先进PID控制及其MATLAB仿真6
matlab中pid控制器的应用实例
matlab中pid控制器的应用实例Matlab中PID控制器的应用实例引言PID控制器是一种常用的控制器,可以广泛应用于自动控制系统中。
其中,P代表比例,I代表积分,D代表微分。
PID控制器通过对误差、误差的积分和误差的微分进行加权求和,以便更好地控制系统的输出。
在本文中,我们将使用Matlab来演示PID控制器的应用实例。
我们将从控制物理实验中的水位控制系统开始,然后详细介绍PID控制器的原理和参数调整,最后使用Matlab进行仿真实验和结果分析。
一、实验背景我们考虑一个简单的水位控制系统。
系统由一个水箱和一个控制阀组成。
当水箱的水位低于设定水位时,控制阀将打开,往水箱中注水,当水位达到设定水位时,控制阀将关闭。
我们的目标是设计一个PID控制器,以便精确控制水箱中的水位。
二、PID控制器介绍在介绍PID控制器之前,我们需要了解一些基本的概念。
1. 比例控制(P)比例控制是根据误差的大小来调整控制量的大小。
比例增益参数Kp用于调整误差和控制量之间的比例关系。
控制量可通过以下公式计算:Control = Kp * Error其中,Error是设定值与测量值之间的差异。
2. 积分控制(I)积分控制用于减小系统的稳态误差。
积分增益参数Ki用于计算控制量的积分部分。
控制量可通过以下公式计算:Control = Kp * Error + Ki * \int Error dt其中,\int Error dt表示误差的积分。
3. 微分控制(D)微分控制用于减小系统的瞬态误差。
微分增益参数Kd用于计算控制量的微分部分。
控制量可通过以下公式计算:Control = Kp * Error + Ki * \int Error dt + Kd * \frac{{dError}}{{dt}}其中,\frac{{dError}}{{dt}}表示误差的微分。
三、PID控制器参数调整PID控制器中的三个参数(Kp,Ki,Kd)对控制器的性能有着重要的影响。
学生--PID控制MATLAB仿真实验
计算机控制技术实验指导书(MATLAB版)机电学院杨蜀秦编2012-11-19实验一 连续系统的模拟PID 仿真一、基本的PID 控制 在模拟控制系统中,控制器最常用的控制规律是PID 控制。
模拟PID 控制系统原理框图如图1-1所示。
图1-1 模拟PID 控制系统原理框图PID 控制规律为:⎪⎪⎭⎫⎝⎛++=⎰dt t de T dt t e T t e k t u DtI p )()(1)()(0或写成传递函数的形式⎪⎪⎭⎫ ⎝⎛++==s T s T k s E s U s G D I p 11)()()( Ex1 以二阶线性传递函数ss 251332+为被控对象,进行模拟PID 控制。
输入信号)2.0*2sin()(t t r π=,仿真时取3,1,60===d i p k k k ,采用ODE45迭代方法,仿真时间10s 。
仿真方法一:在Simulink 下进行仿真,PID 控制由Simulink Extras 节点中的PID Controller 提供。
仿真程序:ex1_1.mdl ,如图1-2所示。
图1-2 连续系统PID 的Simulink 仿真程序连续系统的模拟PID 控制正弦响应结果如图1-3所示。
图1-3 连续系统的模拟PID 控制正弦响应仿真方法二:在仿真一的基础上,将仿真结果输出到工作空间中,并利用m 文件作图。
仿真程序:ex1_2.mdl ,程序中同时采用了传递函数的另一种表达方式,即状态方程的形式,其中[]0,01,1330,25010==⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=D C B A ,如图1-4所示。
m 文件作图程序:ex1_2plot.mclose all ;plot(t,rin,'k',t,yout,'k'); xlabel('time(s)'); ylabel('r,y');二、线性时变系统的PID 控制 Ex2 设被控对象为Jss Ks G +=2)(,其中)2sin(300400),6sin(1020t K t J ππ+=+=,输入信号为)2sin(5.0t π。
PID控制算法及MATLAB仿真分析
题目:以PID控制进行系统仿真学院自动化学院专业班级工业自动化111班学生姓名黄熙晴目录1 引言 (1)1.1本论文研究内容 (1)2 PID控制算法 (1)2.1模拟PID控制算法 (1)2.2数字式PID控制算法 (3)2.3PID控制算法的改进 (5)2.3.1微分项的改进 (5)2.3.2积分项的改进 (9)2.4模糊PID控制算法 (11)2.4.1模糊推理的系统结构 (12)2.4.2 PID参数在线整定原则 (12)2.5PID控制器研究面临的主要问题 .................................. 错误!未定义书签。
3 MATLAB编程和仿真 (13)3.1PID控制算法分析 (13)3.2MATLAB仿真 (15)4结语 (20)参考文献...................................................................................... 错误!未定义书签。
1 引言PID控制器以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。
光学表面等离子共振生物传感技术受温度影响很大,因此设计高精度的温度控制器对于生物分析仪十分重要。
研究PID的控制算法是PID控制器整定参数优化和设定的关键技术之一。
在工业过程控制中,目前采用最多的控制方式依然是PID方式。
它具有容易实现、控制效果好、鲁棒性强等特点,同时它原理简单,参数物理意义明确,理论分析体系完整,并为工程界所熟悉,因而在工业过程控制中得到了广泛应用。
在实际的应用中,许多被控过程机理复杂,具有高度非线性、时变不确定性和纯滞后等特点,特别是在噪声、负载扰动等因素的影响下,参数复杂烦琐的整定过程一直困扰着工程技术人员。
为了减少参数整定的工作量,克服因环境变化或扰动作用造成系统性能的降低,就要提出一种PID控制参数的自动整定。
1.2本论文研究内容本文在介绍传统的PID控制算法,并对传统算法改进后,在学习的基础上提出一种模糊参数自整定方法,这种模糊控制的PID算法必须精确地确定对象模型。
先进PID控制算法研究及仿真
摘要PID控制是最早发展起来的控制策略之一,由于其算法简单,鲁棒性好和可靠性高,被广泛应用于工业过程控制,尤其用于可简历精确数学模型的确定性控制系统。
而实际生产过程往往具有非线性、时变不确定性,难以建立精确的数学模型,应用常规PID控制器不能达到理想的控制效果。
为了达到使PID 控制能适应复杂的工况和高指标的控制要求,人们对PID控制进行了改进,出现了各种新型PID控制器,对于复杂对象,其控制效果远远超过常规PID控制。
本文主要选取两种先进PID控制算法:专家PID控制算法和模糊自整定PID控制算法,对典型纯迟延二阶系统对象进行控制仿真。
在化工、炼油、冶金、玻璃等一些复杂的工业工程当中,被控对象除了容积迟延外,往往不同程度的存在纯迟延,具有纯迟延的过程被公认为是较难控制的过程,因此,纯迟延系统一直受到人们的关注,成为重要的研究课题之一,对此类问题的研究具有重要的理论和实际意义。
我们选择以纯迟延系统为研究对象,并和常规PID控制进行对比,来得出先进PID控制算法更能适应非线性、时变不确定性的复杂系统的控制要求的结论。
关键词:智能控制;专家PID控制;模糊自整定PID控制;纯迟延二阶系统ABSTRACTThe PID control is a development to get up at the earliest stage of control one of the strategies.Because it's calculate way be simple.Drive extensive application at the industry process control.Particularly used for can mathematics model of the resume precision really settle sex control system.But the actual production line usually hasn't line,the hour change indetermination.Hard establishment the mathematics model of the precision.Application normal regulations PID the controller can't attain ideal of control effect.For attaining to make PID control ability orientation complications of work condition and Gao index sign of control request.People carried on an improvement to the PID control. Appeared various new PID controller.For complications object, it's control effect is far far above the normal regulations PID control.This text the main selection be two kinds of forerunner PID control calculate way:expert PID control calculate way and misty from whole settle PID control calculate way.Pure to typical model delay two rank system the object carry on control to imitate true.At chemical engineering, oil refining, metallurgy, glass...etc. some complications of industry engineering in the middle.Drive control object in addition to capacity delay,usually dissimilarity degree of existence pure delay.The process had pure delay drive generally accepted for is more difficult control of process.Therefore,The pure delay system has been be subjected to people of concern.The research become importance one of the topics,to this kind problem of research have importance of theories with actual meaning.We choice with pure delay system for research bine carry on contrast with normal regulations PID e forerunner PID control calculate way more ability orientation not line,hour become indetermination complications the control of the system request of conclusion.Keywords:Intelligence control; Expert PID control; Misty from whole settle PID control; Pure delay two rank system目录摘要 (I)ABSTRACT .......................................................... I I 第1章绪论 . (1)1.1课题背景与意义 (1)1.2PID概述 (2)1.2.1 PID控制原理 (2)1.2.2 单神经元PID控制器 (3)1.2.3 模糊自适应PID控制器 (4)1.2.4 专家PID控制器 (5)1.3.典型纯迟延二阶对象 (6)第2章专家式智能自整定PID控制 (8)2.1专家智能控制 (8)2.2专家式智能整定PID控制器的典型结构 (9)2.2.1 基于模式识别的专家式智能自整定PID控制器 (9)2.2.2 专家系统智能自整定PID控制器 (11)2.3专家PID控制原理 (13)第3章模糊PID控制 (16)3.1模糊控制 (16)3.1.1 模糊控制的基本原理 (16)3.1.2 模糊控制器 (17)3.1.3 模糊控制对非线性复杂函数的逼近 (20)3.1.4 模糊参数整定的基本思想 (20)3.1.5 模糊参数整定器的设计 (21)3.2模糊控制算法采样时间的选取 (25)第4章先进PID控制的MATLAB仿真及说明 (28)4.1MATLAB简介 (28)4.2仿真模型及条件 (29)4.2.1 应用对象及仿真条件选取 (29)4.2.2 仿真比较及分析 (29)结论 (32)参考文献 (33)附录 (35)致谢 .............................................. 错误!未定义书签。
基于Matlab的PID温控系统的设计与仿真
基于Matlab的PID温控系统的设计与仿真摘要在Matlab6.5环境下,通过Matlab/Simulink提供的模块,对温度控制系统的PID控制器进行设计和仿真。
结果表明,基于Matlab的仿真研究,能够直观、简便、快捷地设计出性能优良的交流电弧炉温度系统控制器。
关键词温度系统数学模型;参数整定;传递函数在钢铁冶炼过程中,越来越多地使用交流电弧炉设备,温控系统的控制性能直接影响到钢铁的质量,所以炉温控制占据重要的位置。
PID控制是温控系统中一种典型的控制方式,是在温度控制中应用最广泛、最基本的一种控制方式。
随着科学发展,各行各业对温控精度要求越来越高,经典PID控制在某些场合已不能满足要求,因而智能PID控制的引入是精密温控系统的发展趋势。
为了改善电弧炉系统恒温控制质量差的现状,研制具有快速相应的、经济性好的、适合国情的恒温控制装置具有十分重要的意义。
1温控系统模型的建立在Matlab6.5环境下,通过Simulink提供的模块,对电弧炉温控系统的PID控制器进行设计和仿真。
由于常规PID控制器结构简单、鲁棒性强,被广泛应用于过程控制中。
开展数字PID控制的电弧炉控制系统模型使应用于生产实际的系统稳定性和安全性得到迅速改善。
1.1温控系统阶越响应曲线的获得在高校微机控制技术实验仪器上按以下步骤测得温度系统阶越响应曲线:1)给温度控制系统75%的控制量,即每个控制周期通过X0=255×75%=191个周波数,温度系统处于开环状态。
2)ATMEGA32L内部A/D每隔0.8s采样一次温度传感器输出的电压值,换算成实际温度值,再通过串口通讯将温度值送到电脑上保存。
使用通用串口调试助手“大傻串口调试软件-3.0AD”作为上位机接收数据并保存到文件“S曲线采集.txt”中。
3)在采集数据过程中,不时的将已经得到的数据通过“MicrosoftExcel”文档画图,查看温度曲线是否已经进入了稳态区;根据若曲线在一个较长时间里基本稳定在一个小范围值内即表明进入稳态区了,此时关闭系统。
模糊自适应整定PID控制matlab仿真程序(刘金锟-先进PID控制及其MATLAB仿真)
模糊自适应整定PID控制matlab仿真程序(刘金锟-先进PID控制及其MATLAB仿真)2这个例子的程序百度文库里有很多版本,但我下了很多都有错误,运行不了。
以下程序我一字一字的敲出来的,已经成功运行,绝对无误。
仿真实例,被控对象为p G (s)=ss s 1047035.8752350023++ 采样时间为1ms ,采用模糊PID 控制进行阶跃响应,在第300个采样时间时控制器输出加1.0的干扰,相应的运行结果如图1~13所示。
仿真程序如下:将以下程序保存为fuzzypid.m 文件,即可得到仿真结果。
%fuzzy tunning PID controlclear all ;clear all ;a=newfis('fuzzpid');a=addvar(a,'input','e',[-3,3]); %parameter ea=addmf(a,'input',1,'NB','zmf',[-3,-1]);a=addmf(a,'input',1,'NM','trimf',[-3,-2,0]);a=addmf(a,'input',1,'NS','trimf',[-3,-1,1]);a=addmf(a,'input',1,'Z','trimf',[-2,0,2]);a=addmf(a,'input',1,'PS','trimf',[-1,1,3]);a=addmf(a,'input',1,'PM','trimf',[0,2,3]);a=addmf(a,'input',1,'PB','smf',[1,3]);a=addvar(a,'input','ec',[-3,3]); %parameter eca=addmf(a,'input',2,'NB','zmf',[-3,-1]);a=addmf(a,'input',2,'NM','trimf',[-3,-2,0]);a=addmf(a,'input',2,'NS','trimf',[-3,-1,1]);a=addmf(a,'input',2,'Z','trimf',[-2,0,2]);a=addmf(a,'input',2,'PS','trimf',[-1,1,3]);a=addmf(a,'input',2,'PM','trimf',[0,2,3]);a=addmf(a,'input',2,'PB','smf',[1,3]);a=addvar(a,'output','kp',[-0.3,0.3]); %parameter kpa=addmf(a,'output',1,'NB','zmf',[-0.3,-0.1]);a=addmf(a,'output',1,'NM','trimf',[-0.3,-0.2,0]);a=addmf(a,'output',1,'NS','trimf',[-0.3,-0.1,0.1]);a=addmf(a,'output',1,'Z','trimf',[-0.2,0,0.2]);a=addmf(a,'output',1,'PS','trimf',[-0.1,0.1,0.3]);a=addmf(a,'output',1,'PM','trimf',[0,0.2,0.3]);a=addmf(a,'output',1,'PB','smf',[0.1,0.3]);a=addvar(a,'output','ki',[-0.06,0.06]); %parameter ki a=addmf(a,'output',2,'NB','zmf',[-0.06,-0.02]);a=addmf(a,'output',2,'NM','trimf',[-0.06,-0.04,0]);a=addmf(a,'output',2,'NS','trimf',[-0.06,-0.02,0.02]); a=addmf(a,'output',2,'Z','trimf',[-0.04,0,0.04]);a=addmf(a,'output',2,'PS','trimf',[-0.02,0.02,0.06]);a=addmf(a,'output',2,'PM','trimf',[0,0.04,0.06]);a=addmf(a,'output',2,'PB','smf',[0.02,0.06]);a=addvar(a,'output','kd',[-3,3]); %parameter kda=addmf(a,'output',3,'NB','zmf',[-3,-1]);a=addmf(a,'output',3,'NM','trimf',[-3,-2,0]);a=addmf(a,'output',3,'NS','trimf',[-3,-1,1]);a=addmf(a,'output',3,'Z','trimf',[-2,0,2]);a=addmf(a,'output',3,'PS','trimf',[-1,1,3]);a=addmf(a,'output',3,'PM','trimf',[0,2,3]);a=addmf(a,'output',3,'PB','smf',[1,3]);rulelist=[1 1 7 1 5 1 1;1 2 7 1 3 1 1;1 3 62 1 1 1;1 4 62 1 1 1;1 5 5 3 1 1 1;1 6 4 42 1 1;1 7 4 4 5 1 1;2 1 7 1 5 1 1;2 2 7 13 1 1;2 3 6 2 1 1 1;2 4 53 2 1 1;2 5 53 2 1 1;2 6 4 43 1 1;2 734 4 1 1;3 1 6 14 1 1;3 2 6 2 3 1 1;3 3 6 3 2 1 1;3 4 5 3 2 1 1;3 54 4 3 1 1;3 6 3 5 3 1 1;3 7 3 54 1 1;4 1 6 2 4 1 1;4 2 6 2 3 1 1;4 35 3 3 1 1;4 4 4 4 3 1 1;4 5 3 5 3 1 1;4 6 2 6 3 1 1;4 7 2 6 4 1 1;35 1 5 2 4 1 1;5 2 5 3 4 1 1;5 3 4 4 4 1 1;5 4 3 5 4 1 1;5 5 3 5 4 1 1;5 6 2 6 4 1 1;5 7 2 7 4 1 1;6 1 5 47 1 1;6 2 4 4 5 1 1;6 3 3 5 5 1 1;6 4 2 5 5 1 1;6 5 2 6 5 1 1;6 6 27 5 1 1;6 7 1 7 7 1 1;7 1 4 4 7 1 1;7 2 4 4 6 1 1;7 3 2 5 6 1 1;7 4 2 6 6 1 1;7 5 2 6 5 1 1;7 6 1 7 5 1 1;7 7 1 7 7 1 1];a=addrule(a,rulelist);a=setfis(a,'DefuzzMethod','mom');writefis(a,'fuzzpid');a=readfis('fuzzpid');%PID controllerts=0.001;sys=tf(5.235e005,[1,87.35,1.047e004,0]); dsys=c2d(sys,ts,'tustin');[num,den]=tfdata(dsys,'v');u_1=0.0;u_2=0.0;u_3=0.0;y_1=0;y_2=0;y_3=0;x=[0,0,0]';4error_1=0;e_1=0.0;ec_1=0.0;kp0=0.40;kd0=1.0;ki0=0.0;for k=1:1:500time(k)=k*ts;rin(k)=1;%using fuzzy inference to tunning PIDk_pid=evalfis([e_1,ec_1],a);kp(k)=kp0+k_pid(1);ki(k)=ki0+k_pid(2);kd(k)=kd0+k_pid(3);u(k)=kp(k)*x(1)+kd(k)*x(2)+ki(k)*x(3);if k==300 %adding disturbance(1.0v at time 0.3s)u(k)=u(k)+1.0;endif u(k)>=10u(k)=10;endif u(k)<=-10u(k)=-10;endyout(k)=-den(2)*y_1-den(3)*y_2-den(4)*y_3+num(1)*u(k)+num(2)*u_1+num(3)*u_2+num(4)*u_3;error(k)=rin(k)-yout(k);%%%%%%%%%%%%%%%%%%%%%%%%%return of pid parameters%%%%%%%%%%%%%%%%%%%%%%%% u_3=u_2;u_2=u_1;u_1=u(k);y_3=y_2;y_2=y_1;y_1=yout(k);5x(1)=error(k); %calculating Px(2)=error(k)-error_1; %calculating Dx(3)=x(3)+error(k); %calculating De_1=x(1);ec_1=x(2);error_2=error_1;error_1=error(k);endshowrule(a)figure(1);plot(time,rin,'b',time,yout,'r'); xlabel('time(s)');ylabel( 'rin,yout');figure(2);plot(time,error,'r');xlabel('time(s)');ylabel( 'error ');figure(3);plot(time,u,'r');xlabel('time(s)');ylabel( 'u ');figure(4);plot(time,kp,'r');xlabel('time(s)');ylabel( 'kp ');figure(5);plot(time,ki,'r');xlabel('time(s)');ylabel( 'ki ');figure(6);plot(time,kd,'r');xlabel('time(s)');ylabel( 'kd ');figure(7);plotmf(a,'input',1);figure(8);plotmf(a,'input',2);figure(9);plotmf(a,'output',1);figure(10);plotmf(a,'output',2);figure(11);plotmf(a,'output',3);plotfis(a);fuzzy fuzzpid.fis6仿真运行结果:789。
用MATLAB对PID控制做简单的仿真
⽤MATLAB 对PID 控制做简单的仿真PID 控制是⽬前⼯程上应⽤最⼴的⼀种控制⽅法,其结构简单,且不依赖被控对象模型,控制所需的信息量也很少,因⽽易于⼯程实现,同时也可获得较好的控制效果。
PID 控制是将误差信号e(t)的⽐例(P),积分(I)和微分(D)通过线性组合构成控制量进⾏控制,其输出信号为:下⾯⽤MATLAB 软件对PID 控制做简单的仿真描述。
1. 建⽴⼆阶负反馈控制系统,其开环传递函数为:clc; clear all; close all;Go = tf(1,conv([2,1],[5,1]));2. ⽐例控制,输出与输⼊偏差成⽐例,即直接将误差信号放⼤或缩⼩。
⽐例控制的传递函数为:取不同的⽐例系数,绘制系统的单位阶跃响应曲线:Kp = [0.5,2,5,10];for m = 1:4 sys = feedback(Kp(m)*Go,1); step(sys); hold on;end随着K P 值的增⼤,系统响应速度加快,但系统的超调也随着增加,调节时间也随着增长。
当K P 增⼤到⼀定值后,闭环系统将趋于不稳定。
⽐例控制具有抗⼲扰能⼒强、控制及时、过渡时间短的优点,但存在稳态误差,增⼤⽐例系数可提⾼系统的开环增益,减⼩系统的稳态误差,从⽽提⾼系统的控制精度,但这会降低系统的相对稳定性,甚⾄可能造成闭环系统的不稳定,因此,在系统校正和设计中,⽐例控制⼀般不单独使⽤。
3. 微分控制,输出与输⼊偏差的微分成⽐例,即与偏差的变化速度成⽐例。
微分控制(与⽐例控制同时使⽤)的传递函数为:取不同的微分系数,绘制系统的单位阶跃响应曲线:Kp = 10;u(t)=[e(t)+e(t)dt +]K P 1T I ∫t 0T D de(t)dt(s)=G O 1(2s +1)(5s +1)(s)=G C K P(s)=(1+s)G C K P T DTd = [0,0.4,1,4];for m = 1:4 G1 = tf([Kp*Td(m),Kp],[0,1]); sys = feedback(G1*Go,1); step(sys); hold on;end随着T D 值的增⼤,系统超调量逐渐减⼩,动态特征有改善。
基于matlab的智能PID控制器设计和仿真毕业设计论文
基于MATLAB的智能PID控制器设计与仿真摘要在工业生产中应用非常广泛的是PID控制器,是最早在经典控制理论基础上发展起来的控制方法,应用也十分广泛。
传统的PID控制器原理十分简单,即按比例、积分、微分分别控制的控制器,但是他的核心也是他的难点就是三个参数(比例系数Kp、积分系数Ki、微分系数Kd)的整定。
参数整定的合适,那么该控制器将凭借结构简单、鲁棒性好的优点出色的完成控制任务,反之则达不到人们所期望的控制效果。
人工神经网络模拟人脑的结构和功能而形成的信息处理系统,是一门十分前沿高度综合的交叉学科,并广泛应用于工程领域。
神经网络控制是把自动控制理论同他模仿人脑工作机制的数学模型结合起来,并拥有自学习能力,能够从输入—输出数据中总结规律,智能的处理数据。
该技术目前被广泛应用于处理时变、非线性复杂的系统,并卓有成效。
关键词自适应PID控制算法,PID控制器,神经网络Design and simulation of Intelligent PID Controllerbased on MATLABAbstractPID controller ,the control method which is developed on the basis of classical control theory, is widely used in industrial production.The Principle of traditional PID controller is very simple, which contains of the proportion, integral, differential three component, but its core task and difficulties is three parameter tuning(proportional coefficient Kp, integral coefficient Ki and differential coefficient KD).If the parameter setting is suitable, the controller can accomplish the control task with the advantages of simple structure and good robustness;but on the contrary, it can not reach the desired control effect which we what.Artificial neural network , the formation of the information processing system which simulate the structure and function of the human brain , is a very high degree of integration of the intersection of disciplines, and widely used in the field of engineering. Neural network control ,combining automatic control theory and the imitate mathematical model of the working mechanism of human brain , has self-learning ability, and can summarize the law of the input-output data , dealing with data intelligently .This technique has been widely used in the process of time-varying, nonlinear and complex system, and it is very effective.Key W ord:Adaptive PID control algorithm,PID controller,Neural network目录摘要 (I)Abstract (II)第一章绪论 (1)1.1 课题研究背景及意义 (1)第二章 PID控制器 (2)2.1 PID控制原理 (2)2.2常规PID控制器的算法理论 (3)2.2.1 模拟PI D控制器 (3)2.2.2 数字P I D控制算法 (3)2.2.3常规PID控制的局限 (5)2.2.4 改进型PID控制器 (5)第三章人工神经网络 (8)3.1 人工神经网络的原理 (8)3.2神经网络PID控制器 (8)3.2.1神经元PID控制器 (8)3.2.2 单神经元自适PID应控制器 (9)3.3 BP神经网络参数自学习的PID控制器 (12)第四章MATAB仿真 (16)4.1 仿真过程 (16)第五章结论与展望 (24)致谢 (25)参考文献 (25)华东交通大学毕业设计(论文)第一章绪论1.1 课题研究背景及意义在工业生产中应用非常广泛的是PID控制器,是最早在经典控制理论基础上发展起来的控制方法,应用也十分广泛。
基于MATLAB的PID控制器参数整定及仿真
基于MATLAB的PID控制器参数整定及仿真PID控制器是一种经典的控制器,在工业自动化控制系统中广泛应用。
其主要功能是根据系统的误差信号,通过调整输出信号的比例、积分和微分部分来减小误差,并达到系统的稳定控制。
PID控制器参数整定是指确定合适的比例常数Kp、积分常数Ki和微分常数Kd的过程。
本文将介绍基于MATLAB的PID控制器参数整定及仿真的方法。
首先,在MATLAB中建立一个包含PID控制器的模型。
可以通过使用MATLAB的控制系统工具箱来实现这一过程。
在工具箱中,可以选择合适的建模方法,如直接设计模型、积分节点模型或传输函数模型。
通过这些工具,可以方便地建立控制系统的数学模型。
其次,进行PID控制器参数整定。
PID控制器参数整定的目标是通过调整比例常数Kp、积分常数Ki和微分常数Kd,使系统的响应特性达到最佳状态。
常用的PID参数整定方法有经验法、试误法、Ziegler-Nichols方法等。
1.经验法:根据系统的特性和经验,选择合适的PID参数。
这种方法常用于初步整定,但可能需要根据实际情况调整参数。
2.试误法:通过逐步试验和调整PID参数,使系统的输出响应逐渐接近期望值,从而达到最佳控制效果。
3. Ziegler-Nichols方法:该方法是一种经典的系统辨识方法,通过测试系统的临界稳定性,得到系统的传递函数参数,并据此计算出合适的PID参数。
最后,进行PID控制器参数整定的仿真。
在MATLAB中,可以通过使用PID模块进行仿真。
可以输入相应的输入信号和初始参数,观察系统的输出响应,并通过调整参数,得到最佳的控制效果。
总结起来,基于MATLAB的PID控制器参数整定及仿真的过程包括:建立控制系统模型、选择PID参数整定方法、进行PID参数整定、进行仿真实验。
PID控制器参数整定的好坏直接影响控制系统的工作性能。
通过基于MATLAB的仿真实验,可以方便地调整和优化控制系统的PID参数,提高系统的响应速度、稳定性和抗干扰性能。
PID控制系统的设计及仿真
PID控制系统的设计及仿真首先,我们需要理解PID控制器的工作原理。
PID控制器通过比较目标值与实际值之间的偏差,以及偏差的变化率和积分值来计算输出控制信号,从而实现目标值与实际值之间的闭环控制。
在设计PID控制系统时,我们需要确定三个参数:比例增益(KP)、积分时间常数(TI)和微分时间常数(TD)。
这些参数的选择将直接影响控制系统的稳定性和性能。
首先,我们可以使用频率响应曲线和Bode图等方法来选择合适的KP参数。
频率响应曲线可以帮助我们分析系统的稳定性和相位边界。
选择适当的KP值可以保证系统在稳定状态下能够尽快达到目标值。
接下来,我们可以通过试错法来确定TI和TD参数。
试错法可以根据系统的实际响应来调整这两个参数。
可以从初始调节试验开始,逐步调整参数,直到达到预期的系统性能。
在MATLAB中进行PID控制器的设计和仿真非常方便。
MATLAB提供了丰富的工具箱和函数,可以帮助我们进行系统建模、参数调节和仿真分析。
首先,我们需要使用MATLAB的控制系统工具箱来建立系统模型。
可以使用MATLAB提供的工具来建立连续或离散时间的传递函数模型。
接下来,我们可以使用PID函数来设计PID控制器并将其与系统模型进行连接。
PID函数可以使用我们之前确定的KP、TI和TD参数来创建一个PID对象。
然后,我们可以使用仿真命令来运行系统的仿真,并观察系统的响应。
可以使用step命令来观察系统的阶跃响应,使用impulse命令来观察系统的冲击响应,使用bode命令来观察系统的频率响应等等。
通过分析仿真结果,我们可以评估系统的稳定性、超调量、收敛时间等性能指标,并根据需要对PID参数进行进一步的调整。
总结起来,PID控制系统的设计及仿真可以通过MATLAB来完成。
我们可以使用MATLAB提供的工具箱和函数进行系统建模和参数调节,并通过仿真命令进行系统响应的观察和分析。
通过不断调整参数和分析仿真结果,我们可以设计出满足系统要求的PID控制系统。
离散电机pid控制及其matlab仿真
03
在Simulink中构建PID控制器模型,包括比例、积分
和微分三个环节。
pid控制器仿真实现
01
PID控制器参数设置
根据控制要求,设置PID控制器 的比例、积分和微分系数,以及 采样时间等参数。
02
控制器输出与电机 响应
将PID控制器与离散电机模型连 接,观察电机响应与控制器输出 的关系。
03
电流式pid控制算法
电流式pid控制算法原理
电流式pid控制算法是根据电机电流的反馈信号来控制电机的旋转 扭矩。
电流传感器
在电流式pid控制系统中,需要使用电流传感器来检测电机的电流 ,并将电流信号转换为电信号。
控制逻辑
根据反馈信号和设定值之间的差异,通过pid控制算法计算出控制 输入,以调整电机的旋转扭矩。
MATLAB仿真实现
使用MATLAB的Simulink工具箱,搭建PID控制器模型,对伺服系 统进行控制仿真。
THANKS。
02
03
比例(P)控制
通过调节输入信号的幅值 ,以改变输出值的大小。
积分(I)控制
通过累计输入信号的幅值 ,以调节输出值的趋势。
微分(D)控制
通过比较输入信号的变化 率,以预调节输出值的变 化趋势。
离散电机pid控制器设计
选择合适的pid控制器
根据电机特性和控制要求,选择合适的pid控制器。
确定pid参数
基于模糊逻辑的控制器设计
模糊逻辑是一种基于模糊集合理论的智能控制方 法,适用于处理不确定性和非线性的系统。
基于模糊逻辑的控制器设计方法包括:模糊化、 规则库、反模糊化等步骤,可以根据系统的输入 和输出信息来调整pid控制器的参数,以实现更好 的控制效果。
基于matlabsimulink的pid控制器设计
基于matlabsimulink的pid控制器设计1.引言1.1 概述概述部分:PID控制器是一种常用的控制算法,它通过不断地调整系统的输出来使其尽量接近所期望的目标值。
在工业控制领域,PID控制器被广泛应用于各种工艺过程和自动化系统中。
本文将以MATLAB/Simulink为工具,探讨基于PID控制器的设计方法。
PID控制器以其简单易实现、稳定性好的特点,成为许多控制系统的首选。
在文章的正文部分,我们将对PID控制器的基本原理进行详细介绍,并结合MATLAB/Simulink的应用,展示如何使用这一工具来设计和实现PID控制器。
在控制系统设计中,PID控制器通过测量系统的误差,即期望输出值与实际输出值之间的差异,并根据三个控制参数:比例项(Proportional)、积分项(Integral)和微分项(Derivative)来调整系统的输出。
比例项控制系统的响应速度,积分项消除系统的稳态误差,微分项抑制系统的震荡。
MATLAB/Simulink作为一款功能强大的仿真软件,提供了丰富的控制系统设计工具。
它不仅可以帮助我们直观地理解PID控制器的工作原理,还可以实时地模拟和分析系统的响应。
通过使用MATLAB/Simulink,我们可以轻松地进行PID控制器参数调整、系统性能评估和控制算法的优化。
总之,本文旨在介绍基于MATLAB/Simulink的PID控制器设计方法,通过理论介绍和实例演示,帮助读者深入理解PID控制器的原理和应用,并为读者在实际工程项目中设计和实施PID控制器提供参考。
在结论部分,我们将总结所得结论,并对未来进一步研究的方向进行展望。
文章结构部分的内容可以描述文章的整体架构和各个部分的内容大纲。
以下是对文章1.2部分的内容补充:1.2 文章结构本文主要由以下几个部分构成:第一部分是引言部分,包括概述、文章结构和目的等内容。
在概述中,将简要介绍PID控制器在自动控制领域的重要性和应用背景。
控制系统pid参数整定方法的matlab仿真
控制系统pid参数整定方法的matlab仿真
控制系统PID参数整定方法的MATLAB仿真,可以分为以下几个步骤:
1. 建立模型。
在MATLAB中建立你要进行PID参数整定的模型,比如电机速度控制系统或温度控制系统。
2. 设计控制器。
根据建立的模型,设计出对应的PID控制器,并将其加入到系统中。
3. 确定初始参数。
在进行PID参数整定前,需要确定PID控制器的初始参数。
通常可以选择Ziegler-Nichols方法、Chien-Hrones-Reswick方法等经典的PID参数整定法则来确定初始参数。
4. 仿真模拟。
使用MATLAB中的仿真工具,对整定后的PID控制器进行仿真模拟,并记录下系统的响应曲线和各项性能指标。
5. 调整参数。
根据仿真结果,对PID控制器的参数进行适当的调整,以达到更理想的控制效果。
6. 再次仿真模拟。
调整完参数后,再次使用MATLAB中的仿真工具,对整定后的PID控制器进行仿真模拟,并比较其与上一次仿真的差异,以确认调整是否合理。
7. 实现控制。
最后,将优化后的PID控制器应用到实际控制系统中,进行控制。
总的来说,PID参数整定是一个相对复杂的过程,需要根据具体情况选择合适的方法和工具。
MATLAB作为一种强大的数学计算软件,可以提供丰富的工具和函数,方便进行控制系统的建模和仿
真,也可以帮助我们更好地进行PID参数整定。
MATLAB技术PID控制方法
MATLAB技术PID控制方法引言:现代工业中,自动化控制技术的应用已经广泛而深入。
PID控制是常用的自动控制方法之一,它通过对系统的反馈信号进行连续调整,使得系统能够迅速响应和稳定运行。
在PID控制中,MATLAB作为一种强大的数学计算工具和编程语言,可以极大地简化控制系统的设计和开发过程。
本文将介绍MATLAB技术在PID控制方法中的应用,探讨其原理和实现方法。
一、PID控制概述PID控制是一种经典的自动控制方法,它由比例控制、积分控制和微分控制三个部分组成,可以通过对系统误差进行连续调整,实现对被控对象的精确控制。
比例控制根据误差的大小进行反馈调整,积分控制根据误差的积分值进行反馈调整,微分控制根据误差的变化率进行反馈调整。
PID控制器根据系统的特性和需求,通过调节比例系数、积分时间和微分时间,确定适合的控制参数,实现对系统的稳定运行。
二、MATLAB在PID控制中的应用1. 定义被控对象的传递函数在MATLAB中,可以使用tf函数来定义被控对象的传递函数。
传递函数描述了系统的输入和输出之间的关系,可以使用线性时不变系统模型进行描述。
例如,对于一个一阶惯性系统,可以使用以下代码定义其传递函数:```matlabnum = [1]; % 传递函数的分子多项式系数den = [1, 2, 1]; % 传递函数的分母多项式系数sys = tf(num, den); % 定义传递函数```2. 设计PID控制器在MATLAB中,可以使用pid函数来设计PID控制器。
pid函数接受控制参数和被控对象的传递函数作为输入,返回一个PID控制器对象。
例如,使用如下代码可以设计一个PID控制器:```matlabKp = 1; % 比例系数Ti = 1; % 积分时间Td = 1; % 微分时间controller = pid(Kp, Ti, Td); % 设计PID控制器```3. 绘制PID控制器的阶跃响应曲线在MATLAB中,可以使用step函数来绘制PID控制器的阶跃响应曲线。
PID控制算法的MATLAB仿真
PID控制算法的MATLAB仿真假设我们现在要设计一个PID控制器来控制一个被控对象,该对象的传递函数为G(s)。
首先,我们需要确定PID控制器的参数。
这些参数包括比例增益Kp、积分时间Ti和微分时间Td。
在Simulink中,我们可以使用以下步骤来进行PID控制的仿真:1. 打开MATLAB,并在工具栏上选择Simulink模块。
2. 在Simulink模块中,选择一个PID控制器模块,并将其拖放到工作区域中。
4.将被控对象的传递函数G(s)添加到工作区域中,并将其与PID控制器模块连接起来。
5.添加一个把期望值作为输入的信号源,并将其连接到PID控制器模块的输入端口上。
6.添加一个作为输出的信号源,并将其与被控对象的输出端口连接起来。
7. 在Simulink模块中运行仿真。
下面以一个简单的例子来说明PID控制的仿真过程。
假设我们要控制一个小车的速度,将其速度控制在一个期望值上。
小车的动力学方程可以表示为:m * V_dot = F - B * V其中,m为小车的质量,V为小车的速度,F为施加在小车上的力,B 为摩擦系数。
首先,我们需要将动力学方程转化为传递函数的形式。
假设小车的传递函数为:G(s)=1/(m*s+B)在Simulink中,可以通过使用Transfer Fcn模块来表示传递函数。
在工作区域中添加该模块,并设置其参数为1 / (m * s + B)。
接下来,我们需要添加PID控制器模块,并设置其参数。
假设我们选择Kp=1,Ti=0.5,Td=0.1作为PID控制器的参数。
将信号源(期望值)和输出信号(小车速度)连接到PID控制器模块。
然后,将PID控制器的输出连接到小车动力学方程的输入端口。
最后,点击Simulink模块中的“运行”按钮,即可开始仿真。
在进行仿真时,可以观察小车速度是否能够达到期望值,并调整PID控制器的参数以获得更好的控制效果。
通过以上步骤,在MATLAB中可以很方便地进行PID控制的仿真。
先进PID控制及其MATLAB仿真
60s 1
• 采样时间为20s,延迟时间为4个采样时间,即 80s,取Kp=0.45,Kd=12,Ki=0.0048,A=0.4 ,B=0.6。
1.3.8 变速积分算法及仿真
变速积分阶跃响应
普通PID控制阶跃响应
1.3.9不完全微分PID算法及仿真
• 在PID控制中,微分信号的引入可改善系统的动 态特性,但也易引进高频干扰,在误差扰动突变 时尤其显出微分项的不足。若在控制算法中加入 低通滤波器,则可使系统性能得到改善。
1.3.5 积分分离PID控制算法及仿真
• 积分分离控制算法可表示为:
k
u (k)kpe(k)ki e(j)Tkd(e(k) e(k 1 ))/T j 0
式中,T为采样时间,β项为积分项的开关系数
1 e(k)
0
e(k)
1.3.5 积分分离PID控 制算法及仿真
y o u t(k ) a (2 )y o u t(k 1 ) a (3 )y o u t(k 2 ) a (4 )y o u t(k 3 ) b (2 )u (k 1 ) b (3 )u (k 2 ) b (4 )u (k 3 )
1.3.3 离散系统的数字PID控制仿真
1.3.6抗积分饱和PID控制算法及仿真
• 积分饱和现象
所谓积分饱和现象是指若系统存在一个方向的 偏差,PID控制器的输出由于积分作用的不断累加 而加大,从而导致u(k)达到极限位置。此后若控制 器输出继续增大,u(k)也不会再增大,即系统输出 超出正常运行范围而进入了饱和区。一旦出现反向 偏差,u(k)逐渐从饱和区退出。
1.3.5 积分分离PID控制算法及仿真
积分分离式PID阶跃跟