高等代数第七章线性变换1-9节

合集下载

《高等代数》第七章 线性变换

《高等代数》第七章  线性变换

线性变换的多项式有以下性质:
1) f (A ) 是一线性变换.
2) 如果在 P[ x ] 中,有 h(x) = f (x) + g(x) , p(x) = f (x) g(x) ,
那么
h(A ) = f (A ) + g(A ) , p(A ) = f (A ) g(A ) .
特别地,
f (A ) g(A ) = g(A ) f (A ) .
定义为 数乘k变A 换= ,K可A用, K 表示. 显然,当 k = 1 时

们(k便A得)恒(等) =变K换(,A当(k) =) =0 K时A,便(得) .零变换.
显然,k A 还是线性变换. 2. 运算规律 1) ( kl ) A = k ( l A ) , 2) ( k + l ) A = k A + l A , 3) k (A + B ) = k A + k B , 4) 1 A = A .
证毕
五、线性变换的多项式
下面引进线性变换的多项式的概念.
1. 线性变换的幂
既然线性变换的乘法满足结合律,当若干个线
性变换 A 重复相乘时,其最终结果是完全确定的,
与乘积的结合方式无关. 因此当 n 个( n 是正整数)
线性变换 A 相乘时,我们就可以用 A A ... A
n个
来表示,称为 A 的 n 次幂,简单地记作 A n. 即
对于线性变换,我们已经定义了乘法、加法与 数量乘法三种运算. 由加法与数量乘法的性质可知, 线性空间 V 中全体线性变换,对于如上定义的加法 与数量乘法,也构成数域 P 上一个线性空间.
对于线性变换,我们也可定义逆变换.
四、线性变换的逆变换
1. 定义 定义5 线性空间 V 的线性变换 A 称为可逆的 如果有 V 的变换 B 存在,使

第七章 线性变换

第七章 线性变换

(4) 多项式:
1) n 个( n 是正整数)线性变换 /A的乘积为/A的
n次幂,记为/An,即/An=/A/A.../A(n个). 规定 /A0 = /E. 当线性变换/A可逆时, 规定/A-n=(/A-1)n 2) 设 f (x) = amxm + am -1xm -1 + … + a0 是P[ x ] 中 一多项式,/A是 V 的一线性变换,则称 f (/A ) = am /A m + am -1 /A m -1 + … + a0/E
xi1, xi 2 ,, xiri
,则向量组
x11 , x12 ,, x1r1,x21 , x22 ,, x2r2, ,xs1, xs 2 ,, xsrs
线性无关.
6) 设B=X-1AX,即矩阵A与B相似. 如果i是A的特征
值,xi是A对应特征值i的特征向量,则i是B的特征值 ,且B对应特征值i的特征向量是X-1x.
是线性变换 /A 的多项式.
3) 线性变换的幂运算规律 ① /A n + m = /A n /A m , (/A n )m = /A m n (m , n 0) . ② 一般来说:(/A /B )n /A n /B n . 4) 如果在 P[ x ] 中,有 h(x) = f (x) + g(x) , p(x) = f (x) g(x) , 那么 h(/A ) = f (/A ) + g(/A ) , p(/A ) = f (/A ) g(/A ) .
1+ 2+ ...+n=a11+a22+...+ann; 12...n=|A|.
4) 如果1, 2, ..., s是矩阵A的互异特征值,其对应

高等代数第7章线性变换[1]PPT课件

高等代数第7章线性变换[1]PPT课件
设A,BL(V), 定义A与B的和为V的一个变
换, 使"aV, 有 (A+B)(a) =A(a)+B(a).
1、A + B 也是V的一个线性变换.
因为对于所有的a,bV和数k,lP,有
(A+B)(ka+lb) = A(ka+lb ) +B(ka+lb ) = kA(a)+lA(b)+kB(a)+lB(b) = k (A+B)(a)+l (A+B)(b)
精选
2、乘法适合结合律,即 (AB)C = A(BC)
因为映射的合成满足结合律 3、乘法不满足交换律,即一般地
AB BA 如求微分变换D 与求积分变换J , 有
DJ = E ,但一般地 JD E 4、单位变换的作用 AE = EA = A 5、零变换的乘法 OA = AO = O
精选
二、线性变换的加法及其性质
精选
2、(1)交换律 A +B =B +A (2)结合律 (A+B)+C =A+(B+C) (3)零变换 A+O =A (4)负变换 A+(-A) = O
其中 (-A)(a)= -A(a), 从而
(A - B) = (A+ (-B)) 3、分配律 A(B+C) = AB +AC
(A+B)C = AC+BC
D是一个线性变换,称为微分变换.
例7 闭区间[a, b]上所有连续函数全体 组成实数域R上的线性空间C0(a, b). 定义变换
x
则J是一个J(线f (性x))变=换精选.a f (t)dt
二、线性变换的简单性质

高等代数课件(北大版)第七章-线性变换§7.7

高等代数课件(北大版)第七章-线性变换§7.7

若 V W1 W2 Ws,则
11, ,1n1 , 21, , 2一组基,且在这组基下 的矩阵为准对角阵
A1
A2
.
As
2023/8/17§7.7 不变子空间 数学与计算科学学院
(1)
反之,若 在基 11, ,1n1 , 21, , 2n2 , , s1, , sns 下的矩阵为准对角矩阵(1), 则由 i1, i2 , , ini 生成 的子空间 Wi 为 的不变子空间,且V具有直和分解:
其次,任取 Vi , 设
( i E )ri Wi 0.
1 2 s , i Wi . 即 1 2 (i ) s 0 令 j j , ( j i); i i .
2023/8/17§7.7 不变子空间 数学与计算科学学院
由(2), 有 ( i E)ri (i ) 0, i 1,2, , s. 又 ( i E)ri (i ) ( i E)ri (i )
Wi fi ( )V , 则Wi 是 fi ( ) 的值域, Wi是 的不变子空间.
又 ( i E)ri Wi ( i E)ri fi ( )V
( i E)ri fi ( ) V f V
( i E)ri Wi 0.
(2)
2023/8/17§7.7 不变子空间 数学与计算科学学院
下证 V V1 V2 Vs . 分三步:
1 . 证明 V W1 W2 Ws .
2 . 证明f1(V1),fV2(2), fVs (s是)直和1 .
3∴. 证存明在多Vi 项 W式i
, i
u1 (
1, 2,
), u2(
, s. ),
, us ( ),
使
u1( ) f ( )1 u2( ) f2( ) us ( ) fs ( ) 1

(完整word版)第七章线性变换总结篇(高等代数).docx

(完整word版)第七章线性变换总结篇(高等代数).docx

第 7 章线性变换7.1 知识点归纳与要点解析一.线性变换的概念与判别1. 线性变换的定义数域P 上的线性空间 V 的一个变换称为线性变换, 如果对 V中任意的元素,和数域 P 中的任意数k ,都有:,kk。

注: V 的线性变换就是其保持向量的加法与数量乘法的变换。

2. 线性变换的判别设为数域 P 上线性空间 V 的一个变换,那么:为 V 的线性变换k l k l , , V , k,l P3. 线性变换的性质设 V 是数域 P 上的线性空间,为 V 的线性变换,1 ,2 ,, s ,V 。

性质 1.0 0,;性质 2. 若 1 , 2 , , s 线性相关,那么1,2 ,,s也线性相关。

性质 3. 设线性变换为单射,如果 1 , 2 ,, s 线性无关, 那么1 ,2,,s也线性无关。

注: 设 V 是数域 P 上的线性空间,1,2 ,, m,1,2,, s 是 V 中的两个向量组,如果:1 c111c122 c1ss2c211c222c2ssmcm1 1cm22cms s记:c11c21cm11, 2 ,, m1, 2 ,c12c22 cm2, sc1sc2scms于是,若 dim Vn , 1, 2 , ,n 是 V 的一组基, 是 V 的线性变换, 1 , 2 , , m 是V 中任意一组向量,如果:1 b111b12 2b1n n2b 21 1 b 22 2 b 2 n nmbm11bm22bmnn记:1 ,2 ,, m1 ,2 m那么:b11b21cm11, 2 ,, m1, 2 ,b12 b22 cm2, nb1nb2ncmnb11b21cm1设 Bb 12b 22c m2, 1 ,2 ,,m 是矩阵B 的列向量组,如果i , i ,, i 是12rb1n b2n cmn1 , 2,, m 的 一 个 极 大 线 性 无 关 组 , 那 么i 1 ,i 2 i r就 是1,2m 的一个极大线性无关组,因此向量组1,2m的秩等于秩B 。

高等代数 讲义 第七章

高等代数 讲义 第七章

(στ ) δ
= σ (τδ )
D( f ( x )) = f ′( x )
J ( f ( x ) ) = ∫ f ( t )dt
x
(2) Eσ = σ E = σ ,E为单位变换 (3)交换律一般不成立,即一般地,
( DJ ) ( f ( x ) ) = D ∫0 f ( t ) dt
x
στ ≠ τσ .
2.线性变换保持线性组合及关系式不变,即
若 β = k1α1 + k2α 2 + L + krα r , 则 σ ( β ) = k1σ (α1 ) + k2σ (α 2 ) + L + krσ (α r ).
例4. 闭区间 [a , b]上的全体连续函数构成的线性空间
C ( a , b ) 上的变换
σ ( X ) = AX , τ ( X ) = XB ,
∀X ∈ P n×n
则 σ ,τ 皆为 P n×n 的线性变换,且对 ∀X ∈ P n×n , 有
(στ )( X ) = σ (τ ( X )) = σ ( XB ) = A( XB ) = AXB , (τσ )( X ) = τ (σ ( X )) = τ ( AX ) = ( AX ) B = AXB .
= σ (τ (α )) + σ (τ ( β )) = (στ )(α ) + (στ )( β ), (στ )( kα ) = σ (τ ( kα )) = σ ( kτ (α )) = kσ (τ (α )) = k (στ )(α )
§7.1 线性变换的定义
2.基本性质
(1)满足结合律:
例1. 线性空间 R[ x ]中,线性变换

高等代数讲义ppt第七章 线性变换

高等代数讲义ppt第七章 线性变换

(4) 若A 是可逆的,则矩阵 A 也可逆,且A-1的矩阵是A-1。
例5 设 V是数域P上的n维线性空间,则L(V)与P n×n同构。
例6 设 A1,A2是 n 维线性空间 V 的两个线性变换,证明: A2V⊂A1V 的充要条件是存在线性变换 A 使得 A2=A1A 。
线性变换
§3 线性变换的矩阵
例4 设 A 是n维线性空间V的一个线性变换, A3=2E, B =A2-2A+2E, 证明:A,B都是可逆变换。
线性变换
§3 线性变换的矩阵
§3 线性变换的矩阵
定理1 设1, 2 , , n是线性空间V的一组基, 对V中任意n个向量 1,2 , ,n 存在唯一的线性变换 A∈L(V) 使任的何像得元,素只都要可选以取是适基当
线性变换
§1 线性变换的定义
二、线性变换的性质
性质1 设 A 是V的线性变换,则 A(0) 0, A( ) A()
性质2 线性变换保持线性组合与线性关系式不变。
性质3 线性变换把线性相关的向量组变成线性相关的向量组。
注意: 线性变换可能把线性无关的向量组变成线性相关的 向量组。
例3 设 1,2, ,r 是线性空间V的一组向量,A 是V的一个线
线性变换的加法满足以下运算规律:
(1) A + ( B + C ) = ( A + B ) + C
(2) A + B = B + A
线性变换
§2 线性变换的运算
定义2 设 A∈L(V),k∈P,对k与 A 的数量乘积 kA 定义为:
(kA) k A, V
结论2 对∀A ∈L(V),k∈P 有 kA∈L(V)。
Amn AmAn , (Am )n Amn, m, n N

高等代数【北大版】7.2

高等代数【北大版】7.2

β = k1σ (ε 1 ) + k2σ (ε 2 ) + + knσ (ε n ),
即有 σ ( k1ε 1 + k 2ε 2 + + k nε n ) = β .
∴ σ 为满射 为满射.
§7.2 线性变换的运算
其次, 其次,任取 α , β ∈ V , 设 α = ∑ aiε i , β = ∑ biε i ,
1
(α + β ) = σ
1 1
1
1
1
1
1
1
1
σ 1 ( kα ) = σ 1 k ( σσ 1 ) (α ) = σ 1 k σ ( σ 1 (α ) )
= σ 1 σ k σ 1 ( α )
§7.2 线性变换的运算
= σ 1 ( α ) + σ 1 ( β )
( (
(
(
)))
)
((
)
))
= k σ 1 (α ) = kσ 1 (α )
线性变换的加法与数量乘法构成数域P上的一个线性 线性变换的加法与数量乘法构成数域 上的一个线性 空间,记作 L(V ). 空间,
§7.2 线性变换的运算
四, 线性变换的逆
1.定义
为线性空间V的线性变换 若有V的变换 的线性变换, 设 σ 为线性空间 的线性变换,若有 的变换 τ 使
στ = τσ = E
§7.2 线性变换的运算
2.基本性质
(1)满足交换律:σ + τ = τ + σ )满足交换律: (2)满足结合律:(σ + τ ) + δ = σ + (τ + δ ) )满足结合律: 为零变换. (3) 0 + σ = σ + 0 = σ , 0为零变换 ) 为零变换 (4)乘法对加法满足左,右分配律: )乘法对加法满足左,右分配律:

7线性变换

7线性变换

因为
(A + B ) ( + ) = A ( + ) + B ( + ) = (A ( ) + A ( ) ) + (B () + B ( )) = (A ( ) + B ( ) ) + (A () + B ( )) = (A + B ) ( ) + ( A + B ) ( ) , (A + B ) ( k ) = A ( k ) + B ( k ) = k A ( ) + k B ( )
可能把线性无关的向量组也变成线性相关的向量
组. 例如零变换就是这样.
17
§2 线性变换的运算
线性变换的乘积
线性变换的加法
线性变换的数量乘法 线性变换的逆变换
线性变换的多项式
举例
18
一、线性变换的乘积
1. 定义 线性空间的线性变换作为映射的特殊情形当然 可以定义乘法.
定义2
设 A , B 是线性空间 V 的两个线性变
15
= -A ( ).
性质 2
线性变换保持线性组合与线性关系式不变.
换句话说,如果 是 1 , 2 , … , r 的线性组合:
= k11 + k22 + … + krr ,
那么经过线性变换 A 之后, A ( ) 是 A ( 1 ), A ( 2 ) , …, A ( r ) 同样的线性组合: A ( ) = k1A ( 1 ) + k2A ( 2 ) + …+ krA ( r ) . 又如果 1 , 2 , … , r 之间有关系式
T( + ) = - ( + )+ 2( + , ) = [- + 2 ( , ) ] + [- + 2 ( , ) ] = T( ) + T ( )

第七章线性变换(小结)

第七章线性变换(小结)

第七章 线性变换(小结)本章的重点: 线性变换的矩阵以及它们对角化的条件和方法. 本章的难点: 不变子空间的概念和线性变换与矩阵的一一对应关系.线性变换是线性代数的中心内容之一,它对于研究线性空间的整体结构以及向量之间的内在联系起着重要作用.线性变换的概念是解析几何中的坐标变换、数学分析中的某些变换替换等的抽象和推广,它的理论和方法,(特别是与之相适应的矩阵理论和方法)在解析几何、微分方程等许多其它应用学科,都有极为广泛的应用.本章的中心问题是研究线性变换的矩阵表示,在方法上则充分利用了线性变换与矩阵对应和相互转换. 一、线性变换及其运算1. 基本概念: 线性变换,可逆线性变换与逆变换; 线性变换的值域与核,秩与零度; 线性变换的和与差, 乘积和数量乘法, 幂及多项式.2. 基本结论(1) 线性变换保持零向量、线性组合与线性关系不变; 线性变换把负向量变为象的负向量、把线性相关的向量组变为线性相关的向量组(2) 线性变换的和、差、积、数量乘法和可逆线性变换的逆变换仍为线性变换.(3) 线性变换的基本运算规律(略).(4) 一个线性空间的全体线性变换关于线性变换的加法与数量乘法作成一个线性空间.(5) 线性空间V 的线性变换A 的象Im(A )= A V 与核ker A = A -1(0) (a) A 的象Im(A )= A V 与核ker A = A -1(0)是V 的(A -)子空间. (b)若dim(V )=n ,则Im(A )由V 的一组基的象生成: 即设V 的一组基n ααα,...,,21, Im(A )= A V =L(A α1, A α2,… ,A αn )={ A α|α∈V }.ker A = A -1(0)= { α∈V | A α=0}.(c)A 的秩(dim Im(A ))+A 的零度(dim ker A )=n .(d)A 是双射⇔A 是单射⇔ Ker(A )={0}⇔A 是满射.(e)像空间的一组基的原像与核空间的一组基合并就是线性空间V 的一组基:取Im A 的一组基r βββ ,,21,存在,,...,21r ααα使得A i i βα=,i=1,2,…,r. 再取ker A 的基,,...1n r αα+则,,...,21r ααα,,...1n r αα+就是V 的一组基. 二、线性变换与矩阵1.基本概念:(1)线性变换在基下的矩阵:设A ∈L(V),取定n 维线性空间V 的一组基n ααα,...,,21,则A α1, A α2,… ,A αn 可由α1,α2,…,αn 线性表示, 即(A α1, A α2,… ,A αn )=( n ααα,...,,21)A ,矩阵A 称为线性变换A 在此基下的矩阵.(2) 一个线性变换在不同基下的矩阵相似:设n ααα,...,,21,n βββ,...,,21是线性空间V 的两组基,(n βββ,...,,21)=(n ααα,...,,21)P, (A α1, A α2,… ,A αn )=( n ααα,...,,21)A ,则(A β1, A β2,… ,A β n )=(n βββ,...,,21)AP P 1-.2.基本结论(1) 若n ααα,,,21 是线性空间V 的一个基, V n ∈∀βββ,,,21 ,则存在唯一A )(V L ∈,使得A n i i i ,,2,1,)( ==βα.(2) 在取定n 维线性空间V 的一个基之后,将V 的每一线性变换与它在这个基下的矩阵相对应,则这个对应使得线性变换的和、乘积、数量乘积的矩阵分别对应于矩阵的和、乘积、数量乘积;可逆线性变换与可逆矩阵对应,且逆变换对应逆矩阵。

高等代数第七章线性变换

高等代数第七章线性变换

高等代数第七章线性变换一、定义:变换:线性空间V到自身的映射通常称为V的一个变换线性变换=线性映射+变换更准确地说线性变换的特点就是满足线性性以及定义域和陪域都是同一个线性空间*这里说的陪域是丘维生的高等代数里提出的一个概念,与值域的每一个自变量都有因变量相对应不同的是陪域包含自变量没有因变量相对应的情况这样解释是为了类比:同构映射=线性映射+双射也就是说同构映射的特点是满足线性性以及每一个自变量都有一个因变量相对应下面引出线性变换的准确定义线性变换:如果对于V中任意的元素 \alpha,\beta和数域P 中任意数k,都有\sigma(\alpha+\beta )=\sigma(\alpha)+\sigma(\beta) ,\sigma(k\alpha)=k\sigma(\alpha) 则称线性空间V的一个变换 \sigma 称为线性变换。

二、线性变换的矩阵所有线性变换的全体可以通过选取V的一组基与所有矩阵的全体建立一一对应的关系,将几何对象和代数对象建立转化。

只要取一组足够好的基,就可以得到足够好的矩阵。

某些特殊情况下,矩阵可以取成对角阵,就称线性变换可以对角化,不可对角的矩阵可以写成若尔当块的形式,则选取的基就为循环基,当做不到选取循环基时就只能上三角化或者下三角化。

三、矩阵的相似1.定义Ⅰ.①相似的定义: A,B\in P^{n\times n} ,若存在可逆矩阵 P ,使得 P^{-1}AP=B ,则称A与B是相似的②相似的标准型:若尔当标准型Ⅱ.类比合同(相抵):本质是初等变换①合同的定义: A,B\in P^{n\times n} 若存在可逆矩阵P ,使得 PAQ=B ,则称A与B是合同的②合同的标准型:PAQ=\left( \begin{array}{cc} E_{r}&0\\ 0&0 \end{array} \right),r=r(A),E(r)=\left( \begin{array}{cc} 1&&\\ &1 &\\ &...\\ &&1 \end{array} \right)_{r\times r}③性质:若 A\sim B ,则 \left| A \right|=\left| B \right| ,r(A)=r(B)若A\sim B ,则 A,B 的特征多项式相同,极小多项式相同若 A\sim B ,则 A'\sim B'*根据定义有 P^{-1}AP=B ,两边同时转置: P'A'(P')^{-1}=B' ,则 A'\sim B'若 A\sim B ,A可逆,则 A^{-1}\sim B^{-1}若 A\sim B ,则 A^{k}\sim B^{k}若 A\sim B , f(x)\in k[x] (f(x)是数域K上的多项式)则 f(A)\sim f(B) (A与B的多项式相似)*多项式的形式是 f(x)=x^{k}+x^{k-1}+...+x+m ,由A^{k}\sim B^{k} ,则 f(A)\sim f(B)若 A\sim B,则 A^{*}\sim B^{*} (A的伴随矩阵相似于B的伴随矩阵)四、矩阵的特征值和特征向量1.定义:对于矩阵A,若存在 x\ne0 (非零向量), x\inK^{n} ,s,t, Ax=\lambda x ,则称 \lambda 是 A 的一个特征值, x 是 \lambda 对应的特征向量2.求特征值、特征向量①求解特征多项式f(\lambda)=\left| \lambda E_{n} -A\right|=0\Rightarrow\lambda_{1},\lambda_{2},...,\lambda_{n} 为特征值②求 (\lambda_{i} E_{n} -A)x=0\Rightarrowx_{1},x_{2},...,x_{n} 为特征向量3.性质:若矩阵A的特征值为 \lambda_{1},...,\lambda_{n}① tr(A)=\lambda_{1}+...+\lambda_{n} ( tr(A) 为矩阵的迹:对角线元素之和为矩阵特征值之和)② \left| A\right|=\lambda_{1}\lambda_{2}...\lambda_{n}③哈密顿-凯莱定理:特征多项式一定是零化多项式f(\lambda)=\left| \lambda E_{n}-A \right|,f(A)=0*零化多项式: f(x)\in k[x] ( f(x) 是数域K上的多项式),若 f(A)=0 则称 f(x) 是 A 的零化多项式eg. f(x)=x^2-3x+1 则有 A^2-3A+E_{n}=0④若 f(A)=0\Rightarrow f(\lambda)=0eg. A^2-3A+E_{n}=0\Rightarrow\lambda^2-3\lambda+1=0则根据④若矩阵A的特征值为\lambda_{1},\lambda_{2},...,\lambda_{n}\Rightarrow A^{-1} 的特征值为\frac{1}{\lambda_{1}},\frac{1}{\lambda_{2}},...,\frac{ 1}{\lambda_{n}}\Rightarrow aA 的特征值为a\lambda_{1},a\lambda_{2},...,a\lambda_{n}\Rightarrow A^{k} 的特征值为\lambda_{1}^k,\lambda_{2}^k,...,\lambda_{n}^k五、矩阵A可对角化的判别办法① A_{n\times n} 可对角化 \Leftrightarrow n阶矩阵A有n个线性无关的特征向量设 \lambda_{1},\lambda_{2},...,\lambda_{s} 是两两不同的特征值②A可对角化 \LeftrightarrowdimV_{\lambda_{1}}+dimV_{\lambda_{2}}+...+dimV_{\lambd a_{s}}=n③(充分但不必要条件)A的特征多项式无重根 \Rightarrow A可对角化六、不变子空间定义:W是线性空间V的子空间,线性变换 \sigma:V\rightarrow V ,若 \sigma(W)\subseteq W ,则称W是\sigma 的不变子空间利用定义求不变子空间。

高等代数.第七章.线性变换.课堂笔记

高等代数.第七章.线性变换.课堂笔记

第七章 线性变换§7.1 线性变换的定义与判别一、线性变换的定义:定义1 设V 为数域P 上线性空间,A 为V 的一个变换(即V ⟶V 的映射),若A 保持加法和数乘运算,即A (α+β)=A (α)+ A (β),∀α,β∈V ,A (kα)=k A (α),∀k ∈P ,则称A 为V 的一个线性变换.注记: 以后我们用花体拉丁字母A,B,C,...表示V 的线性变换,除了特别说明外,本章节中V 均指数域P 上有限维线性空间.例1.说明下列变换均为线性变换: (1)把V 中任一向量都映射为0(称为零变换,记作0); (2)把V 中任一向量α映射为本身(恒等变换,记作E ); (3)取定k ∈P ,把V 中的每一个向量α映射为kα(数乘变换,记作k ).例2.判定下列规则σ是否为指定线性空间的线性变换: (1)ℝ,x -:σ(f (x ))=f′(x );(2)C ,a,b -: σ(f (x ))=∫f (t )dt x0;(3)P n×n : σ(A )=A +A ′,σ2(A )=SAT ,S,T 为固定二个n ×n 矩阵. (4)ℝ,x -n : σ1(f (x ))=xf (x ),σ2(f (x ))=f (x )+1. 解:可验证(1)-(3)均为线性变换,下面证明(1): ∀ f (x )∈ℝ,x -,其导函数唯一确定,且f (x )∈ℝ,x -,因而σ为V ⟶V 的变换,即V 的一个变换,σ(f (x )+g (x ))=(f (x )+g (x ))′=f ′(x )+g ′(x )= σ(f (x ))+ σ(g (x )), ∀k ∈ℝ,σ(kf (x ))=(kf (x ))′=kf ′(x )=kσ(f (x )).(4): σ1与σ2均不是线性变换,取f (x )=x n−1+1=ℝ,x -n ,但σ1(f (x ))=xf (x )=x n +x ∉ℝ,x -n , 因而σ1不是ℝ,x -n 的一个变换, σ2是ℝ,x -n 的一个变换,但运算不保持,因而不是线性变换.习题:P320、1例3.设α为通常几何空间ℝ3中固定的向量,把空间中每个向量η映射为η在α上的内映射(正投影),即Πα: η⟶(α∙η)(α∙α)α是ℝ3的线性变换,这里(α∙η),(α∙α)表示通常向量的内积.证:如图,Πα(η)=OD ⃗⃗⃗⃗⃗ =ηcos (η∙α)α|α|=(α∙η)(α∙α)α,唯一确定, 从而Πα为ℝ3的一个变换,如图,AC ⊥W(垂足为C),OCD LA Wα1α2η因此L 与W 为ℝ3的子空间且ℝ3=W ⊕L ,令 η=α1+α2,α1=OD⃗⃗⃗⃗⃗ =Πα(η),α2∈W , δ=β1+β2,β1=Πα(δ)∈L,β2∈W ,则η+δ=(α1+β1)+(α2+β2),α1+β1∈L,α2+β2∈W , 从而Πα(η+δ)=α1+β1=Πα(η)+Πα(δ), 同理,Πα(kη)=kΠα(η).二、线性变换的性质: 设A 为V 的线性变换,则: (1) A (0)=0, A (−α)=−A (α),∀α∈V ; (2) A (k 1α1+k 2α2+⋯+k t αt )=k 1A (α1)+k 2A (α2)+⋯+k t A (αt ); (3) A 把线性相关的向量组映射为线性相关的向量组(反之不真).2011-04-02A : V ⟶V 线性变换性质: (3) A 为V 中线性相关的向量组,映为V 中线性相关的向量组,即α1,α2,…,αs 相关⟹A (α1), A (α2),…, A (αs )相关;但A (α1), A (α2),…, A (αs )线性相关⇒α1,α2,…,αs 相关. 如A =0,∀ α∈V,α≠0, A (α)=0.(4)设α1,α2,…,αn 为V 的一个基,∀ α∈V,α=x 1α1+x 2α2+⋯+x n αn ⟹A (α)=A (x 1α1+x 2α2+⋯+x n αn ) 线性变换A 由V 中一个基中的像唯一确定;(5)设α1,α2,…,αn 为V 的一个基,则对V 中任一向量组β1,β2,…,βn 必存在一个线性变换 A : V ⟶V ,使得:A (αi )=βi ,1≤i ≤n ;证:作V ⟶V 映射:A (α)= x 1β1+x 2β2+⋯+x n βn ,其中:α=x 1β1+x 2β2+⋯+x n βn ,则A (αi )=βi ,1≤i ≤n ; 下证:A 为V 的线性变换:∀ α=x 1α1+x 2α2+⋯+x n αn ∈V,β=y 1α1+y 2α2+⋯+y n αn ∈V,A (α+β)= A .(x 1+y 1)α1+(x 2+y 2)α2+⋯+(x n +y n )αn /=(x 1+y 1)β1+(x 2+y 2)β2+⋯+(x n +y n )βn=(x 1β1+x 2β2+⋯+x n βn )+(y 1β1+y 2β2+⋯+y n βn ) = A (x 1α1+x 2α2+⋯+x n αn )+ A (y 1α1+y 2α2+⋯+y n αn )= A (α)+A (β)同理,∀k ∈P ,A (kα)=k A (α).§7.2 线性变换的运算为方便,引入记号:Hom (V,V ),它表示数域P 上线性空间V 的所有线性变换的集合。

高等代数课件(北大三版)--第七章-线性变换

高等代数课件(北大三版)--第七章-线性变换

尤其,向量空间V 在σ之下旳象是W 旳一种
子空间,叫做σ旳象, 记为 Im( ),
即 Im( ) (V ).
另外,W 旳零子空间 { 0 } 在σ之下旳原象是 V 旳一种子空间,叫做σ旳核,
记为 Ker( ),
即 Ker( ) { V | ( ) 0}.
定理7.1.2 设V和W是数域F向量空间,而是一种线 性映射,那么 :V W (i) σ是满射 Im( ) W (ii) σ是单射 Ker( ) {0} 证明 论断(i)是显然旳,我们只证论断(ii) 假如σ是单射,那么ker(σ)只能是具有唯一旳零向量. 反过来设ker(σ) = {0}.
轻易证明上面旳两个条件等价于下面一种条件:
③对于任意 a,b F 和任意 , V ,
(a b) a ( ) b ()
在②中取 a 0,对③进行数学归纳,能够得到:
(1) (0) 0
(2) (a11 ann ) a1 (1) an (n )
例1 对于 R 2 旳每历来量 x1, x2 定义 x1, x1 x2 , x1 x2 R3
x1
(1
,
2
,,
n
)
x2
.
xn
因为σ是线性变换,所以
( ) x1 (1) x2 (2 ) xn (n )
(2)
x1
(
(1),
(
2
),,
(
n
))
x2
.
xn
将(1)代入(2)得
x1
(
)
(1,
2
,,
n
)
A
x2
.
xn
最终,等式表白, ( )关于(1,2 ,n ) 旳坐标所构成 旳列是

高等代数第七章线性变换复习讲义

高等代数第七章线性变换复习讲义

⾼等代数第七章线性变换复习讲义第七章线性变换⼀.线性变换的定义和运算1.线性变换的定义(1)定义:设V是数域p上的线性空间,A是V上的⼀个变换,如果对任意α,β∈V和k∈P都有A(α+β)=A(α)+A(β),A(kα)=kA(α)则称A为V的⼀个线性变换。

(2)恒等变换(单位变换)和零变换的定义:ε(α)=α,ο(α)=0,任意α∈V.它们都是V的线性变换。

(3)A是线性变换的充要条件:A(kα+lβ)=kA(α)+lA(β),任意α,β∈V,k,l∈P.2.线性变换的性质设V是数域P上的线性空间,A是V的线性变换,则有(1)A(0)=0;(2)A(-α)=-A(α),任意α∈V;(3)A(∑kiαi)=ΣkiA(α),α∈V,ki∈P,i=1,…,s;(4)若α1,α2,…,αs∈V,且线性相关,则A(α1),A (α2),…,A(αs)也线性相关,但当α1,α2,…,αs线性⽆关时,不能推出A(α1),A(α2),…,A(αs)线性⽆关。

3.线性变换的运算4.线性变换与基的关系(1)设ε1,ε2,…,εn是线性空间v的⼀组基,如果线性变换A和B在这组基上的作⽤相同,即Aεi=Bεi,i=1,2,…,n,则有A=B.(2)设ε1,ε2,…,εn是线性空间v的⼀组基,对于V 中任意⼀组向量α1,α2,…,αn,存在唯⼀⼀个线性变换A 使Aεi=αi,i=1,2,…,n.⼆.线性变换的矩阵1.定义:设ε1,ε2,…,εn是数域P上n维线性空间v的⼀组基,A是V中的⼀个线性变换,基向量的像可以被基线性表出Aε1=a11ε1+a21ε2+…an1εnAε2=a12ε1+a22ε2+…an2εn……Aεn= a1nε1+a2nε2+…annεn⽤矩阵表⽰就是A(ε1,ε2,…,εn)=(ε1,ε2,…,εn)A,其中a 11 a 12 …… a 1na 21 a 22 …… a 2nA= ……a n1 a n2 …… a nn称为A在基ε1,ε2,…,εn下的矩阵。

高等代数(第7章)

高等代数(第7章)

例如,零变换将线性无关的向量组变成线性相关 的向量组.
§7.2 线性变换的运算
设V是数域P上的线性空间, 、是V的两个线 性变换. 1.线性运算 (1)加法: 与的和定义为 ( +)()=()+() ( V) (2)数量乘法:数域P中的数k与的数量乘法定义为 (k)( ) =k(()) ( V) (3) 负变换:的负变换 -定义为 (-)()= - () ( V) 结论:线性空间V上的线性变换的全体,对于如上定 义的加法与数乘运算构成数域P上的线性空间.即
例2 设是几何空间中一个固定的非零向量, 将每个 向量变到它在上的内射影的变换
( , ) ( ) ( , ) .
( )


是一个线性变换.
2.线性变换的简单性质 设 是数域P上线性空间V的一个变换. (i)(0)=0, (-)= - (), V. (ii)(k11+…+ kmm)= k1(1) +…+ km(m) i V, ki P (i=1,2,…,m) (iii) 设i V, (i=1,2,…,m) .若 1,2,…,m线性相关,则 (1),(2),…,(m)线性相关;反之不然.
线性变换被基向量的像唯一确定!
定理1: 设1, 2,…,n是数域P上n维线性空间V 的一组 基, 1,2,…,n是V中任意n个向量,则存在唯一的线性 变换使 (j)= j , j=1,2,…,n.
证明:(i)存在性
x i i V , 定义V的变换: x i i .
仍是线性变换
()()=(()) ( V)
运算律: (i)()= () (ii) (+) = + , (+)+= +(+) (iii)k()=(k)= (k) 注意:线性变换的乘积一般是不可交换的,即 . 例1 在P22中,定义线性变换、 、为

高等代数第7章线性变换PPT课件

高等代数第7章线性变换PPT课件

特征向量定义
对应于特征值m的非零向量x称为A的对应于特征值 m的特征向量。
设A是n阶方阵,如果存在数m和非零n维列向 量x,使得Ax=mx成立,则称m是A的一个特 征值。
求解方法
通过求解特征多项式f(λ)=|A-λE|的根得到特 征值,再代入原方程求解对应的特征向量。
特征多项式及其性质分析
特征多项式定义
量子力学
在量子力学中,特征值和特征向量用 于描述微观粒子的状态和能量级别。
图像处理
在图像处理中,特征值和特征向量可 以用于图像压缩和图像识别等任务。
经济学
在经济学中,特征值和特征向量可以 用于分析和预测经济系统的稳定性和 发展趋势。
04
线性变换对角化条
件及步骤
可对角化条件判断方法
判断矩阵是否可对角化
线性变换的性质与 矩阵性质对应
线性变换的性质如保持加法、 数乘等运算可以通过其对应的 矩阵性质来体现。例如,两个 线性变换的和对应两个矩阵的 和;线性变换的复合对应两个 矩阵的乘积等。
02
线性变换矩阵表示

标准基下矩阵表示法
定义
设V是n维线性空间,e1,e2,...,en 是V的一个基,T是V上的一个线 性变换,则T在基e1,e2,...,en下的 矩阵A称为T在基e1,e2,...,en下的 标准矩阵表示。
计算矩阵的高次幂
对于可对角化的矩阵A,可以利用对角化公式A=PDP^(-1)将A的高次幂转化为对角矩阵D的高次幂, 从而简化计算过程。
求解线性方程组
对于系数矩阵为可对角化矩阵的线性方程组,可以通过对角化将系数矩阵转化为对角矩阵,进而 简化方程组的求解过程。
计算行列式和逆矩阵
对于可对角化的矩阵A,其行列式值等于对角矩阵D的行列式值,逆矩阵可以通过对角化公式求得, 从而简化相关计算。

第七章 线性变换

第七章 线性变换

, ε n ,写出
,ε n
高等代数
东北大学秦皇岛分校
例 2 设线性变换A 在基 ε 1 , ε 2 , ε 3 下的矩阵是
⎛1 2 2⎞ ⎜ ⎟ A = ⎜ 2 1 2⎟, ⎜2 2 1⎟ ⎝ ⎠
求A 的特征值与特征向量. 线性变换A 的属于 λ0 的全部特征向量再添上零向量所 成的集合,是V的一个子空间,称为A 的一个特征子空间,记为
高等代数
东北大学秦皇岛分校
例 设V是数域P上一个二维线性空间,
ε 1 , ε 2是一组基线性变换A 在 ε 1 , ε 2 下的矩阵是
⎛ 2 1⎞ ⎜ ⎟. ⎝ −1 0 ⎠ 对V的另一组基 η1 ,η 2 ,有
⎛ 1 −1 ⎞ (η1 ,η 2 ) = (ε 1 , ε 2 ) ⎜ ⎟, ⎝ −1 2 ⎠ k ⎛ 2 1⎞ 求 ⎜ ⎟ . ⎝ −1 0 ⎠
高等代数
东北大学秦皇岛分校
定理 2 设 ε 1 , ε 2 ,
, ε n 使数域P上n维 ,ε n ) A
线性空间V的一组基,在这组基下,每个线性变换按
A (ε 1 , ε 2 ,
, ε n ) = (ε 1 , ε 2 ,
都对应一个 n × n 矩阵,这个对应具有以下的性质: 1) 线性变换的和对应于矩阵的和; 2) 线性变换的乘积对应于矩阵的乘积; 3) 线性变换的数量乘积对应与矩阵的数量乘积; 4) 可逆的线性变换与可逆矩阵对应,且逆变换对 应于逆矩阵.
高等代数
东北大学秦皇岛分校
利用线性变换的矩阵计算向量的像: 定理 3 设线性变换A 在基 ε 1 , ε 2 , 矩阵是A,向量 ξ 在基 ε 1 , ε 2 , 则 A ξ 在基 ε 1 , ε 2 ,
, ε n 下的 , ε n下的坐标是 ( x1 , x2 ,

高等代数7线性变换

高等代数7线性变换

⾼等代数7线性变换⾼等代数7 线性变换⽬录线性变换的定义线性空间V到⾃⾝的映射通常称为V的⼀个变换。

定义线性空间V的⼀个变换A称为线性变换,如果对于V中任意的元素α,β和数域P中的任意数k都有A(α+β)=A(α)+A(β)A(kα)+k A(α)线性变换A保持向量的加法和数量乘法。

恒等变换、单位变换 E(α)=α (α∈V)零变换0 0(α)=0 (α∈V)数乘变换设V是数域P上的线性空间,k是数域P上的某个数,定义V的变换:α→kα,α∈V这是⼀个线性变换,称为由数k决定的数乘变换。

简单性质1. 线性空间V的⼀个线性变换A,则A(0)=0,A(−a)=−A(a)2. 线性变换保持线性组合不变β=k1α1+k2α2+⋯+k rαr A(β)=k1A(α1)+k2A(α2)+⋯+k r A(αr)3. 线性变换把线性相关的向量组变成线性相关的向量组。

线性变换的运算线性变换作为映射的特殊情形可以定义乘法运算乘法设A,B是线性空间V上的两个线性变换,它们的乘积AB为(AB)(α)=A(B(α)) (α∈V)线性变换的乘积也是线性变换。

适合结合律 (AB)C=A(BC)⼀般是不可交换的单位变换E EA=AE=A加法设A,B是线性空间V上的两个线性变换,它们的和A+B为(A+B)(α)=A(α)+B(α) (α∈V)线性变换的和还是线性变换交换律 A+B=B+A结合律 (A+B)+C=A+(B+C)零变换0 A+0=A负变换 A+(−A)=0 .负变换也是线性的。

线性变换乘法对加法具有左右分配律A(B+C)=AB+AC(B+C)A=BA+CA数量乘法数域P中的数与线性变换的数量乘法为k A=KA(kl)A=k(l A)(k+l)A=k A+l Ak(A+B)=k A+k B1A=A线性空间V上全体线性变换,对于如上定义的加法与数量乘法,也构成数域P上的⼀个线性空间逆变换V上的变换A称为可逆的,如果有V的变换B存在,使 AB=BA=E这时,变换A称为A的逆变换,称为A−1如果线性变换A是可逆的,那么它的逆变换A−1也是线性变换。

高等代数第七章

高等代数第七章
l A ( X Y ) A( X Y ) AX AY l A ( X ) l A (Y ), l A ( kX ) A( kX ) k ( AX ) kl A ( X );


同样可验证 rA , A 为 n n 的线性变换. 注意:
A l A rA
1 2 + 1 n 1 L 2! ( n1)!
另一方面, 由 n 0 知
1 2 1 n 1 )n 0, ( 2! ( n1)!
即下述线性变换 幂零:
【例2】 设 E 3 为欧氏空间中 一切几何向量(有向线 段)所 构 成的三维线性空间, 为其中选定的一个 平面. 如图, 对于此空间中任何一个向量 , 我们用 R ( ) 表示向量 以平面 镜面的镜像 . 验证 R 为 E 3 的线性变换 , 且 R1 R .
【验证】 如图, 为平面 的法向; R ( ) 2 P ( ) ( ) 2 P ( ) ( 2 P )( ); R 2 P 为线性变换; P ( )
【定义1】 对于 , (V ), 我们如下定义它们的 乘积 : ( )( ) ( ( ))( V ), 即 : ( ) ( ( )).
【线性变换乘积的性质】 (如下有 , , (V ); k , l )
(3) dim (V ) n 2 ;
2. 线性变换代数*
(如下有 , , (V ); k , l ) ( )(k ) ( ( k )) (k ( )) k ( ( )) k ( )( ).
(2) ( ) ( ); (3) ( ) , ( ) ; (4) ( 为单位线性变换); (5) 0; (6) ( k ) ( k ) k ( ).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档