勾股定理全章复习与巩固(提高)巩固练习说课讲解

合集下载

勾股定理复习说课稿

勾股定理复习说课稿

《勾股定理复习》说课稿各位评委、专家:大家好!我叫肖明锋,来自枣阳市琚湾镇第二中学,今天我说课的内容是人教版八年级下册第17章《勾股定理》复习这一课。

下面我将从教材分析、教法和学法分析、教学过程分析和教学评价与反思四个方面来谈一下我对这节课的认识。

一、教材分析1、教材的地位和作用勾股定理这章内容是人教版八年级下册第17章的内容,它是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是我国古代数学的一项伟大成就,勾股定理为我们提供了直角三角形的三边间的数量关系,它的逆定理为我们提供了判断三角形是否属于直角三角形的依据,也是判定两条直线是否互相垂直的一个重要方法。

这些成果被广泛应用于数学和实际生活的各个方面。

同时,也为学习解直角三角形、四边形、圆、二次函数等知识打下基础。

是数形结合的典范。

2、教学目标根据学生的认知水平和本节课的教学内容及蕴含的数学思想我拟订了以下三个方面的目标:知识与技能:(1)掌握直角三角形的边角之间分别存在着的关系。

(2)熟练运用直角三角形的勾股定理和其逆定理解决实际问题。

过程与方法:经历复习勾股定理的过程,体会勾股定理的内涵,掌握勾股定理及逆定理的应用。

情感态度与价值观:(1)通过合作交流、自主探究体验学习数学带来的自信和成功感,激发学生的学习兴趣(2)在交流、探究、思考中,培养学生的团队意识等人文精神, 感受数学思维的严谨性和逻辑性。

(3)通过学习培养学生数形结合、化归的数学思想,体会勾股定理的文化价值与应用价值。

3、教学重点、难点根据本节内容特点,结合我班学生实际情况,确定教学重、难点如下:重点:掌握并会运用勾股定理及勾股定理的逆定理难点:勾股定理及勾股定理的逆定理的灵活运用解决生活实际问题。

二、教法、学法分析教法:根据教材内容及学生认知特点,在教学中采用“学案引导---启发点拨”的方法。

学法:为了交给学生正确科学的学习方法,培养良好的学习习惯,指导学生采用“自主学习,小组合作”的学习方式。

人教版八年级数学下册第17章勾股定理小结和复习说课稿

人教版八年级数学下册第17章勾股定理小结和复习说课稿
(二)教学反思
在教学过程中,我预见到以下可能出现的问题或挑战:
1.部分学生对勾股定理的理解不够深入,可能在应用时出现错误。
2.学生在小组合作过程中可能出现分工不均、讨论效率低下等问题。
应对策略:
1.针对学生理解不足的问题,及时进行个别辅导,强化勾股定理的知识点。
2.在小组合作中,加强组织和引导,确保每个学生都能积极参与。
(三)学习动机
为了激发学生的学习兴趣和动机,我将在教学中采取以下策略或活动:
1.创设生活情境,让学生感受勾股定理在实际生活中的应用,提高学生的学习兴趣。
2.设计有趣的数学游戏和小组竞赛,激发学生的学习积极性,培养学生的合作意识。
3.鼓励学生主动参与课堂讨论,引导学生发现勾股定理的规律,提高学生的自主学习能力。
(二)学习障碍
学生在学习本节课之前,具备的前置知识有:勾股定理的基本概念、证明方法以及一些简单的应用。可能存在的学习障碍有:
1.对勾股定理的理解不够深入,无法灵活运用勾股定理解决问题。
2.勾股数的辨识能力较弱,容易与其他三角形的三边关系混淆。
3.在解决实际问题时,不能将问题转化为数学模型,运用勾股定理进行求解。
4.创设问题情境,引导学生通过探究、合作交流等方式解决问题,让学生在解决问题中体验成功,增强学习信心。
5.结合学生的年龄特点和兴趣,运用多媒体教学手段,直观展示勾股定理的图形和实例,提高学生的学习兴趣和动机。
三、教学方法与手段
(一)教学策略
我将采用的主要教学方法包括:启发式教学法、探究式教学法和小组合作学习法。
(三)互动方式
我计划设计以下师生互动和生生互动环节,以促进学生的参与和合作:
1.师生互动:教师提问,学生回答;教师引导学生进行探究,给予指导和反馈。

勾股定理单元复习与巩固(6月19日)资料

勾股定理单元复习与巩固(6月19日)资料

勾股定理单元复习与巩固(6月19日)勾股定理单元复习与巩固----------------6月19日知识网络目标认知学习目标:1、了解勾股定理的历史,经历勾股定理的探索过程;2、理解并掌握直角三角形中边角之间的关系;3、能应用直角三角形的边角关系解决有关实际问题.重点:勾股定理及其逆定理的应用难点:勾股定理及其逆定理的应用知识要点梳理知识点一:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。

(即:a2+b2=c2)要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题知识点二:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。

要点诠释:用勾股定理的逆定理判定一个三角形是否是直角三角形应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C 为直角的直角三角形(若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2<a2+b2,则△ABC为锐角三角形)。

知识点三:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。

知识点四:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

规律方法指导1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。

2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。

3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。

勾股定理及其逆定理的复习与巩固

勾股定理及其逆定理的复习与巩固

勾股定理单元复习与巩固---------------------6月10日知识网络目标认知学习目标:1、了解勾股定理的历史,经历勾股定理的探索过程;2、理解并掌握直角三角形中边角之间的关系;3、能应用直角三角形的边角关系解决有关实际问题.重点:勾股定理及其逆定理的应用难点:勾股定理及其逆定理的应用知识要点梳理知识点一:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。

(即:a2+b2=c2)要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题知识点二:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。

要点诠释:用勾股定理的逆定理判定一个三角形是否是直角三角形应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形(若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2<a2+b2,则△ABC为锐角三角形)。

知识点三:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。

知识点四:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

规律方法指导1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。

2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。

3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。

北师大版八年级数学勾股定理复习与巩固

北师大版八年级数学勾股定理复习与巩固

勾股定理复习与巩固【学习目标】1.了解勾股定理的历史,掌握勾股定理的证明方法;2.理解并掌握勾股定理及逆定理的内容;3.能应用勾股定理及逆定理解决有关的实际问题.【知识网络】【要点梳理】要点一、勾股定理1.勾股定理:直角三角形两直角边a b 、的平方和等于斜边c 的平方.(即:222a b c +=)2.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是: (1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题;(3)解决与勾股定理有关的面积计算;(4)勾股定理在实际生活中的应用.要点二、勾股定理的逆定理1.勾股定理的逆定理如果三角形的三边长a b c 、、,满足222a b c +=,那么这个三角形是直角三角形.要点进阶:应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤:(1)首先确定最大边,不妨设最大边长为c ;(2)验证:22a b +与2c 是否具有相等关系:若222a b c +=,则△ABC 是以∠C 为90°的直角三角形;若222a b c +>时,△ABC 是锐角三角形;若222a b c +<时,△ABC 是钝角三角形.满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.要点进阶:常见的勾股数:①3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41.如果(a b c 、、)是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形.观察上面的①、②、④、⑤四组勾股数,它们具有以下特征:1.较小的直角边为连续奇数;2.较长的直角边与对应斜边相差1.3.假设三个数分别为a b c 、、,且a b c <<,那么存在2a b c =+成立.(例如④中存在27=24+25、29=40+41等) 要点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.【典型例题】类型一、勾股定理及逆定理的应用例1、如图所示,等腰直角△ABC 中,∠ACB =90°,E 、F 为AB 上两点(E 左F 右),且∠ECF =45°,求证:222AE BF EF +=.【变式】已知凸四边形ABCD 中,∠ABC =30°,∠ADC =60°,AD =DC ,求证:222BD AB BC =+.例2、如图,在△ABC 中,∠ACB=90°,AC=BC ,P 是△ABC 内的一点,且PB=1,PC=2,PA=3,求∠BPC 的度数.类型二、勾股定理及逆定理的综合应用例3、(2016春•丰城市期末)如图,已知四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积.例4、如图:正方形ABCD中,E是DC中点,F是EC中点.求证:∠BAF=2∠EAD.举一反三:【变式】如图所示,在△ABC中,AB:BC:CA=3:4:5,且周长为36cm,点P从点A开始沿边向B 点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,问过3秒时,△BPQ的面积为多少?类型三、勾股定理的实际应用例5、如图所示,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC=400米,BD=200米,CD=800米,牧童从A处把牛牵到河边饮水后再回家.试问在何处饮水,所走路程最短?最短路程是多少?举一反三:【变式】如图所示,正方形ABCD的AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP最短.求EP+BP的最小值.例6、台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.如图台风中心在我国台湾海峡的B处,在沿海城市福州A的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿北偏东30°方向向C移动,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:(1)该城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?【巩固练习】一.选择题1.在△ABC 中,若1,2,122+==-=n c n b n a ,则△ABC 是( )A . 锐角三角形B . 钝角三角形C . 等腰三角形D . 直角三角形2. 如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°3.下列满足条件的三角形中,不是直角三角形的是( )A .三内角之比为1:2:3B .三边长的平方之比为1:2:3C .三边长之比为3:4:5D .三内角之比为3:4:54.如图,一牧童在A 处牧马,牧童家在B 处,A 、B 处距河岸的距离AC 、BD 的长分别为500m 和700m ,且C 、D 两地的距离为500m ,天黑前牧童从A 点将马牵引到河边去饮水后,再赶回家,那么牧童至少要走( )A .2900mB . 1200mC . 1300mD .1700m5. 直角三角形的两条直角边长为a ,b ,斜边上的高为h ,则下列各式中总能成立的是( )A .ab =h 2B .a 2+b 2=h 2C .111a b h +=D .222111a b h+=6.如图,Rt △ABC 中,∠C =90°,CD ⊥AB 于点D ,AB =13,CD =6,则(AC +BC)2等于( )A .25B .325C .2197D .4057. 已知三角形的三边长为a b c 、、,由下列条件能构成直角三角形的是( )A .()()2222221,4,1a m b m c m =-==+B .()()222221,4,1a m b m c m =-==+C .()()222221,2,1a m b m c m =-==+D .()()2222221,2,1a m b m c m =-==+8.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S 1、S 2、S 3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S 4、S 5、S 6.其中S 1=16,S 2=45,S 5=11,S 6=14,则S 3+S 4=( )A .86B .64C .54D .48二.填空题9.如图,AB =5,AC =3,BC 边上的中线AD =2,则△ABC 的面积为______.10.如图所示,有一块直角三角形纸片,两直角边AB =6,BC =8,将直角边AB 折叠使它落在斜边AC 上,折痕为AD ,则BD =______.11.已知:△ABC 中,AB =15,AC =13,BC 边上的高AD =12,BC =_______.12.如图,E是边长为4cm的正方形ABCD的边AB上一点,且AE=1cm,P为对角线BD上的任意一点,则AP+EP的最小值是cm.13.如图,长方体的底面边长分别为1cm 和2cm,高为4cm,点P在边BC上,且BP=14BC.如果用一根细线从点A开始经过3个侧面缠绕一圈到达点P,那么所用细线最短需要cm.14.小明把一根70cm长的木棒放到一个长宽高分别为30cm,40cm,50cm的木箱中,他能放进去吗?答:(选填“能”或“不能”).15.如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于.16.如图所示,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,∠BAD=________.三.解答题17.能够成为直角三角形边长的三个正整数,我们称之为一组勾股数,观察表格所给出的三个数a,b,c,a<b<c.(1)试找出它们的共同点,并证明你的结论;(2)写出当a=17时,b,c的值.3,4,532+42=525,12,13,52+122=1327,24,25 72+242=2529,40,41 92+402=412……17,b,c 172+b2=c218.如图等腰△ABC的底边长为8cm,腰长为5cm,一个动点P在底边上从B向C以0.25cm/s的速度移动,请你探究,当P运动几秒时,P点与顶点A的连线PA与腰垂直.19.如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.20.如图1,四根长度一定....的木条,其中AB=6cm,CD=15cm,将这四根木条用小钉绞合在一起,构成一个四边形ABCD(在A、B、C、D四点处是可以活动的).现固定AB边不动,转动这个四边形,使它的形状改变,在转动的过程中有以下两个特殊位置.位置一:当点D在BA的延长线上时,点C在线段AD上(如图2);位置二:当点C在AB的延长线上时,∠C=90°.(1)在图2中,若设BC的长为x,请用x的代数式表示AD的长;(2)在图3中画出位置二的准确..图形;(各木条长度需符合题目要求)(3)利用图2、图3求图1的四边形ABCD中,BC、AD边的长.。

勾股定理单元复习与巩固

勾股定理单元复习与巩固

勾股定理单元复习与巩固撰稿:徐长明责编:康红梅知识网络目标认知学习目标:1、了解勾股定理的历史,经历勾股定理的探索过程;2、理解并掌握直角三角形中边角之间的关系;3、能应用直角三角形的边角关系解决有关实际问题.重点:勾股定理及其逆定理的应用难点:勾股定理及其逆定理的应用知识要点梳理知识点一:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。

(即:a2+b2=c2)要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(2)利用勾股定理可以证明线段平方关系的问题(3)求做长度为的线段知识点二:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。

要点诠释:用勾股定理的逆定理判定一个三角形是否是直角三角形应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形(若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2<a2+b2,则△ABC为锐角三角形)。

知识点三:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。

知识点四:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

规律方法指导1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。

2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。

3.勾股定理在应用时一定要注意弄清谁是斜边谁是直角边,这是这个知识在应用过程中易犯的主要错误。

4. 勾股定理的逆定理:如果三角形的三条边长a,b,c有下列关系:a2+b2=c2,•那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法.5.•应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解.。

北师大版八年级勾股定理复习巩固教案[1]

北师大版八年级勾股定理复习巩固教案[1]

勾股定理复习巩固教案教学目标:1 了解勾股定理的定义、作用,能够验证勾股定理2 学会勾股定理的逆定理,证明直角三角形3 通过勾股定理,解直角三角形知识点:一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方ABCabc弦股勾勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。

2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。

)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,133. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c2=a2+b2,则△ABC是以∠C为直角的三角形;若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边);若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。

5. 勾股定理的作用:(1)已知直角三角形的两边求第三边。

(2)已知直角三角形的一边,求另两边的关系。

(3)用于证明线段平方关系的问题。

(4)利用勾股定理,作出长为n的线段典型例题精讲:例1:如图所示,图(1)是用硬纸板做成的两个直角三角形,两直角边的长分别是a和b,斜边长为c,图(2)是以c为直角边的等腰三角形。

勾股定理复习课说课稿(精选5篇)

勾股定理复习课说课稿(精选5篇)

勾股定理复习课说课稿(精选5篇)勾股定理复习课说课稿(精选5篇)作为一位兢兢业业的人民教师,时常需要用到说课稿,认真拟定说课稿,那么问题来了,说课稿应该怎么写?下面是小编收集整理的勾股定理复习课说课稿(精选5篇),欢迎大家分享。

勾股定理复习课说课稿1一、教材分析:(一)教材的地位与作用从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。

从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。

根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。

其中情感态度方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。

(二)重点与难点为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。

限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。

二、教学与学法分析教学方法叶圣陶说过"教师之为教,不在全盘授予,而在相机诱导。

"因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。

学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。

三、教学过程我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。

首先,情境导入古韵今风给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。

让学生观察并思考三个正方形面积之间的关系?它们围成了怎么样三角形,反映在三边上,又蕴含着怎么样数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。

第二步追溯历史解密真相勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。

八年级数学下册勾股定理全章复习与巩固(基础)巩固练习及答案解析

八年级数学下册勾股定理全章复习与巩固(基础)巩固练习及答案解析

勾股定理全章复习与巩固(基础)巩固练习一.选择题1.如图,一棵大树被台风刮断,若树在离地面3m处折断,树顶端落在离树底部4m处,则树折断之前高( )A.5mB.7mC.8mD.10m2.如图,从台阶的下端点B到上端点A的直线距离为( )A.21012 B.3C.586 D.53.下列命题中是假命题的是()A.三个内角的度数之比为1:3:4的三角形是直角三角形;B.三个内角的度数之比为1:3:2的三角形是直角三角形;C.三边长度之比1:3:2的三角形是直角三角形;D.三边长度之比2:2:2的三角形是直角三角形;4. 如图所示,在△ABC中,AB=AC=5,BC=6,点E、F是中线AD上的两点,则图中阴影部分的面积是().A.6 B.12 C.24 D.305.下列三角形中,是直角三角形的是( )A.三角形的三边满足关系a b c+= B.三角形的三边比为1∶2∶3C.三角形的一边等于另一边的一半D.三角形的三边为9,40,416.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要( )A.450a元B.225a元C.150a元D.300a元7.(2018•江阴市模拟)如图,Rt△ABC中,∠C=90°,AC=12,BC=5.分别以AB、AC、BC为边在AB的同侧作正方形ABDE、ACFG、BCIH,四块阴影部分的面积分别为S1、S2、S3、S4.则S1+S2+S3+S4等于()A.90B.60C.169D.1448. 已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.32cmcm D.122cm B.42cm C.62二.填空题9.若一个三角形的三边长分别为6,8,10,则这个三角形中最短边上的高为______.10.若等边三角形的边长为2,则它的面积为______.11.如图,B,C是河岸边两点,A是对岸岸边一点,测得∠ABC=45°,∠ACB=45°,BC=60米,则点A到岸边BC 的距离是______米.12.下列命题中,其逆.命题成立的是______________.(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a b c、、满足222+=,那么这个三a b c角形是直角三角形.13.(2018•杭州模拟)如图,圆柱形容器中,高为120cm,底面周长为100cm,在容器内壁离容器底部40cm的点B 处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿40cm与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为cm.(容器厚度忽略不计)14.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______.15.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若涂黑的四个小正方形的面积的和是102cm,则其中最大的正方形的边长为______cm.16.如图,△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边做垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与△ABC的BC边重叠为止,此时这个三角形的斜边长为__________.三.解答题17.若直角三角形两直角边的比是3:4,斜边长是20,求此三角形的面积.18.(2018春•安次区校级月考)甲乙两船从位于南北走向的海岸线上的港口A同时出发,甲以每小时30海里的速度向北偏东35°方向航行,乙船以每小时40海里的速度向另一方向航行,2小时后,甲船到C岛,乙船到达B岛,B、C两岛相距100海里,判断乙船所走方向,说明理由.19.如图,△ABC中,∠A=90°,AC=20,AB=10,延长AB到D,使CD+DB=AC+AB,求BD的长.20.如图,四边形ABCD是边长为9的正方形纸片,B'为CD边上的点,CB'=3.将纸片沿某条直线折叠,使点B落在点B '处,点A 的对应点为A ',折痕分别与AD ,BC 边交于点M ,N .求BN 的长.【答案与解析】 一.选择题 1.【答案】C ;【解析】树高为3358=+=.2.【答案】A ;=3.【答案】B ; 4.【答案】A ;【解析】由题意BEF CEF S S =△△,∴ 13462ABD S S ==⨯⨯=△阴影.5.【答案】D ;6.【答案】C ;【解析】作高,求得高为15 m ,所以面积为120151502⨯⨯=2m .7.【答案】A ;【解析】解:过D 作BM 的垂线交BM 于N ,∵图中S 2=S Rt △DOI ,S △BOC =S △MND ,∴S2+S4=S Rt△ABC.可证明Rt△AGE≌Rt△ABC,Rt△DNB≌Rt△BHD,∴S1+S2+S3+S4=S1+S3+(S2+S4),=Rt△ABC的面积+Rt△ABC的面积+Rt△ABC的面积=Rt△ABC的面积×3=12×5÷2×3=90.故选:A.8.【答案】C;【解析】设AE=x,则DE=BE=9-x,在Rt△ABE中,. 二.填空题9.【答案】8;10.;⨯=2211.【答案】30;12.【答案】①④;【解析】①的逆命题“两直线平行,同旁内角互补”显然正确;②的逆命题“如果两个角相等,那么它们是直角”很明显是错误的;③的逆命题“如果两个实数的平方相等,那么这两个实数相等”,两个实数可以互为相反数,所以该命题不正确;④的逆命题“如果三角形是直角三角形,那么三角形的三边长a b c、、满足222+=”也是a b c正确的,这是勾股定理的内容.13.【答案】130;【解析】解:如图,将容器侧面展开,作A关于EC的对称点A′,连接A′B交EC于F,则A′B即为最短距离.∵高为120cm,底面周长为100cm,在容器内壁离容器底部40cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿40cm与蚊子相对的点A处,∴A′D=50cm,BD=120cm,∴在直角△A′DB中,A′B===130(cm).故答案是:130.14.【答案】132cm ;【解析】由题意()222111n n +=+,解得60n =,所以周长为11+60+61=132. 15.【答案】【解析】根据勾股定理,四个小正方形的面积和等于最大正方形的面积. 16.【答案】81;三.解答题 17.【解析】解:设此直角三角形两直角边分别是3x ,4x ,由勾股定理得: ()()2223420x x +=化简得:216x =∴直角三角形的面积为: 21346962x x x ⨯⨯==.18.【解析】解:由题意得:甲2小时的路程=30×2=60海里,乙2小时的路程=40×2=80海里,∵602+802=1002, ∴∠BAC=90°,∵C 岛在A 北偏东35°方向, ∴B 岛在A 北偏西55°方向. ∴乙船所走方向是北偏西55°方向.19.【解析】解:设BD =x ,则CD =30-x .在Rt △ACD 中根据勾股定理列出()222(30)1020x x -=++, 解得x =5. 所以BD =5. 20. 【解析】解:点A 与点A ',点B 与点B '分别关于直线MN 对称, ∴AM A M '=,BN B N '=. 设BN B N x '==,则9CN x =-. ∵ 正方形ABCD , ∴ o 90C ∠=. ∴ 222CN B C B N ''+=.∵ C B '=3, ∴ 222(9)3x x -+=.解得5x =.∴5BN .。

七年级数学勾股定理全章复习

七年级数学勾股定理全章复习

勾股定理全章复习、复习要求:1 •体验勾股定理的探索过程;已知直角三角形的两边长,会求第三边长。

2•会用勾股定理知识解决简单问题;会用勾股定理逆定理判定直角三角形。

3•会用勾股定理解决有关的实际问题。

、知识网络:fl三三、知识梳理:1、勾股定理(1) 重视勾股定理的三种叙述形式:①在直角三角形斜边上的正方形等于直角边上的两个正方形(《几何原本》)•②直角三角形直角边上的两个正方形的面积之和等于斜边上的正方形的面积.③直角三角形斜边长度的平方,等于两个直角边长度平方之和.从这三种提法的意义来看,勾股定理有“形的勾股定理”和“数的勾股定理”之分。

(2) 定理的作用:①已知直角三角形的两边,求第三边。

②证明三角形中的某些线段的平方关系。

③作长为^的线段。

勾股定理揭示的是平面几何图形本身所蕴含的代数关系。

利用勾股定理探究长度为的无理数线段的几何作图方法,并在数轴上将这些点表示出来,进一步反映了数与形的互相表示、相互交融,加深对无理数概念的直观认识。

(3) 勾股定理的证明:经典证法有:①欧几里得证法②赵爽《勾股圆方图注》证法③刘徽《青朱出入图》证法④美国总统加菲的证明⑤印度婆什迦罗的证明⑥面积法证明;除此之外,还有文字证明、拼图证明和动态证明。

(4) 勾股定理的应用:勾股定理只适用于直角三角形,首先分清直角及其所对的斜边。

当已知中没有直角时,可作辅助线,构造直角三角形后,再运用勾股定理解决问题。

求线段的长度,常常综合运用勾股定理和直角三角形的其它性质,等腰三角形的性质,轴对称的性质来解决。

2、勾股定理的逆定理(1) 勾股定理的逆定理的证明方法,也是学生不熟悉的,引导学生用所学过的全等三角形的知识,通过构造一个三角形与直角三角形全等,达到证明的目的。

(2) 逆定理的作用:判定一个三角形是否为直角三角形。

(3) 勾股定理的逆定理是把数转化为形,是利用代数计算来证明几何问题。

要注意叙述及书写格式。

运用勾股定理的逆定理的步骤:①首先确定最大的边(如c)②验证:〕+1与[「是否具有相等关系:若「」/ ,则△ ABC是以/ C为90°的直角三角形。

勾股定理全章复习与巩固(基础)知识讲解

勾股定理全章复习与巩固(基础)知识讲解

《勾股定理》全章复习与巩固(基础)责编:杜少波【学习目标】1.了解勾股定理的历史,掌握勾股定理的证明方法;2.理解并掌握勾股定理及逆定理的内容;3.能应用勾股定理及逆定理解决有关的实际问题.【知识网络】【要点梳理】【高清课堂 勾股定理全章复习 知识要点】要点一、勾股定理1.勾股定理:直角三角形两直角边a b 、的平方和等于斜边c 的平方.(即:222a b c +=)2.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题;(3)解决与勾股定理有关的面积计算;(4)勾股定理在实际生活中的应用.要点二、勾股定理的逆定理1.勾股定理的逆定理如果三角形的三边长a b c 、、,满足222a b c +=,那么这个三角形是直角三角形. 要点诠释:应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤:(1)首先确定最大边,不妨设最大边长为c ;(2)验证:22a b +与2c 是否具有相等关系:若222a b c +=,则△ABC 是以∠C 为90°的直角三角形;若222a b c +>时,△ABC 是锐角三角形;若222a b c +<时,△ABC 是钝角三角形.2.勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.要点诠释:常见的勾股数:①3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41. 如果(a b c 、、)是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形.观察上面的①、②、④、⑤四组勾股数,它们具有以下特征:1.较小的直角边为连续奇数;2.较长的直角边与对应斜边相差1.3.假设三个数分别为a b c 、、,且a b c <<,那么存在2a b c =+成立.(例如④中存在27=24+25、29=40+41等)要点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.【典型例题】类型一、勾股定理及逆定理的简单应用1、(2016•益阳)在△ABC 中,AB=15,BC=14,AC=13,求△ABC 的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.【思路点拨】根据题意正确表示出AD 2的值是解题关键.【答案与解析】解:如图,在△ABC 中,AB=15,BC=14,AC=13,设BD=x ,则CD=14﹣x ,由勾股定理得:AD 2=AB 2﹣BD 2=152﹣x 2,AD 2=AC 2﹣CD 2=132﹣(14﹣x )2,故152﹣x 2=132﹣(14﹣x )2,解之得:x=9.∴AD=12.∴S △ABC =BC •AD=×14×12=84.【总结升华】此题主要是要读懂解题思路,然后找到解决问题的切入点,问题才能迎刃而解. 举一反三:【变式】在△ABC 中,AB =15,AC =13,高AD =12.求△ABC 的周长.【答案】解:在Rt △ABD 和Rt △ACD 中,由勾股定理,得22222151281BD AB AD =-=-=.∴ 9BD =.同理22222131225CD AC AD =-=-=.∴ 5CD =.①当∠ACB >90°时,BC =BD -CD =9-5=4.∴ △ABC 的周长为:AB +BC +CA =15+4+13=32.②当∠ACB <90°时,BC =BD +CD =9+5=14.∴ △ABC 的周长为:AB +BC +CA =15+14+13=42.综上所述:△ABC 的周长为32或42.2、如图所示,△ABC 中,∠ACB =90°,AC =CB ,M 为AB 上一点.求证:2222AM BM CM +=.【思路点拨】欲证的等式中出现了AM 2、BM 2、CM 2,自然想到了用勾股定理证明,因此需要作CD ⊥AB .【答案与解析】证明:过点C 作CD ⊥AB 于D .∵ AC =BC ,CD ⊥AB ,∴ AD =BD .∵ ∠ACB =90°,∴ CD =AD =DB .∴ ()()2222AM BM AD DM AD DM +=-++222222AD AD DM DM AD AD DM DM =-⋅+++⋅+222()AD DM =+222()CD DM =+在Rt △CDM 中,222CD DM CM +=,∴ 2222AM BM CM +=.【总结升华】欲证明线段平方关系问题,首先联想勾股定理,从图中寻找或作垂线构造包含所证线段的直角三角形,利用等量代换和代数中的恒等变换进行论证.举一反三:【变式】已知△ABC 中,AB =AC ,D 为BC 上任一点,求证:22AB AD BD CD -=⋅.【答案】解:如图,作AM ⊥BC 于M ,∵AB =AC ,∴BM =CM,则在Rt △ABM 中:222AB AM BM =+……①在Rt △ADM 中:222AD AM DM =+……②由①-②得:22AB AD -=()()22BM DM BM DM BM DM -=+- = (MC +DM )•BD =CD·BD类型二、勾股定理及逆定理的综合应用3、(2014秋•黎川县期中)如图,在正方形ABCD 中,AB=4,AE=2,DF=1,请你判定△BEF 的形状,并说明理由.【思路点拨】根据勾股定理求出BE 2、EF 2、BF 2,根据勾股定理的逆定理判断即可.【答案与解析】解:∵△BEF是直角三角形,理由是:∵在正方形ABCD中,AB=4,AE=2,DF=1,∴∠A=∠C=∠D=90°,AB=AD=DC=BC=4,DE=4﹣2=2,CF=4﹣1=3,∵由勾股定理得:BE2=AB2+AE2=42+22=20,EF2=DE2+DF2=22+12=5,BF2=BC2+CF2=42+32=25,∴BE2+EF2=BF2,∴∠BEF=90°,即△BEF是直角三角形.【总结升华】本题考查了正方形性质,勾股定理,勾股定理的逆定理的应用,解此题的关键是求出BE2+EF2=BF2.4、如图,P是等边三角形ABC内的一点,连结PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连结CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论.(2)若PA:PB:PC=3:4:5,连结PQ,试判断△PQC的形状,并说明理由.【答案与解析】解:(1)猜想:AP=CQ证明:在△ABP与△CBQ中,∵AB=CB,BP=BQ,∠ABC=∠PBQ=60°∴∠ABP=∠ABC-∠PBC=∠PBQ-∠PBC=∠CBQ∴△ABP≌△CBQ∴AP=CQ(2)由PA:PB:PC=3:4:5 可设PA=3a,PB=4a,PC=5a连结PQ,在△PBQ中,由于PB=BQ=4a,且∠PBQ=60°∴△PBQ为正三角形∴PQ=4a于是在△PQC中,∵∴△PQC是直角三角形【总结升华】本题的关键在于能够证出△ABP≌△CBQ,从而达到线段转移的目的,再利用勾股定理的逆定理判断三角形的形状.举一反三:【变式】如图所示,在△ABC中,D是BC边上的点,已知AB=13,AD=12,AC=15,BD=5,求DC的长.【答案】解:在△ABD 中,由22212513+=可知:222AD BD AB +=,又由勾股定理的逆定理知∠ADB =90°. 在Rt △ADC 中,22281,9DC AC AD DC =-==.5、如果ΔABC 的三边分别为a b c 、、,且满足222506810a b c a b c +++=++,判断ΔABC 的形状.【答案与解析】解:由222506810a b c a b c +++=++,得 :2226981610250a a b b c c -++-++-+=∴ 222(3)(4)(5)0a b c -+-+-= ∵ 222(3)0(4)0(5)0a b c -≥-≥-≥,, ∴ 3,4, 5.a b c ===∵ 222345+=,∴ 222a b c +=.由勾股定理的逆定理得:△ABC 是直角三角形.【总结升华】勾股定理的逆定理是通过数量关系来研究图形的位置关系的,在证明中经常要用到.类型三、勾股定理的实际应用6、如图①,一只蚂蚁在长方体木块的一个顶点A 处,食物在这个长方体上和蚂蚁相对的顶点B 处,蚂蚁急于吃到食物,所以沿着长方体的表面向上爬,请你计算它从A 处爬到B 处的最短路线长为多少?【思路点拨】将长方体表面展开,由于蚂蚁是沿长方体木块的表面爬行,且长方体木块底面是正方形,故它爬行的路径有两种情况.【答案与解析】解:如图②③所示.因为两点之间线段最短,所以最短的爬行路程就是线段AB 的长度.在图②中,由勾股定理,得222311130AB =+=.在图③中,由勾股定理,得22268100AB =+=.因为130>100,所以图③中的AB 的长度最短,为10cm ,即蚂蚁需要爬行的最短路线长为10cm .【总结升华】解本题的关键是正确画出立体图形的展开图,把立体图形上的折线转化为平面图形上的直线,再运用勾股定理求解.举一反三:【变式】(2014秋•郑州期末)我国古代有这样一道数学问题:“枯木一根直立地上'高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?,题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A 处缠绕而上,绕五周后其末端恰好到达点B 处.则问题中葛藤的最短长度是多少尺?【答案】解:如图所示,在如图所示的直角三角形中,∵BC=20尺,AC=5×3=15尺,∴AB==25(尺).答:葛藤长为25尺.。

勾股定理复习课说课稿

勾股定理复习课说课稿

勾股定理复习课说课稿一、说教材地位和作用勾股定理是初中数学中的重要内容,它不仅沟通了数与形之间的联系,而且也是解决其他许多数学问题和实际问题的有力工具,历来都是考试的重要知识点。

新课标对这一内容明确要求:会运用勾股定理解决简单问题;会运用勾股定理的逆定理判定直角三角形。

因此,学生对这一内容的熟练掌握是至关重要的。

二、说目标的设定根据本课在教材及新课标中的地位和作用,结合学生现有的知识基础,将本节课的教学目标设定如下:1、知识与技能:掌握勾股定理和勾股定理的逆定理以及它们简单应用。

2、过程与方法:通过对本节内容的复习,培养学生综合运用知识分析问题和解决问题的能力;感悟数形结合的数学思想。

3、情感、态度与价值观:通过简单的基础题的训练,提高学生学数学的信心和热情;通过师生间的互动,调动学生学习的积极性,让学生体会成功的快乐。

三、重、难点的确立及依据基于本节课所复习的内容的重要地位,将本节课的重点设定为:运用勾股定理和勾股定理的逆定理解决相关问题。

由于学生利用数学知识解决实际问题的能力是较低的,往往看不懂题目的意思或不能很好的理解题意,故将本节课难点设定为:综合运用知识分析问题和解决问题。

四、说教法和学法科学合理的教学方法能使教学效果事半功倍,达到教与学的和谐完美统一。

基于此,我准备采用的教法是讲解法,点拨法、讨论法。

讲解法教师可以系统的传授知识,充分发挥教师的主导作用。

学法上,我贯彻的指导思想是把“学习的主动权还给学生”,倡导“自主、合作、探究”的学习方式,具体的学法是让学生自己读题,同桌讨论,对较难的题目亲自画出图形,让学生养成动手动脑的好习惯。

无论是老师的教还是学生的学,我都利用多媒体手段辅助教学。

五、说教学过程为了完成教学目标,解决教学重点,突破教学难点,课堂教学我准备按以下六个环节展开。

环节1:为了让同学对本章有一个系统的认识,我首先复习了本章的知识框图,接下来复习了勾股定理和勾股定理的逆定理的意义,最后复习了它们的区别与联系以及它们的作用,最后把它归结为一个图。

八年级数学勾股定理单元复习与巩固教学设计

八年级数学勾股定理单元复习与巩固教学设计

八年级数学勾股定理单元复习与巩固(精品教学设计)知识网络目标认知学习目标:1、了解勾股定理的历史,经历勾股定理的探索过程;2、理解并掌握直角三角形中边角之间的关系;3、能应用直角三角形的边角关系解决有关实际问题.重点:勾股定理及其逆定理的应用难点:勾股定理及其逆定理的应用知识要点梳理知识点一:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。

(即:a2+b2=c2)要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题知识点二:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。

要点诠释:用勾股定理的逆定理判定一个三角形是否是直角三角形应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形(若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2<a2+b2,则△ABC 为锐角三角形)。

知识点三:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。

知识点四:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

规律方法指导1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。

2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。

3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理全章复习与巩固(提高)巩固练习【巩固练习】一.选择题1.在△ABC 中,若1,2,122+==-=n c n b n a ,则△ABC 是( )A . 锐角三角形B . 钝角三角形C . 等腰三角形D . 直角三角形2. 如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°3.(2015春•西华县期末)下列满足条件的三角形中,不是直角三角形的是( )A .三内角之比为1:2:3B .三边长的平方之比为1:2:3C .三边长之比为3:4:5D .三内角之比为3:4:54.如图,一牧童在A 处牧马,牧童家在B 处,A 、B 处距河岸的距离AC 、BD的长分别为500m 和700m ,且C 、D 两地的距离为500m ,天黑前牧童从A 点将马牵引到河边去饮水后,再赶回家,那么牧童至少要走( )A .2900mB . 1200mC . 1300mD .1700m5. 直角三角形的两条直角边长为a ,b ,斜边上的高为h ,则下列各式中总能成立的是( )A .ab =h 2B .a 2+b 2=h 2C .111a b h +=D .222111a b h+= 6.如图,Rt △ABC 中,∠C =90°,CD ⊥AB 于点D ,AB =13,CD =6,则(AC+BC)2等于( )A .25B .325C .2197D .4057. 已知三角形的三边长为a b c 、、,由下列条件能构成直角三角形的是( )A .()()2222221,4,1a m b m c m =-==+B .()()222221,4,1a m b m c m =-==+C .()()222221,2,1a m b m c m =-==+D .()()2222221,2,1a m b m c m =-==+8.(2016•连云港)如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S 1、S 2、S 3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S 4、S 5、S 6.其中S 1=16,S 2=45,S 5=11,S 6=14,则S 3+S 4=( )A .86B .64C .54D .48二.填空题9.如图,AB =5,AC =3,BC 边上的中线AD =2,则△ABC 的面积为______.10.如图所示,有一块直角三角形纸片,两直角边AB=6,BC=8,将直角边AB折叠使它落在斜边AC上,折痕为AD,则BD=______.11.已知:△ABC中,AB=15,AC=13,BC边上的高AD=12,BC=_______.12.如图,E是边长为4cm的正方形ABCD的边AB上一点,且AE=1cm,P为对角线BD 上的任意一点,则AP+EP的最小值是cm.13.如图,长方体的底面边长分别为1cm 和2cm,高为4cm,点P在边BC上,且BP=14BC.如果用一根细线从点A开始经过3个侧面缠绕一圈到达点P,那么所用细线最短需要cm.14.(2014春•监利县期末)小明把一根70cm长的木棒放到一个长宽高分别为30cm,40cm,50cm的木箱中,他能放进去吗?答:(选填“能”或“不能”).15.(2016春•浠水县期末)如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于.16.如图所示,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,∠BAD=________.三.解答题17.(2016春•召陵区月考)能够成为直角三角形边长的三个正整数,我们称之为一组勾股数,观察表格所给出的三个数a,b,c,a<b<c.(1)试找出它们的共同点,并证明你的结论;(2)写出当a=17时,b,c的值.3,4,532+42=525,12,13,52+122=1327,24,25 72+242=2529,40,41 92+402=412……17,b,c 172+b2=c218.如图等腰△ABC的底边长为8cm,腰长为5cm,一个动点P在底边上从B 向C以0.25cm/s的速度移动,请你探究,当P运动几秒时,P点与顶点A 的连线PA与腰垂直.19.(2015•永州)如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.20. 如图1,四根长度一定....的木条,其中AB =6cm ,CD =15cm ,将这四根木条用小钉绞合在一起,构成一个四边形ABCD (在A 、B 、C 、D 四点处是可以活动的).现固定AB 边不动,转动这个四边形,使它的形状改变,在转动的过程中有以下两个特殊位置.位置一:当点D 在BA 的延长线上时,点C 在线段AD 上(如图2); 位置二:当点C 在AB 的延长线上时,∠C =90°.(1)在图2中,若设BC 的长为x ,请用x 的代数式表示AD 的长;(2)在图3中画出位置二的准确..图形;(各木条长度需符合题目要求) (3)利用图2、图3求图1的四边形ABCD 中,BC 、AD 边的长.【答案与解析】一.选择题1.【答案】D ;【解析】因为()()2222221111c a n n n n -=++-+-+=422n b =,所以222c a b -=,222a b c +=,由勾股定理的逆定理可知:△ABC 是直角三角形.2.【答案】C ;【解析】连接AC ,计算AC 2=BC 2=5,AB 2=10,根据勾股定理的逆定理,△ABC 是等腰直角三角形,∴∠ABC =45°. 3.【答案】D ;【解析】解:A 、因为根据三角形内角和定理可求出三个角分别为30度,60度,90度,所以是直角三角形,故正确;B 、因为其符合勾股定理的逆定理,所以是直角三角形,故正确;C 、因为其符合勾股定理的逆定理,所以是直角三角形,故正确;D 、因为根据三角形内角和公式得三个角中没有90°角,所以不是直角三角形,故不正确.故选D .4.【答案】C ;【解析】作A 点关于河岸的对称点A′,连接BA′交河岸与P ,则PB+PA=PB+PA′=BA′最短,如图,BB′=BD+DB′=1200,B′A′=500,BA′=1300(m ).5.【答案】D ;【解析】解:根据直角三角形的面积可以导出:ab c h =.再结合勾股定理:a 2+b 2=c 2.进行等量代换,得a 2+b 2= 222a b h.两边同除以a 2b 2,得222111a b h+=. 6.【答案】B ;【解析】()222222AC BC AC BC AC BC AB AB CD +=++⋅=+⋅=169+2×13×6=325.7.【答案】B ;【解析】()()22141m m m -+=+.8.【答案】C ;【解析】解:如图1,S 1=AC 2,S 2=AB 2,S 3=BC 2, ∵BC 2=AB 2﹣AC 2, ∴S 2﹣S 1=S 3,如图2,S 4=S 5+S 6,∴S 3+S 4=45﹣16+11+14=54.故选C .二.填空题9.【答案】6;【解析】延长AD 到E ,使DE =AD ,连结BE ,可得△ABE 为直角三角形.10.【答案】3;【解析】设点B 落在AC 上的E 点处,设BD =x ,则DE =BD =x ,AE =AB =6,CE =4,CD =8-x ,在Rt △CDE 中根据勾股定理列方程.11.【答案】14或4;【解析】当△ABC 是锐角三角形时,BC =9+5=14;当△ABC 是钝角三角形时,BC =9-5=4.12.【答案】5【解析】作E 点关于直线BD 的对称点E′,连接AE′,则线段AE′的长即为AP+EP 的最小值5.13.【答案】5【解析】∵长方体的底面边长分别为1cm 和2cm,高为4cm,点P在边BC上,且BP=14BC,∴AC=4cm,PC=34BC=3cm,根据两点之间线段最短,AP=5.14.【答案】能;【解析】解:可设放入长方体盒子中的最大长度是xcm,根据题意,得x2=502+402+302=5000,702=4900,因为4900<5000,所以能放进去.15.【答案】96;【解析】连接AC,在Rt△ACD中,AD=8,CD=6,∴AC2=100,在△ABC中,∵AC2+BC2=102+242=262=AB2,∴△ABC为直角三角形;∴图形面积为:S△ABC﹣S△ACD=×10×24﹣×6×8=96.16.【答案】90°;【解析】延长AD 到M ,使DM =AD ,易得△ABD ≌△MCD .∴ CM =AB =5 AM =2AD =12在△ACM 中22251213+= 即222CM AM AC +=∴∠AMC =∠BAD=90°三.解答题17.【解析】解:(1)以上各组数的共同点可以从以下方面分析:①以上各组数均满足a 2+b 2=c 2;②最小的数(a )是奇数,其余的两个数是连续的正整数;③最小奇数的平方等于另两个连续整数的和,如32=9=4+5,52=25=12+13,72=49=24+25,92=81=40+41…由以上特点我们可猜想并证明这样一个结论:设m 为大于1的奇数,将m 2拆分为两个连续的整数之和,即m 2=n +(n +1), 则m ,n ,n +1就构成一组简单的勾股数,证明:∵m 2=n +(n +1)(m 为大于1的奇数),∴m 2+n 2=2n +1+n 2=(n +1)2,∴m ,n ,(n +1)是一组勾股数;(2)运用以上结论,当a=17时,∵172=289=144+145,∴b=144,c=145.18.【解析】解:如图,作AD ⊥BC ,交BC 于点D ,∵BC=8cm ,∴BD=CD=BC=4cm ,∴AD=3,分两种情况:当点P 运动t 秒后有PA ⊥AC 时,∵AP 2=PD 2+AD 2=PC 2﹣AC 2,∴PD 2+AD 2=PC 2﹣AC 2,∴PD 2+32=(PD+4)2﹣52∴PD=2.25,∴BP=4﹣2.25=1.75=0.25t ,∴t=7秒,当点P 运动t 秒后有PA ⊥AB 时,同理可证得PD=2.25,∴BP=4+2.25=6.25=0.25t ,∴t=25秒,∴点P运动的时间为7秒或25秒.19.【解析】解:(1)过点A作AD⊥ON于点D,∵∠NOM=30°,AO=80m,∴AD=40m,即对学校A的噪声影响最大时卡车P与学校A的距离为40米;(2)由图可知:以50m为半径画圆,分别交ON于B,C两点,AD⊥BC,BD=CD=BC,OA=80m,∵在Rt△AOD中,∠AOB=30°,∴AD=OA=×80=40m,在Rt△ABD中,AB=50,AD=40,由勾股定理得:BD===30m,故BC=2×30=60米,即重型运输卡车在经过BD时对学校产生影响.∵重型运输卡车的速度为18千米/小时,即=300米/分钟,∴重型运输卡车经过BD时需要60÷300=0.2(分钟)=12(秒).答:卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间为12秒.20.【解析】解:(1)∵在四边形ABCD转动的过程中,BC、AD边的长度始终保持不变,BC=x,∴在图2中,AC=BC-AB=x-6,AD=AC+CD=x+9.(2)位置二的图形见图3.(3)∵在四边形ABCD转动的过程中,BC、AD边的长度始终保持不变,∴ 在图3中,BC =x ,AC =AB +BC =6+x ,AD =x +9. 在△ACD 中,∠C =90° 由勾股定理得222AC CD AD +=. ∴ 222(6)15(9)x x ++=+. 整理,得2212362251881x x x x +++=++. 化简,得6x =180. 解得 x =30.即 BC =30.∴ AD =39.。

相关文档
最新文档