八年级下四边形单元测试卷

合集下载

华师大版八年级下学期数学平行四边形单元测试卷(含参考答案和评分标准)

华师大版八年级下学期数学平行四边形单元测试卷(含参考答案和评分标准)

新华师大版八年级下册数学平行四边形单元测试卷姓名____________ 时间: 90分钟 满分:120分 总分____________ 一、选择题(每小题3分,共30分)1. 在四边形ABCD 中,CD AB //,再添加下列一个条件,四边形ABCD 不一定是平行四边形的是 【 】 (A )CD AB = (B )BC AD = (C )BC AD // (D )C A ∠=∠2. 如图所示,在□ABCD 中,︒=∠︒=∠115,25A DBC ,则=∠BDC 【 】 (A )︒25 (B )︒30 (C )︒40 (D )︒65第 2 题图ADBC第 3 题图EBACD3. 如图所示,在△ABC 中,BC AB A ⊥︒=∠,40,点D 在AC 边上,以CB 、CD 为边作□BCDE ,则E ∠的度数为 【 】 (A )︒40 (B )︒50 (C )︒60 (D )︒704. 如图所示,EF 过□ABCD 对角线的交点O ,交AD 于点E ,交BC 于点F ,若□ABCD 的周长是30,3=OE ,则四边形ABFE 的周长是 【 】 (A )18 (B )21 (C )24 (D )27第 4 题图F ODBCAE第 5题图5. 如图,在□ABCD 中,AB BE ⊥交对角线AC 于点E ,若︒=∠201,则2∠的度数为 【 】 (A )︒120 (B )︒100 (C )︒110 (D )︒906. 如图所示,□ABCD 的周长周长为24,AC 、BD 相交于点O ,BD OE ⊥交AD 于点E ,则△ABE 的周长为 【 】 (A )8 (B )10 (C )12 (D )16第 6 题图EODBCA第 7 题图FECABD7. 如图所示,在□ABCD 中,E 、F 是对角线BD 上不同的两点,若添加下列条件,不能得出四边形AECF 一定是平行四边形的为 【 】 (A )DF BE = (B )CE AF // (C )DCF BAE ∠=∠ (D )CF AE =8. 如图,平行四边形OABC 的顶点A 、C 的坐标分别为()0,5,()3,2,则顶点B 的坐标为 【 】 (A )()3,7 (B )()7,3 (C )()7,4 (D )()4,7yx第 8 题图BCAO第 9 题图9. 如图所示,已知□AOBC 的顶点()0,0O ,()2,1-A ,点B 在x 轴正半轴上,按以下步骤作图:①以点O 为圆心,适当长为半径作弧,分别交边OA 、OB 于点D 、E ;②分别以点D 、E 为圆心,大于DE 21的长为半径作弧,两弧交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为 【 】 (A )()2,5 (B )()2,53- (C )()2,25- (D )()2,15-第 15 题图EF CABDP10. 如图所示,在□ABCD 中,点E 、F 在对角线BD 上,连结AE 、CE 、CF 、AF ,添加下列条件中的一个:①DE BF =;②AF AE =;③CF AE =;④CFD AEB ∠=∠;⑤BD CF BD AE ⊥⊥,.其中,能使四边形AECF 为平行四边形的有 【 】 (A )2个 (B )3个 (C )4个 (D )5个第 10 题图FEDBCA第 11 题图D二、填空题(每小题3分,共15分)11. 如图,在□ABCD 中,AB CE ⊥,若︒=∠65D ,则=∠BCE _________.12. 已知□ABCD 的周长为10,对角线AC 、BD 交于点O ,△AOD 的周长比△AOB 的周长多1,则AB 的长为_________.13. 如图所示,四边形AEDF 是平行四边形,△CED 和△DFB 的周长分别为5和10,则△ABC 的周长为_________.第 13 题图F DABCE第 14 题图ADEBC14. 如图所示,在□ABCD 中,ABC ∠和BCD ∠的平分线交AD 边于同一点E ,且3,4==CE BE ,则AB 的长是_________.15. 如图所示,四边形ABCD 是平行四边形,点E 是CD 上一点,且EC BC =,BE CF ⊥交AB 于点 F ,P 是EB 延长线上的一点,下列结论:①BE 平分CBF ∠; ②CF 平分DCB ∠; ③BC BF =; ④PC PF =. 其中,正确结论的序号是__________.三、解答题(共75分)16.(9分)证明命题“一组对边平行且相等的四边形是平行四边形”,要根据题意,画出图形,并写出已知、求证、证明过程.下面是某同学根据题意画出的图形,并写出了不完整的已知和求证.已知: 如图所示,在四边形ABCD中,CDAB//,__________.求证:___________________________________.请补全已知和求证部分,并写出证明过程.DB CA17.(8分)已知:如图所示,在□ABCD中,点E是BC边的中点,连结DE并延长交AB边的延长线于点F.求证:BFAB .BC EA FD18.(9分)已知:如图所示,在□ABCD 中,点F 在AB 的延长线上,且AB BF =,连结FD ,交BC 于点E .(1)求证:△DCE ≌△FBE ; (2)若3=EC ,求AD 的长.FEDBCA19.(9分)如图所示,点B 、E 、C 、F 在同一条直线上,DE AC DF AB ==,,FC BE =. (1)求证:△ABC ≌△DFE ;(2)连结AF 、BD ,求证:四边形ABDF 是平行四边形.EDBFAC20.(9分)如图所示,AC 、BD 相交于点O ,BC AD CD AB //,//,E 、F 分别是OB 、OD 的中点.求证:四边形AFCE 是平行四边形.FEODBCA21.(10分)如图所示,已知︒=∠=∠90E B ,点B 、C 、F 、E 在一条直线上,EC BF DF AC ==,. 求证:四边形ACDF 是平行四边形.22.(10分)如图所示,在□ABCD 中,E 、F 分别是AB 、CD 的中点,DE 、BF 与对角线AC 分别交于点M 、N ,连结MF 、NE . (1)求证:BF DE //;(2)判断四边形MENF 是何特殊的四边形,并说明理由.NMEFCABD23.(11分)如图所示,在四边形ABCD 中,︒=∠90,//A BC AD ,12=AB ,21=BC ,16=AD .动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 同时从点A 出发,在线段AD 上以每秒1个单位长度的速度向点D 运动,当点Q 到达点D 时另一个动点也随之停止运动.设运动的时间为t 秒.(1)填空:=AQ _________,=BP _________,(用含t 的代数式表示),t 的取值范围是__________;(2)设△DPQ 的面积为S ,用含t 的式子表示S ; (3)当=t _________时,PQ PD =;(4)当t 为何值时,以点P 、C 、D 、Q 为顶点的四边形是平行四边形?DABCQP新华师大版八年级下册数学摸底试卷平行四边形单元测试卷 参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共15分)11. ︒25 12. 2 13. 15 14. 2515. ①②③④ 部分题目答案提示9. 如图所示,已知□AOBC 的顶点()0,0O ,()2,1-A ,点B 在x 轴正半轴上,按以下步骤作图:①以点O 为圆心,适当长为半径作弧,分别交边OA 、OB 于点D 、E ;②分别以点D 、E 为圆心,大于DE 21的长为半径作弧,两弧交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为 【 】 (A )()2,5 (B )()2,53- (C )()2,25- (D )()2,15-第 9 题图解析 本题考查平行四边形的性质和尺规作图的原理,注意角平分线+平行线模型的识别.由尺规作图可知:OF 平分AOB ∠根据角平分线+平行线模型可知:AG OA = ∵()2,1-A∴()52122=+-=OA ∴5=AG ∵x AC //轴 ∴2==A G y y∵()51==--=-AG x x x G A G∴51=+G x ∴15-=G x∴点G 的坐标为()2,15-∴选择答案【 D 】.10. 如图所示,在□ABCD 中,点E 、F 在对角线BD 上,连结AE 、CE 、CF 、AF ,添加下列条件中的一个:①DE BF =;②AF AE =;③CF AE =;④CFD AEB ∠=∠;⑤BD CF BD AE ⊥⊥,.其中,能使四边形AECF 为平行四边形的有 【 】 (A )2个 (B )3个 (C )4个 (D )5个第 10 题图FEDBCA解析 本题主要考查平行四边形的性质以及判定.对于①DE BF =,连结AC ,交BD 于点O ,如图1所示.图 1∵四边形ABCD 为平行四边形 ∴OD OB OC OA ==, ∵DE BF =∴OE OD OF OB +=+ ∴OE OF =∵OF OE OC OA ==, ∴四边形AECF 是平行四边形.对于②AF AE =,不能确定四边形AECF 是平行四边形;对于③CF AE =,不能确定四边形AECF 是平行四边形;对于④CFD AEB ∠=∠,如图2所示.图 2∵CFD AEB ∠=∠ ∴21∠=∠∴CF AE //∵四边形ABCD 为平行四边形 ∴CD AB CD AB =,// ∴43∠=∠在△ABE 和△CDF 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CD AB CFD AEB 43 ∴△ABE ≌△CDF (AAS ) ∴CF AE =∵CF AE //,CF AE = ∴四边形AECF 是平行四边形. 对于⑤BD CF BD AE ⊥⊥,,如图3所示.图 3∵BD CF BD AE ⊥⊥, ∴CF AE //(在同一平面内,垂直于同一条直线的两条直线互相平行) 易证:△ABD ≌△CDB ∴CDB ABD S S ∆∆=∴CF BD AE BD ⋅=⋅2121 ∴CF AE =∵CF AE //,CF AE = ∴四边形AECF 是平行四边形.(或易证:△ABE ≌△CDF ,∴CF AE =) 综上所述,能使四边形AECF 为平行四边形的条件有:①④⑤,共3个. ∴选择答案【 B 】.14. 如图所示,在□ABCD 中,ABC ∠和BCD ∠的平分线交AD 边于同一点E ,且3,4==CE BE ,则AB 的长是_________.第 14 题图ADEBC解析 本题主要考查平行四边形的性质,注意角平分线+平行线模型的识别. 根据角平分线+平行线模型不难确定:△ABE 和△DCE 都是等腰三角形 ∴DC DE AB AE ==, ∵四边形ABCD 为平行四边形 ∴AD BC CD AB CD AB ==,//, ∴︒=∠+∠=180,BCD ABC DE AE ∴AB AE AD BC 22=== ∵BE 平分ABC ∠,CE 平分BCD ∠ ∴22,12∠=∠∠=∠BCD ABC ∴︒=∠+∠1802212 ∴︒=∠+∠9021 ∴︒=∠90BEC在Rt △BCE 中,由勾股定理得:222CE BE BC +=∴53422=+=BC ∴2521==BC AB . 15. 如图所示,四边形ABCD 是平行四边形,点E 是CD 上一点,且EC BC =,BE CF ⊥交AB 于点F ,P 是EB 延长线上的一点,下列结论:①BE 平分CBF ∠; ②CF 平分DCB ∠;③BC BF =; ④PC PF =. 其中,正确结论的序号是__________.第 15 题图EF CABDP解析 本题主要考查平行四边形的性质.图 1对于①,∵四边形ABCD 为平行四边形 ∴CD AB //∴31∠=∠(如图1所示) ∵EC BC = ∴21∠=∠ ∴32∠=∠ ∴BE 平分CBF ∠; 故结论①正确; 对于②,如图1所示. ∵EC BC =,BE CF ⊥ ∴CF 平分DCB ∠(等腰三角形“三线合一”) 故结论②正确; 对于③,如图2所示.图 2由结论②可知: CF 平分DCB ∠ ∴21∠=∠∵四边形ABCD 为平行四边形 ∴CD AB //∴31∠=∠ ∴32∠=∠ ∴BC BF =. 故结论③正确;对于④,∵BC BF =,CF BE ⊥∴直线BE 垂直平分CF ∴PC PF = 故结论④正确.综上所述,正确结论的序号是①②③④. 三、解答题(共75分)16.(9分)证明命题“一组对边平行且相等的四边形是平行四边形”,要根据题意,画出图形,并写出已知、求证、证明过程.下面是某同学根据题意画出的图形,并写出了不完整的已知和求证.已知: 如图所示,在四边形ABCD 中,CD AB //,__________.求证:________________________________. 请补全已知和求证部分,并写出证明过程.CD AB =…………………………………………1分四边形ABCD 为平行四边形…………………………………………2分 证明:连结AC ∵CD AB // ∴21∠=∠在△ABC 和△CDA 中∵⎪⎩⎪⎨⎧=∠=∠=CA AC CD AB 21 ∴△ABC ≌△CDA (SAS ) ∴43∠=∠ ∴BC AD //…………………………………………6分 ∵CD AB //,BC AD // ∴四边形ABCD 为平行四边形…………………………………………9分 点评 要证明平行四边形的判定定理,必须按照平行四边形的定义进行,即证明四边形的两组对边分别平行.17.(8分)已知:如图所示,在□ABCD 中,点E 是BC 边的中点,连结DE 并延长交AB 边的延长线于点F . 求证:BF AB =.BC EAFD证明:∵点E 是BC 边的中点 ∴CE BE =∵四边形ABCD 是平行四边形 ∴CD AB CD AB =,//…………………………………………2分 ∴CD AF // ∴1∠=∠F在△BEF 和△CED 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CE BE F 321 ∴△BEF ≌△CED (AAS ) ∴CD BF =…………………………………………6分 ∵CD BF CD AB ==, ∴BF AB =…………………………………………8分 18.(9分)已知:如图所示,在□ABCD 中,点F 在AB 的延长线上,且AB BF =,连结FD ,交BC 于点E .(1)求证:△DCE ≌△FBE ; (2)若3=EC ,求AD 的长.FEDBCA(1)证明:∵四边形ABCD 是平行四边形 ∴CD AB CD AB =,//…………………………………………2分 ∴CD AF //∴1∠=∠F∵AB BF = ∴CD BF =在△DCE 和△FBE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠BF CD FEB DEC F 1 ∴△DCE ≌△FBE (AAS );…………………………………………5分 (2)解:由(1)可知:△DCE ≌△FBE ∴3==BE CE ∴62==CE BC…………………………………………7分 ∵四边形ABCD 是平行四边形 ∴6==BC AD .…………………………………………9分 19.(9分)如图,点B 、E 、C 、F 在同一条直线上,DE AC DF AB ==,,FC BE =. (1)求证:△ABC ≌△DFE ;(2)连结AF 、BD ,求证:四边形ABDF 是平行四边形.证明:(1)∵FC BE = ∴CE FC CE BE +=+ ∴FE BC =…………………………………………1分EDBFAC在△ABC 和△DFE 中∵⎪⎩⎪⎨⎧===FE BC DE AC DFAB ∴△ABC ≌△DFE (SSS );…………………………………………4分(2)由(1)可知:△ABC ≌△DFE ∴21∠=∠ ∴DF AB //…………………………………………6分 ∵DF AB =∴DF AB =// ∴四边形ABDF 是平行四边形.…………………………………………9分 20.(9分)如图所示,AC 、BD 相交于点O ,BC AD CD AB //,//,E 、F 分别是OB 、OD 的中点.求证:四边形AFCE 是平行四边形.FEODBCA证明:∵BC AD CD AB //,// ∴四边形ABCD 是平行四边形…………………………………………3分 ∴OD OB OC OA ==,…………………………………………5分 ∵E 、F 分别是OB 、OD 的中点 ∴OD OF OB OE 21,21==∴OF OE =…………………………………………6分 ∵OF OE OC OA ==, ∴四边形AFCE 是平行四边形.…………………………………………9分 21.(10分)如图,已知︒=∠=∠90E B ,点B 、C 、F 、E 在一条直线上,EC BF DF AC ==,. 求证:四边形ACDF 是平行四边形.证明:∵EC BF = ∴CF EC CF BF -=- ∴EF BC =…………………………………………1分在Rt △ABC 和Rt △DEF 中∵⎩⎨⎧==EF BC DF AC∴Rt △ABC ≌Rt △DEF (HL )…………………………………………5分 ∴DFE ACB ∠=∠ ∴21∠=∠ ∴DF AC //…………………………………………7分 ∵DF AC //,DF AC = ∴四边形ACDF 是平行四边形.…………………………………………10分 22.(10分)如图所示,在□ABCD 中,E 、F 分别是AB 、CD 的中点,DE 、BF 与对角线AC 分别交于点M 、N ,连结MF 、NE . (1)求证:BF DE //;(2)判断四边形MENF 是何特殊的四边形,并说明理由.NMEFCABD(1)证明:∵四边形ABCD 是平行四边形∴CD AB CD AB =,//…………………………………………2分 ∴BE DF //∵E 、F 分别是AB 、CD 的中点 ∴AB BE CD DF 21,21==∴BE DF =∵BE DF //,BE DF = ∴四边形BEDF 是平行四边形 ∴BF DE //;…………………………………………5分(2)解:四边形MENF 是平行四边形 …………………………………………6分 理由如下:由(1)可知:BF DE // ∴,//NF ME ABF ∠=∠1 ∵CD AB //∴ABF ∠=∠2,43∠=∠ ∴21∠=∠∵E 、F 分别是AB 、CD 的中点 ∴CD CF AB AE 21,21==∴CF AE =在△AME 和△CNF 中∵⎪⎩⎪⎨⎧∠=∠=∠=∠4321CF AE ∴△AME ≌△CNF (ASA )∴NF ME =∵,//NF ME NF ME = ∴四边形MENF 是平行四边形.…………………………………………10分 23.(11分)如图所示,在四边形ABCD 中,︒=∠90,//A BC AD ,12=AB ,21=BC ,16=AD .动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 同时从点A 出发,在线段AD 上以每秒1个单位长度的速度向点D 运动,当点Q 到达点D 时另一个动点也随之停止运动.设运动的时间为t 秒.(1)填空:=AQ ________,=BP ________,(用含t 的代数式表示),t 的取值范围是__________;(2)设△DPQ 的面积为S ,用含t 的式子表示S ;(3)当=t _________时,PQ PD =; (4)当t 为何值时,以点P 、C 、D 、Q 为顶点的四边形是平行四边形?DABCQP解:(1)t ,t 2,0≤t ≤16;…………………………………………3分 (2)由题意可知:t AQ AD DQ -=-=16∴()966121621+-=⋅-=t t S ; …………………………………………5分(3)316;…………………………………………7分 提示: 当PQ PD =时,作AD PE ⊥,如图1所示.P由等腰三角形“三线合一”的性质可知:DE QE =易知:四边形ABPE 是矩形(即长方形) ∴t BP AE 2==∴t t t AQ AE QE =-=-=2 t AE AD DE 216-=-= ∵DE QE = ∴t t 216-=解之得:316=t∴当316=t 时,PQ PD =.(4)分为两种情况:图 2P QDABC①当点P 在BC 边上时,四边形PCDQ 是平行四边形,则有DQ PC = ∴t t -=-16221解之得:5=t ;(如图2所示)…………………………………………9分 ②当点P 在BC 边的延长线上时,四边形CPDQ 是平行四边形,则有DQ PC = ∴t t -=-16212解之得:337=t .(如图3所示) 图 3PQDABC综上所述,当5=t 或337=t 时,以点P 、C 、D 、Q 为顶点的四边形是平行四边形.…………………………………………11分学生整理用图。

八年级数学下册《平行四边形》单元测试卷(附答案)

八年级数学下册《平行四边形》单元测试卷(附答案)

八年级数学下册《平行四边形》单元测试卷(附答案)一.选择题(共10小题,满分40分)1.如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则CD=()A.4B.5C.6D.72.如图,在平行四边形ABCD中,AC、BD相交于点O,∠ODA=90°,AC=10cm,BD=6cm,则BC的长为()A.4cm B.5cm C.6cm D.8cm3.下面关于平行四边形的说法中,不正确的是()A.对角线互相平分的四边形是平行四边形B.有一组对边平行,一组对角相等的四边形是平行四边形C.有一组对边相等,一组对角相等的四边形是平行四边形D.有两组对角相等的四边形是平行四边形4.如图,在▱ABCD中,EF∥AD,HN∥AB,则图中的平行四边形(不包括四边形ABCD)的个数共有()A.9个B.8个C.6个D.4个5.如图,▱ABCD中,CE平分∠BCD,交AB于点E,AE=3,BE=5,DE=4,则CE的长为()A.B.C.D.6.如图,在▱ABCD中,对角线AC,BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为30,则△ABE的周长为()A.30B.26C.20D.157.如图,平行四边形ABCD的周长为16,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为()A.4B.6C.8D.108.如图,将▱DEBF的对角线EF向两端延长,分别至点A和点C,且使AE=CF,连接AB,BC,AD,CD.求证:四边形ABCD为平行四边形.以下是证明过程,其顺序已被打乱,①∴四边形ABCD为平行四边形;②∵四边形DEBF为平行四边形,∴OD=OB,OE=OF;③连接BD,交AC于点O;④又∵AE=CF,∴AE+OE=CF+OF,即OA=OC.正确的证明步骤是()A.①②③④B.③④②①C.③②④①D.④③②①9.如图,在▱ABCD中,点M,N分别是AD、BC的中点,点O是CM,DN的交点,直线AB分别与CM,DN的延长线交于点P、Q.若▱ABCD的面积为192,则△POQ的面积为()A.72B.144C.208D.21610.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,,则下列结论:①∠CAD=30°②③S平行四边形ABCD=AB•AC④,正确的个数是()A.1B.2C.3D.4二.填空题(共8小题,满分32分)11.如图,已知▱ABCD中,AD⊥BD,AC=10,AD=4,则BD的长是.12.下列条件能判定四边形ABCD是平行四边形的是.A.AB∥CD,AD∥BC B.AD=BC,AB=CDC.AB∥CD,AD=BC D.∠A=∠C,∠B=∠D13.如图,平行四边形ABCD中,对角线AC、BD相交于点O,若AB=2,BC=3,∠ABC=60°,则图中阴影部分的面积是.14.如图,平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3),则顶点D的位置用数对表示为.15.如图,▱ABCD的对角线相交于点O,且AB=5,△OCD的周长为23,则▱ABCD的两条对角线长的和.16.如图,在▱ABCD中,AB=5,BC=8,∠ABC和∠BCD的角平分线分别交AD于点E、F,若BE=6,则CF=.17.如图,在平行四边形ABCD中,BD是对角线,E,F分别是边AD,BC上不与端点重合的两点,连接EF,下列条件中使得四边形BFDE是平行四边形的是.(多选)A.AE=CFB.EF经过BD的中点C.BE∥DFD.EF⊥AD18.在如图的网格中,以格点A、B、C、D、E、F中的4个点为顶点,你能画出平行四边形的个数为个.三.解答题(共6小题,满分48分)19.如图,在▱ABCD中,AE平分∠BAD交BD于点E,交BC于点M,CF平分∠BCD交BD于点F.(1)求证:AE=CF;(2)若∠ABC=70°,求∠AMB的度数.20.在▱ABCD中,对角线AC⊥AB,BE平分∠ABC交AD于点E,交AC于点F.(1)求证:AE=AB;(2)若AB=3,BC=5,求AF的长.21.如图,在平行四边形ABCD中,点F是AD中点,连接CF并延长交BA的延长线于点E.(1)求证:AB=AE.(2)若BC=2AE,∠E=31°,求∠DAB的度数.22.如图,点B、C、E、F在同一直线上,BE=CF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)四边形ABED是平行四边形.23.如图,在等边△ABC中,D是BC的中点,以AD为边向左侧作等边△ADE,边ED与AB交于点G.(1)求∠CAE的度数;(2)取AB的中点F,连接CF,EF,求证:四边形CDEF是平行四边形.24.在▱ABCD中,点O是对角线BD的中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE如图1.(1)求证:四边形BEDF是平行四边形;(2)若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF分别交于点G、H、P如图2.①当CD=6.CE=4时,求BE的长;②求证:CD=CH.参考答案与解析一.选择题(共10小题,满分40分)1.解:在▱ABCD中,AD=8;∴BC=AD=8,AD∥BC;∴CE=BC﹣BE=8﹣3=5,∠ADE=∠CED;∵DE平分∠ADC;∴∠ADE=∠CDE;∴∠CDE=∠CED;∴CD=CE=5;故选:B.2.解:∵四边形ABCD是平行四边形,AC=10cm,BD=6cm;∴OA=OC=AC=5(cm),OB=OD=BD=3(cm);∵∠ODA=90°;∴AD===4(cm);∴BC=AD=4(cm);故选:A.3.解:A、∵对角线互相平分的四边形是平行四边形;∴选项A不符合题意;B、∵有一组对边平行,一组对角相等的四边形是平行四边形;∴选项B不符合题意;C、∵有一组对边相等,一组对角相等的四边形不一定是平行四边形;∴选项C符合题意;D、∵有两组对角相等的四边形是平行四边形;∴选项D不符合题意;故选:C.4.解:设EF与NH交于点O;∵在▱ABCD中,EF∥AD,HN∥AB;∴AD∥EF∥BC,AB∥NH∥CD;则图中的四边BEON、DFOH、DHNC、BEFC、BAHN、AEOH、AEFD、ONCF都是平行四边形,共8个.故选:B.5.解:∵AE=3,BE=5;∴AB=8;∵四边形ABCD是平行四边形;∴CD=AB=8,AB∥CD,AD=BC;∴∠DCE=∠CEB;∵CE平分∠BCD;∴∠DCE=∠BCE;∴∠BCE=∠BEC;∴BC=BE=5=AD;∵AE2+DE2=9+16=25,AD2=25;∴AE2+DE2=AD2;∴∠AED=90°;∵DC∥CD;∴∠CDE=90°;在△DCE中,由勾股定理可得:CE===4;故选:A.6.解:∵四边形ABCD是平行四边形;∴AB=CD,AD=BC,OB=OD;又∵OE⊥BD;∴OE是线段BD的中垂线;∴BE=DE;∴AE+ED=AE+BE;∵▱ABCD的周长为30;∴AB+AD=15;∴△ABE的周长=AB+AE+BE=AB+AD=15;故选:D.7.解:∵平行四边形ABCD;∴AD=BC,AB=CD,OA=OC;∵EO⊥AC;∴AE=EC;∵AB+BC+CD+AD=16;∴AD+DC=8;∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8;故选:C.8.解:连接BD,交AC于点O,如图所示:∵四边形DEBF为平行四边形;∴OD=OB,OE=OF;又∵AE=CF;∴AE+OE=CF+OF;即OA=OC;∴四边形ABCD为平行四边形;即正确的证明步骤是③②④①;故选:C.9.解:连接MN,如图所示:∵四边形ABCD是平行四边形;∴CD∥AB,AD∥BC,AD=BC;∴∠CDQ=∠Q,∠DCB=∠CBQ;∵点M,N分别是AD、BC的中点;∴DM=CN,CN=BN;∴四边形CDMN是平行四边形;在△CDN和△BQN中;;∴△CDN≌△BQN(AAS);同理可得:△CDM≌△P AM;∴△POQ的面积=四边形ABCD的面积+△COD的面积,O是CM的中点;∵▱ABCD的面积为192;∴四边形CDMN的面积是96;∴△CDM的面积为四边形CDMN的面积的一半,即48;∴△COD的面积为24;∴△POQ的面积=四边形ABCD的面积+△COD的面积=192+24=216.故选:D.10.解:①∵AE平分∠BAD;∴∠BAE=∠DAE;∵四边形ABCD是平行四边形;∴AD∥BC,∠ABC=∠ADC=60°;∴∠DAE=∠BEA;∴∠BAE=∠BEA;∴AB=BE=1;∴△ABE是等边三角形;∴AE=BE=1;∵BC=2;∴EC=1;∴AE=EC;∴∠EAC=∠ACE;∵∠AEB=∠EAC+∠ACE=60°;∴∠ACE=30°;∵AD∥BC;∴∠CAD=∠ACE=30°;故①正确;②∵BE=EC,OA=OC;∴OE=AB=,OE∥AB;∴∠EOC=∠BAC=60°+30°=90°;Rt△EOC中,OC=;∵四边形ABCD是平行四边形;∴∠BCD=∠BAD=120°;∴∠ACB=30°;∴∠ACD=90°;Rt△OCD中,OD=;∴BD=2OD=;故②正确;③由②知:∠BAC=90°;∴S平行四边形ABCD=AB•AC;故③正确;④由②知:OE是△ABC的中位线;∴OE=AB;∵AB=BC;∴OE=BC=AD;故④正确;故选:D.二.填空题(共8小题,满分32分)11.解:∵四边形ABCD是平行四边形;∴AO=CO=AC,DO=BO;∵AC=10;∴AO=5;∵AD⊥DB;∴∠ADB=90°,AD=4;∴DO==3;∴BD=6;故答案为:6.12.解:A.根据AB∥CD,AD∥BC能推出四边形ABCD是平行四边形;B.根据AD=BC,AB=CD能推出四边形ABCD是平行四边形;C.根据AB∥CD,AD=BC能得出四边形是等腰梯形,不能推出四边形ABCD是平行四边形D.根据∠A=∠C,∠B=∠D能推出四边形ABCD是平行四边形;故答案为:ABD.13.解:作AM⊥BC于M,如图所示:则∠AMB=90°;∵∠ABC=60°;∴∠BAM=30°;∴BM=AB=×2=1;在Rt△ABM中,AB2=AM2+BM2;∴AM===;∴S平行四边形ABCD=BC•AM=3;∵四边形ABCD是平行四边形;∴AD∥BC,BO=DO;∴∠OBE=∠ODF;在△BOE和△DOF中;;∴△BOE≌△DOF(ASA);∴S△BOE=S△DOF;∴图中阴影部分的面积=▱ABCD的面积=;故答案为:.14.解:∵平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3);∴点D坐标为(8,6);故答案为:(8,6).15.解:∵四边形ABCD是平行四边形;∴AB=CD=5;∵△OCD的周长为23;∴OD+OC=23﹣5=18;∵BD=2DO,AC=2OC;∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36;故答案为:36.16.解:如图,设BE与FC的交点为H,过点A作AM∥FC,交BE与点O;∵四边形ABCD是平行四边形;∴AD∥BC,AB∥CD;∴∠ABC+∠DCB+180°;∵BE平分∠ABC,CF平分∠BCD;∴∠ABE=∠EBC,∠BCF=∠DCF;∴∠CBE+∠BCF=90°;∴∠BHC=90°;∵AM∥CF;∴∠AOE=∠BHC=90°;∵AD∥BC;∴∠AEB=∠EBC=∠ABE;∴AB=AE=5;又∵∠AOE=90°;∴BO=OE=3;∴AO===4;在△ABO和△MBO中;;∴△ABO≌△MBO(ASA);∴AO=OM=4;∴AM=8;∵AD∥BC,AM∥CF;∴四边形AMCF是平行四边形;∴CF=AM=8;故答案为:8.17.解:∵四边形ABCD是平行四边形;∴AD∥BC;∵AE=CF,AD=BC;∴DE=BF;∴四边形BFDE是平行四边形;故A选项符合题意;若EF经过BD的中点O;∵AD∥BC;∴∠EDO=∠FBO;在△BOF和△DOE中;;∴△BOF≌△DOE(ASA);∴BF=DE;∴四边形BFDE是平行四边形;故B选项符合题意;∵DE∥BF,BE∥DF;∴四边形BFDE是平行四边形;故C选项符合题意;由EF⊥AD不能判定四边形BFDE是平行四边形;故D选项不符合题意;故答案为:A,B,C.18.解:如图所示:图中平行四边形有▱ABEC,▱BDEC,▱BEFC共3个.故答案为:3.三.解答题(共6小题,满分48分)19.(1)证明:∵四边形ABCD是平行四边形;∴AB∥CD,AB=CD,∠BAD=∠BCD∴∠ABE=∠CDF;∵AE平分∠BAD,CF平分∠BCD;∴∠BAE=∠DCF;∴△ABE≌△CDF(ASA);∴AE=CF;(2)∵四边形ABCD是平行四边形;∴AD∥BC,∠BAD+∠ABC=180°;∵∠ABC=70°;∴∠BAD=110°;∵AM平分∠BAD,AD∥BC;∴∠AMB=∠DAM=55°.20.(1)证明:∵四边形ABCD为平行四边形;∴∠AEB=∠EBC;∵BE平分∠ABC;∴∠ABE=∠EBC;∴∠ABE=∠AEB;∴AE=AB;(2)解:AC⊥AB,AB=3,BC=5;∴AC=;过F点作FH⊥BC,垂足为H;∵BE平分∠ABC,AC⊥AB;∴AF=FH;∵S△ABC=S△ABF+S△BFC;∴AB•AC=AB•AF+BC•FH;即;∴AF=.21.(1)证明:∵四边形ABCD是平行四边形;∴AB=CD,AB∥CD,BC=AD;∴∠E=∠DCF;∵点F是AD中点;∴AF=DF;∵∠EF A=∠CFD;∴△AFE≌△DFC(AAS);∴CD=AE;∴AB=AE;(2)解:由(1)可得AF=DF,BC=AD;∵BC=2AE;∵∠E=31°;∴∠AFE=∠E=31°;∴∠DAB=2∠E=62°.22.证明:(1)∵BE=CF;∴BE﹣CE=CF﹣CE;即BC=EF;又∵AC⊥BC于点C,DF⊥EF于点F;∴∠ACB=∠DFE=90°;在△ABC和△DEF中;;∴△ABC≌△DEF(SAS);(2)由(1)知△ABC≌△DEF;∴AB=DE,∠ABC=∠DEF;∴AB∥DE;∴四边形ABED是平行四边形.23.(1)解:∵△ABC是等边三角形,D是BC的中点;∴AD⊥BC,∠BAC=60°;∴∠DAC=∠BAC=30°;∵△AED是等边三角形;∴∠EAD=60°;∴∠CAE=∠EAD+∠DAC=90°;(2)证明:∵F是等边△ABC边AB的中点,D是边BC的中点;∴CF=AD,CF⊥AB;∵△AED是等边三角形;∴AD=ED;∴CF=ED;∵∠BAD=∠BAC=30°,∠EAG=∠EAD=30°;∴ED⊥AB;∴CF∥ED;∵CF=ED;∴四边形CDEF是平行四边形.24.(1)证明:∵在平行四边形ABCD中,点O是对角线BD的中点;∴AD∥BC,BO=DO;∴∠ADB=∠CBD;在△BOE与△DOF中;;∴△BOE≌△DOF(ASA);∴DF=BE且DF∥BE;∴四边形BEDF是平行四边形;(2)①解:如图,过点D作DN⊥EC于点N;∵DE=DC=6,DN⊥EC,CE=4;∴EN=CN=2;∴DN===4;∵∠DBC=45°,DN⊥BC;∴∠DBC=∠BDN=45°;∴DN=BN=4;∴BE=BN﹣EN=4;②证明:∵DN⊥EC,CG⊥DE;∴∠CEG+∠ECG=90°,∠DEN+∠EDN=90°;∴∠EDN=∠ECG;∵DE=DC,DN⊥EC;∴∠EDN=∠CDN;∵∠DHC=∠DBC+∠BCH=45°+∠BCH,∠CDB=∠BDN+∠CDN=45°+∠CDN;∴∠CDB=∠DHC;∴CD=CH.。

八年级下学期数学四边形单元测试卷

八年级下学期数学四边形单元测试卷

八年级下册数学四边形单元测试卷班次:____________姓名:________________ 学号:____________ 成绩:__________ 考生注意:本试卷共3大题,总分100分,考试时间90分钟.一、选择题(本大题共10题,每小题3分,共30分)1.如图,如果□ABCD的对角线AC、BD相交于点O,那么图中的全等三角形共有()A. 1对B. 2对C. 3对D. 4对2.在平面直角坐标系中,□ABCD的顶点A、B、C的坐标分别是(0,0)、(3,0)、(4,2)则顶点D的坐标为()A.(7,2) B. (5,4) C.(1,2) D. (2,1)3.如图,□ABCD中,对角线AC、BD交于点O,点E是AB的中点.若OE=3 cm,则BC的长为 ( )A.3 cm B.6 cm C.9 cm D.12 cm4.下面的性质中,平行四边形不一定具有的是( )A.对角互补B.邻角互补C.对角相等D.对边相等5.下列四个命题中,假命题是()A.等腰梯形的两条对角线相等B.顺次连结四边形的各边中点所得的四边形是平行四边形C.菱形的每条对角线平分一组对角D.两条对角线互相垂直且相等的四边形是正方形6.四边形ABCD中,∠A∶∠B∶∠C∶∠D=2∶1∶1∶2,则四边形ABCD的形状是( )A.菱形B.矩形C.等腰梯形D.平行四边形7.如图,在等腰梯形ABCD中,AB∥CD,AD=BC,∠A=60°,AB=9,CD=5,BC的长是()A. 3B. 4C. 5D. 68.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( )A. 测量其中三个角是否都为直角B.测量两组对边是否分别相等C. 测量一组对角是否都为直角D.测量对角线是否相互平分9.如图所示,EF过矩形ABCD对角线的交点O,且分别交AB,CD于点E,F,那么阴影部分的面积是矩形ABCD面积的().A.15B.14C.13D.310第3题图第1题图EOACDBOAC DB10.如图,将一边长为12的正方形纸片ABCD 的顶点A 折叠至DC 边上的点E ,使DE =5,折痕为PQ ,则PQ 的长为( ) A .12B .13C . 14D .15二、填空题(本大题共8题,每小题3分,共24分)11.□ABCD 中,DB=DC ,∠C=70°,AE ⊥BD 于E ,则∠DAE=_____度.12. 如图,已知□ABCD 中,AB=4,BC=6,BC 边上的高AE=2,则DC 边上的高AF 的长是________.13.□ABCD 的周长为60cm ,其对角线交于O 点,若△AOB 的周长比△BOC 的周长多10cm ,则AB =_______ cm .14.在△ABC 中,∠C =90°,AC =6,BC =8,则AB 边上的中线CD = __ . 15.若矩形的对角线长为8cm ,两条对角线的一个交角为600,则该矩形的面积为 cm 2。

八(下)单元测试卷《四边形》

八(下)单元测试卷《四边形》

八年级(下)单元测试卷《四边形》一、填空题:1、如图,在平行四边形ABCD 中,DB =DC ,∠C =700,AE ⊥BD 于E ,则∠DAE = 度。

2、如图,BD 是□ABCD 的对角线,点E 、F 在BD 上,要使四边形AECF 是平行四边形,还需要增加的一个条件是 (填上你认为正确的一个即可)。

3、如图,一个平行四边形被分成面积为S 1、S 2、S 3、S 4四个小平行边形,当CD 沿AB 自左向右在平行四边形内平行滑动时,则S 1S 4与S 2S 3的大小关系为 。

4、工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料,如图1,使AB =CD ,EF =GH ;(2)摆放成如图2的四边形,则这时窗框的形状是 形,根据的数学道理是: ; (3)将直角尺靠窗框的一个角,如图3,调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时,如图4,说明窗框合格,这时窗框是 ,根据的数学道理是: 。

(1) (2) (3) (4) 5、如图,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上任一点(点P 不与A 、C 重合),且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是 。

二、选择题 6、下列命题中正确的是( )A 对角线互相平分的四边形是菱形。

B 对角线互相平分且相等的四边形是菱形。

C 对角线互相垂直的四边形是菱形。

D 对角线互相垂直平分的四边形是菱形。

7、如图,某花木场有一块等腰梯形ABCD 的空地,其各边的中点为E 、F 、G 、H ,测得对角线AC =10米,现想用篱笆围成四边形EFGH 场地,则需篱笆总长度是( ) A 40米 B 30米 C 20米 D 10米8、如图,在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,且AC =12,BD =9,则该梯形的面积是( )A 30B 15C 7.5D 54 9、如图,已知矩形ABCD ,R 、P 分别是DC 、BC 上的点,E 、F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( ) A 线段EF 的长逐渐增大。

八年级数学下册《第十八章-平行四边形》单元测试卷及答案(人教版)

八年级数学下册《第十八章-平行四边形》单元测试卷及答案(人教版)

八年级数学下册《第十八章-平行四边形》单元测试卷及答案(人教版) 班级:___________姓名:___________考号:_____________A.5B.10C.D.25则ABC的周长是()55A.AB∥CD,AB=CD B.AB∥CD,AD∥BCA.①②B.①③C.②③D.①②③A .B .C .D .①BE⊥AC二、填空题13.已知四边形ABCD ,点O 是对角线AC 与BD 的交点,且OA OC =,请再添加一个条件,使得四边形ABCD 成为平行四边形,那么添加的条件可以是_____________.(用数学符号语言表达)14.如图,线段AB ⊥BC ,以C 为圆心,BA 为半径画弧,然后再以A 为圆心,BC 为半径画弧,两弧交于点D ,则四边形ABCD 是矩形,其依据是 _____.15.如图,在ABC ∆中,点D ,E 分别是AB ,AC 的中点,连结BE ,若6AE =,DE=5,∠BEC=90°,则BE =______.16.如图,在正方形ABCD中,E是BC边上一点,连接AE,AB=4CE,F是AE上一点,射线BF与正方形的边⊥交BC于点17.如图,在矩形ABCD中,AB=4,45BD=对角线AC、BD相交于点O,过点O作OE AC18.如图,点E在正方形ABCD的边CD上,若△ABE的面积为18,CE=4,则线段BE的长为_____.三、解答题19.如图,在▱ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线分别交BC 、AD 于点E 、F ,G 、H 分别是OB 、OD 的中点.求证:(1)OE =OF ;(2)四边形GEHF 是平行四边形.20.如图,E ,F 是▱ABCD 的对角线AC 上的两点,且AF =CE .求证:(1)△ADE ≌△CBF ;(2)DE ∥BF .21.如图,在平行四边形ABCD 中(1)若点E 、F 是AD 、BC 的中点,连接BE 、DF ,求证BE DF =;(2)若DF 平分ADC ∠且交边BC 于点F ,如果5AB =,BC=8,试求线段BF 的长.(1)求证:OE CB =;(1)求证:180ABO ACO ∠+∠=︒;1.C2.D3.D4.D5.A6.C7.C360 BAC ∠=ABO ∴∠+(2)线段之间的数量关系是过点O 作AOC ∴∠+∠+ABO ∠∠ABO ∴∠=BOC ∠=90AOC ∠∴AOB ∠∴∴四边形是正方形OB OC ∴=在ABO 和FCO 中ABO FCO∴≅∴AO FO=,AB=CFAOF∴是等腰直角三角形∴=AF AO2CF AC AO∴+=2∴+=AB AC AO2。

人教版数学八年级下册第18章平行四边形达标检测卷4份含答案

人教版数学八年级下册第18章平行四边形达标检测卷4份含答案

人教版数学八年级下册第18章平行四边形达标检测卷4份第18章单元测试(1)班级姓名成绩一、选择题(3′×10=30′)1.下列性质中,平行四边形具有而非平行四边形不具有的是().A.内角和为360° B.外角和为360° C.不确定性 D.对角相等2.□ ABCD中,∠A=55°,则∠B、∠C的度数分别是().A.135°,55° B.55°,135° C.125°,55° D.55°,125°3.下列正确结论的个数是().①平行四边形内角和为360°;②平行四边形对角线相等;③平行四边形对角线互相平分;④平行四边形邻角互补.A.1 B.2 C.3 D.44.平行四边形中一边的长为10cm,那么它的两条对角线的长度可能是().A.4cm和6cm B.20cm和30cm C.6cm和8cm D.8cm和12cm 5.在□ABCD中,AB+BC=11cm,∠B=30°,S ABCD=15cm2,则AB与BC的值可能是().A.5cm和6cm B.4cm和7cm C.3cm和8cm D.2cm和9cm 6.在下列定理中,没有逆定理的是().A.有斜边和一直角边对应相等的两个直角三角形全等;B.直角三角形两个锐角互余;C.全等三角形对应角相等;D.角平分线上的点到这个角两边的距离相等.7.下列说法中正确的是().A.每个命题都有逆命题 B.每个定理都有逆定理C.真命题的逆命题是真命题 D.假命题的逆命题是假命题8.一个三角形三个内角之比为1:2:1,其相对应三边之比为().A.1:2:1 B.1:1 C.1:4:1 D.12:1:29.一个三角形的三条中位线把这个三角形分成面积相等的三角形有()个. A.2 B.3 C.4 D.510.如图所示,在△ABC中,M是BC的中点,AN平分∠BAC,BN⊥AN.若AB=•14,•AC=19,则MN的长为().A.2 B.2.5 C.3 D.3.5二、填空题(3′×10=30′)11.用14cm长的一根铁丝围成一个平行四边形,短边与长边的比为3:4,短边的比为________,长边的比为________.12.已知平行四边形的周长为20cm,一条对角线把它分成两个三角形,•周长都是18cm,则这条对角线长是_________cm.13.在□ABCD中,AB的垂直平分线EF经过点D,在AB上的垂足为E,•若□ABCD•的周长为38cm,△ABD的周长比□ABCD的周长少10cm,则□ABCD的一组邻边长分别为______.14.在□ABCD中,E是BC边上一点,且AB=BE,又AE的延长线交DC的延长线于点F.若∠F=65°,则□ABCD的各内角度数分别为_________.15.平行四边形两邻边的长分别为20cm,16cm,两条长边的距离是8cm,•则两条短边的距离是_____cm.16.如果一个命题的题设和结论分别是另一个命题的______和_______,•那么这两个命题是互为逆命题.17.命题“两直线平行,同旁内角互补”的逆命题是_________.18.在直角三角形中,已知两边的长分别是4和3,则第三边的长是________.19.直角三角形两直角边的长分别为8和10,则斜边上的高为________,斜边被高分成两部分的长分别是__________.20.△ABC的两边分别为5,12,另一边c为奇数,且a+b+•c•是3•的倍数,•则c•应为________,此三角形为________三角形.三、解答题(6′×10=60′)21.如右图所示,在□ABCD中,BF⊥AD于F,BE⊥CD于E,若∠A=60°,AF=3cm,CE=2cm,求ABCD的周长.22.如图所示,在□ABCD 中,E 、F 是对角线BD 上的两点,且BE=DF.求证:(1)AE=CF ;(2)AE ∥CF .23.如图所示,□ABCD 的周长是,AB 的长是DE ⊥AB 于E ,DF ⊥CB 交CB•的延长线于点F ,DE 的长是3,求(1)∠C 的大小;(2)DF 的长.24.如图所示,□ABCD 中,AQ 、BN 、CN 、DQ 分别是∠DAB 、∠ABC 、∠BCD 、•∠CDA 的平分线,AQ 与BN 交于P ,CN 与DQ 交于M ,在不添加其它条件的情况下,试写出一个由上述条件推出的结论,并给出证明过程(要求:•推理过程中要用到“平行四边形”和“角平分线”这两个条件).FCDAEB25.已知△ABC的三边分别为a,b,c,a=n2-16,b=8n,c=n2+16(n>4).求证:∠C=90°.26.如图所示,在△ABC中,AC=8,BC=6,在△ABE中,DE⊥AB于D,DE=12,S =60,•求∠C的度数.△ABE27.已知三角形三条中位线的比为3:5:6,三角形的周长是112cm,•求三条中位线的长.28.如图所示,已知AB=CD,AN=ND,BM=CM,求证:∠1=∠2.29.如图所示,△ABC的顶点A在直线MN上,△ABC绕点A旋转,BE⊥MN于E,•CD•⊥MN于D,F为BC中点,当MN经过△ABC的内部时,求证:(1)FE=FD;(2)当△ABC继续旋转,•使MN不经过△ABC内部时,其他条件不变,上述结论是否成立呢?30.如图所示,E是□ABCD的边AB延长线上一点,DE交BC于F,求证:S△ABF=S .△EFC答案:一、1.D 2.C 3.C 4.B 5.A 6.C 7.A 8.B 9.C 10.C二、11.3cm 4cm 12.8 13.9cm和10cm 14.50°,130°,50°,130°• •15.10 16.结论题设 17.同旁内角互补,两直线平行18.5..13 直角三、21.□ABCD的周长为20cm 22.略24.略23.(1)∠C=45°(2)DF=225.•略 26.∠C=90° 27.三条中位线的长为:12cm;20cm;24cm 28.提示:连结BD,取BD•的中点G,连结MG,NG29.(1)略(2)结论仍成立.提示:过F作FG⊥MN于G 30.略第18章单元测试(2)班级姓名成绩一、选择题(3′×10=30′)1.下列判断四边形是平行四边形的是().A.两组角相等的四边形; B.对角线平分的四边形; C.一组对边相等,一组对角相等的四边形; D.两组对边分别相等的四边形2.根据下列条件,能作出平行四边形的是().A.两组对边长分别是3cm和7cm;B.相邻两边的边长分别是2cm和4cm,一条对角线长是7cm;C.一条边长为6cm,另一条对角线长为10cm,一条边长为8cm;D.一条边长为7cm,两条对角线长为6cm和8cm3.如图1所示,在□ABCD中,EF∥GH∥AB,MN∥BC,则图中的平行四边形的个数为(• ).A.12个 B.16个 C.14个 D.18个(1) (2) (3) 4.已知下列四个命题:①一组对边平行且相等的四边形;②两组对角分别相等的四边形;③对角线相等的四边形;④对角线互相平分的四边形.•其中能判断是平行四边形的命题个数为().A.1个 B.2个 C.3个 D.4个5.以不共线的三点为平行四边形的其中三个顶点作平行四边形,•一共可作平行四边形的个数是().A.2个 B.3个 C.4个 D.5个6.平行四边形的一边为32,则它的两条对角线长不可能是().A.20和40 B.30和50 C.40和50 D.20和607.如图2所示,EF过□ABCD对角线的交点O,分别交AD于E,交BC于点F,若OE=5,四边形CDEF的周长为25,则□ABCD的周长为().A.20 B.30 C.40 D.508.在□ABCD中,∠A:∠B:∠C:∠D的值可以是().A.1:2:3:4 B.1:3:4:2 C.1:1:2:2 D.3:4:3:49.已知O为□ABCD对角线的交点,且△AOB的周长为1,则□ABCD的面积为() A.1 B.2 C.3 D.410.已知O为□ABCD对角线的交点,且△AOB的周长比△BOC的周长多23,则CD-AD•的值为().A.23B.32C.2 D.3二、填空题(3′×10=30′)11.□ABCD中,∠A:∠B=7:2,则∠C=______.12.如图3所示,在□ABCD中,CM⊥AD于M,CN⊥AB于N,若∠B=50°,则∠MCN=_____.13.若平行四边形的周长为40cm,对角线AC、BD•相交于点O,•△BOC•的周长比△AOB的周长大2cm,则AB=________.14.若平行四边形的周长为56cm,相邻两边的长度比为3:4,则四边形的四边长分别为_____________.15.如果□ABCD和□ABEF有公共边AB,那么四边形DCEF是_________.16.四边形ABCD中,∠ADC=∠ABC,要判断这个四边形是平行四边形,•只需判断出__________即可,根据是________________.17.已知一个四边形的边长依次分别为a,b,c,d,且a2+b2+c2+d2=2ac+2bd,•则此四边形为___________.18.过平行四边形对角线的交点,且与一组边平行的直线将平行四边形分成的两个四边形________平行四边形.(填“是”或“不是”)19.四边形ABCD中,AC、BD交于点O,且OA=OC,OB=•OD,•∠ABC=•80•°,•则∠ADC=_____.20.已知:四边形ABCD中,AD∥BC,要使四边形ABCD为平行四边形,•需要增加条件________.(只需填写一个你认为正确的即可)三、解答题(共60′)21.(6′)如右图所示,在□ABCD中,AE、CF分别是∠DAB、∠BCD的平分线,求证:四边形AFCE是平行四边形.22.(6′)如右图所示,O为等边△ABC内任意一点,OD∥BC,OE∥AC,OF∥AB,•并且D、E、F分别在AB、BC、AC上,求证:OD+OE+OF=BC.23.(8′)如下图所示,已知平行四边形ABCD的周长是36cm,由钝角顶点D向AB、•BC引两条高DE、DF,且,cm,求平行四边形ABCD的面积.24.(8′)如下图所示,□ABCD中,AE⊥BC,AF⊥DC,垂足分别为E、F,∠ADC=•60•°,BE=2,CF=1,连结DE,求△DEC的面积.25.(8′)求证:顺次连结四边形各边中点所得的四边形是平行四边形.26.(8′)如右图所示,△ABC中,CD是△ABC的角平分线,AE⊥CD于E,F为AC的中点,试问EF∥BC吗?为什么?27.(8′)已知□ABCD中,E、F分别是BC、CD的中点,AE、AF分别交BD于M、N.求证:BM=MN=ND.28.(8′)已知如下图所示,在□ABCD中,∠A=60°,E、F分别是AB、CD•的中点,•且AB=2AD.(1)求证:EF:(2)试判断EF与BD的位置关系?答案:一、1.D 2.A 3.D 4.C 5.B 6.A 7.B 8.D 9.D 10.A二、11.140° 12.50° 13.9cm 14.12cm,16cm,12cm,16cm 15.•平行四边形16.∠BAD=∠BCD 两组对角分别相等,则四边形是平行四边形 17.•平行四边形 •18.是 19.80° 20.AB∥DC三、21.略 22.略 23.2 24..提示:连结AC 26.略27.略28.(1)提示:连结DE (2)EF⊥BD第18章单元测试(3)一、选择题.(每小题4分,共32分)1.一个平行四边形的两条对角线的长分别为8和10,则这个平行四边形边长不可能是()A.2B.5C.8D.102.如图,在菱形ABCD中,对角线AC与BD相交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为()A.75°B.65°C.55°D.50°第2题图第3题图3.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5C.2.5D.2.84. 下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形5.如图,CD是△ABC的中线,点E,F分别是AC、DC的中点,EF=2,则BD=()A.2B.3C.4D.6第5题图第6题图第7题第8题6.如图所示,将□ABCD折叠,使顶点D恰好落在AB边上的点M处,折痕为AN,那么对于结论:①MN∥BC,②MN=AM,下列说法正确的是()A.①②都对B.①②都错C.①对②错D.①错②对7.如图所示,在正方形ABCD中,点E、F分别在CD,BC上,且BF=CE,连接BE,AF相交于点G,则下列结论不正确的是()A.BE=AFB.∠DAF=∠BECC.∠AFB+∠BEC=90°D.AG⊥BE8. 如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO,若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE ∶S△BCM=2∶3.其中正确结论的个数是()A.4个B.3个C.2个D.1个二、填空题.(每小题4分,共32分)9.如图,在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F= .第9题图第10题图10.如图所示,在R t△ABC中,∠C=90°,DE垂直平分AC,DF⊥BC,当△ABC满足条件时,四边形DECF是正方形.(要求:①不再添加任何辅助线;②只填一个符合要求的条件)11.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=8,BC=10,则EF的长为 .第11题图第12题图12. 如图,正方形ABCO的顶点C、A分别在x轴、y轴上,BC是菱形BDCE 的对角线,若∠D=60°,BC=2,则点D的坐标是 .13.已知一个平行四边形的一条对角线将其分为两个全等的等腰直角三角形,且这条对角线的长为6,则另一条对角线的长为 .14. 如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为 cm.15.如图,已知点P是正方形ABCD的对角线BD上一点,PE⊥BC于E,PF⊥CD于F,连接PA、EF.则线段PA与EF之间的大小关系是 .第15题图第16题图16.如图,E是正方形ABCD的边CD的中点,AE的垂直平分线分别交AE、BC于H、G,若CG=7,BC=8,则GH等于 .三、解答题.(共56分)17.(8分)如图所示,一根长2.5m的木棍(AB)斜靠在与地面(OM)垂直的墙(ON)上,此时OB的距离为0.7m,设木棍的中点为P.若木棍顶端A沿墙下滑,且底端B沿地面向右滑行.(1)如果木棍的顶端A沿墙下滑0.4 m,那么木棍的底端B向外移动了多少距离?(2)请判断木棍滑动的过程中,点P到点O的距离是否变化,并简述理由.18.(8分)如图,在正方形ABCD中,对角线AC,BD相交于点O,E,F分别在OD,OC上,且DE=CF,连接DF,AE,AE的延长线交DF于点M.求证:AM⊥DF.19.(8分)如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得到△GFC.(1)求证:BE=DG;(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.20.(8分)如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=18cm,BC=21cm,点P从点A出发沿AD边向D以1cm/s的速度运动,点Q从点C出发沿CB边向B以2cm/s的速度运动,如果P、Q分别从A、C同时出发,设运动时间为t s.求:(1)当t为何值时,四边形ABQP为矩形?(2)当t为何值时,四边形PQCD为平行四边形?21.(12分)(2016·湖北十堰)如图,将矩形纸片ABCD(AD>AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D的对应点分别为G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.22.(12分)如图①,菱形ABCD对角线AC,BD的交点O是四边形EFGH 对角线FH的中点,四个顶点A,B,C,D分别在四边形EFGH的边EF,FG,GH,HE 上.(1)求证:四边形EFGH是平行四边形;(2)如图②,若四边形EFGH是矩形,当AC与FH重合时,已知ACBD=2,且菱形ABCD的面积是20,求矩形EFGH的长与宽.答案第十八章达标检测卷一、选择题(每题3分,共30分)1.如图,▱ABCD中,AC=3 cm,BD=5 cm,则边AD的长可以是() A.3 cm B.4 cm C.5 cm D.6 cm2.如图,D,E分别是△ABC的边AB,AC上的点,且AD=DB,AE=EC.若DE =4,则BC的长为()A.2 B.4 C.6 D.83.如图,在▱ABCD中,AE平分∠BAD,若CE=3 cm,AB=4 cm,则▱ABCD的周长是()A.20 cm B.21 cm C.22 cm D.23 cm4.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形5.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD 一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形6.如图,在矩形ABCD中,对角线AC,BD相交于点O,过点O的直线EF分别交AB,CD于点E,F,若图中阴影部分的面积为6,则矩形ABCD的面积为()A.12 B.18 C.24 D.307.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC =90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判定这个四边形是正方形?()A.①②B.①③C.①④D.④⑤8.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B. 2 C.4-2 2 D.3 2-49.如图,在菱形ABCD中,AB=2,∠A=120°,P,Q,K分别为线段BC,CD,BD上的任意一点,则P K+Q K的最小值为()A.1 B. 3 C.2 D.3+110.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.若第一个矩形的面积为1,则第n个矩形的面积为()A.14 B.14n-1C.14n D.14n+1二、填空题(每题3分,共30分)11.如图,在▱OABC中,点O为坐标原点,点A的坐标为(3,0),点B的坐标为(4,2),则点C的坐标为__________.12.如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为________.13.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E,若∠CBF=20°,则∠AED等于________.14.如图,在矩形ABCD中,对角线AC,BD相交于点O,DE⊥AC于点E,∠EDC:∠EDA=1:2,且AC=10,则EC的长度是________.15.如图,平行四边形ABCD的对角线AC,BD相交于点O,E,F分别是线段AO,BO的中点.若AC+BD=30 cm,△OAB的周长为23 cm,则EF的长为__________.16.如图,在▱ABCD中,点E为BC边上一点(不与端点重合),若AB=AE,且AE平分∠DAB,则有下列结论:①∠B=60°;②AC=BC;③∠AED=∠ACD;④△ABC≌△EAD.其中正确的是__________(在横线上填所有正确结论的序号).17.如图,在菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB的中点)所在的直线上的点C′处,得到经过点D的折痕DE.则∠DEC的大小为________.18.菱形ABCD在平面直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,3),动点P从点A出发,沿A→B→C→D→A→B→…的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2 020 s 时,点P的坐标为__________.19.如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则x2+(y-4)2的值为________.20.正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点,若△PBE是等腰三角形,则腰长为____________________.三、解答题(21题8分,26题12分,其余每题10分,共60分)21.如图,在▱ABCD中,AE平分∠BAD,CF平分∠BCD,分别交CD,AB于点E,F.求证AE=CF.22.如图,正方形ABCD的边长为4,E,F分别为DC,BC的中点.(1)求证△ADE≌△ABF;(2)求△AEF的面积.23.如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交AB于点G,交CB的延长线于点F,连接AF,BE.(1)求证△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.24.如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD,AC,BC 于点E,O,F,连接CE和AF.(1)求证:四边形AECF为菱形;(2)若AB=4, BC=8,求菱形AECF的周长.25.如图,在平行四边形ABCD中,AB=3 cm,BC=5 cm,∠B=60°,G是CD 的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形.(2)①当四边形CEDF是矩形时,求AE的长;②当四边形CEDF是菱形时,求AE的长.26.如图,在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图①;(2)若∠P AB=20°,求∠ADF的度数;(3)如图②,若45°<∠P AB<90°,用等式表示线段AB,EF,FD之间的数量关系,并证明.答案一、1.A 2.D 3.C 4.C5.D 点拨:运用三角形的中位线定理和矩形的性质解答.6.C 点拨:根据题意易知△COF 的面积与△AOE 的面积相等,阴影部分的面积为矩形面积的四分之一.7.C8.C 点拨:由题易得∠ABD =∠ADB =45°,再求出∠DAE 的度数.根据三角形的内角和定理求∠AED ,从而得到∠DAE =∠AED ,再根据等角对等边得到AD =DE ,然后求出正方形的对角线BD ,再求出BE ,进而在等腰直角三角形中利用勾股定理求出EF 的长.9.B10.B 点拨:第一个矩形的面积为1,易知第二个矩形的面积为14,第三个矩形的面积是116……故第n 个矩形的面积为14n -1. 二、11.(1,2) 12.30 13.65° 14.2.515.4 cm16.①③④ 点拨:∵四边形ABCD 为平行四边形,∴AB ∥CD ,AD =BC ,AD ∥BC .∴∠DAE =∠AEB .∵AE 平分∠DAB ,∴∠DAE =∠BAE .∴∠BAE =∠AEB .∴AB =BE .又AB =AE ,∴AB =AE =BE .∴△ABE 为等边三角形.∴∠B =∠BAE =60°.∴∠B =∠DAE .∵∠BAC =∠BAE +∠EAC =60°+∠EAC >∠B ,∴BC >AC .在△ABC 和△EAD 中,⎩⎨⎧AB =EA ,∠ABC =∠EAD ,BC =AD ,∴△ABC ≌△EAD (SAS ).∴∠BAC=∠AED.∵AB∥CD,∴∠BAC=∠ACD.∴∠AED=∠ACD.故正确的是①③④.17.75°点拨:如图,连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形.由P为AB的中点,利用等腰三角形三线合一的性质得到∠ADP=30°.由题意易得∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出∠DEC=75°.18.(0,3)19.16点拨:∵四边形ABCD是矩形,AB=x,AD=y,∴CD=AB=x,BC=AD=y,∠BCD=90°.又∵BD⊥DE,点F是BE的中点,DF=4,∴BF=DF=EF=4.∴CF=BF-BC=4-y.在Rt△DCF中,DC2+CF2=DF2,即x2+(4-y)2=42=16,∴x2+(y-4)2=16.20.25或52或652三、21.证明:∵四边形ABCD为平行四边形,∴AD=BC,∠D=∠B,∠BAD=∠BCD.又∵AE平分∠BAD,CF平分∠BCD,∴∠DAE=12∠BAD,∠BCF=12∠BCD.∴∠DAE=∠BCF.在△DAE和△BCF中,⎩⎨⎧∠D =∠B ,DA =BC ,∠DAE =∠BCF ,∴△DAE ≌△BCF (ASA ).∴AE =CF .22.(1)证明:∵四边形ABCD 为正方形,∴AB =AD =DC =CB ,∠D =∠B =90°.∵E ,F 分别为DC ,BC 的中点,∴DE =12DC ,BF =12BC .∴DE =BF .在△ADE 和△ABF 中,⎩⎨⎧AD =AB ,∠D =∠B ,DE =BF ,∴△ADE ≌△ABF (SAS ).(2)解:由题易知△ABF ,△ADE ,△CEF 均为直角三角形,且AB =AD =4,DE =BF =CE =CF =12×4=2,∴S △AEF =S 正方形ABCD -S △ADE -S △ABF -S △CEF =4×4-12×4×2-12×4×2-12×2×2=6.23.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠AEG =∠BFG .∵EF 垂直平分AB ,∴EF ⊥AB ,AG =BG .在△AGE 和△BGF 中,⎩⎨⎧∠AEG =∠BFG ,∠AGE =∠BGF ,AG =BG ,∴△AGE ≌△BGF (AAS ).(2)解:四边形AFBE 是菱形.理由如下:∵△AGE ≌△BGF ,∴AE =BF .∵AD ∥BC ,∴四边形AFBE 是平行四边形.又∵EF ⊥AB ,∴四边形AFBE 是菱形.24.(1)证明:∵EF 是AC 的垂直平分线,∴AO =OC ,∠AOE =∠COF =90°.∵四边形ABCD 是矩形,∴AD ∥BC .∴∠EAO =∠FCO .在△AEO 和△CFO 中,⎩⎨⎧∠EAO =∠FCO ,AO =CO ,∠AOE =∠COF ,∴△AEO ≌△CFO (ASA ).∴OE =OF .∵OA =OC ,∴四边形AECF 是平行四边形.又∵EF ⊥AC ,∴四边形AECF 是菱形.(2)解:设AF =x .∵EF 是AC 的垂直平分线,∴AF =CF =x ,∴BF =8-x .在Rt △ABF 中,由勾股定理得:AB 2+BF 2=AF 2,即42+(8-x )2=x 2,解得x =5.∴AF =5.∴菱形AECF 的周长为20.25.(1)证明:∵四边形ABCD 是平行四边形,∴CF ∥ED .∴∠FCG =∠EDG .∵G 是CD 的中点,∴CG =DG .在△FCG 和△EDG 中,⎩⎨⎧∠FCG =∠EDG ,CG =DG ,∠CGF =∠DGE ,∴△FCG ≌△EDG (ASA ).∴FG =EG .∵CG =DG ,∴四边形CEDF 是平行四边形.(2)解:①∵四边形ABCD 是平行四边形,∴∠CDA =∠B =60°,DC =AB =3 cm ,BC =AD =5 cm .∵四边形CEDF 是矩形,∴∠CED =90°.在Rt △CED 中,易得ED =12CD =1.5 cm ,∴AE =AD -ED =3.5(cm).故当四边形CEDF 是矩形时,AE =3.5 cm.②若四边形CEDF 是菱形,则CE =ED .由①可知∠CDA =60°,∴△CED 是等边三角形.∴DE =CD =3 cm.∴AE =AD -DE =5-3=2(cm).故当四边形CEDF 是菱形时,AE =2 cm.点拨:在判定三角形全等时,关键是选择恰当的判定条件,有时还需添加适当的辅助线构造全等三角形.同时全等三角形也为平行四边形、矩形、菱形的判定构筑了重要的平台和保障.26.解:(1)如图①所示.(2)如图②,连接AE.∵点E是点B关于直线AP的对称点,∴∠P AE=∠P AB=20°,AE=AB.∵四边形ABCD是正方形,∴AE=AB=AD,∠BAD=90°.∴∠AED=∠ADE,∠EAD=∠DAB+∠BAP+∠P AE=130°.∴∠ADF=180°-130°2=25°.(3)EF2+FD2=2AB2.证明:如图③,连接AE,BF,BD,由轴对称和正方形的性质可得EF=BF,AE =AB=AD,易得∠ABF=∠AEF=∠ADF,又∵∠BAD=90°,∴∠ABF+∠FBD+∠ADB=90°.∴∠ADF+∠ADB+∠FBD=90°.∴∠BFD=90°.在Rt△BFD中,由勾股定理得BF2+FD2=BD2;在Rt△ABD中,由勾股定理得BD2=AB2+AD2=2AB2,∴EF2+FD2=2AB2.。

最新北师大版八年级下册数学平行四边形单元测试试题以及答案(4套题)

最新北师大版八年级下册数学平行四边形单元测试试题以及答案(4套题)

八年级下册平行四边形单元测试试题一、选择题。

(共12道选择题,每道选择题只有一个正确答案)1、平行四边形的周长是36厘米,相邻两个边的比是5:1,则较长边是()。

A、3B、15C、6D、304,取BC的中点为2、在等腰直角三角形ABC中,∠B=90°,AC=2P。

以点P为中心,将△ABC旋转180°,A点的对应点为A’,则AA’的距离是()。

2A、54B、58C、5D、53、如图,在▱ABCD中,AC+BD=24,BC=10,则△AOD的周长是()。

A、24B、22C、29D、174、已知平面直角坐标系中,以O(0,0),P(3,0),M(1,1),N(x,1),若以O,P,M,N为顶点的四边形是平行四边形,则x等于()。

A、﹣4或﹣2B、﹣1或﹣2C、4或﹣1D、4或﹣25、在长方形ABCD中,如下图,E、F、G、H分别是长方形四边的中点,AB=4,BC=10,则图中阴影部分的面积是()。

A、40B、20C、10D、86、如图,在平行四边形ABCD中,O是对角线AC、BD的交点,平行四边形的周长是32,△AOB比△AOD的周长小2,则AB、BC的长分别是()。

A 、6、10B 、7、9C 、5、7D 、8、107、如图,在平行四边形ABCD 中,CE :DE=3:2,则BEF DEF ABF S S S △△△::的比是( )。

A 、25:2:5B 、25:4:9C 、5:2:3D 、25:4:108、一个多边形的内角和是外角和的3倍,这个多边形是()边形。

A 、6B 、7C 、8D 、99、如果从一个等腰三角形的底边上任何一点分别作两腰的平行线,所得的平行四边形的周长等于()。

A、等腰三角形的周长B、等腰三角形周长的一半C、等腰三角形两腰长D、等腰三角形两腰长的一半10、如图,四边形ABCD是平行四边形,BG⊥AF,AF是∠BAD的平分4,则△CEF的面积是()。

线,若CD=6,BC=9,BG=24A、23B、22C、2D、211、如图,在平行四边形ABCD中,E、F在对角线AC上,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE=∠CBF;④∠ABE=∠CDF,能判定四边形DEBF是平行四边形的有()个。

人教版初中数学八年级下册《第18章 平行四边形》单元测试卷(7)

人教版初中数学八年级下册《第18章 平行四边形》单元测试卷(7)

人教新版八年级下学期《第18章平行四边形》单元测试卷一.选择题(共10小题)1.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC 等于()A.1 cm B.2 cm C.3 cm D.4 cm2.能判定四边形ABCD是平行四边形的是()A.AB∥CD,AB=CD B.AB=BC,AD=CDC.AC=BD,AB=CD D.AB∥CD,AD=CB3.如图,△ABC中,点D、E分别在AB、AC边上,AD=BD,AE=EC,BC=6,则DE =()A.4B.3C.2D.54.菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(8,0),点A的纵坐标是2,则点B的坐标是()A.(4,2)B.(4,﹣2)C.(2,﹣6)D.(2,6)5.如图所示,在▱ABCD中,对角线AC,BD相交于点O,下列条件能判定▱ABCD为菱形的是()A.∠ABC=90°B.AC=BDC.AC⊥BD D.OA=OC,OB=OD6.如图,在矩形ABCD中,对角线AC,BD交于点O.已知∠AOD=60°,AC=6,则图中长度为3的线段有()A.2条B.4条C.5条D.6条7.如图所示,在平行四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定平行四边形ABCD为矩形的是()A.∠ABC=90°B.AC=BDC.AD=BC,AB∥CD D.∠BAD=∠ADC8.正方形具有而菱形不一定具有的特征有()A.对角线互相垂直平分B.内角和为360°C.对角线相等D.对角线平分内角9.已知如图,四边形ABCD是平行四边形,下列结论中错误的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形10.如图,在△ABC中,∠ACB=90°,AB=10,点D是AB的中点,则CD=()A.4B.5C.6D.8二.填空题(共5小题)11.如图,在▱ABCD中,∠ADO=30°,AB=8,点A的坐标为(﹣3,0),则点C的坐标为.12.如图,AO=OC,BD=16cm,则当OB=cm时,四边形ABCD是平行四边形.13.如图,将两条宽度都是为2的纸条重叠在一起,使∠ABC=45°,则四边形ABCD的面积为.14.如图,AB∥CD,∠A=∠B=90°,AB=3cm,BC=2cm,则AB与CD之间的距离为cm.15.如图,在Rt△ABC中,CD是斜边AB上的中线,若AB=20,则CD=.三.解答题(共4小题)16.如图,在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.求证:四边形AECF 是平行四边形.17.如图,在四边形ABCD中,点E,F是对角线BD上的两点,且BE=DF.(1)如果四边形AECF是平行四边形,求证:四边形ABCD也是平行四边形;(2)如果四边形AECF是菱形,求证:四边形ABCD也是菱形.18.如图,▱ABCD的对角线AC,BD相交于点O,△OAB是等边三角形.(1)求证:▱ABCD为矩形;(2)若AB=4,求▱ABCD的面积.19.如图,已知点E,F,G,H分别是正方形ABCD四条边上的点,并且AE=BF=CG=DH.求证:四边形EFGH是正方形.人教新版八年级下学期《第18章平行四边形》2019年单元测试卷参考答案与试题解析一.选择题(共10小题)1.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC 等于()A.1 cm B.2 cm C.3 cm D.4 cm【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,根据AD、AB的值,求出EC的长.【解答】解:∵AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=3cm,∵BC=AD=5cm,∴EC=BC﹣BE=5﹣3=2cm,故选:B.【点评】本题主要考查了平行四边形的性质,等腰三角形的判定;在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.2.能判定四边形ABCD是平行四边形的是()A.AB∥CD,AB=CD B.AB=BC,AD=CDC.AC=BD,AB=CD D.AB∥CD,AD=CB【分析】根据平行四边形的判定方法即可判断;【解答】解:∵AB∥CD,AB=CD,∴四边形是平行四边形(一组对边平行且相等的四边形是平行四边形),故选:A.【点评】本题考查平行四边形的判定方法,解题的关键是熟练掌握基本知识,属于中考基础题.3.如图,△ABC中,点D、E分别在AB、AC边上,AD=BD,AE=EC,BC=6,则DE =()A.4B.3C.2D.5【分析】根据三角形的中位线的定理即可求出答案.【解答】解:∵AD=BD,AE=EC,∴DE是△ABC的中位线,∴BC=2DE,∴DE=3,故选:B.【点评】本题考查三角形的中位线,解题的关键是熟练运用三角形的中位线定理,本题属于基础题型.4.菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(8,0),点A的纵坐标是2,则点B的坐标是()A.(4,2)B.(4,﹣2)C.(2,﹣6)D.(2,6)【分析】首先连接AB交OC于点D,根据菱形的性质可得AB⊥OC,OD=CD=4,AD =BD=2,即可求得点B的坐标.【解答】解:如图,连接AB,交OC于点D,∵四边形ABCD是菱形,∴AB⊥OC,OD=CD,AD=BD,∵点C的坐标是(8,0),点A的纵坐标是2,∴OC=8,BD=AD=2,∴OD=4,∴点B的坐标为:(4,﹣2).故选:B.【点评】此题考查了菱形的性质与点与坐标的关系,此题难度不大,注意数形结合思想的应用.5.如图所示,在▱ABCD中,对角线AC,BD相交于点O,下列条件能判定▱ABCD为菱形的是()A.∠ABC=90°B.AC=BDC.AC⊥BD D.OA=OC,OB=OD【分析】根据对角线垂直的平行四边形是菱形即可判断;【解答】解:∵四边形ABCD是平行四边形,∴当AC⊥BD时,四边形ABCD是菱形;故选:C.【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法,属于中考常考题型.6.如图,在矩形ABCD中,对角线AC,BD交于点O.已知∠AOD=60°,AC=6,则图中长度为3的线段有()A.2条B.4条C.5条D.6条【分析】由题意可得AO=BO=CO=DO=3,可证△ABO是等边三角形,可得AB=3=CD,则可得一共有6条线段长度为3.【解答】解:∵四边形ABCD是矩形∴OA=OC=OB=OD=AC=3,AB=CD∵∠BOC=120°,OA=OB∴∠OAB=∠OBA=60°∴△AOB是等边三角形∴AB=AO=3∴CD=3∴一共6条线段长度为3.故选:D.【点评】本题考查了矩形的性质,熟练掌握矩形的性质是本题的关键.7.如图所示,在平行四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定平行四边形ABCD为矩形的是()A.∠ABC=90°B.AC=BDC.AD=BC,AB∥CD D.∠BAD=∠ADC【分析】矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线相等的平行四边形是矩形.据此分析判断.【解答】解:A、根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;B、根据对角线相等的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;C、不能判定平行四边形ABCD为矩形,故此选项符合题意;D、由平行四边形ABCD中AB∥CD,可得∠BAD+∠ADC=180°,又∠BAD=∠ADC,得出∠BAD=∠ADC=90°,根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;故选:C.【点评】此题主要考查了矩形的判定,关键是熟练掌握矩形的判定定理.8.正方形具有而菱形不一定具有的特征有()A.对角线互相垂直平分B.内角和为360°C.对角线相等D.对角线平分内角【分析】根据正方形的性质与菱形的性质对各选项分析判断即可得解.【解答】解:A、对角线互相垂直平分,正方形与菱形都具有,故本选项错误;B、内角和为360°,正方形与菱形都具有,故本选项错误;C、正方形对角线相等,菱形对角线不相等,故本选项正确;D、对角线平分内角,正方形与菱形都具有,故本选项错误.故选:C.【点评】本题考查了正方形的性质,菱形的性质,是基础题,熟记两个图形的性质是解题的关键.9.已知如图,四边形ABCD是平行四边形,下列结论中错误的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形【分析】根据菱形、矩形、正方形的判断方法即可判定;【解答】解:A、当AB=BC时,它是菱形,正确;B、当AC⊥BD时,它是菱形,正确;C、当∠ABC=90°时,它是矩形,正确;D、当AC=BD时,它是正方形,错误,应该是当AC=BD时,它是矩形;故选:D.【点评】本题考查菱形、矩形、正方形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.10.如图,在△ABC中,∠ACB=90°,AB=10,点D是AB的中点,则CD=()A.4B.5C.6D.8【分析】根据直角三角形中,斜边上的中线等于斜边的一半解答即可.【解答】解:∵∠ACB=90°,点D为AB的中点,∴CD=AB=5.故选:B.【点评】本题考查的是直角三角形的性质,掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.二.填空题(共5小题)11.如图,在▱ABCD中,∠ADO=30°,AB=8,点A的坐标为(﹣3,0),则点C的坐标为(8,3).【分析】根据题意可求点D坐标(0,3),根据平行四边形的性质可求点C坐标.【解答】解:∵点A坐标为(﹣3,0)∴AO=3∵∠ADO=30°,AO⊥DO∴AD=2AO=6,∵DO=∴DO=3∴D(0,3)∵四边形ABCD是平行四边形∴AB=CD=8,AB∥CD∴点C坐标(8,3)故答案为(8,3)【点评】本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质是本题的关键.12.如图,AO=OC,BD=16cm,则当OB=8cm时,四边形ABCD是平行四边形.【分析】根据对角线互相平分的四边形是平行四边形可得OB=8cm时,四边形ABCD是平行四边形.【解答】解:当OB=8cm时,四边形ABCD是平行四边形,∵BD=16cm,OB=8cm,∴BO=DO,又∵AO=OC,∴四边形ABCD是平行四边形.故答案为:8.【点评】此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定方法.13.如图,将两条宽度都是为2的纸条重叠在一起,使∠ABC=45°,则四边形ABCD的面积为4.【分析】根据折叠的性质易知,重合部分为菱形,然后根据菱形的面积公式计算即可.【解答】解:如图,过点A作AE⊥BC于点E,AF⊥CD于点F.则AE=AF=2.∵纸条的对边平行,即AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是2,∴S四边形ABCD=BC×2=CD×2,∴BC=CD,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.∴四边形ABCD的面积为2×2×=4.故答案是:4.【点评】本题主要考查菱形的性质和特殊角的三角函数值,通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.14.如图,AB∥CD,∠A=∠B=90°,AB=3cm,BC=2cm,则AB与CD之间的距离为2cm.【分析】由AB∥CD,可得∠A+∠D=180°,∠B+∠C=180°,再根据∠A=∠B=90°,可得出∠C=∠D=90°,则四边形ABCD为矩形,从而得出AB与CD之间的距离为BC 的长.【解答】解:∵AB∥CD,∴∠A+∠D=180°,∠B+∠C=180°,∵∠A=∠B=90°,∴∠C=∠D=90°,∴四边形ABCD为矩形,∴AB与CD之间的距离为BC,∵BC=2cm,∴AB与CD之间的距离为2cm.故答案为:2.【点评】本题考查了矩形的判定和性质,是基础知识比较简单.15.如图,在Rt△ABC中,CD是斜边AB上的中线,若AB=20,则CD=10.【分析】根据直角三角形中,斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,CD是斜边AB上的中线,∴CD=AB=10,故答案为:10.【点评】本题考查的直角三角形的性质,掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.三.解答题(共4小题)16.如图,在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.求证:四边形AECF 是平行四边形.【分析】只要证明AF=CE,AF∥CE即可;【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵AF=CE,∴四边形AECF是平行四边形.【点评】本题考查平行四边形的性质和判定,解题的关键是熟练掌握平行四边形的判断方法,属于中考基础题.17.如图,在四边形ABCD中,点E,F是对角线BD上的两点,且BE=DF.(1)如果四边形AECF是平行四边形,求证:四边形ABCD也是平行四边形;(2)如果四边形AECF是菱形,求证:四边形ABCD也是菱形.【分析】(1)只要证明OA=OC,OB=OD即可解决问题.(2)只要证明四边形ABCD是平行四边形,再证明AC⊥BD即可证明.【解答】证明:(1)连接AC交BD于O.∵四边形AECF是平行四边形,∴OA=OC,OE=OF,∵BE=DF,∴OB=OD,∵OA=OC,∴四边形ABCD是平行四边形.(2)连接AC交BD于O.∵四边形AECF是菱形,∴OA=OC,OE=OF,AC⊥EF,∵BE=DF,∴OB=OD,∵OA=OC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形.【点评】本题考查平行四边形的性质和判定、菱形的性质和判定等知识,解题的关键是熟练掌握平行四边形的性质和判定,菱形的性质和判定,属于中考常考题型.18.如图,▱ABCD的对角线AC,BD相交于点O,△OAB是等边三角形.(1)求证:▱ABCD为矩形;(2)若AB=4,求▱ABCD的面积.【分析】(1)根据题意可求OA=OB=DO,∠AOB=60°,可得∠BAD=90°,即结论可得(2)根据勾股定理可求AD的长,即可求▱ABCD的面积.【解答】解(1)∵△AOB为等边三角形∴∠BAO=60°=∠AOB,OA=OB∵四边形ABCD是平行四边形∴OB=OD,∴OA=OD∴∠OAD=30°,∴∠BAD=30°+60°=90°∴平行四边形ABCD为矩形;(2)在Rt△ABC中,∠ACB=30°,∴AB=4,BC=AB=4∴▱ABCD的面积=4×4=16【点评】本题考查了矩形的性质和判定,等边三角形的性质,灵活运用这些性质解决问题是本题的关键.19.如图,已知点E,F,G,H分别是正方形ABCD四条边上的点,并且AE=BF=CG=DH.求证:四边形EFGH是正方形.【分析】可通过证明△AEH,△DHG,△CGF,△BFE全等,先得出四边形EFGH是菱形,再证明四边形EFGH中一个内角为90°,从而得出四边形EFGH是正方形的结论【解答】解:四边形EFGH是正方形.证明:∵AE=BF=CG=GH,∴AH=DG=CF=BE.∵∠A=∠B=∠C=∠D=90°,∴△AEH≌△DHG≌△CGF≌△BFE,∴EF=EH=HG=GF,∠EHA=∠HGD.∴四边形EFGH是菱形.∵∠EHA=∠HGD,∠HGD+∠GHD=90°,∴∠EHA+∠GHD=90°.∴∠EHG=90°.∴四边形EFGH是正方形.【点评】本题主要考查了全等三角形的判定及性质、菱形的判定和性质、正方形的性质和判定,熟练掌握应用全等三角形的性质是解题的关键.。

人教版八年级下数学《第18章平行四边形》单元测试(含答案)

人教版八年级下数学《第18章平行四边形》单元测试(含答案)

人教版八年级下数学《第18章平行四边形》单元测试(含答案)第18章平行四边形一、选择题1.下面几组条件中,能判断一个四边形是平行四边形的是()A. 一组对边相等B. 两条对角线互相平分C. 一组对边平行D. 两条对角线互相垂直2.如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()A. ﹣12+8B. 16﹣8C. 8﹣4D. 4﹣23.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为100°的菱形,剪口与折痕所成的角的度数应为()A. 25°或80°或50° D. 40°或50° C. 40°或50° B. 20°4.如图,过平行四边形ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的过平行四边形AEMG的面积S1与?HCFM的面积S2的大小关系是()A. S1>S2B. S1=S2C. S1<S2D. 不能确定5.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=﹣的图象上,若点A的坐标为(﹣2,﹣2),则k的值为()A. 4B. ﹣4C. 8D. ﹣86.下列对正方形的描述错误的是()A. 正方形的四个角都是直角B. 正方形的对角线互相垂直C. 邻边相等的矩形是正方形D. 对角线相等的平行四边形是正方形7.如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A. 4B. 3C.D. 28.矩形各个内角的平分线围成一个四边形,则这个四边形一定是()A. 正方形B. 菱形C. 矩形D. 平行四边形9.如图,等腰梯形ABCD中,AD∥BC,AE∥DC,∠AEB =60°,AB =AD= 2cm,则梯形ABCD的周长为( )A. 6cmB. 8cmC. 10cmD. 12cm10.已知AC为矩形ABCD的对角线,则图中∠1与∠2一定不相等的是()A. B. C. D.11.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC等于()A. B. C. D.12.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A. 1B.C.D.二、填空题13.如图,△ABC,△ACE,△ECD都是等边三角形,则图中的平行四边形有哪些________.14.已知菱形的两条对角线长为8和6,那么这个菱形面积是________,菱形的高________.15.如图,A、B是直线m上两个定点,C是直线n上一个动点,且m∥n.以下说法:①△ABC的周长不变;②△ABC的面积不变;③△ABC中,AB边上的中线长不变.④∠C的度数不变;⑤点C到直线m的距离不变.其中正确的有________ (填序号).16.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的点F 上,则AF的长为________.17.在?ABCD中,AB=15,AD=9,AB和CD之间的距离为6,则AD和BC之间的距离为________18.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是________.19.如图,如果要使ABCD成为一个菱形,需要添加一个条件,那么你添加的条件是________。

平行四边形单元测试试卷三套题

平行四边形单元测试试卷三套题

新人教版八年级下册第18章平行四边形单元测试试卷(时间90分钟满分100分)班级学号姓名得分一、填空题(共14小题,每题2分,共28分)1.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点.若再增加一个条件_________,就可得BE=DF.2.将一矩形纸条,按如图所示折叠,则∠1 = _______度.3.如图,矩形ABCD中,MN∥AD,PQ∥AB,则S1与S2的大小关系是______.第1题第2题第11题4.已知平行四边形ABCD的面积为4,O为两对角线的交点,则△AOB的面积是.5.菱形的一条对角线长为6cm,面积为6cm2,则菱形另一条对角线长为___ ___cm.6.如果梯形的面积为216cm2,且两底长的比为4:5,高为16cm,那么两底长分别为_____.7.如图,在菱形ABCD中,已知AB=10,AC=16,那么菱形ABCD的面积为.8.如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置,若∠EFB=65°,则∠AED′=______.9.如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角的度数等于______.第7题第8题第9题10.有若干张如图所示的正方形和长方形卡片,如果要拼一个长为(2a + b ),宽为(a + b )的矩形,则需要A 类卡片 张,B 类卡片 张,C 类卡片 张.11. 如图,把矩形ABCD 沿EF 折叠,使点C 落在点A 处,点D 落在点G 处,若∠CFE =60,且DE =1,则边BC 的长为 .12.如图,正方形ABCD 的周长为16cm ,顺次连接正方形ABCD 各边的中点,得到四边形EFGH ,则四边形EFGH 的周长等于 cm ,四边形EFGH 的面积等于 cm 2.第10题EABHGFED CBA ABCDEGF13.如图,将一块边长为12的正方形纸片ABCD的顶点A折叠至DC Array边上的点E,使DE=5,折痕为PQ,则PQ的长为_______.14.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有___ __个.第14题二、选择题(共4小题,每题3分,共12分)15.已知平行四边形一边长为10,一条对角线长为6,则它的另一条对角线a 的取值范围为( ) A .4<a<16 B .14<a<26 C .12<a<20 D .以上答案都不正确 16.在菱形ABCD 中,AC 与BD 相交于点O ,则下列说法不正确的是 ( ) A .AO ⊥BO B .∠ABD=∠CBD C .AO=BO D .AD=CD17.等腰梯形的两底差等于一腰的长,则它的腰与下底的夹角是( )A .15°B .30°C .45°D .60°18.如图,已知四边形ABCD 中,R 、P 分别是BC 、CD 上的点,E 、F 分别是AP 、RP 的中点,当点P 在CD 上从C 向D 移动而点R 不动时,那么下列结论成立的是 ( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减小RPD CBAEF 第18题C.线段EF的长不变 D.线段EF的长与点P的位置有关三、解答题(共60分)19.(5分)我们学习了四边形和一些特殊的四边形,右图表示了在某种条件下它们之间的关系.如果①,②两个条件分别是:①两组对边分别平行;②有且只有一组对边平行.那么请你对标上的其他6个数字序号写出相对应的条件.20.(5分)已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)EB∥DF.21.(5分)如图,在梯形纸片ABCD中,AD//BC,AD>CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C处,折痕DE交BC于点E,连结C′E.求证:四边形CDC′E是菱形.C′A D22.(6分)如图,在ABC,分别是AD及其延长线上的点,CF BE∥.△中,D是BC边的中点,F E(1)求证:BDE CDF△≌△.(2)请连结BF CE,,试判断四边形BECF是何种特殊四边形,并说明理由.23.(6分)如图,已知平行四边形ABCD中,对角线AC BD△,交于点O,E是BD延长线上的点,且ACE 是等边三角形.(1)求证:四边形ABCD是菱形;(2)若2∠=∠,求证:四边形ABCD是正方形.AED EADEAB24.(6分)如图,四边形ABCD是矩形,E是AB上一点,且DE=AB,过C作CF⊥DE,垂足为F.(1)猜想:AD与CF的大小关系;(2)请证明上面的结论.25.(6分)如图8,在四边形ABCD中,点E是线段AD上的任意一点(E与A D,不重合),G F H,,分别是BE BC CE,,的中点.(1)证明四边形EGFH是平行四边形;(2)在(1)的条件下,若EF BC⊥,且12EF BC=,证明平行四边形EGFH是正方形.BGA EFHDC26.(6分)将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.AB C DE FD′27.(7分)四边形ABCD、DEFG都是正方形,连接AE、CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.28.(8分)已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.N参考答案一、填空题1.答案不唯一,如AE=CF或BE∥DF等 2.52 3.S1=S2 4.1 5.2 6.12 cm和15cm 7.9613.13 14.408.50° 9.30 10.2,1,3. 11.3 12.二、选择题15.B 16.C 17.D 18.C三、解答题19.③有一个内角为直角;④一组邻边相等;⑤一组邻边相等;⑥有一个内角为直角;⑦两腰相等;⑧一条腰垂直于底边 20.略 21.略 22.(1)略;(2)菱形 23.略 24.(1)AD=CF;(2)略 25.略 26.(1)略;(3)四边形AECF是菱形 27.(1)略;(2)猜想:AE⊥CG,证明略 28.(1)略;(2)AD=1BC等(答案不唯一)2新人教版八年级下册第18章平行四边形单元测试试卷(A卷)(时间90分钟满分100分)班级学号姓名得分一、填空题(共14小题,每题2分,共28分)1.四边形的内角和等于º,外角和等于º.2.正方形的面积为4,则它的边长为,一条对角线长为.3.一个多边形,若它的内角和等于外角和的3倍,则它是边形.4.如果四边形ABCD满足条件,那么这个四边形的对角线AC和BD互相垂直(只需填写一组你认为适当的条件).5.如果边长分别为4cm和5cm的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm.6.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是______cm.7.平行四边形ABCD ,加一个条件__________________,它就是菱形.8.等腰梯形的上底是10cm ,下底是14cm ,高是2cm ,则等腰梯形的周长为______cm . 9.已知菱形的一条对角线长为12,面积为30,则这个菱形的另一条对角线的长为 .10.如图,中,AE ⊥BC 于E ,AF ⊥DC 于F ,BC=5,AB=4,AE=3,则AF 的长为 . 11.如图,梯形ABCD 中,AD ∥BC ,已知AD=4,BC=8,则EF= ,EF 分梯形所得的两个梯形的面积比S 1 :S 2为 .12.下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是图形_______(请填图形下面的代号).第10题 第11题13.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了米.14.如图,依次连接第一个正方形各边的中点得到第二个正方形,再依次连接第二个正方形各边的中点得到第三个正方形,按此方法继续下去,若第一个正方形的边长为1,则第n 个正方形的面积是 .二、填空题(共4小题,每题3分,共12分)15.如图, ABCD 中,AE 平分∠DAB ,∠B=100°,则∠DAE30°30°30°A第13题第15题等于()A.100° B.80° C.60° D.40°16.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,•从学生中征集到设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种图案,你认为符合条件的是()A.等腰三角形 B.正三角形 C.等腰梯形 D.菱形17.一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是()A.6条 B.7条 C.8条 D.9条18.如图,图中的△BDC′是将矩形ABCD沿对角线BD折叠得到的,第18题图中(包括实线、虚线在内)共有全等三角形()对.A.1 B.2 C.3 D.4三、解答题(共60分)19.(5分)如图,在□ABCD中,DB=CD,∠C=70°,AE⊥BD于点E.试求∠DAE的度数.20.(5分)已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.21.(5分)在一个平行四边形中若一个角的平分线把一条边分成长是2cm和3cm•的两条线段,求该平行四边形的周长是多少?22.(6分)已知:如图,ABCD中,延长AB到E,延长CD到F,使BE=DF 求证:AC与EF互相平分23.(6分)如图,一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是多少?24.(6分)顺次连结等腰梯形四边中点所得的四边形是什么特殊的四边形?画出图形,写出已知,求证并证明.已知:求证:证明:25.(6分)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN•∥BC,•设MN•交∠BCA 的平分线于点E,交∠BCA的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由?(2)当点O运动何处时,四边形AECF是矩形?并说出你的理由.26.(6分)如图,若已知△ABC中,D、E分别为AB、AC的中点,则可得DE∥BC,且DE=1BC.•2根据上面的结论:(1)你能否说出顺次连结任意四边形各边中点,可得到一个什么特殊四边形?•并说明理由.(2)如果将(1)中的“任意四边形”改为条件是“平行四边形”或“菱形”或“矩形”或“等腰梯形”,那么它们的结论又分别怎样呢?请说明理由.27.(7分)如图,△ABD、△BCE、△ACF均为等边三角形,请回答下列问题(不要求证明)(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?28.(8分)如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,•即△ABD•、•△BCE、△ACF,请回答下列问题,并说明理由.(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在.参考答案 一、填空题1.360 ,360 2.2,22 3.8 4.四边形ABCD 是菱形或四条边都相等或四边形ABCD 是正方形等 5..20 7.一组邻边相等或对角线互相垂直 8. 9.5 10.41511.6,7512.② 13.120 14.112n -⎛⎫⎪⎝⎭二、选择题15.•D •16.D 17.A 18.D 三、解答题19.∠DAE=20° 20.略 21.14cm 或16cm 22.略 23.2601块 24.略 25.(1)OE=OF ;(2)当点O 运动到AC 的中点时,四边形AECF•是矩形 26.(1)平行四边形;(2)平行四边形,矩形,菱形,正方形 27.(1)平行四边形;(2)满足∠BAC=150º时,四边形ADEF 是矩形;(3)当△ABC 为等边三角形时,以A 、D 、E 、F 为顶点的四边形不存在 28.(1)平行四边形;(2)当∠BAC=150°时是矩形;(3)∠BAC=60°第18章平行四边形单元综合检测(三)一、选择题(每小题4分,共28分)1.已知四边形ABCD是平行四边形,则下列各图中∠1与∠2一定不相等的是( )2.如图,已知菱形ABCD的对角线AC,BD的长分别是6cm,8cm,AE⊥BC于点E,则AE的长是( )A.5cmB.2cmC.cmD.cm3.如图,在平行四边形ABCD中,DE是∠ADC的平分线,F是AB的中点,AB=6,AD=4,则AE∶EF∶BE为( )A.4∶1∶2B.4∶1∶3C.3∶1∶2D.5∶1∶24.(2013·邵阳中考)如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连接BE交CD 于点O,连接AO,下列结论不正确的是( )A.△AOB≌△BOCB.△BOC≌△EODC.△AOD≌△EODD.△AOD≌△BOC5.如图,过矩形ABCD的四个顶点作对角线AC,BD的平行线,分别相交于E,F,G,H四点,则四边形EFGH为( )A.平行四边形B.矩形C.菱形D.正方形6.(2013·威海中考)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC 于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是( )A.BC=ACB.CF⊥BFC.BD=DFD.AC=BF7.如图,△ABC中,AB=AC,点D,E分别是边AB,AC的中点,点G,F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为( )A.3cmB.4cmC.2cmD.2cm二、填空题(每小题5分,共25分)8.如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为.9.(2013·厦门中考)如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24厘米,△OAB的周长是18厘米,则EF= 厘米.10.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是.11.(2013·牡丹江中考)如图,边长为1的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连接AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是.12.(2013·钦州中考)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是.三、解答题(共47分)13.(10分)(2013·大连中考)如图,在平行四边形ABCD中,点E,F分别在AD,BC上,且AE=CF.求证:BE=DF.14.(12分)(2013·晋江中考)如图,BD是菱形ABCD的对角线,点E,F分别在边CD,DA上,且CE=AF.求证:BE=BF.15.(12分)(2013·铁岭中考)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形.(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.16.(13分)(2013·济宁中考)如图1,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF⊥BE.(1)求证:AF=BE.(2)如图2,在正方形ABCD中,M,N,P,Q分别是边AB,BC,CD,DA上的点,且MP⊥NQ,判断MP与NQ是否相等?并说明理由.答案解析1.【解析】选C.A项,根据两直线平行内错角相等可得到,故正确;B项,根据对顶角相等可得到,故正确;C项,根据两直线平行内错角相等可得到∠1=∠ACB,∠2为一外角,所以不相等,故不正确;D 项,根据平行四边形对角相等可得到,故正确.2.【解析】选D.由于菱形ABCD的对角线AC,BD的长分别是6cm,8cm,所以菱形边长为=5,所以×6×8=5AE,解得AE=.3.【解析】选A.∵四边形ABCD是平行四边形,∴∠CDE=∠DEA.∵DE是∠ADC的平分线,∴∠CDE=∠ADE,∴∠DEA=∠ADE,∴AE=AD=4.∵F是AB的中点,∴AF=AB=3.∴EF=AE-AF=1,BE=AB-AE=2,。

八年级数学下册《平行四边形的判定》单元测试卷(附带答案)

八年级数学下册《平行四边形的判定》单元测试卷(附带答案)

八年级数学下册《平行四边形的判定》单元测试卷(附带答案)一.选择题1.四边形ABCD中,AD∥BC.要判别四边形ABCD是平行四边形,还需满足条件()A.∠A+∠C=180°B.∠B+∠A=180°C.∠A=∠D D.∠B=∠D2.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB=DC,AD∥BC3.如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.∠ABC=∠ADC,AD∥BC B.∠ABD=∠BDC,∠BAD=∠DCBC.∠ABD=∠BDC,OA=OC D.∠ABC=∠ADC,AB=CD4.下列说法不正确的是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行,另一组对边相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边平行,一组对角相等的四边形是平行四边形5.如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()A.2B.3C.4D.66.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°7.已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥CD;②OA=OC;③AB =CD;④∠BAD=∠DCB;⑤AD∥BC,从以上5个条件中任选2个条件为一组,能判定四边形ABCD 是平行四边形的有()组.A.4B.5C.6D.78.如图,在平行四边形ABCD中,E,F是对角线BD上不同的两点,连接AE,CE,AF,CF.下列条件中,不能得出四边形AECF一定是平行四边形的为()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF9.如图,在▱ABCD中,点E,F分别在边BC,AD上,有下列条件:①BE=DF;②AE∥CF;③AE=CF;④∠BAE=∠DCF.其中,能使四边形AECF是平行四边形的条件有()A.1个B.2个C.3个D.4个10.如图,在▱ABCD中,∠ABC=45°,BC=4,点F是CD上一个动点,以F A、FB为邻边作另一个▱AEBF,当F点由D点向C点运动时,下列说法正确的选项是()①▱AEBF的面积先由小变大,再由大变小②▱AEBF的面积始终不变③线段EF最小值为4A.①B.②C.①③D.②③二.填空题11.如图,BD是▱ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需增加的一个条件是.12.如图,在▱ABCD中,AB=2cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长cm.13.如图,在四边形ABCD中,若AB=CD,则添加一个条件,能得到平行四边形ABCD.(不添加辅助线,任意添加一个符合题意的条件即可)14.在平面直角坐标系中,A(﹣1,1),B(2,3),C(3m,4m+1),D在x轴上,若以A,B,C,D四点为顶点的四边形是平行四边形,求点D的坐标.15.如图,四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截原四边形为两个新四边形.则当P,Q同时出发秒后其中一个新四边形为平行四边形.16.如图,在平面直角坐标系中,有一Rt△ABC,∠C=90°且A(﹣1,3)、B(﹣3,﹣1)、C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.若点Q在x轴上,点P在直线AB上,要使以Q、P、A1、C1为顶点的四边形是平行四边形,满足条件的点Q的坐标为.17.在平面直角坐标系里,A(1,0),B(0,2),C(﹣4,2),若以A、B、C、D为顶点的四边形是平行四边形,则点D的坐标为.18.如图,在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(4,0),点C在y的正半轴上,且OB=2OC,在直角坐标平面内确定点D,使得以点D、A、B、C为顶点的四边形是平行四边形,请写出点D的坐标为.三.解答题19.如图,点B,E,C,F在一条直线上,AB=DE,AB∥DE,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ACFD是平行四边形.20.E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.(1)根据题意,画出图形;(2)求证:①△AFD≌△CEB;②四边形ABCD是平行四边形.21.已知,如图所示,AB∥CD,AB=CD,点E、F在BD上.∠BAE=∠DCF,连接AF、EC,求证:(1)AE=FC;(2)四边形AECF是平行四边形.22.如图,四边形ABCD中AC、BD相交于点O,延长AD至点E,连接EO并延长交CB的延长线于点F,∠E=∠F,AD=BC.(1)求证:O是线段AC的中点:(2)连接AF、EC,证明四边形AFCE是平行四边形.23.如图,AB=CD,E,F分别为AB、CD上的点,连接BC,分别与AF、ED相交于点G,H.∠B=∠C,BH=CG.(1)求证:AG=DH;(2)求证:四边形AFDE是平行四边形.24.已知,如图,在平行四边形ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.参考答案一.选择题1.解:∵AD∥BC∴∠A+∠B=180°,∠D+∠C=180°∴A.∠A+∠C=180°,可得∠B=∠C,这样的四边形是等腰梯形,不是平行四边形,故此选项错误;B.∠A+∠B从题目已知条件即可得出,无法证明四边形为平行四边形,此选项错误;C.同理A,这样的四边形是等腰梯形,故此选项错误;D.∠B=∠D,可得∠A+∠D=180°,则BA∥CD,故四边形ABCD是平行四边形,此选项正确;故选:D.2.解:∵AB∥DC,AD∥BC∴四边形ABCD是平行四边形,故选项A不合题意;∵AB=CD,AD=BC∴四边形ABCD是平行四边形,故选项B不合题意;∵AO=CO,BO=DO∴四边形ABCD是平行四边形,故选项C不合题意;∵AB=CD,AD∥BC∴四边形ABCD不一定是平行四边形,故选项D符合题意;故选:D.3.解:A、∵AD∥BC∴∠ABC+∠BAD=180°∵∠ABC=∠ADC∴∠ADC+∠BAD=180°∴AB∥CD∴四边形ABCD是平行四边形,故此选项不合题意;B、∵∠ABD=∠BDC,∠BAD=∠DCB∴∠ADB=∠CBD∴AD∥CB∵∠ABD=∠BDC∴AB∥CD∴四边形ABCD是平行四边形,故此选项不合题意;C、∵∠ABD=∠BDC,OA=OC又∠AOB=∠COD∴△AOB≌△COD(AAS)∴四边形ABCD是平行四边形,故此选项不合题意;D、∠ABC=∠ADC,AB=CD不能判断四边形ABCD是平行四边形,故此选项符合题意;故选:D.4.解:A、∵两组对边分别平行的四边形是平行四边形∴选项A不符合题意;B、∵一组对边平行,另一组对边相等的四边形不一定是平行四边形∴选项B符合题意;C、∵一组对边平行且相等的四边形是平行四边形∴选项C不符合题意;D、∵一组对边平行,一组对角相等的四边形是平行四边形∴选项D不符合题意;故选:B.5.解:∵四边形ABCD是平行四边形∴AB∥CD,AD=BC=8,CD=AB=6∴∠F=∠DCF∵CF平分∠BCD∴∠FCB=∠DCF∴∠F=∠FCB∴BF=BC=8同理:DE=CD=6∴AF=BF﹣AB=2,AE=AD﹣DE=2∴AE+AF=4;故选:C.6.解:∵四边形ABCD是平行四边形∴AB∥CD∴∠ACD=∠BAC由折叠的性质得:∠BAC=∠B′AC∴∠BAC=∠ACD=∠B′AC=∠1=22°∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;7.解:①与⑤根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与③根据一组对边平行且相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与④,⑤与④根据两组对角分别相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与②,②与⑤根据对角线互相平分的四边形是平行四边形,能推出四边形ABCD为平行四边形.所以能推出四边形ABCD为平行四边形的有6组.故选:C.8.解:如图,连接AC与BD相交于O在▱ABCD中,OA=OC,OB=OD要使四边形AECF为平行四边形,只需证明得到OE=OF即可;A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;B、若AE=CF,则无法判断OE=OE,故本选项符合题意;C、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;D、由∠BAE=∠DCF,从而推出△DFC≌△BEA,然后得出∠DFC=∠BEA,∴∠CFE=∠AEF,∴FC∥AE,由全等可知FC=AE,所以四边形AECF是平行四边形;故本选项不符合题意;故选:B.9.解:①正确,理由如下:∵四边形ABCD平行四边形∴AD=BC,AD∥BC又∵BE=DF∴AF=EC.又∵AF∥EC∴四边形AECF是平行四边形.②正确,理由如下:∵AF∥EC,AE∥CF∴四边形AECF是平行四边形;④正确;理由如下:∵四边形ABCD是平行四边形∴∠B=∠D∵∠BAE=∠DCF∴∠AEB=∠CFD.∵AD∥BC∴∠AEB=∠EAD.∴∠CFD=∠EAD.∴AE∥CF.∵AF∥CE∴四边形AECF是平行四边形.∵AE=CF不能得出四边形AECF是平行四边形∴③不正确;能使四边形AECF是平行四边形的条件有3个.故选:C.10.解:过点C作CG⊥AB于点G则∵AB与CG的值始终不变化∴△ABF的面积始终不变化∵▱AEBF的面积=2×△ABF的面积∴▱AEBF的面积始终不变∴①错误,②正确;连接EF,与AB交于点H∵四边形AEBF是平行四边形∴AH=BH,EH=FH当FH⊥AB时,FH的值最小,EF=2FH的值也最小此时,FH=CG∵∠ABC=45°,CG⊥AB∴BG=CG∵BG2+CG2=BC2=16∴∴FH=∴线段EF最小值为EF=2FH=4.∴③正确故选:D.二.填空题(共8小题)11.解:如图,连接AC交BD于点O∵四边形ABCD为平行四边形∴AO=CO,BO=DO∴当BE=DF时,可得OE=OF,则四边形AECF为平行四边形∴可增加BE=DF故答案为:BE=DF(答案不唯一).12.解:在▱ABCD中,∵AB=CD=2cm,AD=BC=4cm,AO=CO,BO=DO ∵AC⊥BC∴AC==6cm∴OC=3cm∴BO==5cm∴BD=10cm∴△DBC的周长﹣△ABC的周长=BC+CD+BD﹣(AB+BC+AC)=BD﹣AC=10﹣6=4cm 故答案为:4.13.解:根据平行四边形的判定,可再添加一个条件:AD=BC.故答案为:AD=BC(答案不唯一).14.解:由点C的坐标可以判断出点C在直线y=上已知A、B两点,所以以AB为边和对角线分类讨论当AB为边时,AB∥CD,AB=CD,如图可证得△ABE≌△CDF∴FC=BE=2,AE=DF=3若点D在x轴正半轴时∴点C坐标为(,﹣2)∴点D坐标为(,0)若点D在x轴负半轴时点C坐标为(,2)点D坐标为(﹣,0)当AB为对角线时AB与CD相交于AB的中点(,2)设点D(m,0)可得点C坐标为(1﹣m,4)将点C坐标代入解析式可得m=点D坐标为(,0)故点D的坐标为(,0)或(,0)或(﹣,0).15.解:根据题意有AP=tcm,CQ=2tcm,PD=(12﹣t)cm,BQ=(15﹣2t)cm.①∵AD∥BC∴当AP=BQ时,四边形APQB是平行四边形.∴t=15﹣2t解得t=5.∴t=5s时四边形APQB是平行四边形;②AP=tcm,CQ=2tcm∵AD=12cm,BC=15cm∴PD=AD﹣AP=(12﹣t)cm∵AD∥BC∴当PD=QC时,四边形PDCQ是平行四边形.即:12﹣t=2t解得t=4s∴当t=4s时,四边形PDCQ是平行四边形.综上所述,当P,Q同时出发4或5秒后其中一个新四边形为平行四边形.故答案是:4或5.16.解:∵点Q在x轴上,点P在直线AB上,以Q、P、A1、C1为顶点的四边形是平行四边形当A1C1为平行四边形的边时∴PQ=A1C1=2∵P点在直线y=2x+5上∴令y=2时,2x+5=2,解得x=﹣1.5令y=﹣2时,2x+5=﹣2,解得x=﹣3.5∴点Q的坐标为(﹣1.5,0),(﹣3.5,0)当A1C1为平行四边形的对角线时∵A1C1的中点坐标为(3,2)∴P的纵坐标为4代入y=2x+5得,4=2x+5解得x=﹣0.5∴P(﹣0.5,4)∵A1C1的中点坐标为:(3,2)∴直线PQ的解析式为:y=﹣x+当y=0时,即0=﹣x+解得:x=6.5故Q为(﹣1.5,0)或(﹣3.5,0)或(6.5,0).故答案为(﹣1.5,0)或(﹣3.5,0)或(6.5,0).17.解:如图有三种情况:①平行四边形AD1CB∵A(1,0),B(0,2),C(﹣4,2)∴AD1=BC=4,OD1=3则D的坐标是(﹣3,0);②平行四边形AD2BC∵A(1,0),B(0,2),C(﹣4,2)∴AD2=BC=4,OD2=1+4=5则D的坐标是(5,0);③平行四边形ACD3B∵A(1,0),B(0,2),C(﹣4,2)∴D3的纵坐标是2+2=4,横坐标是﹣(4+1)=﹣5则D的坐标是(﹣5,4)故答案为:(﹣3,0)或(5,0)或(﹣5,4).18.解:如图,①当BC为对角线时,易求M1(3,2);②当AC为对角线时,CM∥AB,且CM=AB.所以M2(﹣3,2);③当AB为对角线时,AC∥BM,且AC=BM.则|M y|=OC=2,|M x|=OB+OA=5,所以M3(5,﹣2).综上所述,符合条件的点D的坐标是M1(3,2),M2(﹣3,2),M3(5,﹣2).故答案为:(3,2)(﹣3,2)(5,﹣2).三.解答题19.证明:(1)∵AB∥DE∴∠B=∠DEF∵BE=CF∴BE+CE=CF+CE即BC=EF在△ABC和△DEF中∴△ABC≌△DEF(SAS);(2)由(1)得:△ABC≌△DEF∴AC=DF,∠ACB=∠F∴AC∥DF∴四边形ACFD是平行四边形.20.(1)解:如图,即为所画的图形;(2)证明:①如图,∵AD∥BC,DF∥BE∴∠DAF=∠BCE,∠DF A=∠BEC又AE=CF∴AE+EF=CF+EF即AF=CE在△AFD与△CEB中∴△AFD≌△CEB(ASA);②由①知,△AFD≌△CEB则AD=CB又∵AD∥BC∴四边形ABCD是平行四边形.21.证明:(1)∵AB∥CD∴∠B=∠D.在△ABE和△CDF中∴△ABE≌△CDF(ASA).∴AE=CF.(2)由(1)△ABE≌△CDF得AE=CF,∠AEB=∠CFD ∴180°﹣∠AEB=180°﹣∠CFD即∠AEF=∠CFE.∴AE∥CF.∵AE=CF∴四边形AECF是平行四边形.22.证明:(1)∵∠E=∠F∴AD∥BC∵AD=BC∴四边形ABCD是平行四边形∴AC,BD互相平分;即O是线段AC的中点.(2)∵AD∥BC∴∠EAC=∠FCA在△OAE和△OCF中∴△OAE≌△OCF(ASA).∴OE=OF又∵OA=OC∴四边形AFCE是平行四边形.23.证明:(1)∵BH=CG∴BH+HG=CG+HG∴BG=CH在△ABG与△CDH中∴△ABG≌△CDH(SAS)∴AG=DH;(2)∵△ABG≌△CDH∴∠AGB=∠CHD∴AF∥DE∵∠B=∠C∴AB∥CD∴四边形AFDE是平行四边形.24.证明:(1)四边形ABCD是平行四边形∴∠DAB=∠BCD∴∠EAM=∠FCN又∵AD∥BC∴∠E=∠F.∵在△AEM与△CFN中∴△AEM≌△CFN(ASA);(2)∵四边形ABCD是平行四边形∴AB=CD,AB∥CD又由(1)得AM=CN∴BM=DN,BM∥DN∴四边形BMDN是平行四边形.。

人教版-八下数学第十八章《平行四边形》单元测试题及答案

人教版-八下数学第十八章《平行四边形》单元测试题及答案
(第8题) (第10题) 第3题 9.已知菱形的两条对角线长为12cm 和6cm ,那么这个菱形的面积为 2cm . A BC DOABCD Ol 10.如图,l 是四边形ABCD 的对称轴,如果AD ∥BC ,有下列结论: (1)AB ∥CD ;(2)AB=CD ;(3)AB ⊥BC ;(4)AO=OC .其中正确的结 论是 . 二、选择题(每题3分,共24分) 11.在线段、角、等边三角形、等腰三角形、平行四边形、矩形、菱形、正方形、 圆、等腰梯形这十种图形中,既是轴对称图形又是中心对称图形的共有 ( )A.4种 B.5种 C.7种 D.8种 12.
进行平移后可得到一个边长为1m 的正方
形,所以它的周长为4m . (第8题) 9. 36. 提示:菱形的面积等于菱形两条对角线乘积的一半. 10. (1)(2)(4). 提示:四边形ABCD 是菱形. 11.B. 12.D. 13.C. 14.C. 15.C. 提示:因为ABC ?的底边BC 的长不变,BC 边上的高等于直线b a ,之间的距离也不变,所以ABC ?的面积不变. 16.A. 提示:由于() BAF DAE FAE DAE FAE ∠-=∠=∠∠∠ 9021,所以通过折叠后得到的是由 . 17.B. 提示:先说明DF=BF,DE=CE,所以四边形 AFDE 的周长=AF+DF+DE+AE=AF+BF+CE+AE=AB+AC. 18.C. 19.因为BD=CD ,所以,C DBC ∠=∠又因为四边形ABCD 是平行四边形,所以AD ∥BC ,所以,DBC D ∠=∠因为 20709090,,=-=∠=∠?⊥D DAE AED BD AE 中所以在直角. 20.(1)因为四边形ABCD 是平行四边形,所以AB=DC ,又AF=CG ,所以AB -AF=DC -CG, 即GD=BF,又 DG ∥BF,所以四边形DFBG 是平行四边形,所以DF=BG ; (2)因为四边形DFBG 是平行四边形,所以DF ∥GB,所以AFD GBF ∠=∠,同理可得 DGE GBF ∠=∠,所以 100=∠=∠DGE AFD . 21.(1)平行四边,两组对边分别相等的四边形是平行四边形; (2)矩,有一个是直角的平行四边形是矩形. 22.下面给出两种参考答案: (1)添加条件AB ∥DC,可得出该四边形是矩形; 理由:因为AB ∥DC,AB=DC,所以四边形ABCD 是平行四边形.又因为AC=BD,所以四边形ABCD 是矩形. (2)添加条件AC 垂直平分BD,那么该四边形是正方形. 理由:因为AC 垂直平分BD,所以AB=AD,BC=CD,又因为AB=DC,所以AB=AD=BC=DC,所以四边形ABCD 是菱形,又因为AC 垂 直BD,所以四边形ABCD 是正方形. 说明:解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联 系,向“纵、横、深、广”拓展,从而寻找出添加的条件和所得的结论. 23. O 在AC 的中点时,四边形ABCD 是矩形.因为AO=CO,BO=DO,所以四边形ABCD 是平 行四边形,又()CAN MAC CAE FAC FAE CAN CAE MAC FAC ∠+∠=∠+∠=∠∠=∠∠= ∠21,21,21所以 = 18021 ?= 90,所以四边形ABCD 是矩形. 24.如图所示,连结对角线AC 、BD,过A 、B 、C 、D 分别作BD 、AC 、BD 、AC 的平行线,且这些 平行线两两相交于E 、F 、G 、H ,四边形EFGH 即为符合条件的平行四边形.

八年级数学-四边形-单元测试(含答案)

八年级数学-四边形-单元测试(含答案)

四边形单元测试一、选择题(每题3分,共30分)。

1、顺次连结四边形各边的中点,所成的四边形必定是A 等腰梯形B 直角梯形C 矩形D 平行四边形2、如图1:等腰梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,那么图中的全等三角形共有A 1对B 2对C 3对D 4对C(图1)(图2)3、如图2,在矩形ABCD中,AD∥BC,AC与BD交于点O,则图中面积相等的三角形有A 4对B 5对C 6对D 8对4、不能判定四边形ABCD为平行四边形的命题是A AB∥CD且AB=CDB AB=AD、BC=CDC AB=CD,AD=BCD ∠A=∠C,∠B=∠D5、下列命题中,真命题是A 一组对边平行,另一组对边相等的四边形是平行四边形B 有一组对边和一组对角分别相等的四边形是平行四边形C 两组对角分别相等的四边形是平行四边形D 两条对角线互相垂直且相等的四边形是平行四边形6、正方形具有而菱形不一定具有的性质是A 对角线相等B 对角线互相垂直且平分C 四条边都相等D 对角线平分一组对角7、下列图形中是中心对称图形,但不是轴对称图形的是A 菱形B 矩形C 正方形D 平行四边形8、以A 、B 两点做其中两个顶点作位置不同的正方形,可作 A 1个 B 2个 C 3个 D 4个 9、如图3,ABCD 中,DB=DC ,∠C=70º,AE ⊥BD 于E ,则∠DAE 等于A 20ºB 25ºC 30ºD 35º10、等腰梯形的两条对角线互相垂直,中位线长为8,则该等腰梯形的面积为A 16B 32C 64D 512B(图3) (图4) (图5) 二、填空题(每空2分,共20分)11、四边形的内角和等于 º,外角和等于 º12、正方形的面积为4,则它的边长为 ,一条对角线长为 13、一个多边形,若它的内角和等于外角和的3倍,则它是 边形 14、如果四边形ABCD 满足 条件,那么这个四边形的对角线AC 和BD 互相垂直(只需填写一组你认为适当的条件)15、已知菱形的一条对角线长为12,面积为30,则这个菱形的另一条对角线的长为 16、如图4,ABCD 中,AE ⊥BC 于E ,AF ⊥DC 于F ,BC=5,AB=4,AE=3,则AF 的长为17、如图5,梯形ABCD 中,AD ∥BC ,已知AD=4,BC=8,则EF= ,EF 分梯形所得的两个梯形的面积比S 1 :S 2为三、尺规作图题(第18题4分,只要求画出图形,不写作法,第19题6分,画出图形并写作法,共10分)18、已知线段AB ,求AB 的三等分点。

人教版初中数学八年级下册《第18章 平行四边形》单元测试卷(5)

人教版初中数学八年级下册《第18章 平行四边形》单元测试卷(5)

人教新版八年级下学期《第18章平行四边形》单元测试卷一.选择题(共21小题)1.如图,在▱ABCD中,已知AC=4cm,若△ACD的周长为13cm,则▱ABCD的周长为()A.26cm B.24cm C.20cm D.18cm2.如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()A.15B.18C.21D.243.如图,四边形AOEF是平行四边形,点B为OE的中点,延长FO至点C,使FO=3OC,连接AB、AC、BC,则在△ABC中S△ABO:S△AOC:S△BOC=()A.6:2:1B.3:2:1C.6:3:2D.4:3:24.下列选项中,不能判定四边形ABCD是平行四边形的是()A.AD∥BC,AB∥CD B.AB∥CD,AB=CDC.AD∥BC,AB=DC D.AB=DC,AD=BC5.▱ABCD中,E,F是对角线BD上不同的两点.下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF 6.如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E作EF∥CD(点F 位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为()A.3B.4C.2D.37.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD =2,CE=5,则CD=()A.2B.3C.4D.28.如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,不能判定四边形ABCD是菱形的是()A.AB=AD B.AC=BD C.AC⊥BD D.∠ABO=∠CBO 9.如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8B.7C.4D.310.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24B.18C.12D.911.如图,在矩形ABCD中,AD=6,对角线AC与BD交于点O,AE⊥BD,垂足为点E,且AE平分∠BAO,则AB的长为()A.3B.4C.D.12.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10B.12C.16D.1813.矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1B.C.D.14.已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC15.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形16.如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB.EI ⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于()A.1B.C.D.17.下列说法中,正确个数有()①对顶角相等;②两直线平行,同旁内角相等;③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.A.1个B.2个C.3个D.4个18.下列说法中,正确的是()A.两条直线被第三条直线所截,内错角相等B.对角线相等的平行四边形是正方形C.相等的角是对顶角D.角平分线上的点到角两边的距离相等19.如图,矩形ABCD中,AB=3,BC=4,EB∥DF且BE与DF之间的距离为3,则AE 的长是()A.B.C.D.20.如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为()A.B.4C.4.5D.521.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④二.填空题(共11小题)22.如图,P是▱ABCD的边AD上一点,E、F分别是PB、PC的中点,若▱ABCD的面积为16cm2,则△PEF的面积(阴影部分)是cm2.23.如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是.24.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥AD于点E,交BC于点F,则EF的长为.25.如图,在菱形OABC中,点B在x轴上,点A的标为(2,3),则点C的坐标为.26.如图,点E、F、G分别在菱形ABCD的边AB,BC,AD上,AE=AB,CF=CB,AG=AD.已知△EFG的面积等于6,则菱形ABCD的面积等于.27.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是.28.如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB 或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为.29.如图,矩形ABCD的对角线AC与BD相交点O,AC=10,P、Q分别为AO、AD的中点,则PQ的长度为.30.如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的序号为.31.以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是.32.如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE 与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.三.解答题(共18小题)33.如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.34.如图,在▱ABCD中,过B点作BM⊥AC于点E,交CD于点M,过D点作DN⊥AC 于点F,交AB于点N.(1)求证:四边形BMDN是平行四边形;(2)已知AF=12,EM=5,求AN的长.35.如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ∥DB,且CQ =DP,连接AP、BQ、PQ.(1)求证:△APD≌△BQC;(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.36.如图,在四边形ABCD中,BC=CD,∠C=2∠BAD.O是四边形ABCD内一点,且OA=OB=OD.求证:(1)∠BOD=∠C;(2)四边形OBCD是菱形.37.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.38.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.39.如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E、F.(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.40.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D 作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,则菱形ABCD的面积是.41.如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.42.如图,在正方形ABCD中,AF=BE,AE与DF相交于点O.(1)求证:△DAF≌△ABE;(2)求∠AOD的度数.43.已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.44.已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.45.如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形;(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED 的周长.46.如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.47.如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,GD.(1)求证:△ECG≌△GHD;(2)小亮同学经过探究发现:AD=AC+EC.请你帮助小亮同学证明这一结论.(3)若∠B=30°,判定四边形AEGF是否为菱形,并说明理由.48.如图,在正方形ABCD中,E,F分别为AD,CD边上的点,BE,AF交于点O,且AE =DF.(1)求证:△ABE≌△DAF;(2)若BO=4,OE=2,求正方形ABCD的面积.49.矩形ABCD中,E、F分别是AD、BC的中点,CE、AF分别交BD于G、H两点.求证:(1)四边形AFCE是平行四边形;(2)EG=FH.50.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF.(1)求证:AE=CF;(2)若AB=6,∠COD=60°,求矩形ABCD的面积.人教新版八年级下学期《第18章平行四边形》2019年单元测试卷参考答案与试题解析一.选择题(共21小题)1.如图,在▱ABCD中,已知AC=4cm,若△ACD的周长为13cm,则▱ABCD的周长为()A.26cm B.24cm C.20cm D.18cm【分析】根据三角形周长的定义得到AD+DC=9cm.然后由平行四边形的对边相等的性质来求平行四边形的周长.【解答】解:∵AC=4cm,若△ADC的周长为13cm,∴AD+DC=13﹣4=9(cm).又∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∴平行四边形的周长为2(AB+BC)=18cm.故选:D.【点评】本题考查了平行四边形的性质.此题利用了“平行四边形的对边相等”的性质.2.如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()A.15B.18C.21D.24【分析】利用平行四边形的性质,三角形中位线定理即可解决问题;【解答】解:∵平行四边形ABCD的周长为36,∴BC+CD=18,∵OD=OB,DE=EC,∴OE+DE=(BC+CD)=9,∵BD=12,∴OD=BD=6,∴△DOE的周长为9+6=15,故选:A.【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形中位线定理,属于中考常考题型.3.如图,四边形AOEF是平行四边形,点B为OE的中点,延长FO至点C,使FO=3OC,连接AB、AC、BC,则在△ABC中S△ABO:S△AOC:S△BOC=()A.6:2:1B.3:2:1C.6:3:2D.4:3:2【分析】连接BF.设平行四边形AFEO的面积为4m.由FO:OC=3:1,BE=OB,AF ∥OE可得S△OBF=S△AOB=m,S△OBC=m,S△AOC=,由此即可解决问题;【解答】解:连接BF.设平行四边形AFEO的面积为4m.∵FO:OC=3:1,BE=OB,AF∥OE∴S△OBF=S△AOB=m,S△OBC=m,S△AOC=,∴S△AOB:S△AOC:S△BOC=m::m=3:2:1故选:B.【点评】本题主要考查了平行四边形的性质,等高模型等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.4.下列选项中,不能判定四边形ABCD是平行四边形的是()A.AD∥BC,AB∥CD B.AB∥CD,AB=CDC.AD∥BC,AB=DC D.AB=DC,AD=BC【分析】根据平行四边形的判定方法一一判断即可;【解答】解:A、由AD∥BC,AB∥CD可以判断四边形ABCD是平行四边形;故本选项不符合题意;B、由AB∥CD,AB=CD可以判断四边形ABCD是平行四边形;故本选项不符合题意;C、由AD∥BC,AB=DC不能判断四边形ABCD是平行四边形;故本选项符合题意;D、由AB=DC,AD=BC可以判断四边形ABCD是平行四边形;故本选项不符合题意;故选:C.【点评】本题考查平行四边形的判定方法,解题的关键是熟练掌握基本知识,属于中考基础题.5.▱ABCD中,E,F是对角线BD上不同的两点.下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF 【分析】连接AC与BD相交于O,根据平行四边形的对角线互相平分可得OA=OC,OB=OD,再根据对角线互相平分的四边形是平行四边形,只要证明得到OE=OF即可,然后根据各选项的条件分析判断即可得解.【解答】解:如图,连接AC与BD相交于O,在▱ABCD中,OA=OC,OB=OD,要使四边形AECF为平行四边形,只需证明得到OE=OF即可;A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;B、若AE=CF,则无法判断OE=OE,故本选项符合题意;C、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;D、∠BAE=∠DCF能够利用“角角边”证明△ABE和△CDF全等,从而得到DF=BE,然后同A,故本选项不符合题意;故选:B.【点评】本题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定方法是解题的关键.6.如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E作EF∥CD(点F 位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为()A.3B.4C.2D.3【分析】取BC的中点G,连接EG,根据三角形的中位线定理得:EG=4,设CD=x,则EF=BC=2x,证明四边形EGDF是平行四边形,可得DF=EG=4.【解答】解:取BC的中点G,连接EG,∵E是AC的中点,∴EG是△ABC的中位线,∴EG=AB==4,设CD=x,则EF=BC=2x,∴BG=CG=x,∴EF=2x=DG,∵EF∥CD,∴四边形EGDF是平行四边形,∴DF=EG=4,故选:B.【点评】本题考查了平行四边形的判定和性质、三角形中位线定理,作辅助线构建三角形的中位线是本题的关键.7.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD =2,CE=5,则CD=()A.2B.3C.4D.2【分析】根据直角三角形的性质得出AE=CE=5,进而得出DE=3,利用勾股定理解答即可.【解答】解:∵在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=5,∴AE=CE=5,∵AD=2,∴DE=3,∵CD为AB边上的高,∴在Rt△CDE中,CD=,故选:C.【点评】此题考查直角三角形的性质,关键是根据直角三角形的性质得出AE=CE=5.8.如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,不能判定四边形ABCD是菱形的是()A.AB=AD B.AC=BD C.AC⊥BD D.∠ABO=∠CBO【分析】根据菱形的定义及其判定、矩形的判定对各选项逐一判断即可得.【解答】解:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,当AB=AD或AC⊥BD时,均可判定四边形ABCD是菱形;当∠ABO=∠CBO时,由AD∥BC知∠CBO=∠ADO,∴∠ABO=∠ADO,∴AB=AD,∴四边形ABCD是菱形;当AC=BD时,可判定四边形ABCD是矩形;故选:B.【点评】本题主要考查菱形的判定,解题的关键是掌握菱形的定义和各判定及矩形的判定.9.如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8B.7C.4D.3【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出OB即可;【解答】解:∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB===4,∴BD=2OB=8,故选:A.【点评】本题考查了菱形性质,勾股定理的应用等知识,比较简单,熟记性质是解题的关键.10.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24B.18C.12D.9【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.【解答】解:∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴EF=BC,∴BC=6,∴菱形ABCD的周长是4×6=24.故选:A.【点评】本题考查的是三角形中位线的性质及菱形的周长公式,题目比较简单.11.如图,在矩形ABCD中,AD=6,对角线AC与BD交于点O,AE⊥BD,垂足为点E,且AE平分∠BAO,则AB的长为()A.3B.4C.D.【分析】由矩形的性质可得AO=CO=BO=DO,可证△ABE≌△AOE,可得AO=AB=BO=DO,由勾股定理可求AB的长.【解答】解:∵四边形ABCD是矩形∴AO=CO=BO=DO,∵AE平分∠BAO∴∠BAE=∠EAO,且AE=AE,∠AEB=∠AEO,∴△ABE≌△AOE(ASA)∴AO=AB,且AO=OB∴AO=AB=BO=DO,∴BD=2AB,∵AD2+AB2=BD2,∴36+AB2=4AB2,∴AB=2故选:C.【点评】本题考查了矩形的性质,全等三角形的判定和性质,勾股定理,熟练运用矩形的性质是本题的关键.12.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10B.12C.16D.18【分析】想办法证明S△PEB=S△PFD解答即可.【解答】解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=×2×8=8,∴S阴=8+8=16,(本题也可以证明两个阴影部分的面积相等,由此解决问题)故选:C.【点评】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.13.矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1B.C.D.【分析】延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案.【解答】解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠P AH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=PG=×=,故选:C.【点评】本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.14.已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC【分析】由矩形的判定方法即可得出答案.【解答】解:A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形,正确;B、∠A=∠C不能判定这个平行四边形为矩形,错误;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故正确;D、AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确;故选:B.【点评】本题主要考查的是矩形的判定定理.但需要注意的是本题的知识点是关于各个图形的性质以及判定.15.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形【分析】由矩形的判定和菱形的判定即可得出结论.【解答】解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A错误;若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.【点评】本题考查了矩形的判定、菱形的判定;熟记菱形和矩形的判定方法是解决问题的关键.16.如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB.EI ⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于()A.1B.C.D.【分析】根据轴对称图形的性质,解决问题即可;【解答】解:∵四边形ABCD是正方形,∴直线AC是正方形ABCD的对称轴,∵EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.∴根据对称性可知:四边形EFHG的面积与四边形EFJI的面积相等,∴S阴=S正方形ABCD=,故选:B.【点评】本题考查正方形的性质,解题的关键是利用轴对称的性质解决问题,属于中考常考题型.17.下列说法中,正确个数有()①对顶角相等;②两直线平行,同旁内角相等;③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.A.1个B.2个C.3个D.4个【分析】根据对顶角的性质,菱形的判定,正方形的判定,平行线的性质,可得答案.【解答】解:①对顶角相等,故①正确;②两直线平行,同旁内角互补,故②错误;③对角线互相垂直且平分的四边形为菱形,故③错误;④对角线互相垂直平分且相等的四边形为正方形,故④正确,故选:B.【点评】本题考查了正方形的判定、菱形的判定、平行线的性质、对顶角的性质,熟记对顶角的性质,菱形的判定,正方形的判定,平行线的性质是解题关键.18.下列说法中,正确的是()A.两条直线被第三条直线所截,内错角相等B.对角线相等的平行四边形是正方形C.相等的角是对顶角D.角平分线上的点到角两边的距离相等【分析】根据平行线的性质、正方形的判定、矩形的判定、对顶角的性质、角平分线性质逐个判断即可.【解答】解:A、两条平行线被第三条直线所截,内错角才相等,错误,故本选项不符合题意;B、对角线相等的四边形是矩形,不一定是正方形,错误,故本选项不符合题意;C、相等的角不一定是对顶角,错误,故本选项不符合题意;D、角平分线上的点到角的两边的距离相等,正确,故本选项符合题意;故选:D.【点评】本题考查了平行线的性质、正方形的判定、矩形的判定、对顶角的性质、角平分线性质等知识点,能熟记平行线的性质、正方形的判定、矩形的判定、对顶角的性质、角平分线性质的内容是解此题的关键.19.如图,矩形ABCD中,AB=3,BC=4,EB∥DF且BE与DF之间的距离为3,则AE 的长是()A.B.C.D.【分析】过点D作DG⊥BE,垂足为G,则GD=3,首先证明△AEB≌△GED,由全等三角形的性质可得到AE=EG,设AE=EG=x,则ED=4﹣x,在Rt△DEG中依据勾股定理列方程求解即可.【解答】解:如图所示:过点D作DG⊥BE,垂足为G,则GD=3.∵∠A=∠G,∠AEB=∠GED,AB=GD=3,∴△AEB≌△GED.∴AE=EG.设AE=EG=x,则ED=4﹣x,在Rt△DEG中,ED2=GE2+GD2,x2+32=(4﹣x)2,解得:x=.故选:C.【点评】本题主要考查的是矩形的性质、勾股定理的应用,依据题意列出关于x的方程是解题的关键.20.如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为()A.B.4C.4.5D.5【分析】设FC′=x,则FD=9﹣x,根据矩形的性质结合BC=6、点C′为AD的中点,即可得出C′D的长度,在Rt△FC′D中,利用勾股定理即可找出关于x的一元一次方程,解之即可得出结论.【解答】解:设FC′=x,则FD=9﹣x,∵BC=6,四边形ABCD为矩形,点C′为AD的中点,∴AD=BC=6,C′D=3.在Rt△FC′D中,∠D=90°,FC′=x,FD=9﹣x,C′D=3,∴FC′2=FD2+C′D2,即x2=(9﹣x)2+32,解得:x=5.故选:D.【点评】本题考查了矩形的性质以及勾股定理,在Rt△FC′D中,利用勾股定理找出关于FC′的长度的一元一次方程是解题的关键.21.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④【分析】由△AFD≌△AFB,即可推出S△ABF=S△ADF,故①正确,由BE=EC=BC=AD,AD∥EC,推出===,可得S△CDF=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,故②③错误④正确,由此即可判断.【解答】解:∵四边形ABCD是正方形,∴AD∥CB,AD=BC=AB,∠F AD=∠F AB,在△AFD和△AFB中,,∴△AFD≌△AFB,∴S△ABF=S△ADF,故①正确,∵BE=EC=BC=AD,AD∥EC,∴===,∴S△CDF=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,故②③错误④正确,故选:C.【点评】本题考查正方形的性质、全等三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二.填空题(共11小题)22.如图,P是▱ABCD的边AD上一点,E、F分别是PB、PC的中点,若▱ABCD的面积为16cm2,则△PEF的面积(阴影部分)是2cm2.【分析】先根据S▱ABCD=16cm2知S△PBC=S▱ABCD=8,再证△PEF∽△PBC得=()2,即=,据此可得答案.【解答】解:∵▱ABCD的面积为16cm2,∴S△PBC=S▱ABCD=8,∵E、F分别是PB、PC的中点,∴EF∥BC,且EF=BC,∴△PEF∽△PBC,∴=()2,即=,∴S△PEF=2,故答案为:2.【点评】本题主要考查平行四边形的性质,解题的关键是掌握平行四边形的性质与相似三角形的判定与性质.23.如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是18.【分析】根据三角形中位线定理得到AC=2DE=5,AC∥DE,根据勾股定理的逆定理得到∠ACB=90°,根据线段垂直平分线的性质得到DC=BD,根据三角形的周长公式计算即可.【解答】解:∵D,E分别是AB,BC的中点,∴AC=2DE=5,AC∥DE,AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,∵AC∥DE,∴∠DEB=90°,又∵E是BC的中点,∴直线DE是线段BC的垂直平分线,∴DC=BD,∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=18,故答案为:18.【点评】本题考查的是三角形中位线定理、线段垂直平分线的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.24.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥AD于点E,交BC于点F,则EF的长为.【分析】根据菱形的性质分别求出OB、OC,根据勾股定理求出BC,根据菱形的面积公式计算即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OB=BD=3,OC=AC=4,在Rt△BOC中,由勾股定理得,BC==5,∵S△OBC=×OB×OC=×BC×OF,∴OF=,∴EF=.故答案为.【点评】本题考查的是菱形的性质,掌握菱形的面积公式、菱形的性质定理是解题的关键.25.如图,在菱形OABC中,点B在x轴上,点A的标为(2,3),则点C的坐标为(2,﹣3).【分析】根据轴对称图形的性质即可解决问题;【解答】解:∵四边形OABC是菱形,∴A、C关于直线OB对称,∵A(2,3),∴C(2,﹣3),故答案为(2,﹣3).【点评】本题考查菱形的性质、坐标与图形的性质等知识,解题的关键是熟练掌握菱形的性质,利用菱形是轴对称图形解决问题.26.如图,点E、F、G分别在菱形ABCD的边AB,BC,AD上,AE=AB,CF=CB,AG=AD.已知△EFG的面积等于6,则菱形ABCD的面积等于27.【分析】在CD上截取一点H,使得CH=CD.连接AC交BD于O,BD交EF于Q,EG交AC于P.想办法证明四边形EFGH是矩形,四边形EPOQ是矩形,根据矩形EPOQ 的面积是3,推出菱形ABCD的面积即可;【解答】解:在CD上截取一点H,使得CH=CD.连接AC交BD于O,BD交EF 于Q,EG交AC于P.∵=,∴EG∥BD,同法可证:FH∥BD,∴EG∥FH,同法可证EF∥GF,∴四边形EFGH是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴EF⊥EG,∴四边形EFGH是矩形,易证点O在线段FG上,四边形EQOP是矩形,∵S△EFG=6,∴S矩形EQOP=3,即OP•OQ=3,∵OP:OA=BE:AB=2:3,∴OA=OP,同法可证OB=3OQ,∴S菱形ABCD=•AC•BD=×3OP×6OQ=9OP×OQ=27.故答案为27.【点评】本题考查菱形的性质、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题.27.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是(﹣5,4).【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,∴AB=5,∴AD=5,∴由勾股定理知:OD===4,∴点C的坐标是:(﹣5,4).故答案为:(﹣5,4).【点评】此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.28.如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB 或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为(8,4)或(,7).【分析】分两种情形分别讨论即可解决问题;【解答】解:∵四边形OABC是矩形,B(8,7),∴OA=BC=8,OC=AB=7,∵D(5,0),∴OD=5,∵点P是边AB或边BC上的一点,∴当点P在AB边时,OD=DP=5,∵AD=3,∴P A==4,∴P(8,4).当点P在边BC上时,只有PO=PD,此时P(,7).综上所述,满足条件的点P坐标为(8,4)或(,7).故答案为(8,4)或(,7).【点评】本题考查矩形的性质、坐标与图形性质、等腰三角形的判定等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.29.如图,矩形ABCD的对角线AC与BD相交点O,AC=10,P、Q分别为AO、AD的中点,则PQ的长度为 2.5.【分析】根据矩形的性质可得AC=BD=10,BO=DO=BD=5,再根据三角形中位线定理可得PQ=DO=2.5.【解答】解:∵四边形ABCD是矩形,∴AC=BD=10,BO=DO=BD,∴OD=BD=5,∵点P、Q是AO,AD的中点,∴PQ是△AOD的中位线,∴PQ=DO=2.5.故答案为:2.5.【点评】此题主要考查了矩形的性质,以及三角形中位线定理,关键是掌握矩形对角线相等且互相平分.30.如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM =HM;③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的序号为①②③.【分析】先判定△MEH≌△DAH,即可得到△DHM是等腰直角三角形,进而得出DM=HM;依据当∠DHC=60°时,∠ADH=60°﹣45°=15°,即可得到Rt△ADM中,DM=2AM,即可得到DM=2BE;依据点M是边BA延长线上的动点,且AM<AB,可得∠AHM<∠BAC=45°,即可得出∠CHM>135°.【解答】解:由题可得,AM=BE,∴AB=EM=AD,∵四边形ABCD是正方形,EH⊥AC,∴EM=AD,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,∴EH=AH,∴△MEH≌△DAH(SAS),∴∠MHE=∠DHA,MH=DH,∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,∴DM=HM,故②正确;当∠DHC=60°时,∠ADH=60°﹣45°=15°,∴∠ADM=45°﹣15°=30°,∴Rt△ADM中,DM=2AM,即DM=2BE,故①正确;∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,∴∠AHM<∠BAC=45°,∴∠CHM>135°,故③正确;故答案为:①②③.【点评】本题考查的是正方形的性质、全等三角形的判定和性质、等腰直角三角形的判定与性质的综合运用,掌握正方形的性质、全等三角形的判定定理和性质定理是解题的关键.31.以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是30°或150°.【分析】分等边△ADE在正方形的内部和外部两种情况分别求解可得.【解答】解:如图1,∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,。

沪科版2019-2020学年八年级数学下册第19章《四边形》单元测试卷(含答案)

沪科版2019-2020学年八年级数学下册第19章《四边形》单元测试卷(含答案)

密学校 班级姓名 学号密 封 线 内 不 得 答 题沪科版8年级数学(下)第19章《四边形》单元测试卷满分:150分,一、单选题(共10题;共40分)1.下列给出的条件中,能识别一个四边形是菱形的是( )A. 有一组对边平行且相等,有一个角是直角B. 两组对边分别相等,且有一组邻角相等C. 有一组对边平行,另一组对边相等,且对角线互相垂直D. 有一组对边平行且相等,且有一条对角线平分一个内角2.下列条件不能判定四边形ABCD 为平行四边形的是( )A. AB=CD,AD=BC B. AB ∥CD ,AB=CD C. AB=CD ,AD ∥BC D. AB ∥CD ,AD ∥BC 3.如图,在四边形ABCD 中,对角线AC 与BD 交于点O ,下列条件中不一定能判定这个四边形是平行四边形的是( )A. AB ∥DC ,AD=BCB. AD ∥BC ,AB ∥DCC. AB=DC ,AD=BCD. OA=OC ,OB=OD 4.如图,矩形ABCD 的两条对角线相交于点O ,∠AOB =120°,AD =2,点E 是BC 的中点,连结OE ,则OE 的长是( )A.B. 2C. 2D. 45.已知一个多边形的内角和是900°,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形 6.下列条件中,不能判定四边形ABCD 是平行四边形的是( )A. ∠A=∠C ,∠B=∠DB. AB ∥CD ,AB=CD C. AB ∥CD ,AD ∥BC D. AB=CD ,AD ∥BC 7.菱形ABCD 中,已知AC=6,BD=8,则此菱形的周长为( )A. 5B. 10C. 20D. 408.如图,过平行四边形ABCD 的对角线BD 上一点M 分别作平行四边形两边的平行线EF 与GH ,那么图中的过平行四边形AEMG 的面积S 1与▱HCFM 的面积S 2的大小关系是( )A. S 1>S 2B. S 1=S 2C. S 1<S 2D. 不能确定 9.下列图中不是凸多边形的是( )A. B. C. D.10.一个多边形的内角和与外角和为540°,则它是( )边形。

人教版八年级数学下册 第18章 《平行四边形》 单元测试卷(包含答案)

人教版八年级数学下册   第18章 《平行四边形》 单元测试卷(包含答案)

人教版八年级数学下册第18章平行四边形单元综合测试卷(时间90分钟,满分120分)一、选择题(共10小题,3*10=30)1.在□ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则□ABCD的周长是() A.22 B.20 C.22或20 D.182. 如图,由六个全等的正三角形拼成的图,图中平行四边形的个数是()A.4个B.6个C.8个D.10个3.如图,在▱ABCD中,AE平分∠BAD,若CE=3 cm,AB=4 cm,则▱ABCD的周长是() A.20 cm B.21 cmC.22 cm D.23 cm4.如图,四边形ABCD为平行四边形,延长AD到点E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.DE⊥DCC.∠ADB=90° D.CE⊥DE5.如图,在▱ABCD中,∠ABC的平分线交AD于点E,∠BED=150°,则∠A的大小为( ) A.150° B.130° C.120° D.100°6.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤7. 如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°8.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B. 2 C.4-2 2 D.32-49.如图,是边长分别为4和8的正方形ABCD、正方形CEFG并排放在一起,连接BD并延长交EG 于点T,交FG于点P,则GT的长为()A.2 2 B.2 C. 2 D.110. 如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连接EF,BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有( )A.1个B.2个C.3个D.4个二.填空题(共8小题,3*8=24)11.如图,在□ABCD中,对角线AC与BD交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折,若点B的落点记为B′,则DB′的长为______ .12.如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为________.13. 已知平行四边形的三个顶点坐标分别为(-1,0)(0,2)(2,0),则在第四象限的第四个顶点的坐标为___________。

【精品】人教版八年级数学下册 第十八章 平行四边形 复习检测题(含答案)【3套】试题

【精品】人教版八年级数学下册 第十八章 平行四边形 复习检测题(含答案)【3套】试题

人教版八年级数学下册第十八章平行四边形复习检测题(含答案)一、选择题。

1.下列命题中,错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等2.在▱ABCD中,已知AB=(x+1)cm,BC=(x-2)cm,CD=4 cm,则▱ABCD的周长为()A.5 cm B.10 cm C.14 cm D.28 cm3.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.34 B.26 C.8.5 D.6.54.如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,则DE的长为()A.1 B.2 C. 3 D.1+ 35.正方形的一条对角线长为4,则这个正方形面积是()A.8 B.4 2 C.8 2 D.166.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为()A.13 B.14 C.15 D.167.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H,则DH等于()A.245B.125C .5D .48.如图,把矩形纸片ABCD 沿对角线BD 折叠,设重叠部分为△EBD ,则下列说法错误的是( )A .AB =CD B .∠BAE =∠DCEC .EB =ED D .∠ABE 一定等于30°9.如图,在矩形ABCD 中,E ,F 分别是AD ,BC 中点,连接AF ,BE ,CE ,DF 分别交于点M ,N ,四边形EMFN 是( )A .正方形B .菱形C .矩形D .无法确定10.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当∠B =90°时,如图1,测得AC =2,当∠B =60°时,如图2,AC =( ) A. 2 B .2 C. 6 D .2 2二、填空题11.如图,在菱形ABCD 中,AC ,BD 相交于点O ,若∠BCO =55°,则∠ADO =____________.12.如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为____________.13.如图,矩形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E,AD =8,AB=4,则DE的长为____________.14.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是____________.(写出一个即可)15.如图,正方形ABCO的顶点C,A分别在x轴、y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是____________.16.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是____________.三、解答题(共52分)17.(10分)如图,点A,F,C,D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)请写出图中两对全等的三角形;(2)求证:四边形BCEF是平行四边形.18.(10分)如图,AC是▱ABCD的对角线,∠BAC=∠DAC.(1)求证:AB=BC;(2)若AB=2,AC=23,求▱ABCD的面积.19.(10分)如图,已知,在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.20.(10分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?21.(12分)已知AC是菱形ABCD的对角线,∠BAC=60°,点E是直线BC上的一个动点,连接AE,以AE为边作菱形AEFG,并且使∠EAG=60°,连接CG,当点E在线段BC上时,如图1,易证:AB=CG+CE.(1)当点E在线段BC的延长线上时(如图2),猜想AB,CG,CE之间的关系并证明;(2)当点E在线段CB的延长线上时(如图3),直接写出AB,CG,CE之间的关系.参考答案一、选择题1.C2.B3.D4.A5.A6.A7.A8.D9.B 10.A 二、填空题。

四边形单元测试卷

四边形单元测试卷

10. 如图4,□ABCD 中,EF 过对角线的交点O ,AB =4,AD =3,OF =1.3,则四边形BCEF 的周长为( )A.8.3B.9.6C.12.6D.13.611.同学们玩过万花筒,它是由三块等宽等长的玻璃片围成的,如图5,是看到的万花筒的一个图案,图中所有小三角形均是全等的等边三角形,其中菱形AEFG 可以看成是把菱形ABCD 以A 为中心_________得到的.( ) A.顺时针旋转60° B.顺时针旋转120° C.逆时针旋转60° D.逆时针旋转120°12 某人设计装饰地面的图案,拟以长为22 cm ,16 cm ,18 cm 的三条线段中的两条为对角线,另一条为边,画出不同形状的平行四边形,他可以画出形状不同的平行四边形个数为( ) A.1 B.2 C.3 D.413. 若等腰梯形两底的差等于一腰的长,则最小的内角是( )A.30°B.45°C.60°D.75°14. 如图5,在矩形ABCD 中,AB =3,AD =4,P 是AD 上的动点,PE ⊥AC 于E ,PF ⊥BD于F ,则PE +PF 的值为( )图5 图6A.513 B.25 C.2 D.51215.如图6,直线l 1、l 2、l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有( )A.1处B.2处C.3处D.4处16. 在课外活动课上,某同学做了一个对角线互相垂直的等腰梯形形状的风筝,其面积为450 cm 2,则两条对角线共用的竹条至少需( )A.302cmB.30 cmC.60 cmD.602 cm三、解答题(6小题,共52分)17.(8分)如图8,将矩形纸片ABCD沿对角线AC折叠,使点B落在点E处,求证:EF=DF.17题图18.如图中,G是CD上一点,BG交AD延长线于E,AF=CG,100=∠DGE.(1)试说明DF=BG; (2)试求AFD∠的度数.19.(8分)如图12-1-23,在□ABCD的对角线上取两点E、F,且BF=DE,请至少用两种不同的方法证明四边形AECF是平行四边形.20. (8分)工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料,如图(1),使AB=CD,EF=GH;(2)摆成如图(2)的四边形,则这时窗框的形状是形,根据的数学道理是;(3)将直角尺靠紧窗框的一个角,如图(3),调整窗框的边框,点直角尺的两条直角边与窗框无缝隙时,如图(4),说明窗框合格,这时窗框是形,根据的数学道理是。

人教版八年级数学下册第十八章 平行四边形 单元测试卷(含答案)

人教版八年级数学下册第十八章 平行四边形 单元测试卷(含答案)

第十八章平行四边形单元测试卷题号一二三总分得分一、选择题(每题3分,共30分)1.直角三角形中,两直角边长分别是12和5,则斜边上的中线长是( )A.34B.26C.8.5D.6.52.如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=4,则AC 的长是( )A.4B.8C.4错误!未找到引用源。

D.8错误!未找到引用源。

3.一个菱形的周长为8 cm,高为1 cm,这个菱形相邻两角的度数之比为( )A.3∶1B.4∶1C.5∶1D.6∶14.下列命题错误..的是( )A.对角线互相垂直平分的四边形是菱形B.平行四边形的对角线互相平分C.矩形的对角线相等D.对角线相等的四边形是矩形5.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是( )A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形6.如图,在矩形ABCD中,对角线AC,BD相交于点O,过O的直线EF分别交AB,CD于点E,F,若图中阴影部分的面积为6,则矩形ABCD的面积为( )A.12B.18C.24D.307.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判定这个四边形是正方形( )A.①②B.①③C.①④D.④⑤8.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为( )A.20°B.25°C.30°D.35°9.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BA E=22.5°,EF⊥AB,垂足为F,则EF的长为( )A.1B.错误!未找到引用源。

C.4-2 错误!未找到引用源。

D.3 错误!未找到引用源。

-410.如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上的M点处,延长BC,EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S.其中,将正确结论的序号全部选对的是( )△BEF=3S△DEFA.①②③B.①②④C.②③④D.①②③④二、填空题(每题3分,共30分)11.如图,在平行四边形ABCD中,点E,F分别在边BC,AD上,请添加一个条件__________,使四边形AECF是平行四边形(只填一个即可).12.如图,在周长为20的平行四边形ABCD中,AB<AD,AC与BD交于点O,OE⊥BD,交AD于点E,则△ABE的周长为__________.13.如图,已知AB=BC=CD=AD,∠DAC=30°,那么∠B=__________.14.如图,在矩形ABCD中,对角线AC,BD相交于O,DE⊥AC于E,∠EDC∶∠EDA=1∶2,且AC=10,则EC的长度是__________.15.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为__________.16.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB的中点)所在的直线上的点C'处,得到经过点D的折痕DE.则∠DEC的大小为__________.17.正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点,若△PBE是等腰三角形,则腰长为__________.18.已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E,F分别是边AD,DC上的点,若AE=4 cm,CF=3 cm,且OE⊥OF,则EF的长为____cm.19.菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级(下)数学第三章四边形单元测试卷
一、填空题
1. 以长为8,宽为6的矩形各边中点为顶点的四边形的周长为_________.
2. 已知正方形的一条对角线长为4 cm,则它的面积是_________ cm2.
3. 菱形的两条对角线长为6和8,则菱形的边长为_________,面积为_________.
4. □ABCD中,若∠A∶∠B=2∶3,则∠C=_________,∠D=_________.
5. 矩形ABCD中,AB=8,BC=6,E、F是AC的三等分点,则△BEF的面积是_________.
6. 菱形ABCD中,AB=4,高DE垂直平分边AB,则BD=_________,AC=_________.
7. □ABCD中,周长为20 cm,AB=4 cm,那么CD=_________ cm,AD=_________ cm.
8. 菱形两邻角的度数之比为1∶3,高为72,则边长=_________,面积=_________.
9. 如图1,等边△ABC中,D、E、F分别是AB、BC、CA边上的中点,那么图中有_________个等边三角形,有_________个菱形.
图1 图2 图3
10. 矩形ABCD的周长是56 cm,它的两条对角线相交于O,△AOB的周长比△
BOC的周长短4 cm,则AB=_________,BC=_________.
11. 如图2,E、F是□ABCD对角线AC上两点,且AE=CF,则四边形DEBF是_________.
12 .如图3,梯形ABCD中,AD∥BC,AB=DC,AC、BD相交于点O,则图中全等三角形共有_________对.
二、选择题
13. 在□ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于G、H,
请判断下列结论:其中正确的结论有()
(1)BE=DF;(2)AG=GH=HC; (3)EG=
2
1
BG;(4)S△ABE=3S△AGE
个个个个
14. 如图,□ABCD中,EF过对角线的交点O,AB=4,
AD=3,OF=,则四边形BCEF的周长为()
A.8.3 给出下列命题,其中错误命题的
个数是()
①四条边相等的四边形是正方形;②两组邻边分
别相等的四边形是平行四边形;③有一个角是直角的平行四边形是矩形;
④矩形、线段都是轴对称图形.
16. 某人设计装饰地面的图案,拟以长为22 cm,16 cm,18 cm的三条线段
中的两条为对角线,另一条为边,画出不同形状的平行四边形,他可以画出形状不同的平行四边形个数为()
B.2
17. 若等腰梯形两底的差等于一腰的长,则最小的内角是()
°°°°
18. 如图,在矩形ABCD中,AB=3,AD=4,P是AD上的动点,PE⊥AC于E,PF⊥BD于F,则PE+PF的值为()
A.
5
13
B.
2
5
D.
5
12
19. 给出五种图形:①矩形②菱形③等腰三角形
(腰与底边不相等) ④等边三角形⑤平行四边形(不含矩形、菱形),其中可用两块能完全重合的含有30°角的三角板拼成的所有图形是()
A.①②③
B.②④⑤
C.①③④⑤
D.①②③④⑤
20. 如图7,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()处处处处
21. 在课外活动课上,某同学做了一个对角线互相垂直的等
腰梯形形状的风筝,其面积为450 cm2,则两条对角线共
用的竹条至少需()
2 cm cm 2 cm
三、证明题
22.如图8,将矩形纸片ABCD沿对角线AC折
叠,使点B落在点E处。

求证:EF=DF.

23.已知:如图9,□ABCD的对角线AC的垂
直平分线与边AD、BC分别交于E、F,求证:
四边形AFCE是菱形.
24.如图12-1-23,在□ABCD的对角线上取两点E、
F,且BF=DE,请至少用两种不同的方法证明四边形
AECF是平行四边形.25.如图10,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.
(1)求证:△ACD≌△CBF.
(2)点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.
26.已知:□ABCD的周长为60 cm,对角线AC、BD相交于点O,△AOB的周长比△DOA的周长长5 cm,求这个平行四边形各边的长.
27.已知等腰梯形ABCD,AD∥BC,E为梯形内一点,且EA=ED,求证:EB=E C.
参考答案一、填空题
1. 20
2. 8
3. 5 24
4. 72° 108°
5 . 8 6. 4 43 7. 4
6 982
9. 5 3 10. 12 cm 16 cm 11.平行四边形 12. 3
二、选择题
三、解答题
23.证明:从图中可以得出,△ACD与△CAE是全等三角形,其中△AFC 为公共部分,
所以△AEF与△CDF是全等三角形,
则有全等三角形对应边定理可以得出,EF=CD,所以得证明。

第23题图
24.证明:如下图所示,EF为AC的垂直平分线,
所以AO=OC,∠AOE=∠COF,∠EAO=∠FCO,
所以△AOE≌△COF,所以EO=OF,所以四边形AECF为平行四边形,
又因为其对角线,AC与FF互相垂直平分,所以平行AECF为菱形。

第24题图
25.证明方法(一)
在△ABF和△CDE中,AB=CD,BF=DE,∠ABF=∠CDE.
∴△ABF≌△CDE ∴AF=CE
同理可证AE=CF,故四边形AECF是平行四边形
方法(二)
连AC交BD于O
在□ABCD中,OA=OC,OB=OD
∵BF=DE ∴OE=OF ∴四边形AECF为平行四边形
26.(1)证明:由△ABC为等边三角形,AC=BC,∠FBC=∠DCA,CD=BF,
所以△ACD≌△CBF。

第26题图
(2)当∠DEF=30°,即为∠DCF=30°,
在△BCF 中,∠CFB=90°,即F 为AB 的中点, 又因为△ACD ≌△CBF ,所以点D 为BC 的中点
27.解:在三角形ABO 与三角形AOD 中,AO 为公共边,OD=BO , 所以△AOB 的周长比△DOA 的周长长5 cm , 即为AD 比AB 长5 cm ,
又因为□ABCD 的周长为60 cm 所以2AB+5 cm=30 cm , 则,AB =CD =
235 cm , AD =BC =2
25 cm
第27题图 第28题图
28.证明:由ABCD 为等腰梯形,所以AB=CD ,从点E 做AD 的垂线,垂足为F ,延长交BC 于M ,
已知AE=ED ,所以MF 为AD 和BC 的垂直平分线,所以BE=EC 。

相关文档
最新文档