第二章_整式的加减整章基础知识复习
《常考题》初中七年级数学上册第二章《整式的加减》知识点复习(含答案解析)
1.某养殖场2018年年底的生猪出栏价格是每千克a元.受市场影响,2019年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克()A.(1-15%)(1+20%)a元B.(1-15%)20%a元C.(1+15%)(1-20%)a 元D.(1+20%)15%a元A解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1-15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1-15%)(1+20%)a元.故选:A.【点睛】本题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.2.由于受H7N9禽流感的影响,某市城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/kg.则3月份鸡的价格为()A.24(1-a%-b%)元/kg B.24(1-a%)b% 元/kgC.(24-a%-b% )元/kg D.24(1-a%)(1-b%)元/kg D解析:D【分析】首先求出二月份鸡的价格,再根据三月份比二月份下降b%即可求出三月份鸡的价格.【详解】∵今年2月份鸡的价格比1月份下降a%,1月份鸡的价格为24元/kg,∴2月份鸡的价格为24(1-a%)元/kg,∵3月份比2月份下降b%,∴三月份鸡的价格为24(1-a%)(1-b%)元/kg.故选:D.【点睛】本题主要考查了列代数式,解题的关键是掌握每个月份的数量增长关系.3.代数式x2﹣1y的正确解释是()A.x与y的倒数的差的平方B.x的平方与y的倒数的差C.x的平方与y的差的倒数D.x与y的差的平方的倒数B 解析:B【分析】根据代数式的意义,可得答案.【详解】解:代数式x 2﹣1y的正确解释是x 的平方与y 的倒数的差, 故选:B . 【点睛】本题考查了代数式,理解题意(代数式的意义)是解题关键. 4.下列去括号正确的是( ) A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ D解析:D 【分析】根据整式混合运算法则和去括号的法则计算各项即可.【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确; 故答案为:D . 【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键. 5.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( )A .14B .14-C .4D .-4B解析:B 【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案. 【详解】21412n a b --与83m ab 是同类项, ∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩则()()5711n m +-=14-故答案选B. 【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.6.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b cA .1,6,15a b c ===B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c === B解析:B 【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可. 【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=. 故选:B . 【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键. 7.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2 B .3C .4D .5B解析:B 【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值. 【详解】解:∵132n x y +与4313x y 是同类项, ∴n+1=4, 解得,n=3, 故选:B.【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同. 8.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( ) A .2- B .13C .23D .32A 解析:A 【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a 2020的值. 【详解】∵a 1=-2, ∴2111(3)3a ==--,3131213a ==-, 412312a ==-- ∴每3个结果为一个循环周期 ∵2020÷3=673⋯⋯1,∴202012a a ==- 故选:A. 【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况. 9.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17B .67C .-67D .0B解析:B 【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题. 【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项, ∴6﹣7m =0,解得m =67. 故选:B . 【点睛】本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 10.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数 C .a 的平方与b 的差的倒数 D .a 的平方与b 的倒数的差D解析:D 【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果. 【详解】 解:代数式21a b-的正确解释是a 的平方与b 的倒数的差. 故选:D. 【点睛】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.11.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ). A .0 B .-2C .0或-2D .任意有理数A解析:A 【分析】根据相反数的定义得到0a b +=,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入()2a b cd m +-+进行求值.【详解】∵a ,b 互为相反数, ∴0a b +=, ∵c ,d 互为倒数, ∴cd =1,∵m 的绝对值等于1, ∴m =±1, ∴原式=0110-+= 故选:A. 【点睛】本题考查代数式求值,相反数,绝对值,倒数.能根据相反数,绝对值,倒数的定义求出+a b ,cd 和m 的值是解决此题的关键.12.下列各对单项式中,属于同类项的是( ) A .ab -与4abc B .213x y 与212xy C .0与3-D .3与a C解析:C 【分析】根据同类项的定义逐个判断即可. 【详解】A .﹣ab 与4abc 所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项; D .3与a 不是同类项. 故选C . 【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键.13.小明乘公共汽车到白鹿原玩,小明上车时,发现车上已有(6a ﹣2b )人,车到中途时,有一半人下车,但又上来若干人,这时车上共有(10a ﹣6b )人,则中途上车的人数为( ) A .16a ﹣8b B .7a ﹣5bC .4a ﹣4bD .7a ﹣7b B解析:B 【分析】根据题意表示出途中下车的人数,再根据车上总人数即可求得中途上车的人数. 【详解】由题意可得:(10a ﹣6b )﹣[(6a ﹣2b )﹣(3a ﹣b )] =10a ﹣6b ﹣6a +2b +3a ﹣b =7a ﹣5b . 故选B . 【点睛】本题考查了整式加减的应用,根据题意正确列出算式是解决问题的关键. 14.下列说法错误的是( ) A .23-2x y 的系数是32-B .数字0也是单项式C .-x π是二次单项式D .23xy π的系数是23πC 解析:C 【分析】根据单项式的有关定义逐个进行判断即可.【详解】A. 23-2x y 的系数是32-,故不符合题意;B. 数字0也是单项式 故不符合题意;C. -x π是一次单项式 ,故原选项错误D.23xy π的系数是23π,故不符合题意. 故选C . 【点睛】本题考查对单项式有关定义的应用,能熟记单项式的有关定义是解此题关键. 15.如果m ,n 都是正整数,那么多项式x m +y n +3m+n 的次数是( ) A .2m +2nB .mC .m +nD .m ,n 中的较大数D解析:D 【解析】 【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 的次数是m ,n 中的较大数是该多项式的次数. 【详解】根据多项式次数的定义求解,由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 中次数最高的多项式的次数,即m ,n 中的较大数是该多项式的次数. 故选D. 【点睛】此题考查多项式,解题关键在于掌握其定义.1.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n =__________(用含n 的代数式表示).所剪次数 1 2 3 4 … n 正三角形个数471013…a n3n+1【解析】试题分析:从表格中的数据不难发现:多剪一次多3个三角形即剪n 次时共有4+3(n-1)=3n+1试题解析:3n+1. 【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n 次时,共有4+3(n-1)=3n+1. 试题故剪n 次时,共有4+3(n-1)=3n+1. 考点:规律型:图形的变化类.2.单项式2335x yz -的系数是___________,次数是___________.六【分析】根据单项式系数次数的定义来求解单项式中数字因数叫做单项式的系数所有字母的指数和叫做这个单项式的次数【详解】的系数是次数是6故答案为六【点睛】本题考查了单项式的次数和系数确定单项式的系数和次解析:35六 【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数. 【详解】2335x yz -的系数是35-,次数是6, 故答案为35-,六. 【点睛】本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.3.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.6n+2【解析】寻找规律:不难发现后一个图形比前一个图形多6根火柴棒即:第1个图形有8根火柴棒第2个图形有14=6×1+8根火柴棒第3个图形有20=6×2+8根火柴棒……第n 个图形有6n+2根火柴棒解析:6n+2. 【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒, 第2个图形有14=6×1+8根火柴棒, 第3个图形有20=6×2+8根火柴棒, ……,第n 个图形有6n+2根火柴棒.4.如图,是由一些点组成的图形,按此规律,在第n 个图形中,点的个数为_____.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n 个图形中小圆的个数为3+3+5+7+…+(2解析:n 2+2 【详解】解:第1个图形中点的个数为3; 第2个图形中点的个数为3+3; 第3个图形中点的个数为3+3+5; 第4个图形中点的个数为3+3+5+7; …第n 个图形中小圆的个数为3+3+5+7+…+(2n ﹣1)=n 2+2. 故答案为:n 2+2. 【点睛】本题考查规律型:图形的变化类.5.22223124,4135-=-=225146-=,……221012m m -=+m =_____________9【分析】根据观察可知:将代入即可得出答案【详解】解:……故答案为:【点睛】主要考查了学生的分析总结归纳能力规律型的习题一般是从所给的数据和运算方法进行分析从特殊值的规律上总结出一般性的规律解析:9 【分析】 ()22113n n n +-++=,将210n +=代入即可得出答案.【详解】 解:22223124,4135--=225146-=……,()22113n n n +-++=210n+=∴=n8∴=+=19m n故答案为:9.【点睛】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.6.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12631【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论.【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…,即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点.第20个图形共有4+2×3+3×3+…+19×3+20×3=4+3×(2+3+…+19+20)=4+3×209=4+627=631(个).故答案为:12;631.【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律.---,…,按如图所示的规律有序排列.根据图中排列规律可7.将一列数1,2,3,4,5,6知,“峰1”中峰顶位置(C的位置)是4,那么“峰206”中C的位置的有理数是______.-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝对值为以此进行分析即可【详解】解:由图可知每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝解析:-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,以此进行分析即可.【详解】解:由图可知,每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,当206n =时,52061103011029⨯-=-=,因为1029是奇数,所以“峰206”中C 的位置的有理数是1029-.故答案为:1029-.【点睛】本题考查图形的数字规律,熟练掌握根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -是解题的关键.8.计算7a 2b ﹣5ba 2=_____.2a2b 【分析】根据合并同类项法则化简即可【详解】故答案为:【点睛】本题考查了合并同类项解题的关键是熟练运用合并同类项的法则本题属于基础题型解析:2a 2b【分析】根据合并同类项法则化简即可.【详解】()22227a b 5ba =75a b=2a b ﹣﹣.故答案为:22a b【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型. 9.已知|a|=-a ,bb =-1,|c|=c ,化简 |a+b| + |a-c| - |b-c| = _________.-2a 【分析】由已知可以判断出ab 及c 的正负进而确定出a+ba-c 与b-c 的正负利用绝对值的代数意义化简即可得到结果【详解】解:∵|a|=-a=-1|c|=c ∴∴则|a+b|+|a-c|-|b-c| 解析:-2a【分析】由已知可以判断出a, b 及c 的正负,进而确定出a+b ,a-c 与b-c 的正负,利用绝对值的代数意义化简,即可得到结果.【详解】解:∵|a|=-a ,bb=-1,|c|=c∴00, 0,a b c ≤<≥, ∴000,a b a c b c +<-≤-<,,则|a+b| + |a-c| - |b-c| =-+2a b a c b c a --+-=- .故答案为: -2a.【点睛】此题考查了整式的加减, 涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.10.已知22 251,34A x ax y B x x by =+-+=+--,且对于任意有理数,x y ,代数式 2A B - 的值不变,则12()(2)33a Ab B ---的值是_______.-2【分析】先根据代数式为定值求出ab 的值及的值然后对所求代数式进行变形然后代入计算即可【详解】∵对于任意有理数代数式的值不变∴∵∴原式=故答案为:-2【点睛】本题主要考查代数式的求值能够对代数式进解析:-2【分析】先根据代数式 2A B -为定值求出a,b 的值及 2A B -的值,然后对所求代数式进行变形,然后代入计算即可.【详解】222(251)2(34)A B x ax y x x by -=+-+-+--222512628x ax y x x by =+-+--++(6)(25)9a x b y =-+-+∵对于任意有理数 ,x y ,代数式 2A B - 的值不变∴60,250a b -=-=,29A B -=56,2a b ∴== ∵121()(2)2(2)333a Ab B a b A B ---=--- ∴原式=51629653223-⨯-⨯=--=- 故答案为:-2【点睛】 本题主要考查代数式的求值,能够对代数式进行化简,变形是解题的关键.11.为了鼓励节约用电,某地对用户用电收费标准作如下规定:如果每户用电不超过50度,那么每度电按a 元收费,如果超过50度,那么超过部分按每度()0.5a +元收费,某居民在一个月内用电98度,他这个月应缴纳电费______元.【分析】98度超过了50度应分两段进行计费第一段50每度收费a 元第二段(98-50)度每度收费(a+05)元据此计算即可【详解】解:由题意可得:(元)故答案为:(98a+24)【点睛】本题考查了列代解析:()9824a +【分析】98度超过了50度,应分两段进行计费,第一段50,每度收费a 元,第二段(98-50)度,每度收费(a +0.5)元,据此计算即可.【详解】解:由题意可得:()()5098500.59824a a a +-+=+(元).故答案为:(98a +24).【点睛】本题考查了列代数式,根据题意,列出代数式是解决此题的关键.1.已知有理数a 和b 满足多项式A ,且A=(a ﹣1)x 5+x |b+2|﹣2x 2+bx+b (b≠﹣2)是关于x 的二次三项式,求(a ﹣b )2的值.解析:16或25【解析】试题分析:根据有理数a 和b 满足多项式A .A =(a ﹣1)x 5+x |b +2|﹣2x 2+bx +b 是关于x 的二次三项式,求得a 、b 的值,然后分别代入计算可得.试题解:∵有理数a 和b 满足多项式A .A =(a ﹣1)x 5+x |b +2|﹣2x 2+bx +b 是关于x 的二次三项式,∴a ﹣1=0,解得:a =1.(1)当|b +2|=2时,解得:b =0或b =4.①当b =0时,此时A 不是二次三项式;②当b =﹣4时,此时A 是关于x 的二次三项式.(2)当|b +2|=1时,解得:b =﹣1(舍)或b =﹣3.(3)当|b +2|=0时,解得:b =﹣2(舍)∴a =1,b =﹣4或a =1,b =﹣3.当a =1,b =﹣4时,(a ﹣b )2=25;当a =1,b =﹣3时,(a ﹣b )2=16.点睛:本题考查了多项式的知识,解题的关键是根据题意求得a 、b 的值,题目中重点渗透了分类讨论思想.2.奇奇同学发现按下面的步骤进行运算,所得结果一定能被9整除.请你用我们学过的整式的知识解释这一现象.解析:见解析.【分析】设原来的两位数十位数字为a ,个位数字为b ,表示出原来两位数与新的两位数,相减得到结果,即可得出结果.【详解】解:设原来的两位数十位数字为a ,个位数字为b ,则原来两位数为10a+b ,交换后的新两位数为10b+a ,(10a+b )-(10b+a )=10a+b-10b-a=9a-9b=9(a-b ),则这个结果一定是被9整除.【点睛】此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键. 3.化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键. 4.求多项式的值222232424a b ab a b ab --+-,其中1a =-,2b =-.解析:24a b --,-2.【分析】原式合并同类项后代入字母的值计算即可.【详解】解:原式24a b =--, 当1a =-,2b =-时, 原式2=-.【点睛】本题考查了整式的化简求值,正确的将原式合并同类项是解决此题的关键.。
第二章整式的加减复习
练习:(填表指出各单项的系数和次数)
单项式
7a b
7
3 2
2 x 2 yz
abcd
1
mn
-1
系数
次数
2
4
5
4
2
单项式的和 定义:几个__________. 多项式 每一个单项式 项: 组成多项式中的_____________. 几项式 有几项,就叫做_________. 不含字母的项 常数项:多项式中_______________. 多项式中次数最高的项的次数。 多项式的次数: _________________________.
评析:本题需应用单项式、多项式、整式的意义来解答。单 项式只含有“乘积”运算;多项式必须含有加法或减法运算。 不论单项式还是多项式,分母中都不能含有字母。
下面各题的判断是否正确。 ①-7xy2的系数是7;( × ) ②-x2y3与x3没有系数;(× )
③-ab3c2的次数是0+3+2;( × ) ④-a3的系数是-1; (√ ) ⑤-32x2y3的次数是7;( × )
合并下列同类项:
(1)3xy – 4 xy – xy = ( –2xy
(2) -a-a-2a=( –4a )
x y 1 , 2 x , , 0, x , 2 x 2 3 y 2 a
. 中单项式
,整式
.
(8)以上代数式中,哪些符合书写要求?
xy 4; 1a; e f ; 5
2
1 a b; 2 1 1 xy; 3
2
3 b
2
(9)下列各式中哪些是单项式(系数、次数), 哪些是多项式(项、次数)?
3abc (1) 2
2
x 2y ( 2) 3
第2章 整式的加减 整理与复习(复习课件)七年级数学上册(人教版)
3. 1或-1与字母相乘时,1通常省略不写,例如1×a可以写成a,
-1×a可以写成-a;
4. 带分数与字母相乘时,把带分数化成假分数,例如 1 3 ×y必须
写成 3 y ;
2
2
知识点梳理1
5. 相同字母相乘时应写成幂的形式,例如a×a可以写成a²; 6. 出现多个字母时,字母一般按照26个英文字母顺序排列;
知识点梳理5
整式的加减混合运算步骤(有括号先去括号)
(一)去括号 (按照先小括号,再中括号,最后大括号的顺序)
1. 如果括号外的因数是正数,去括号后原括号内各项的符号与 原来的符号相同. 2. 如果括号外的因数是负数,去括号后原括号内各项的符号与 原来的符号相反.
“去括号,看符号. 是 ‘+’号,不变号,是‘-’号,全变号”.
考点分析
整式的有关概念
例3:在式子3m+n,-2mn,p, x b ,0中,单项式的个数是
√√ 2 √
(A )
A. 3 B. 4
C. 5
D. 6
【解析】 -2mn,p,0是单项式. 故选A.
考点分析
整式的有关概念
例4: (2022•广东)单项式3xy的系数为
.
【分析】应用单项式的定义进行判定即可得出答案. 【解答】解:单项式3xy的系数为3. 故答案为:3.
针对训练
代数式
x2 y
的系数是
3
,次数是 3
.
3
【易错提示】单项式的次数和系数、多项式的次数和项 是容易混淆的概念,需辨别清楚.
知识点梳理3
定义:几个单__项__式__的__和__.
多项式:
项: 组成多项式中的_每__一__个__单__项__式__. 有几项,就叫做__几__项__式___.
人教版七年级数学上册--第二章 整式的加减章节复习(课件)
所以x+1=0,y﹣1=0,
所以x=﹣1,y=1,
所以3(x2y+xy)﹣2(x2y﹣xy)﹣4x2y﹣3
=3x2y+3xy﹣2x2y+2xy﹣4x2y﹣3
=﹣3x2y+5xy﹣3
=﹣3×(﹣1)2×1+5×(﹣1)×1﹣3
【4-2】先化简,再求值:3(x2y+xy)﹣2(x2y﹣xy)﹣4x2y﹣3,其中x、y
2.多项式的次数:多项式里,次数最高项的次数,叫做这个多项式的次数.
3.整式:单项式与多项式统称整式.
三、多项式及整式相关概念
在确定多项式的项和次数时应注意:
1.多项式的各项应包括它前面的符号;
2.多项式没有系数的概念,但其每一项均有系数,每一项的系数也包括前
面的符号;
3.要确定一个多项式的次数,先要确定此多项式中各项(单项式)的次数,
=-2x-(x -2x +6x)
2
9
2
=-2x-(-x2+6x)
= 3x − ( x + 3 + 2x 2 )
2
9
=-2x+x2-6x
2
= 3x − x − 3 − 2x 2
2
2
9
=x -8x
2
=x − x−3
2
2
2
3
整式的加减运算
例7.已知a,b,c三个数在数轴上对应的点如图所示,
化简: b − a − 2a − b + a − c − c
解:根据数轴可知:c < b < 0 < a,|c|>|a|>|b|,
人教版七年级数学上册第二章整式的加减复习课
合并同类项法则: 1.__系_数___相加减;
2._字__母__和__字_母__的__指__数___不变。
1.下列各式中,是同类项的是:__③__⑤_⑥______
① 2x2 y3 与 x3 y2 ② x2 yz 与 x2 y
③10mn与 2 mn
3
④ (a)5与 (3)5 ⑤ 3x2 y 与 0.5 yx2 ⑥-125与
5.单项式的系数应包括它前面的性质符号。
4
5 x2y 4
6.单项式次数是指所有字母的次数的和,与数字的次数没 有关系。
7.单独的数字不含字母, 规定它的次数是零次.
1,单项式的定义 例1,下列各式子中,是单项式的有 __①__、__②__、_④__、__⑦_(填序号)
①a;② 1 ;③x y;④xy;⑤ 2 ;⑥ x 1 ;⑦ x ;
对于(2),虽然好像它们的次数不一样,但其实它们都是常 数项,所以,它们都是同类项;
对于(4),虽然它们的系数不同,字母的顺序也不同,但它 依然满足同类项的定义,是同类项;
答:(2)、(4)是同类项,(1)(3)不是同类项;
例2 下列合并同类项的结果错误的 有_①__、__②_、__③__、__④__、_⑤.
单项式: 系数: 单项式中的__数_字__因__数__。 次数: 单项式中的___所_有__字__母__的__指_数__和___.
注意的问题:
12..当 当单式项子式分的母系中数出现是字1或母-1时时不,是“单1”项通式常。省略不2写如a²,–abc。
3.圆周率π是常数,不要看成字母。
x
4.当单项式的系数是带分数时,通常写成假分数1。1 x2 y
2.若 2x3 yn与 xm y2 是同类项,则m+n=__5_.
第2章 《整式的加减》章节复习资料【7】
第2章《整式的加减》章节复习资料【7】1.下列计算正确的有()(1)5a3﹣3a3=2;(2)﹣10a3+a3=﹣9a3;(3)4x+(﹣4x)=0;(4)(﹣xy)﹣(+xy)=﹣xy;(5)﹣3mn﹣2nm=﹣5mn.A.1个B.2个C.3个D.4个2.下列各式中去括号正确的是()A.a2﹣(2a﹣b2+b)=a2﹣2a﹣b2+b B.﹣(2x+y)﹣(﹣x2+y2)=﹣2x+y+x2﹣y2C.2x2﹣3(x﹣5)=2x2﹣3x+5 D.﹣a3﹣[﹣4a2+(1﹣3a)]=﹣a3+4a2﹣1+3a3.若5x2y|m|﹣(m+1)y2﹣3是三次三项式,则m等于()A.±1 B.1 C.﹣1 D.以上都不对4.若多项式3x2﹣2xy﹣y2减去多项式M所得的差是﹣5x2+xy﹣2y2,则多项式M是()A.﹣2x2﹣xy﹣3y2B.2x2+xy+3y2C.8x2﹣3xy+y2D.﹣8x2+3xy﹣y25.已知x+y+2(﹣x﹣y+1)=3(1﹣y﹣x)﹣4(y+x﹣1),则x+y等于()A.﹣ B.C.﹣D.6.如图1,将一个边长为a的正方形纸片剪去两个矩形,得到一个“S”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.2a﹣4b C.4a﹣8b D.4a﹣10b7.如果m是三次多项式,n是三次多项式,那么m+n一定是()A.六次多项式B.次数不高于三的整式C.三次多项式D.次数不低于三的整式8.若关于x,y的多项式化简后不含二次项,则m=()A.B.C.D.09.一家商店以每包a元的价格进了30包甲种茶叶,又以每包b的价格买进60包乙种茶叶.如果以每包元的价格卖出这两种茶叶,则卖完后,这家商店()A.赚了B.赔了C.不赔不赚D.不能确定赔或赚10.若A与B都是二次多项式,则A﹣B:(1)一定是二次式;(2)可能是四次式;(3)可能是一次式;(4)可能是非零常数;(5)不可能是零.上述结论中,不正确的有()个.A.5 B.4 C.3 D.211.已知多项式x|m|+(m﹣2)x﹣10是二次三项式,m为常数,则m的值为.12.若代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m的值是.13.甲、乙、丙三人拿出同样多的钱,合伙订购同种规格的若干件商品.商品买来后,甲、乙分别比丙多拿了12、9件商品,最后结算时,乙付给丙20元,那么,甲应付给丙元.14.若a<0,则|1﹣a|+|2a﹣1|+|a﹣3|=.15.如图是小明家的楼梯示意图,其水平距离(即:AB的长度)为(2a+b)米,一只蚂蚁从A点沿着楼梯爬到C点,共爬了(3a﹣b)米.问小明家楼梯的竖直高度(即:BC的长度)为米.16.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.(﹣x2+3xy﹣y2)﹣(﹣x2+4xy﹣y2)=﹣x2+y2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是.17.某校为适应电化教学的需要新建阶梯教室,教室的第一排有a个座位,后面每一排都比前一排多一个座位,若第n排有m个座位,则a、n和m之间的关系为m=.18.定义一种新运算:a※b=,则当x=3时,2※x﹣4※x的结果为.19.已知a2+ab=3,ab+b2=1,试求a2+2ab+b2=,a2﹣b2=.20.已知,则代数式(m+2n)﹣(m﹣2n)的值为.21.将多项式按字母X的降幂排列.22.已知a,b为常数,且三个单项式4xy2,axy b,﹣5xy相加得到的和仍然是单项式.那么a和b的值可能是多少?说明你的理由.23.先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.24.试至少写两个只含有字母x、y的多项式,且满足下列条件:(1)六次三项式;(2)每一项的系数均为1或﹣1;(3)不含常数项;(4)每一项必须同时含字母x、y,但不能含有其他字母.25.已知关于x的多项式(a﹣1)x2+x|a+2|﹣2x+b,问是否存在实数a,b,使得这个多项式为二次三项式?若存在,请求出a,b的值,若不存在,请说明理由.26.观察下面有规律的三行单项式:x,2x2,4x3,8x4,16x5,32x6,…①﹣2x,4x2,﹣8x3,16x4,﹣32x5,64x6,…②2x2,﹣3x3,5x4,﹣9x5,17x6,﹣33x7,…③(1)根据你发现的规律,第一行第8个单项式为;(2)第二行第n个单项式为;(3)第三行第8个单项式为;第n个单项式为.27.已知关于x、y的多项式5x2﹣2xy2﹣[3xy+4y2+(9xy﹣2y2﹣2mxy2)+7x2]﹣1(1)若该多项式不含三次项,求m的值;(2)在(1)的条件下,当x2+y2=13,xy=﹣6时,求这个多项式的值.28.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和.29.学规律在数学中有着极其重要的意义,我们要善于抓住主要矛盾,提炼出我们需要的信息,从而解决问题.(1)观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…,通过观察,用你所发现的规律确定32014的个位数字是;(2)观察一列数2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是;根据此规律,如果a n(n为正整数)表示这个数列的第n项,那么a18=,a n=;(3)观察下面的一列单项式:x,﹣2x2,4x3,﹣8x4,…根据你发现的规律,第5个单项式为;第7个单项式为;第n个单项式为.30.马虎的李明在计算多项式M加上x2﹣3x+7时,因错看成加上x2+3x+7,尽管计算过程没有错误,也只能得到一个错误的答案为5x2+2x﹣4.(1)求多项式M;(2)求出本题的正确答案.第2章《整式的加减》章节复习资料参考答案与试题解析一.选择题(共10小题)1.(2014秋•赛罕区校级期末)下列计算正确的有()(1)5a3﹣3a3=2;(2)﹣10a3+a3=﹣9a3;(3)4x+(﹣4x)=0;(4)(﹣xy)﹣(+xy)=﹣xy;(5)﹣3mn﹣2nm=﹣5mn.A.1个B.2个C.3个D.4个【解答】解:5a3﹣3a3=2a3;﹣10a3+a3=﹣9a3;4x+(﹣4x)=0;(﹣xy)﹣(+xy)=﹣xy;﹣3mn﹣2nm=﹣5mn.故选C.2.(2014•新泰市校级模拟)下列各式中去括号正确的是()A.a2﹣(2a﹣b2+b)=a2﹣2a﹣b2+bB.﹣(2x+y)﹣(﹣x2+y2)=﹣2x+y+x2﹣y2C.2x2﹣3(x﹣5)=2x2﹣3x+5D.﹣a3﹣[﹣4a2+(1﹣3a)]=﹣a3+4a2﹣1+3a【解答】解:A、a2﹣(2a﹣b2+b)=a2﹣2a+b2﹣b,故A错误;B、﹣(2x+y)﹣(﹣x2+y2)=﹣2x﹣y+x2﹣y2,故B错误;C、2x2﹣3(x﹣5)=2x2﹣3x+15,故C错误;D、﹣a3﹣[﹣4a2+(1﹣3a)]=﹣a3﹣(﹣4a2+1﹣3a)=﹣a3+4a2﹣1+3a,故D正确.故选D.3.(2014秋•温州期末)若5x2y|m|﹣(m+1)y2﹣3是三次三项式,则m等于()A.±1 B.1 C.﹣1 D.以上都不对【解答】解:由题意可得,解得m=1.故选B.4.(2016春•启东市月考)若多项式3x2﹣2xy﹣y2减去多项式M所得的差是﹣5x2+xy﹣2y2,则多项式M是()A.﹣2x2﹣xy﹣3y2B.2x2+xy+3y2C.8x2﹣3xy+y2D.﹣8x2+3xy﹣y2【解答】解:根据题意得:M=3x2﹣2xy﹣y2﹣(﹣5x2+xy﹣2y2)=3x2﹣2xy﹣y2+5x2﹣xy+2y2=8x2﹣3xy+y2.故选C.5.(2014秋•淄川区期末)已知x+y+2(﹣x﹣y+1)=3(1﹣y﹣x)﹣4(y+x﹣1),则x+y等于()A.﹣ B.C.﹣D.【解答】解:方法1:∵x+y+2(﹣x﹣y+1)=3(1﹣y﹣x)﹣4(y+x﹣1)∴x+y﹣2x﹣2y+2=3﹣3y﹣3x﹣4y﹣4x+4∴﹣x﹣y+2=7﹣7y﹣7x∴6x+6y=5∴x+y=方法2:∵x+y+2(﹣x﹣y+1)=3(1﹣y﹣x)﹣4(y+x﹣1)∴(x+y)﹣2(x+y)+2=3﹣3(x+y)﹣4(x+y)+4∴(x+y)﹣2(x+y)+3(x+y)+4(x+y)=3+4﹣2∴6(x+y)=5∴x+y=故选D.6.(2015•廊坊二模)如图1,将一个边长为a的正方形纸片剪去两个矩形,得到一个“S”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.2a﹣4b C.4a﹣8b D.4a﹣10b【解答】解:根据题意得:新矩形的长为a﹣b,宽为a﹣3b,则新矩形周长为2(a﹣b+a﹣3b)=2(2a﹣4b)=4a﹣8b,故选C.7.(2015秋•南通期中)如果m是三次多项式,n是三次多项式,那么m+n一定是()A.六次多项式B.次数不高于三的整式C.三次多项式D.次数不低于三的整式【解答】解:若两个三次多项式中,三次项的系数不相等,这两个三次多项式相减后就仍为三次多项式;若两个三次多项式中,三次项的系数相等,这两个三次多项式相减后三次多项式就会变为低于三次的整式.故选B.8.(2016春•台州校级月考)若关于x,y的多项式化简后不含二次项,则m=()A.B.C.D.0【解答】解:∵原式=x2y+(6﹣7m)xy+y3,若不含二次项,即6﹣7m=0,解得m=.故选B.9.(2004•梅州)一家商店以每包a元的价格进了30包甲种茶叶,又以每包b的价格买进60包乙种茶叶.如果以每包元的价格卖出这两种茶叶,则卖完后,这家商店()A.赚了 B.赔了C.不赔不赚 D.不能确定赔或赚【解答】解:根据题意,列式(30+60)﹣(30a+60b)=15(a﹣b),当b<a时,盈利,当b=a时,不赚不赔,当b>a时,亏损,由于不知a,b具体值,所以无法确定.故选D.10.(2014秋•临海市校级期中)若A与B都是二次多项式,则A﹣B:(1)一定是二次式;(2)可能是四次式;(3)可能是一次式;(4)可能是非零常数;(5)不可能是零.上述结论中,不正确的有()个.A.5 B.4 C.3 D.2【解答】解:∵多项式相减,也就是合并同类项,而合并同类项时只是把系数相加减,字母和字母的指数不变,∴结果的次数一定不高于2次,当二次项的系数相同时,合并后结果为0,所以(1)和(2)(5)是错误的.故选C.二.填空题(共10小题)11.(2016•河北模拟)已知多项式x|m|+(m﹣2)x﹣10是二次三项式,m为常数,则m的值为﹣2.【解答】解:因为多项式x|m|+(m﹣2)x﹣10是二次三项式,可得:m﹣2≠0,|m|=2,解得:m=﹣2,故答案为:﹣212.(2012秋•武侯区期末)若代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m的值是2.【解答】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.13.(2012•万州区校级二模)甲、乙、丙三人拿出同样多的钱,合伙订购同种规格的若干件商品.商品买来后,甲、乙分别比丙多拿了12、9件商品,最后结算时,乙付给丙20元,那么,甲应付给丙50元.【解答】解:(12+9)÷3=7,乙比丙多拿了2件,所以一件是20÷2=10元.10×(12﹣7)=50.甲付给丙50元.故答案为:5014.若a<0,则|1﹣a|+|2a﹣1|+|a﹣3|=5﹣4a.【解答】解:依题意得:原式=(1﹣a)+(﹣2a+1)+(﹣a+3)=5﹣4a.15.(2015秋•双城市期末)如图是小明家的楼梯示意图,其水平距离(即:AB的长度)为(2a+b)米,一只蚂蚁从A点沿着楼梯爬到C点,共爬了(3a﹣b)米.问小明家楼梯的竖直高度(即:BC的长度)为(a﹣2b)米.【解答】解:(3a﹣b)﹣(2a+b)=3a﹣b﹣2a﹣b=a﹣2b(米).故小明家楼梯的竖直高度(即:BC的长度)为(a﹣2b)米.故答案为:(a﹣2b).16.(2014秋•上杭县校级月考)下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.(﹣x2+3xy﹣y2)﹣(﹣x2+4xy﹣y2)=﹣x2+y2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是﹣xy.【解答】解:根据题意得:﹣x2+3xy﹣y2+x2﹣4xy+y2+x2﹣y2=﹣xy,故答案为:﹣xy.17.(2013秋•滨湖区校级期末)某校为适应电化教学的需要新建阶梯教室,教室的第一排有a个座位,后面每一排都比前一排多一个座位,若第n排有m个座位,则a、n和m之间的关系为m=a+n﹣1.【解答】解:由题意得:后面每一排都比前一排多一个座位及第一排有a个座位可得出第n排的座位数第n排的座位数:a+(n﹣1)又第n排有m个座位故a、n和m之间的关系为m=a+n﹣1.18.(2015秋•沛县期末)定义一种新运算:a※b=,则当x=3时,2※x﹣4※x的结果为8.【解答】解:当x=3时,原式=2※3﹣4※3=9﹣(4﹣3)=9﹣1=8,故答案为:819.(2015春•万源市校级月考)已知a2+ab=3,ab+b2=1,试求a2+2ab+b2=4,a2﹣b2=2.【解答】解:∵a2+ab=3,ab+b2=1,∴a2+2ab+b2=(a2+ab)+(ab+b2)=3+1=4,a2﹣b2=(a2+ab)﹣(ab+b2)=3﹣1=2.故答案为:4,2.20.(2014•贵池区校级模拟)已知,则代数式(m+2n)﹣(m﹣2n)的值为﹣5.【解答】解:原式=(m+2n)﹣(m﹣2n)=4n,当时,原式=.故答案为:﹣5.三.解答题(共10小题)21.(2015秋•太康县期中)将多项式按字母X的降幂排列.【解答】解:将多项式按字母x的降幂排列为:﹣7x4y2+3x2y﹣xy3+.22.(2009•余杭区模拟)已知a,b为常数,且三个单项式4xy2,axy b,﹣5xy相加得到的和仍然是单项式.那么a和b的值可能是多少?说明你的理由.【解答】解:(1)若axy b与﹣5xy为同类项,∴b=1,∵和为单项式,∴;(2)若4xy2与axy b为同类项,∴b=2,∵axy b+4xy2=0,∴a=﹣4,∴.23.(2015秋•渝北区期末)先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.【解答】解:原式=﹣6xy+2x2﹣[2x2﹣15xy+6x2﹣xy]=﹣6xy+2x2﹣2x2+15xy﹣6x2+xy=﹣6x2+10xy∵|x+2|+(y﹣3)2=0∴x=﹣2,y=3,∴原式=﹣6x2+10xy=﹣6×(﹣2)2+10×(﹣2)×3=﹣24﹣60=﹣84.24.(2015秋•太和县校级期中)试至少写两个只含有字母x、y的多项式,且满足下列条件:(1)六次三项式;(2)每一项的系数均为1或﹣1;(3)不含常数项;(4)每一项必须同时含字母x、y,但不能含有其他字母.【解答】解:此题答案不唯一,如:x3y3﹣x2y4+xy5;﹣x2y4﹣xy﹣xy2.25.已知关于x的多项式(a﹣1)x2+x|a+2|﹣2x+b,问是否存在实数a,b,使得这个多项式为二次三项式?若存在,请求出a,b的值,若不存在,请说明理由.【解答】解:若(a﹣1)x2+x|a+2|﹣2x+b,是二次三项式,可得a=﹣1,b≠0或a=﹣3,b≠0或a=0,a=﹣4,b≠0所以当a=﹣1,b≠0或a=﹣3,b≠0或a=﹣4,b≠0.得(a﹣1)x2+x|a+2|﹣2x+b为二次三项式.26.(2013秋•硚口区期中)观察下面有规律的三行单项式:x,2x2,4x3,8x4,16x5,32x6,…①﹣2x,4x2,﹣8x3,16x4,﹣32x5,64x6,…②2x2,﹣3x3,5x4,﹣9x5,17x6,﹣33x7,…③(1)根据你发现的规律,第一行第8个单项式为128x8;(2)第二行第n个单项式为(﹣2)n x n;(3)第三行第8个单项式为﹣129x9;第n个单项式为(﹣1)n+1(1+2n﹣1)x n+1.【解答】解:因为第一行的每个单项式,数字因数后面都是前面的2倍,字母次数与这个单项式是第几个有关,根据这个规律可得第一行第8个单项式为128x8;因为第二行的每个单项式,数字因数后面都是前面的(﹣2)倍,字母次数与这个单项式是第几个有关,根据这个规律可得第n个单项式为(﹣2)n x n;通过观察第三行的这组单项式,这组单项式符合(﹣1)n+1(1+2n﹣1)x n+1,第8个单项式是﹣129x9;第n个单项式为(﹣1)n+1(1+2n﹣1)x n+1.故答案为:(1)128x8,(2)(﹣2)n x n,(3)﹣129x9 ,(﹣1)n+1(1+2n﹣1)x n+127.(2015秋•和平区期中)已知关于x、y的多项式5x2﹣2xy2﹣[3xy+4y2+(9xy﹣2y2﹣2mxy2)+7x2]﹣1 (1)若该多项式不含三次项,求m的值;(2)在(1)的条件下,当x2+y2=13,xy=﹣6时,求这个多项式的值.【解答】解:(1)5x2﹣2xy2﹣[3xy+4y2+(9xy﹣2y2﹣2mxy2)+7x2]﹣1=5x2﹣2xy2﹣(3xy+4y2+9xy﹣2y2﹣2mxy2+7x2)﹣1=5x2﹣2xy2﹣(12xy+2y2﹣2mxy2+7x2)﹣1=5x2﹣2xy2﹣12xy﹣2y2+2mxy2﹣7x2﹣1=﹣2x2﹣2y2﹣12xy+(﹣2+2m)xy2﹣1,∵该多项式不含三次项,∴﹣2+2m=0,故m的值为:1;(2)∵原式=﹣2x2﹣2y2﹣12xy+(﹣2+2m)xy2﹣1=﹣2(x2+y2)﹣12xy﹣1=﹣2×13﹣12×(﹣6)﹣1=45.28.(2015秋•永川区校级期中)已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和.【解答】解:由题意可知:小红的年龄为(2m﹣4)岁,小华的年龄为岁,则这三名同学的年龄的和为:=m+2m﹣4+(m﹣2+1)=4m﹣5.答:这三名同学的年龄的和是4m﹣5岁.29.(2015秋•富顺县校级期中)学规律在数学中有着极其重要的意义,我们要善于抓住主要矛盾,提炼出我们需要的信息,从而解决问题.(1)观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…,通过观察,用你所发现的规律确定32014的个位数字是9;(2)观察一列数2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是2;根据此规律,如果a n(n为正整数)表示这个数列的第n项,那么a18=218,a n=2n;(3)观察下面的一列单项式:x,﹣2x2,4x3,﹣8x4,…根据你发现的规律,第5个单项式为16x5;第7个单项式为64x7;第n个单项式为(﹣2)n﹣1x n.【解答】解:(1)式子末尾数字以3、9、7、1这4个一循环,2014÷4=503…2,所以32014的末位数字是9.(2)每一项与前一项之比是一个常数,这个常数是2,所以a18=218,a n=2n;(3)由题意可知,第5个单项式为16x5,第7个单项式为64x7.第n个单项式是(﹣2)n﹣1x n.故答案为:9;2,218,2n;16x5,64x7,(﹣2)n﹣1x n.30.(2014秋•盐都区期末)马虎的李明在计算多项式M加上x2﹣3x+7时,因错看成加上x2+3x+7,尽管计算过程没有错误,也只能得到一个错误的答案为5x2+2x﹣4.(1)求多项式M;(2)求出本题的正确答案.【解答】解:(1)根据题意列得:M=5x2+2x﹣4﹣(x2+3x+7)=4x2﹣x﹣11;(2)正确答案为:4x2﹣x﹣11+(x2﹣3x+7)=4x2﹣x﹣11+x2﹣3x+7=5x2﹣4x﹣4.。
第二章 整式的加减(知识点+习题)
1.用字母表示数(1)用字母或含有字母的式子表示数或数量关系,为我们今后的学习和研究带来了极大的方便.从具体的数字抽象到用字母表示数,在认识上是一个重大飞跃.(2)同一问题中不同的数量要用不同的字母表示;不同的问题中不同的数量可以用相同的字母表示;一个字母表示的数往往不止一个,具有任意性,但要受实际问题的限制.2.单项式(1)单项式:由__________组成的式子叫做单项式.如12ab,m2,–x2y.特别地,单独的__________或__________也是单项式.单项式的系数:单项式中的__________.单项式的次数:一个单项式中,__________.(2)注意:①圆周率π是常数,单项式中出现π时,要将其看成系数.②当一个单项式的系数是“1”或“–1”时,“1”通常省略不写,如a2,–m2;次数为“1”时,通常也省略不写,如x.③单项式的系数包括它前面的符号,且只与数字因数有关.④单项式中的数与字母是乘积关系,如23a不是单项式.⑤单项式的次数与数字因数无关,只与字母有关,是单项式中所有字母的指数的和,如单项式b的次数是1,而不是0,常数–5的次数是0,9×103a2b3c 的次数是6,与103无关.3.多项式(1)多项式:几个__________的和叫做多项式.如x2+2xy+2,a2–2.在多项式中,每个单项式叫做多项式的项,不含字母的项叫做__________.多项式里,次数最高项的次数,叫做这个多项式的__________.(2)注意:①多项式的每一项都包括它前面的符号,且每一项都是单项式.②多项式的次数是多项式中次数最高项的次数,而不是所有项的次数之和.③一个多项式有几项,就叫它几项式.4.整式:单项式与多项式统称__________.如果一个式子既不是单项式,也不是多项式,那么它一定不是整式.一、用含字母的式子表示数或数量关系列式时要注意:1.数与字母相乘或字母与字母相乘,通常将乘号写作“·”或省略不写.2.数与字母相乘,数写在字母前面.3.数字因数为“1”或“–1”时,常省略“1”.4.当数字因数为带分数时,要写成假分数.5.除法运算要用分数线.6.式子后面有单位且式子是和或差的形式时,应把式子用括号括起来.【例1】用含字母的式子表示下列数量关系.(1)小雪买单价为a元的笔记本4本,共花_________元;(2)三角形的底为a,高为h,则三角形的面积是_________;(3)若正方体的棱长是a–1,则正方体的表面积为_________;(4)自来水每吨m 元,电每度n 元,则小明家本月用水8吨,用电100度,应交费_________元. 二、单项式(1)一个式子是单项式需具备两个条件:①式子中不含运算符号“+”号或“–”号;②分母中不含有字母. (2)确定单项式系数的方法是把式子中的所有字母及其指数去掉,剩余的为其系数.(3)计算单项式的次数时要注意:①没有写指数的字母,实际上其指数为1,计算时不能将其遗漏;②不能将系数的指数计算在内.【例2】指出下列各代数式中的单项式,并写出各单项式的系数和次数−5,−a ,21xy 2,πmn ,−c ab ,23ab ,2a +b ,4)(3n m .三、多项式一个式子是多项式需具备两个条件: (1)式子中含有运算符号“+”或“–”; (2)分母中不含有字母.【例3】多项式–5x 2–xy 4+26xy +3共有__________项,该多项式的次数为__________,最高次项的系数是__________.1.单项式2a 3b 的次数是( ) A .2B .3C .4D .52.在下列各式中,二次单项式是( ) A .x 2+1B .xy 2C .2xyD .(–)213123.单项式–2xy 3的系数和次数分别是( ) A .–2,4B .4,–2C .–2,3D .3,–24.下列说法正确的是( ) A .的系数是–3 B .2m 2n 的次数是2次C .是多项式D .x 2–x –1的常数项是15.下列关于多项式5ab 2–2a 2bc –1的说法中,正确的是( ) A .它是三次三项式B .它是四次两项式C .它的最高次项是–2a 2bcD .它的常数项是16.的系数、次数分别为( )A .,7B .,6 C .,8 D .5π,67.对于式子:,,,3x 2+5x –2,abc ,0,,m ,下列说法正确的是( )A .有5个单项式,1个多项式B .有3个单项式,2个多项式C .有4个单项式,2个多项式D .有7个整式8.下列单项式中,次数为3的是( )A .B .m nC .3a 2D .9.下列关于单项式的说法中,正确的是( )A .系数是2,次数是2B .系数是–2,次数是3C .系数是,次数是2D .系数是,次数是335xy-23x y -245π6x y 565π65π622x y +2a b 122x y x +223x y-272ab c -223x y-23-23-10.下列关于单项式–的说法中,正确的是( )A .系数是1,次数是2B .系数是–,次数是2C .系数是,次数是3D .系数是–,次数是3 11.多项式x 2–2xy 3–y –1是( ) A .三次四项式 B .三次三项式C .四次四项式D .四次三项式12.下列说法正确的是( )A .的系数是–2B .32ab 3的次数是6次C .是多项式D .x 2+x –2的常数项为213.下列结论正确的是( )A .0不是单项式B .52abc 是五次单项式C .–x 是单项式D .是单项式 14.单项式2ab 2的系数是__________. 15.多项式2a 2b –ab 2–ab 的次数是__________.16.若单项式–2x 3y n 与4x m y 5合并后的结果还是单项式,则m –n =__________. 17.观察下面的一列单项式:2x ;–4x 2;8x 3;–16x 4,…根据你发现的规律,第n 个单项式为__________.18.已知多项式(m –1)x 4–x n +2x –5是三次三项式,则(m +1)n =__________. 19.将多项式a 3+b 2–3a 2b –3ab 2按a 的降幂排列为:__________.23π5x y35153π51223vt-5x y+1x20.指出下列多项式是几次几项式:(1)x 3–x +1; (2)x 3–2x 2y 2+3y 2.21.单项式–与–是次数相同的单项式,求m 的值.22.已知:关于x 的多项式(a –6)x 4+2x ––a 是一个二次三项式,求:当x =–2时,这个二次三项式的值.23.单项式的系数是( )A .B .–C .D .–258m a b 34117x y 12bx 32π3x y zπ3π3131324.单项式–ab 2的系数是( )A .1B .–1C .2D .325.多项式xy 2+xy +1是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式26.下列说法中,正确的是( )A .单项式的系数是–2,次数是3B .单项式a 的系数是0,次数是0C .–3x 2y +4x –1是三次三项式,常数项是1D .单项式的次数是2,系数为 27.如果整式x n –3–5x 2+2是关于x 的三次三项式,那么n 等于( )A .3B .4C .5D .628.一组按规律排列的式子:a 2,,,,…,则第2017个式子是( ) A .B .C .D .29.–的系数是__________,次数是__________.30.单项式2x 2y 的次数是:__________.31.已知多项式kx 2+4x –x 2–5是关于x 的一次多项式,则k =__________.32.单项式–22x y的系数是__________.33.多项式3x m +(n –5)x –2是关于x 的二次三项式,则m ,n 应满足的条件是__________.34.多项式a 3–3ab 2+3a 2b –b 3按字母b 降幂排序得__________.223x y-232ab-92-43a 65a 87a20172016a 20174033a 40344033a 40324031a 25xy35.观察下列单项式:–x,3x2,–5x3,7x4,…–37x19,39x20,…写出第n个单项式,为了解这个问题,特提供下面的解题思路.(1)这组单项式的系数依次为多少,绝对值规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,写出第2016个,第2017个单项式.36.已知多项式x3–3xy2–4的常数是a,次数是b.(1)则a =__________,b =__________;并将这两数在数轴上所对应的点A、B表示出来;(2)数轴上在B点右边有一点C到A、B两点的距离之和为11,求点C在数轴上所对应的数.37.单项式2xy 3的次数是( )A .1B .2C .3D .4A .B.π C .2 D .12π21.同类项(1)所含字母相同,并且相同字母的指数也相同的项叫做同类项.另外,几个常数项也是同类项.(2)注意:①两个单项式是不是同类项有两个“无关”,第一与单项式的系数无关(在系数不为零的前提下),第二与单项式中字母排列顺序无关.②同类项都是单项式.2.合并同类项(1)把多项式中的同类项合并成一项,叫做__________.(2)合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数__________.(3)合并同类项的一般步骤:①找出同类项,当项数较多时,通常在同类项的下面作出相同的标记.②利用加法交换律把同类项放一起,在交换位置时,连同项的符号一起交换.③利用合并同类项的法则合并同类项,系数相加,字母及其指数不变.④写出合并后的结果.(4)把一个多项式的各项按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母的__________排列;把一个多项式的各项按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母的__________排列.3.去括号(1)去括号的法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号__________;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号__________.(2)去括号时,要将括号连同它前面的符号一起去掉;在去括号时,首先要明确括号前是“+”还是“–”;需要变号时,括号里的各项都变号;不需要变号时,括号里的各项都不变号;去括号的依据是乘法分配律,当括号前面有非“±1”的数字因数时,应先利用分配律把括号前面的数字因数与括号内的每一项相乘去掉括号,切勿漏乘.(3)多层括号的去法:先观察式子的特点,再考虑去括号的顺序.一般由内向外,先去小括号,再去中括号,最后去大括号,但有时也可以由外向内,先去大括号,再去中括号,最后去小括号.4.整式的加减(1)整式加减的运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.(2)应用整式的加减运算法则进行化简求值时,一般先去括号、合并同类项,再代入字母的值进行计算.在具体运算中,也可以先将同类项合并,再去括号,但要按运算顺序去做.(3)整式加减的结果要最简:①不能有同类项;②含字母的项的系数不能出现带分数,如果有带分数,必须将其化成假分数;(4)不再含括号.一、同类项同类项要满足两个“同”,第一个“同”是所含字母相同,第二个“同”是相同字母的指数相同.【例1】下列式子中是同类项的是()A.62和x2B.11abc和9bcC.3m 2n 3和–n3m2D.0.2a2b和ab2A.a=4,b=2,c=3 B.a=4,b=4,c=3C.a=4,b=3,c=2 D.a=4,b=3,c=4二、合并同类项合并同类项法则实质为“一相加,两不变”,“一相加”指各同类项的系数相加,“两不变”指字母不变且字母的指数也不变.简单记为“只求系数和,字母指数不变样”.【例3】下列运算中结果正确的是()A.4a+3b=7ab B.4xy–3xy=xyC.–2x+5x=7x D.2y–y=1三、去括号去大括号时,要将中括号看作一个整体,去中括号时,要将小括号看作一个整体.【例4】下列去括号正确的是()A.–(a+b–c)=–a+b–c B.–2(a+b–3c)=–2a–2b+6c C.–(–a–b–c)=–a+b+c D.–(a–b–c)=–a+b–c四、整式的加减1.整式加减的实质是去括号、合并同类项.2.应用整式的加减运算法则进行化简求值时的步骤:一化、二代、三计算.3.进行整式的加减时,若遇到相同的多项式,可将相同的多项式分别作为一个整体进行合并.【例5】化简m–(m–n)的结果是()A.2m–n B.n–2m C.–n D.n1.下列去括号正确的是()A.–(3x–1)=–3x–1 B.–(3x–1)=3x–1C.–(3x–1)=–3x+1 D.–(3x–1)–3x+1 2.–a+b–c的相反数是()A.a–b–c B.a–b+c C.a+b–c D.a+b+c 3.计算–(a–1)–(–a+2)+3的结果是()A.6 B.2 C.0 D.–2a+2 4.化简2a–[3b–5a–(2a–7b)]的值为()A.9a–10b B.5a+4bC.–a–4b D.–7a+10b5.去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号________;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号________.6.将下列各式去括号:(1)(a–b)–(c–d)=________;(2)–(a+b)+(c–d)=________;(3)–(a–b)–(c–d)=________;(4)(a+b)–3(c–d)=________.7.多项式–8ab2+3a2b与多项式–2ab2+5a2b的差为________.8.若m、n互为相反数,则(3m–2n)–(2m–3n)的值为________.9.化简:(1)2xy+3(4xy–2x)–2(xy–2x);(2)3x2–2(x+x2–3)+3(–2x–4+3x2).10.化简:(1)–(9x3–4x2+5)–(–3–8x3+3x2);(2)2(a2b+ab2)–2(a2b–1)–3(ab2+1).11.观察下列各式:(1)–a+b=–(a–b);(2)2–3x=–(3x–2);(3)5x+30=5(x+6);(4)–x–6=–(x+6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a2+b2=5,1–b=–2,求-1+a2+b+b2的值.12.在修某县人民路的BRT (快速公交)时,需要对部分建筑进行拆迁,该县政府成立了拆迁工作组,他们步行去做拆迁产生的思想工作;如果向南记为负,向北记为正;以下是他们一天中行程(单位:km ):出发点,–0.7,+2.7,–1.3,+0.3,–1.4,+2.6,拆迁点;(1)工作组最后到达的地方在出发点的哪个方向?距出发点多远?(2)在一天的工作中,最远处距离出发点有多远?(3)如果平均每个拆迁地址(出发点处没有拆迁)要做1小时的思想工作,他们的步行速度为2km/h ,工作组早上九点出发,做完工作时是下午几点?13.不改变3a 2–2b 2–b+a+ab 的值,把二次项放在前面有“+”的括号内,一次项放在前面有“–”的括号内,下列各式正确的是( )A .+(3a 2+2b 2+ab)–(b+a)B .+(–3a 2–2b 2–ab)–(b –a)C .+(3a 2–2b 2+ab)–(b –a)D .+(–3a 2+2b 2+ab)–(b –a)14.下列各式中,去括号错误的是( )A .3x 2–(2x –y)=3x 2–2x+yB .C .5a+(–2a 2–b 2)=5a –2a 2–b 2D .(–a+3b)–(a 2+b 2)=–a+3b –a 2–b 2()22332244x x x x -+=--15.数学课上老师讲了合并同类项,小玉回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现了一道题目:(2a 2+3ab –b 2)–(–3a 2+ab+5b 2)=5a 2–6b 2,横线上的一项被墨水弄脏了,则被墨水弄脏的一项是________.16.先化简,再求值:,其中、满足3202x y -++=.17.计算3x 2–x 2的结果是( )A .2B .2x 2C .2xD .4x 2A .3B .6C .8D .919.化简:2x –x=( )A .2B .1C .2xD .x20.下列运算正确的是( ) A .3a+2a=5a 2B .3a+3b=3abC .2a 2bc –a 2bc=a 2bcD .a 5–a 2=a 321.下列式子正确的是( )A .7m+8n=8m+7nB .7m+8n=15mnC .7m+8n=8n+7mD .7m+8n=56mn22113124323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭x y。
整式的加减单元复习
提示:先设被减数为A,可由已知求出多项式A,再计算A-(3x2-5x+1)
积
第2章 |复习
多项式:几个单项式的____叫做多项式. 多项式的次数:多项式里次数最高项的次数,叫做这个多项式的次数. 整式:______________________统称整式. 2.同类项、合并同类项 同类项:所含字母________,并且相同字母的指数也______的项叫做同类项.几个常数项也是同类项. 合并同类项:把多项式中的同类项合并成一项,叫做合并同类项,即把它们的系数相加作为新的系数,而字母部分不变.
根据加法的交换律和结合律,可以把一个多项式的各项重新排列,移动多项式的项时,需连同项的符号一起移动,这样的移动并没有改变项的符号和多项式的值。
01
把一个多项式按某个字母的指数从大到小的顺序排列起来叫做把该多项式按这个字母的降幂排列;
02
把一个多项式按某个字母的指数从小到大的顺序排列起来叫做把该多项式按这个字母的升幂排列。
不是
是
不是
是
多项式中的项:
4x2 ,- 8x , + 5 ,- 3x2 , - 6x , - 2
同类项:
4x2与- 3x2
- 8x与- 6x
+ 5与- 2
3.化简:(1)-xy2– xy2 (2) – 3x2y - 3xy2 + 2x2y - 2xy2
02
[例1]
关于去括号
1、去括号是本章的难点之一;去括号都是多项式的恒等变形;去括号时一定对照法则把去掉括号与括号的符号看成统一体,不能拆开。 法则:如果括号外的因数是正数,去括号后原括号内的各项的符号与原来的符号( ); 如果括号外的因数是负数,去括号后原括号内的各项的符号与原来的符号( )。 遇到括号前面是“-”时,容易发生漏掉括号内一部分项的变号,所以,要注意“各项”都要变号。不是只变第一项的符号。 去括号的顺口溜:去括号,看符号; 是正号,不变号; 是负号,全变号。
第二章《整式的加减》-----知识点及题型-----(第二版)
单项式一.知识点:1、单项式:由 数或字母 的乘积组成的式子称为单项式。
补充,单独一个 数 或一个 字母 也是单项式,如a ,π,5 。
应用:判断下列各式子哪些是单项式? (1)12x -;(2)35a b -;(3) 1y x +。
解:(1) 12x -不是单项式,因为含有字母与数的差; (2)35a b -是单项式,因为是数与字母的积; (3)1y x +不是单项式,因为含有字母与数的和,又含有字母与字母的商;练习:判断下列各式子哪些是单项式? (1)21+x ; (2) a bc ; (3) b 2; (4) -3a b 2; (5) y ; (6) 2-xy 2; (7) -0.5 ;(8) 11x +。
2、单项式系数:单项式是由数字因数和字母因数两部分组成的,其中的数字因数叫做单项式的系数。
应用:指出各单项式的系数:(1) 31a 2h ,(2) 322r ,(3) a bc ,(4)-m ,(5) 223ab π-注意:π是数字而不是字母。
解:(1) 31a 2h 的系数是31,(2) 322r 的系数是32, (3) a bc 的系数是1 (4)-m 的系数是-1, (5) 223ab π-的系数是23π- 注意:π是数字而不是字母。
3、单项式次数:单项式中所有 字母 的指数的 和 叫做单项式的次数。
注意:π是数字而不是字母。
应用:1.指出各单项式的次数:(1)31a 2h ,(2)3232r h ,(3)423ab π- 解:(1)因为字母a 的指数是2,字母h 的指数是1,213+=,所以 31a 2h 的次数是3, (2) 3232328r h r h =,因为字母r 的指数是2,字母h 的指数是3,235+=,所以3232r h 的次数是5, (3) 442233ab ab ππ--=, 因为字母a 的指数是1,字母b 的指数是4,145+=, 所以423ab π-的次数是5。
第二章《整式的加减》同步单元基础与培优高分必刷卷(全解全析)
第二章《整式的加减》同步单元基础与培优高分必刷卷全解全析1.B【分析】根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数进行解答即可.【详解】解:根据单项式系数的定义,单项式-3x 3y 2的系数是-3,次数是3+2=5.故选:B .【点睛】此题主要考查了单项式,关键是掌握单项式系数和次数的定义.2.B【分析】根据单项式和多项式统称为整式,判断即可.【详解】解:在式子1x ,x +y +1,2021,﹣a ,23x y -,13x +中,整式是:x +y +1,2021,﹣a ,﹣23x y -,13x +,共有5个,故选:B【点睛】本题考查了整式,熟练掌握单项式和多项式统称为整式是解题的关键.3.A【分析】根据同类项是指所含字母相同且相同字母的指数也相同的项,可求出a 、b ,再把a 、b 代入求解即可.【详解】解:∵单项式-xyb +1 与xa -2y 3是同类项,∴a -2=1,b +1=3,∴a =3,b =2,∴(ab -7)2021=()2021671-=-,故选:A .【点睛】本题考查同类项的定义,解题的关键是熟练掌握同类项的定义.4.A【分析】根据合并同类项的法则逐项计算即可判断选择.【详解】A .220x y yx -=,故A 计算正确,符合题意;B .2334y y 和不是同类项,不能合并,故B 计算错误,不符合题意;C .32a a a -=,故C 计算错误,不符合题意;D .325a a a +=,故D 计算错误,不符合题意;故选:A .【点睛】本题考查合并同类项.掌握合并同类项的法则是解题关键.5.D【分析】由223m m ++的值为5,得出222m m +=,将其整体代入代数式即可求解.【详解】解:∵223m m ++5=,∴222m m +=∴()22485425m m m m +-=+-425=´-85=-3=.故选D .【点睛】本题考查了代数式求值,整体代入是解题的关键.6.D【分析】先用含a 、b 、m 、n 的代数式表示出阴影矩形的长宽,再求阴影矩形的周长和即可.【详解】解:如图,由图和已知条件可知:AB =a ,EF =b ,AC =n ﹣b ,GE =n ﹣a .阴影部分的周长为:2(AB +AC )+2(GE +EF )=2(a +n ﹣b )+2(n ﹣a +b )=2a +2n ﹣2b +2n ﹣2a +2b=4n .∴求图中阴影部分的周长之和,只需知道n 一个量即可.故选:D .【点睛】本题主要考查了整式的加减,能用含a 、b 、m 、n 的代数式表示出阴影矩形的长宽是解决本题的关键.7.A【分析】设运动t 秒,得到A 、B 、C 三点运动后分别表示-2-2t 、3t 、4+4t ,求出5AC -6AB ,5BC -10AB ,即可判断.【详解】解:设运动t 秒,∵点A 、B 、C 三点,在数轴上分别表示﹣2、0、4,∴A 、B 、C 三点,运动后分别表示-2-2t 、3t 、4+4t ,∴5AC -6AB =5(4+4t +2+2t )-6(3t +2+2t )=18,故5AC ﹣6AB 的值不变,∴甲的说法正确;∵5BC -10AB =5(4+4t -3t )-10(3t +2+2t )=-45t ,故5BC ﹣10AB 的值改变,∴乙的说法不正确;故选:A .【点睛】此题考查了数轴上动点问题,数轴上两点之间的距离,正确表示出三点运动后表示的数计算两点之间的距离是解题的关键.8.C【分析】利用去括号法则,逐一选项计算即可.【详解】解:A.5x ﹣(x ﹣2y +5z )=5x ﹣x +2y ﹣5z ,正确,不合题意;B.2a 2+(﹣3a ﹣b )﹣(3c ﹣2d )=2a 2﹣3a ﹣b ﹣3c +2d ,正确,不合题意;C.3x 2﹣3(x +6)=3x 2﹣3x ﹣18,原题解答错误,符合题意;D .﹣(x ﹣2y )﹣(x 2+y 2)=﹣x +2y ﹣x 2﹣y 2,正确,不合题意;故选:C .【点睛】本题考查了去括号法则,熟练掌握去括号时,括号前是“-”号,去掉括号后,括号内的每一项都要变号是解题的关键.9.D【分析】先将2220a a +-=化为222a a +=,2243a a ++化为()2223a a ++,再将222a a +=代入,求出算式的值即可得出答案.【详解】解:2220a a +-=Q 222a a \+=2243a a \++()2223a a =++223=´+=7故选D .【点睛】本题考查了代数式求值问题,求代数式的值可以直接代入、计算,如果给出的代数式可以化简,要先化简再求值.10.B【分析】先求出a ﹣2b 的值,然后将x =﹣1代入要求的代数式,从而利用整体代入即可得出答案.【详解】解:由题意得,当x =1时,代数式321ax bx --的值为2022,∴a ﹣2b ﹣1=2022,∴a ﹣2b =2023,当x =﹣1时,代数式=﹣a +2b +1=﹣(a ﹣2b )+1=﹣2023+1=﹣2022.故选:B .【点睛】此题考查了代数式求值的知识,解答本题的关键是求出a +b 的值,然后整体代入,整体思想是数学解题经常用到的,同学们要注意掌握.11.D【分析】先根据数轴得到0c b a a <<-<<,c b a >>,再判断绝对值里的式子的符号,利用绝对值的性质化简后再计算即可.【详解】解:由数轴可知0c b a a <<-<<,c b a >>,∴0a c +<,0a b +<,0c b -<,∴a c a b c b+-+--()()()a c abc b =-++++-a c a b c b=--+++-=0.故选:D .【点睛】本题考查整式的加减,用数轴上的点表示有理数,绝对值的化简,解题关键是根据有理数在数轴上的位置判断绝对值里的式子的符号.12.B【分析】根据图形特点,首先写出前三个图形中小正六边形的个数,从而得到规律并写出第n 个图形中小正六边形的个数,然后把n =10代入进行计算即可得解.【详解】解:如图,第1个图形中有小正六边形1个,1=3×12-3×1+1,第2个图形中有小正六边形7个,7=3×22-3×2+1,第3个图形中有小正六边形19个,19=3×32-3×3+1,…,依此类推,第n 个图形中有小正六边形(3n 2-3n +1)个,所以,第10个图形中有小正六边形3×102-3×10+1=271个.故选:B .【点睛】此题考查了规律型:图形的变化类,得到第n 个图形中小正六边形的个数变化规律的表达式是解题的关键.13.()510a -【分析】根据轮船逆水航行5小时的路程等于时间5乘以逆水航行速度,即可求解.【详解】解:根据题意得:这艘轮船逆水航行5小时的路程是()()52510a a -=-千米.故答案为:()510a -【点睛】本题主要考查了列代数式,根据题意得到轮船逆水航行5小时的路程等于时间5乘以逆水航行速度是解题的关键.14.-2【分析】直接利用多项式的次数与项数的确定方法得出答案.【详解】解:∵多项式()33232m x y m x -++是一个五次两项式,∴|m |+3=5,m +2=0,解得:m =-2或m =2(不合题意,故舍去).故答案为:-2.【点睛】本题主要考查了多项式,正确确定多项式的次数与项数,是解题关键.15.2263x x +-【分析】先去括号,再合并同类项,即可求解.【详解】解:原式225363x x x =+--2263x x =+-,故答案为:2263x x +-.【点睛】本题主要考查了整式加减混合运算,熟练掌握整式加减混合运算法则是解题的关键.16.1【分析】将原式两边同时乘以x ,即得出234560x x x x x x +++++=,再将两边同时加1,最后将234510x x x x x +++++=代入,即可求解.【详解】234510x x x x x +++++=,两边同时乘以x ,得:234560x x x x x x +++++=,再两边同时加1,得2345611x x x x x x ++++++=.234510x x x x x +++++=把代入,得:601x +=,61x \=,故答案为:1.【点睛】本题考查代数式求值,掌握整体代入的思想是解题关键.17.-3【分析】简单的因式分解,把等式化成含字母的代数式等于整数的形式,再把第二个代数式通过简单变形后,运用代入法,把数据带入式子化简整理后正好去除字母得到结果.【详解】∵2220110m m --=,等式变形后,()220110m m --=即:()22011m m -=把代数式3220132014m m m ---变形后3220132014m m m ---322220132014m m m m m =----+322220132014m m m m =---+322220132014m m m m =---+()()2220132014m m m m =---+()()22201120142m m m m =----+()()2201120142m m m m m m =--´--+把()22011m m -=代入上式,得原式()()2201120142m m m m m m =--´--+2011201120112014m m =-´-´+3=-故答案为:3-.【点睛】本题考查了整式的化简求值,解题关键是将已知等式进行化简,找到与待求式子之间的关系.18.13【分析】根据平方及绝对值的非负性得出a =3,b =-5,c =2,然后代入求解即可.【详解】解:()23520a b c -+-++-=∴30a -=,50b -+=,20c -=,∴a =3,b =5,c =2,∴2a +b +c =13,故答案为:13.【点睛】题目主要考查平方及绝对值的非负性,求代数式的值,熟练掌握平方及绝对值的非负性是解题关键.19.-30【分析】直接把a 、b 的值代入代数式求解即可.【详解】解:∵a =-2.5,b =-4,∴()()()()()()2222332.54 2.54 2.542540153022a b ab ab -+-=--´-+-´--´-´-=--=-,故答案为:-30.【点睛】本题主要考查了代数式求值,含乘方的有理数混合计算,熟知含乘方的有理数混合计算法则是解题的关键.20.(1)2ab(2)2x 2+xy(3)x +5xy(4)b 2-2b【解析】(1)-ab +5ab -2ab=(-1+5-2)ab=2ab(2)(5x 2-xy )+(2xy -3x 2)=5x 2-xy +2xy -3x 2=5x 2-3x 2+2xy -xy=2x 2+xy(3)2(2x -xy )-(3x -7xy )=4 x -2 xy -3x +7xy= x +5xy(4)3(a +b 2)-(2b -3a )-2(b 2+3a )=3a +3b 2-2b +3a -2b 2-6a= b 2-2b【点睛】此题主要考查了整式的加减,解题关键是掌握其运算法则以及运算技能.21.(1)4a +7(2)a +17(3)65a +20【分析】(1)根据足球a 个,即可由排球的个数是足球的2倍还多12个,得到排球()212a +个,由篮球比足球少5个,得到篮球()5a -个,求和即可得到结论;(2)由(1)知排球()212a +个,篮球()5a -个,作差即可得到结论;(3)由(1)知足球a 个,排球()212a +个,篮球()5a -个,结合足球每个25元,排球每个10元,篮球每个20元,乘积求和即可得到结论.(1)解:Q 学校有足球a 个,排球的个数是足球的2倍还多12个,篮球比足球少5个,\排球()212a +个,篮球()5a -个,\这个学校共有球个数为()()()212547a a a a +++-=+个;(2)解:由(1)知排球()212a +个,篮球()5a -个,\排球比篮球多()()()212517a a a +--=+个;(3)解:由(1)知足球a 个,排球()212a +个,篮球()5a -个,结合足球每个25元,排球每个10元,篮球每个20元,\学校购进这些球共花()()2510212205a a a +++-252012020100a a a =+++-()6520a =+元.【点睛】本题考查列代数式解实际应用题,读懂题意,找准关系正确用代数式表示三种球的数量是解决问题的关键.22.(1)2020(2)-1【分析】(1)整体代入即可;(2)将要求的式子变为x – y 形式,再代入即可.(1)解:∵20x x +=∴22020x x ++02020=+2020=.(2)解:3(x –y )-x + y +5()()35x y x y =---+将x – y = -3代入式子得,原式=()()3335=´---+935=-++=-1.【点睛】本题考查了已知式子的值,求代数式的值,解决本题的关键是计算的过程不出错.23.(1)<;<;>(2)-2a +2b【分析】(1)根据数轴可知c +b 、a +c 、b -a 与0的大小;(2)利用绝对值的性质即可化简.(1)解:由数轴可知:c <a <-1<1<b ,c b >,∴c +b <0,a +c <0,b -a >0;(2)解:∵c +b <0,a +c <0,b -a >0,∴原式=b -a -(a +c )+(c +b )=b -a -a -c +c +b=2b -2a .【点睛】本题考查数轴与绝对值的性质,整式的加减,要注意去绝对值的条件,本题属于基础题型.24.(1)b =1,a =-3(2)-9【分析】(1)直接合并同类项进而得出2,x x 的系数为零进而得出答案;(2)直接利用y =1时得出t -5m =6,进而得出答案.(1)解:∵多项式232(21)(2352)x ax ty bx x my ++---++的值与字母x 的取值无关,∴232(21)(2352)x ax ty bx x my ++---++23(22)(3)53b x a x ty my =-+++--,则2-2b =0,a +3=0,解得:b =1,a =-3;(2)解:∵当y =1时,代数式的值3,则t -5m -3=3,故t -5m =6,∴当y =-1时,原式=-t +5m -3=-6-3=-9.【点睛】此题主要考查了整式的加减运算,正确合并同类项是解题关键.25.(1)22x y xy -+(2)6a -+【分析】合并同类项时,把同类项的系数相加作为结果的系数,字母和字母指数表示不变,据此计算即可.(1)解:22223322x y xy xy x y-+-+=2222(32)(32)x y x y xy xy -++-=22x y xy -+;(2)解: 22225643a a a a a -+++-=222(23)(45)6a a a a a +-+-+=6a -+.【点睛】本题考查了合并同类项法则的应用,熟练掌握合并同类项法则是解题的关键.26.(1)下一个装饰图案是两个四分之一圆和三个半圆;(2)218b p ,216b p ,224b p ;(3)发现装饰物面积变化的规律是28b n p(n 为正整数)【分析】(1)根据所给的条件和所给的图形,即可得到下一个装饰图案是两个四分之一圆和三个半圆;(2)结合图形和圆的面积公式即可求出图1、图2、图3中装饰物所占的面积;(3)根据图1、图2、图3得出的装饰物所占的面积,即可求出装饰物面积变化的规律公式.(1)下一个装饰图案是两个四分之一圆和三个半圆;(2)根据题意得:图1中装饰物所占的面积是:2211228b b p p æö=ç÷èø;图2中装饰物所占的面积是:22416b b p p æö=ç÷èø,图3中装饰物所占的面积是:222162624b b b p p p æöæö+´=ç÷ç÷èøèø,(3)发现装饰物面积变化的规律是28b n p(n 为正整数).【点睛】本题考查了代数式求值和列代数式等知识点的应用,这是一个实际问题,要求即能用数学知识解决,又要讲究漂亮和美观.27.(1)甲对乙错(2)①-6n +25 ;②4(3)3或5【分析】(1)由题意知,甲只能向东移动才有可能停在数轴正半轴上,则只需考虑①与②的情形即可确定对错;(2)①根据题意乙猜对n 次,则乙猜错了(10-n )次,利用平移规则即可推算出结果;②根据题意乙猜对n 次,则乙猜错了(10-n )次,利用平移规则即可推算出结果;(3)由题意可得刚开始两人的距离为8,根据三种情况下计算出缩小的距离,即可算出缩小的总距离,分别除以2即可得到结果.(1)解:∵甲、乙两人(看成点)分别在数轴-3和5的位置上,∴甲乙之间的距离为8.∵若甲乙都错,则甲向东移动1个单位,在同时乙向西移动1个单位,∴第一次移动后甲的位置是-3+1=-2,停在了数轴的负半轴上,∵若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位,∴第一次移动后甲的位置是-3+4=1,停在了数轴的正半轴上.故答案为:甲对乙错;(2)解:①∵乙猜对n 次,∴乙猜错了(10-n )次.∵甲错乙对,乙向西移动4个单位,∴乙猜对n 次后,乙停留的位置对应的数为:5-4n .∵若甲对乙错,乙向东移动2个单位,∴乙猜错了(10-n)次后,乙停留的位置对应的数为:m=5-4n+2(10-n)=25-6n;②∵n为正整数,∴当n=4时该位置距离原点O最近.故答案为:4;(3)解:k=3 或k=5.由题意可得刚开始两人的距离为8,∵若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位,∴若都对或都错,移动后甲乙的距离缩小2个单位.∵若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位,∴若甲对乙错,移动后甲乙的距离缩小2个单位.∵若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位,∴若甲错乙对,移动后甲乙的距离缩小2个单位.∴甲乙每移动一次甲乙的距离缩小2个单位.∵甲与乙的位置相距2个单位,∴甲乙共需缩小6个单位或10个单位.∵6÷2=3,10÷2=5,∴k的值为3或5.故答案为:3或5.【点睛】本题主要考查了列代数式,数轴,本题是动点型题目,找出移动后甲乙距离变化的规律是解题的关键.。
第二章 整式的加减知识点
第二章整式的加减知识点
2.1整式
①单项式:表示数或字母积的式子
②单项式的系数:单项式中的数字因数
③单项式的次数:一个单项式中,所有字母的指数和
④几个单项式的和叫做多项式。
每个单项式叫做多项式的项,不含字母的项叫做常数项。
⑤多项式里次数最高项的次数,叫做这个多项式的次数。
⑥单项式与多项式统称整式。
2.2 整式的加减
①同类项:所含字母相同,而且相同字母的次数相同的单项式。
②把多项式中的同类项合并成一项,叫做合并同类项。
③合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
④如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。
⑤如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
⑥一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
第二章 整式的加减(知识归纳+题型突破)(原卷版)
第二章 整式的加减(知识归纳+题型突破)1.了解代数式的概念及书写要求,理解单项式、多项式、整式的概念及各自的次数、项数、常数项等;2.理解同类项,合并同类项,对多项式进行化简及求值;3.理解并掌握整式加减在实际问题中的应用.一、列代数式及书写要求代数式:用运算符号把字母和数字连接而成的式子就叫代数式.代数式的值:用具体数值代替代数式中的字母,就可以得到代数式的值.代数式的书写要求:①字母与数字相乘,或字母与字母相乘,乘号不用“×”,而是“g ”,或略去不写.因“×”与“x”易混淆.②字母与数字相乘,一般数字在前,系数带分数的,一般写成假分数.因312x 易混淆为3×12×x.③系数是1时,一般省略不写.○4多项式后面带单位,多项式须用括号括起来.代数式的书写规范问题【解题技巧】代数式书写规范:①数和字母相乘,可省略乘号,并把数字写在字母的前面;②字母和字母相乘,乘号可以省略不写或用“ · ” 表示. 一般情况下,按26个字母的顺序从左到右来写;③后面带单位的相加或相减的式子要用括号括起来;④除法运算写成分数形式,即除号改为分数线;⑤带分数与字母相乘时,带分数要写成假分数的形式;⑥当“1”与任何字母相乘时,“1”省略不写;当“-1”乘以字母时,只要在那个字母前加上“-”号.根据要求列代数式【解题技巧】解决此类问题是要理解题意,将字母看作数字表示相应的量,列出代数式,注意代数式的书写规范.二、单项式的概念单项式:数或字母的积.(单独的一个数或一个字母也是单项式).例:5x ;100;x ;10ab 等注:分母中有字母,那就是字母的商,不是单项式.例:4x不是单项式.单项式的系数:单项式中的数字叫做单项式的系数.例:28xy p的系数为8p.单项式的次数:一个单项式中所有字母的指数的和.例: 22xy p 的次数为3次.三、多项式的有关概念多项式:几个单项式的和.注:和,即减单项式,实际是加该单项式的相反数.例如: 32x 3y ﹣45y 2+ 12xy 可以视作: 32x 3y+(﹣45y 2)+ 12xy .项:每个单项式叫做多项式的项,有几项,就叫做几项式.常数项:不含字母的项.多项式的次数:所有项中,次数最高的项的次数就是多项式的次数(最高次数是n 次,就叫做n 次式).四、 整式的概念整式:单项式与多项式统称为整式.注:①多项式是由多个单项式构成的;②单项式和多项式的区别在于是否含有加减运算;③分母中含有字母的式子不是整式(因不是单项式或多项式)利用整式的相关概念求字母的取值①利用单项式的系数与次数求值解题技巧:此类题型有2点需要注意:①题干会告知单项式的次数,利用系数关系可以列写一个等式;②还需注意,单项式的系数不为0②利用多项式的次数及特定的系数求值解题技巧:此类题型有3点需要注意:①题干会告知次数,则多项式的最高次数项的次数等于该值;②注意最高次数项的系数不能为0;③题干还会告知项数,往往利用项数也能确定一些等式(不等式).五、合并同类项同类项:所含字母相同,并且相同字母的指数也相同的项(即仅系数不同或系数也相同的项)例:5abc2:与3abc23abc 与3abc判断同类项需要同时满足2个条件:①所含字母相同;②相同字母的指数相同合并同类项:将多项式中的同类项合并成一项叫做合并同类项同类项合并的计算方法:系数对应向加减,字母及指数不变.利用同类项的概念求值解题技巧:(1)若告知某两个单项式为同类项,则这两个单项式的对应字母的次数相同;(2)若告知某个整式经过一系列变化后,结果为某个单项式,则该整式中与该单项式不是同类项的系数必为0.六、去(添)括号法则括号前是“+”,去括号后,括号内的符号不变括号前是“-”,去括号后,括号内的符号全部要变号.括号前有系数的,去括号后,括号内所有因素都要乘此系数.解题技巧:去多重括号,可以先去大括号,在去中括号,后去小括号;也可以先从最内层开始,先去小括号,在去中括号,最后去大括号.可依据简易程度,选择合适顺序.七、整式的加减(合并同类项)整式的加减运算实际就是合并同类项的过程,具体步骤为:①将同类项找出,并置与一起;②合并同类项.解题技巧:(1)当括号前面有数字因数时,应先利用乘法分配律计算,然后再去括号,注意不要漏乘括号内的任一项.(2)合并同类项时,只能把同类项合并,不是同类项的不能合并,合并同类项实际上就是有理数的加减运算.合并同类项要完全、彻底,不能漏项.整式“缺项”及与字母取值无关的问题解题技巧:(1)若题干告知整式不含某次项,则说明该次项前面的系数为0.(2)因为与字母取值无关,说明包含该字母前面的系数为0.即先化简整式,另包含该字母的的式子前面的系数为0即可.八.数字类规律①符号规律:通常是正负间或出现的规律,常表示为(1)n -或1(1)n --或1(1)n +-②数字规律:数字规律需要视题目而确定○3字母规律:通常字母规律是呈指数变换,长表示为:n a 等形式九. 算式类规律算式规律这一类没有固定的套路,主要依靠学生对已知算式的观察、总结、逻辑推理,发现期中的规律.常考的背景有:杨辉三角、等差数列、连续n 个数的立方和、连续n 个数的平方和、阶乘等.十.图形类规律通常结合数字特点和图形变化情况进行猜想,验证,从而提高探究规律能力.题型一 列代数式【典例1】(2023秋·全国·七年级专题练习)一个两位数,个位上数字为5,设十位上数字为x ,则这个两位数表示为 .巩固训练题型二代数式书写要求题型三已知字母的值,求代数式的值a__________;(1)=(2)求222-+的值;a b ab题型四已知式子的值,求代数式的值题型五 程序流程图与代数式求值巩固训练1.(2023春·山东济南·七年级统考期末)如图是一个运算程序示意图,若开始输入2.(2022秋·安徽铜陵·七年级统考期末)按如图所示的程序计算,若开始输入()1100x x x+>,如果“是”则得到输出的结果,如果为.题型六 单项式的概念及系数、次数题型七多项式的概念及项数、系数、次数、常数题型八整式的概念及分类题型九同类项的识别及依据同类项求字母的值题型十多项式的化简及化简求值巩固训练。
第二章整式的加减知识点复习
第二章:整式的加减知识点1 代数式用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数.的字母连接起来的式子叫做代数式.单独的一个数或一个字母也是代数式.例如:5,a ,32(a+b),ab ,a 2-2ab+b 2等等. 请你再举3个代数式的例子:___________________________________________知识点2 列代数式时应该注意的问题 (1)数与字母、字母与字母相乘时常省略“×”号或用“·”.如:-2×a=-2a ,3×a ×b=________,-2×x 2=________. (2)数字通常写在字母前面.如:mn ×(-5)=________, (a+b)×3=_______. (3)带分数与字母相乘时要化成假分数.如:221×ab=________,切勿错误写成“221ab ”.(4)除法常写成分数的形式.如:S ÷x=xS , x ÷3=__________,x ÷312=__________典型例题:1、列代数式:(1)a 的3倍与b 的差的平方:___________________ (2)2a 与3的和:____________ (3)x 的54与32的和:______________知识点3 代数式的值一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值.例如:求当x=-1时,代数式x 2-x+1的值.解:当x=1时,x 2-x+1=12-1+1=1. ∴当x=1时,代数式x 2-x+1的值是1.对于一个代数式来说,当其中的字母取不同的值时,代数式的值一般也不相同。
请你求出: 当x=2时,代数式x 2-x+1的值。
_________________________________________________________________________________________________________________________________知识点4 单项式及相关概念由_____和_____的乘积组成的_____叫做单项式.单项式中的______叫做这个单项式的系数.一个单项式中,所有字母的______的和叫做这个单项式的次数。
第二章整式的加减全章知识点总结
第二章 整式的加减知识点1、单项式的概念式子x 3,m t xy a ---,6.2,,32它们都是数或字母的积,象这样的式子叫做单项式,单独的一个数或一个字母也是单项式。
注意:单项式是一种特殊的式子,它包含一种运算、三种类型。
一种运算是指数与字母、字母与字母之间只能是乘法的一种运算,不能有加、减、除等运算符号;三种类型是指:一是数字与字母相乘组成的式子,如ab 2;二是字母与字母组成的式子,如3xy ;三是单独的一个数或字母,如m a ,2-,。
知识点2、单项式的系数 单项式中的数字因数叫做这个单项式的系数。
注意:(1)单项式的系数可以是整数,也可能是分数或小数。
如42x 的系数是2;3ab 的系数是31,2.7m 的系数是2.7。
(2)单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号,如-()xy 2的系数是-2.(3)对于只含有字母因素的单项式,其系数是1或-1,不能认为是0,如-2xy 的系数是-1;2xy 的系数是1。
(4)表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。
如2πxy 的系数就是2π. 知识点3、单项式的次数一个单项式中,所有字母的指数和叫做这个单项式的次数。
注意:(1)计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。
如单项式z y x 342的次数是字母z y x ,,的指数和,即4+3+1=8,而不是7次,应注意字母Z 的指数是1而不是0.。
(2)单项式是一个单独字母时,它的指数是1,如单项式m 的指数是1,单项式是单独的一个常数时,一般不讨论它的次数。
(3)单项式的指数只和字母的指数有关,与系数的指数无关。
如单项式-43242z y x 的次数是字母z y x ,,的指数和,即2+3+4=9而不是13次(4)单项式通常根据字母的次数进行命名。
如x 6是一次单项式,xyz 2是三次单项式。
【人教版】第二章 整式的加减 知识点总结
第二章 整式的加减知识点总结知识点1 代数式例如:5,a ,32(a+b),ab ,a 2-2ab+b 2等等. 请你再举3个代数式的例子:___________________________________________ 知识点2 列代数式时应该注意的问题(1)数与字母、字母与字母相乘时常省略“×”号或用“·”.如:-2×a=-2a ,3×a ×b=________,-2×x 2=________.(2)数字通常写在字母前面.如:mn ×(-5)=________, (a+b)×3=_______.(3)带分数与字母相乘时要化成假分数.如:221×ab=________,切勿错误写成“221ab ”. (4)除法常写成分数的形式.如:S ÷x=x S , x ÷3=__________, x ÷312=__________ 典型例题:1、列代数式:(1)的3倍与的差的平方:___________________(2)2a 与3的和:____________ (3)x 的54与32的和:______________ 知识点3 代数式的值对于一个代数式来说,当其中的字母取不同的值时,代数式的值一般也不相同。
请你求出: 当x=2时,代数式x 2-x+1的值。
_________________________________________________________________________________________________________________________________知识点4 单项式及相关概念由_____和_____的乘积组成的_____叫做单项式.单项式中的______叫做这个单项式的系数.例如,h r 231的系数是___,r 2的系数是___,abc 的系数是____,-m 的系数是_____. 一个单项式中,所有字母的______的和叫做这个单项式的次数。
七年级数学上册第二章整式的加减知识汇总大全
(名师选题)七年级数学上册第二章整式的加减知识汇总大全单选题1、下列各题中去括号正确的是())=2−4x+1A.5−3(x+1)=5−3x−1B.2−4(x+14x+1)=2−x−4D.2(x−2)−3(y−1)=2x−4−3y−3C.2−4(14答案:C分析:根据去括号法则即可求出答案.解:A.5−3(x+1)=5−3x−3,故A不符合题意.)=2−4x−1,故B不符合题意.B.2−4(x+14x+1)=2−x−4,故C符合题意.C.2−4(14D.2(x−2)−3(y−1)=2x−4−3y+3,故D不符合题意.故选∶C.小提示:本题考查去括号,解题的关键是正确运用去括号法则,本题属于基础题型.2、单项式mxy3与x n+2y3的和是5xy3,则m−n(()A.﹣4B.3C.4D.5答案:D分析:根据单项式的和是单项式,可得两个单项式是同类项,根据同类项是字母相同且相同字母的指数也相同,可得m、n的值,再代入计算可得答案.解:解:∵单项式mxy3与x n+2y3的和是5xy3,∴单项式mxy3与x n+2y3是同类项,∴n+2=1,m+1=5,解得n=−1,m=4,∴m−n=4−(−1)=5,故选:D.小提示:本题考查了同类项的概念,同类项定义中的两个“相同”:字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.3、下列算式中正确的是()A.4x−3x=1B.2x+3y=3xyC.3x2+2x3=5x5D.x2−3x2=−2x2答案:D分析:根据合并同类项的法则计算即可得出正确结论.解:A. 4x−3x=x,故本选项错误,不符合题意;B. 2x与3y不是同类项,不能合并运算,故本选项故本选项错误,不符合题意;C. 3x2与2x3不是同类项,不能合并运算,故本选项故本选项错误,不符合题意;D. x2−3x2=−2x2,本选项正确,符合题意;故选:D小提示:本题主要考查了合并同类项,熟记同类项的概念是解题的关键.4、小李今年a岁,小王今年(a-15)岁,过n+1年后,他们相差()岁A.15B.n+1C.n+16D.16答案:A分析:用大李今年的年龄减去小王今年的年龄,即可求出两人的年龄差,再根据年龄差不会随着时间的变化而改变,由此即可确定再过n+1年后,大李和小王的年龄差仍然不变.解:a﹣(a﹣15)=15(岁)答:他们相差15岁.故选:A.小提示:此题考查了列代数式及年龄问题,要注意:两个人的年龄差是一个永远也不变的数值.5、若多项式 36x2-3x+5 与 3x3+12mx2-5x相加后不含二次项,则常数m的值是( )A.-3B.-2C.2D.3答案:A分析:对两个多项式的二次项进行合并,再根据二次项系数为0建立关于m的方程求解,即可解答.解:两个多项式的二次项分别为:36x2和12mx2,则有:36x2+12mx2=(36+12m)x2,令36+12m=0,解得m=−3.故选:A.小提示:本题考查了多项式合并和无关项问题,特别是掌握无关项问题的解答方法是解答本题的关键.6、为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x本,则购买乙种读本的费用为()A.8x元B.10(100−x)元C.8(100−x)元D.(100−8x)元答案:C分析:根据题意列求得购买乙种读本(100−x)本,根据单价乘以数量即可求解.解:设购买甲种读本x本,则购买乙种读本(100−x)本,乙种读本的单价为8元/本,则则购买乙种读本的费用为8(100−x)元故选C小提示:本题考查了列代数式,理解题意是解题的关键.7、多项式﹣2x2y﹣9x3+3x3+6x3y+2x2y﹣6x3y+6x3的值是()A.只与x有关B.只与y有关C.与x,y都无关D.与xy都有关答案:C分析:根据合并同类项法则化简,再进行判断即可.解:﹣2x2y﹣9x3+3x3+6x3y+2x2y﹣6x3y+6x3=(﹣2x2y+2x2y)+(﹣9x3+3x3+6x3)+(6x3y﹣6x3y)=0.∴多项式﹣2x2y﹣9x3+3x3+6x3y+2x2y﹣6x3y+6x3的值与x,y都无关.故选:C.小提示:题目主要考查整式的化简,熟练掌握运用合并同类项法则是解题关键.8、下列计算正确的是()A.2a+2b=4ab B.5x−3x=2C.2m2−3m=−m D.−2ab+3ab=ab答案:D分析:根据合并同类项的计算法则逐一求解判断即可.解:A、2a与2b不是同类项,不能合并,故此选项计算不正确,不符合题意;B、5x−3x=(5−3)x=2x,故此选项计算不正确,不符合题意;C、2m2与3m不是同类项,不能合并,故此选项计算不正确,不符合题意;D、−2ab+3ab=(−2+3)ab=ab,此选项计算正确,符合题意;故选:D.小提示:本题主要考查了合并同类项,熟知合并同类项的计算法则是解题的关键.9、已知关于x、y的多项式mx2+4xy−7x−3x2+2nxy−5y合并后不含有二次项,则m+n的值为()A.-5B.-1C.1D.5答案:C分析:先对多项式mx2+4xy−7x−3x2+2nxy−5y进行合并同类项,然后再根据不含二次项可求解m、n 的值,进而代入求解即可.解:mx2+4xy−7x−3x2+2nxy−5y=(m−3)x2+(4+2n)xy−7x−5y,∵不含二次项,∴m−3=0,4+2n=0,∴m=3,n=−2,∴m+n=3−2=1.故选:C小提示:本题主要考查整式的加减,熟练掌握整式的加减是解题的关键.10、下列说法正确的是()A.23πa3的次数是4B.mn-12不是整式C.3x2y与−2yx2是同类项D.y−2x2+3xy2是二次三项式答案:C分析:根据单项式,整式,同类项及多项式的有关定义分析四个选项,即可得出结论πa3的次数是3次,故本选项错误,不符合题意;解:A. 23是整式,故本选项错误,不符合题意;B.mn-12C. 3x2y与−2yx2是同类项,故本选项正确,符合题意;D. y−2x2+3xy2是关于x,y的三次三项式;故本选项错误,不符合题意;故选择:C小提示:本题考查了整式,同类项,单项式,多项式的有关定义的问题,解题的关键是牢记这些定义.填空题11、张老师带了100元钱去给学生买笔记本和笔,已知一本笔记本3元,一支笔2元,张老师买了a本笔记本,b支笔,她还剩___________________元钱(用含a,b的代数式表示).答案:(100-3a-2b)分析:根据题意表示出a本笔记本的钱,b支笔的钱,用总钱数-笔记本和笔的钱即可.解:由题意得:100-3a-2b,所以答案是:(100-3a-2b).小提示:此题主要考查了列代数式,关键是根据题意表示出a本笔记本的钱,b支笔的钱.12、一列有规律的数:−1,−4,7,10,−13,−16,19,22,⋯.这列数的第100个数为____.答案:298分析:观察发现,连续的两个数的绝对值相差3,符号为4次一循环,据此即可求解.解:观察一列有规律的数:−1,−4,7,10,−13,−16,19,22,⋯.第一个数为:−1=−[3×(1−1)+1],第二个数为:−4=−[3×(2−1)+1],第三个数为:+7=+[3×(3−1)+1],第四个数为:+10=+[3×(4−1)+1],……连续的两个数的绝对值相差3,符号为4次一循环,100÷4=25,第100个数为第25组第4个,符号为正,第100个数为3×(100−1)+1=298所以答案是:298小提示:本题是一道找规律问题,此类问题通常会按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,而揭示的规律,常常包含着事物的序列号. 所以解决此类问题的关键,可以把变量和序列号放在一起加以比较,从而快速找到规律.13、计算:2a+3a=______.答案:5a分析:直接运用合并同类项法则进行计算即可得到答案.解:2a+3a=(2+3)a=5a.所以答案是:5a.小提示:本题主要考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键.=﹣1,|c|=c,化简|a+b|﹣|a﹣c|﹣|b﹣c|=__.14、已知abc>0,|b|b答案:﹣2c分析:先根据已知条件确定a,b,c的符号,再化简绝对值即可.∵abc>0,|b|=−1,|c|=c,b∴a<0,b<0,c>0,∴a+b<0,a﹣c<0,b﹣c<0,∴|a+b|﹣|a−c|﹣|b−c|=﹣a﹣b+a﹣c+b﹣c=﹣2c .所以答案是:﹣2c .小提示:本题考查绝对值化简,合并同类项法则,解题关键是根据已知条件判断绝对值内的式子的正负性. 15、观察下列一组数:2,12,27,…,它们按一定规律排列,第n 个数记为a n ,且满足1a n+1an+2=2an+1.则a 4=________,a 2022=________. 答案: 1513032分析:由题意推导可得an =23(n−1)+1,即可求解. 解:由题意可得:a 1=2=21,a 2=12=24,a 3=27, ∵1a 2+1a 4=2a 3,∴2+1a 4=7,∴a 4=15=210,∵1a 3+1a 5=2a 4,∴a 5=213,同理可求a 6=18=216,⋯ ∴an =23(n−1)+1,∴a 2022=26064=13032,所以答案是:15,13032.小提示:本题考查了数字的变化类,找出数字的变化规律是解题的关键. 解答题 16、合并同类项 (1)5m +2n ﹣m ﹣3n ; (2)a 2﹣b 2﹣a 2+4ab ﹣4b 2.答案:(1)4m ﹣n ;(2)﹣5b 2+4ab .分析:(1)直接合并同类项进而得出答案; (2)直接合并同类项得出答案. 解:(1)5m +2n ﹣m ﹣3n =(5﹣1)m +(2﹣3)n =4m ﹣n ;(2)a 2﹣b 2﹣a 2+4ab ﹣4b 2=a 2﹣a 2+4ab ﹣b 2﹣4b 2=﹣5b 2+4ab .小提示:本题主要考查了合并同类项,熟知合并同类项的计算法则是解题的关键,合并同类项时,系数相加减,字母及其指数不变.17、先化简,再求值:2(x 2+2x −2)−(x 2−2x −1),其中x =−12.答案:x 2+6x −3,−534分析:原式去括号合并得到最简结果,将x 的值代入计算即可求出值. 解:2(x 2+2x −2)−(x 2−2x −1)=2x 2+4x −4−x 2+2x +1=x 2+6x −3, ∵x =−12,∴原式=(−12)2+6×(−12)−3=−534.小提示:此题考查了整式的加减-化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键. 18、观察下列各式的计算结果: 1−122=1−14=34=12×32; 1−132=1−19=89=23×43; 1−142=1−116=1516=34×54;1−152=1−125=2425=45×65…(1)用你发现的规律填写下列式子的结果:1﹣162= × ;1﹣1102= × . (2)用你发现的规律计算:(1﹣122)×(1﹣132)×(1﹣142)×…×(1﹣120202)×(1﹣120212)×(1−120222). 答案:(1)56,76,910,1110; (2)20234044分析:(1)按照已有等式的书写方式书写即可;(2)先利用(1)的方法得到原式12×32×23×43×34×54×⋯×20192020×20212020×20202021×20222021×20212022×20232022,然后约分即可.(1)解:1﹣162=1﹣136=3536=56×76, 1−1102=1−1100=99100=910×1110. 所以答案是:56,76,910,1110.(2)解:(1﹣122)×(1﹣132)×(1﹣142)×…×(1﹣120202)×(1﹣120212)×(1−120222) =12×32×23×43×34×54×⋯×20192020×20212020×20202021×20222021×20212022×20232022=12022×20232=20234044.小提示:本题主要考查式子的规律、有理数的混合运算等知识点,从已有式子中找出规律是解答本题的关键.。
第二章整式的加减章末复习
第二章 整式的加减复习课一、知识框架⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧整式的加减运算法则:去括号法则:合并同类项:同类项:整式的加减次数:定义:多项式次数:系数:定义:单项式整式整式的加减 二、基础知识巩固1、单项式的定义: ;单项式的系数 ,单项式的次数2、多项式的定义 ;多项式的次数3、整式的定义:4、填表:5、如果y mx n -是关于x ,y 的一个单项式,且系数为3,次数为4,那么=m ,=n6、已知()132+-m y x m 是关于x ,y 的六次单项式,字母m 的值为7、(1)如果多项式1222-+-x b a m 是一个四次三项式,那么=m(2)请写出y x xy y x 3244821-+-的项 , 并将其按x 的次数由大到小排列为8、已知多项式63313212+-+-+x xy y x m 是六次四项式,单项式223y x n 的次数与这个多项式的次数相同.求n m +的值.9、同类项的定义: ;10、如果213b a x +与y b a 237-是同类项,那么=x ;=y11、合并下列各式的同类项:(1)2251xy xy -; (2)222234234b a ab b a --++12、若52=-b a ,则多项式b a 36-的值是13、化简下列各式:(1)()()6323533----m m ; (2)()()y x y x 42332-+-;(3)()()222223223x y y x ---;(4)()()()22222234226b ab a b ab a b a +--++---14、一个三角形的第一条边长为()b a +2cm ,第二条边长比第一条边长()b a +cm ,第三条边比第二条边的2倍少b cm ,求这个三角形的周长。
第二章 整式的加减 期终复习
[典例] 设x2+xy=3,xy+y2=-2,求2x2-xy-3y2的 值。 解:∵x2+xy=3,∴2(x2+xy)=6,即2x2+2xy=6 ∴ 2x2-xy-3y2=2x2+2xy-3xy-3y2 =(2x2+2xy)-(3xy+3y2) =(2x2+2xy)-3(xy+y2) =6-3×(-2)=6+6=12 思考:设3x2-x=1,求9x4+12x3-3x2-7x+2000 的值。
4 3
8 7
2N -1
4.式子(x ax 2 y 7)
2
(bx 2 x 9 y 1)的值与
2
字母x的取值无关,求 a、b 的值。
a=-2,b=1
5.若 a 1 b 2 0,
2
M 3a 6ab b ,
2 2
N a 5, 求M - N的值。
(3)定义运算:a※b=ab+a+b-1,
验证下列运算成立的是( C )
A.a※b=(-a)※(-b) (-a).(-b)-a-b-1 a.(-b)+a-b-1 B.a※(-b)=(-a)※b -a.b-a+b-1 C.a※b=b※a ba+b+a-1 D.a※(b※c)=(a※b)※c
[典例] 有人说:“下面代数式的值的大小与a、 b的取值无关”,你认为这句话正确吗? 为什么?
练 习(一):
1、在式子: a 2 、 、 3 a
1 2
1 、 x y
x y 、 2
y2
1-x-5xy2 、-x
中,哪些是单项式,哪些是多项式?哪些 是整式?
1 2 2、 y 的系数是( 2
七年级数学上册第二章整式的加减重点归纳笔记
(名师选题)七年级数学上册第二章整式的加减重点归纳笔记单选题1、古希腊毕达哥拉斯学派的“三角形数”是一列点(或圆球)在等距的排列下可以形成正三角形的数,如1,3,6,10,15,….我国宋元时期数学家朱世杰在《四元玉鉴》中所记载的“垛积术”其中的“落一形”堆垛就是每层为“三角形数”的三角锥的锥垛(如图所示顶上一层1个球,下一层3个球,再下一层6个球),若一个“落一形”三角锥垛有10层,则该堆垛球的总个数为()A.55B.220C.285D.385答案:B分析:“三角形数”可以写为:1,3=1+2,6=1+2+3,10=1+2+3+4,15=1+2+3+4+5,所以第n层“三角形数”为n(n+1)2,再把n=10代入计算即可.解:∵“三角形数”可以写为:第1层:1,第2层:3=1+2,第3层:6=1+2+3,第4层:10=1+2+3+4,第5层:15=1+2+3+4+5,∴第n层“三角形数”为n(n+1)2,n层时,垛球的总个数为:12+22+⋯+n22+1+2+⋯+n2=n(n+1)(2n+1)12+n(n+1)4∴若一个“落一形”三角锥垛有10层,则该堆垛球的总个数为10×11×2112+10×114=220故选:B.小提示:本题考查了等腰三角形的性质以及数字变化规律,得出第n层“三角形数”为n(n+1)2是解答本题的关键.2、若单项式2xy3−b是三次单项式,则()A.b=0B.b=1C.b=2D.b=3答案:B分析:根据单项式次数的概念列式计算即可解:若单项式2xy3−b是三次单项式,则3-b=2,解得:b=1,故选:B.小提示:本题考查了单项式,单项式是数与字母的乘积,单独一个数或一个字母也是单项式,单项式的次数是字母指数和,单项式的系数是数字因数.3、周末,奶奶买了一些小桔子,小亮、姐姐、弟弟做了一个有趣的游戏:首先姐姐,小亮,弟弟手中拿上相同数量的桔子(每人手中的桔子大于4个),然后依次完成以下步骤:第一步:姐姐给小亮2个桔子;第二步:弟弟给小亮1个桔子;第三步:此时,姐姐手中有几个桔子,小亮就给姐姐几个桔子.请你确定,最终小亮手中剩余的桔子有几个()A.3B.4C.5D.6答案:C分析:本题是整式加减法的综合运用,设每人有x个桔子,解答时依题意列出算式,求出答案.解:设刚开始姐姐,小亮,弟弟手中都拿x个桔子(x>4),那么,姐姐给小亮2个桔子,姐姐手中剩下的桔子数为:x-2,接着,弟弟给小亮1个桔子,此时小亮手中的桔子数为:x+2+1=x+3,然后,姐姐手中有几个桔子,小亮就给姐姐几个桔子.最终小亮手中剩余的桔子数为:x+3-(x-2)=x+3-x+2=5.故选:C.小提示:此题考查了列代数式以及整式的加减,解题的关键是根据题目中所给的数量关系列代数式运算.4、如果代数式2x−3y+2的值为5,那么代数式5+6y−4x的值为()A.−1B.11C.7D.−3答案:A分析:先根据题意得到2x−3y=3,然后整体代入到5+6y−4x=5−2(2x−3y)中进行求解即可.解:∵代数式2x−3y+2的值为5,∴2x−3y+2=5,∴2x−3y=3,∴5+6y−4x=5−2(2x−3y)=5−2×3=−1,故选A.小提示:本题主要考查了代数式求值,正确得到2x−3y=3是解题的关键.5、单项式−3xy34的系数是()A.3B.4C.−3D.−34答案:D分析:根据单项式的系数的概念解答即可.解:单项式-3xy 34的系数是-34.故选:D.小提示:本题考查的是单项式的系数的概念,单项式中的数字因数叫做单项式的系数,理解单项式的系数的概念是解答关键.6、下面图案是用长度相同的火柴棒按一定规律拼搭而成,若第n个图案需要y根火柴棒,则y与n的函数关系式为()A.y=3n B.y=3n+3C.y=4n+3D.y=4n−1答案:A分析:根据题意可得第1个图,火柴棒个数是3;第2个图,火柴棒个数是3+3=2×3;第3个图,火柴棒个数是3+3+3=3×3;第4个图,火柴棒个数是3+3+3+3=4×3;......由此发现规律,即可求解.解:根据题意得:第1个图,火柴棒个数是3;第2个图,火柴棒个数是3+3=2×3;第3个图,火柴棒个数是3+3+3=3×3;第4个图,火柴棒个数是3+3+3+3=4×3;......第n个图,火柴棒个数是3+3+3+3+......+3=3n;故选:A.小提示:本题主要考查了图形类规律题,明确题意,准确得到规律是解题的关键.7、如图,小明在3×3的方格纸上写了九个式子(其中的n是正整数),每行的三个式子的和自上而下分别记为B1,B2,B3,每列的三个式子的和自左至右分别记为A1,A2,A3,其中值可以等于732的是()A.A1B.B1C.A2D.B3答案:D分析:将A1,A2,B1,B3的式子表示出来,使其等于732,求出相应的n的数值即可判断答案.解:A1=2n−2+2n−4+2n−6=732,整理可得:2n=248,n不为整数;故选项A不符合题意;A2=2n−8+2n−10+2n−12=732,整理可得:2n=254,n不为整数;故选项B不符合题意;B1=2n−2+2n−8+2n−14=732,整理可得:2n=252,n不为整数;故选项C不符合题意;B3=2n−6+2n−12+2n−18=732,整理可得:2n=256,n=8;故选项D不符合题意;故选:D.小提示:本题主要考查规律型的数字变化问题,解答本题的关键是能够理解题意,写出相对应的式子并进行求解.8、下列计算正确的是( )A.3ab+2ab=5ab B.5y2−2y2=3C.7a+a=7a2D.m2n−2mn2=−mn2答案:A分析:运用合并同类项的法则∶1.合并同类项后,所得项的系数是合并前各同类项的系数之和,且字母连同它的指数不变.字母不变,系数相加减.2.同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.即可得出答案.解:A、3ab+2ab=5ab,故选项正确,符合题意;B、5y2−2y2=3y2,故选项错误,不符合题意;C、7a+a=8a,故选项错误,不符合题意;D、m2n和2mn2不是同类项,不能合并,故选项错误,不符合题意;故选:A.小提示:本题考查了合并同类项,解题的关键是知道如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项,还要掌握合并同类项的运算法则.9、下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面:(−x2+3xy−12y2)−2(−52x2+4xy−32y2)=−5xy+52y2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是()A.4x2−5y B.2y−x C.5x D.4x2答案:D分析:根据题意易得(−x2+3xy−12y2)−2(−52x2+4xy−32y2)+5xy−52y2,然后进行求解即可.解:由题意得:(−x2+3xy−12y2)−2(−52x2+4xy−32y2)+5xy−52y2=−x2+3xy−12y2+5x2−8xy+3y2+5xy−52y2 =4x2故选:D.小提示:本题主要考查整式的加减,熟练掌握整式的加减运算是解题的关键.10、下列各正方形中的四个数之间都有相同的规律,根据此规律,x的值为()A.135B.153C.170D.189答案:C分析:由观察发现每个正方形内有:2×2=4,2×3=6,2×4=8,可求解b,从而得到a,再利用a,b,x之间的关系求解x即可.解:由观察分析:每个正方形内有:2×2=4,2×3=6,2×4=8,∴2b=18,∴b=9,由观察发现:a=8,又每个正方形内有:2×4+1=9,3×6+2=20,4×8+3=35,∴18b+a=x,∴x=18×9+8=170.故选C.小提示:本题考查的是数字类的规律题,掌握由观察,发现,总结,再利用规律是解题的关键.填空题11、三个连续整数中,n是最小的一个,则这三个数的和为 ________.答案:3n+3分析:根据最小的整数为n,表示出三个连续整数,求出之和即可.解:根据题意三个连续整数为n,n+1,n+2,则三个数之和为n+n+1+n+2=3n+3.所以答案是:3n+3.小提示:此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.12、将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为:1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第67个数为______.答案:5151分析:首先得到前n个图形中每个图形中的黑色圆点的个数,得到第n个图形中的黑色圆点的个数再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第67个能被3整除的数所在组,为原数列中第101个数,解:第①个图形中的黑色圆点的个数为1;=3;第②个图形中的黑色圆点的个数为(1+2)×22=6;第③个图形中的黑色圆点的个数为(1+3)×32=10;第④个图形中的黑色圆点的个数为(1+4)×42……;由此发现,第n个图形中的黑色圆点的个数为n(1+n)2∴这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,……,其中每3个数中,都有2个能被3整除,∵67÷2=33…1,33×3+2=101.=5151.则第67个被3整除的数为原数列中第101个数,即101×1022所以答案是:5151小提示:本题主要考查了图形类规律题,明确题意,准确得到规律是解题的关键.13、若2x2−3x−2=0,则代数式3−4x2+6x的值为________.答案:-1分析:将2x2−3x−2=0变形为2x2-3x=2,再将3−4x2+6x变形为3-2(2x2-3x),然后整体代入计算即可.解:∵2x2−3x−2=0∴2x2-3x=2,∴3−4x2+6x=3-2(2x2-3x)=3-2×2=-1,所以答案是:-1.小提示:本题考查代数式求值,将式子恒等变形,利用整体思想求解是解题的关键.14、若x−2y=3,则代数式2x−4y−4的值等于___________.答案:2分析:把2x-4y-4转化为2(x-2y)-4,然后整体代入进行计算即可得解.解:∵x−2y=3,∴2x−4y-4=2(x−2y)-4=2×3-4=2.故答案为∶2.小提示:本题考查了代数式求值,熟练掌握整体思想的应用是解题的关键.15、观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.答案:不存在分析:首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n个图形中“•”的个数是3n;然后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n个“○”的个数是n(n+1);最后根据图形中的2“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n的值是多少即可.解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n个图形中“•”的个数是3n;;又∵n=1时,“○”的个数是1=1×(1+1)2n=2时,“○”的个数是3=2×(2+1),2n=3时,“○”的个数是6=3×(3+1),2n=4时,“○”的个数是10=4×(4+1),2……∴第n个“○”的个数是n(n+1),2由图形中的“○”的个数和“.”个数差为2022∴3n −n (n+1)2=2022①,n (n+1)2−3n =2022②解①得:无解解②得:n 1=5+√162012,n 2=5−√162012所以答案是:不存在小提示:本题考查了图形类规律,解一元二次方程,找到规律是解题的关键. 解答题16、观察下列等式:第1个等式:a 1=11×3=12×(1−13);第2个等式:a 2=13×5=12×(13−15);第3个等式:a 3=15×7=12×(15−17);第4个等式:a 4=17×9=12×(17−19);……请解答下列问题:(1)按以上规律列出第5个等式:a 5= = ;(2)按以上规律列出第2015个等式:a 2015= = ;(3)求a 1+a 2+a 3+a 4+…+a 2016的值.答案:(1)19×11,12×(19−111) (2)14029×4031=12×(14029−14031)(3)20164033分析:(1)根据所给的等式的形式进行求解即可;(2)根据所得规律求出第n 个等式,从而得到第2015个等式;(3)利用(2)中的规律进行求解即可.(1)解:由题意得:第5个等式为:a 5=19×11=12×(19−111),所以答案是:19×11,12×(19−111);(2)第1个等式:a 1=11×3=12×(1−13);第2个等式:a 2=13×5=12×(13−15);第3个等式:a 3=15×7=12×(15−17);第4个等式:a 4=17×9=12×(17−19); ……∴第n 个等式:a n =1(2n−1)(2n+1)=12×(12n−1−12n+1), ∴第2015个等式:a 2015=14029×4031=12×(14029−14031);(3)a 1+a 2+a 3+a 4+⋯+a 2016=11×3+13×5+15×7+...+14031×4033=12×(1−13+13−15+15−17+17+...+14031−14033) =12×(1−14033) =12×40324033=20164033.小提示:本题考查数字的规律,能够通过所给式子,找到数字的变化规律,并归纳出一般结论是解题的关键.17、小明在计算 5x 2+3xy +2y 2加上多项式A 时,由于粗心,误算成减去这个多项式而得到2x 2-3xy +4y 2.(1)求多项式 A ;(2)求正确的运算结果.答案:(1)3x 2+6xy ﹣2y 2(2)8x 2+9xy分析:(1)根据题意得出A 的表达式,再去括号,合并同类项即可;(2)根据题意得出整式相加减的式子,再去括号,合并同类项即可.(1)∵(5x 2+3xy +2y 2)﹣A =2x 2﹣3xy +4y 2,∴A=(5x2+3xy+2y2)﹣(2x2﹣3xy+4y2)=5x2+3xy+2y2﹣2x2+3xy﹣4y2=3x2+6xy﹣2y2;(2)由题意得,(5x2+3xy+2y2)+(3x2+6xy﹣2y2)=5x2+3xy+2y2+(3x2+6xy﹣2y2=8x2+9xy.小提示:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.18、已知多项式M=(2x2+3xy+2y)−2(x2+x+yx+1).(1)当x=1,y=2,求M的值;(2)若多项式M与字母x的取值无关,求y的值.答案:(1)2(2)y=2分析:(1)先化简多项式,将x=1,y=2,代入化简结果求值即可求解;(2)根据(1)的结果,令x的系数为0,即可求得y的值.(1)解:M=2x2+3xy+2y−2x2−2x−2yx−2=xy﹣2x+2y﹣2,当x=1,y=2时,原式=2﹣2+4﹣2=2;(2)(2)∵M=xy﹣2x+2y﹣2=(y﹣2)x+2y﹣2,且M与字母x的取值无关,∴y﹣2=0,解得:y=2.小提示:本题考查了整式的加减运算化简求值,整式加减中无关类型问题,正确的计算是解题的关键.。
陕西西安市七年级数学上册第二章《整式的加减》知识点复习
1.与(-b)-(-a)相等的式子是( )A .(+b)-(-a)B .(-b)+aC .(-b)+(-a)D .(-b)-(+a)B 解析:B【分析】将各选项去括号,然后与所给代数式比较即可﹒【详解】解: (-b)-(-a)=-b+aA. (+b)-(-a)=b+a ;B. (-b)+a=-b+a ;C. (-b)+(-a)=-b-a ;D. (-b)-(+a)=-b-a ;故与(-b)-(-a)相等的式子是:(-b)+a ﹒故选:B ﹒【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒2.若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.3.某公司今年2月份的利润为x 万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)( )A .(x ﹣8%)(x+10%)B .(x ﹣8%+10%)C .(1﹣8%+10%)xD .(1﹣8%)(1+10%)x D解析:D【分析】 首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x ,4月份的产值为(1﹣8%)(1+10%)x . 故选:D .【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.4.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( )A .2x 2﹣5x ﹣1B .﹣2x 2+5x+1C .8x 2﹣5x+1D .8x 2+13x ﹣1A解析:A【分析】根据由题意可得被减式为5x 2+4x-1,减式为3x 2+9x ,求出差值即是答案.【详解】由题意得:5x 2+4x−1−(3x 2+9x),=5x 2+4x−1−3x 2−9x ,=2x 2−5x−1.故答案选A.【点睛】本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算.5.已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .6C 解析:C【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】 由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩, 故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细. 6.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b c A .1,6,15a b c === B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c === B 解析:B【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可.【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=.故选:B .【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键. 7.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2B .3C .4D .5B 解析:B【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值.【详解】解:∵132n x y +与4313x y 是同类项, ∴n+1=4,解得,n=3,故选:B.【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.8.下列变形中,正确的是( )A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y = B解析:B【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可.【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;故选:B.【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.9.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( )A .2B .﹣2C .3D .﹣3D解析:D【分析】先将多项式合并同类型,由不含x 的二次项可列【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,∴6+2m=0,解得m =﹣3,故选:D .【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值.10.点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A .2x -+B .2x --C .2x +D .-2A解析:A【分析】由BC=2,C 点所表示的数为x ,求出B 表示的数,然后根据OA=OB ,得到点A 、B 表示的数互为相反数,则问题可解.【详解】解:∵BC=2,C 点所表示的数为x ,∴B 点表示的数是x-2,又∵OA=OB ,∴B 点和A 点表示的数互为相反数,∴A 点所表示的数是-(x-2),即-x+2.故选:A .【点睛】此题考查用数轴上的点表示数的方法和数轴上两点间的距离以及相反数的性质,解答关键是应用数形结合思想解决问题.11.探索规律:根据下图中箭头指向的规律,从2013到2014再到2015,箭头的方向是( )A .B .C .D . D解析:D【分析】 根据图中规律可得,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可.【详解】解:由图可知,每4个数为一个循环组依次循环,2013÷4=503余1,即0到2011共2012个数,构成前面503个循环,∴2012是第504个循环的第1个数,2013是第504个循环组的第2个数,∴从2013到2014再到2015,箭头的方向是. 故选:D .【点睛】本题考查了数字变化规律,仔细观察图形,发现每4个数为一个循环组依次循环是解题的关键.12.已知多项式()210m xm x +--是二次三项式,m 为常数,则m 的值为( ) A .2-B .2C .2±D .3± A 解析:A【分析】根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可.【详解】 解:因为多项式()210m x m x +--是二次三项式,∴m-2≠0,|m|=2,解得m=-2,故选:A.【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键.13.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数C .a 的平方与b 的差的倒数D .a 的平方与b 的倒数的差D 解析:D【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【详解】 解:代数式21a b -的正确解释是a 的平方与b 的倒数的差. 故选:D.【点睛】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.14.若23,33M N x M x +=-=-,则N =( )A .236x x +-B .23x x -+C .236x x --D .23x x - D解析:D【分析】根据N=M+N-M 列式即可解决此题.【详解】依题意得,N=M+N-M=222(3)(33)3333x x x x x x ---=--+=-; 故选D.【点睛】此题考查的是整式的加减,列式是关键,注意括号的运用.15.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ).A .0B .-2C .0或-2D .任意有理数A解析:A【分析】根据相反数的定义得到0a b +=,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入()2a b cd m +-+进行求值. 【详解】∵a ,b 互为相反数,∴0a b +=,∵c ,d 互为倒数,∴cd =1,∵m 的绝对值等于1,∴m =±1,∴原式=0110-+=故选:A.【点睛】本题考查代数式求值,相反数,绝对值,倒数.能根据相反数,绝对值,倒数的定义求出+a b ,cd 和m 的值是解决此题的关键.1.观察下列顺序排列的等式:9×0+1 = 1,9×1+2 = 11,9×2+3=21, 9×3+4=31, 9×4+5=41,……,猜想:第n 个等式(n 为正整数)用n 表示,可表示成_________.【分析】根据数据所显示的规律可知:第一数列都是9第2数列开始有顺序且都是所对序号的数减去1加号后的数据有顺序且与所在的序号项吻合等号右端是的规律所以第n 个等式(n 为正整数)应为【详解】根据分析:即第解析:109n -【分析】根据数据所显示的规律可知:第一数列都是9,第2数列开始有顺序且都是所对序号的数减去1,加号后的数据有顺序且与所在的序号项吻合,等号右端是()10?11n -+的规律,所以第n 个等式(n 为正整数)应为()()9110?11n n n -+=-+.【详解】根据分析:即第n 个式子是()()9110?11109n n n n -+=-+=-.故答案为:109n -.【点睛】本题主要考查了数字类规律探索题.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解. 2.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子.(4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n 个上字需用(4n+2)枚棋子故答解析:(4n+2).【分析】先数出前三个“上”字各所需棋子数,然后规律即可解答.【详解】解:∵第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子,∴依次多4个∴第n 个“上”字需用(4n+2)枚棋子.故答案为:(4n+2).【点睛】本题主要考查了图形的变化规律,观察出哪些部分发生了变化、是按照什么规律变化的是解答本题的关键.3.已知整数a 1,a 2,a 3,a 4…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,…,依此类推,则a 2016的值为_______.﹣1008【解析】a2=−|a1+1|=−|0+1|=−1a3=−|a2+2|=−|−1+2|=−1a4=−|a3+3|=−|−1+3|=−2a5=−|a4+4|=−|−2+4|=−2…所以n 是奇数解析:﹣1008【解析】a 2=−|a 1+1|=−|0+1|=−1,a 3=−|a 2+2|=−|−1+2|=−1,a 4=−|a 3+3|=−|−1+3|=−2,a 5=−|a 4+4|=−|−2+4|=−2,…,所以n 是奇数时,a n =−12n -;n 是偶数时,a n =−2n ; a 2016=−20162=−1008. 故答案为-1008. 点睛:此题考查数字的变化规律,根据所给出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键. 探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x ,再利用它们之间的关系,设出其它未知数,然后列方程.4.已知123112113114,,,...,1232323438345415a a a =+==+==+=⨯⨯⨯⨯⨯⨯依据上述规律,则 99a =________.【解析】试题 解析:1009999. 【解析】试题 等号右边第一式子的第一个加数的分母是从1开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是2,结果的分子是2,分母是1×3=3;等号右边第二个式子的第一个加数的分母是从2开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是3,结果的分子是3,分母是2×4=8;等号右边第三个式子的第一个加数的分母是从3开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是4,结果的分子是4,分母是3×5=15.所以a 99=991100991019999+=⨯. 考点:规律型:数字的变化类.5.一组数:2,1,3,x ,7,y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a b -”,例如这组数中的第三个数“3”是由“221⨯-”得到的,那么这组数中y 表示的数为______.-9【分析】根据题中给出的运算法则按照顺序求解即可【详解】解:根据题意得:故答案为-9【点睛】本题考查了有理数的运算理解题意弄清题目给出的运算法则是正确解题的关键解析:-9.【分析】根据题中给出的运算法则按照顺序求解即可.【详解】解:根据题意,得:2131x,2(1)79y . 故答案为-9.【点睛】本题考查了有理数的运算,理解题意、弄清题目给出的运算法则是正确解题的关键. 6.关于x 的二次三项式的一次项的系数为5,二次项的系数是-3,常数项是-4.按照x 的次数逐渐减小排列,这个二次三项式为____.-3x2+5x -4【分析】由于多项式是由单项式组成的而多项式的次数是多项式中次数最高的项的次数而关于x 的二次三项式的二次项系数是-3一次项系数是5常数项是-4根据前面的定义即可确定这个二次三项式【详解析:-3x 2+5x -4【分析】由于多项式是由单项式组成的,而多项式的次数是“多项式中次数最高的项的次数”,而关于x 的二次三项式的二次项系数是-3,一次项系数是5,常数项是-4,根据前面的定义即可确定这个二次三项式.【详解】∵关于x 的二次三项式,二次项系数是-3,∴二次项是-3x 2,∵一次项系数是,∴一次项是5x ,∵常数项是-4,∴这个二次三项式为:-3x 2+5x-4.故答案为:-3x 2+5x-4【点睛】本题考查了多项式的知识,多项式是由单项式组成的,本题首先要确定是由几个单项式组成,要记住常数项也是一项,单项式前面的符号也应带着.7.如图,在整式化简过程中,第②步依据的是_______.(填运算律)化简:()22253ab ab a b ab +--+ 解:()22253a b ab a b ab +--+22253a b ab a b ab =++-①22253a b a b ab ab =++-②()222(53)a b a b ab ab =++-③232a b ab =+.④加法交换律【分析】直接利用整式的加减运算法则进而得出答案【详解】解:原式=2a2b+5ab+a2b-3ab=2a2b+a2b+5ab-3ab=(2a2b+a2b )+(5ab-3ab )=3a2b+2a解析:加法交换律【分析】直接利用整式的加减运算法则进而得出答案.【详解】解:原式=2a 2b+5ab+a 2b-3ab=2a 2b+a 2b+5ab-3ab=(2a 2b+a 2b )+(5ab-3ab )=3a 2b+2ab .第②步依据是:加法交换律.故答案为:加法交换律.【点睛】此题主要考查了整式的加减运算,正确掌握相关运算法则是解题关键.8.由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n 个图形中有白色正方形__________个 (用含n 的代数式表示).【分析】将每个图形中白色正方形的个数分别表示出来总结规律即可得到答案【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个解析:()31-n【分析】将每个图形中白色正方形的个数分别表示出来,总结规律即可得到答案.【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个,∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个,故答案为:(3n-1).【点睛】此题考查图形类规律的探究,会观察图形的变化用代数式表示出规律是解题的关键. 9.王马虎同学在做有理数的加减法时,将一个100以内的含两位小数的数看错了,他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原正确数字的2倍,则正确的结果应该是_____.32【分析】根据用看错的数字减35发现差恰好就是原正确数字的2倍利用有理数的加减混合运算即可求解【详解】∵100以内的含两位小数的数看错了根据归纳猜想得:原数为1432看错的两位数为32143214解析:32.【分析】根据用看错的数字减3.5,发现差恰好就是原正确数字的2倍,利用有理数的加减混合运算即可求解.【详解】∵100以内的含两位小数的数看错了,根据归纳猜想得:原数为14.32,看错的两位数为32.14,32.14﹣3.5=28.64,14.32×2=28.64.∴32.14﹣3.5=2×14.32.故答案为14.32.【点睛】本题考查有理数的加减混合运算,解题的关键是利用探究猜想的方法进行计算. 10.多项式234324x x x -+-按x 的降幂排列为______.【分析】先分清多项式的各项然后按多项式降幂排列的定义排列【详解】多项式的各项是3x2−2x3−4x4按x 降幂排列为故答案为:【点睛】本题考查了多项式我们把一个多项式的各项按照某个字母的指数从大到小或解析:432432x x x -++-【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列.【详解】多项式234324x x x -+-的各项是3x 2,−2,x 3,−4x 4,按x 降幂排列为432432x x x -++-.故答案为:432432x x x -++-.【点睛】本题考查了多项式.我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.11.求值:(1)()()22232223a a a a a -++-=______,其中2a =-;(2)()()222291257127a ab ba ab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b ab a b ab +----=______,其中2a =-,2b =.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键解析:6 0【分析】先根据去括号、合并同类项法则进行化简,然后再代入求值即可.【详解】(1)原式= 2222342268a a a a a a a --+-=-,当2a =-时,原式=()()228241620--⨯-=+=;(2)原式=222222912571272242a ab b a ab b a ab b -+---=--, 当12a =,12b =-时,原式=22111111224266222222⎛⎫⎛⎫⎛⎫⨯-⨯⨯--⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)原式=22222222220a b ab a b ab +-+--=.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项法则是解题的关键.1.将一个长方形纸片连续对折,对折的次数越多,折痕的条数也就越多,如第一次对折后,有1条折痕,第2次对折后,共有3条折痕.(1)第3次对折后共有多少条折痕?第4次对折后呢?(2)对折多少次后折痕会超过100条?(3)请找出折痕条数与对折次数的对应规律,写出对折n 次后,折痕有多少条?解析:(1)第3次对折后共有7条折痕,第4次对折后有15条折痕;(2)对折7次后折痕会超过100条;(3)对折n 次后,折痕有21n -条.【分析】(1)动手操作即可得出第3次、第4次对折后的折痕条数;(2)在(1)的基础上,归纳类推出一般规律,再结合67264,2128==即可得出答案; (3)由题(2)已求得.【详解】(1)动手操作可知,第3次对折后的折痕条数为7条,第4次对折后的折痕条数为15条;(2)观察可知,第1次对折后的折痕条数为1121=-条,第2次对折后的折痕条数为2321=-条,第3次对折后的折痕条数为3721=-条,第4次对折后的折痕条数为41521=-条,归纳类推得:第n 次对折后的折痕条数为21n -条,因为67264,2128==,所以对折7次后折痕会超过100条;(3)由(2)已得:对折n 次后的折痕条数为21n -条.【点睛】本题考查了有理数乘方的应用,依据题意,根据前4次对折后的结果,正确归纳类推出一般规律是解题关键.2.如图,观察下列图形,可得它们是按一定规律排列的,依照此规律,解决下列问题.(1)第5个图形有_______颗五角星,第6个图形有_______颗五角星;(2)第2020个图形有_______颗五角星,第n 个图形有_______颗五角星.解析:(1)16,19;(2)6061,31n +.【分析】(1)将每一个图案分成两部分,最下面位置处的一个不变,其它的分三条线,每一条线上后一个图形比前一个图形多一个,根据此规律找出第5、6个图形中★的个数; (2)利用(1)中所得规律可得.【详解】解:(1)观察发现,第1个图形★的颗数是134+=,第2个图形★的颗数是1327+⨯=,第3个图形★的颗数是13310+⨯=,第4个图形★的颗数是13413+⨯=,所以第5个图形★的颗数是13516+⨯=,+⨯=.第6个图形★的颗数是13619故答案为:16,19.+⨯=,(2)由(1)知,第2020个图形★的颗数是1320206061n+.第n个图形★的颗数是31n+.故答案为:6061,31【点睛】本题考查了图形变化规律的问题,把★分成两部分进行考虑,并找出第n个图形★的个数的表达式是解题的关键.3.日历上的规律:下图是2020年元月的日历,图中的阴影区域是在日历中选取的一块九宫格.(1)九宫格中,四个角上的四个数之和与九宫格中央这个数有什么关系?(2)请你自选一块九宫格进行计算,观察四个角上的四个数之和与九宫格中央那个数是否还有这种关系.(3)试说明原理.解析:(1)四个角上的四个数之和等于九宫格中央这个数的4倍;(2)四个角上的四个数之和等于九宫格中央这个数的4倍,选取九宫格见解析;(3)见解析.【分析】(1)求出四个角上的四个数之和与九宫格中央这个数,从而验证它们的关系.(2)选择如下图的九宫格,验证他们的关系即可.(3)设九宫格中央这个数为a,列等式进行验证即可.【详解】(1)四个角上的四个数之和等于九宫格中央这个数的4倍.+++=+=⨯.理由如下:6228202828414+++=⨯,所以四个角上的四个数之和等于九宫格中央这个数(2)如图,9112325174的4倍.(选取的九宫格不唯一).(3)设九宫格中央这个数为a ,那么左上角的数为71a --,右上角的数为71a -+,左下角的数为71a +-,右下角的数为71a ++,四个数的和为(71)(71)(71)(71)4a a a a a --+-+++-+++=.即四个角上的四个数之和等于九宫格中央这个数的4倍.【点睛】本题考查了整式的加减应用,掌握整式的加减运算法则是解题的关键.4.已知22332A x y xy =+-,2222B xy y x =--.(1)求23A B -.(2)若|23|1x -=,29y =,且||x y y x -=-,求23A B -的值.解析:(1)2212127x y xy +-;(2)114或99.【分析】(1)把22332A x y xy =+-,2222B xy y x =--代入23A B -计算即可;(2)根据|23|1x -=,29y =,且||x y y x -=-求出x 和y 的值,然后代入(1)中化简的结果计算即可.【详解】解:(1)()()2222232332322A B x y xy xy y x -=+----2222664366x y xy xy y x =+--++2212127x y xy =+-;(2)由题意可知:231x -=±,3=±y ,∴2x =或1,3=±y ,由于||x y y x -=-,∴2x =,3y =或1x =,3y =.当2x =,3y =时,23114A B -=.当1x =,3y =时,2399A B -=.所以,23A B -的值为114或99.【点睛】本题考查了整式的加减运算,绝对值的意义,以及分类讨论的数学思想,熟练掌握整式的加减运算法则是解(1)的关键,分类讨论是解(2)的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 整式的加减复习 [基础知识]
一、【本章基本概念】★☆▲ 1、______和______统称整式。
①单项式:由 与 的乘积..式子称为单项式。
单独一个数或一个字母也是单项式,如a ,5。
·单项式的系数:单式项里的 叫做单项式的系数。
·单项式的次数:单项式中 叫做单项式的次数。
②多项式:几个 的和叫做多项式。
其中,每个单项式叫做多项式的 ,不含字母的项叫
做 。
·多项式的次数:多项式里 的次数,叫做多项式的次数。
·多项式的命名:一个多项式含有几项,就叫几项式。
所以我们就根据多项式的项数和次数来命名一个多项式。
如:3n 4-2n 2+1是一个四次三项式。
2、同类项——必须同时具备的两个条件(缺一不可):
①所含的 相同;
②相同 也相同。
·合并同类项,就是把多项式中的同类项合并成一项。
方法:把各项的 相加,而 不变。
3、去括号法则
法则1.括号前面是“+”号,把括号和它前面的“+”号去掉,
括号里各项都 符号;
法则2.括号前面是“-”号,把括号和它前面的“-”号去掉,
括号里各项都 符号。
▲去括号法则的依据实际是 。
4、整式的加减
整式的加减的过程就是 。
如遇到括号,则先 ,再 ,合并到 为止。
5、本单元需要注意的几个问题
①整式(既单项式和多项式)中,分母一律不能含有字母。
②π不是字母,而是一个数字,
③多项式相加(减)时,必须用括号把多项式括起来,才能进行计算。
④去括号时,要特别注意括号前面的因数。
《去(添)括号法则[记法
]》
去括号、添括号,
符号变化最重要。
括号前面是正号, 里面各项保留好*。
括号前面是负号, 里面各项都变号
[*“各项保留好”指保留项的符号不变]
二、【概念基础练习】
1、在3222
112,3,1,,,,4,,43xy x x y m n x ab x x --+---+,π
2b 中,单项式有:
多项式有: 。
2、填一填
整
式 -ab
πr
2
2
32ab -
-a+b
2
4
53-+y x A 3b 2-2a 2b 2+b 3-7ab+5
系
数
次
数
项
3、一种商品每件a 元,按成本增加20%定出的价格是 ;后来因库存积压,又以原价的八五折出售,则现价是 元;每件还能盈利 元。
4、已知-7x 2y m 是7次单项式则m= 。
5、已知-5x m y 3与4x 3y n 能合并,则m n = 。
6、7-2xy -3x 2y 3+5x 3y 2z -9x 4y 3z 2是 次 项式,其中最高次项是 ,最高次项的系数是 ,常数项是 ,是按字母 作 幂排列。
7、-3a+3a=-3( ), 2 a -2a=2( ), -5 a -5a=-5( ), 4a + 4a= 4 ( ), 8、已知x -y=5,xy=3,则3xy -7x+7y= 。
9、已知A=3x+1,B=6x -3,则3A -B= 。
10、计算
①(a 3-2a 2+1)-2(3a 2-2a+2
1) ②x -2(1-2x+x 2)+3(-2+3x -x 2) 11、已知ab=3,a+b=4,求3ab -[2a - (2ab -2b)+3]的值。
12、若(x 2+ax -2y +7)―(bx 2―2x +9 y -1)的值与字母x 的取值无关,求a 、b 的值。