2017年春中考数学总复习《四边形》单元测试(五)含答案
2017年春中考数学总复习 单元测试(五)四边形试题
单元测试(五) 四边形(时间:45分钟 满分:100分)一、选择题(每小题4分,共32分) 1.八边形的内角和为( C )A .180°B .360°C .1 080°D .1 440°2.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,下列结论中不一定成立的是( B ) A .AB ∥DC B .AC =BD C .AC ⊥BD D .OA =OC3.如图,矩形ABCD 的两条对角线交于点O ,若∠AOD=120°,AB =6,则AC 等于( C ) A .8 B .10 C .12 D .184.如图,四边形ABCD ,AEFG 都是正方形,点E ,G 分别在AB ,AD 上,连接FC ,过点E 作EH∥FC 交BC 于点H.若AB =4,AE =1,则BH 的长为( C )A .1B .2C .3D .3 25.(2016·河北)关于▱ABCD 的叙述,正确的是( C ) A .若AB⊥BC,则▱ABCD 是菱形 B .若AC⊥BD,则▱ABCD 是正方形 C .若AC =BD ,则▱ABCD 是矩形 D .若AB =AD ,则▱ABC D 是正方形6.如图,▱ABCD 的周长为20 cm ,AE 平分∠BAD,若CE =2 cm ,则AB 的长度是( D ) A .10 cm B .8 cm C .6 cm D .4 cm7.如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E 、F ,AB =2,BC =3,则图中阴影部分的面积为( A )A .3B .4C .5D .68.如图,已知正方形ABCD 的边长为4,点E 、F 分别在边AB 、BC 上,且AE =BF =1,CE 、DF 交于点O.下列结论:①∠DOC=90°;②OC=OE ;③tan ∠OCD =43;④S △ODC =S 四边形BEOF 中,正确的有( C )A .1个B .2个C .3个D .4个二、填空题(每小题4分,共24分)9.(2016·南充)如图,菱形ABCD的周长是8 cm,AB的长是2cm.10.如图,菱形ABCD的对角线相交于点O,请你添加一个条件:答案不唯一,如:∠DAB=90°,使得该菱形为正方形.11.如图,O是矩形ABCD的对角线AC与BD的交点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为20.12.(2016·金华)如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是80°.13.(2016·漳州)如图,正方形ABCO的顶点C,A分别在x轴,y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D14.如图,正方形ABCD的边长为4,E为BC上一点,BE=1,F为AB上一点,AF=2,P为AC上一点,则PF+PE三、解答题(共44分)15.(10分)如图所示,▱AECF的对角线相交于点O,DB经过点O,分别与AE、CF交于点B,D.求证:四边形ABCD 是平行四边形.证明:∵四边形AECF 是平行四边形, ∴OE =OF ,OA =OC ,AE ∥CF. ∴∠DFO =∠BEO,∠FDO =∠EBO. ∴△FDO ≌△EBO(AAS). ∴OD =OB. ∵OA =OC ,∴四边形ABCD 是平行四边形.16.(10分)如图,在正方形ABCD 的外侧作等边三角形ADE ,连接BE ,CE. (1)求证:BE =CE ; (2)求∠BEC 的度数.解:(1)证明:∵四边形ABCD 为正方形, ∴AB =AD =CD ,∠BAD =∠ADC=90°. ∵△ADE 为正三角形,∴AE =AD =DE ,∠EAD =∠EDA=60°. ∴∠BAE =∠CDE=150°. 在△BAE 和△CDE 中, ⎩⎪⎨⎪⎧AB =CD ,∠BAE =∠CDE,AE =DE ,∴△BAE ≌△CDE(SAS). ∴BE=CE.(2)∵AB=AD ,AD =AE , ∴AB =AE.∴∠ABE =∠AEB. 又∵∠BAE=150°, ∴∠ABE =∠AEB=15°. 同理:∠CED=15°.∴∠BEC =60°-15°×2=30°.17.(12分)已知:如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E.(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.解:(1)证明:在△ABC 中,AB =AC ,AD ⊥BC , ∴∠BAD =∠DAC.∵AN 是△ABC 外角∠CAM 的平分线, ∴∠MAE =∠CAE.∴∠DAE =∠DAC+∠CAE=12×180°=90°.又∵AD⊥BC,CE ⊥AN ,∴∠ADC =∠CEA =∠DAE=90°. ∴四边形ADCE 为矩形.(2)当△ABC 是等腰直角三角形时,四边形ADCE 是正方形. 证明:∵△ABC 是等腰直角三角形,AD ⊥BC , ∴DC =AD.由(1)知四边形ADCE 为矩形, ∴矩形ADCE 是正方形.18.(12分)(2016·娄底)如图,将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置,AB 与A 1C 1相交于点D ,AC 与A 1C 1、BC 1分别交于点E 、F. (1)求证:△BCF≌△BA 1D ;(2)当∠C=α度时,判定四边形A 1BCE 的形状并说明理由.解:(1)证明:∵△ABC 是等腰三角形, ∴AB =BC ,∠A =∠C.∵将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置, ∴A 1B =AB =BC ,∠A =∠A 1=∠C,∠A 1BD =∠CBC 1. 在△BCF 与△BA 1D 中,⎩⎪⎨⎪⎧∠C=∠A 1,BC =BA 1,∠CBF =∠A 1BD ,∴△BCF ≌△BA 1D(ASA).(2)四边形A 1BCE 是菱形.理由如下:∵将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置, ∴∠A 1=∠A.∵∠ADE =∠A 1DB , ∴∠AED =∠A 1BD =α. ∴∠DEC =180°-α.∵∠C=α,∴∠A1=α.∴∠A1BC=360°-∠A1-∠C-∠A1EC=180°-α. ∴∠A1=∠C,∠A1BC=∠A1EC.∴四边形A1BCE是平行四边形.∵A1B=BC.∴四边形A1BCE是菱形.。
2017年中考数学试题分项版解析汇编(第03期)专题10 四边形(含解析)
专题10 四边形一、选择题1.(2017四川省南充市)已知菱形的周长为6,则菱形的面积为()A.2 B C.3 D.4【答案】D.考点:菱形的性质.2.(2017四川省广安市)下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有()个.A.4 B.3 C.2 D.1【答案】D.【解析】试题分析:∵四边相等的四边形一定是矩形,∴①错误;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有1个,故选D.考点:1.中点四边形;2.平行四边形的性质;3.菱形的判定;4.矩形的判定与性质;5.正方形的判定. 3.(2017四川省眉山市)如图,EF 过▱ABCD 对角线的交点O ,交AD 于E ,交BC 于F ,若▱ABCD 的周长为18,OE =1.5,则四边形EFCD 的周长为( )A .14B .13C .12D .10 【答案】C .考点:平行四边形的性质.4.(2017四川省绵阳市)如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC于E ,F 两点.若AC =AEO =120°,则FC 的长度为( )A .1B .2CD 【答案】A . 【解析】试题分析:∵EF ⊥BD ,∠AEO =120°,∴∠EDO =30°,∠DEO =60°,∵四边形ABCD 是矩形,∴∠OBF =∠OCF =30°,∠BFO =60°,∴∠FOC =60°﹣30°=30°,∴OF =CF ,又∵Rt △BOF 中,BO =12BD =12AC ,∴OF =tan30°×BO =1,∴CF =1,故选A .考点:1.矩形的性质;2.全等三角形的判定与性质;3.解直角三角形.5.(2017四川省达州市)如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为()A.2017πB.2034πC.3024πD.3026π【答案】D.考点:1.轨迹;2.矩形的性质;3.旋转的性质;4.规律型;5.综合题.6.(2017山东省枣庄市)如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数kyx=(x<0)的图象经过顶点B,则k的值为()A.﹣12 B.﹣27 C.﹣32 D.﹣36【答案】C.【解析】试题分析:∵A(﹣3,4),∴OA,∵四边形OABC是菱形,∴AO=CB=OC=AB=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入kyx=得,4=8k-,解得:k=﹣32.故选C.考点:1.菱形的性质;2.反比例函数图象上点的坐标特征.7.(2017广东省)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④【答案】C.考点:正方形的性质.8.(2017河北省)求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②【答案】B.【解析】试题分析:∵四边形ABCD是菱形,∴AB=AD,∵对角线AC,BD交于点O,∴BO=DO,∴∴AO⊥BD,即AC⊥BD,∴证明步骤正确的顺序是③→④→①→②,故选B.考点:菱形的性质.9.(2017河北省)如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确的()A. B. C. D.【答案】A.考点:1.正方形的性质;2.勾股定理.10.(2017浙江省丽水市)如图,在▱ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC的长是()A B.2C.D.4【答案】C.【解析】试题分析:∵四边形ABCD是平行四边形,∴CD=AB=2,BC=AD,∠D=∠ABC=∠CAD=45°,∴AC=CD=2,∠ACD=90°,即△ACD是等腰直角三角形,∴BC=AD;故选C.考点:平行四边形的性质.11.(2017浙江省台州市)如图,矩形EFGH 的四个顶点分别在菱形ABCD 的四条边上,BE =BF ,将△AEH ,△CFG 分别沿边EH ,FG 折叠,当重叠部分为菱形且面积是菱形ABCD 面积的116时,则AEEB为( )A . 53 B .2 C . 52 D .4【答案】A .考点:1.翻折变换(折叠问题);2.菱形的性质;3.矩形的性质.12.(2017重庆市B 卷)如图,在矩形ABCD 中,AB =4,AD =2,分别以A 、C 为圆心,AD 、CB 为半径画弧,交AB 于点E ,交CD 于点F ,则图中阴影部分的面积是( )A .42π-B .82π- C .82π- D .84π-【答案】C .试题分析:∵矩形ABCD ,∴AD =CB =2,∴S 阴影=S 矩形﹣S 半圆=2×4﹣12π×22=8﹣2π,故选C . 考点:1.扇形面积的计算;2.矩形的性质. 二、填空题13.(2017四川省南充市)如图,在▱ABCD 中,过对角线BD 上一点P 作EF ∥BC ,GH ∥AB ,且CG =2BG ,S △BPG =1,则S ▱AEPH = .【答案】4.考点:平行四边形的性质.14.(2017四川省南充市)如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE =DG ;②BE ⊥DG ;③222222DE BG a b +=+,其中正确结论是 (填序号)【答案】①②③. 【解析】试题分析:设BE ,DG 交于O ,∵四边形ABCD 和EFGC 都为正方形,∴BC =CD ,CE =CG ,∠BCD =∠ECG =90°,∴∠BCE +∠DCE =∠ECG +∠DCE =90°+∠DCE ,即∠BCE =∠DCG ,在△BCE 和△DCG 中,∵BC =DC ,∠BCE =∠DCG ,CE =CG ,∴△BCE ≌△DCG (SAS ),∴BE =DG ,∴∠1=∠2,∵∠1+∠4=∠3+∠1=90°,∴∠2+∠3=90°,∴∠BOC =90°,∴BE ⊥DG ;故①②正确;连接BD ,EG ,如图所示,∴DO 2+BO 2=BD 2=BC 2+CD 2=2a 2,EO 2+OG 2=EG 2=CG 2+CE 2=b 2,则BG 2+DE 2=DO 2+BO 2+EO 2+OG 2=2a 2+b 2,故答案为:①②③.考点:1.旋转的性质;2.全等三角形的判定与性质;3.正方形的性质.15.(2017四川省绵阳市)如图,将平行四边形ABCO 放置在平面直角坐标系xOy 中,O 为坐标原点,若点A 的坐标是(6,0),点C 的坐标是(1,4),则点B 的坐标是 .【答案】(7,4). 【解析】试题分析:∵四边形ABCO 是平行四边形,O 为坐标原点,点A 的坐标是(6,0),点C 的坐标是(1,4),∴BC =OA =6,6+1=7,∴点B 的坐标是(7,4);故答案为:(7,4). 考点:1.平行四边形的性质;2.坐标与图形性质.16.(2017四川省达州市)如图,矩形ABCD 中,E 是BC 上一点,连接AE ,将矩形沿AE 翻折,使点B 落在CD 边F 处,连接AF ,在AF 上取点O ,以O 为圆心,OF 长为半径作⊙O 与AD 相切于点P .若AB =6,BC =则下列结论:①F 是CD 的中点;②⊙O 的半径是2;③AE =92CE ;④S 阴影.其中正确结论的序号是 .【解析】试题分析:①∵AF 是AB 翻折而来,∴AF =AB =6,∵AD =BC =DF =3,∴F 是CD 中点;∴①正确;②连接OP ,∵⊙O 与AD 相切于点P ,∴OP ⊥AD ,∵AD ⊥DC ,∴OP ∥CD ,∴AO OP AF DF =,设OP =OF =x ,则636x x-=,解得:x =2,∴②正确;③∵RT △ADF 中,AF =6,DF =3,∴∠DAF =30°,∠AFD =60°,∴∠EAF =∠EAB =30°,∴AE =2EF ; ∵∠AFE =90°,∴∠EFC =90°﹣∠AFD =30°,∴EF =2EC ,∴AE =4CE ,∴③错误;④连接OG ,作OH ⊥FG ,∵∠AFD =60°,OF =OG ,∴△OFG 为等边△;同理△OPG 为等边△;∴∠POG =∠FOG =60°,OH S 扇形OPG =S 扇形OGF ,∴S 阴影=(S 矩形OPDH ﹣S 扇形OPG ﹣S △OGH )+(S 扇形OGF ﹣S △OFG )=S 矩形OPDH ﹣32S △OFG =312(222⨯⨯=2.∴④正确;故答案为:①②④.考点:1.切线的性质;2.矩形的性质;3.扇形面积的计算;4.翻折变换(折叠问题);5.综合题. 17.(2017山东省枣庄市)如图,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,∠C =60°,则FE 的长为 .【答案】π.考点:1.切线的性质;2.平行四边形的性质;3.弧长的计算.18.(2017山东省枣庄市)在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC 交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)【答案】3.考点:1.矩形的性质;2.等腰三角形的判定;3.相似三角形的判定与性质.19.(2017广东省)一个n边形的内角和是720°,则n= .【答案】6.【解析】试题分析:设所求正n边形边数为n,则(n﹣2)•180°=720°,解得n=6.考点:多边形内角与外角.20.(2017广东省)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A 的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C 落在EF上的点H处,折痕为FG,则A、H两点间的距离为.考点:1.翻折变换(折叠问题);2.矩形的性质;3.综合题.21.(2017广西四市)如图,菱形ABCD 的对角线相交于点O ,AC =2,BD =点B 与点O 重合,折痕为EF ,则五边形AEFCD 的周长为 .【答案】7. 【解析】试题分析:∵四边形ABCD 是菱形,AC =2,BD =ABO =∠CBO ,AC ⊥BD ,∵AO =1,BO tan ∠ABO =AOBO ABO =30°,AB =2,∴∠ABC =60°,由折叠的性质得,EF ⊥BO ,OE =BE ,∠BEF =∠OEF ,∴BE =BF ,EF ∥AC ,∴△BEF 是等边三角形,∴∠BEF =60°,∴∠OEF =60°,∴∠AEO =60°,∴△AEO 是等边三角形,∴AE =OE ,∴BE =AE ,∴EF 是△ABC 的中位线,∴EF =12AC =1,AE =OE =1,同理CF =OF =1,∴五边形AEFCD 的周长为=1+1+1+2+2=7.故答案为:7.考点:1.翻折变换(折叠问题);2.菱形的性质;3.综合题.22.(2017江苏省连云港市)如图,在▱ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F .若∠EAF =60°,则∠B= .【答案】60°.考点:平行四边形的性质.23.(2017浙江省绍兴市)如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE ⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3100m,则小聪行走的路程为m.【答案】4600.【解析】试题分析:小敏走的路程为AB+AG+GE=1500+(AG+GE)=3100,则AG+GE=1600m,小聪走的路程为BA+AD+DE+EF=3000+(DE+EF).连接CG,在正方形ABCD中,∠ADG=∠CDG=45°,AD=CD,在△ADG和△CDG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△ADG≌△CDG,∴AG=CG.又∵GE⊥CD,GF⊥BC,∠BCD=90°,∴四边形GECF是矩形,∴CG=EF.又∵∠CDG=45°,∴DE=GE,∴小聪走的路程为BA+AD+DE+EF=3000+(GE+AG)=3000+1600=4600(m).故答案为:4600.考点:1.全等三角形的判定与性质;2.正方形的性质.24.(2017重庆市B卷)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是..【解析】试题分析:如图1,过E作PQ⊥DC,交DC于P,交AB于Q,连接BE,∵DC∥AB,∴PQ⊥AB,∵四边形ABCD 是正方形,∴∠ACD=45°,∴△PEC是等腰直角三角形,∴PE=PC,设PC=x,则PE=x,PD=4﹣x,EQ=4﹣x,∴PD=EQ,∵∠DPE=∠EQF=90°,∠PED=∠EFQ,∴△DPE≌△EQF,∴DE=EF,易证明△DEC≌△BEC,∴DE=BE,∴EF=BE,∵EQ⊥FB,∴FQ=BQ=12BF,∵AB=4,F是AB的中点,∴BF=2,∴FQ=BQ=PE=1,∴CERt△DAF中,DFDE=EF,DE⊥EF,∴△DEF是等腰直角三角形,∴DE=EFPD,如图2,∵DC∥AB,∴△DGC∽△FGA,∴CG DC DGAG AF FG== =42=2,∴CG=2AG,DG=2FG,∴FG=13⨯=3,∵AC,∴CG=23⨯=3,∴EG=3-3,连接GM、GN,交EF于H,∵∠GFE=45°,∴△GHF是等腰直角三角形,∴GH=FHEH=EF﹣FH,∴∠NDE=∠AEF,∴tan∠NDE=tan∠AEF=EN GHDE EH==12,∴EN=2,∴NH=EH﹣EN=3﹣2=6,Rt△GNH中,GNMN=GN,EM=EG,∴△EMN的周长=EN+MN+EM;.考点:1.翻折变换(折叠问题);2.正方形的性质;3.综合题. 三、解答题25.(2017四川省南充市)如图,在正方形ABCD 中,点E 、G 分别是边AD 、BC 的中点,AF =14AB . (1)求证:EF ⊥AG ;(2)若点F 、G 分别在射线AB 、BC 上同时向右、向上运动,点G 运动速度是点F 运动速度的2倍,EF ⊥AG 是否成立(只写结果,不需说明理由)?(3)正方形ABCD 的边长为4,P 是正方形ABCD 内一点,当PAB OAB S S ∆∆=,求△PAB 周长的最小值.【答案】(1)证明见解析;(2)成立;(3)45+. 【解析】(2)证明△AEF ∽△BAG ,得出∠AEF =∠BAG ,再由角的互余关系和三角形内角和定理即可得出结论; (3)过O 作MN ∥AB ,交AD 于M ,BC 于N ,则MN ⊥AD ,MN =AB =4,由三角形面积关系得出点P 在线段MN 上,当P 为MN 的中点时,△PAB 的周长最小,此时PA =PB ,PM =12MN =2,连接EG ,则EG ∥AB ,EG =AB =4,证明△AOF∽△GOE,得出OF AFOE EG= =14,证出AM OFEM OE= =14,得出AM=15AE=25,由勾股定理求出PA,即可得出答案.试题解析:(1)证明:∵四边形ABCD是正方形,∴AD=AB,∠EAF=∠ABG=90°,∵点E、G分别是边AD、BC的中点,AF=14AB,∴AFAE=12,BGBA=12,∴AF BGAE BA=,∴△AEF∽△BAG,∴∠AEF=∠BAG,∵∠BAG+∠EAO=90°,∴∠AEF+∠EAO=90°,∴∠AOE=90°,∴EF⊥AG;(2)解:成立;理由如下:根据题意得:AFBG=12,∵AEAB=12,∴AFBG=AEAB,又∵∠EAF=∠ABG,∴△AEF∽△BAG,∴∠AEF=∠BAG,∵∠BAG+∠EAO=90°,∴∠AEF+∠EAO=90°,∴∠AOE=90°,∴EF⊥AG;(3)解:过O作MN∥AB,交AD于M,BC于N,如图所示:则MN⊥AD,MN=AB=4,∵P是正方形ABCD内一点,当S△PAB=S△OAB,∴点P在线段MN上,当P为MN的中点时,△PAB的周长最小,此时PA=PB,PM=12MN=2,连接EG、PA、PB,则EG∥AB,EG=AB=4,∴△AOF∽△GOE,∴OF AFOE EG==14,∵MN∥AB,∴AM OFEM OE= =14,∴AM=15AE=15×2=25,由勾股定理得:PA,∴△PAB周长的最小值=2PA+AB4.考点:1.四边形综合题;2.探究型;3.动点型;4.最值问题.26.(2017四川省广安市)如图,四边形ABCD是正方形,E、F分别是了AB、AD上的一点,且BF⊥CE,垂足为G,求证:AF=BE.【答案】证明见解析.考点:1.正方形的性质;2.全等三角形的判定与性质.27.(2017四川省眉山市)如图,点E 是正方形ABCD 的边BC 延长线上一点,连结DE ,过顶点B 作BF ⊥DE ,垂足为F ,BF 分别交AC 于H ,交BC 于G . (1)求证:BG =DE ; (2)若点G 为CD 的中点,求HGGF的值.【答案】(1)证明见解析;(2)53. 【解析】试题分析:(1)由于BF ⊥DE ,所以∠GFD =90°,从而可知∠CBG =∠CDE ,根据全等三角形的判定即可证明△BCG ≌△DCE ,从而可知BG =DE ;(2)设CG =1,从而知CG =CE =1,由勾股定理可知:DE =BG ,由易证△ABH ∽△CGH ,所以BHHG=2,从而可求出HG 的长度,进而求出HGGF的值. 试题解析:(1)∵BF ⊥DE ,∴∠GFD =90°,∵∠BCG =90°,∠BGC =∠DGF ,∴∠CBG =∠CDE ,在△BCG 与△DCE 中,∵∠CBG =∠CDE ,BC =CD ,∠BCG =∠DCE ,∴△BCG ≌△DCE (ASA ),∴BG =DE ;(2)设CG =1,∵G 为CD 的中点,∴GD =CG =1,由(1)可知:△BCG ≌△DCE (ASA ),∴CG =CE =1,∴由勾股定理可知:DE =BG ∵sin ∠CDE =CE GF DE GD =,∴GF =5,∵AB ∥CG ,∴△ABH ∽△CGH ,∴21AB BH CG HG ==,∴BH ,GH HG GF =53.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.正方形的性质.28.(2017四川省绵阳市)如图,已知△ABC中,∠C=90°,点M从点C出发沿CB方向以1c m/s的速度匀速运动,到达点B停止运动,在点M的运动过程中,过点M作直线MN交AC于点N,且保持∠NMC=45°,再过点N作AC的垂线交AB于点F,连接MF,将△MNF关于直线NF对称后得到△ENF,已知AC=8cm,BC=4cm,设点M运动时间为t(s),△ENF与△ANF重叠部分的面积为y(cm2).(1)在点M的运动过程中,能否使得四边形MNEF为正方形?如果能,求出相应的t值;如果不能,说明理由;(2)求y关于t的函数解析式及相应t的取值范围;(3)当y取最大值时,求sin∠NEF的值.【答案】(1)85;(2)2212 (02)41416(24)1233t t tyt t t⎧-+<<⎪⎪=⎨⎪-+≤≤⎪⎩;(3)10.【解析】试题分析:(1)由已知得出CN=CM=t,FN∥BC,得出AN=8﹣t,由平行线证出△ANF∽△ACB,得出对应边成比例求出NF=12AN=12(8﹣t),由对称的性质得出∠ENF=∠MNF=∠NMC=45°,MN=NE,OE=OM=CN=t,由正方形的性质得出OE=ON=FN,得出方程,解方程即可;(3)当点E 在AB 边上时,y 取最大值,连接EM ,则EF =BF ,EM =2CN =2CM =2t ,EM =2BM ,得出方程,解方程求出CN =CM =2,AN =6,得出BM =2,NF =12AN =3,因此EM =2BM =4,作FD ⊥NE 于D ,由勾股定理求出EB==,求出EF =12EB=,由等腰直角三角形的性质和勾股定理得出DF=2HF,在Rt △DEF 中,由三角函数定义即可求出sin ∠NEF 的值. 试题解析:(1)能使得四边形MNEF 为正方形;理由如下: 连接ME 交NF 于O ,如图1所示:∵∠C =90°,∠NMC =45°,NF ⊥AC ,∴CN =CM =t ,FN ∥BC ,∴AN =8﹣t ,△ANF ∽△ACB ,∴84AN AC NF BC == =2,∴NF =12AN =12(8﹣t ),由对称的性质得:∠ENF =∠MNF =∠NMC =45°,MN =NE ,OE =OM =CN =t ,∵四边形MNEF 是正方形,∴OE =ON =FN ,∴t =12×12(8﹣t ),解得:t =85;即在点M 的运动过程中,能使得四边形MNEF 为正方形,t 的值为85;(2)分两种情况:①当0<t ≤2时,y =12×12(8﹣t )×t =2124t t -+,即2124y t t =-+(0<t ≤2); ②当2<t ≤4时,如图2所示:作GH ⊥NF 于H ,由(1)得:NF =12(8﹣t ),GH =NH ,GH =2FH ,∴GH =23NF =13(8﹣t ),∴y =12NF ′GH =12×12(8﹣t )×13(8﹣t )=21(8)12t -,即21(8)12y t =-(2<t ≤4); 综上所述:2212 (02)41416(24)1233t t t y t t t ⎧-+<<⎪⎪=⎨⎪-+≤≤⎪⎩ .考点:1.四边形综合题;2.最值问题;3.动点型;4.存在型;5.分类讨论;6.压轴题.29.(2017四川省达州市)如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E、F.(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.【答案】(1)5;(2)当点O在边AC上运动到AC中点时,四边形AECF是矩形.【解析】试题分析:(1)根据平行线的性质以及角平分线的性质得出∠OEC=∠OCE,∠OFC=∠OCF,证出OE=OC=OF,∠ECF=90°,由勾股定理求出EF,即可得出答案;(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:连接AE、AF,如图所示:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF 是矩形.考点:1.矩形的判定;2.平行线的性质;3.等腰三角形的判定与性质;4.探究型;5.动点型.30.(2017山东省枣庄市)已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA,EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)如图2,若点P在线段AB的中点,连接AC,判断△ACE的形状,并说明理由;(3)如图3,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=a,BP=b,求a:b及∠AEC的度数.【答案】(1)证明见解析;(2)△ACE是直角三角形;(3:1,45°.【解析】试题分析:(1)由正方形的性质证明△APE≌△CFE,可得结论;(2)分别证明∠PA E=45°和∠BAC=45°,则∠CAE=90°,即△ACE是直角三角形;(2)△ACE 是直角三角形,理由是:如图2,∵P 为AB 的中点,∴PA=PB ,∵PB =PE ,∴PA=PE ,∴∠PA E =45°,又∵∠BAC =45°,∴∠CAE =90°,即△ACE 是直角三角形;(3)设CE 交AB 于G ,∵EP 平分∠AEC ,EP ⊥AG ,∴AP =PG =a ﹣b ,BG =a ﹣(2a ﹣2b )=2b ﹣a ,∵PE ∥CF ,∴PE PG BC GB =,即2b a ba b a-=-,解得:a b ,∴a :b :1,作GH ⊥AC 于H ,∵∠CAB =45°,∴HG =2AG =2(b ﹣2b )=(2)b ,又∵BG =2b ﹣a =(2)b ,∴GH =GB ,GH ⊥AC ,GB ⊥BC ,∴∠HCG =∠BCG ,∵PE ∥CF ,∴∠PEG =∠BCG ,∴∠AEC =∠ACB =45°.考点:1.四边形综合题;2.探究型;3.变式探究. 31.(2017山东省济宁市)实验探究:(1)如图1,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展开;再一次折叠纸片,使点A 落在EF 上,并使折痕经过点B ,得到折痕BM ,同时得到线段BN ,MN .请你观察图1,猜想∠MBN 的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN 剪下,如图2,折叠该纸片,探究MN 与BM 的数量关系,写出折叠方案,并结合方案证明你的结论.【答案】(1)∠MBN=30°;(2)MN=12 BM.【解析】试题分析:(1)猜想:∠MBN=30°.只要证明△ABN是等边三角形即可;(2)结论:MN=12 BM.折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.理由:由折叠可知△MOP≌△MNP,∴MN=OM,∠OMP=∠NMP=12∠OMN=30°=∠B,∠MOP=∠MNP=90°,∴∠BOP=∠MOP=90°,∵OP=OP,∴△MOP≌△BOP,∴MO=BO=12BM,∴MN=12BM.考点:1.翻折变换(折叠问题);2.矩形的性质;3.剪纸问题.32.(2017广东省)如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【答案】(1)证明见解析;(2)150°.【解析】试题分析:(1)连结DB、DF.根据菱形四边相等得出AB=AD=FA,再利用SAS证明△BAD≌△FAD,得出DB=DF,那么D在线段BF的垂直平分线上,又AB=AF,即A在线段BF的垂直平分线上,进而证明AD⊥BF;(2)如图,设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH是矩形,∴DG=BH=12BF.∵BF=BC,BC=CD,∴DG=12CD.在直角△CDG中,∵∠CGD=90°,DG=12CD,∴∠C=30°,∵BC∥AD,∴∠ADC=180°﹣∠C=150°.考点:菱形的性质.33.(2017广西四市)如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF.(1)求证:AE=CF;(2)若AB=6,∠COD=60°,求矩形ABCD的面积.【答案】(1)证明见解析;(2)【解析】试题分析:(1)由矩形的性质得出OA=OC,OB=OD,AC=BD,∠ABC=90°,证出OE=OF,由SAS证明△AOE≌△COF,即可得出AE=CF;(2)证出△AOB是等边三角形,得出OA=AB=6,AC=2OA=12,在Rt△ABC中,由勾股定理求出BC的长,即可得出矩形ABCD的面积.试题解析:(1)证明:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∠ABC=90°,∵BE=DF,∴OE=OF,在△AOE和△COF中,∵OA=OC,∠AOE=∠COF,OE=OF,∴△AOE≌△COF(SAS),∴AE=CF;(2)解:∵OA=OC,OB=OD,AC=BD,∴OA=OB,∵∠AOB=∠COD=60°,∴△AOB是等边三角形,∴OA=AB=6,∴AC=2OA=12,在Rt△ABC中,BC=ABCD的面积=AB•BC=6×考点:1.矩形的性质;2.全等三角形的判定与性质.34.(2017江苏省盐城市)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.【答案】(1)证明见解析;(2)∠ABE=30°.【解析】试题分析:(1)由矩形可得∠ABD=∠CDB,结合BE平分∠ABD、DF平分∠BDC得∠EBD=∠FDB,即可知BE∥DF,根据AD∥BC即可得证;(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.考点:1.矩形的性质;2.平行四边形的判定与性质;3.菱形的判定;4.探究型.35.(2017江苏省盐城市)(探索发现】如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tan B=tan C=43,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.【答案】【探索发现】12;【拓展应用】4ab;【灵活应用】720;【实际应用】1944.【拓展应用】:由△APN ∽△ABC 知PN AE BC AD =,可得PN =a ﹣ahPQ ,设PQ =x ,由S 矩形PQMN=PQ •PN ═2()24a h ahx h --+,据此可得; 【灵活应用】:添加如图1辅助线,取BF 中点I ,FG 的中点K ,由矩形性质知AE =EH 20、CD =DH =16,分别证△AEF ≌△HED 、△CDG ≌△HDE 得AF =DH =16、CG =HE =20,从而判断出中位线IK 的两端点在线段AB 和DE 上,利用【探索发现】结论解答即可;【实际应用】:延长BA 、CD 交于点E ,过点E 作EH ⊥BC 于点H ,由tan B =tan C 知EB =EC 、BH =CH =54,EH =43BH =72,继而求得BE =CE =90,可判断中位线PQ 的两端点在线段AB 、CD 上,利用【拓展应用】结论解答可得. 试题解析:【探索发现】∵EF 、ED 为△ABC 中位线,∴ED ∥AB ,EF ∥BC ,EF =12BC ,ED =12AB ,又∠B =90°,∴四边形FEDB 是矩形,则ABCS S ∆矩形FEDB=12EF DE AB BC ⋅⋅=112212BC ABAB BC ⋅⋅=12,故答案为:12;【拓展应用】∵PN ∥BC ,∴△APN ∽△ABC ,∴PN AE BC AD =,即=P N h P Q a h -,∴PN =a ﹣ahPQ ,设PQ =x ,则S 矩形PQMN =PQ •PN =x (a ﹣a h x )=2a x ax h -+ =2()24a h ah x h --+,∴当PQ =2h 时,S 矩形PQMN 最大值为4ab ,故答案为:4ab ;【灵活应用】如图1,延长BA 、DE 交于点F ,延长BC 、ED 交于点G ,延长AE 、CD 交于点H ,取BF 中点I ,FG 的中点K ,由题意知四边形ABCH 是矩形,∵AB =32,BC =40,AE =20,CD =16,∴EH =20、DH =16,∴AE =EH 、CD =DH ,在△AEF 和△HED 中,∵∠FAE =∠DHE ,AE =AH ,∠AEF =∠HED ,∴△AEF ≌△HED (ASA ),∴AF =DH =16,同理△CDG≌△HDE ,∴CG =HE =20,∴BI =12(AB +AF )=24,∵BI =24<32,∴中位线IK 的两端点在线段AB 和DE 上,过点K 作KL ⊥BC 于点L ,由【探索发现】知矩形的最大面积为12×BG •BF =12×(40+20)×(32+16)=720,答:该矩形的面积为720; 【实际应用】如图2,延长BA 、CD 交于点E ,过点E 作EH ⊥BC 于点H ,∵tan B =tan C =43,∴∠B =∠C ,∴EB =EC ,∵BC =108cm ,且EH ⊥BC ,∴BH =CH =12BC =54cm ,∵tan B =EH BH =43,∴EH =43BH =43×54=72cm ,在Rt △BHE 中,BE =90cm ,∵AB =50cm ,∴AE =40cm ,∴BE 的中点Q 在线段AB 上,∵CD =60cm ,∴ED =30cm ,∴CE 的中点P 在线段CD 上,∴中位线PQ 的两端点在线段AB 、CD 上,由【拓展应用】知,矩形PQMN 的最大面积为14BC •EH =1944cm 2. 答:该矩形的面积为1944cm 2.考点:1.四边形综合题;2.阅读型;3.探究型;4.最值问题;5.压轴题. 36.(2017江苏省连云港市)问题呈现:如图1,点E 、F 、G 、H 分别在矩形ABCD 的边AB 、BC 、CD 、DA 上,AE =DG ,求证:2ABCD EFGH S S =矩形四边形.(S 表示面积)实验探究:某数学实验小组发现:若图1中AH ≠BF ,点G 在CD 上移动时,上述结论会发生变化,分别过点E 、G 作BC 边的平行线,再分别过点F 、H 作AB 边的平行线,四条平行线分别相交于点A 1、B 1、C 1、D 1,得到矩形A 1B 1C 1D 1.如图2,当AH >BF 时,若将点G 向点C 靠近(DG >AE ),经过探索,发现:2S 四边形EFGH =S 矩形ABCD +S . 如图3,当AH >BF 时,若将点G 向点D 靠近(DG <AE ),请探索S 四边形EFGH 、S 矩形ABCD 与S 之间的数量关系,并说明理由.迁移应用:请直接应用“实验探究”中发现的结论解答下列问题:(1)如图4,点E 、F 、G 、H 分别是面积为25的正方形ABCD 各边上的点,已知AH >BF ,AE >DG ,S 四边形EFGH =11,HF EG 的长.(2)如图5,在矩形ABCD 中,AB =3,AD =5,点E 、H 分别在边AB 、AD 上,BE =1,DH =2,点F 、G 分别是边BC 、CD 上的动点,且FG EF 、HG ,请直接写出四边形EFGH 面积的最大值.【答案】问题呈现:2ABCD EFGH S S =矩形四边形;实验探究:11112ABCD A B C D EFGH S S S =-矩形矩形四边形;迁移应用:(1)EG (2)172.(2)分两种情形探究即可解决问题.试题解析:问题呈现:证明:如图1中,∵四边形ABCD 是矩形,∴AB ∥CD ,∠A =90°,∵AE =DG ,∴四边形AEGD 是矩形,∴S △HGE =12S 矩形AEGD ,同理S △EGF =12S 矩形BEGC ,∴S 四边形EFGH =S △HGE +S △EFG =12S 矩形BEGC .实验探究:结论:2S 四边形EFGH =S 矩形ABCD ﹣.理由:∵ =12, =12,=12,=12,∴S四边形EFGH=+++﹣,∴2S四边形EFGH=2+2+2+2﹣2,∴2S 四边形EFGH =S 矩形ABCD ﹣.迁移应用:解:(1)如图4中,∵2S四边形EFGH=S矩形ABCD﹣,∴=25﹣2×11=3=A 1B 1A 1D 1,∵正方形的面积为25,∴边长为5,∵A 1D 12=HF 2﹣52=29﹣25=4,∴A 1D 1=2,A 1B 1=32,∴EG 2=A 1B 12+52=1094,∴EG .(2)∵2S 四边形EFGH =S 矩形ABCD +,∴四边形A 1B 1C 1D 1面积最大时,矩形EFGH 的面积最大.①如图5﹣1中,当G 与C 重合时,四边形A 1B 1C 1D 1面积最大时,矩形EFGH 的面积最大.此时矩形A 1B 1C 1D 1面积=12)2②如图5﹣2中,当G 与D 重合时,四边形A 1B 1C 1D 1面积最大时,矩形EFGH 的面积最大.此时矩形A 1B 1C 1D 1面积=21=2,∵22,∴矩形EFGH 的面积最大值=172.考点:1.四边形综合题;2.最值问题;3.阅读型;4.探究型;5.压轴题.37.(2017浙江省丽水市)如图,在矩形ABCD 中,点E 是AD 上的一个动点,连接BE ,作点A 关于BE 的对称点F ,且点F 落在矩形ABCD 的内部,连接AF ,BF ,EF ,过点F 作GF ⊥AF 交AD 于点G ,设AD n AE=.(1)求证:AE =GE ;(2)当点F 落在AC 上时,用含n 的代数式表示AD AB的值; (3)若AD =4AB ,且以点F ,C ,G 为顶点的三角形是直角三角形,求n 的值.【答案】(1)证明见解析;(2)AD AB ;(3)n =16或 8+. 【解析】试题分析:(1)因为GF ⊥AF ,由对称易得AE =EF ,则由直角三角形的两个锐角的和为90度,且等边对等角,即可证明E 是AG 的中点;(2)可设AE =a ,则AD =na ,即需要用n 或a 表示出AB ,由BE ⊥AF 和∠BAE ==∠D =90°,可证明△ABE ~△DAC , 则AB AE DA DC=,因为AB =DC ,且DA ,AE 已知表示出来了,所以可求出AB ,即可解答;(3)求以点F ,C ,G 为顶点的三角形是直角三角形时的n ,需要分类讨论,一般分三个,∠FCG =90°,∠CFG =90°,∠CGF =90°;根据点F 在矩形ABCD 的内部就可排除∠FCG =90°,所以就以∠CFG =90°和∠CGF =90°进行分析解答.试题解析:(1)证明:由对称得AE =FE ,∴∠EAF =∠EFA ,∵GF ⊥AE ,∴∠EAF +∠FGA =∠EFA +∠EFG =90°,∴∠FGA =∠EFG ,∴EG =EF ,∴AE =EG .(2)解:设AE =a ,则AD =na ,当点F 落在AC 上时(如图1),由对称得BE ⊥AF ,∴∠ABE +∠BAC =90°,∵∠DAC +∠BAC =90°,∴∠ABE =∠DAC ,又∵∠BAE =∠D =90°,∴△ABE ~△DAC ,∴AB AE DA DC=∵AB =DC ,∴AB 2=AD ·AE =na ·a =na 2,∵AB >0,∴AB ,∴ADAB ,∴AD AB .考点:1.矩形的性质;2.解直角三角形的应用;3.相似三角形的判定与性质;4.分类讨论;5.压轴题.38.(2017浙江省绍兴市)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD ,AB =BC ,∠ABC =90°.①若AB =CD =1,AB ∥CD ,求对角线BD 的长.②若AC ⊥BD ,求证:AD =CD ;(2)如图2,在矩形ABCD 中,AB =5,BC =9,点P 是对角线BD 上一点,且BP =2PD ,过点P 作直线分别交边AD ,BC 于点E ,F ,使四边形ABFE 是等腰直角四边形,求AE 的长.【答案】(1;②证明见解析;(2)5或6.5.【解析】试题分析:(1)①只要证明四边形ABCD 是正方形即可解决问题;②只要证明△ABD ≌△CBD ,即可解决问题;(2)如图1中,连接AC 、BD .∵AB =BC ,AC ⊥BD ,∴∠ABD =∠CBD ,∵BD =BD ,∴△ABD ≌△CBD ,∴AD =CD .(2)若EF ⊥BC ,则AE ≠EF ,BF ≠EF ,∴四边形ABFE 表示等腰直角四边形,不符合条件.若EF 与BC 不垂直,①当AE =AB 时,如图2中,此时四边形ABFE 是等腰直角四边形,∴AE =AB =5.②当BF =AB 时,如图3中,此时四边形ABFE 是等腰直角四边形,∴BF =AB =5,∵DE ∥BF ,∴BF =PB =1:2,∴DE =2.5,∴AE =9﹣2.5=6.5,综上所述,满足条件的AE 的长为5或6.5.考点:1.四边形综合题;2.分类讨论;3.新定义;4.压轴题.39.(2017浙江省绍兴市)如图1,已知□ABCD ,AB ∥x 轴,AB =6,点A 的坐标为(1,-4),点D 的坐标为(-3,4),点B 在第四象限,点P 是□ABCD 边上一个动点.(1) 若点P 在边BC 上,PD =CD ,求点P 的坐标.(2)若点P 在边AB 、AD 上,点P 关于坐标轴对称的点Q ,落在直线1y x =-上,求点P 的坐标.(3) 若点P 在边AB ,AD ,CD 上,点G 是AD 与y 轴的交点,如图2,过点P 作y 轴的平行线PM ,过点G 作x 轴的平行线GM ,它们相交于点M ,将△PGM 沿直线PG 翻折,当点M 的对应点落在坐标轴上时,求点P 的坐标(直接写出答案).【答案】(1)P (3,4);(2)(-3,4)或(-1,0)或(5,-4)或(3,-4);(3)P (2,-4)或(-52,3)或(-5,4)或(5,4). 【解析】试题分析:(1)点P 在BC 上,要使PD =CD ,只有P 与C 重合;(3)在不同边上,根据图象,点M 翻折后,点M ’落在x 轴还是y 轴,可运用相似求解.试题解析:(1)∵CD =6,∴点P 与点C 重合,∴点P 的坐标是(3,4).(2)①当点P 在边AD 上时,由已知得,直线AD 的函数表达式为:22y x =-- ,设P (a ,-2a -2),且-3≤a ≤1.若点P 关于x 轴对称点Q 1(a ,2a +2)在直线y =x -1上,∴2a +2=a -1,解得a =-3,此时P (-3,4). 若点P 关于y 轴对称点Q 2(-a ,-2a -2)在直线y =x -1上,∴-2a -2=-a -1,解得a =-1,此时P (-1,0). ②当点P 在边AB 上时,设P (a ,-4),且1≤a ≤7.若点P 关于x 轴对称点Q 3(a ,4)在直线y =x -1上,∴4=a -1,解得a =5,此时P (5,-4).若点P 关于y 轴对称点Q 4(-a ,-4)在直线y =x -1上,∴-4=-a -1,解得a =3,此时P (3,-4). 综上所述,点P 的坐标为(-3,4)或(-1,0)或(5,-4)或(3,-4).(3)因为直线AD 为y =-2x -2,所以G (0,-2).①如图,当点P 在CD 边上时,可设P (m ,4),且-3≤m ≤3,则可得M ′P =PM =4+2=6,M ′G =GM =|m |,易证得△OGM ′∽△HM ′P ,则'''OM GM HP M P =,即'46m OM =,则OM ′=23m ,在Rt △OGM ′中,由勾股定理得,2222()23m m += ,解得m 或,则P (,4)或(,4);②如下图,当点P 在AD 边上时,设P (m ,-2m -2),则PM ′=PM =|-2m |,GM ′=MG =|m |,易证得△OGM ′∽△HM ′P ,则'''OM GM HP M P =,即'222m OM m m=---,则OM ′=1222m +,在Rt △OGM ′中,由勾股定理得,2221(22)22m m ++= ,整理得m = -52,则P (-52,3);如下图,当点P 在AB 边上时,设P (m ,-4),此时M ′在y 轴上,则四边形PM ′GM 是正方形,所以GM =PM =4-2=2,则P (2,-4).综上所述,点P 的坐标为(2,-4)或(-52,3)或(,4,4). 考点:1.一次函数综合题;2.平行四边形的性质;3.翻折变换(折叠问题);4.动点型;5.分类讨论;。
河北省中考数学总复习 第五单元 四边形单元测试练习-人教版初中九年级全册数学试题
单元测试(五)X围:四边形限时:60分钟满分:100分一、选择题(每小题4分,共32分)1.一个正多边形的内角和为1080°,则这个正多边形的每个外角为()A.30°B.45°C.60°D.80°2.如图D5-1,平行四边形ABCD中,∠ABC的平分线交边CD于点E,∠A=130°,则∠BEC的度数是()图D5-1A.20°B.25°C.30°D.50°3.在平面直角坐标系中,已知平行四边形ABCD的三个顶点坐标分别是A(m,n),B(2,-1),C(-m,-n),则关于点D的说法正确的是()甲:点D在第一象限;乙:点D与点A关于原点对称;丙:点D的坐标是(-2,1);丁:点D与原点的距离是√5.A.甲、乙B.丙、丁C.甲、丁D.乙、丙4.如图D5-2,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E,F,连接PB,PD.若AE=2,PF=8,则图中阴影部分的面积为()图D5-2A.10B.12C.16D.185.如图D5-3,在△ABC中,D是BC的中点,点E,F分别在线段AD及其延长线上,DE=DF.在下列条件中,使四边形BECF是菱形的是()图D5-3A.EB⊥ECB.AB⊥ACC.AB=ACD.BF∥CE6.如图D5-4,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是()图D5-4A.108°B.72°C.90°D.100°7.将矩形纸片ABCD按图D5-5所示的方式折叠,恰好得到菱形AECF.若AB=3,则菱形AECF的面积为()图D5-5A.1B.2√2C.2√3D.48.如图D5-6,在正方形ABCD中,E是BC边的中点,点B'与点B关于AE对称,BB'与AE交于点F.下列结论中错误的是()图D5-6A.AB'=ADB.∠ADB'=75°C.∠CB'D=135°D.△FCB'是等腰直角三角形二、填空题(每小题4分,共16分)9.图D5-7①是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图②是从图①冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=度.图D5-710.如图D5-8,矩形ABCD的对角线AC,BD相交于点O,DE∥AC,CE∥BD,若BD=5,则四边形DOCE的周长为.图D5-811.已知边长为5的菱形ABCD中,对角线AC长为6,点E在对角线BD上且tan∠EAC=1,则BE的长为.312.如图D5-9,P是正方形ABCD的对角线BD上的一个动点(不与点B,D重合),连接AP,过点B作直线AP的垂线,垂足为H,连接DH.若正方形ABCD的边长为4,则线段DH长度的最小值是.图D5-9三、解答题(共52分)13.(10分)如图D5-10,在等边三角形ABC中,D是BC的中点,以AD为边向左侧作等边三角形ADE.图D5-10(1)求∠CAE的度数;(2)取AB的中点F,连接CF,EF.试证明四边形CDEF是平行四边形.14.(10分)如图D5-11,△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA 的平分线于点F,连接AE,AF.图D5-11(1)求证:EO=FO.(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.15.(14分)如图D5-12,在▱ABCD中,BC=2AB,E,F分别是BC,AD的中点,AE,BF交于点O,连接EF,OC.图D5-12(1)求证:四边形ABEF是菱形;(2)若BC=8,∠ABC=60°,求OC的长.16.(18分)如图D5-13,在▱ABCD中,AB⊥AC,AB=1,BC=√5,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.图D5-13(1)求证:当∠AOF=90°时,四边形ABEF是平行四边形.(2)试说明在旋转的过程中,AF与CE总保持相等.(3)在旋转的过程中,四边形BEDF可能是菱形吗?如果不可能,请说明理由;如果可能,说明理由,并求出此时∠AOF的度数.参考答案1.B2.B3.B[解析] 由点的坐标特征得出点A和点C关于原点对称,由平行四边形的性质得出点D和点B关于原点对称,即可得出点D的坐标,再由勾股定理可求出点D与原点的距离.4.C[解析] 作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△P,×2×8=8,∴S阴=8+8=16,故选C.∴S△DFP=S△PBE=125.C[解析] ∵BD=DC,DE=DF,∴四边形BECF是平行四边形,要使得四边形BECF是菱形,对角线必须垂直,只有当AB=AC时,∵BD=CD,∴AD⊥BC,∴此时四边形BECF是菱形.故选C.6.B[解析] 连接PA,如图所示:∵四边形ABCD是菱形,∴∠ADP=∠CDP=1∠ADC=36°,BD所在直线是菱形的对称轴,∴PA=PC,2∵AD的垂直平分线交对角线BD于点P,∴PA=PD,∴PD=PC,∴∠PCD=∠CDP=36°,∴∠CPB=∠PCD+∠CDP=72°.故选B.7.C[解析] 设BE=x ,则AE=3-x.根据菱形AECF ,得∠FCO=∠ECO ,CE=3-x ,通过折叠的性质,得∠ECO=∠ECB ,则∠FCO=∠ECO=∠ECB=30°,所以2BE=CE ,CE=2x ,所以2x=3-x ,解得x=1,所以CE=AE=2.利用勾股定理得BC=√3,则菱形AECF 的面积是AE ·BC=2√3.故选C . 8.B[解析] ∵四边形ABCD 是正方形,∴AB=AD.∵AB=AB',∴AB'=AD ,故A 正确.∵BF=B'F ,BE=CE ,∴EF ∥CB'.∵AB=AB'≠BB',∴∠BAB'≠60°,∴∠DAB'≠30°,∴∠ADB'=∠AB'D ≠75°,故B 错误.∵∠ABB'=∠AB'B ,∠ADB'=∠AB'D ,∴在四边形ABB'D 中,易知∠AB'D+∠AB'B=135°.∵∠BFE=90°,EF ∥CB',∴∠BB'C=90°,∴∠CB'D=135°,故C 正确.易知△ABF ≌△BCB',∴BF=CB'=B'F ,故D 正确.故选B . 9.36010.10[解析] ∵CE ∥BD ,DE ∥AC ,∴四边形CODE 是平行四边形,∵四边形ABCD 是矩形,∴AC=BD=5,OA=OC ,OB=OD ,∴OC=OD=12BD=52,∴四边形CODE 是菱形,∴四边形CODE 的周长为:4OC=4×52=10.故答案为10.11.3或5[解析] 当点E 在对角线交点左侧时,如图①所示.∵菱形ABCD 中,边长为5,对角线AC 长为6, ∴AC ⊥BD ,BO=√AA 2-AA 2=√52-32=4,∵tan ∠EAC=13=AA AA =AA3,解得:OE=1,∴BE=BO-OE=4-1=3;当点E 在对角线交点右侧时,如图②所示.∵菱形ABCD 中,边长为5,对角线AC 长为6, ∴AC ⊥BD ,BO=√22√52-32=4,∵tan ∠EAC=13=AA AA =AA3,解得:OE=1,∴BE=BO+OE=4+1=5,故答案为3或5.AB=2.在Rt△AOD中,OD=2√5,根据三角形的三边关12.2√5-2[解析] 如图,取AB的中点O,连接OH,OD,则OH=AO=12系,OH+DH>OD,所以当O,D,H三点共线时,DH的长度最小,DH的最小值=OD-OH=2√5-2.13.解:(1)∵△ABC与△ADE为等边三角形,∴∠BAC=∠DAE=60°.∵D是BC的中点,∴∠CAD=∠DAB=1×60°=30°,2∴∠CAE=∠CAD+∠DAE=30°+60°=90°.(2)证明:在等边三角形ABC中,D,F分别是BC,AB的中点,×60°=30°,AD⊥BC.则AD=CF,∠FCB=12在等边三角形ADE中,AD=DE,∠ADE=60°,则CF=AD=DE,∠EDB=90°-60°=30°=∠FCB,故CF∥DE,则四边形CDEF是平行四边形.14.解:(1)证明:如图,∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO.(2)当点O运动到AC中点时,四边形AECF是矩形,证明如下:∵OA=OC ,EO=FO ,∴四边形AECF 是平行四边形, ∵CF 是∠DCA 的平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4, 又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF 是矩形.15.解:(1)证明:∵四边形ABCD 是平行四边形,∴BC ∥AD ,BC=AD.∵E ,F 分别是BC ,AD 的中点, ∴BE=12BC ,AF=12AD ,∴BE=AF , ∴四边形ABEF 是平行四边形.又∵BC=2AB ,∴AB=BE ,∴▱ABEF 是菱形.(2)如图,过点O 作OG ⊥BC 于点G.∵E 是BC 的中点,BC=8, ∴BE=CE=4.∵四边形ABEF 是菱形,∠ABC=60°, ∴∠OBE=30°,∠BOE=90°,∴OE=2,∠OEB=60°,∴GE=1,OG=√3,∴GC=5,∴OC=2√7.16.解:(1)证明:∵AB⊥AC,∴∠BAC=90°,∴当∠AOF=90°时,AB∥EF.∵四边形ABCD是平行四边形,∴AF∥BE, ∴四边形ABEF是平行四边形.(2)∵四边形ABCD是平行四边形,∴AO=CO,AF∥EC,∴∠FAO=∠ECO.在△AOF和△COE中,∵∠FAO=∠ECO,AO=CO,∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE.(3)四边形BEDF可能是菱形.理由:∵△AOF≌△COE,∴OF=OE.∵四边形ABCD是平行四边形,∴OB=OD, ∴四边形BEDF是平行四边形,∴当EF⊥BD时,四边形BEDF是菱形.在Rt△ABC中,AC=√5-1=2,∴AO=1=AB.又∵AB⊥AC,∴∠AOB=45°,∴∠AOF=45°,∴当四边形BEDF是菱形时,∠AOF=45°.。
中考数学平行四边形单元测试含答案
中考数学平行四边形单元测试含答案一、选择题1.如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.结论:①EG⊥FH;②四边形EFGH是矩形;③HF平分∠EHG;④EG12=BC;⑤四边形EFGH的周长等于2AB.其中正确的个数是( )A.1 B.2 C.3 D.42.如图,已知正方形ABCD的边长为8,点E,F分别在边BC、CD上,45EAF∠=︒.当8EF=时,AEF的面积是().A.8 B.16 C.24 D.323.如图,在正方形ABCD中,点E、F、H分别是AB、BC、CD的中点,CE、DF交于点G,连接AG、HG.下列结论:①CE⊥DF;②AG=DG;③∠CHG=∠DAG.其中,正确的结论有()A.0个B.1个C.2个D.3个4.如图,在四边形ABCD中, AD//BC,且AD>BC,BC= 6cm, AD=9cm, P、Q分别从A、C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C向B运动,多少s时直线将四边形ABCD截出一个平行四边形( )A.1 B.2 C.3 D.2或35.平行四边形的对角线分别为 x 、y ,一边长为 12,则 x 、y 的值可能是( ) A .8 与 14 B .10 与 14 C .18 与 20 D .4 与 286.如图,在正方形ABCD 中,M 是对角线BD 上的一点,点E 在AD 的延长线上,连接AM 、EM 、CM ,延长EM 交AB 于点F ,若AM =EM ,30E ∠=︒,则下列结论:①MF ME =;②BFDE =;③MC EF ⊥;④2BF MD BC +=,其中正确的结论序号是( )A .①②③B .①②④C .②③④D .①②③④7.如图,矩形ABCD 中,O 为AC 的中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连接BF 交AC 于点M ,连接DE ,BO.若∠COB =60°,FO =FC ,则下列结论:①FB ⊥OC ,OM =CM ;②△EOB ≌△CMB ;③四边形EBFD 是菱形;④MB ∶OE =3∶2.其中正确结论的个数是( )A .1B .2C .3D .48.如图,在ABCD 中,2,AB AD F =是CD 的中点,作BE AD ⊥于点E ,连接EF BF 、,下列结论:①CBF ABF ∠=∠;②FE FB =;③2EFB S S ∆=四边形DEBC ;④3BFE DEF ∠=∠;其中正确的个数是( )A .1B .2C .3D .49.如图,在矩形ABCD 中,AB =8,BC =4.将矩形沿AC 折叠,CD ′与AB 交于点F ,则AF :BF 的值为( )A .2B .53C .54D .310.如图,在菱形ABCD 中,AB=AC=1,点E 、F 分别为边AB 、BC 上的点,且AE=BF ,连接CE 、AF 交于点H ,连接DH 交AC 于点O ,则下列结论:①△ABF ≌△CAE ;②∠FHC=∠B ;③△ADO ≌△ACH ;④=3ABCD S 菱形;其中正确的结论个数是( )A .1个B .2个C .3个D .4个二、填空题 11.如图,在Rt △ABC 中,∠BAC=90°,AB=5,AC=12,P 为边BC 上一动点(P 不与B 、C 重合),PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的取值范围是__.12.如图,四边形ABCD 是菱形,∠DAB =48°,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,则∠DHO =_____度.13.如图,正方形ABCD 的边长为6,点E 、F 分别在边AD 、BC 上.将该纸片沿EF 折叠,使点A 的对应点G 落在边DC 上,折痕EF 与AG 交于点Q ,点K 为GH 的中点,则随着折痕EF 位置的变化,△GQK 周长的最小值为____.14.在锐角三角形ABC 中,AH 是边BC 的高,分别以AB ,AC 为边向外作正方形ABDE 和正方形ACFG ,连接CE ,BG 和EG ,EG 与HA 的延长线交于点M ,下列结论:①BG=CE ;②BG ⊥CE ;③AM 是△AEG 的中线;④∠EAM=∠ABC .其中正确的是_________.15.如图,菱形ABCD 的边长是4,60ABC ∠=︒,点E ,F 分别是AB ,BC 边上的动点(不与点A ,B ,C 重合),且BE BF =,若//EG BC ,//FG AB ,EG 与FG 相交于点G ,当ADG 为等腰三角形时,BE 的长为________.16.已知:一组邻边分别为6cm 和10cm 的平行四边形ABCD ,DAB ∠和ABC ∠的平分线分别交CD 所在直线于点E ,F ,则线段EF 的长为________cm .17.如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处,点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②S △ABG =32S △FGH ;③△DEF ∽△ABG ;④AG+DF =FG .其中正确的是_____.(把所有正确结论的序号都选上)18.如图,矩形纸片ABCD ,AB =5,BC =3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE ,DE 分别交AB 于点O ,F ,且OP =OF ,则AF 的值为______.19.如图,在△ABC 中,AB =AC ,E ,F 分别是BC ,AC 的中点,以AC 为斜边作Rt △ADC ,若∠CAD =∠BAC =45°,则下列结论:①CD ∥EF ;②EF =DF ;③DE 平分∠CDF ;④∠DEC =30°;⑤AB =2CD ;其中正确的是_____(填序号)20.如图,在平行四边形ABCD 中,53AB AD ==,,BAD ∠的平分线AE 交CD 于点E ,连接BE ,若BAD BEC ∠=∠,则平行四边形ABCD 的面积为__________.三、解答题21.如图,在Rt ABC 中,90ACB ∠=︒,过点C 的直线//MN AB ,D 为AB 边上一点,过点D 作DE BC ⊥,交直线MN 于E ,垂足为F ,连接CD 、BE(1)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由;(2)当D 为AB 中点时,A ∠等于 度时,四边形BECD 是正方形.22.如图,在矩形ABCD 中,点E 是AD 上的一点(不与点A ,D 重合),ABE ∆沿BE 折叠,得BEF ,点A 的对称点为点F .(1)当AB AD =时,点F 会落在CE 上吗?请说明理由.(2)设()01AB m m AD=<<,且点F 恰好落在CE 上. ①求证:CF DE =.②若AE n AD=,用等式表示m n ,的关系. 23.如图,在矩形ABCD 中,AD nAB =,E ,F 分别在AB ,BC 上.(1)若1n =,①如图,AF DE ⊥,求证:AE BF =;②如图,点G 为点F 关于AB 的对称点,连结AG ,DE 的延长线交AG 于H ,若AH AD =,猜想AE 、BF 、AG 之间的数量关系,并证明你的猜想.(2)如图,若M 、N 分别为DC 、AD 上的点,则EM FN的最大值为_____(结果用含n 的式子表示);(3)如图,若E 为AB 的中点,ADE EDF ∠=∠.则CF BF 的值为_______(结果用含n 的式子表示).24.在等边三角形ABC 中,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD 的上方作菱形ADEF ,且∠DAF=60°,连接CF .(1)(观察猜想)如图(1),当点D 在线段CB 上时,①BCF ∠= ;②,,BC CD CF 之间数量关系为 .(2)(数学思考):如图(2),当点D 在线段CB 的延长线上时,(1)中两个结论是否仍然成立?请说明理由.(3)(拓展应用):如图(3),当点D 在线段BC 的延长线上时,若6AB =,13CD BC =,请直接写出CF 的长及菱形ADEF 的面积..25.如图正方形ABCD ,DE 与HG 相交于点O (O 不与D 、E 重合).(1)如图(1),当90GOD ∠=︒,①求证:DE GH =; ②求证:2GD EH DE +>;(2)如图(2),当45GOD ∠=︒,边长4AB =,25HG =,求DE 的长.26.已知在ABC 和ADE 中, 180ACB AED ∠+∠=︒,CA CB =,EA ED =,3AB =.(1)如图1,若90ACB ∠=︒,B 、A 、D 三点共线,连接CE : ①若522CE =,求BD 长度; ②如图2,若点F 是BD 中点,连接CF ,EF ,求证:2CE EF =; (2)如图3,若点D 在线段BC 上,且2CAB EAD ∠=∠,试直接写出AED 面积的最小值.27.已知在平行四边形ABCD 中,AB BC ≠,将ABC 沿直线AC 翻折,点B 落在点尽处,AD 与CE 相交于点O ,联结DE .(1)如图1,求证://AC DE ;(2)如图2,如果90B ∠=︒,3AB =6=BC OAC 的面积;(3)如果30B ∠=︒,23AB =AED 是直角三角形时,求BC 的长.28.已知如图1,四边形ABCD 是正方形,45EAF ︒∠= .()1如图1,若点,E F 分别在边BC CD 、上,延长线段CB 至G ,使得BG DF =,若3,2BE BG ==,求EF 的长;()2如图2,若点,E F 分别在边CB DC 、延长线上时,求证: .EF DF BE =-()3如图3,如果四边形ABCD 不是正方形,但满足,90,45,AB AD BAD BCD EAF ︒︒=∠=∠=∠=且7, 13,5BC DC CF ===,请你直接写出BE 的长.29.如图,ABC ∆是边长为3的等边三角形,点D 是射线BC 上的一个动点(点D 不与点B 、C 重合),ADE ∆是以AD 为边的等边三角形,过点E 作BC 的平行线,交直线AC 于点F ,连接BE .(1)判断四边形BCFE 的形状,并说明理由;(2)当DE AB ⊥时,求四边形BCFE 的周长;(3)四边形BCFE 能否是菱形?若可为菱形,请求出BD 的长,若不可能为菱形,请说明理由.30.如图,在矩形ABCD 中,AB a ,BC b =,点F 在DC 的延长线上,点E 在AD 上,且有12CBE ABF ∠=∠.(1)如图1,当a b =时,若60CBE ∠=︒,求证:BE BF =;(2)如图2,当32b a =时, ①请直接写出ABE ∠与BFC ∠的数量关系:_________; ②当点E 是AD 中点时,求证:2CF BF a +=;③在②的条件下,请直接写出:BCF ABCD S S ∆矩形的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半与AB=CD 可得四边形EFGH 是菱形,然后根据菱形的对角线互相垂直平分,并且平分每一组对角的性质对各小题进行判断即可得答案.【详解】∵E、F、G、H分别是BD、BC、AC、AD的中点,∴EF=12CD,FG=12AB,GH=12CD,HE=12AB,∵AB=CD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,故②错误,∴EG⊥FH,HF平分∠EHG;故①③正确,∴四边形EFGH的周长= EF=FG=GH=HE =2AB,故⑤正确,没有条件可证明EG=12BC,故④错误,∴正确的结论有:①③⑤,共3个,故选C.【点睛】本题考查了三角形中位线定理与菱形的判定与菱形的性质,根据三角形的中位线定理与AB=CD判定四边形EFGH是菱形并熟练掌握菱形的性质是解答本题的关键.2.D解析:D【分析】如图:△ADF绕点A顺时针旋转90°,得到△ABH,可得AH=AF,∠BAH=∠DAF,进一步求出∠EAH=∠EAF=45°,再利用"边角边"证明△AEF和△AEH全等,再根据全等三角形的面积相等,即可解答.【详解】解:如图,将△ADF绕点A顺时针旋转90°,得到△ABH,根据旋转的性质可得:AH=AF,∠BAH=∠DAF,∵∠EAF=45°,∠BAD=90°∴∠EAH=∠EAF=45°在△AEF和△AEH中AF=Aн∠EAH=∠EAF=45°,AE=AE∴△AEF≌△AEH(SAS),∴EH=EF=8,∴SAFE=S△A EH=-12×8×8=32.故选:D.【点睛】本题考查了正方形和全等三角形的判定与性质,熟记并灵活应用它们的性质并利用旋转作辅助线、构造出全等三角形是解题的关键.3.C解析:C【分析】连接AH,由四边形ABCD是正方形与点E、F、H分别是AB、BC、CD的中点,容易证得△BCE≌△CDF与△ADH≌△DCF,根据全等三角形的性质,容易证得CE⊥DF与AH⊥DF,故①正确;根据垂直平分线的性质,即可证得AG=AD,继而AG=DC,而DG≠DC,所以AG≠DG,故②错误;由直角三角形斜边上的中线等于斜边的一半,即可证得HG=12 DC,∠CHG=2∠GDC,根据等腰三角形的性质,即可得∠DAG=2∠DAH=2∠GDC.所以∠DAG=∠CHG,④正确,则问题得解.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=90°,∵点E. F. H分别是AB、BC、CD的中点,∴BE=FC∴△BCE≌△CDF,∴∠ECB=∠CDF,∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE⊥DF,故①正确;连接AH,同理可得:AH⊥DF,∵CE⊥DF,∴△CGD 为直角三角形,∴HG=HD=12CD , ∴DK=GK , ∴AH 垂直平分DG ,∴AG=AD=DC ,在Rt △CGD 中,DG≠DC ,∴AG≠DG ,故②错误;∵AG=AD, AH 垂直平分DG∴∠DAG=2∠DAH,根据①,同理可证△ADH ≌△DCF∴∠DAH=∠CDF ,∴∠DAG=2∠CDF,∵GH=DH ,∴∠HDG=∠HGD ,∴∠GHC=∠HDG+∠HGD=2∠CDF ,∴∠GHC=∠DAG ,故③正确,所以①和③正确选择C.【点睛】本题考查正方形的性质,全等三角形的判定与性质,利用边角边,容易证明△BCE ≌△CDF ,从而根据全等三角形的性质和等量代换即可证∠ECD+∠CDF=90°,从而①可证;证②时,可先证AG=DC ,而DG≠DC ,所以②错误;证明③时,可利用等腰三角形的性质,证明它们都等于2∠CDF 即可.4.D解析:D【解析】【分析】根据题意设t 秒时,直线将四边形ABCD 截出一个平行四边形,AP=t,DP=9-t,CQ=2t,BQ=6-2t.要使成平行四边形,则就有AP=BQ 或CQ=PD ,计算即可求出t 值.【详解】根据题意设t 秒时,直线将四边形ABCD 截出一个平行四边形则AP=t,DP=9-t,CQ=2t,BQ=6-2t要使构成平行四边形则:AP=BQ 或CQ=PD进而可得:62t t =- 或29t t =-解得2t = 或3t =故选D.【点睛】本题主要考查四边形中的动点移动问题,关键在于根据平行四边形的性质列出方程求解即可.5.C解析:C【分析】如下图,将平行四边形ABCD向上平移,得到平行四边形ADEF,使得BC与AD重合,在△BDF中,利用三角形三边关系可得到x+y与x-y的取值范围,从而得到结论.【详解】如下图,将平行四边形ABCD向上平移,得到平行四边形ADEF,使得BC与AD重合,连接BD,DF根据题意,设AB=12,BD=x,DF=y则AF=AB=12,BF=24∴在△BDF中,BD+FD>BF,即:x+y>24在△BDF中,BD-FD<BF,即:x-y<24满足条件的只有C选项故选:C【点睛】本题考查三角形三边关系,解题关键是将题干中已知线段和需要求解的线段转化到同一个三角形中去.6.A解析:A【分析】①证明△AFM是等边三角形,可判断;②③证明△CBF≌△CDE(ASA),可作判断;④设MN=x,分别表示BF、MD、BC的长,可作判断.【详解】解:①∵AM=EM,∠AEM=30°,∴∠MAE=∠AEM=30°,∴∠AMF=∠MAE+∠AEM=60°,∵四边形ABCD是正方形,∴∠FAD=90°,∴∠FAM=90°-30°=60°,∴△AFM是等边三角形,∴FM=AM=EM,故①正确;②连接CE、CF,∵四边形ABCD是正方形,∴∠ADB=∠CDM,AD=CD,在△ADM 和△CDM 中,∵ AD CD ADM CDM DM DM ⎧⎪∠∠⎨⎪⎩===,∴△ADM ≌△CDM (SAS ), ∴AM=CM ,∴FM=EM=CM , ∴∠MFC=∠MCF ,∠MEC=∠ECM ,∵∠ECF+∠CFE+∠FEC=180°, ∴∠ECF=90°,∵∠BCD=90°, ∴∠DCE=∠BCF ,在△CBF 和△CDE 中,∵ 90CBF CDE BC CD BCF DCE ∠∠︒⎧⎪⎨⎪∠∠⎩====,∴△CBF ≌△CDE (ASA ), ∴BF=DE ; 故②正确;③∵△CBF ≌△CDE , ∴CF=CE , ∵FM=EM , ∴CM ⊥EF , 故③正确;④过M 作MN ⊥AD 于N , 设MN=x ,则AM=AF=2x ,3AN x =,DN=MN=x , ∴331)x x x +=,∴DE=BF=AB-AF=31)231)x x x -=,∴22(31)26BF MD x x x +==,∵BC=AD= 31)6x x ≠, 故④错误; 所以本题正确的有①②③;故选:A .【点睛】 本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质和判定,熟记正方形的性质确定出△AFM 是等边三角形是解题的关键.7.C解析:C【解析】连接BD,∵四边形ABCD是矩形,∴AC=BD,AC、BD互相平分,∵O为AC中点,∴BD也过O点,∴OB=OC,∵∠COB=60°,OB=OC,∴△OBC是等边三角形,∴OB=BC=OC,∠OBC=60°,在△OBF与△CBF中,FO FC BF BF OB BC⎧⎪⎨⎪⎩===,∴△OBF≌△CBF(SSS),∴△OBF与△CBF关于直线BF对称,∴FB⊥OC,OM=CM;∴①正确,∵∠OBC=60°,∴∠ABO=30°,∵△OBF≌△CBF,∴∠OBM=∠CBM=30°,∴∠ABO=∠OBF,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,易证△AOE≌△COF,∴OE=OF,∴OB⊥EF,∴四边形EBFD是菱形,∴③正确,∵△EOB≌△FOB≌△FCB,∴△EOB≌△CMB错误.∵∠OMB=∠BOF=90°,∠OBF=30°,∴∵OE=OF ,∴MB :OE=3:2,∴④正确;故选C .点睛:本题考查了矩形的性质,菱形的判定和性质,全等三角形的判定和性质,等边三角形的判定和性质以及三角函数等的知识,会综合运用这些知识点解决问题是解题的关键.8.C解析:C【分析】由平行四边形的性质结合AB=2AD ,CD=2CF 可得CF=CB ,从而可得∠CBF=∠CFB ,再根据CD ∥AB ,得∠CFB=∠ABF ,继而可得CBF ABF ∠=∠,可以判断①正确;延长EF 交BC 的延长线与M ,证明△DFE 与△CFM(AAS),继而得EF=FM=12EM ,证明∠CBE=∠AEB=90°,然后根据直角三角形斜边中线的性质即可判断②正确;由上可得S △BEF =S △BMF ,S △DFE =S △CFM ,继而可得S △EBF =S △BMF =S △EDF +S △FBC ,继而可得2EFB S S ∆=四边形DEBC ,可判断③正确;过点F 作FN ⊥BE ,垂足为N ,则∠FNE=90°,则可得AD//FN ,则有∠DEF=∠EFN ,根据等腰三角形的性质可得∠BFE=2∠EFN ,继而得∠BFE=2∠DEF ,判断④错误.【详解】∵四边形ABCD 是平行四边形,∴AD=BC ,AB=CD ,AD//BC ,∵AB=2AD ,CD=2CF ,∴CF=CB ,∴∠CBF=∠CFB ,∵CD ∥AB ,∴∠CFB=∠ABF ,∴CBF ABF ∠=∠,故①正确;延长EF 交BC 的延长线与M ,∵AD//BC ,∴∠DEF=∠M ,又∵∠DFE=∠CFM ,DF=CF ,∴△DFE 与△CFM(AAS),∴EF=FM=12EM ,∴∠AEB=90°,∵在平行四边形ABCD 中,AD ∥BC ,∴∠CBE=∠AEB=90°,∴BF=12EM , ∴BF=EF ,故②正确;∵EF=FM ,∴S △BEF =S △BMF ,∵△DFE ≌△CFM ,∴S △DFE =S △CFM ,∴S △EBF =S △BMF =S △EDF +S △FBC ,∴2EFB S S ∆=四边形DEBC ,故③正确;过点F 作FN ⊥BE ,垂足为N ,则∠FNE=90°,∴∠AEB=∠FEN ,∴AD//EF ,∴∠DEF=∠EFN ,又∵EF=FB ,∴∠BFE=2∠EFN ,∴∠BFE=2∠DEF ,故④错误,所以正确的有3个,故选C.【点睛】本题考查了平行四边形的性质,直角三角形斜边中线的性质,等腰三角形的判断与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.9.B解析:B【分析】由折叠的性质可得∠DCA =∠ACF ,由平行线的性质可得∠DCA =∠CAB =∠ACF ,可得FA =FC ,设BF =x ,在Rt △BCF 中,根据CF 2=BC 2+BF 2,可得方程(8﹣x )2=x 2+42,可求BF =3,AF =5,即可求解.【详解】解:设BF =x ,∵将矩形沿AC折叠,∴∠DCA=∠ACF,∵四边形ABCD是矩形,∴CD∥AB,∴∠DCA=∠CAB=∠ACF,∴FA=FC=8﹣x,在Rt△BCF中,∵CF2=BC2+BF2,∴(8﹣x)2=x2+42,∴x=3,∴BF=3,∴AF=5,∴AF:BF的值为53,故选:B.【点睛】本题考查矩形的性质、翻折变换、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.B解析:B【分析】根据菱形的性质,利用SAS证明即可判断①;根据△ABF≌△CAE得到∠BAF=∠ACE,再利用外角的性质以及菱形内角度数即可判断②;通过说明∠CAH≠∠DAO,判断△ADO≌△ACH不成立,可判断③;再利用菱形边长即可求出菱形面积,可判断④.【详解】解:∵在菱形ABCD中,AB=AC=1,∴△ABC为等边三角形,∴∠B=∠CAE=60°,又∵AE=BF,∴△ABF≌△CAE(SAS),故①正确;∴∠BAF=∠ACE,∴∠FHC=∠ACE+∠HAC=∠BAF+∠HAC=60°,故②正确;∵∠B=∠CAE=60°,则在△ADO和△ACH中,∠OAD=60°=∠CAB,∴∠CAH≠60°,即∠CAH≠∠DAO,∴△ADO≌△ACH不成立,故③错误;∵AB=AC=1,过点A作AG⊥BC,垂足为G,∴∠BAG=30°,BG=12,∴AG=22AB BG -=32, ∴菱形ABCD 的面积为:BC AG ⨯=31⨯=3,故④错误; 故正确的结论有2个,故选B.【点睛】本题考查了全等三角形判定和性质,菱形的性质和面积,等边三角形的判定和性质,外角的性质,解题的关键是利用菱形的性质证明全等. 二、填空题11.3013≤AM<6 【分析】 由勾股定理得BC=13从而得到点A 到BC 的距离, M 为EF 中点,所以AM=12EF ,继而求得AM 的范围.【详解】 因为∠BAC=90°,AB=5,AC=12,所以由勾股定理得BC=13,则点A 到BC 的距离为AC 512BC 13AB ⨯⨯==6013, 所以AM 的最小值为6013÷2=3013, 因为M 为EF 中点,所以AM=12EF , 当E 越接近A ,F 越接近C 时,EF 越大,所以EF <AC ,则AM <6,所以3013≤AM<6, 故答案为3013≤AM<6. 12.24【分析】由菱形的性质可得OD=OB,∠COD=90°,由直角三角形的斜边中线等于斜边的一半,可得OH=12BD=OB,可得∠OHB=∠OBH,由余角的性质可得∠DHO=∠DCO,即可求解.【详解】【解答】解:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∠DAB=∠DCB=48°,∵DH⊥AB,∴OH=12BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO=12∠DCB=24°,故答案为:24.【点睛】本题考查了菱形的性质,直角三角形斜边中线的性质,余角的性质,是几何综合题,判断出OH是BD的一半,和∠DHO=∠DCO是解决本题的关键.13.3+35.【分析】取AB的中点M,连接DQ,QM,DM.证明QM=QK,QG=DQ,求出DQ+QM的最小值即可解决问题.【详解】取AB的中点M,连接DQ,QM,DM.∵四边形ABCD是正方形,∴AD=AB=6,∠DAM=∠ADG=90°,∵AM=BM=3,∴DM222263AB AM+=+5,∵GK=HK,AB,GH关于EF对称,∴QM=QK,∵∠ADG=90°,AQ=QG,∴DQ=AQ=QG,∵△QGK的周长=GK+QG+QJ=3+DQ+QM.又∵DQ+QM≥DM,∴DQ+QM≥35,∴△QGK的周长的最小值为3+35,故答案为3+35.【点睛】本题考查了折叠的性质、正方形的性质、勾股定理、最值问题,解题的关键是取AB的中点M,确定QG+QK=QD+QM,属于中考常考题型.14.①②③④【分析】根据正方形的性质和SAS可证明△ABG≌△AEC,然后根据全等三角形的性质即可判断①;设BG、CE相交于点N,AC、BG相交于点K,如图1,根据全等三角形对应角相等可得∠ACE=∠AGB,然后根据三角形的内角和定理可得∠CNG=∠CAG=90°,于是可判断②;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,如图2,根据余角的性质即可判断④;利用AAS即可证明△ABH≌△EAP,可得EP=AH,同理可证GQ=AH,从而得到EP =GQ,再利用AAS可证明△EPM≌△GQM,可得EM=GM,从而可判断③,于是可得答案.【详解】解:在正方形ABDE和ACFG中,AB=AE,AC=AG,∠BAE=∠CAG=90°,∴∠BAE+∠BAC=∠CAG+∠BAC,即∠CAE=∠BAG,∴△ABG≌△AEC(SAS),∴BG=CE,故①正确;设BG、CE相交于点N,AC、BG相交于点K,如图1,∵△ABG≌△AEC,∴∠ACE=∠AGB,∵∠AKG=∠NKC,∴∠CNG=∠CAG=90°,∴BG⊥CE,故②正确;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,如图2,∵AH ⊥BC ,∴∠ABH +∠BAH =90°,∵∠BAE =90°,∴∠EAP +∠BAH =90°,∴∠ABH =∠EAP ,即∠EAM =∠ABC ,故④正确;∵∠AHB =∠P =90°,AB =AE ,∴△ABH ≌△EAP (AAS ),∴EP =AH ,同理可得GQ =AH ,∴EP =GQ ,∵在△EPM 和△GQM 中,90P MQG EMP GMQ EP GQ ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△EPM ≌△GQM (AAS ),∴EM =GM ,∴AM 是△AEG 的中线,故③正确.综上所述,①②③④结论都正确.故答案为:①②③④.【点睛】本题考查了正方形的性质、三角形的内角和定理以及全等三角形的判定和性质,作辅助线构造出全等三角形是难点,熟练掌握全等三角形的判定和性质是关键.15.83或4433 【分析】 连接AC 交BD 于O ,由菱形的性质可得AB=BC=4,∠ABD=30°,AC ⊥BD ,BO=DO ,AO=CO ,可证四边形BEGF 是菱形,可得∠ABG=30°,可得点B ,点G ,点D 三点共线,由直角三角形性质可求3AC=4,分两种情况讨论,利用等腰三角形的性质可求解.【详解】如图,连接AC 交BD 于O ,∵菱形ABCD 的边长是4,∠ABC=60°,∴AB=BC=4,∠ABD=30°,AC ⊥BD ,BO=DO ,AO=CO ,∵EG ∥BC ,FG ∥AB ,∴四边形BEGF 是平行四边形,又∵BE=BF ,∴四边形BEGF 是菱形,∴∠ABG=30°,∴点B ,点G ,点D 三点共线,∵AC ⊥BD ,∠ABD=30°,∴AO=12AB=2,22224223AB AO --= ∴BD=3AC=4,同理可求3BE ,即3, 若AD=DG'=4时,∴BG'=BD-DG'=434,∴BE'4344343-==; 若AG''=G''D 时,过点G''作G''H ⊥AD 于H ,∴AH=HD=2,∵∠ADB=30°,G''H ⊥AD ,∴DG''=2HG'',∵222HD HG''DG''+=,解得:HG''33=,DG''=2HG''433=, ∴BG''=BD-DG''=438343-= ∴BE''=83, 综上所述:BE 为83或434- 【点睛】本题考查了菱形的性质,含30度角的直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.16.2或14【分析】利用当AB=10cm,AD=6cm,由于平行四边形的两组对边互相平行,又AE平分∠BAD,由此可以推出所以∠BAE=∠DAE,则DE=AD=6cm;同理可得:CF=CB=6cm,而EF=CF+DE-DC,由此可以求出EF长;同理可得:当AD=10cm,AB=6cm时,可以求出EF长【详解】解:如图1,当AB=10cm,AD=6cm∵AE平分∠BAD∴∠BAE=∠DAE,又∵AD∥CB∴∠EAB=∠DEA,∴∠DAE=∠AED,则AD=DE=6cm同理可得:CF=CB=6cm∵EF=DE+CF-DC=6+6-10=2(cm)如图2,当AD=10cm,AB=6cm,∵AE平分∠BAD,∴∠BAE=∠DAE又∵AD∥CB∴∠EAB=∠DEA,∴∠DAE=∠AED则AD=DE=10cm同理可得,CF=CB=10cm EF=DE+CF-DC=10+10-6=14(cm)故答案为:2或14.图1 图2【点睛】本题主要考查了角平分线的定义、平行四边形的性质、平行线的性质等知识,关键是平行四边形的不同可能性进行分类讨论.17.①②④.【分析】利用折叠性质得∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,则可得到∠EBG=12∠ABC,于是可对①进行判断;在Rt△ABF中利用勾股定理计算出AF=8,则DF=AD-AF=2,设AG=x,则GH=x,GF=8-x,HF=BF-BH=4,利用勾股定理得到x2+42=(8-x)2,解得x=3,所以AG=3,GF=5,于是可对②④进行判断;接着证明△ABF∽△DFE,利用相似比得到43DE AFDF AB==,而623ABAG==,所以AB DEAG DF≠,所以△DEF与△ABG不相似,于是可对③进行判断.【详解】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,∴∠EBG=∠EBF+∠FBG=12∠CBF+12∠ABF=12∠ABC=45°,所以①正确;在Rt△ABF中,AF=8,∴DF=AD﹣AF=10﹣8=2,设AG=x,则GH=x,GF=8﹣x,HF=BF﹣BH=10﹣6=4,在Rt△GFH中,∵GH2+HF2=GF2,∴x2+42=(8﹣x)2,解得x=3,∴GF=5,∴AG+DF=FG=5,所以④正确;∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠BFE=∠C=90°,∴∠EFD+∠AFB=90°,而∠AFB+∠ABF=90°,∴∠ABF=∠EFD,∴△ABF∽△DFE,∴ABDF=AFDE,∴DEDF=AFAB=86=43,而ABAG=63=2,∴ABAG≠DEDF,∴△DEF与△ABG不相似;所以③错误.∵S△ABG=12×6×3=9,S△GHF=12×3×4=6,∴S△ABG=32S△FGH,所以②正确.故答案是:①②④.【点睛】本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用;在利用相似三角形的性质时,主要利用相似比计算线段的长.也考查了折叠和矩形的性质.18.207【分析】根据折叠的性质可得出DC=DE 、CP=EP ,由“AAS”可证△OEF ≌△OBP ,可得出OE=OB 、EF=BP ,设EF=x ,则BP=x 、DF=5-x 、BF=PC=3-x ,进而可得出AF=2+x ,在Rt △DAF 中,利用勾股定理可求出x 的值,即可得AF 的长.【详解】解:∵将△CDP 沿DP 折叠,点C 落在点E 处,∴DC =DE =5,CP =EP .在△OEF 和△OBP 中,90EOF BOP B E OP OF ∠=∠⎧⎪∠=∠=⎨⎪=⎩, ∴△OEF ≌△OBP (AAS ),∴OE =OB ,EF =BP .设EF =x ,则BP =x ,DF =DE -EF =5-x ,又∵BF =OB +OF =OE +OP =PE =PC ,PC =BC -BP =3-x ,∴AF =AB -BF =2+x .在Rt △DAF 中,AF 2+AD 2=DF 2,∴(2+x )2+32=(5-x )2,∴x =67∴AF =2+67=207故答案为:207 【点睛】本题考查了翻折变换,矩形的性质,全等三角形的判定与性质以及勾股定理的应用,解题时常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.19.①②③⑤【分析】根据三角形中位线定理得到EF=12AB,EF∥AB,根据直角三角形的性质得到DF=12AC,根据三角形内角和定理、勾股定理计算即可判断.【详解】∵E,F分别是BC,AC的中点,∴EF=12AB,EF∥AB,∵∠ADC=90°,∠CAD=45°,∴∠ACD=45°,∴∠BAC=∠ACD,∴AB∥CD,∴EF∥CD,故①正确;∵∠ADC=90°,F是AC的中点,∴DF=CF=12 AC,∵AB=AC,EF=12 AB,∴EF=DF,故②正确;∵∠CAD=∠ACD=45°,点F是AC中点,∴△ACD是等腰直角三角形,DF⊥AC,∠FDC=45°,∴∠DFC=90°,∵EF//AB,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°,∴∠EFD=∠EFC+∠DFC=135°,∴∠FED=∠FDE=22.5°,∵∠FDC=45°,∴∠CDE=∠FDC-∠FDE=22.5°,∴∠FDE=∠CDE,∴DE平分∠FDC,故③正确;∵AB=AC,∠CAB=45°,∴∠B=∠ACB=67.5°,∴∠DEC=∠FEC﹣∠FED=45°,故④错误;∵△ACD是等腰直角三角形,∴AC2=2CD2,∴CD,∵AB=AC,∴AB CD,故⑤正确;故答案为:①②③⑤.【点睛】本题考查的是三角形中位线定理,等腰三角形的判定与性质,直角三角形的性质,平行线的性质,勾股定理等知识.掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.20.102【分析】根据平行四边形的性质、角平分线的性质证明AD=DE=3,再根据BAD BEC ∠=∠证明BC=BE ,由此根据三角形的三线合一及勾股定理求出BF ,即可求出平行四边形的面积.【详解】过点B 作BF CD ⊥于点F ,如图所示.∵AE 是BAD ∠的平分线,∴DAE BAE ∠=∠.∵四边形ABCD 是平行四边形,∴53CD AB BC AD BAD BCE AB CD ====∠=∠,,,∥, ∴BAE DEA ∠=∠,∴DAE DEA ∠=∠,∴3DE AD ==,∴2CE CD DE =-=.∵BAD BEC ∠=∠,∴BCE BEC ∠=∠,∴BC=BE, ∴112CF EF CE ===, ∴22223122BF BC CF =-=-=∴平行四边形ABCD 的面积为225102BF CD ⋅==.故答案为:2【点睛】此题考查平行四边形的性质:对边平行且相等,对角相等,等腰三角形的等角对等边的性质、三线合一的性质,勾股定理.三、解答题21.(1)四边形BECD 是菱形,理由见解析;(2)45︒【分析】(1)先证明//AC DE ,得出四边形BECD 是平行四边形,再“根据直角三角形斜边上的中线等于斜边的一半”证出CD BD =,得出四边形BECD 是菱形;(2)先求出45ABC ∠=︒,再根据菱形的性质求出90DBE ∠=︒,即可证出结论.【详解】解:当点D 是AB 的中点时,四边形BECD 是菱形;理由如下:∵DE BC ⊥,90DFE ∴∠=︒,∵90ACB ∠=︒,ACB DFB ∴∠=∠,//AC DE ∴,∵//MN AB ,即//CE AD ,∴四边形ADEC 是平行四边形,CE AD ∴=; D 为AB 中点,AD BD ∴=,BD CE ∴=,∵//BD CE ,∴四边形BECD 是平行四边形,∵90ACB ∠=︒,D 为AB 中点,12CD AB BD ∴==, ∴四边形BECD 是菱形;(2)当45A ∠=︒时,四边形BECD 是正方形;理由如下:∵90ACB ∠=︒,45A ∠=︒,45ABC ∴∠=︒,∵四边形BECD 是菱形,12ABC DBE ∴∠=∠, 90DBE ∴∠=︒,∴四边形BECD 是正方形.故答案为:45︒.【点睛】本题考查了平行四边形的判定、正方形的判定以及直角三角形的性质;根据题意证明线段相等和直角是解决问题的关键.22.(1)不会,理由见解析;(2)①见解析;②²²20m n n =+-【分析】(1)根据BEF BEA ≅得到BF BA =,根据三角形的三边关系得到BC BF BA >=,与已知矛盾;(2)①根据90BFC BFE ∠=∠=︒、DEC FCB ∠=∠和BF=CD ,利用AAS 证得BCF CED ≅,根据全等三角形的性质即可证明;②设1AD =,则可表示出AE 和AB ,然后根据等角对等边证得CE=CB ,然后在Rt CDE ∆中应用勾股定理即可求解.【详解】(1) 由折叠知BEF BEA ≅ ,所以90BF BA BFE A =∠=∠=︒, .若点F 在CE 上,则90BFC ∠=︒,BC BF BA >=,与AB AD =矛盾,所以点F 不会落在CE 上.(2)①因为()01AB m m AD=<<,则AB AD < , 因为点F 落在CE 上,所以90BFC BFE ∠=∠=︒ ,所以BF BA CD == .因为//AD BC ,所以DEC FCB ∠=∠ ,所以BCF CED ≅ ,所以CF DE =.②若AE n AD=,则AE nAD =. 设1AD =,则AE n AB m ==,.因为//AD BC ,所以BEA EBC ∠=∠ .因为BEF BEA ∠=∠ ,所以EBC BEC ∠=∠ ,所以1CE CB AD === .在Rt CDE ∆中,11DE n CE CD m ===一,, ,所以22211()n m -+= ,所以²²20m n n =+-.故答案为(1)不会,理由见解析;(2)①见解析;②²²20m n n =+-.【点睛】本题考查了三角形全等的性质和判定,和等边对等角,此题属于矩形的折叠问题类综合题,熟练掌握三角形全等的性质,和做出示意图是本题的关键.23.(1)①见解析;②AG FB AE =+,证明见解析;(2)21n ;(3)241n -【分析】(1)①证明△ADE ≌△BAF (ASA )可得结论.②结论:AG=BF+AE .如图2中,过点A 作AK ⊥HD 交BC 于点K ,证明AE=BK ,AG=GK ,即可解决问题.(2)如图3中,设AB=a ,AD=na ,求出ME 的最大值,NF 的最小值即可解决问题. (3)如图4中,延长DE 交CB 的延长线于H .设AB=2k ,则AD=BC=2kn ,求出CF ,BF 即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD 是矩形,n=1,∴AD=AB ,∴四边形ABCD 是正方形,∴∠DAB=∠B=90°,∵AF ⊥DE ,∴∠ADE+∠DAF=90°,∠DAF+∠BAF=90°,∴∠ADE=∠BAF ,∴△ADE ≌△BAF (ASA ),∴AE=BF ;②结论:AG=BF+AE .理由:如图2中,过点A 作AK ⊥HD 交BC 于点K ,由(1)可知AE=BK ,∵AH=AD ,AK ⊥HD ,∴∠HAK=∠DAK ,∵AD ∥BC ,∴∠DAK=∠AKG ,∴∠HAK=∠AKG ,∴AG=GK ,∵GK=GB+BK=BF+AE ,∴AG=BF+AE ;(2)如图3中,设AB=a ,AD=na ,当ME 的值最大时,NF 的值最小时,ME NF 的值最大, 当ME 是矩形ABCD 的对角线时,ME 的值最大,最大值=()222na 1a n +=+•a ,当NF ⊥AD 时,NF 的值最小,最小值=a ,∴ME NF 的最大值=21a n +⋅=21n +, 故答案为:21n +;(3)如图4中,延长DE 交CB 的延长线于H .设AB=2k ,则AD=BC=2kn ,∵AD ∥BH ,∴∠ADE=∠H ,∵AE=EB=k ,∠AED=∠BEH ,∴△AED ≌△BEH (ASA ),∴AD=BH=2kn ,∴CH=4kn ,∵∠ADE=∠EDF ,∠ADE=∠H ,∴∠H=∠EDF ,∴FD=FH ,设DF=FH=x ,在Rt △DCF 中,∵CD 2+CF 2=DF 2,∴(2k)2+(4kn-x)2=x 2, ∴2142n x k n+=⋅, ∴221441422n n CF kn k k n n +-=-⋅=⋅,241222n k BF kn k n n-=-⋅=, ∴22412412n k CF n n k BFn-⋅==-, 故答案为:241n -.【点睛】本题考查了矩形的性质,正方形的性质,全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数解决问题.24.(1)①120°;② BC =CD +CF ;(2)不成立,见解析;(3)8,【分析】(1)①根据菱形的性质以及等边三角形的性质,推出△ACF ≌△ABD ,根据全等三角形的性质即可得到结论;②根据全等三角形的性质得到CF=BD ,再根据BD+CD=BC ,即可得出CF+CD=BC ;(2)依据△ABD ≌△ACF ,即可得到∠ACF+∠BAC=180°,进而得到AB ∥CF ;依据△ABD ≌△ACF 可得BD=CF ,依据CD-BD=BC ,即可得出CD-CF=BC ;(3)依据≅△△ADB AFC ,即可得到8==+=CF BD BC CD ,利用ABC ∆是等边三角形,AH BC ⊥,可得132===BH HC BC ,即可得出HD 的长度,利用勾股定理即可求出AD 的长度,即可得出结论.【详解】解:(1) 在等边△ABC 中,AB=AC ,∠BAC=∠ACB=∠ABC=60°∴∠BAD+∠DAC=60°在菱形ADEF 中AD=AF∵∠DAF=∠DAC+∠FAC=60°∴∠CAF=∠DAB又∵AC=AB ,AF=AD∴△ACF ≌△ABD。
四边形-2017年中考数学试题分项版解析汇编
四边形-2017年中考数学试题分项版解析汇编专题10 四边形一、选择题1.(2017浙江衢州第8题)如图,在直角坐标系中,点A 在函数)0(4>=x xy 的图象上,AB ⊥x 轴于点B ,AB 的垂直平分线与y 轴交于点C ,与函数)0(4>=x xy 的图象交于点D 。
连结AC ,CB ,BD ,DA ,则四边形ACBD 的面积等于( )A. 2B. 32C. 4D. 342.(2017浙江衢州第9题)如图,矩形纸片ABCD 中,AB=4,BC=6,将△ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A. 53B. 35C. 37 D. 453.(2017山东德州第11题)如图放置的两个正方形,大正方形ABCD 边长为a ,小正方形CEFG 边长为b(a >b),M 在边BC 上,且BM=b ,连AM ,MF ,MF 交CG 于点P ,将△ABM 绕点A 旋转至△ADN ,将△MEF 绕点F 旋转至△NGF 。
给出以下五种结论:①∠MAD=∠AND ;②CP=2-b b a;③ΔABM ≌ΔNGF ;④S 四边形AMFN =a 2+b 2;⑤A ,M ,P ,D 四点共线其中正确的个数是( )A .2B .3C .4D .54.(2017浙江宁波第11题)如图,四边形ABCD 是边长为6的正方形,点E 在边AB 上,4BE =,过点E 作EF BC ∥,分别交BD ,CD 于G ,F 两点,若M ,N 分别是DG ,CE 的中点,则MN 的长为( )A.3B.D.45.(2017重庆A 卷第9题)如图,矩形ABCD 的边AB=1,BE 平分∠ABC ,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 为半径画弧,交BC 于点F ,则图中阴影部分的面积是( )A .24π-B .324π-C .28π-D .328π- 6.(2017广西贵港第12题)如图,在正方形ABCD 中,O 是对角线AC 与BD 的交点,M 是BC 边上的动点(点M 不与,B C 重合),,CN DM CN ⊥与AB 交于点N ,连接,,OM ON MN .下列五个结论:①CNB DMC ∆≅∆ ;②CON DOM ∆≅∆ ;③OMN OAD ∆≅∆ ;④222AN CM MN += ;⑤若2AB =,则OMN S ∆的最小值是12,其中正确结论的个数是 ( )A .2B .3 C. 4D .57.(2017贵州安顺第7题)如图,矩形纸片ABCD 中,AD=4cm ,把纸片沿直线AC 折叠,点B 落在E 处,AE 交DC 于点O ,若AO=5cm ,则AB 的长为( )A .6cmB .7cmC .8cmD .9cm8.(2017湖南怀化第9题)如图,在矩形ABCD 中, 对角线AC ,BD 相交于点O ,60AOB =∠°,6cm AC =,则AB 的长是( )A.3cmB.6cmC.10cmD.12cm9.(2017甘肃兰州第 8题)如图,矩形ABCD 的对角线AC 与BD 相交于点D ,30ADB =∠°,4AB =,则OC =( )A.5B.4C.3.5D.310. (2017甘肃兰州第14题)如图,在正方形ABCD 和正方形DEFG 中,点G 在CD 上,2DE =,将正方形DEFG 绕点D 顺时针旋转60°,得到正方形'''DE F G ,此时点'G 在AC 上,连接'CE ,则''CE CG +=( )A.111.(2017贵州黔东南州第8题)如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC 的度数为()A.60°B.67.5°C.75°D.54°12.(2017四川泸州第7题)下列命题是真命题的是()A.四边都是相等的四边形是矩形 B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形 D.对角线相等的平行四边形是矩形13. (2017四川泸州第11题)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE 的值是()A14 C. 13D.314.(2017四川宜宾第7题)如图,在矩形ABCD中BC=8,CD=6,将△ABE沿BE折叠,使点A恰好落在对角线BD 上F处,则DE的长是()A.3 B.245C.5 D.891615.(2017浙江嘉兴第9题)一张矩形纸片ABCD,已知3AB=,2AD=,小明按所给图步骤折叠纸片,则线段DG长为()AB.C.1D.2二、填空题1.(2017浙江宁波第18题)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为.2.(2017重庆A卷第18题)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.3.(2017贵州安顺第17题)如图所示,正方形ABCD的边长为6,△ABE 是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为.4.(2017湖北武汉第13题)如图,在ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE,若AE=AB,则∠EBC的度数为.5.(2017湖南怀化第13题)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E是AB的中点,5cmOE=,则AD的长为 cm.6. (2017湖南怀化第16题)如图,在菱形ABCD中,AB=,点P是这个菱形内部或边上的一点,若∠°,10cm120ABC=以,,P B C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为cm.7.(2017甘肃兰州第19题)在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,要使四边形ABCD 是正方形,还需添加一组条件。
中考数学专题复习单元达标检测真题第五章(含答案)
单元达标测试(五)(第五章)(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.在八边形内任取一点,把这个点与八边形各顶点分别连接可得到几个三角形DA.5个B.6个C.7个D.8个2.一个多边形除了一个内角外,其余各内角之和为2 570°,则这个内角的度数为B A.120°B.130°C.135°D.150°3.(2017·怀化)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AC=6 cm,则AB的长是AA.3 cm B.6 cm C.10 cm D.12 cm,第3题图),第4题图),第5题图),第6题图)4.(2017·河北)求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是BA.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②5.(2017·江西)如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA 上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是DA.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形6.(2017·台湾)已知坐标平面上有一长方形ABCD,其坐标分别为A(0,0),B(2,0),C(2,1),D(0,1),今固定B点并将此长方形依顺时针方向旋转,如图所示.若旋转后C 点的坐标为(3,0),则旋转后D点的坐标为DA.(2,2) B.(2,3) C.(3,3) D.(3,2)7.(2017·黔东南州)如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC 交BD于点O,则∠DOC的度数为AA.60°B.67.5°C.75°D.54°8.(2017·贵阳)如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD ,BC 于点E ,F ,连接CE ,若△CED 的周长为6,则▱ABCD 的周长为BA .6B .12C .18D .24,第7题图) ,第8题图) ,第9题图) ,第10题图)9.(2017·呼和浩特)如图,四边形ABCD 是边长为1的正方形,E ,F 为BD 所在直线上的两点,若AE =5,∠EAF =135°,则下列结论正确的是CA .DE =1B .tan ∠AFO =13C .AF =102D .四边形AFCE 的面积为9410.如图,在△ABC 中,∠ACB =90°,D 是BC 的中点,DE ⊥BC ,CE ∥AD ,若AC =2,∠ADC =30°,①四边形ACED 是平行四边形;②△BCE 是等腰三角形;③四边形ACEB 的周长是10+213;④四边形ACEB 的面积是16.则以上结论正确的个数是CA .1个B .2个C .3个D .4个二、填空题(每小题3分,共24分)11.如图,等腰梯形ABCD 中,AD ∥BC ,∠B =60°,则∠D =120°.,第11题图) ,第12题图),第14题图)12.(2017·怀化)如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,点E 是AB 的中点,OE =5 cm ,则AD 的长是10cm .13.(2017·菏泽)菱形ABCD 中,∠A =60°,其周长为24 cm ,则菱形的面积为183cm 2.14.(2017·大庆)如图,点M ,N 在半圆的直径AB 上,点P ,Q 在AB ︵上,四边形MNPQ为正方形.若半圆的半径为5,则正方形的边长为2.15.如图,分别以Rt △ABC 的直角边AC 及斜边AB 为边向外作等边△ACD 、等边△ABE ,EF ⊥AB ,垂足为F ,连接DF ,当AC AB =32时,四边形ADFE 是平行四边形.,第15题图) ,第17题图),第18题图)16.(2016·衢州)已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x ,1),若以O ,A ,B ,C 为顶点的四边形是平行四边形,则x =4或-2.17.(2017·咸宁)如图,边长为4的正六边形ABCDEF 的中心与坐标原点O 重合,AF ∥x 轴,将正六边形ABCDEF 绕原点O 顺时针旋转n 次,每次旋转60°.当n =2 017时,顶点A 的坐标为(2,23).18.(2017·扬州)如图,把等边△ABC 沿着DE 折叠,使点A 恰好落在BC 边上的点P 处,且DP ⊥BC ,若BP =4 cm ,则EC =(2+23)cm .三、解答题(共66分)19.(8分)(2017·大连)如图,在▱ABCD 中,BE ⊥AC ,垂足E 在CA 的延长线上,DF ⊥AC ,垂足F 在AC 的延长线上,求证:AE =CF.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD.∴∠BAC =∠DCA.∴180°-∠BAC =180°-∠DCA.∴∠EAB =∠FCD.∵BE ⊥AC ,DF ⊥AC ,∴∠BEA =∠DFC =90°.易证△BEA ≌△DFC.∴AE =CF.20.(8分)(2017·漳州)如图,在五边形ABCDE 中,AP 平分∠EAB ,BP 平分∠ABC.(1)五边形ABCDE 的内角和为540度;(2)若∠C =100°,∠D =75°,∠E =135°,求∠P 的度数.解:∵在五边形ABCDE 中,∠EAB +∠ABC +∠C +∠D +∠E =540°,∠C =100°,∠D =75°,∠E =135°,∴∠EAB +∠ABC =230°.∵AP 平分∠EAB ,BP 平分∠ABC ,∴∠PAB =12∠EAB ,∠PBA =12∠ABC.∴∠PAB +∠PBA =115°.∴∠P =180°-(∠PAB +∠PBA)=65°.21.(8分)(2017·张家界)如图,在平行四边形ABCD 中,边AB 的垂直平分线交AD 于点E ,交CB 的延长线于点F ,连接AF ,BE.(1)求证:△AGE ≌△BGF ;(2)试判断四边形AFBE 的形状,并说明理由.解:(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC.∴∠AEG =∠BFG .∵EF 垂直平分AB ,∴AG =BG .在△AGE 和△BGF 中,⎩⎪⎨⎪⎧∠AEG =∠BFG ∠AGE =∠BGF AG =BG,∴△AGE ≌△BGF(AAS ). (2)四边形AFBE 是菱形,理由如下:∵△AGE ≌△BGF ,∴AE =BF.∵AD ∥BC ,∴四边形AFBE 是平行四边形.又∵EF ⊥AB ,∴四边形AFBE 是菱形.22.(10分)(2017·日照)如图,已知BA =AE =DC ,AD =EC ,CE ⊥AE ,垂足为E.(1)求证:△DCA ≌△EAC ;(2)只需添加一个条件,即AD =BC(答案不唯一),可使四边形ABCD 为矩形.请加以证明.解:(1)证明:在△DCA 和△EAC 中,∵⎩⎪⎨⎪⎧DC =EA AD =CE AC =CA,∴△DCA ≌△EAC(SSS ). (2)添加AD =BC ,可使四边形ABCD 为矩形.理由如下:∵AB =DC ,AD =BC ,∴四边形ABCD 是平行四边形.∵CE ⊥AE ,∴∠E =90°.由(1)得:△DCA ≌△EAC ,∴∠D =∠E =90°.∴四边形ABCD 为矩形;故答案为:AD =BC(答案不唯一).23.(10分)(2017·镇江)如图,点B ,E 分别在AC ,DF 上,AF 分别交BD ,CE 于点M ,N ,∠A =∠F ,∠1=∠2.(1)求证:四边形BCED 是平行四边形;(2)已知DE =2,连接BN ,若BN 平分∠DBC ,求CN 的长.解:(1)证明:∵∠A =∠F ,∴DE ∥BC.∵∠1=∠2,且∠1=∠DMF ,∴∠DMF =∠2.∴DB ∥EC.∴四边形BCED 为平行四边形.(2)∵BN 平分∠DBC ,∴∠DBN =∠CBN.∵EC ∥DB ,∴∠CNB =∠DBN.∴∠CNB =∠CBN.∴CN =BC =DE =2.24.(10分)如图,正方形ABCD 的边长为6.菱形EFGH 的三个顶点E ,G ,H 分别在正方形ABCD 的边AB ,CD ,DA 上,且AH =2,连接CF.(1)当DG =2时,求证:菱形EFGH 为正方形;(2)设DG =x ,试用含x 的代数式表示△FCG 的面积.解:(1)证明:在△HDG 和△AHE 中,∵四边形ABCD 是正方形,∴∠D =∠A =90°.∵四边形EFGH 是菱形,∴HG =HE.∵DG =AH =2,∴Rt △HDG ≌Rt △EAH.∴∠DHG =∠AEH.∴∠DHG +∠AHE =90°.∴∠GHE =90°.∴菱形EFGH 为正方形.(2)过点F 作FM ⊥CD ,垂足为点M ,连接GE.∵CD ∥AB ,∴∠AEG =∠MGE.∵GF ∥HE ,∴∠HEG =∠FGE.∴∠AEH =∠FGM.又∵∠A =∠M =90°,HE =FG ,∴Rt △AHE ≌Rt △MFG .∴MF =2.∵DG =x ,∴CG =6-x.∴S △FCG =12CG·FM =6-x.25.(12分)(2017·十堰)已知O 为直线MN 上一点,OP ⊥MN ,在等腰Rt △ABO 中,∠BAO =90°,AC ∥OP 交OM 于点C ,D 为OB 的中点,DE ⊥DC 交MN 于点E.(1)如图①,若点B 在OP 上,则①AC =OE(填“<”,“=”或“>”);②线段CA ,CO ,CD 满足的等量关系式是AC 2+CO 2=CD 2;(2)将图①中的等腰Rt △ABO 绕O 点顺时针旋转α(0°<α<45°),如图②,那么(1)中的结论②是否成立?请说明理由;(3)将图①中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在备用图中画出图形,并直接写出线段CA,CO,CD满足的等量关系式CO-CA=2CD.解:(2)如图②,(1)中的结论②不成立,理由是:连接AD,∵AB=AO,∠BAO=90°,D为OB的中点,∴AD=BD=DO,AD⊥OB.∴∠ADO=90°.∵∠CDE=90°,∴∠ADO =∠CDE.∴∠ADO-∠CDO=∠CDE-∠CDO,即∠ADC=∠EDO.∵∠ADO=∠ACO=90°,∴∠ADO+∠ACO=180°,∴∠CAD+∠DOC=180°.又∵∠DOC+∠DOE=180°,∴∠CAD=∠DOE.易证△ACD≌△OED.∴AC=OE,CD=DE.又∵∠CDE=90°,∴△CDE为等腰直角三角形,∴OE+OC=2CD,∴CA+CO=2CD,∴CA2+CO2+2CA·CO=2CD2.若(1)中的结论②成立,则有2CA·CO=CA2+CO2,即AC=CO.又∵0°<α<45°,∴AC≠CO.∴(1)中的结论②不成立.(3)如图③,结论:OC-CA=2CD,理由是:连接AD,则AD=OD,同理:∠ADC =∠EDO.∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC.∵∠DAB=∠AOD=45°,∴∠DAB-∠CAB=∠AOD-∠AOC,即∠DAC=∠DOE.∴△ACD≌△OED.∴AC=OE,CD=DE.∴△CDE是等腰直角三角形.∴CE2=2CD2.∴(OC-OE)2=(OC-AC)2=2CD2.∴OC-AC=2CD,故答案为:OC-AC=2CD.。
中考数学总复习单元测试五四边形含考点分类汇编详解.doc
2019-2020 年中考数学总复习单元测试(五 )四边形含考点分类汇编详解一、选择题 (每小题 3 分,共 21 分 )1. (2017 乌·鲁木齐 )如果 n 边形每一个内角等于与它相邻外角的 2 倍,则 n 的值是 ( C ) A. 4B. 5C. 6D. 72. (2017 ·安广 )下列说法:①四边相等的四边形一定是菱形;②顺次连接矩形各边中点形成的四边形一定是正方形;③对角线相等的四边形一定是矩形;④,一定能把平行四边形分成面积相等的两部分.经过平行四边形对角线交点的直线其中正确的有( C )A. 4 个B.3 个C. 2 个 D .1 个3.(2016 宁·夏 )菱形 ABCD 的对角线 AC ,BD 相交于点 O,E,F 分别是 AD , CD 边上的中点,连接 EF.若 EF= 2, BD = 2,则菱形 ABCD 的面积为 ( A )A. 2 2 B. 2 C.6 2 D .8 2第 3 题图第 4 题图4.如图,在平行四边形 ABCD 中,E 是 CD 上的一点,DE ∶EC=2∶ 3,连接 AE 、BE、BD ,且 AE 、 BD 交于点 F,则 S△DEF∶S△EBF∶ S△ABF= ( D )A. 2∶ 5∶ 25 B. 4∶9∶ 25 C. 2∶3∶ 5D. 4∶ 10∶ 255. (2017 泸·州 )如图,在矩形 ABCD 中,点 E 是边 BC 的中点, AE ⊥ BD ,垂足为 F,则tan∠ BDE 的值是 ( A )2 1 1 2A. 4B.4C.3D. 3(导学号58824176)第 5 题图第 6 题图6. (2017 ·口模拟营 )如图,矩形 ABCD 的边长 AD = 3, AB =2, E 为 AB 的中点, F 在边BC 上,且 BF =2FC, AF 分别与 DE 、DB 相交于点 M , N,则 MN 的长为 ( B )2 2 9 23 24 2A. 5B. 20C. 4D. 57.如图,正方形 ABCD 中,点 E、F 分别在 BC 、CD 上,△ AEF 是等边三角形,连接AC 交 EF 于点 G,下列结论:①BE= DF ;②∠ DAF =15°;③ AC 垂直平分 EF;④BE+ DF = EF;⑤ S?CEF= 2S△ABE .其中正确结论有( A )A. 4 个B. 3 个C.2 个D. 1 个二、填空题 (每小题 3 分,共 15 分 )8. (2017 ·化绥 )一个多边形的内角和等于900°,则这个多边形是_7_边形.9.(2017 ·汉武 )如图,在 ?ABCD 中,∠D = 100°,∠ DAB 的平分线AE 交 DC 于点 E,连接 BE. 若 AE =AB ,则∠ EBC 的度数为 _30°.第 9 题图第 10 题图10.(2017 ·感孝 )如图,已知四边形ABCD 是菱形,AC = 24,BD = 10,DH ⊥ AB 于点 H ,50则线段 BH 的长为 _ _.(导学号58824177)1311. (2017 ·尔滨哈 ) 如图,在矩形 ABCD 中, M 为 BC 边上一点,连接 AM ,过点 D 作2 5DE ⊥AM ,垂足为 E.若 DE = DC= 1, AE = 2EM ,则 BM 的长为 _ 5 _.第11 题图第 12 题图12. (2017 贵·阳 )如图,在矩形纸片ABCD 中, AB =2, AD =3,点 E 是 AB 的中点,点F 是 AD 边上的一个动点,将△ AEF 沿 EF 所在直线翻折,得到△ A′EF,则 A′C的长的最小值是 _ 10- 1_.三、解答题 (本大题 4 小题,共 44 分 )DE13. (11并延长交分 )(2017 无·锡 )已知,如图,平行四边形的延长线于点 F,求证: AB =BF. ABABCD 中, E 是BC 边的中点,连接证明:∵ E 是 BC 的中点,∴CE =BE ,∵四边形 ABCD 是平行四边形,∴AB ∥ CD ,AB = CD ,∴∠ DCB =∠ FBE,∠DCB =∠ FBE ,在△ CED 和△BEF 中, CE= BC ,∠CED=∠ BEF,∴△ CED≌△ BEF(ASA),∴ CD=BF ,∴ AB = BF.14. (11 分 )(2017 云·南 )如图,△ ABC 是以 BC 为底的等腰三角形, AD 是边 BC 上的高,点 E, F 分别是 AB 、 AC 的中点.(1)求证:四边形AEDF 是菱形;(2)如果四边形AEDF 的周长为12,两条对角线的和等于7,求四边形AEDF 的面积.(导学号58824178)(1)证明:略;(2)解:如解图,连接 EF ,∵菱形 AEDF 的周长为12,∴ AE = 3,设EF= x,AD = y,则 x+ y=7,∴ x2+ 2xy + y2= 49,①2 2 2 1 2 1 2 2 2 2∵ AD ⊥ EF 于 O,∴ Rt△ AOE 中,AO + EO = AE ,∴ (2y) + (2x) = 3 ,即 x +y = 36,②13把②代入①,可得 2xy = 13,∴ xy=2,113∴S 菱形AEDF=2xy=4 .15. (11 分 )(2017 沈·阳 )如图,将 ?ABCD 的边 AB 延长到点 E,使 BE =AB ,连接 DE ,交边 BC 于点 F.(1)求证:△ BEF ≌△ CDF ;(2)连接 BD ,CE ,若∠ BFD = 2∠ A ,求证:四边形BECD 是矩形.证明: (1)∵四边形 ABCD 是平行四边形,∴AB =CD , AB ∥ CD ,∵ BE= AB ,∴ BE = CD,∵ AB ∥CD ,∴∠ BEF=∠ CDF ,∠ EBF =∠ DCF,∠BEF =∠ CDF ,在△ BEF 与△ CDF 中,∵BE = CD ,∴△ BEF≌△ CDF( ASA);∠EBF =∠ DCF ,(2)∵四边形 ABCD 是平行四边形,∴AB ∥CD , AB = CD ,∠ A =∠DCB ,∵ AB =BE ,∴ CD = EB,∴四边形 BECD 是平行四边形,∴BF= CF, EF= DF ,∵∠ BFD = 2∠ A ,∴∠ BFD = 2∠DCF ,∴∠ DCF=∠ FDC ,∴ DF= CF,∴ DE =BC,∴四边形 BECD 是矩形.16. (11 动,且不与点分)(2017A 和点海·南 )如图,四边形 ABCDD 重合,连接 CE,过点 C是边长为 1作 CF⊥ CE的正方形,点E 在交 AB 的延长线于点AD 边上运F, EF 交BC 于点 G.(1)求证:△ CDE ≌△ CBF ;(2)当 DE =12时,求 CG 的长;(3)连接 AG ,在点 E 运动过程中,四边形CEAG 能否为平行四边形?若能,求出此时DE 的长;若不能 ,说明理由.(1)证明: 在正方形 ABCD 中, DC =BC , ∠ D = ∠ ABC = ∠ DCB = 90°, ∴∠ CBF = 180°- ∠ABC = 90°, ∠DCE + ∠ECB = ∠ DCB = 90°,∵ CF ⊥ CE , ∴∠ ECF = 90°, ∴∠ BCF + ∠ ECB =∠ ECF = 90°, ∴∠ DCE = ∠ BCF ,∠ D = ∠ CBF ,在 △ CDE 和 △CBF 中, DC = BC ,∠ DCE = ∠ BCF ,∴△ CDE ≌△ CBF(ASA);(2)解: 在正方形 ABCD 中, AD ∥ BC ,∴△ GBF ∽△ EAF , ∴BGAE =BFAF ,1由 (1)知, △CDE ≌△ CBF , ∴ BF = DE =2,1∵正方形的边长为1, ∴ AF = AB +BF =3, AE = AD -DE = 1, ∴BG= 2, ∴ BG = 1, 221 3 6225∴CG = BC - BG = 6;(3)解: 不能.理由:若四边形 CEAG 是平行四边形 ,则必须满足 AE ∥ CG ,AE = CG , ∴AD - AE =BC -CG , ∴ DE = BG ,由 (1)知, △CDE ≌△ CBF ,∴ DE = BF , CE = CF ,∴△ GBF 和△ ECF 是等腰直角三角形 ,∴∠ GFB = 45°, ∠ CFE = 45°, ∴∠ CFA = ∠ GFB + ∠ CFE = 90°,此时点 F 与点 B 重合 ,点 D 与点 E 重合 ,与题目条件不符 ,∴点 E 在运动过程中 ,四边形 CEAG 不能是平行四边形.。
2017年春中考数学总复习《四边形》课件(图片版) 练习(4份含答案)
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
-www.命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017年中考数学命题研究(怀化专版)
版权所有-
2017中考数学复习第五单元四边形单元测试五四边形试题
单元测试(五) 四边形(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.如图,在▱ABCD中,E是AB延长线上的一点,若∠D=120°,则∠1的度数为( B )A.120° B.60° C.45° D.30°2.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为2∶3,则这个多边形为( C )A.三角形 B.四边形 C.五边形 D.六边形3.能够判定一个四边形是矩形的条件是( A )A.对角线互相平分且相等B.对角线互相垂直平分C.对角线相等且互相垂直D.对角线互相垂直4.如图,在矩形ABCD中,对角线AC,BD交于点O,以下说法错误的是( D )A.∠ABC=90° B.AC=BD C.OA=OB D.OA=AD5.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若EF=3,△COD的周长是18,则▱ABCD的两条对角线的和是( B )A.18 B.24 C.30 D.366.体育课上,刘老师在篮球场上放置三个不在同一直线上的A,B,C三个篮球,现将篮球D放置其中,使A,B,C,D四个篮球组成一个平行四边形,试问篮球D在图中位置有( C )A.1处 B.2处 C.3处 D.4处7.如图,在菱形ABCD中,点E在BC上,若∠ABC=∠EAD=70°,则∠CED的度数是( C )A.70° B.60° C.55° D.50°提示:由∠ABC=70°可得∠BAD=110°,因为∠EAD=70°,所以∠BAE=40°.所以∠BEA=∠BAE =70°.所以AB =AE.因为AB=AD,所以AE=AD.所以∠AED=55°,所以∠CED=55°.8.小明在学习了正方形之后,给同桌小文出了道题:从下列四个条件:①AB=BC ;②∠ABC=90°;③AC=BD ;④AC⊥BD 中选两个作为补充条件,使▱ABCD 为正方形(如图所示),现有如下四种选法,你认为其中错误的是( C )A .①②B .①③C .②③D .②④提示:只有添加②③错误,原因添加②是矩形,再添加③也是矩形. 二、填空题(每小题5分,共20分)9.如图,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以A 和B 为圆心,大于12AB 的长为半径画弧,两弧相交于C 、D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是菱形.10.如图,六边形ABCDEF 中,AB ∥DC ,∠1,∠2<∠3,∠4分别是∠BAF,∠AFE ,∠FED ,∠EDC 的外角,则∠1+∠2+∠3+∠4=180°.提示:根据多边形的外角和减去∠B 和∠C 的邻补角的和即可确定四个外角的和.11.如图,在△ABC 中,AB =6 cm ,AC =8 cm ,BC =10 cm ,M 是BC 边上的动点,MD ⊥AB ,ME ⊥AC ,垂足分别是D 、E ,线段DE 的最小值是245cm.提示:由题意可判定,△ABC 是直角三角形,四边形ADME 是矩形,从而有AM =DE ,而当AM⊥BC 时,AM 最小,此时有AM =AB·AC BC =245.12.如图,在正方形ABCD 中,E ,F 分别为AB ,BC 的中点,AF ,DE 相交于点G ,连接CG ,则cos ∠DGC 5三、解答题(共48分)13.(12分)如图,正方形ABCD 的对角线AC 是菱形AEFC 的一边,求∠FAB 的度数.解:∵四边形ABCD 是正方形, ∴∠CAB =12∠DAB=12×90°=45°.∵四边形AEFC 是菱形, ∴∠FAB =12∠CAB=22.5°.14.(12分)如图,矩形ABCD 中,EF ⊥EB ,EF =EB ,ABCD 周长为22 cm ,CE =3 cm ,求DE 的长.解:∵四边形ABCD 是矩形,∴AD =BC ,DC =AB ,∠D =∠C=90°. ∵EF ⊥EB ,∴∠FEB =90°.∴∠DEF +∠CEB=90°,∠CEB +∠CBE=90°. ∴∠DEF =∠CBE.在△DEF 和△CBE 中,⎩⎪⎨⎪⎧∠D=∠C,∠DEF =∠CBE,EF =EB ,∴△DEF ≌△CBE(AAS).∴DE =BC ,DF =CE =3 cm.又∵矩形ABCD 的周长为22 cm ,∴2(BC +DE +EC )=22,即DE +DE +3=11. ∴DE =4 cm.15.(12分)如图,在▱ABCD 中,E ,F 分别为边AD ,BC 的中点,对角线AC 分别交BE ,DF 于点G ,H.求证:AG =CH.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC.∴∠ADF =∠CFH,∠EAG =∠FCH. ∵E ,F 分别为AD ,BC 的中点, ∴AE =DE =12AD ,CF =BF =12BC.∴DE ∥BF ,DE =BF.∴四边形BFDE 是平行四边形.∴BE ∥DF.∴∠AEG =∠ADF.∴∠AEG=∠CFH.在△AEG 和△CFH 中,⎩⎪⎨⎪⎧∠EAG =∠FCH,AE =CF ,∠AEG =∠CFH,∴△AEG ≌△CFH(ASA).∴AG =CH.16.(满分12分)(1)如图1,正方形ABCD 中,点P 为线段BC 上一个动点,若线段MN 垂直AP 于点E ,交线段AB 于点M ,CD 于点N ,证明:AP =MN ;(2)如图2,正方形ABCD 中,点P 为线段BC 上一动点,若线段MN 垂直平分线段AP ,分别交AB ,AP ,BD 、DC 于点M ,E ,F ,N.①求证:EF =ME +FN ;②若正方形ABCD 的边长为2,则线段EF 的最小值=1,最大值=图1 图2 解:(1)证明:过点B 作BH∥MN 交CD 于H. ∵BM ∥NH ,∴四边形MBHN 为平行四边形. ∴MN =BH.易证△ABP≌△BCH. ∴BH =AP.∴MN=AP.(2)①证明:连接FA ,FP ,FC.∵正方形ABCD 是轴对称图形,F 为对角线BD 上一点,∴FA =FC. 又∵FE 垂直平分AP ,∴FA =FP. ∴FP =FC.∴∠FPC=∠FC P.∵∠FAB =∠FCP ,∴∠FAB =∠FPC. ∴∠FAB+∠FPB=180°.∴∠ABC +∠AFP=180°.∴∠AFP =90°. ∴FE =12AP.又∵AP=MN ,∴ME +FN =12AP.∴EF =ME +FN.②由①有,EF =ME +FN. ∵MN =EF +ME +NF ,∴EF =12MN.∵AC ,BD 是正方形的对角线,∴BD =2 2.∴当点P 和点B 重合时,EF 最小=12MN =12AB =1;当点P 和点C 重合时,EF 最大=12MN =12BD = 2.。
中考数学要点复习《四边形、圆》单元检测卷含答案解析
单元检测卷五四边形、圆(时间:120分钟满分:150分)一、选择题(本大题共10小题,每小题4分,共40分)1.在▱ABCD中,下列结论一定正确的是()A.AC⊥BDB.∠A+∠B=180°C.AB=ADD.∠A≠∠C解析:平行四边形的对角线不垂直,故A不正确;平行四边形的对边互相平行,故由两直线平行同旁内角互补,可得B正确;平行四边形的对边相等,但相邻的边不一定相等,故C错误;平行四边形两对角相等,故D错误.答案:B2.如图,在▱ABCD中,AE,CF分别是∠BAD和∠BCD的平分线.添加一个条件,仍无法判断四边形AECF为菱形的是()A.AE=AFB.EF⊥ACC.∠B=60°D.AC是∠EAF的平分线解析:由AE,CF分别是∠BAD和∠BCD的平分线可以证明∠EAF=∠ECF,再由▱ABCD得AD∥BC,进而证明AE∥FC,从而证明四边形AECF是平行四边形,只有选项C不能证明是菱形.答案:C3.如图,菱形ABCD的对角线AC,BD相交于点O,AC=8,BD=6,以AB为直径作一个半圆,则图中阴影部分的面积为()A.25π-6B.π-6C.π-6D.π-6解析:根据菱形的性质可知AO==4,BO==3,且AO⊥BO,由勾股定理得AB==5.以AB为直径的半圆的面积为S=,而S△AOB==6,故S阴影=S-S△AOB=-6.选D.答案:D4.如图,将n个边长为1 cm的正方形按如图所示的方式摆放,点A1,A2,…,A n分别是正方形的中心,则n个这样的正方形重叠部分(阴影部分)的面积和为()A. cm2B. cm2C. cm2D. cm2解析:连接CA1,EA1.∵A1是正方形PQCE的中心,∴CA1⊥EA1,CA1=EA1,且∠BCA1=∠DEA1=45°.又∵正方形A1FGH,∴∠HA1F=90°,∴∠BA1C=∠EA1D.∴△BCA1≌△DEA1,.∴S正方形PQCE=.而将n个边长为1 cm的正方形按如图所示的方式摆放,重叠后形成的阴影部分共有(n-1)块,每一小块阴影部分面积均为,因此总面积为.答案:C5.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上任意一点,则PK+QK的最小值为()A.1B.C.2D.+1解析:过点K作PK⊥BC于点P,作点P关于直线BD的对称点P1,∴PK=P1K,直线P1K与直线CD交于点Q,∵P1K⊥AB,由AB∥CD,得QK⊥CD.此时PK+KQ的值最小.过点D作DM⊥BC交BC的延长线于点M,BC=CD=2,DM=CD·sin 60°=,根据题意可知P1Q即为菱形ABCD的高,P1Q=,所以PK+QK 的最小值为.答案:B6.如图,已知直线AB与☉O相切于点A,☉O的半径为2.若∠OBA=30°,则OB的长为()A.4B.4C.2D.2答案:B7.如图,PA切☉O于点A,OP交☉O于点B.若点B是OP的中点,PA=,则的长是()A. B. C. D.答案:B8.如图,在☉O中,∠AOB的度数为m,C是上一点,D,E是上不同的两点(不与A,B两点重合),则∠D+∠E的度数为()A.mB.180°-C.90°+D.答案:B9.在半径为1的圆中,长为的弦所对的圆心角的度数是()A.30°B.45°C.60°D.90°解析:如图,由题意,得AB=,OA=OB=1,则OA2+OB2=AB2,故∠AOB=90°.答案:D10.如图,☉O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且☉O与∠α的两边相切,图中阴影部分的面积S关于☉O的半径r(r>0)变化的函数图象大致是()解析:连接OB,OC,OA,∵圆O切AM于点B,切AN于点C,∴∠OBA=∠OCA=90°,OB=OC=r,AB=AC.∴∠BOC=360°-90°-90°-α=180°-α.∵AO平分∠MAN,∴∠BAO=∠CAO=α,AB=AC=.∴S阴影=S四边形BACO-S扇形OBC=2××r-=r2,∵r>0,∴S与r之间是二次函数关系.故选C.答案:C二、填空题(本大题共4小题,每小题5分,共20分)11.如图,在四边形ABCD中,对角线AC,BD交于点O,AD∥BC,请添加一个条件:,使四边形ABCD为平行四边形(不添加任何辅助线).解析:平行四边形的判定有:(1)两组对边分别平行的四边形是平行四边形(定义判定法);(2)一组对边平行且相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)组对角分别相等的四边形是平行四边形;(5)所有邻角(每一组邻角)都互补的四边形是平行四边形;(6)两组对边分别相等的四边形是平行四边形.答案:答案不唯一;AD=BC;(或者AB∥DC)12.如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到△ABC,则△ABC中BC边上的高是.解析:设大正方形AEFD的面积为S,根据题意得,S△ABC=S-S△AEB-S△BFC-S△ADC=2×2-×1×2-×1×1-×1×2=.在Rt△BCF中,∠F=90°,∴BC=,△ABC中BC边上的高是×2÷.答案:13.如图,已知点A(-1,0)和点B(1,0),半圆A和半圆B均与y轴相切于点O,其直径CD,EF均和x轴垂直,以O为顶点的两条抛物线分别经过C,E和D,F,则图中阴影部分的面积是.解析:观察图形,该图形关于y轴对称,根据轴对称的性质,阴影部分的面积即为一个半圆的面积,由题意,半圆的半径为1,故S阴影=S半圆=π.答案:π14.如图,已知AB是☉O的直径,AD切☉O于点A,点C是的中点,则下列结论中成立的是.(填序号)①OC∥AE;②EC=BC;③∠DAE=∠ABE;④AC⊥OE.解析:①∵点C是的中点,∴OC⊥BE.∵AB为圆O的直径,∴AE⊥BE.∴OC∥AE,故①正确;②∵,∴BC=CE,故②正确;③∵AD为圆O的切线,∴AD⊥OA,∴∠DAE+∠EAB=90°.∵∠ABE+∠EAB=90°,∴∠DAE=∠ABE,故③正确;④AC不一定垂直于OE,故④错误.答案:①②③三、(本大题共4小题,每小题8分,共32分)15.如图,已知在▱ABCD中,AE=CF,M,N分别是DE,BF的中点.求证:四边形MFNE是平行四边形.证明:由四边形ABCD是平行四边形可知,AD=BC,∠A=∠C.又∵AE=CF,∴△DAE≌△BCF.∴DE=BF,∠AED=∠BFC.又∵M,N分别是DE,BF的中点,∴ME=NF.又由AB∥CD,得∠AED=∠EDC.∴∠BFC=∠EDC.∴ME∥NF.∴四边形MFNE是平行四边形.16.如图,已知∠PAC=30°,在射线AC上顺次截取AD=3 cm,DB=10 cm,以DB为直径作☉O交射线AP于E,F两点,求圆心O到AP的距离及EF的长.解:如图,过点O作OM⊥AP于M,∵∠PAC=30°,∴OM=AO.又AD=3,BO=BD=5,∴AO=8,OM=4.连接OE,则OE=5,由勾股定理得EM=3,所以EF=6.故圆心O到AP的距离为4,EF的长为6.17.如图,在正方形ABCD中,点M是对角线BD上的一点,过点M作ME∥CD交BC于点E,作MF∥BC交CD于点F.求证:AM=EF.证明:连接MC.正方形ABCD中,∵AD=CD,∠ADM=∠CDM,又DM=DM,∴△ADM≌△CDM,∴AM=CM.∵ME∥CD,MF∥BC,∴四边形CEMF是平行四边形,∵∠ECF=90°,∴▱CEMF是矩形,∴EF=MC,又AM=CM,∴AM=EF.18.如图是“明清影视城”的圆弧形门,小华同学到影视城游玩,很想知道这扇门的相关数据.于是她从景点管理人员处打听到:这个圆弧形门所在的圆与水平地面是相切的,AB=CD=20 cm,BD=200 cm,且AB,CD与水平地面都是垂直的.根据以上数据,请你帮助小华同学计算出这个圆弧形门的最高点离地面的高度是多少?解:过圆心O作OE⊥AC,连接AO.设圆O的半径为R,在Rt△AOE中,AE==100,OE=R-AB=R-20.∵AE2+OE2=OA2,∴1002+(R—20)2=R2.解之,得R=260 cm,故这个圆弧形门的最高点离地面的高度为2R=520 cm.四、(本大题共2小题,每小题10分,共20分)19.已知:如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.(1)求证:AB=BC;(2)当BE⊥AD于E时,试证明:BE=AE+CD.证明:(1)连接AC.∵∠ABC=90°,∴AB2+BC2=AC2.∵CD⊥AD,∴AD2+CD2=AC2.又∵AD2+CD2=2AB2,∴AB2+BC2=2AB2.∴AB=BC.(2)过C作CF⊥BE于F.∵BE⊥AD,∴四边形CDEF是矩形.∵∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∴△BAE≌△CBF.∴AE=BF.∴BE=BF+EF=AE+CD.20.如图,CD为☉O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=2.(1)求∠C的大小;(2)求阴影部分的面积.解:(1)∵AO⊥BC,CD⊥AB,∴CE=EB,AF=FB,∠CEO=∠AFO=90°.又∵∠COE=∠AOF,OA=OC,∴△AOF≌△COE(AAS).∴AF=CE,即BF=BC,又∠CFB=90°.∴∠C=30°.(2)连接OB.由(1)知∠AOB=2∠AOF=2(90°-30°)=120°,OF=OA=1,∴AF=.∴AB=2.∴S阴影=S扇形AOB-S△AOB=×1×2.五、(本大题共2小题,每小题12分,共24分)21.如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长DP交边AB于点E,连接BP并延长交边AD于点F,交CD的延长线于点G.(1)求证:△APB≌△APD.(2)已知DF∶FA=1∶2,设线段DP的长为x,线段PF的长为y.①求y与x的函数关系式;②当x=6时,求线段FG的长.(1)证明:∵点P是菱形ABCD对角线AC上的一点,∴∠DAP=∠PAB,AD=AB.∵在△APB和△APD中,∴△APB≌△APD(SAS).(2)解:①∵△APB≌△APD,∴DP=PB,∠ADP=∠ABP.∵在△DFP和△BEP中,∴△DFP≌△BEP(ASA),∴PF=PE,DF=BE.∵GD∥AB,∴.∵DF∶FA=1∶2,∴,∴.∵,即,∴y=x.②当x=6时,y=×6=4,∴PF=PE=4,DP=PB=6,∵,∴,解得FG=5,故线段FG的长为5.22.如图,已知直线MN交☉O于A,B两点,AC是直径,AD平分∠CAM交☉O于点D,过点D作DE⊥MN于点E.(1)求证:DE是☉O的切线;(2)若DE=6,AE=3,求☉O的半径.(1)证明:连接OD.∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAE,∴∠ODA=∠DAE.∴DO∥MN.∵DE⊥MN,∴∠ODE=∠DEM=90°,即OD⊥DE.∵点D在☉O上,∴DE是☉O的切线.(2)解:∵∠AED=90°,DE=6,AE=3,∴AD==3.连接CD,∵AC是☉O的直径,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE.∴.∴,则AC=15(cm).∴☉O的半径是7.5 cm.六、(本题满分14分)23.如图1,在正方形ABCD中,E,F分别为BC,CD的中点,连接AE,BF,交点为G.(1)求证:AE⊥BF;(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP交BA的延长线于点Q,求sin ∠BQP的值;(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.(1)证明:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,∴Rt△ABE≌Rt△BCF,∴∠BAE=∠CBF.又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF.(2)解:根据题意得FP=FC,∠PFB=∠BFC,∠FPB=90°.∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB.令PF=k(k>0),则PB=2k,在Rt△BPQ中,设QB=x,∴x2=(x-k)2+4k2,∴x=,∴sin ∠BQP=.(3)解:∵正方形ABCD的面积为4,∴其边长为2.由题意得∠BAE=∠EAM,又AE⊥BF,∴AN=AB=2.∵∠AHM=90°,∴GN∥HM,∴,∴,∴S△AGN=,∴S四边形GHMN=S△AHM-S△AGN=1-,∴四边形GHMN的面积是.第11页共11页。
中考数学一轮复习《四边形》综合复习练习题(含答案)
中考数学一轮复习《四边形》综合复习练习题(含答案)一、单选题1.一个多边形的内角和为900°,则这个多边形是( )A .七边形B .八边形C .九边形D .十边形 2.如图,将三角形纸片剪掉一角得四边形,设△ABC 与四边形BCDE 的外角和的度数分别为α,β,则正确的是( )A .0αβ-=B .0αβ-<C .0αβ->D .无法比较α与β的大小3.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB =65°,则∠AED ′等于( )A .50°B .55°C .60°D .65°4.若一个正多边形的一个外角是60°,则这个正多边形的边数是( )A .10B .9C .8D .65.如图,四边形ABCD 是平行四边形,下列结论中正确的是( )A .当ABCD 是矩形时,90BAC ∠=︒B .当ABCD 是菱形时,AB BC ⊥ C .当ABCD 是正方形时,AC BD = D .当ABCD 是菱形时,AB AC =6.如图,在正方形ABCD 中,AE 平分BAC ∠交BC 于点E ,点F 是边AB 上一点,连接DF ,若BE AF =,则CDF ∠的度数为( )A .45︒B .60︒C .67.5︒D .775︒.7.如图,要拧开一个边长为()=6mm a a 的正六边形,扳手张开的开口b 至少为( )A .43mmB .63mmC . 42mmD . 12mm8.如图,菱形ABCD 中,∠BAD = 60°,AB = 6,点E ,F 分别在边AB ,AD 上,将△AEF 沿EF 翻折得到△GEF ,若点G 恰好为CD 边的中点,则AE 的长为( )A .34B .214C 3154D .39.以下说法不正确的是( )A .平行四边形是抽对称图形B .矩形对角线相等C .正方形对角线互相垂直平分D .菱形四条边相等10.陈师傅应客户要求加工4个长为4cm 、宽为3cm 的矩形零件.在交付客户之前,陈师傅需要对4个零件进行检测.根据零件的检测结果,图中有可能不合格的零件是( )A.B.C.D.11.如图,AB是半圆O的直径,以弦AC为折痕折叠AC后,恰好经过点O,则AOC∠等于()A.120°B.125°C.130°D.145°12.如图,在平面直角坐标系中,矩形ABCD的对角线AC经过坐标原点O,矩形的边分别平行于坐标轴,点B在函数kyx=(k≠0,x>0)的图像上,点D的坐标为(﹣3,1),则k的值为()A.53B.3-C.3D.53-二、填空题13.如果一个多边形的每一个外角都是60︒,那么这个多边形的边数是_______.14.如图,在矩形ABCD中,E是AD边上一点,且2AE DE=,BD与CE相交于点F,若DEF 的面积是3,则BCF △的面积是______.15.如果正多边形的一个外角是45︒,则这个正多边形的内角和是________︒.16.巧板是我国古代劳动人民的一项发明,被誉为“东方魔板”,它由五块等腰直角三角形、一块正方形和一块平行四边形组成.如图是利用七巧板拼成的正方形,随机向该图形内抛一枚小针,则针尖落在阴影部分的概率为 _____.17.如图,四边形ABCD 是菱形,42BD =,26AD =,点E 是CD 边上的一动点,过点E 作EF ⊥OC 于点F ,EG ⊥OD 于点G ,连接FG ,则FG 的最小值为_________.18.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,过点O 作OE AC ⊥交AD 于点E ,若4AB =,8BC =,则DE 的长为______.19.已知ABC 中,65A ∠=︒,将B C ∠∠、按照如图所示折叠,若35ADB '∠=︒,则123∠+∠+∠=_____︒.CE ,F 20.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,5为DE的中点.若CEF△的周长为18,则OF的长为______.三、解答题21.如图,一组正多边形,观察每个正多边形中a的变化情况,解答下列问题.(1)将表格补充完整.正多边形的边数 3 4 5 6α的度数(2)观察上面表格中α的变化规律,角α与边数n的关系为.(3)根据规律,当α=18°时,多边形边数n=.22.如图,在ABCD中,AC=BC,M、N分别是AB和CD的中点.(1)求证:四边形AMCN是矩形;(2)若∠B=60°,BC=8,求ABCD的面积.23.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD 的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.24.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.25.如图,点E为矩形ABCD外一点,AE = DE.求证:△ABE≌△DCE26.如图,已知四边形ABCD为正方形,AB=2,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:①CE与CG有怎样的位置关系?请说明理由.②CE+CG的值为.27.某数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段做了如下探究:【现察与猜想】(1)如图1,在正方形ABCD中,点E,F分别是AB,AD上的两点,连接DE,CF,DE⊥CF,则DECF的值为______.(2)如图2,在矩形ABCD中,AD=7,CD=4,点E是AD上的一点,连接CE,BD,且CE⊥BD,则CEBD的值______.【类比探究】(3)如图3,在四边形ABCD中,∠A=∠B=90°,点E为AB上一点,连接DE,过点C作DE 的垂线交ED的延长线于点G,交AD的延长线于点F,求证:DE•AB=CF•AD.28.在矩形ABCD中,AB=6,AD=4,点M为AB边上一个动点,连接DM,过点M作MN⊥DM,且MN=32DM,连接DN.(1)如图1,连接BD与BN,BD交MN于点E.①求证:△ABD∽△MND;②求证:∠CBN=∠DNM.(2)如图2,当AM=4BM时,求证:A,C,N三点在同一条直线上.参考答案1.A2.A3.A4.D5.C6.C7.B8.B9.A10.C11.A12.B13.614.2715.108016.381718.319.265︒20.7221.(1)正多边形每个内角的度数为180(2)n n -. 1803,603n α===; 904,452n α===; 正五边形的内角180(52)1085-=,1801085,362n α-===; 正五边形的内角180(62)1206-=,1801206,302n α-===.(2)观察(1)中结论,1803,603n == 1804,454n == 1805,365n == 1806,306n == 总结规律,则有180n α=. (3)借助(2)中公式,有180n α=,即18018n= 解得10n =.22.(1)证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD ,∵M 、N 分别是AB 和CD 的中点, ∴AM =BM ,AM ∥CN ,AM =CN , ∴四边形AMCN 是平行四边形,又∵AC =BC ,AM =BM ,∴CM ⊥AB ,∴∠CMA =90°,∴四边形AMCN 是矩形;(2)解:∵∠B =60°,BC =8,∠BMC =90°, ∴∠BCM =30°,∴Rt △BCM 中,BM =12BC =4,CM∵AC =BC ,CM ⊥AB ,∴AB =2BM =8,∴ABCD 的面积为AB ×CM23.(1)证明:∵四边形ABCD 是平行四边形, ∴AB =CD ,AB ∥CD ,OB =OD ,OA =OC , ∴∠ABE =∠CDF ,∵点E ,F 分别为OB ,OD 的中点, ∴BE =12OB ,DF =12OD ,∴BE =DF ,在△ABE 和△CDF 中,AB CD ABE CDF BE DF ⎧⎪∠∠⎨⎪⎩===,∴△ABE ≌△CDF (SAS ) .(2)当AB =12AC 时,四边形EGCF 是矩形;理由如下: 当AB =12AC 时,∵AC =2OA ,AC =2AB ,∴AB =OA ,∵E 是OB 的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,由(1)得:△ABE≌△CDF,∴AE=CF,∵EG=AE,∴EG=CF,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.24.(1)证明:由题意可得,△BCE≌△BFE,∴∠BEC=∠BEF,FE=CE,∵FG∥CE,∴∠FGE=∠CEB,∴∠FGE=∠FEG,∴FG=FE,∴FG=EC,∴四边形CEFG是平行四边形,又∵CE=FE,∴四边形CEFG是菱形;(2)解:∵矩形ABCD 中,AB =6,AD =10,BC =BF ,∴∠BAF =90°,AD =BC =BF =10,∴AF =8,∴DF =2,设EF =x ,则CE =x ,DE =6-x ,∵∠FDE =90°,∴22+(6-x )2=x 2,解得,x =103, ∴CE =103, ∴四边形CEFG 的面积是:CE •DF =103×2=203. 25.解:四边形ABCD 是矩形,AB DC ∴=,90BAD CDA ∠=∠=︒,AE DE =,EAD EDA ∴∠=∠,EAB BAD EAD CDA EDA EDC ∴∠=∠+∠=∠+=∠, 在ABE ∆和DCE ∆中,AE DE EAB EDC AB DC =⎧⎪∠=∠⎨⎪=⎩()ABE DCE SAS ∴∆∆≌.26.(1)如图,作EM ⊥BC 于M ,EN ⊥CD 于N ,又∠BCD =90°,∴∠MEN =90°,∵点E 是正方形ABCD 对角线上的点,∴EM =EN ,∵∠DEF =90°,∴∠DEN =∠MEF =90°﹣∠FEN ,∵∠DNE =∠FME =90°,在△DEN 和△FEM 中,DNE FME EN EMDEN FEM ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△DEN ≌△FEM (ASA ),∴EF =DE ,∵四边形DEFG 是矩形,∴矩形DEFG 是正方形;(2)①CE ⊥CG ,理由如下:∵正方形DEFG 和正方形ABCD ,∴DE =DG ,AD =DC ,∵∠CDG +∠CDE =∠ADE +∠CDE =90°,∴∠CDG =∠ADE ,在△ADE 和△CDG 中,AD CD ADE CDG DE DG =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△CDG (SAS ),∴∠DAE =∠DCG ,∵∠ACD +∠CAD +∠ADC =180°,∠ADC =90°,∴∠ACG =∠ACD +∠DCG =∠ACD +∠CAD =90°, ∴CE ⊥CG ;②由①知,△ADE ≌△CDG ,∴AE =CG ,∴CE +CG =CE +AE =ACAB=2,故答案为:2.27.(1)解:设DE与CF的交点为G,∵四边形ABCD是正方形,∴∠A=∠FDC=90°,AD=CD,∵DE⊥CF,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,在△AED与△DFC中,A FDCCFD AEDAD CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AED≌△DFC(AAS),∴DE=CF,∴DECF=1,故答案为:1;(2)解:如图,设DB与CE交于点G,∵四边形ABCD是矩形,∴∠A=∠EDC=90°,∵CE⊥BD,∴∠DGC=90°,∴∠CDG +∠ECD =90°,∠ADB +∠CDG =90°,∴∠ECD =∠ADB ,∵∠CDE =∠A ,∴△DEC ∽△ABD , ∴47CE DC BD AD ==, 故答案为:47; (3)证明:如图,过点C 作CH ⊥AF 交AF 的延长线于点H ,∵CG ⊥EG ,∴∠G =∠H =∠A =∠B =90°,∴四边形ABCH 为矩形,∴AB =CH ,∠FCH +∠CFH =∠DFG +∠FDG =90°,∴∠FCH =∠FDG =∠ADE ,∠A =∠H =90°,∴△AED ∽△HFC ,∴DE AD CF CH =, ∴DE AD CF AB=, ∴DE •AB =CF •AD .28.(1)①证明:∵四边形ABCD 是矩形,DM ⊥MN ∴∠A =∠DMN =90°∵AB =6,AD =4,MN =32DM ∴23AD DM AB MN == ∴△ABD ∽△MND .②证明:∵四边形ABCD 是矩形,DM ⊥MN ∴∠ABC =∠DMN =90°∴∠ABD +∠CBD =90°由①得△ABD ∽△MND∴∠ABD =∠DNM又∵∠MEB =∠DEN∴△MBE ∽△DNE ∴ME BE DE NE = ∴ME DE BE NE= 又∠MED =∠BEN∴△DME ∽△NBE∴∠NBE =∠DME =90°∴∠CBN +∠CBD =90°又∠ABD +∠CBD =90°,∠ABD =∠DNM ∴∠CBN =∠DNM .(2) 如图②,过点N 作NF ⊥AB 于点F ,连接AC ,AN ∴∠NF A =90°∵四边形ABCD 是矩形,AD =4,AB =6 ∴∠A =∠ABC =90°,BC =AD =4∴23BC AB =,∠ADM +∠AMD =90° ∵AM =4BM ,AB =6∴42455AM AB ==又DM ⊥MN∴∠AMD +∠FMN =90° ∴∠ADM =∠FMN∴△ADM ∽△FMN ∴AD AM DM MF FN MN== 又MN =32DM ∴24425=3DM MF FN MN == ∴MF =6,FN =365∴AF =AM +MF =2454655+= ∴23NF AF = ∴NF BC AF AB = ∵∠ABC =∠AFN =90° ∴△ABC ∽△AFN∴∠BAC =∠F AN∴A ,C ,N 三点在同一条直线.。
中考数学四边形专题训练50题含参考答案
中考数学四边形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,已知1234290∠+∠+∠+∠=︒,那么5∠的大小是( )A .60︒B .70︒C .80︒D .90︒ 2.在▱ABCD 中,∠A ,∠B 的度数之比为4∠5,则∠C 的度数为( )A .60°B .80°C .100°D .120° 3.如图,在菱形ABCD 中,60A ∠=︒,4AB =,O 为对角线BD 的中点,过O 作OE AB ⊥,垂足为E ,则BE 的长为( )A .1B .2C .3D .4 4.如图,四边形ABCD 和四边形AEFC 是两个矩形,点B 在EF 边上,若1AB =,2AC =,则矩形AEFC 的面积为( )A .2 BC .D .32 5.已知∠ABCD 相邻两个内角的比为2:3,则其中较大的内角是( ) A .60° B .72° C .120°D .108°6.如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,则重叠部分(即BDE △)的面积为( )A .6B .7.5C .10D .207.如图,在矩形ABCD 中,6cm,8cm AB BC ==,点E 是BC 的中点,点F 是边CD 上一动点,当AEF △的周长最小时,则DF 的长为( )A .1B .2C .3D .48.如图,在四边形ABCD 中,110C ∠=︒,与BAD ∠,ABC ∠相邻的外角都是120°,则α∠的值为( )A .50°B .55°C .60°D .65° 9.如图,点E 为正方形ABCD 外一点,且ED CD =,连接AE ,交BD 于点F .若38CDE ∠=︒,则BFC ∠的度数为( )A .71︒B .72︒C .81︒D .82︒ 10.在平行四边形ABCD 中,点E 在DC 边上,连接AE ,交BD 于点F ,若DE ∠EC =3:2,则∠DEF 的面积与∠BAF 的面积之比为( )A.3:5B.9:4C.9:25D.3:211.如图,四边形ABCD是正方形,直线a、b、c分别经过A、D、C三点,且a b c∥∥.若a与b之间的距离是2,b与c之间的距离是3,则正方形ABCD的面积是()A.12B.13C.14D.1512.如图,在∠ABC中,点D在边BC上,过点D作DE∠AC,DF∠AB,分别交AB,AC于E,F两点.则下列说法不正确的是()A.四边形AEDF是平行四边形B.若∠B+∠C=90°,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若BD=AD=DC,则四边形AEDF是矩形13.小明在计算某多边形的内角和时,由于马虎漏掉了一个角,结果得到970°,则原多边形是一个()A.七边形B.八边形C.九边形D.十边形14.如图,在菱形ABCD中,对角线AC,BD相交于点O,AC=6,BD=8,点E是AD边的中点,连接OE,则OE的长为()A.10B.52C.5D.415.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是()∠平行四边形;∠菱形;∠任意四边形;∠对角线互相垂直的四边形A.∠∠B.∠∠C.∠∠D.∠∠16.如图,已知点O为∠ABC的AC边上的中点,连接BO并延长到D,使得OD=OB,要使四边形ABCD为矩形,∠ABC中需添加的条件是()A.AB=BC B.∠ABC=90°C.∠BAC=45°D.∠BCA=45°17.如图,在矩形ABCD中,AB=10,BC=12,点M,N分别在AD,BC上,且=,3AM BN=,E为BC边上一动点,连接DE,将DCEAD AM∆沿DE所在直线折叠得到∠DC E',当C'点恰好落在线段MN上时,NE的长为()A.B.5C.3D.18.如图,菱形ABCD中,∠ABC=60°,AB=4,对角线AC、BD交于点O,E是线段BO上一动点,F是射线DC上一动点,若∠AEF=120°,则线段EF的长度的整数值的个数有()A.1个B.2个C.3个D.4个19.如图,正方形ABCD边长为4,E,F分别为线段AD,BC上一点,且1AE=,CF=,AC与DF相交于H,I为线段AH上一点(不与端点重合),J为线段DH上1+的最小值为()一点(不与端点重合),则EI IJA B C D二、填空题20.如图,已知点A的坐标是(-2),点B的坐标是(1-,,菱形ABCD的对角线交于坐标原点O,则点D的坐标是______.21.如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA∠CA交DB的延长线于点E,若AB=3,BC=4,则OAAE的值为__________.22.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,若∠E=20°,则∠ADB=______.23.如图,□ABCD的对角线交于点O,且AB=4,∠OCD的周长为13,则□ABCD的两条对角线长度之和为________.24.一个多边形的内角和等于它外角和的7倍,则这个多边形的边数为_________. 25.如图,在矩形ABCD 中,5AB =,7BC =,点E 为BC 上一动点,把ABE 沿AE 折叠,当点B 的对应点B '落在ADC ∠或DAB ∠的角平分线上时,则点B '到BC 的距离为______________.26.如图,在平行四边形ABDC 中,点M 是CD 的中点,AM 与BC 相交于点N ,那么:ACN S △S 四边形BDMN 等于_______.27.如图,在周长为16,面积为6的矩形纸片ABCD 中,E 是AD 的中点.F 是AB 上一动点,将AEF ∆沿直线EF 折叠,点A 落在点'A 处.在EF 上任取一点G ,连接'GA ,GC ,则'A G GC +的最小值为___________.28.如图,∠ABC 中∠ACB =90°,BC =2,AC =4,若正方形DEFG 的顶点D 在AB 上,顶点F 、G 都在AC 上,射线AE 交BC 边于点H ,则CH 长为___.29.如图,在矩形ABCD 中,AB =6,AD =10,H 是CD 边上一点,现将BCH ∆沿BH 折叠,点C 的对应点C '正好落在AD 边上,点E 、F 分别是AD 、BH 边上的动点,再将四边形ABHD 沿EF 折叠,若点A 的对应点A '正好落在线段BH 上,且4BA HA ''=,则线段AE 的长为______.30.如图,在矩形ABCD 中,6cm AB =,BC =,点P 从点A 出发沿AB 以2cm /s 的速度向点B 移动,若出发t 秒后,2PA PC =,则t =_________秒.31.如图,已知菱形ABCD 的对角线AC=2,∠BAD=60°,BD 边上有2013个不同的点122013,,,p p p ⋯,过(1,2,,2013)i p i =⋯作i i PE AB ⊥于i E ,i i PFAD ⊥于i F ,111122222013201320132013PE PF P E P F P E P F ++++⋯++的值为_______________32.“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”,图∠是由边长10cm 的正方形薄板分成7块制作成的“七巧板”图∠是用该“七巧板”拼成的一个“家”的图形,该“七巧板”中7块图形之一的正方形边长为_______cm (结果保留根号).33.在面积为15的平行四边形ABCD 中,过点A 作AE 垂直于直线BC 于点E ,作AF 垂直于直线CD 于点F ,若AB =5,BC =6,则CE +CF 的值为_________________. 34.在菱形ABCD 的纸板中画O ,随意向其投掷一枚飞镖.若4AB =,60A ∠=,则飞镖落在O 中的概率的最大值为______.35.如图,在ABC ∆中,D 为BC 边中点,P 为AC 边中点,E 为BC 上一点且27BE CE =,连接AE ,取中点Q 并连接QD ,取QD 中点G ,延长PG 与BC 边交于点H ,若9BC =,则HE =_________.36.如图所示,AE 是▱ABCD 的∠DAB 的平分线,且交BC 于点E ,EF ∠AB 交AD 于点F ,则四边形ABEF 一定是____________.37.如图,在矩形ABCD 中,点M 在AB 边上,把∠BCM 沿直线CM 折叠,使点B 落在AD 边上的点E 处,连接EC ,过点B 作BF ∠EC ,垂足为F ,若2CD =,4CF =,则线段AE 的长为______.38.如图,在矩形ABCD 中,3AB =,BC a =,点E 在边BC 上,且3.5BE a =连接AE ,将ABE 沿AE 折叠,若点B 的对应点B '落在矩形ABCD 的边上,则a 的值为______ .39.如图,Rt∠ABC ,AB =3,AC =4,点D 在以C 为圆心3为半径的圆上,F 是BD 的中点,则线段AF 的最大值是_____.三、解答题40.如图,四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别在线段OA ,OC 上,且OB OD =,12∠=∠,AE=CF .(1)证明;BEO DFO ≌;(2)证明:四边形ABCD 是平行四边形.41. 如图.在Rt ∠ABC 中,∠B =90°,AC =60cm ,∠A =60°,点D 从点A 出发沿AC 方向以4cm ∕秒的速度向点C 匀速运动,同时点E 从点B 出发沿BA 方向以2cm ∕秒的速度向点A 匀速运动,设点D 、E 运动的时间是t 秒(0<t <15),过点D 作DF ∠BC 于点F ,连接DE 、EF .(1)求证:四边形AEFD 是平行四边形;(2)当t 为何值时,动点D 恰好在AF 的垂直平分线上;(3)点D 、F 在运动过程中是否存在t 的值,使∠DEF 是直角三角形,若存在求出t 的值,若不存在,说明理由.42.如图,在Rt ABC 中,90ACB ∠=︒,D ,E 分别是AB ,AC 的中点,连接CD ,过点E 作EF ∥CD ,交BC 的延长线于点F .(1)求证:四边形DCFE 是平行四边形;(2)若四边形DCFE 的周长是18,AC 的长为6,求线段AB 、 BC 的长.43.知:如图,n 边形12345n A A A A A A .(1)求证:n 边形12345n A A A A A A 的内角和等于()2180n -⋅︒;(2)在一个各内角都相等的多边形中,每一个内角都比相邻的外角的3倍还大20°,求这个多边形的内角和;(3)粗心的小明在计算一个多边形的内角和时,误把一个外角也加进去了,得其和为1180°,这个多加的外角度数为 ,多边形的边数为 .44.如图,在ABCD 中,对角线AC ,BD 交于点O ,E 是AD 上任意一点,连接EO 并延长,交BC 于点F ,连接AF ,CE .(1)求证:四边形AFCE 是平行四边形;(2)若60DAC ︒∠=,15ADB ∠=°,4AC =.∠直接写出ABCD 的边BC 上的高h 的值;∠当点E 从点D 向点A 运动的过程中,下面关于四边形AFCE 的形状的变化的说法中,正确的是A .平行四边形→矩形→平行四边形→菱形→平行四边形B .平行四边形→矩形→平行四边形→正方形→平行四边形C .平行四边形→菱形→平行四边形→菱形→平行四边形D .平行四边形→菱形→平行四边形→矩形→平行四边形45.如图,在∠ABC 中,AB =AC ,D 为BC 中点.四边形ABDE 是平行四边形.求证:四边形ADCE 是矩形46.已知正方形OABC 在直角坐标系中(如图),A (1,﹣3),求点B 、C 的坐标.47.如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边在正方形ABCD 外作正方形CEFG ,连结BG ,DE .(正方形四条边都相等,四个角都是直角)1.我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系:(1)猜想图1中线段BG 和线段DE 的长度和位置关系:______________.(2)将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度a ,得到如图2.如图3情形.请你通过观察、测量等方法判断上述猜想是否仍然成立:_______(成立、不成立)若成立,请你选取图2或图3中的一种情况说明你的判断.48.在矩形ABCD 中,点P 是射线BC 上一动点,点B 关于直线AP 的对称点为E ,直线PE 与直线CD 交于点F .(1)如图1,当A ,C ,E 共线时,若30ACB ∠=︒,判断∠ACF 的形状,并证明;(2)若当点P 在线段BC 上的某个位置时(不与B ,C 重合),有45PAF ∠=︒,求证:当点P 在BC 延长线上任意位置时,都有45PAF ∠=︒.49.【教材呈现】下图是华师版数学教材的部分内容探索如图24.2.1,画Rt ABC ,并画出斜边AB 上的中线CD ,量一量,看看CD 与AB 有什么关系.相信你与你的伙伴一定会发现:CD 恰好是AB 的一半,下面让我们演绎推理证明这一猜想.已知:如图24.2.2,在Rt ABC ,90ACB ∠=,CD 是斜边AB 上的中线.求证:12CD AB =.【证明】请根据教材图24.2.2的提示,完成直角三角形的性质“直角三角形斜边中线等于斜边一半”的证明【延伸】如图∠,在四边形ABCD 中,90ADC ∠=︒,AB AC =,点E 、F 分别为AC ,BC 的中点,连结EF 、DE ,则线段DE 与EF 的数量关系是___________.【应用】(1)如图∠,在【延伸】的条件下,当AC 平分BAD ∠,90DEF ∠=时,则BAD ∠的大小为______.(2)如图∠,在【延伸】的条件下,当2AB =,四边形CDEF 是菱形时,直接写出四边形ABCD 的面积.参考答案:1.B【分析】根据多边形外角和为360︒度进行求解即可.【详解】解:∠1234290∠+∠+∠+∠=︒,12345360∠+∠+∠+∠+∠=︒,∠()5360123470=︒-∠+∠+∠+∠=︒∠,故选B .【点睛】本题主要考查了多边形外角和,熟知多边形外角和为360︒是解题的关键. 2.B【分析】根据平行四边形邻角互补,即可将角A 和角B 的度数求出,再利用对角相等即可求出角C.【详解】∠四边形ABCD 为平行四边形,∠∠A+∠B=180°,∠∠A ,∠B 的度数之比为4∠5 ∠∠A=180°49⨯=80°, 即∠C=80°,故选B.【点睛】本题考查了平行四边形的性质,属于简单题,熟悉平行四边形的性质是解题关键. 3.A【分析】先求出OB 的长和∠BOE 的度数,再根据30°角所对的直角边等于斜边的一半,即可求出BE 的值.【详解】解:在菱形ABCD 中,AB =AD ,60A ∠=︒,ABD ∴是等边三角形,4BD AB ∴==,O 为BD 的中点,122OB BD ∴==, 60OE AB ABD ⊥∠=︒,,30BOE ∴∠=︒,112BE OB ∴==. 故选A .【点睛】本题考查了等边三角形的判定和直角三角形30°角所对的直角边等于斜边的一半,熟练掌握等边三角形的判定和直角三角形30°角所对的直角边等于斜边的一半是解题的关键.4.B【分析】根据勾股定理可求出BC 的长度,再求解∠ACB 的度数,进而求出CF 的长度,最后用矩形面积公式求解即可.【详解】∠四边形ABCD 和四边形AEFC 是两个矩形,∠∠ABC =90°,在Rt ∠ABC 中,由勾股定理可得:BC连接BD 交AC 于点O ,∠四边形AEFC 是矩形,∠BD =AC =2,∠CO =DO =12BD =1, ∠CD =1,∠∠CDO 为等边三角形,∠∠ACD =60°,∠∠ACB =30°,∠四边形AEFC 是矩形,∠AC EF ∥,∠∠CBF =∠ACB =30°,∠CF =12BC∠矩形AEFC 的面积=AC ×CF故选:B 【点睛】本题主要考查了矩形的性质,含有30°角的直角三角形,等边三角形的判定与性质,以及勾股定理,熟练地掌握相关内容是解题的关键.5.D【分析】根据平行四边形邻角互补的性质及题意,可得出较大内角的度数.【详解】解:∠平行四边形ABCD∠相邻内角和为108o∠相邻内角的比为2:3∠较大内角度数是:3180=1085o o ⨯ 故答案是:D.【点睛】本题主要考查平行四边形邻角互补,准确应用平行四边形的性质是解题的关键. 6.C【分析】由折叠结合矩形的性质先证明,BE DE =设,BE DE x == 则8,AE x =- 再利用勾股定理求解,x 从而可得BDE △的面积. 【详解】解: 长方形ABCD ,8,4,AD AB ==//,AD BC ∴,ADB CBD ∴∠=∠由对折可得:,CBD C BD '∠=∠,ADB C BD '∴∠=∠,BE DE ∴=设,BE DE x == 则8,AE x =-由222,BE AB AE =+()22248,x x ∴=+-1680,x ∴=5,x ∴= 5,DE BE ∴==115410.22BDE S DE AB ∴==⨯⨯=故选:.C【点睛】本题考查的是矩形与折叠问题,勾股定理的应用,矩形的性质,掌握以上知识是解题的关键.7.D【分析】作点E 关于直线CD 的对称点E',连接AE'交CD 于点F ,再根据CE F BE A ∽即可求出CF 的长,进而得出DF 的长.【详解】解:如图所示:作点E 关于直线CD 的对称点E',连接AE'交CD 于点F ,此时,∠AEF 的周长最小, ∠在矩形ABCD 中,AB =6,BC = 8,点E 是BC 中点,∠'4BE CE CE ,∠CF AB ∥,∠CE F BE A ''∽, ∠CE CF BE AB ='' ,即4846CF , 解得:2CF =, ∠624DF CD CF ;故选:D .【点睛】本题考查的是轴对称最短路线问题及相似三角形的判定与性质,根据题意作出E 点关于直线CD 的对称点E',再根据轴对称的性质求出CE'的长,利用相似三角形的对应边成比例即可得出结论,熟练应用轴对称和相似的判定与性质相关知识解决问题是解题的关键.8.A【分析】先求出∠ABC =∠BAD =60°,再根据四边形的内角和等于360°,可得∠ADC =130°,即可求解.【详解】解:∠与BAD ∠,ABC ∠相邻的外角都是120°, ∠∠ABC =∠BAD =60°,∠∠ADC =360°-∠ABC -∠BAD -∠BCD =130°,∠18050ADC ∠=︒-∠=︒α.故选:A.【点睛】本题主要考查了四边形的内角和定理、邻补角,熟练掌握四边形的内角和等于360°是解题的关键.9.A【分析】根据正方形的性质,得AD CD =,90ADC ∠=︒,得45ADB CDB ∠=∠=︒;根据ED CD =,得AD DE =;根据等边对等角,38CDE ∠=︒,可求出DAE ∠;根据三角形的内角和,得AFD ∠;根据ADF △和CDF 全等,得AFD CFD ∠=∠,即可求出BFC ∠的角度.【详解】∠四边形ABCD 正方形∠AD CD =,90ADC ∠=︒∠45ADB CDB ∠=∠=︒∠ED CD =∠AD DE =∠DAE DEA ∠=∠∠38CDE ∠=︒∠9038128ADE ∠=︒+︒=︒∠26DAE DEA ∠=∠=︒∠在ADF △中,180DAF AFD ADF ∠+∠+∠=︒∠2645180AFD ︒+∠+︒=︒∠109AFD ∠=︒∠在ADF △和CDF 中AD CD ADF CDF DF DF =⎧⎪∠=∠⎨⎪=⎩∠ADF CDF ≅∠109AFD CFD ∠=∠=︒∠180180109BFC AFD ∠=︒-∠=︒-︒故选:A.【点睛】本题考查正方形和三角形的知识,解题的关键是掌握正方形的性质,全等三角形的性质和判定,等边对等角.10.C【分析】先判断∠DEF∠∠BAF,根据相似三角形的面积比等于相似比的平方计算即可.【详解】解:∠四边形ABCD是平行四边形,∠DC∠AB,DC=AB,∠∠DEF∠∠BAF,∠2DEFBAFS DES AB⎛⎫= ⎪⎝⎭.又∠DE:EC=3:2,∠3==5 DE DE DEAB DC DE EC=+,∠2239==525 DEFBAFS DES AB⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭△△.故选C.【点睛】本题考查平行四边形的性质、相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.11.B【分析】先作辅助线AE∠直线b于点E,CF∠直线b于点F,然后根据题目中的条件,可以证明△AED和△DFC全等,即可得到DF=AE,然后根据勾股定理,即可得到CD的长,从而可以得到正方形ABCD的面积.【详解】解:作AE∠直线b于点E,作CF∠直线b于点F,则AE=2,CF=3,∠四边形ABCD是正方形,∠AD =DC ,∠ADC =90°,∠∠ADE +∠CDF =90°,∠AE ∠直线b ,CF ∠直线b ,∠∠AED =∠DFC =90°,∠∠ADE +∠DAE =90°,∠∠DAE =∠CDF ,在△AED 和△DFC 中,AED DFC DAE CDF AD DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠AED ∠∠DFC (AAS ),∠AE =DF ,∠AE =2,CF =3,∠CFD =90°,∠DF =2,∠CD∠正方形ABCD13,故选:B .【点睛】本题考查正方形的性质、全等三角形的判定与性质、勾股定理,平行线之间的距离,解答本题的关键是明确题意,利用数形结合的思想解答.12.C【分析】根据平行四边形、矩形及菱形的判定方法分别判断后即可确定正确的选项.【详解】解:∠DE ∠AC ,DF ∠AB ,∠四边形AEDF 是平行四边形,故A 选项正确;∠四边形AEDF 是平行四边形,∠B +∠C =90°,∠∠BAC =90°,∠四边形AEDF 是矩形,故B 选项正确;若BD =CD ,则四边形AEDF 是平行四边形,不一定是菱形,故C 选项错误;∠BD =AD =DC ,∠∠DBA =∠DAB ,∠DAC =∠DCA ,∠∠DAB +∠DAC =90°,即∠BAC =90°,∠四边形AEDF 是矩形,故选C .【点睛】本题考查了命题与定理的知识,解题的关键是了解平行四边形、矩形及菱形的判定方法,难度不大.13.B【分析】根据n 边形的内角和是(n -2)•180°,少计算了一个内角,结果得970度.则内角和(n -2)•180°与970°的差大于0度,且(n -2)•180°小于970°+180°.因而可以解不等式()9702180970180n <-⨯<+,多边形的边数n 一定是最小的整数值即可.【详解】解:设多边形的边数是n ,依题意有:()9702180970180n <-⨯<+ 解得:77781818n <<, ∠则多边形的边数n =8;故选B .【点睛】本题主要考查了多边形的内角和定理,正确确定多边形的边数是解题的关键. 14.B【分析】根据菱形的性质得到OA =12AC =3,OD =12BD =4,AC ∠BD ,利用勾股定理求出AD ,再根据直角三角形斜边中线的性质求出OE 即可.【详解】∠四边形ABCD 为菱形,∠OA =12AC =3,OD =12BD =4,AC ∠BD ,∠AD 5,∠点E 是边AD 的中点,∠OE =12AD =52, 故选:B .【点睛】此题考查了菱形的性质,勾股定理,直角三角形斜边中线的性质,熟记菱形的性质是解题的关键.15.D【分析】根据中点四边形为平行四边形,当四边形的对角线互相垂直时则平行四边形为矩形,即可得到答案.【详解】解:顺次连接一个四边形的各边中点,得到的四边形是平行四边形,若四边形的对角线互相垂直,则所得平行四边形为矩形,则满足条件的是∠∠, 故选:D .【点睛】此题考查中点四边形的判定,矩形的判定,熟记判定定理是解题的关键. 16.B【分析】由题意可证四边形ABCD 是平行四边形,由矩形的判定可求解.【详解】解:∠点O 为∠ABC 的AC 边上的中点,∠AO =CO ,且OD =OB ,∠四边形ABCD 是平行四边形,∠有一个角为直角的平行四边形是矩形,对角线相等的平行四边形是矩形,∠添加条件为∠ABC =90°,故选B .【点睛】本题考查了矩形的判定,平行四边形的判定,熟练掌握矩形的判定是本题的关键.17.A【分析】设CE =x ,则C ′E =x ,证明四边形MNCD 是矩形,由矩形的性质得出∠DMN =∠MNC =90°,MN =CD =10,由折叠的性质得出C ′D =CD =10,求出6MC '=,则4NC '=,在Rt NEC '中,由勾股定理得出222(8)4x x --=,解方程可得出答案.【详解】解:设CE =x ,则C ′E =x ,∠矩形ABCD 中,AB =10,∠CD =AB =10,AD =BC =12,AD∥BC ,∠点M ,N 分别在AD ,BC 上,且3AM =AD ,BN =AM ,∠DM =CN =8,∠四边形CDMN 为平行四边形,∠∠NCD =90°,∠四边形MNCD 是矩形,∠∠DMN =∠MNC =90°,MN =CD =10,由折叠知,C ′D =CD ,10,∠6MC '==,∠1064CN '=-=,∠EN =CN -CE =8-x ,∠C ′E 2-NE 2=C ′N 2,∠222(8)4x x --=,解得,5x =,即853NE CN CE =-=-=.故选:C .【点睛】本题主要考查了矩形的性质与判定,勾股定理,一元一次方程的应用,折叠的性质,熟练掌握折叠的性质是解题的关键.18.C【分析】连结CE ,根据菱形的性质和全等三角形的判定可得∠ABE ∠∠CBE ,根据全等三角形的性质可得AE =CE ,设∠OCE =a ,∠OAE =a ,∠AEO =90°﹣a ,可得∠ECF =∠EFC ,根据等角对等边可得CE =EF ,从而得到AE =EF ,在Rt∠ABO 中,根据含30°的直角三角形的性质得到AO =2,可得2≤AE ≤4,从而得到EF 的长的整数值可能是2,3,4.【详解】解:如图,连结CE,∠在菱形ABCD 中,AB =BC ,∠ABE =∠CBE =30°,BE =BE ,∠∠ABE ∠∠CBE ,∠AE =CE ,设∠OCE =a ,∠OAE =a ,∠AEO =90°﹣a ,∠∠DEF =120°﹣(90°﹣a )=30°+a ,∠∠EFC =∠CDE +∠DEF =30°+30°+a =60°+a ,∠∠ECF=∠DCO+∠OCE=60°+a,∠∠ECF=∠EFC,∠CE=EF,∠AE=EF,∠AB=4,∠ABE=30°,∠在Rt∠ABO中,AO=2,∠OA≤AE≤AB,∠2≤AE≤4,∠AE的长的整数值可能是2,3,4,即EF的长的整数值可能是2,3,4.故选C.【点睛】考查了菱形的性质,全等三角形的判定与性质,等角对等边,根据含30°的直角三角形的性质,解题的关键是添加辅助线,证明∠ABE∠∠CBE.19.C有最小值,如下【分析】作点E关于AC的对称点K,EI+IJ=KI+KJ,当EJ∠DF时EI IJ图所示,延长KJ交DC于N点,过N作NM∠AD,得到∠KMN∠∠FCD,再由∠DJ0N∠∠DCF求出J0N,最后KN减去J0N即为所求.【详解】解:如图,作点E关于AC的对称点K,当EJ∠DF时EI+IJ有最小值为KJ0,此时设KN与DF、CD的交点分别为J0和N点,过N点作MN∠AD交AB于点M.∠∠KND+∠FDC=90°,∠DFC+∠FDC=90°∠∠KND=∠DFC又∠AB∠CD∠∠MKN=∠KND=∠DFC在∠MKN 和∠CFD 中90∠=∠⎧⎪∠=∠=⎨⎪=⎩MKN CFD KMN FCD MN DC ,∠∠MKN∠∠CFD(AAS)∠1,112=====+=KM CF KN DF DN AM ,又∠DJ 0N∠∠DCF ∠0=J N DN CF DF,代入数据:01J N,得0J∠00=-==KJ KN J N 故答案为:C.【点睛】本题考查了正方形的性质、相似三角形的性质和判定、线段最值问题等,两条折线段的最值问题一般通过平移、对称等转移到一条线段上去,然后再根据两点之间线段最短或点到直线的距离垂线段最短求解即可.20.(1【分析】根据菱形具有的平行四边形基本性质,对角线互相平分,且交点为坐标原点,则B ,D 关于原点对称, 因此在直角坐标系中两点的坐标关于原点对称,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数便可得.【详解】∠四边形ABCD 是菱形,对角线相交于坐标原点O∠根据平行四边形对角线互相平分的性质,A 和C ; B 和D 均关于原点O 对称 根据直角坐标系上一点(),x y 关于原点对称的点为()--x,y 可得已知点B的坐标是(-1, ,则点D的坐标是( .故答案为:(.【点睛】本题旨在考查菱形的基本性质及直角坐标系中关于原点对称点的坐标的知识点,熟练理解掌握该知识点为解题的关键.21.724 【分析】过点A 作AH BD ⊥于点H ,分别利用勾股定理和等面积法求出AH 和OH 的长度,从而可结合正切函数求出tan AOE ∠,进而结合题意可得出AE AO,即可得出结论.【详解】解:在Rt ABC 中,∠3,4AB BC ==,∠5AC =, ∠115222AO AC BD ===, 如解图,过点A 作AH BD ⊥于点H , ∠1122ABD S BD AH AB AD =⋅=⋅, ∠534AH =⨯, ∠125AH =,∠在Rt AOH 中,710OH ==, ∠tan 247AH OH AOE ==∠, 又∠EA CA ⊥,∠在Rt EAO △中,tan 247AE AO AOE ==∠, ∠724AO AE =, 故答案为:724.【点睛】本题考查矩形的性质,正切函数的定义等,理解矩形的基本性质,掌握正切函数的定义是解题关键.22.40°【分析】连接AC ,由矩形性质可得∠E =∠DAE 、BD =AC =CE ,知∠E =∠CAE ,而∠E =20°,可得∠ADB 度数.【详解】解:连接AC ,∠四边形ABCD是矩形,∠AD∠BE,AC=BD,且∠E=20°,∠∠E=∠DAE,又∠BD=CE,∠CE=CA,∠∠E=∠CAE,∠∠ADB=∠CAD=∠CAE+∠DAE=2∠E=40°,故答案为:40°.【点睛】本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.23.18【详解】由平行四边形的性质和已知条件计算即可,解题注意求平行四边形ABCD的两条对角线的和时要把两条对角线看作一个整体.解:∠四边形ABCD是平行四边形,∠AB=CD=4,∠∠OCD的周长是13,∠OD+OC=13-4=9,∠BD=2DO,AC=2OC,∠平行四边形的两条对角线的和=BD+AC=2(DO+OC)=18故选A.“点睛”本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形的基本性质:∠平行四边形两组对边分别平行;∠平行四边形两组对边分别相等;∠平行四边形的两种对角分别相等;∠平行四边形的对角线互相平分.24.16【详解】设多边形的边数为n,依题意,得:(n−2)⋅180°=7×360°,解得n=16,故答案为16.25.2或1或52- 【分析】过点B '作B M AD '⊥于M ,延长MB '交BC 于点H ,则MH BC ⊥于点H ,则MH BC ⊥,5MH AB ==,分点B 的对应点B '落在ADC ∠的角平分线上和点B 的对应点B '落在DAB ∠的角平分线两种情况,利用勾股定理列方程,即可求得答案. 【详解】解:四边形ABCD 是矩形,5,7,90,AB CD AD BC ADC AD BC ∥,过点B '作B M AD '⊥于M ,延长MB '交BC 于点H ,则MH BC ⊥于点H ,则MH BC ⊥,5MH AB ==,∠当点B 的对应点B '落在ADC ∠的角平分线上时,连接B D ',45,ADB MB D,DM B M∠设DM B M x '==,则7AM x =-,又由折叠的性质知5AB AB '==,∠在直角AMB '△中,由勾股定理得到:222AM AB B M ,即()22275x x -=-, 解得:1234,x x ==,则点B '到BC 的距离为532MH B M '-=-=或541MH B M '-=-=.∠当点B 的对应点B '落在DAB ∠的角平分线上时,45,B AMMB A ,AM B M∠设AM m B M '==,又由折叠的性质知5AB AB '==,∠在直角AMB '△中,由勾股定理得到:222AB AM B M ,即2225m m =+,解得:12m m ==(不合题意,舍去),则点B '到BC 的距离为5MH B M '-=-故答案为:2或1或5- 【点睛】本题考查的是翻折变换的性质、勾股定理、矩形的性质、解一元二次方程等知识点,掌握翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.26.2:5【详解】试题分析:根据平行四边形的性质可得∠ABN∠∠MCN ,再结合点M 是CD 的中点,根据相似三角形的性质及三角形的面积公式求解即可.∠平行四边形ABDC∠∠ABN∠∠MCN∠点M 是CD 的中点∠AN=2MN∠∠CAN 的面积是∠MCN 的面积的2倍,∠BCD 的面积是∠MCN 的面积的6倍 ∠四边形BDMN 是∠MCN 的面积的5倍∠:ACN BDMN S S ∆四边形=2:5.考点:平行四边形的性质,相似三角形的判定和性质,三角形的面积公式点评:平行四边形的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考常见题,一般难度不大,需熟练掌握.27.【分析】连接AC 交EF 于H ,连接A ′H ,当点G 与点H 重合时,此时A 'G +GC 的值最小,由勾股定理求出AC 的长,则可得出答案.【详解】解:连接AC 交EF 于H ,连接A ′H ,当点G 与点H 重合时,此时A 'G +GC 的值最小,设AB =x ,BC =y ,∠矩形ABCD 的周长为16,面积为6,∠2()166x y xy +=⎧⎨=⎩, ∠22x y +52=,∠AC ==∠A 'G +GC 的最小值为故答案为:【点睛】本题考查翻折变换,矩形的性质,轴对称最短问题等知识,解题的关键是学会用转化的思想思考问题.28.43【分析】根据题意可知1tan =2BC DG BAC AC AG ==∠,tan =EF CH HAC AF AC=∠再利用正方形的性质求解即可.【详解】解:∠四边形DEFG 是正方形,∠DG=G F =EF ,∠DGF =∠EF A =90°,∠∠DGA =90°, ∠tan =DG BAC AG ∠,tan =EF HAC AF ∠ ∠∠ACB =90°,BC =2,AC =4, ∠1tan ==2BC BAC AC ∠,tan =CH HAC AC ∠ ∠1tan =2BC DG BAC AC AG==∠, ∠2AG DG =,∠3=3AF DG EF = ∠1tan =3EF CH HAC AF AC ==∠, ∠433AC CH ==, 故答案为:43【点睛】本题主要考查了正方形的性质和解直角三角形,解题的关键在于能够熟练掌握解直角三角形的相关知识.29.16936【分析】过点A 作MN ∠BC ,分别交BC 于M ,交AD 于N ,则四边形ABMN 是矩形,AM =AN ,MN =AB =6,然后证明A MB HCB '△∽△,得到485AN BM BC ===,45A M HC '=,再由折叠的性质可得10BC BC '==,AE A E '=,CH C H '=,则可由勾股定理得到8AC '=,则2C D AD AC ''=-=,从而可以求得103CH =,得到8=3A M ',则10=3A N MN A M ''=-,设=AE A E y '=,则8EN y =-,由222A E A N EN ''=+,得到()2221083y y ⎛⎫=+- ⎪⎝⎭,解方程即可. 【详解】解:如图所示,过点A 作MN ∠BC ,分别交BC 于M ,交AD 于N ,∠四边形ABCD 是矩形,∠=90A ABM BMN C ∠=∠=∠=︒∠ ,CD ∠BC ,∠四边形ABMN 是矩形,∠AM =AN ,∠A M BC '⊥,CD BC ⊥,∠A M CH '∥,∠A MB HCB '△∽△, ∠BA BM A M BH BC HC''==, ∠4BA HA ''=,∠5BH HA '=, ∠4=5BA BM A M BH BC HC ''==,∠485AN BM BC ===,45A M HC '=, 由折叠的性质可得10BC BC '==,AE A E '=,CH C H '=,∠8AC '=,∠2C D AD AC ''=-=,设C H CH x '==,则6DH x =-,∠222C H DH C D ''=+,∠()2264x x =-+, 解得103x =, ∠103CH =, ∠8=3A M ', ∠10=3A N MN A M ''=-, 设=AE A E y '=,则8EN y =-,∠222A E A N EN ''=+, ∠()2221083y y ⎛⎫=+- ⎪⎝⎭, 解得16936y =, ∠16936AE =, 故答案为:16936.【点睛】本题主要考查了矩形的性质与判定,折叠的性质,勾股定理,解题的关键在于能够熟练掌握矩形的性质与判定.30.【分析】根据矩形的性质和勾股定理,用含t 的代数式表示出P A ,PC ,再列出方程,即可求解.【详解】解:∠在矩形ABCD 中,6cm AB =,BC =,点P 从点A 出发沿AB 以2cm /s 的速度向点B 移动,∠P A =2t ,PC ∠2PA PC =,∠2t =t 1t 2, 故答案是:【点睛】本题主要考查矩形的性质,勾股定理,二次根式,一元二次方程,用用含t 的代数式表示出P A ,PC ,是解题的关键.31.2013【详解】试题分析:在菱形ABCD 中,BD∠AC ,BD 与AC 互相平分,因为∠BAD=60°,所以∠BAC=30°,又因为AC=2,设BD 的一半为x ,则AB=2x ,根据勾股定理,得1AP ,因为i i PE AB ⊥于i E ,i i PF AD ⊥于i F ,利用等面积法,得12·AD·1P F +12·AB·1P E =12·BD·12AC 1P F +1P E )1P F +1P E =1,同理可得,111122222013201320132013PE PF P E P F P E P F ++++⋯++=2013×1=2013.考点:菱形的相关性质和等面积法的应用点评:该题主要考查学生对菱形性质的理解和掌握程度,同时要求学生提高对题目的观察能力,找出其中的规律.32.2【分析】由题目中第一个图可到小正方形的边长与小等腰三角形的直角边相等,与平行四边形的短边相等,所以大正方形的对角线长度为4倍小正方形边长,设出小正方形边长,利用大正方形面积列出方程,解出方程即可【详解】设小正方形边长为a ,由题目中第一个图可到小正方形的边长与小等腰三角形的直角边相等,与平行四边形的短边相等, 所以大正方形对角线长4a ,S 大正方形=442a a ⨯。
安徽省2017年中考数学总复习 第一轮 中考考点系统复习 第五单元 四边形单元测试(五)四边形试题
单元测试(五) 四边形(时间:100分钟满分:150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.十二边形的外角和等于( B )A.180° B.360° C.540° D.1 800°2.如果正n边形的一个内角等于一个外角的3倍,那么n的值是( B )A.9 B.8 C.6 D.73.(2016·莆田)菱形具有而一般平行四边形不具有的性质是( D )A.对边相等 B.对角相等 C.对角线互相平分 D.对角线互相垂直4.如图,在▱ABCD中,AC平分∠DAB,AB=3,则▱ABCD的周长为( C )A.6 B.9 C.12 D.155.如图,在▱ABCD中,已知∠COB与∠ACB互余,AC=10 cm,BD=6 cm,则AD的长为( A )A.4 cm B.5 cm C.6 cm D.8 cm6.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD 中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是( B )A.①②B.②③ C.①③ D.②④7.如图,刘海从P点向西直走8米后,向左转,转动的角度为α,再走8米,如此重复,刘海共走了120米回到点P,则α的度数为( B )A.18° B.24° C.30° D.36°8.如图,在矩形ABCD中,EF∥AB,GH∥BC,EF,GH的交点P在BD上,图中面积相等的四边形有( C )A.3对 B.4对 C.5对 D.6对9.(2016·阜阳二模)如图,正方形ABCD的边长为6,点E,F分别在AB,AD上,若点E为AB的中点.且满足BE +DF=EF,则EF的长为( C )A.4 B.3 2 C.5 D.4 210.(2016·濉溪三模)如图,在矩形ABCD中,AD=6,AB=4,点E,G,H,F分别在AB,BC,CD,AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE,PF,PG,PH,则图中阴影面积(△PEF和△PGH的面积和)等于( A )A .7B .8C .12D .14提示:连接EG ,FH ,则S 阴影=12S ▱EFHG =12(S ▱ABCD -S △AEF -S △BEG -S △CHG -S △DHF )=12×(4×6-12×2×3-12×1×4-12×2×3-12×1×4)=12×(24-6-4)=7. 二、填空题(本大题共4小题,每小题5分,满分20分)11.若凸n 边形的内角和为1 260°,则从一个顶点出发引的对角线条数是6.12.矩形ABCD 的对角线AC ,BD 交于点O ,若∠AOB=60°,AB =6,则BC13.如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,如果AC =14,BD =8,AB =x ,那么x 的取值范围是3<x <11.14.(2016·安徽模拟)如图,点E 是正方形ABCD 外一点,连接AE ,BE 和DE ,过点A 作AE 的垂线交DE 于P ,连接PB.若A E =AP =1,PB =3,下列结论:①△ADP ≌△ABE ;②BE⊥DE;③点B 到直线AE 的距离为7;④S 正方形ABCD =8+14. 正确结论的序号是①②④.提示:①首先利用已知条件根据边角边可以证明△ADP≌△ABE; ②利用全等三角形的性质对顶角相等即可解答;③由(1)可得∠BEP=90°,故BE 不垂直于AE ,过点B 作BF⊥AE,延长线于点F ,由①得∠AEB=135°,所以∠FEB =45°,所以△EFB 是等腰直角三角形,故B 到直线AE 距离为BF =142; ④根据勾股定理得到BF ,得到AF 的长,再利用勾股定理解答即可. 三、(本大题共2小题,每小题8分,满分16分)15.如图,已知▱ABCD 中,F 是BC 边的中点,连接DF 并延长,交AB 的延长线于点E.求证:AB =BE.证明:∵四边形ABCD 为平行四边形,∴CD ∥AE ,CD =AB.∴∠DCF =∠EBF,∠CDF =∠BEF.∵CF=BF ,∴△CDF ≌△BEF(AAS). ∴CD =BE.∴AB=BE.16.如图,在△ABC 中,∠ACB =90°,BC 的垂直平分线EF 交BC 于D ,交AB 于E ,且CF =BE.求证:四边形BECF 是菱形.证明:∵EF 垂直平分BC ,∴BE =EC ,BF =CF.∵CF =BE ,∴BE =EC =CF =BF. ∴四边形BECF 是菱形.四、(本大题共2小题,每小题8分,满分16分)17.如图,在矩形ABCD 中,以顶点B 为圆心、边BC 长为半径作弧,交AD 边于点E ,连接BE ,过C 点作CF⊥BE 于F.猜想线段BF 与图中现有的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明.猜想:BF =AE.证明:∵四边形ABCD 是矩形,∴∠A =90°. ∵CF ⊥BE.∴∠A =∠BFC=90°. ∵AD ∥BC ,∴∠AEB =∠FBC.又∵BC=BE(同一半径),∴△BFC ≌△EAB(AAS).∴BF=AE.18.如图,ABCD 是正方形,点G 是BC 上的任意一点,DE ⊥AG 于E ,BF ∥DE ,交AG 于F. 求证:AF =BF +EF.证明:∵ABCD 是正方形,∴AD =AB ,∠BAD =90°.∵DE ⊥AG ,∴∠DEG =∠AED=90°.∴∠ADE +∠DAE=90°. 又∵∠BAF+∠DAE=∠BAD=90°,∴∠ADE =∠BAF. ∵BF ∥DE ,∴∠AFB =∠DEG=∠AED. 在△ABF 和△DAE 中,⎩⎪⎨⎪⎧∠AFB=∠DEA,∠BAF =∠ADE,BA =AD ,∴△ABF ≌△DAE(AAS).∴BF=AE.∵AF=AE +EF ,∴AF =BF +EF.五、(本大题共2小题,每小题10分,满分20分)19.已知:如图,四边形ABCD 是菱形,E 是BD 延长线上一点,F 是DB 延长线上一点,且DE =BF.请你以F 为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可). (1)连接AF ;(2)猜想:AF =AE ; (3)证明:证明:∵四边形ABCD 是菱形,∴AB =AD , ∴∠ABD =∠ADB.∴∠ABF=∠ADE. 在△ABF 和△ADE 中,⎩⎪⎨⎪⎧AB =AD ,∠ABF =∠ADE,BF =DE ,∴△ABF ≌△ADE.∴AF =AE.20.(2016·苏州)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,过点D 作对角线BD 的垂线交BA 的延长线于点E.(1)求证:四边形ACDE 是平行四边形; (2)若AC =8,BD =6,求△ADE 的周长.解:(1)证明:∵四边形ABCD 是菱形.∴AB∥CD,AC ⊥BD. ∴AE ∥CD.∠AOB =90°.又∵DE⊥BD,即∠EDB=90°.∴∠AOB =∠EDB.∴DE∥AC.∴四边形ACDE 是平行四边形.(2)∵四边形ABCD 是菱形,AC =8,BD =6.∴AO=4,DO =3,AD =CD =5. 又∵四边形ACDE 是平行四边形,∴AE =CD =5,DE =AC =8. ∴△ADE 的周长为AD +AE +DE =5+5+8=18. 六、(本题满分12分)21.如图,在▱ABCD 中,点P 是AB 边上一点(不与A ,B 重合),CP =CD ,过点P 作PQ⊥CP,交AD 边于点Q ,连接CQ.(1)若∠BPC =∠AQP,求证:▱ABCD 是矩形;(2)在(1)的条件下,当AP =2,AD =6时,求AQ 的长.解:(1)证明:∵∠BPQ=∠BPC+∠CPQ=∠A+∠AQP,∠BPC =∠AQP, ∴∠CPQ =∠A.∵PQ⊥CP,∴∠A =∠CPQ=90°, ∴▱ABCD 是矩形.(2)∵四边形ABCD 是矩形,∴∠D =∠CPQ=90°,在Rt △CDQ 和Rt △CPQ 中,⎩⎪⎨⎪⎧CQ =CQ ,CD =CP.∴Rt △CDQ ≌Rt △CPQ(HL).∴DQ=PQ.设AQ =x ,则DQ =PQ =6-x.在Rt △APQ 中,AQ 2+AP 2=PQ 2,∴x 2+22=(6-x)2,解得x =83.∴AQ 的长是83.七、(本题满分12分)22.已知:矩形ABCD 中AD >AB ,O 是对角线的交点,过O 任作一直线分别交BC 、AD 于点M ,N(如图1). (1)求证:BM =DN ;(2)如图2,四边形AMNE 是由四边形CMND 沿MN 翻折得到的,连接CN ,求证:四边形AMCN 是菱形; (3)在(2)的条件下,若△CDN 的面积与△CMN 的面积比为1∶3,求MNDN 的值.解:(1)证明:连接BD ,则BD 过点O.∵AD ∥BC ,∴∠OBM =∠ODN.又∵OB=OD ,∠BOM =∠DON, ∴△OBM ≌△ODN(AS A).∴BM=DN.(2)证明:∵四边形ABCD 为矩形,∴AD∥BC,AD =BC. 又∵BM=DN ,∴AN =CM.∴四边形AMCN 是平行四边形. 由翻折得AM =CM ,∴四边形AMCN 是菱形.(3)∵S △CDN =12DN·CD,S △CMN =12CM·CD,S △CDN ∶S △CMN =1∶3,∴DN ∶CM =1∶3.连接AC ,则AC 过点O ,且AC⊥MN.设DN =k ,则CN =AN =CM =3k ,AD =4k. ∴CD =NC 2-DN 2=9k 2-k 2=22k ,OC =12AC =12AD 2+CD 2=1216k 2+8k 2=6k.∴MN =2ON =2CN 2-OC 2=29k 2-6k 2=23k.∴MN DN =23kk=2 3. 八、(本题满分14分)23. (2016·宿州灵璧县一模)如图1,将三角板放在正方形ABCD 上,使三角板的直角顶点E 与正方形ABCD 的顶点A 重合,三角板的一边交CD 于点F.另一边交CB 的延长线于点G.(1)求证:EF =EG ; (2)如图2,移动三角板,使顶点E 始终在正方形ABCD 的对角线AC 上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由;(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B ,其他条件不变,若AB =a ,BC =b ,求EFEG的值.解:(1)证明:∵∠GEB+∠BEF=90°,∠DEF +∠BEF=90°, ∴∠DEF =∠GEB.在△FED 和△GEB 中,⎩⎪⎨⎪⎧∠DEF=∠EGB,ED =EB ,∠D =∠EBG,∴Rt △FED ≌Rt △GEB(ASA).∴EF=EG.(2)成立.证明:过点E 作EH⊥BC 于点H ,EP ⊥CD 于点P. ∵四边形ABCD 为正方形,∴CE 平分∠BCD.又∵EH⊥BC,EP ⊥CD ,∴EH =EP.∴四边形EHCP 是正方形.∴∠HEP=90°. ∵∠GEH +∠HEF=90°,∠PEF +∠HEF =90°,∴∠PEF =∠GEH. ∴Rt △FEP ≌Rt △GEH. ∴EF =EG.(3)过点E 作EM⊥BC 于点M ,过点E 作EN⊥CD 于点N ,则∠MEN=90°, ∴EM ∥AB ,EN ∥AD.∴△CEN ∽△CAD ,△CEM ∽△CAB. ∴EN AD =CE CA ,EM AB =CE CA. ∴NE AD =EM AB ,即EN EM =AD AB =CB AB =b a. ∵∠NEF +∠FEM=∠GEM+∠FEM=90°,∴∠GEM =∠FEN. ∵∠GME=∠FNE=90°,∴△GME ∽△FNE. ∴EF EG =EN EM ,∴EF EG =b a.。
2017最新中考数学试题分类汇编:四边形(含答案解析)
2017最新中考数学试题分类汇编:四边形(含答案解析)D【答案】6.【解析】三角形ABC 为等边三角形。
2.(2015梅州)如图,在□ABCD 中,BE 平分∠ABC ,BC=6,DE=2,求□ABCD 的周长.考点:平行四边形的性质..分析:根据四边形ABCD 为平行四边形可得AE ∥BC ,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB ,继而可得AB=AE ,然后根据已知可求得结果. 解答:解:∵四边形ABCD 为平行四边形,∴AE ∥BC ,AD=BC ,AD=BC ,∴∠AEB=∠EBC ,∵BE 平分∠ABC ,∴∠ABE=∠EBC ,∴∠ABE=∠AEB ,∴AB=AE ,∴AE+DE=AD=BC=6,∴AE+2=6,∴AE=4,∴AB=CD=4,∴▱ABCD 的周长=4+4+6+6=20,故答案为:20.点评:本题考查了平行四边形的性质,解答本题的关键是根据平行线的性质和角平分线的性质得出∠ABE=∠AEB .4.(广东汕尾)如图,在□ABCD 中,BE 平分∠ABC ,BC = 6,DE = 2 ,则□ABCD 周长等于 .205. (2015•益阳)如图是用长度相等的小棒按一定规律摆成 1 的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n 个图案中有 5n+1 根小棒.第13题图E D B A考点:规律型:图形的变化类.分析: 由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2﹣1=11根小棒,第3个图案中有3×5+3﹣2=16根小棒,…由此得出第n 个图案中有5n+n ﹣(n ﹣1)=5n+1根小棒.解答: 解:∵第1个图案中有5+1=6根小棒,第2个图案中有2×5+2﹣1=11根小棒,第3个图案中有3×5+3﹣2=16根小棒,…∴第n 个图案中有5n+n ﹣(n ﹣1)=5n+1根小棒.故答案为:5n+1.点评: 此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.6.(株洲)“皮克定理”是来计算原点在整点的多边形面积的公式,公式表达式为12b S a =+-,孔明只记得公式中的S 表示多边形的面积,a 和b 中有一个表示多边形那边上(含原点)的整点个数,另一个表示多边形内部的整点的个数,但不记得究竟是a 还是b 表示多边形内部的整点的个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部整点个数的字母是 ;并运用这个公式求得如图2中多边形的面积是【试题分析】 本题考点:找到规律,求出,a b 表示的意义;由图1的直角三角形的面积可以利用三角形面积公式求出为:4;而边上的整点为8,里面的点为1;由公式12b S a =+-可知,b 为偶数,故8b =,1a =,即b 为边上整点的个数,a 为形内的整点的个数;利用矩形面积进行验证:10b =,第16题图523568图2y y 图187654322a =,代入公式12bS a =+-=6;利用长×宽也可以算出=6,验证正确。
中考数学总复习《四边形的综合题》专项测试卷-附参考答案
中考数学总复习《四边形的综合题》专项测试卷-附参考答案一、单选题(共12题;共24分)1.如图在平行四边形ABCD中,已知AC=6cm,若△ACD的周长为16cm,则平行四边形ABCD的周长为()A.26cm B.24cm C.20cm D.18cm2.一个十边形的内角和等于()A.1800°B.1660°C.1440°D.1200°3.下列命题正确的是()A.有一个角是直角的四边形是矩形;B.有三个角是直角的四边形是矩形;C.对角线相等的四边形是矩形;D.对角线互相平分的四边形是矩形;4.6张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,则按照同样的放置方式,S始终保持不变,则a,b满足()A.a=2b B.a=3b C.a=4b D.a=b5.如图,菱形ABCD中,∠ABC=150°,DH⊥AB于H,交对角线AC于E,过E作EF⊥AD于F.若△DEF的周长为3+√3,则菱形ABCD的面积为()A.18B.14+8√3C.7+4√3D.12+6√36.小明在计算某多边形的内角和时,则由于马虎漏掉了一个角,结果得到970°,则原多边形是一个()A.七边形B.八边形C.九边形D.十边形7.如图,四边形ABCD四边的中点分别为E,F,G,H,对角线AC与BD相交于点O,若四边形EFGH的周长是3,则AC+BD的长为()A.3B.6C.9D.128.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“匀称三角形”.若Rt△ABC 是“匀称三角形”,且∠C=90°,AC>BC则AC:BC:AB为()A.√3:1:2B.2:√3:√7C.2:1:√5D.无法确定9.如图,在平行四边形ABCD中,E是AB的中点,F是AD的中点,FE交AC于O点,交CB的延长线于G点,那么S△AOF:S△COG=()A.1:4B.1:9C.1:16D.1:2510.□ABCD中,△B=50°,则△C=()A.40°B.50°C.130°D.140°11.用一批完全相同的正多边形能镶嵌成一个平面图案的是()A.正五边形B.正六边形C.正七边形D.正八边形12.如图,在菱形ABCD中,AC与BD相交于点O,图中等腰三角形的个数为()A.1B.2C.3D.4二、填空题(共6题;共8分)13.如图,在矩形ABCD中AB=6,BC=9点P是矩形ABCD内一动点,且SΔABP=SΔCDP,则PC+PD的最小值为.14.如图,AD是锐角△ABC的BC边上的高,正方形EFGH的一边EF在BC上,顶点G,H分别在AC,AB上,若BC=15,AD=10,则EF的长为.15.如图,在矩形ABCD中AB=4,BC=6对角线AC的垂直平分线分别交AC,AD,BC于点.O,E,F,连结AF,CE,则AEBF=16.已知一个多边形的所有内角与它的一个外角之和是2400°,那么这个多边形的边数是,这个外角的度数是.17.如图,□ABCD绕点A逆时针旋转30°,得到□AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则△C=18.图是一张矩形纸片ABCD,点E在AB边上,把△ADE沿直线DE折叠,使点A落在BC边上的点F处,点G在BC边上,把△CDG沿直线DG折叠,使点C恰好落在线段DF上的点H处,∠EDG=°.若BF+CG=32FG ,则CGCD=.三、综合题(共6题;共65分)19.如图,在△ACB中∠ABC=90°,点D是斜边AC上的一点DA=DB,点F是AB的中点,过点C作CE//BD交FD的延长线于点E.(1)求证:四边形CBDE是平行四边形;(2)联结BE、AE,如果∠CBE=45°,求证:AB=3BC.20.如图,在平行四边形ABCD中,过点D作DE⊥AB于点E,点F F在边CD上,且FC= AE连接AF和BF.(1)求证:四边形DEBF是矩形;(2)若AF平分∠DAB,FC=6和DF=10,求BF的长.21.已知:在△ABC中,AB=AC,AD△BC于点D,分别过点A和点C作BC、AD边的平行线交于点E.(1)求证:四边形ADCE是矩形;(2)连结BE,若cos∠ABD=12,AD= 2√3求BE的长.22.如图,在△ABC中AD⊥BC,垂足为D,与BC=12,AD=6,tanC=3 2 .(1)求sin∠ABD的值;(2)过点B作BE⊥BC,若BE=10求AE的长.23.四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE△△ABF;(2)若BC=12,DE=5,求△AEF的面积.24.如图,在梯形ABCD中,AD△BC,△B=90°,AD=24cm,BC=26cm,动点P从A点开始沿边AD以每秒1cm的速度向点D移动,动点Q从C点开始沿CB以每秒3cm的速度向B移动,P、Q同时出发.(1)当运动多少秒时,则四边形PQCD是平行四边形?(2)当运动多少秒时,则四边形PQCD是直角梯形?(3)多少秒后,梯形PQCD是等腰梯形?参考答案1.【答案】C 2.【答案】C 3.【答案】B 4.【答案】A 5.【答案】B 6.【答案】B 7.【答案】A 8.【答案】B 9.【答案】B 10.【答案】C 11.【答案】B 12.【答案】D 13.【答案】3√13 14.【答案】6 15.【答案】13516.【答案】15;60° 17.【答案】105 18.【答案】45;2519.【答案】(1)证明: ∵DA =DB∴ΔADB 是等腰三角形 ∵ 点 F 是 AB 的中点 ∴DF ⊥AB ∴∠AFD =90° ∵∠ABC =90° ∴∠AFD =∠ABC ∴EF//BC ∵EC//DB∴ 四边形 CBDE 是平行四边形(2)解: ∵DF ⊥AB ,点 F 是 AB 的中点 ∴EF 垂直平分 AB∴DF =12BC∵四边形CBDE是平行四边形∴BC=DE∴EF=DF+DE=32BC∵BE平分∠ABC∴∠FBE=45°∴∠FBE=∠FEB=45°∴BF=EF∴BF=32BC∴AB=2BF=3BC 20.【答案】(1)证明:∵四边形ABCD是平行四边形∴CD//AB∵FC=AE∴CD−FC=AB−AE即DF=BE∴四边形DEBF是平行四边形又∵DE⊥AB∴∠DEB=90°∴平行四边形DEBF是矩形;(2)解:∵AF平分∠DAB∴∠DAF=∠BAF∵CD//AB∴∠DFA=∠BAF∴∠DFA=∠DAF∴AD=DF=10在Rt△AED中,AE=FC=6,由勾股定理得:DE=√AD2−AE2=√102−62=8由(1)得四边形DEBF是矩形∴BF=DE=8.21.【答案】(1)证明:∵AE // BC,CE // AD∴四边形ADCE是平行四边形∵AD △BC,AB=AC∴△ADC=90°∴平行四边形ADCE是矩形(2)解:连接DE,如图:在Rt△ABD中,△ADB =90°∵cos∠ABD=1 2∴BD AB=12∴设BD=x,AB=2x∴AD= √3x∵AD= 2√3∴x=2∴BD=2∵AB=AC,AD△BC∴BC=2BD=4∵矩形ADCE中,EC=AD= 2√3, BC=4∴在Rt△BDE中,利用勾股定理得BE= √BC2+EC2= √42+(2√3)2= 2√7 22.【答案】(1)解:在Rt△ADC中∵AD=6,tanC=3 2∴CD=4∴BD=12-4=8在Rt△ABD中,根据勾股定理可得AB=√BD2+AD2=10∴sin∠ABD=ADAB=610=35(2)解:作AF△BE于点F∵BE⊥BC∴四边形ADBF是矩形∴AF=BD=8,AD=BF=6∴EF=10-6=4在Rt△AEF中,根据勾股定理可得AB=√AF2+EF2=4√5 23.【答案】(1)解:∵四边形ABCD是正方形∴AD=AB,△D=△ABC=90°而F是CB的延长线上的点∴△ABF=90°在△ADE和△ABF中∵{AB=AD∠ABF=∠ADEBF=DE∴△ADE△△ABF(SAS)(2)解:∵BC=12,∴AD=12在Rt△ADE中,DE=5,AD=12∴AE= √AD2+DE2=13∵△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90°得到∴AE=AF,△EAF=90°∴△AEF的面积= 12AE2= 12×169=84.524.【答案】(1)解:根据题意得:PA=tcm,CQ=3tcm,则PD=AD﹣PA=24﹣t(cm).∵AD△BC即PD△CQ∴当PD=CQ时,则四边形PQCD为平行四边形即24﹣t=3t解得:t=6即当t=6s时,则四边形PQCD为平行四边形(2)解:当PA=BQ时,则四边形PQCD是直角梯形∴t=26﹣3t∴t= 13 2即t= 132s时,则四边形PQCD是直角梯形(3)解:过D作DE△BC于E则四边形ABED为矩形∴BE=AD=24cm∴EC=BC﹣BE=2cm当PQ=CD时,则四边形PQCD为等腰梯形,如图所示:过点P作PF△BC于点F,过点D作DE△BC于点E则四边形PDEF是矩形∴EF=PD,PF=DE在Rt△PQF和Rt△CDE中{PF=DEPQ=CD∴Rt△PQF△Rt△CDE(HL)∴QF=CE∴QC﹣PD=QC﹣EF=QF+EC=2CE即3t﹣(24﹣t)=4解得:t=7即当t=7s时,则四边形PQCD为等腰梯形.第11页共11。
中考数学总复习《四边形的综合题》练习题附带答案
中考数学总复习《四边形的综合题》练习题附带答案一、单选题(共12题;共24分)1.如图.将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF 的大小为A.15°B.30°C.45°D.60°2.如图,▱ABCD的对角线AC与BD相交于点O,且∠OCD=90°.若E是BC边的中点,BDD=20 ,AC=12 ,则OE的长为()A.6B.5C.4D.33.一个正方形的边长增加了3cm,面积相应增加了45cm2,则这个正方形的边长为()A.6cm B.7cm C.8cm D.9cm4.如图所示,某居民小区为了美化居住环境,要在一块三角形空地上围一个四边形花坛.已知四边形BCFE的顶点E,F分别是边AB,AC的中点,量得EF=8米,∠B=∠C=60°则四边形花坛的周长是()A.24米B.32米C.40米D.48米5.如图,五边形ABCDE中,∠B=80°,∠C=110°,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC 的外角,则∠1+∠2+∠3等于()A.90°B.190°C.210°D.180°6.在四边形ABCD中,O是对角线交点,下列条件中,不能判定四边形ABCD是平行四边形的是()A.AD//BC,AD=BC B.AB=DCC.OA=OC,OD=OB D.AB//DC7.如图,在□ABCD中,E为边CD上一点,将∠ADE沿AE折叠至∠AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为_______.A.36°B.52°C.48°D.30°8.如图,已知直线l1//l2,含30°角的三角板的直角顶点C在l1上,30°角的顶点A在l2上,如果边AB与l2的交点D是AB的中点,那么∠1的度数为()A.100°B.110°C.120°D.130°9.小聪在作线段AB的垂直平分线时他是这样操作的:分别以A和B为圆心,大于12AB的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是()A.矩形B.菱形C.正方形D.长方形10.如图,正方形的周长为8个单位,在该正方形的4个顶点处分别标上0,2,4,6,先让正方形上表示数字6的点与数轴上表﹣3的点重合,再将数轴按顺时针方向环绕在该正方形上,则数轴上表示2017的点与正方形上的数字对应的是()A.0B.2C.4D.611.如图,菱形ABCD中,BC=5 ,对角线AC等于8,DE⊥AB则DE的长为()A.5B.6C.9.6D.4.812.如图,在矩形ABCD中,AB=4 ,BC=3 ,点E为AB上一点,连接DE,将△ADE沿DE折叠,点A落在A′处,连接A′C,若F,G分别为A′C,BC的中点,则FG的最小值为()A.2B.√72C.√5−12D.1二、填空题(共6题;共7分)13.如图,在平面直角坐标系中,A(4,0)、B(0,-3),以点B为圆心、2 为半径的∠B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为.14.某古村落为方便游客泊车,准备利用长方形晒谷场长60m一侧,规划一个停车场,已知每个停车位需确保有如长5.5m,宽2.5m的长方形AEDF供停车,如图▱ABCD是其中一个停车位,所有停车位都平行排列,∠ABD为60°,则每个体车位的面积大约为m2(结果保留整数),这个晒谷场按规划最多可容纳个停车位.(√3≈1.7)15.一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.16.已知一个多边形的内角和为900°,则这个多边形的边数是17.如图,矩形ABCD中,AB=3 ,BC=4 ,CE是∠ACB的平分线与边AB的交点,则BE的长为.18.如图,在五边形ABCDE中∠A+∠B+∠E=300°,DP 、CP 分别平分∠EDC 、 ∠BCD则∠P=.三、综合题(共6题;共76分)19.如图,已知O是∠ABCD的对角线AC的中点,M是OA上任意一点(M不与O,A重合).(1)画一个与∠DAM关于点O成中心对称的∠BCN;(2)画一个与∠DCM关于点O成中心对称的图形;(3)连接DN,BM,试判断图中还有几个平行四边形.20.如图,在直角梯形ABCD中,AD//BC,∠A=∠B=90°,AB=12,BC=21,AD=16.动点P从点B出发,沿射线BC的方向以每秒2个单位长的速度运动,动点Q同时从点A出发,在线段AD上以每秒1个单位长的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t(秒).(1)设∠DPQ的面积为S,用含有t的代数式表示S.并写出t的取值范围.(2)当∠DPQ的面积为36时求运动时间t的值.(3)当四边形PCDQ是平行四边形,求t的值.21.如图,某校准备一面利用墙,其余三面用篱笆围成一个矩形花圃ABCD,已知旧墙可利用的最大长度为13m,篱笆长为24m,设垂直于墙的AB边长为xm.(1)若围成的花圃面积为70m2时求BC的长;(2)如图,若计划将花圃中间用一道篱笆隔成两个小矩形,且花圃面积为78m2,请你判断能否围成这样的花圃?如果能,求BC的长:如果不能,请说明理由.22.如图,在矩形ABCD中,AB=6,BC=8.(1)用尺规作图法作菱形AECF,使点E、F分别在BC和AD边上;(2)求EF的长度.23.如图,已知:AB//DF,BC//ED,AC//EF(1)图中有几个平行四边形?将它们分别表示出来.(2)在(1)中选择一个进行证明.(3)证明:F是BC边上的中点.24.问题提出(1)如图①,在矩形ABCD中,AB=2AD,E为CD的中点,则∠AEB∠ACB (填“>”“<”“=”);(2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时∠APB最大?并说明理由;问题解决(3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.参考答案1.【答案】C 2.【答案】C 3.【答案】A 4.【答案】C 5.【答案】B 6.【答案】D 7.【答案】A 8.【答案】C 9.【答案】B 10.【答案】B 11.【答案】D 12.【答案】D 13.【答案】3214.【答案】17;19 15.【答案】1440° 16.【答案】7 17.【答案】4318.【答案】60°19.【答案】(1)解:如图,在OC 上截取ON=OM,连接BN,则∠BCN 与∠DAM 关于点O 成中心对称.(2)解:∠BAN 与∠DCM 关于点O 成中心对称. (3)解:如图,∠BAN 与∠DCM 关于点O 成中心对称. ∴∠BAN∠∠DCM∴BN=DM ,∠BNA=∠DMC ∴BN∠DM∴DMBN 是平行四边形》 故答案为:还有一个,即∠DMBN.20.【答案】(1)解:根据题意得:AQ=t ,∴DQ=16−t∴∠DPQ的面积S= 12×(16−t)×12=96−6t即S与t之间的函数关系式为:S=96−6t(0≤t≤10.5)(2)解:当S=6时96−6t=36解得:t=10∴t=10时∠DPQ的面积是36(3)解:∵PB=2t,∴PC=21−2t,若四边形PCDQ是平行四边形则DQ=PC∴16−t=21−2t解得:t=5,∴当t=5时四边形PCDQ是平行四边形21.【答案】(1)解:根据题意得:BC=(24-2x)m则(24-2x)x=70解得:x1=5,x2=7当x1=5时BC=14,x2=7时BC=10墙可利用的最大长度为13m,BC=14舍去.答:BC的长为10m.(2)解:不能围成这样的花圃.理由如下:依题意可知:(24-3x)x=78即x2-8x+26=0,∠=82-4×1×26=-40<0所以方程无实数根答:不能围成这样的花圃.22.【答案】(1)解:如图,连接AC,分别以A、C为圆心,大于12AC的长为半径画弧,连接两弧交点,即为线段AC的垂直平分线MN,MN与线段BC、AD分别交于点E、F,连接AE,CF,菱形AECF即为所求作.(2)解:AC交EF于点O∵四边形ABCD是矩形∴AB =CD =6,BC =AD =8,∠D =90° 由勾股定理得AC =√AD 2+CD 2=10 ∴OA =OC =5设AF =FC =x ,由勾股定理得x 2=(8−x)2+62解得x =254∵∠FOC =90°∴OF =√FC 2−OC 2=√(254)2−52=154∴EF =2OF =152∴EF 的长为152.23.【答案】(1)解:∵AB∠DF ,ED∠BC ,EF∠AC∴图中共有3个平行四边形,即 ▱AEFD 、 ▱BFDE 和 ▱CDEF ; (2)解:∵AB∠DF ,EF∠AC ∴AE∠DF ,EF∠AD∴四边形AEFD 是平行四边形.(3)证明:四边形 BFDE 和四边形 CDEF 都是平行四边形∴DE =BF DE =CF∴BF =CFF 是 BC 边上的中点.24.【答案】(1)> 问题探究(2)解:当点P 位于CD 的中点时∠APB 最大,理由如下:假设P 为CD 的中点,如图2,作∠APB 的外接圆∠O ,则此时CD 切∠O 于点P在CD 上取任意异于P 点的点E ,连接AE ,与∠O 交于点F ,连接BE ,BF ∵∠AFB 是∠EFB 的外角 ∴∠AFB >∠AEB ∵∠AFB=∠APB∴∠APB>∠AEB故点P位于CD的中点时∠APB最大:(3)解:如图3,过点E作CE∠DF交AD于点C,作线段AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ以点O为圆心,OA长为半径作圆,则∠O切CE于点G,连接OG,并延长交DF于点P,此时点P 即为小刚所站的位置由题意知DP=OQ= √OA2−AQ2∵OA=CQ=BD+QB﹣CD=BD+ 12AB﹣CD,BD=11.6米,12AB=3米,CD=EF=1.6米∴OA=11.6+3﹣1.6=13米∴DP= √132−32=4√10米即小刚与大楼AD之间的距离为4 √10米时看广告牌效果最好.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单元测试(五) 四边形
(时间:45分钟 满分:100分)
一、选择题(每小题4分,共32分) 1.八边形的内角和为( C )
A .180°
B .360°
C .1 080°
D .1 440°
2.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,下列结论中不一定成立的是( B ) A .AB ∥DC B .AC =BD C .AC ⊥BD D .OA =OC
3.如图,矩形ABCD 的两条对角线交于点O ,若∠AOD =120°,AB =6,则AC 等于( C ) A .8 B .10 C .12 D .18
4.如图,四边形ABCD ,AEFG 都是正方形,点E ,G 分别在AB ,AD 上,连接FC ,过点E 作EH ∥FC 交BC 于点H.若AB =4,AE =1,则BH 的长为( C )
A .1
B .2
C .3
D .3 2
5.(2016·河北)关于▱ABCD 的叙述,正确的是( C ) A .若AB ⊥BC ,则▱ABCD 是菱形 B .若AC ⊥BD ,则▱ABCD 是正方形 C .若AC =BD ,则▱ABCD 是矩形 D .若AB =AD ,则▱ABC D 是正方形
6.如图,▱ABCD 的周长为20 cm ,AE 平分∠BAD ,若CE =2 cm ,则AB 的长度是( D ) A .10 cm B .8 cm C .6 cm D .4 cm
7.如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E 、F ,AB =2,BC =3,则图中阴影部分的面积为( A )
A .3
B .4
C .5
D .6
8.如图,已知正方形ABCD 的边长为4,点E 、F 分别在边AB 、BC 上,且AE =BF =1,CE 、DF 交于点O.下列结论:①∠DOC =90°;②OC =OE ;③tan ∠OCD =4
3;④S △ODC =S 四边形BEOF 中,正确的有( C )
A .1个
B .2个
C .3个
D .4个
二、填空题(每小题4分,共24分)
9.(2016·南充)如图,菱形ABCD的周长是8 cm,AB的长是2cm.
10.如图,菱形ABCD的对角线相交于点O,请你添加一个条件:答案不唯一,如:∠DAB=90°,使得该菱形为正方形.
11.如图,O是矩形ABCD的对角线AC与BD的交点,M是AD的中点.若AB=5,AD=12,则四边形ABOM 的周长为20.
12.(2016·金华)如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是80°.
13.(2016·漳州)如图,正方形ABCO的顶点C,A分别在x轴,y轴上,BC是菱形BDCE的对角线,若∠D=60°,
BC=2,则点D
14.如图,正方形ABCD的边长为4,E为BC上一点,BE=1,F为AB上一点,AF=2,P为AC上一点,则PF
+PE
三、解答题(共44分)
15.(10分)如图所示,▱AECF的对角线相交于点O,DB经过点O,分别与AE、CF交于点B,D.求证:四边形ABCD是平行四边形.
证明:∵四边形AECF 是平行四边形, ∴OE =OF ,OA =OC ,AE ∥CF.
∴∠DFO =∠BEO ,∠FDO =∠EBO. ∴△FDO ≌△EBO(AAS). ∴OD =OB. ∵OA =OC ,
∴四边形ABCD 是平行四边形.
16.(10分)如图,在正方形ABCD 的外侧作等边三角形ADE ,连接BE ,CE. (1)求证:BE =CE ; (2)求∠BEC 的度数.
解:(1)证明:∵四边形ABCD 为正方形, ∴AB =AD =CD ,∠BAD =∠ADC =90°. ∵△ADE 为正三角形,
∴AE =AD =DE ,∠EAD =∠EDA =60°. ∴∠BAE =∠CDE =150°. 在△BAE 和△CDE 中,
⎩⎨⎧AB =CD ,
∠BAE =∠CDE ,AE =DE ,
∴△BAE ≌△CDE(SAS). ∴BE =CE.
(2)∵AB =AD ,AD =AE , ∴AB =AE.
∴∠ABE =∠AEB. 又∵∠BAE =150°,
∴∠ABE =∠AEB =15°. 同理:∠CED =15°.
∴∠BEC =60°-15°×2=30°.
17.(12分)已知:如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,
CE ⊥AN ,垂足为点E.
(1)求证:四边形ADCE 为矩形;
(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.
解:(1)证明:在△ABC 中,AB =AC ,AD ⊥BC , ∴∠BAD =∠DAC.
∵AN 是△ABC 外角∠CAM 的平分线, ∴∠MAE =∠CAE.
∴∠DAE =∠DAC +∠CAE =1
2×180°=90°.
又∵AD ⊥BC ,CE ⊥AN ,
∴∠ADC =∠CEA =∠DAE =90°. ∴四边形ADCE 为矩形.
(2)当△ABC 是等腰直角三角形时,四边形ADCE 是正方形. 证明:∵△ABC 是等腰直角三角形,AD ⊥BC , ∴DC =AD.
由(1)知四边形ADCE 为矩形,
∴矩形ADCE 是正方形.
18.(12分)(2016·娄底)如图,将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置,AB 与A 1C 1相交于点D ,AC 与A 1C 1、BC 1分别交于点E 、F.
(1)求证:△BCF ≌△BA 1D ;
(2)当∠C =α度时,判定四边形A 1BCE 的形状并说明理由.
解:(1)证明:∵△ABC 是等腰三角形, ∴AB =BC ,∠A =∠C.
∵将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置, ∴A 1B =AB =BC ,∠A =∠A 1=∠C ,∠A 1BD =∠CBC 1.
在△BCF 与△BA 1
D 中,⎩⎨⎧
∠C =∠A 1,
BC =BA 1
,∠CBF =∠A 1
BD ,
∴△BCF ≌△BA 1D(ASA).
(2)四边形A 1BCE 是菱形.理由如下:
∵将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置, ∴∠A 1=∠A.
∵∠ADE =∠A 1DB , ∴∠AED =∠A 1BD =α. ∴∠DEC =180°-α.
∵∠C=α,
∴∠A1=α.
∴∠A1BC=360°-∠A1-∠C-∠A1EC=180°-α.∴∠A1=∠C,∠A1BC=∠A1EC.
∴四边形A1BCE是平行四边形.
∵A1B=BC.
∴四边形A1BCE是菱形.。