1专题(四)数列与三角、向量综合1.在平面四边形ABCD 中,∈ACD 面积是∈ABC 面积的2倍,数列{a n }满足a 1=3,且CA =(a n+1-3)CB +(a n -2)CD ,则a 5=( )A .31B .33C .63D .652.已知数列{a n }为等差数列,且满足OA =a 1OB +a 2107OC ,若AB =λAC (λ∈R ),点O 为直线BC 外一点,则a 1009=( )A .3B .2C .1D .21 3.已知等差数列{a n }的前n 项和为S n ,设A (a 1009,1),B (2,-1),C (2,2)为坐标平面上三点,O 为坐标原点,若向量OA 与OB 在向量OC 方向上的投影相同,则S 2017为( ) A .-2016 B .-2017 C .2017 D .04.如图,已知点E 为平行四边形ABCD 的边AB 上一点,AE =2EB ,F n (n ∈N *)为边DC 上的一列点,连接AF n 交BD 于G n ,点G n (n ∈N *)满足D G n =31a n+1A G n -(3a n +2)E G n ,其中数列{a n }是首项为1的正项数列,则a 4的值为( )A .45B .51C .53D .615.已知等差数列{a n }的前n 项和为S n ,若OB =a 7OA +a 2006OC ,且A 、B 、C 三点共线(该直线不过点O ),则S 2012等于( )A .1006B .2012C .22012D .2-2012 6.设a k =(cos6πk ,sin 6πk +cos 6πk ),k∈Z ,则a 2015 • a 2016 =( ) A .3 B .213-C .132-D .2 7.在等差数列{a n }中,a n ≠0(n ∈N *).角α顶点在坐标原点,始边与x 轴正半轴重合,终边经过点(a 2,a 1+a 3),则ααααcos sin cos 2sin -+=( )A .5B .4C .3D .28.已知函数f (x )=sin (ωx+φ)(ω>0,|φ|<2π)的部分图象如图,则∑=20191n 6n )(πf =( )A .-1B .21C .0D .19.设等差数列{a n }满足)()()(65247274sin cos sin cos sin a a a a a a +-=1,公差d∈(-1,0),则d=( )A .-4π B .-5π C .-6π D .-7π10.平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3)若点C 满足OC =a 1OA +a 2012OB ,其中{a n }为等差数列,且a 1006+a 1007=1,则点C 的轨迹方程为( )A .3x+2y -11=0B .(x -1)2+(y -2)2=5C .2x -y=0D .x+2y -5=011.将向量a 1=(x 1,y 1),a 2=(x 2,y 2),…a n =(x n ,y n )组成的系列称为向量列{a n },并定义向量列{a n }的前n 项和S n =a 1+a 2+…+a n .如果一个向量列从第二项起,每一项与前一项的差都等于同一个向量,那么称这样的向量列为等差向量列.若向量列{a n }是等差向量列,那么下述四个向量中,与S 21一定平行的向量是( )A .a 10B .a 11C .a 20D .a 21 12.设函数f (x )=2x -cosx ,{a n }是公差为8π的等差数列,f (a 1)+f (a 2)+…+f (a 5)=5π,则[f(a 3)]2−a 2a 3=( )A .0B .161π2 C .81π2 D .1613π2 13.已知A ,B ,C 为∈ABC 的三个内角,向量m 满足|m |=26,且m =(2sin 2C B +,cos 2CB -),若A 最大时,动点P 使得|PB |,|BC |,|PC |||BC PA 的最大值是__________.14.已知点集L ={(x ,y)|y =m •n },其中m =(x−2b ,2),n =(1,b+1),点P n (a n ,b n )∈L ,P 1=L∩{(x ,y )|x=1},且a n+1-a n =1,则数列{b n }的通项公式为__________.15.已知向量a ,b 满足a =(-2sinx ,3(cosx+sinx )),b=(cosx ,cosx -sinx ),函数f (x )=a •b (x∈R ). (1)求f (x )的单调区间; (2)已知数列a n =n 2f(24112n ππ-)(n∈N *),求{a n }前2n 项和为S 2n .16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a -b sin -sin 3C B =csin +sin BA .(1)求角A 的大小;(2)若等差数列{a n }的公差不为零,a 1sinA=1,且a 2,a 4,a 8成等比数列;若b n =1n n a a 1+,求数列{b n }的前n 项和S n .专题(五)数列求和1.已知数列{a n }满足:a n ≠1,a n+1=2-n a 1(n∈N *),数列{b n }中,b n =1a 1n -,且b 1,b 2,b 4成等比数列; (1)求证:{b n }是等差数列; (2)S n 是数列{b n }的前n 项和,求数列{n1S }的前n 项和T n .2.在数列{a n }中,a 1=23,a n+1=4a n −))((2n 1n n 8n 3+++(n ∈N *). (1)设b n =a n −)(1n n 1+,求证:数列{b n }是等比数列;(2)求数列{a n }的前n 项和S n .3.已知正项数列{a n }的前n 和为S n ,且2a 1S n =a n 2+a n . (1)求数列{a n }的通项公式;(2)若b n =(31)n •a n ,求数列{b n }的前n 项和T n .4.设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是前n 项和.记b n =cn n 2n+S ,n ∈N *,其中c 为实数. (1)若数列{c n }满足c n =nnS ,证明:数列{c n }等差数列; (2)若c=0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∈N *); (3)若{b n }是等差数列,证明:c=0.。

数列练习题及答案(通用)

数列练习题及答案(通用)

必修5第二章《数列》 练习题一、选择题1.数列1,3,6,10,的一个通项公式是:( )A. 12+-=n n a nB.)1(21-=n n a nC.)1(21+=n n a nD.)1)(1(21+-=n n n a n2.若三个连续整数和为48,则紧随它们后面的三个连续整数的和是 ( ) A .48 B .46 C .54 D .573.等差数列的前三项依次为a-1,a+1,2a+3,则a 的值为 ( ) A .1 B .-1 C .0 D .24.在等差数列中,若1a +2a +…+10a =65,11a +12a +…+20a =165,则1a 的值为;( ) A. 1 B. 2 C. 3 D. 45.若ac >0,m 是a ,c 的等比中项,则有 ( )6.下列等比数列中,首项为1的是( )A.n n a 4=B.n n a 21=C.nn a ⎪⎭⎫⎝⎛⋅=313 D.122-⋅=n n a7.下列几种说法正确的是( )A. 常数列是等差数列也是等比数列B. 常数列是等比数列但不可能是等差数列C. 常数列是等差数列但不可能是等比数列D. 常数列是等差数列也可能是等比数列8.首项为3,末项为3072,公比为2的等比数列的项数有( )A. 11项B. 12项C. 13项D. 10项 9.在等比数列}{n a 中,,24,3876543==a a a a a a 则=11109a a a ( )A. 48B. 72C. 144D. 192 10.公差不为零的等差数列的第2,3,6项组成等比数列,则公比为 ( ) A 、1 B 、2 C 、3 D 、411.在等比数列{}n a 中,如果66=a ,99=a ,那么=3a ( )A 、4B 、23C 、916D 、312.在等比数列{}n a 中,5642a a a +=,则公比q 等于 ( ) A 、1或2 B 、-1或-2 C 、1或-2 D 、-1或213.若数列{}n a 的前n 项和322+-=n n S n ,则这个数列的前三项分别是: ( ) A. -1,1,3 B. 2,1,3 C. 2,1,0 D. 2,1,614.已知等比数列的公比是2,且前四项和为1,那么前八项之和为 ( ) A .15 B .17 C .19 D .2115.设等差数列{}n a 的公差为d ,如果它的前n 项和Sn=-n 2,那么 ( ) A 、2,12-=-=d n a n B 、2,12=-=d n a n C 、 2,12-=+-=d n a n D 、2,12=+-=d n a n二、填空题1.等差数列{a n }中,a 1=-1,a 7=8,则a 8=____。

数列综合练习题

数列综合练习题

Ⅰ题型归类练习1.已知等比数列{}n a ,12a =,且2525(3)2n n n a a -⋅≥=,试求21222l o g ()l o g ()l o g ()n a a a +++ 例1. 数列121,,,4a a --成等差数列,1231,,,,4b b b --成等比数列,求212a ab -。

练习1.等比数列{}n b 中,0nb >,524346236b b b b b b ++=,求53b b +。

练习2.等比数列{}n b 前n 项和n S ,若422S S =,求{}n b 公比。

二、求数列通项例1. 数列{}n a 满足21nn S a =+(1n ≥),求n a 。

练习1.数列{}n a 满足11a =,且10n n n a S S -⋅+=(2n ≥),试求n a 。

类型3.1()n n a a f n +=+⇒1()n n a a f n +-=⇒利用累加法(逐差相加法)求解例3.已知数列{}n a 满足112a =,121n n a a n n+=++,求n a 。

练习3.已知数列{}n a 满足11a =,21n n a a n n +=++,求n a 。

类型4.1()n n a f n a +=⨯ ⇒1()n na f n a +=⇒利用累乘法(逐商相乘法)求解例4.已知数列{}n a 满足123a =,1(1)n n n a na ++=,求n a 。

练习4.已知数列{}n a 满足13a =,1(43)(41)n n n a n a ++=-,求n a 。

类型5.1n n a pa q +=+(其中p,q 为常数,(1)0pq p -≠) ⇒ 待定系数法例5.已知数列{}n a 中,满足12a =,121n n a a +=+,求n a 。

解:由条件得:12()n n a t a t ++=⨯+⇒ 1t = ⇒112(1)n n a a ++=⨯+ ⇒ 令1n n b a =+,则{}n b 是以1113b a =+=为首项,2为公比的等比数列 ⇒ 132n n b -=⨯ ⇒ 1321n n a -=⨯-练习5.已知数列{}n a 中,满足11a =,124nn a a +=+,求n a 。

数列综合练习题(含答案)精选全文

数列综合练习题(含答案)精选全文

3月6日数列综合练习题一、单选题1.已知数列为等比数列,是它的前n项和.若,且与的等差中项为,则()A .35B .33C .31D .29【答案】C 【解析】试题分析:∵等比数列{}n a ,∴21a a q =⋅,∴13134222a q a a q a a ⋅⋅=⇒⋅=⇒=,又∵与的等差中项为54,∴477512244a a a ⋅=+⇒=,∴3741182a q q a ==⇒=,∴41316a a q ==,515116(1)(1)32311112a q S q--===--.2.等差数列{}n a 中,19173150a a a ++=则10112a a -的值是()A.30B.32C.34D.25【答案】A 【解析】试题分析:本题考查等差数列的性质,难度中等.由条件知930a =,所以10112a a -=930a =,故选A.3.数列满足且,则等于()A.B.C.D.【答案】D 【解析】由有解知数列1n x ⎧⎫⎨⎬⎩⎭是首项为1,公差为211112x x -=的等差数列;所以11121(1),221n n n n x x n +=+-=∴=+.故选D 4.设等差数列{}n a 的前n 项和为n S ,数列21{}n a -的前n 项和为n T ,下列说法错误..的是()A .若n S 有最大值,则n T 也有最大值B .若n T 有最大值,则n S 也有最大值C .若数列{}n S 不单调,则数列{}n T 也不单调D .若数列{}n T 不单调,则数列{}n S 也不单调【答案】C 【解析】【详解】解:数列{a 2n ﹣1}的首项是a 1,公差为2d ,A .若S n 有最大值,则满足a 1>0,d <0,则2d <0,即T n 也有最大值,故A 正确,B .若T n 有最大值,则满足a 1>0,2d <0,则d <0,即S n 也有最大值,故B 正确,C .S n =na 1()12n n -+•d 2d =n 2+(a 12d -)n ,对称轴为n 111122222d da a a d d d --=-==--⨯,T n =na 1()12n n -+•2d =dn 2+(a 1﹣d )n ,对称轴为n 111222a d d -=-=-•1a d,不妨假设d >0,若数列{S n }不单调,此时对称轴n 11322a d =-≥,即1a d-≥1,此时T n 的对称轴n 1122=-•111122a d ≥+⨯=1,则对称轴1122-•132a d <有可能成立,此时数列{T n }有可能单调递增,故C 错误,D .不妨假设d >0,若数列{T n }不单调,此时对称轴n 1122=-•132a d ≥,即1a d-≥2,此时{S n }的对称轴n 11122a d =-≥+25322>=,即此时{S n }不单调,故D 正确则错误是C ,故选C .5.设n=()A .333n 个B .21333n - 个C .21333n- 个D .2333n 个【答案】A【解析】1013333n n -====⋅⋅⋅ 个.故选A.6.已知各项均为正数的数列{}n a 的前n 项和为n S ,满足2124n n a S n +=++,且21a -,3a ,7a 恰好构成等比数列的前三项,则4a =().A .1B .3C .5D .7【答案】C 【详解】∵2124n n a S n +=++,当2n ≥,()21214n n a S n -=+-+,两式相减,化简得()2211n n a a +=+,∵0n a >,∴11n n a a +=+,数列{}n a 是公差1的等差数列.又21a -,3a ,7a 恰好构成等比数列的前三项,∴()()211126a a a +=+,∴12a =,∴45a =.故选:C第II 卷(非选择题)二、填空题7.已知数列{}n a 的首项11a =,且1(1)12nn na a n a +=+ ,则5a =____.【答案】198.等差数列{}n a 中,39||||a a =,公差0d <,则使前n 项和n S 取得最大值的自然数n 是________.【答案】5或6【解析】试题分析:因为0d <,且39||||a a =,所以39a a =-,所以1128a d a d +=--,所以150a d +=,所以60a =,所以0n a >()15n ≤≤,所以n S 取得最大值时的自然数n 是5或6.9.数列{}n a 满足:11a =,121n n a a +=+,且{}n a 的前n 项和为n S ,则n S =__.【答案】122n n +--【详解】由121n n a a +=+得()1+121n n a a +=+所以1112+n n a a +=+,且112a +=所以数列{}1n a +是以2为首项,2为公比的等比数列,且11=222n nn a -+⨯=所以21nn a =-前n 项和()123121222222212n nn nS n n n +-=++++-==--- 10.已知数列{}n a 中,132a =前n 项和为n S ,且满足()*123n n a S n N ++=∈,则满足2348337n n S S <<所有正整数n 的和是___________.【答案】12【详解】由()*123n n a S n N++=∈得()123n n n SS S +-+=,即()11332n n S S +-=-,所以数列{}3n S -是首项为113332S a -=-=-,公比为12的等比数列,故31322n nS -=-⋅,所以332n n S =-,所以22332n n S =-.由2348337n n S S <<得2332334833732n n -<-<,化简得1113327n <<,故3,4,5n =.满足2348337n nS S <<所有正整数n 的和为34512++=.故答案为:12三、解答题11.已知数列{a n }满足a 1=3,a n ﹣a n ﹣1﹣3n =0,n ≥2.(1)求数列{a n }的通项公式;(2)设b n 1na =,求数列{b n }的前n 项和S n .【详解】(1)数列{a n }满足a 1=3,a n ﹣a n ﹣1﹣3n =0,n ≥2,即a n ﹣a n ﹣1=3n ,可得a n =a 1+(a 2﹣a 1)+(a 3﹣a 2)+…+(a n ﹣a n ﹣1)=3+6+9+…+3n 12=n (3+3n )32=n 232+n ;(2)b n 123n a ==•2123n n =+(111n n -+),前n 项和S n 23=(1111112231n n -+-++-+ )23=(111n -+)()231n n =+.12.在数列{}n a 中,n S 为其前n 项和,满足2(,*)n n S ka n n k R n N =+-∈∈.(I )若1k =,求数列{}n a 的通项公式;(II )若数列{}21n a n --为公比不为1的等比数列,求n S .【答案】解:(1)当1k =时,2,n n S a n n =+-所以21,(2)n S n n n -=-≥,即22(1)(1),(1)n S n n n n n =+-+=+≥……3分所以当1n =时,112a S ==;当2n ≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=所以数列{}n a 的通项公式为.……………6分(II )当时,1122n n n n n a S S ka ka n --=-=-+-,1(1)22n n k a ka n --=-+,111a S ka ==,若1k =,则211n a n --=-,从而{}21n a n --为公比为1的等比数列,不合题意;……………8分若1k ≠,则10a =,221a k=-,3246(1)k a k -=-212325378333,5,71(1)k k k a a a k k --+--=--=-=--由题意得,2213(5)(3)(7)0a a a -=--≠,所以0k =或32k =.……10分当0k =时,2n S n n =-,得22n a n =-,213n a n --=-,不合题意;…12分当32k =时,1344n n a a n -=-+,从而1213[2(1)1]n n a n a n ---=---因为121130,a -⨯-=-≠210n a n --≠,{}21n a n --为公比为3的等比数列,213nn a n --=-,所以231nn a n =-+,从而1233222n n S n n +=+-+.………………………14分【解析】试题分析:解:(1)当1k =时,2,n n S a n n =+-所以21,(2)n S n n n -=-≥,即22(1)(1),(1)n S n n n n n =+-+=+≥……3分所以当1n =时,112a S ==;当2n ≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=所以数列{}n a 的通项公式为…6分(2)当时,1122n n n n n a S S ka ka n --=-=-+-,1(1)22n n k a ka n --=-+,111a S ka ==,若1k =,则211n a n --=-,从而{}21n a n --为公比为1的等比数列,不合题意;若1k ≠,则10a =,221a k=-,3246(1)k a k -=-212325378333,5,71(1)k k k a a a k k --+--=--=-=--由题意得,2213(5)(3)(7)0a a a -=--≠,所以0k =或32k =.当0k =时,2n S n n =-,得22n a n =-,213n a n --=-,不合题意;当32k =时,1344n n a a n -=-+,从而1213[2(1)1]n n a n a n ---=---因为121130,a -⨯-=-≠210n a n --≠,{}21n a n --为公比为3的等比数列,213nn a n --=-,所以231nn a n =-+,从而1233222n n S n n +=+-+.13.设数列{}n a 的通项公式63n a n =-+,{}n b 为单调递增的等比数列,123512b b b =,1133a b a b +=+.()1求数列{}n b 的通项公式.()2若3nn na cb -=,求数列{}n c 的前n 项和n T .【详解】()1由题意,数列{}n a 的通项公式n a 6n 3=-+,{}n b 为单调递增的等比数列,设公比为q ,123b b b 512=,1133a b a b +=+.可得331b q 512=,2113b 15b q -+=-+,解得1b 4=,或1q 2(2=-舍去),则n 1n 1n b 422-+=⋅=。

(完整版)《数列》练习题及答案

(完整版)《数列》练习题及答案

欢迎阅读《数列》练习题姓名_________班级___________一、选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.等差数列-2,0,2,…的第15项为( ) A .11 2 B .12 2 C .13 2 D .14 22.若在数列{a n }中,a 1=1,a n +1=a 2n -1(n ∈N *),则a 1+a 2+a 3+a 4+a 5=( ) A .-1 B .1 C .0 D .23.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按此规律进行下去,6小时后细胞存活的个数是( )A .33个B .65个C .66个D .129个4.设S n 为等差数列{a n }的前n 项和,若S 8=30,S 4=7,则a 4的值等于( ) A.14 B.94 C.134 D.1745.设f (x )是定义在R 上的恒不为零的函数,且对任意的实数x 、y ∈R ,都有f (x )·f (y )=f (x +y ),若a 1=12,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围为( )A .[12,2)B .[12,2]C .[12,1)D .[12,1]6.小正方形按照如图所示的规律排列:每个图中的小正方形的个数构成一个数列{a n },有以下结论:①a 5=15;②数列{a n }是一个等差数列;③数列{a n }是一个等比数列;④数列的递推公式为:a n +1=a n +n +1(n ∈N *).其中正确的命题序号为( )A .①②B .①③C .①④D .①7.已知数列{a n }满足a 1=0,a n +1=a n -33a n +1(n ∈N *),则a 20=( )A .0B .- 3 C. 3D.328.数列{a n }满足递推公式a n =3a n -1+3n -1(n ≥2),又a 1=5,则使得{a n +λ3n}为等差数列的实数λ=( )A .2B .5C .-12D.129.在等差数列{a n }中,a 10<0,a 11>0,且a 11>|a 10|,则{a n }的前n 项和S n 中最大的负数为( )A.S17 B.S18 C.S19D.S2010.将数列{3n-1}按“第n组有n个数”的规则分组如下:(1),(3,9),(27,81,243),…,则第100组中的第一个数是( )A.34 950 B.35 000 C.35 010D.35 050二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)11.设等差数列{a n}的前n项和为S n,若S9=72,则a2+a4+a9=________.12.设数列{a n}中,a1=2,a n+1=a n+n+1,则通项a n=________..)100项2,0,n2n1232n-1<3.18.(本小题满分8分)已知数列{a n}的前n项和为S n,且a n+S n=1(n∈N*).(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=3+log4a n,设T n=|b1|+|b2|+…+|b n|,求T n.19.(本小题满分10分)已知单调递增的等比数列{a n}满足a2+a3+a4=28,且a3+2是a2,a4的等差中项.(1)求数列{a n}的通项公式;(2)若b n =n n a log a 21,S n =b 1+b 2+…+b n ,对任意正整数n ,S n +(n +m )a n +1<0恒成立,试求m 的取值范围.参考答案选择题答案题号 12345678910答案C A B C C C B C C A填空题答案第11题 24第12题第13题 a n =2·3n第14题-7【第15题】S 5=5?a 1+a 5?2=5?a 1+5?2=15,∴a 1=1. ∴d =a 5-a 15-1=5-15-1=1.∴a n =1+(n -1)×1=n . ∴1a n a n +1=1n ?n +1?.设{1a n a n +1}的前n 项和为T n ,则T 100=11×2+12×3+…+1100×101 =1-12+12-13+…+1100-1101 =1-1101=100101. 【第16题】(1)设{a n }的公差为d .由题意,a 211=a 1a 13,即(a 1+10d )2=a 1(a 1+12d ).于是d (2a 1+25d )=0.又a 1=25,所以d =0(舍去),d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =n 2(a 1+a 3n -2)=n2(-6n +56)=-3n 2+28n .【第17题】(1)∵{a n }是递减的等比数列, ∴数列{a n }的公比q 是正数. 又∵{a 1,a 2,a 3}{-4,-3,-2,0,1,2,3,4},∴a 1=4,a 2=2,a 3=1.∴q =a 2a 1=24=12.∴a n =a 1q n -1=82n .(2)由已知得b n =12])1(1[8+--n n ,当n =2k (k ∈N *)时,b n =0,当n =2k -1(k ∈N *)时,b n =a n . 即b n =⎩⎨⎧0,?n =2k ,k ∈N *?,a n ,?n =2k -1,k ∈N *?.∴b 1+b 2+b 3+…+b 2n -2+b 2n -1T n T n n ⎪⎩≥+-)7(,460112n n n 【第19题】(1)n n 2a =(2)∵b n =2n ·log 12 2n =-n ·2n ,∴-S n =1×2+2×22+3×23+…+n ×2n ,① -2S n =1×22+2×23+3×24+…+(n -1)×2n +n ×2n +1.②①-②,得S n =2+22+23+…+2n -n ·2n +1=21)21(2--n -n ·2n +1=2n +1-n ·2n +1-2.∵S n +(n +m )a n +1<0,∴2n +1-n ·2n +1-2+n ·2n +1+m ·2n +1<0对任意正整数n 恒成立. ∴m ·2n +1<2-2n +1对任意正整数n 恒成立,即m <12n -1恒成立.∵12n -1>-1,∴m ≤-1,即m 的取值范围是(-∞,-1].。

数列练习题及答案

数列练习题及答案

数列练习题及答案一、选择题1. 已知数列{an}的前n项和为Sn,若a1=1,a2=3,且满足an+1 = an + 2n,求S5的值。

A. 25B. 28B. 30D. 312. 对于数列{bn},若b1=2,且bn+1 = 2bn + 1,求b4的值。

A. 17B. 15C. 13D. 113. 已知数列{cn}是等差数列,其公差为3,且c5=23,求c1的值。

A. 2B. 5C. 8D. 114. 数列{dn}的通项公式为dn = 2n - 1,求d10的值。

A. 19B. 17C. 15D. 135. 若数列{en}满足en = 3en-1 - 2,e1 = 1,求e3的值。

B. 5C. 3D. 1二、填空题6. 已知数列{fn}的前n项和为Sn,且满足Sn = n^2,求f3的值。

7. 对于数列{gn},若g1=4,且满足gn+1 = 3gn - 2,求g3的值。

8. 已知等比数列{hn}的首项为h1=8,公比为2,求h5的值。

9. 若数列{in}满足in = 2^n - 1,求i5的值。

10. 对于数列{jn},若j1=1,且满足jn+1 = jn^2,求j4的值。

三、解答题11. 某工厂生产的产品数量构成一个等差数列,第一年生产了100件,每年生产量比上一年多20件。

求第5年的产量,并求这5年的总产量。

12. 某公司的股票价格构成一个等比数列,第一年价格为10元,每年价格是上一年的2倍。

求第3年的股票价格,并求这3年的平均价格。

13. 已知数列{kn}的前n项和为Sn,且满足Sn = 2n^2 + n,求k5的值。

14. 对于数列{ln},若l1=1,且满足ln+1 = ln + ln-1,l2=3,求l4的值。

15. 某数列{mn}的通项公式为mn = 3^n - 2^n,求m5的值。

1. B2. A3. D4. A5. A6. 67. 108. 1289. 3110. 25511. 第5年产量为180件,5年总产量为700件。

数列练习题及解析

数列练习题及解析

数列练习题及解析题目1:求以下数列的第n项。

1, 4, 7, 10, 13, ...解析1:这是一个等差数列,公差为3。

数列的通项公式可以表示为:an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。

所以,an = 1 + (n-1)3 = 3n - 2。

题目2:求以下数列的前n项和。

2, 4, 6, 8, 10, ...解析2:这是一个公差为2的等差数列。

数列的前n项和可以表示为:Sn = (a1 + an) * n / 2,其中Sn表示前n项和。

首项a1为2,第n项an为2n,代入公式得到:Sn = (2 + 2n) * n / 2 = n(n+1)。

题目3:已知数列的通项公式an = 2^n,求第6项及前6项和。

解析3:根据通项公式an = 2^n,可得到第6项为a6 = 2^6 = 64。

前6项和可以表示为:S6 = a1 + a2 + a3 + a4 + a5 + a6 = 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6。

利用等比数列求和公式,S6 = (a1 * (1 - q^n)) / (1 - q),其中a1为首项,q为公比。

代入公式得到:S6 = (2 * (1 - 2^6)) / (1 - 2) = 127。

题目4:已知等差数列的首项为3,公差为-2,求满足an < 0的最小n值。

解析4:根据等差数列的通项公式an = a1 + (n-1)d,代入已知条件得到:3 + (n-1)(-2) < 0。

化简不等式得到:-2n + 5 < 0。

解得:n > 5/2,即n的最小取值为3。

题目5:已知等差数列的前4项和为20,首项为a1,公差为d,求a1与d的值。

解析5:根据等差数列的前n项和公式Sn = (n/2)(2a1 + (n-1)d),代入已知条件得到:20 = (4/2)(2a1 + 3d)。

化简得到:10 = 2a1 + 3d。

数列练习题(打印版)高中

数列练习题(打印版)高中

数列练习题(打印版)高中一、选择题1. 已知数列{a_n}是等差数列,且a_1=2,a_4=8,求公差d。

A. 2B. 3C. 5D. 62. 若数列{b_n}是等比数列,b_1=3,b_3=12,求b_2。

A. 4B. 6C. 9D. 123. 已知数列{c_n}满足c_n = 2^n - 1,求c_5。

A. 30B. 31C. 32D. 33二、填空题4. 若数列{d_n}是等差数列,且d_5 + d_6 = 10,d_7 = 8,求d_1。

5. 设数列{e_n}是等比数列,e_1 = 2,e_2 = 6,求e_3。

6. 已知数列{f_n}满足f_n = 3^n - n,求f_4。

三、解答题7. 已知数列{g_n}是等差数列,且g_1 = 1,g_3 = 5,求g_5,并证明数列{g_n}是等差数列。

8. 设数列{h_n}是等比数列,h_1 = 4,公比q = 2,求h_5,并写出数列{h_n}的通项公式。

9. 已知数列{i_n}满足i_n = n^2 - 6n + 8,求i_1 + i_2 + ... + i_5,并判断数列{i_n}的单调性。

四、证明题10. 证明:若数列{j_n}是等差数列,且j_1,j_2,j_3成等比数列,则j_2^2 = j_1 * j_3。

11. 设数列{k_n}是等比数列,证明:若k_1 * k_3 = k_2^2,则数列{k_n}是等比数列。

12. 证明:若数列{l_n}满足l_n = n^3 - 3n^2 + 2n,且l_1,l_2,l_3成等差数列,则l_2 = 3。

五、探索题13. 观察数列{m_n}:1, 1/2, 1/3, 1/4, ...,求m_10,并探讨当n趋向于无穷大时,m_n的极限值。

14. 设数列{n_n}满足n_n = 2^n + 3^n,求n_1 + n_2 + ... + n_5,并探讨数列{n_n}的增长趋势。

15. 已知数列{o_n}满足o_n = n! / (n+1)!,求o_1 + o_2 + ... +o_5,并探讨数列{o_n}的性质。

数列专项练习题大题

数列专项练习题大题

数列专项练习题大题1. 一个等差数列的首项是1,公差是3。

求数列的第10项是多少?解析:根据等差数列的通项公式an = a1 + (n-1)d,其中an表示数列的第n项,a1表示首项,d表示公差。

对于这个题目,a1=1,d=3,n=10。

代入公式计算,可得:a10 = 1 + (10-1) * 3 = 1 + 9 * 3 = 28所以数列的第10项是28。

2. 一个等比数列的首项是2,公比是5。

求数列的第6项是多少?解析:根据等比数列的通项公式an = a1 * r^(n-1),其中an表示数列的第n项,a1表示首项,r表示公比。

对于这个题目,a1=2,r=5,n=6。

代入公式计算,可得:a6 = 2 * 5^(6-1) = 2 * 5^5 = 2 * 3125 = 6250所以数列的第6项是6250。

3. 一个递推数列的首项是1,规律是每一项都是前一项的平方。

求数列的第5项是多少?解析:根据递推数列的规律,可以列出数列的前几项:1, 1^2,(1^2)^2, ((1^2)^2)^2, (((1^2)^2)^2)^2可以观察到规律,每项都是前一项的平方。

所以第5项就是前一项的平方的平方的平方的平方。

计算过程如下:1^2 = 1(1^2)^2 = 1^2 = 1((1^2)^2)^2 = (1^2)^2 = 1(((1^2)^2)^2)^2 = ((1^2)^2)^2 = 1所以数列的第5项是1。

4. 一个等差数列的首项是3,末项是11。

求数列的公差和项数。

解析:对于这个题目,已知数列的首项和末项,可以使用公式an = a1 + (n-1)d来求解。

代入已知的值,即3 = 3 + (n-1)d,然后化简得到:0 = (n-1)d由于等差数列的公差是非零的常数,所以只有当n-1=0时,等式才成立。

也就是n=1。

所以数列的公差是0,项数是1。

5. 一个等比数列的首项是2,前三项的和是14。

求数列的公比。

五年级数列练习题及答案

五年级数列练习题及答案

五年级数列练习题及答案题目1:数列的概念1. 将以下数字按顺序填入空格中,使其成为一个数列:1, 3, 5, _, 9, 11。

2. 下列每个集合是否是数列?a) {2, 4, 6, 8, 10}b) {1, 4, 9, 16, 25}c) {1, 3, 5, 7, 9, 12}d) {1, 2, 4, 8, 16, 32}题目2:等差数列1. 找出下列等差数列的公差,并写出下一个数:a) 2, 5, 8, 11, 14, ...b) 20, 17, 14, 11, 8, ...2. 判断下列数列是否是等差数列,如果是,请写出公差:a) 3, 6, 10, 15, 21, ...b) 4, 9, 18, 33, 54, ...c) 1, 2, 4, 7, 11, ...题目3:等比数列1. 找出下列等比数列的公比,并写出下一个数:a) 3, 9, 27, 81, ...b) 100, 50, 25, 12.5, ...2. 判断下列数列是否是等比数列,如果是,请写出公比:a) 8, 4, 2, 1, 1/2, ...b) 6, 12, 24, 48, ...题目4:综合题给定一个数列的前五项如下:1, 3, 6, 10, 15。

1. 判断这个数列是等差数列还是等比数列。

如果是等差数列,请写出公差;如果是等比数列,请写出公比。

2. 求这个数列的第六项和第十项。

3. 编写一个算法,可以求出这个数列的第n项。

题目5:图形数列观察以下图形数列,请根据规律完成后续的图形:1. 正方形数列:①②③④⑤,填入下一个图形。

2. 三角形数列:△△△△△,填入下一个图形。

答案:题目1:数列的概念1. 72. a) 是 b) 是 c) 否 d) 否题目2:等差数列1. a) 公差为3,下一个数为17 b) 公差为-3,下一个数为52. a) 是,公差为3 b) 是,公差为5 c) 否题目3:等比数列1. a) 公比为3,下一个数为243 b) 公比为1/2,下一个数为6.252. a) 是,公比为1/2 b) 是,公比为2题目4:综合题1. 等差数列,公差为22. 第六项为21,第十项为553. 第n项可以通过公式an = a1 + (n - 1)d来计算,其中a1为首项,d 为公差。

数列练习题小学

数列练习题小学

数列练习题小学在小学数学中,数列是一个重要的概念。

数列由一系列按照特定规律排列的数所组成,通过对数列的研究和练习,可以培养学生的逻辑思维和问题解决能力。

本篇文章将为小学生提供一些数列练习题,旨在帮助他们巩固对数列的理解,并提升他们的数学能力。

练习题一:等差数列1. 请列出前五项等差数列:3, 6, 9, 12, 15。

2. 请列出等差数列:2, 4, 6, 8, 10的通项公式,并计算该数列的第10项是多少。

3. 若一个等差数列的首项为3,公差为4,求该数列的前6项之和。

练习题二:等比数列1. 请列出前五项等比数列:2, 6, 18, 54, 162。

2. 请列出等比数列:10, 5, 2.5, 1.25的通项公式,并计算该数列的第8项是多少。

3. 若一个等比数列的首项为2,公比为3,求该数列的前4项之和。

练习题三:斐波那契数列1. 请列出前八项斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21。

2. 已知一个斐波那契数列的第四项是3,第五项是5,求该数列的通项公式。

3. 若一个斐波那契数列的首项为1,第三项为4,求该数列的前六项之和。

练习题四:垒砖块小明在垒砖块,他第一层放了1块长方形砖块,第二层放了3块砖块,第三层放了5块砖块,以此类推。

请回答以下问题:1. 第10层共有多少块砖块?2. 第15层共有多少块砖块?3. 前n层共有多少块砖块?练习题五:汽车行驶一辆汽车以每小时60公里的速度行驶。

请回答以下问题:1. 该汽车行驶1小时可以行驶多少公里?2. 该汽车行驶3小时可以行驶多少公里?3. 该汽车行驶n小时可以行驶多少公里?回答这些练习题可以帮助小学生更好地理解数列的概念,并提升他们的数学能力。

通过这些练习,学生可以培养逻辑思维和问题解决能力,同时巩固和应用他们在课堂上学到的知识。

希望这些练习题对小学生的数学学习有所帮助,让他们能够更加轻松地掌握数列的概念和运用。

二年级数列练习题

二年级数列练习题

二年级数列练习题数学练习题一、选择题1. 请根据数列的规律,选择下一个数。

2,4,6,8,__A. 10B. 11C. 12D. 142. 请根据数列的规律,选择下一个数。

3,6,9,12,__A. 14B. 15C. 16D. 183. 请根据数列的规律,选择下一个数。

1,4,9,16,__A. 20B. 24C. 25D. 364. 请根据数列的规律,选择下一个数。

2,5,10,17,__A. 23B. 25C. 26D. 295. 请根据数列的规律,选择下一个数。

1,3,6,10,__A. 12B. 13C. 15D. 16二、填空题1. 请根据数列的规律,填写下一个数。

1,4,9,16,__2. 请根据数列的规律,填写下一个数。

3,8,15,24,__3. 请根据数列的规律,填写下一个数。

2,4,8,16,__4. 请根据数列的规律,填写下一个数。

1,5,14,30,__5. 请根据数列的规律,填写下一个数。

1,2,4,7,11,__三、应用题1. 某数列的规律是:从第二项开始,每一项都是前一项与2的和。

如果数列的第一项是3,则数列的前五项依次是多少?2. 某数列的规律是:从第二项开始,每一项都是前一项加上2。

如果数列的第一项是5,则数列的前六项依次是多少?3. 某数列的规律是:从第三项开始,每一项都是前两项之和。

如果数列的第一项是1,第二项是2,则数列的前七项依次是多少?4. 某数列的规律是:从第二项开始,每一项都是前一项与3的乘积。

如果数列的第一项是2,则数列的前六项依次是多少?5. 某数列的规律是:从第二项开始,每一项都是前一项减去1。

如果数列的第一项是8,则数列的前五项依次是多少?以上为二年级数学练习题,希望对您有帮助!。

小学生数学数列练习题

小学生数学数列练习题

小学生数学数列练习题数列练习题一:1. 有一个等差数列的公差为3,首项为2,前n项和为Sn。

如果Sn=65,求n的值。

解析:首先我们知道等差数列的通项公式为an = a1 + (n-1)d,其中an为第n项,a1为首项,d为公差。

根据题目可知a1=2,d=3。

同时,等差数列的前n项和公式为Sn = (n/2)(a1+an)。

代入题目给出的Sn=65和a1=2,我们可以得到以下方程:65 = (n/2)(2 + 2 + (n-1)3)简化方程:65 = (n/2)(4 + 3n - 3)65 = (n/2)(3n + 1)将方程化简为二次方程:0 = 3n^2 + n - 130求解该二次方程可以得到n≈8.06(取两个根,一个为负数)因为题目要求n的值,所以我们可以向上取整,得到n≈9。

因此,当等差数列的前9项的和为65时,n的值为9。

数列练习题二:2. 某数列的各项为正整数,且满足:相邻的两项之和等于后一项。

已知该数列的第1项为2,第2项为3,第8项为2178309。

求该数列的第6项。

解析:根据题目所给的条件,我们可以列出以下数列:2, 3, x1, x2, x3, x4, x5, 2178309, ...我们需要求的是该数列的第6项,代表为x6。

根据题目的条件,我们可以得到以下等式:x1 + x2 = x3x2 + x3 = x4x3 + x4 = x5x4 + x5 = x6我们知道x1=2和x2=3,而第8项为2178309,所以我们可以依次代入等式中:2 +3 = x33 + x3 = x4x3 + x4 = x5x4 + x5 = x6得到:5 = x38 = x413 = x521 = x6因此,该数列的第6项为21。

数列问题一年级练习题

数列问题一年级练习题

数列问题一年级练习题一、选择题1. 已知数列1, 3, 5, 7, ...,这个数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法判断2. 一个数列的首项是2,公差是3,第5项的值是:A. 17B. 14C. 13D. 123. 下列数列中,哪一个不是等差数列?A. 2, 4, 6, 8, ...B. 5, 10, 15, 20, ...C. 1, 3, 6, 10, ...D. 3, 6, 9, 12, ...4. 如果一个等差数列的第3项是8,第5项是14,那么它的公差d是:A. 1B. 2C. 3D. 45. 一个等比数列的首项是2,公比是2,那么第4项的值是:A. 16B. 8C. 4D. 2二、填空题6. 等差数列1, 4, 7, 10, ...的第10项是________。

7. 已知等比数列的首项为3,公比为4,它的第3项是________。

8. 如果一个数列的前三项分别是2, 6, 18,那么这个数列是等比数列,它的第4项是________。

9. 一个等差数列的前三项分别是5, 10, 15,那么它的第6项是________。

10. 如果一个数列的第2项是8,第3项是12,那么这个数列的公差是________。

三、简答题11. 给定一个等差数列的前三项分别是a, a+d, a+2d,请说明如何求出这个数列的第n项。

12. 已知一个等比数列的前两项分别是a和ar,如果这个数列的第5项是a3r3,请说明如何求出这个数列的第n项。

13. 解释什么是等差数列和等比数列,并给出它们的定义。

14. 如果一个数列的前三项是1, 4, 13,那么这个数列是等差数列还是等比数列?为什么?15. 已知一个等差数列的前三项分别是3, 8, 13,求这个数列的第10项。

四、计算题16. 一个等差数列的首项是5,公差是2,求这个数列的前10项。

17. 一个等比数列的首项是8,公比是3,求这个数列的前5项。

四年级数列练习题

四年级数列练习题

四年级数列练习题一、选择题1. 已知数列:2, 5, 8, 11, 14, ...,下一个数是多少?A. 15B. 16C. 17D. 182. 请找出下面的规律,然后继续数列:3, 6, 9, 12, 15, ...A. 加1B. 加2C. 加3D. 加43. 数列:1, 4, 9, 16, ...,下一个数是多少?A. 20B. 24C. 25D. 28二、填空题1. 找出下面数列的规律,并填写缺失的数字:1, 3, 6, _, _, 15答案:10, 122. 填写下面数列中的两个缺失数字:2, 4, _, _, 10, 12, 14答案:6, 8三、判断题判断下列数列是否是等差数列,如果是写“√”,否则写“×”。

1. 2, 7, 12, 17, 22答案:√2. 3, 6, 12, 24, 48答案:×四、应用题小明每个月的零花钱是10元,他想知道第6个月时他总共拿了多少钱。

请你帮他算一下。

答案:60元五、解答题请找出规律,然后继续下面的数列:2, 4, 8, 16, ...答案:32, 64, 128, ...(每个数都是前一个数的两倍)请设计一个数列,使得每个数都是前一个数加上3。

答案:1, 4, 7, 10, ...请给出一个实际生活中的例子,说明数列的应用。

答案:一个例子是每天早上起床后身高的增长。

每天的身高都是前一天的身高加上一个固定的值,这就是一个数列。

以上就是关于四年级数列的练习题。

希望对你有所帮助!。

数列 练习题

数列 练习题

数列练习题数列练习题数列是数学中一个非常重要的概念,它在各个领域都有广泛的应用。

数列由一系列有序的数字组成,其中每个数字称为数列的项。

在数列中,每个项都有一个位置,称为项数。

数列的通项公式可以用来表示数列中任意一项的值。

在本文中,我们将通过一些练习题来巩固对数列的理解。

练习题一:等差数列1. 某等差数列的首项是3,公差是2,求该数列的第10项。

2. 某等差数列的前三项分别是1,4,7,求该数列的通项公式。

3. 某等差数列的前五项和为30,公差为3,求该数列的首项。

解答:1. 根据等差数列的通项公式an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。

代入已知条件,可得a10 = 3 + (10-1)2 = 3 + 18 = 21。

2. 设该等差数列的通项公式为an = a1 + (n-1)d。

代入已知条件,可得1 = a1 + (1-1)d,4 = a1 + (2-1)d,7 = a1 + (3-1)d。

解得a1 = 1,d = 3,所以该数列的通项公式为an = 1 + (n-1)3。

3. 设该等差数列的首项为a1,前五项和为30,公差为3。

根据等差数列前n项和的公式Sn = n/2(a1 + an),代入已知条件,可得30 = 5/2(a1 + a5) = 5/2(a1 + a1 + 4d) = 5/2(2a1 + 4d) = 5/2(2a1 + 12)。

解得2a1 + 12 = 12,所以a1 = 0。

因此,该数列的首项为0。

练习题二:等比数列1. 某等比数列的首项是2,公比是3,求该数列的第5项。

2. 某等比数列的前两项分别是2,6,求该数列的通项公式。

3. 某等比数列的前三项和为21,公比为2,求该数列的首项。

解答:1. 根据等比数列的通项公式an = a1 * r^(n-1),其中an表示第n项,a1表示首项,r表示公比。

代入已知条件,可得a5 = 2 * 3^(5-1) = 2 * 3^4 = 2 * 81 = 162。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空。

1、等差数列的通项公式是: n a = 。

2、等比数列的通项公式是: n a = 。

3、等差数列的前n 项和公式是: n S = 。

4、等比数列的前n 项和公式是: n S = 。

5、若,m n p q +=+则对等差数列{}n a 有 ; 若,m n p q +=+则对等比数列{}n b 有 。

6、若232,,n n n n n S S S S S --是某个数列的连续n 项和,则对等差数列{}n a 有 , 用文字语言叙述为 ;
则对等比数列{}n b 有 。

用文字语言叙述为 。

7、数列求和的常用方法有哪些?你能举例说明吗?
二、练习题。

1.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是( ) A .15 B .30 C .31 D .64
2.各项均不为零的等差数列{a n }中,若a 2
n -a n -1-a n +1=0 (n ∈N *,n ≥2),则S 2 010等( ) A .0 B .2 C .2 009 D .4 020
3.已知数列{a n }的前n 项和S n =n 2-4n +2,则|a 1|+|a 2|+…+|a 10|等于( ) A .66 B .65 C .61 D .56
4.等比数列{a n }中,T n 表示前n 项的积,若T 5=1,则 ( ) A .a 1=1 B .a 3=1 C .a 4=1 D .a 5=1
5.由a 1=1,a n +1=a n
3a n +1
给出的数列{a n }的第34项( )
A.34103 B .100 C.1100 D.1104
6.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 等于 ( ) A .9 B .8 C .7 D .6
7.已知数列{a n }的通项公式是a n =2n -12n ,其前n 项和S n =321
64,则项数n 等于 ( )
A .13
B .10
C .9
D .6
8.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于 ( )A .6 B .7 C .8 D .9
9.在如图的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x +y +z 的值为 (
)
A .1
B .2
C .3
D .4
10.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该
生产线连续生产n 年的累计产量为f (n )=1
2n (n +1)(2n +1)吨,但如果年产量超过150吨,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是( ) A .5年 B .6年 C .7年 D .8年
11.在△ABC 中,tan A ,tan B ,tan C 依次成等差数列,则B 的取值范围是 ( )
A.⎝ ⎛⎦⎥⎤0,π3∪⎝ ⎛⎦⎥⎤π2,2π3
B.⎝ ⎛⎦⎥⎤0,π6∪⎝ ⎛⎦⎥⎤π2,5π6
C.⎣⎢⎡⎭⎪⎫π6,π2
D.⎣⎢⎡⎭⎪⎫π3,π2
12.设{a n }是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,则下列等式中恒成立的是 ( ) A .X +Z =2Y B .Y (Y -X )=Z (Z -X ) C .Y 2=XZ D .Y (Y -X )=X (Z -X )
13.数列{a n }的通项公式a n =1
n +n +1
,若{a n }的前n 项和为24,则n =________.
14.在等差数列{a n }中,已知log 2(a 5+a 9)=3,则等差数列{a n }的前13项的和S 13=________.
15.将数列{3n -1}按“第n 组有n 个数”的规则分组如下:(1),(3,9),(27,81,243),…,则第100组中的第一个数是________. 16.已知S n 是等差数列{a n } (n ∈N *)的前n 项和,且S 6>S 7>S 5,有下列四个命题:①d <0;②S 11>0;③S 2<0;④数列{S n }中的最大项为S 11.
其中正确的命题是________.(将所有正确的命题序号填在横线上)
17.设等差数列{a n }的前n 项和为S n ,且a 4-a 2=8,S 10=190. (1)求数列{a n }的通项公式a n ; (2)设p ,q ∈N *,试判断a p ·a q 是否仍为数列{a n }中的项并说明理由.
18.在等差数列{a n }中,若a 3+a 8+a 13=12,a 3a 8a 13=28,求数列{a n }的通项公式.
19.已知数列{a n }的前n 项和为S n ,且向量a =(n ,S n ),b =(4,n +3)共线.
(1)求证:数列{a n }是等差数列;(2)求数列⎩⎨⎧⎭
⎬⎫
1na n 的前n 项和T n .
20.已知f (x )=log a x (a >0且a ≠1),设f (a 1),f (a 2),…,f (a n ) (n ∈N *)是首项为4,公差为2的等差数列.
(1)设a 为常数,求证:{a n }成等比数列;
(2)若b n =a n f (a n ),{b n }的前n 项和是S n ,当a =2时,求S n .
21.已知数列{a n }的前三项与数列{b n }的前三项相同,且a 1+2a 2+22a 3+…+2n -1a n =8n 对任意n ∈N *都成立,数列{b n +1-b n }是等差数列. (1)求数列{a n }与{b n }的通项公式;
(2)是否存在k ∈N *,使得(b k -a k )∈(0,1)?请说明理由.
22.为了治理“沙尘暴”,西部某地区政府经过多年努力,到2006年底,将当地沙漠绿化了40%,从2007年开始,每年将出现这种现象:原有沙漠面积的12%被绿化,即改造为绿洲(被绿化的部分叫绿洲),同时原有绿洲面积的8%又被侵蚀为沙漠,问至少经过几年的绿化,才能使该地区的绿洲面积超过50%?(可参考数据lg 2=0.3,最后结果精确到整数)。

相关文档
最新文档