算法设计与分析回溯法02
算法设计与分析——批处理作业调度(回溯法)
算法设计与分析——批处理作业调度(回溯法)之前讲过⼀个相似的问题流⽔作业调度问题,那⼀道题最开始⽤动态规划,推到最后得到了⼀个Johnson法则,变成了⼀个排序问题,有兴趣的可以看⼀下本篇博客主要参考⾃⼀、问题描述给定n个作业的集合{J1,J2,…,Jn}。
每个作业必须先由机器1处理,然后由机器2处理。
作业Ji需要机器j的处理时间为t ji。
对于⼀个确定的作业调度,设Fji是作业i在机器j上完成处理的时间。
所有作业在机器2上完成处理的时间和称为该作业调度的完成时间和。
批处理作业调度问题要求对于给定的n个作业,制定最佳作业调度⽅案,使其完成时间和达到最⼩。
例:设n=3,考虑以下实例:看到这⾥可能会对这些完成时间和是怎么计算出来的会有疑问,这⾥我拿123和312的⽅案来说明⼀下。
对于调度⽅案(1,2,3)作业1在机器1上完成的时间是2,在机器2上完成的时间是3作业2在机器1上完成的时间是5,在机器2上完成的时间是6作业3在机器1上完成的时间是7,在机器2上完成的时间是10所以,作业调度的完成时间和= 3 + 6 + 10这⾥我们可以思考⼀下作业i在机器2上完成的时间应该怎么去求?作业i在机器1上完成的时间是连续的,所以是直接累加就可以。
但对于机器2就会产⽣两种情况,这两种情况其实就是上图的两种情况,对于(1,2,3)的调度⽅案,在求作业2在机器2上完成的时间时,由于作业2在机器1上还没有完成,这就需要先等待机器1处理完;⽽对于(3,1,2)的调度⽅案,在求作业2在机器2上完成的时间时,作业2在机器1早已完成,⽆需等待,直接在作业1被机器1处理之后就能接着被处理。
综上,我们可以得到如下表达式if(F2[i-1] > F1[i])F2[i] = F2[i-1] + t[2][i]elseF2[i] = F1[i] + t[2][i]⼆、算法设计类Flowshop的数据成员记录解空间的结点信息,M输⼊作业时间,bestf记录当前最⼩完成时间和,数组bestx记录相应的当前最佳作业调度。
算法设计与分析中的贪心算法与回溯法
算法设计与分析中的贪心算法与回溯法算法设计与分析领域中,贪心算法和回溯法是两种常用的解题方法。
本文将介绍这两种算法,并比较它们在不同场景下的优势和劣势。
一、贪心算法贪心算法是一种在每一步都选择当前最优解的策略,希望通过局部最优解的选择最终达到全局最优解。
贪心算法的实现较为简单,时间复杂度较低,适用于解决一些最优化问题。
贪心算法的基本思想是每次都选择当前状态下的最优解,并将其加入到解集中。
例如,在求解最小生成树的问题中,贪心算法会选择当前具有最小权值的边,并将其添加到最终结果中,直到生成树完成。
然而,贪心算法的局限性在于它只考虑了当前的最优解,无法保证找到全局最优解。
在某些问题中,贪心算法可能会陷入局部最优解而无法跳出。
因此,需要在具体问题中综合考虑问题的性质和约束条件来确定是否适合采用贪心算法。
二、回溯法回溯法是一种通过不断尝试可能的步骤来寻找问题解的方法。
它通常基于递归的思想,在每一步都尝试所有的可能选择,并逐步构建解空间,直到找到解或确定无解。
回溯法的核心思想是深度优先搜索,通过遍历解空间树来寻找解。
在每一步,回溯法都会考虑当前状态下的所有可能选择,并递归地进入下一步。
如果某一步的选择无法达到目标,回溯法会回退到上一步进行其他可能的选择。
回溯法常用于解决一些全排列、子集和组合等问题。
例如,在解决八皇后问题时,回溯法通过逐个放置皇后并进行合法性判断,直到找到所有解或遍历完所有可能的情况为止。
然而,回溯法的缺点在于其时间复杂度较高,其搜索过程包含了大量的重复计算。
因此,在使用回溯法解决问题时,需注意适当剪枝以减少搜索空间,提高算法效率。
三、贪心算法与回溯法的比较贪心算法和回溯法都是常用的算法设计与分析方法,但其适用场景和效果有所差异。
贪心算法在解决问题时能够快速找到局部最优解,并且具有较低的时间复杂度。
它适用于一些满足最优子结构性质的问题,例如最小生成树、单源最短路径等。
然而,贪心算法无法保证一定能找到全局最优解,因此需根据具体问题的特点来判断是否使用。
算法设计与分析实验指导4_回溯法
防卫点
角色
1
2
3
4
5
1
60
40
80
50
60
2
90
60
80
70
20
3
30
50
40
50
80
4
90
40
30
70
5
60
80
90
60
50
2.0-1背包问题(选做)
编程实现0-1背包问题的回溯算法。
数据文件见附件。
四、实验报告
1.实验报告只写实验⑴。
2.写出算法思想、主要程序代码、算法复杂性分析。
void Print1(Type a[],int n)
{
for(int i=1; i<=n; i++)
cout<<a[i]<<' ';
cout<<endl;
}
三、实验内容及要求:
1.排兵布阵问题
某游戏中,不同的兵种处在不同的地形上其攻击能力不一样,现有n个不同兵种的角色{1,2,...,n},需安排在某战区n个点上,角色i在j点上的攻击力为Aij。试设计一个布阵方案,使总的攻击力最大。
void TwoDimArray(Type** &p,int r,int c)
{
p=new Type *[r];
for(int i=0; i<r; i++)
p[i]=new Type[c];
for(int i=0;i<r;i++)
for(int j=0;j<c;j++)
算法分析与设计实验报告--回溯法
算法分析与设计实验报告--回溯法实验目的:通过本次实验,掌握回溯法的基本原理和应用,能够设计出回溯法算法解决实际问题。
实验内容:1.回溯法概述回溯法全称“试探回溯法”,又称“逐步退化法”。
它是一种通过不断试图寻找问题的解,直到找到解或者穷尽所有可能的解空间技术。
回溯法的基本思路是从问题的某一个初始状态开始,搜索可行解步骤,一旦发现不满足求解条件的解就回溯到上一步,重新进行搜索,直到找到解或者所有可能的解空间已经搜索完毕。
2.回溯法的基本应用回溯法可用于求解许多 NP 问题,如 0/1 背包问题、八皇后问题、旅行商问题等。
它通常分为两种类型:一种是通过枚举所有可能的解空间来寻找解;另一种则是通过剪枝操作将搜索空间减少到若干种情况,大大减少了搜索时间。
3.回溯法的解题思路(1)问题分析:首先需要对问题进行分析,确定可行解空间和搜索策略;(2)状态表示:将问题的每一种状况表示成一个状态;(3)搜索策略:确定解空间的搜索顺序;(4)搜索过程:通过逐步试探,不断扩大搜索范围,更新当前状态;(5)终止条件:在搜索过程中,如果找到了满足要求的解,或者所有的可行解空间都已搜索完毕,就结束搜索。
4.八皇后问题八皇后问题是指在一个 8x8 的棋盘上放置八个皇后,使得任意两个皇后都不在同一行、同一列或同一对角线上。
通过回溯法可以求解出所有的可能解。
实验过程:回溯法的实现关键在于搜索空间的剪枝,避免搜索无用的解;因此,对于八皇后问题,需要建立一个二维数组来存放棋盘状态,以及一个一维数组来存放每行放置的皇后位置。
从第一行开始搜索,按照列的顺序依次判断当前的空位是否可以放置皇后,如果可以,则在相应的位置标记皇后,并递归到下一行;如果不能,则回溯到上一行,重新搜索。
当搜索到第八行时,获取一组解并返回。
代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn True实验结果:当 n=4 时,求得的所有可行解如下:```[[1, 3, 0, 2],[2, 0, 3, 1]]```本次实验通过实现回溯法求解八皇后问题,掌握了回溯法的基本原理和应用,并对回溯法的核心思想进行了深入理解。
算法设计与分析王红梅第二版第8章_回溯法详解
2018/10/15
Chapter 8 Back Track Method
10
概述 -问题的解空间
可行解:满足约束条件的解,解空间中的一个子集
最优解:
使目标函数取极值(极大或极小)的可行解,一个或少数几个 例:货郎担问题,有nn种可能解。n!种可行解,只有一个或 几个是最优解。 例:背包问题,有2n种可能解,有些是可行解,只有一个或 几个是最优解 有些问题,只要可行解,不需要最优解: 例:八皇后问题和图的着色问题
7
概述 -问题的解空间
例:0/1背包问题中,xi 有0/1 两种取值,则S={0,1}, 当n=3时,0/1背包问题的解空间是:
{(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1)}
即:当输入规模为n 时,有2n 种可能的解。 例:货郎担问题,S={1,2,…,n},当n=3时,S={1,2,3} 。 货郎担TSP问题的解空间中的可能解有27个,是:
0 3 0 15
对物品2的选择
对物品3的选择
2018/10/15
Chapter 8 Back Track Method
12
概述 -问题的解空间
例:对于n=4 的TSP 问题,图8.3是经压缩后的解空间树,树中的24 个叶子结 点分别代表该问题的24 个可能解,例如结点5 代表一个可能解,路径为 1→2→3→4→1,长度为各边代价之和。
2018/10/15 Chapter 8 Back Track Method 2
学习目标
教学重点 教学难点 回溯法的设计思想,各种经典问题的回溯思想 批处理作业调度问题的回溯算法
《算法设计与分析》课程中“回溯法”教学探讨
vi akrc it ) odb c t k(n a t
{ i t )otu( ) f( >n up tx ;
2 1 采 用传 统教 学方 法 , . 强化 习题 讨 论 实 验 的 目的是 让学 生 自己动 手完 成任 务 , 同于课 堂教 学学生 是 实验课 的主人 , 对学生 算法 中有 不 针
问题的部分 , 教师应及时加以纠正 , 并以此展开讨论 , 传统教学方法的优点在于条理清楚 , 思路清晰, 教 师在板书时学生可以思考 , 而并非教师用课件直接将算法或程序演示 给学生。例如在做教材 4 9 . 磁带
子树 , 续按 深度 优 先策 略搜 索 。 继
由于回溯法在许多知识领域有广泛 的应用背景 , 故从各级 中小学生信息学竞赛到 A M IP C /C C国际 大学生程序设计竞赛 中均能发现其踪迹 _ 。它可 以解决许多看上去无法处理的问题 , 5 J 另外一些可用类 似于动态规划解决的问题也可用其处理 , 因此掌握回溯法 的原理与编程技巧 , 是程序设计的基本功 。与 动态规划法的状态转移方程因问题而异相比, 回溯法显得相对简单 , 大多数学生经过一段时间的训练均
成 该题 。
对 一些 依 靠搜 索 而不是 直接 套用 子集 树及 排列 树 的 问题 , 加 以启 发诱 导 , 要 及 O I 1 木棍拼接问题。这两题不能完全按照前期所讲授 的子集树及排列树问题 的套路求 解, 启发 学 生这 两题 共 同点是 采用 深度 优先 搜 寻原则 , 回溯 中加 人适 当 的剪枝 函数 , 在 如买 鱼 问题 中鱼 互不冲突 , 木棍拼接问题 中拼接后剩余长度为当前长度 , 即可完成。当学生明白并非所有 的搜索均是照 以前的套路做时, 再让他们做书中 5 1 .5整数变换问题 , 52 世界名画陈列馆问题。为了让学生拓展 及 .5
算法设计与分析---回溯实验报告
《算法设计与分析》实验报告实验三回溯法3.迷宫问题一天Luna在森林里探险的时候不小心走入了一个迷宫,迷宫可以看成是由n * n的格点组成,每个格点只有2种状态,. 和#,前者表示可以通行后者表示不能通行。
同时当Luna处在某个格点时,她只能移动到东南西北(或者说上下左右)四个方向之一的相邻格点上,Luna想要从点A走到点B(不能走出迷宫)。
如果起点或者终点有一个不能通行(为#),则看成无法办到。
[输入]第1行是测试数据的组数k,后面跟着k组输入。
每组测试数据的第1行是一个正整数n (1 <= n <= 100),表示迷宫的规模是n * n 的。
接下来是一个n * n的矩阵,矩阵中的元素为. 或者#。
再接下来一行是4个整数ha, la, hb, lb,描述A处在第ha行, 第la列,B处在第hb 行, 第lb列。
注意到ha, la, hb, lb全部是从0开始计数的。
1.八皇后问题1.1解题思路八皇后问题的解法,很简单的解法。
通过回溯实现枚举。
对于当前行,尝试是否可在当前列放置皇后,然后进入下一行的尝试,同时尝试完毕以后,要将当前行回复(回溯),来进行下一次尝试。
到达最后一行的时候,即递归结束条件,打印结果即可。
1.2程序运行情况1.3所有的皇后解见附录。
(毕竟92个解...)1.4程序源码(含注释)2. 24点问题2.1 解题思路这题虽然使用dfs很简单,但是有一点思维在里面。
我很惭愧,自己没有想出来怎么如意的独立AC此题。
遇到的最大的问题——如何插入括号?枚举插入、和运算符一同排列都不靠谱。
解决方法是:用同等的办法转化。
每一次从待组合的是数字中,任取两个数,随机用运算符计算完毕后,再放回去。
下一次计算,再次重复这个过程,可以等价为有括号的运算方式了。
遇到第二个问题——如何实现这种“任取两个数”的选择方式。
这里就直接体现出了我个人能力的不足。
居然没想到。
尝试使用STL的set,但是没成功。
算法分析实验报告--回溯法
《算法设计与分析》实验报告回溯法姓名:XXX专业班级:XXX学号:XXX指导教师:XXX完成日期:XXX一、试验名称:回溯法(1)写出源程序,并编译运行(2)详细记录程序调试及运行结果二、实验目的(1)掌握回溯算法思想(2)掌握回溯递归原理(3)了解回溯法典型问题三、实验内容(1)编写一个简单的程序,解决8皇后问题(2)批处理作业调度(3)数字全排列问题四、算法思想分析(1)编写一个简单的程序,解决8皇后问题(2)批处理作业调度[问题描述]给定n个作业的集合J=(J1, J2, … , Jn)。
每一个作业Ji都有两项任务需要分别在2台机器上完成。
每一个作业必须先由机器1处理,然后再由机器2处理。
作业Ji需要机器i的处理时间为tji,i=1,2, … ,n; j=1,2。
对于一个确定的作业调度,设Fji是作业i在机器i上完成处理的时间。
则所有作业在机器2上完成处理的时间和成为该作业调度的完成时间和。
批处理作业调度问题要求对于给定的n个作业,制定一个最佳的作业调度方案,使其完成时间和达到最小。
要求输入:1、作业数2、每个作业完成时间表:要求输出:1、最佳完成时间2、最佳调度方案提示提示:算法复杂度为O(n!),建议在测试的时候n值不要太大,可以考虑不要超过12。
(3)数字全排列问题:任意给出从1到N的N个连续的自然数,求出这N个自然数的各种全排列。
如N=3时,共有以下6种排列方式:123,132,213,231,312,321。
注意:数字不能重复,N由键盘输入(N<=9)。
五、算法源代码及用户程序(1)编写一个简单的程序,解决8皇后问题N皇后问题代码1:#include<stdio.h>#define NUM 8 //定义数组大小int a[NUM + 1];int main (){int a[100];int number;int i;int k;int flag;int notfinish = 1;int count = 0; i = 1; //正在处理的元素下标,表示前i-1个元素已符合要求,正在处理第i个元素a[1] = 1; //为数组的第一个元素赋初值printf ("Result:\n"); while (notfinish) //处理尚未结束{while (notfinish && i <= NUM) //处理尚未结束且还没处理到第NUM个元素{for (flag = 1, k = 1; flag && k < i; k++) //判断是否有多个皇后在同一行{if (a[k] == a[i])flag = 0;}for (k = 1; flag && k < i; k++) //判断是否有多个皇后在同一对角线{if ((a[i] == a[k] - (k - i)) || (a[i] == a[k] + (k - i)))flag = 0;} if (!flag) //若存在矛盾不满足要求,需要重新设置第i个元素{if (a[i] == a[i - 1]) //若a[i]的值已经经过一圈追上a[i-1]的值{i--; //退回一步,重新试探处理前的一个元素if (i > 1 && a[i] == NUM){a[i] = 1; //当a[i]的值为NUM时将a[i]的值置1}else if (i == 1 && a[i] == NUM){notfinish = 0; //当第一位的值达到NUM时结束}else{a[i]++; //将a[i]的值取下一个值}}else if (a[i] == NUM){a[i] = 1;}else{a[i]++; //将a[i]的值取下一个值}}else if (++i <= NUM) //第i位已经满足要求则处理第i+1位{if (a[i - 1] == NUM) //若前一个元素的值为NUM则a[i]=1 {a[i] = 1;}else{a[i] = a[i - 1] + 1; //否则元素的值为前一个元素的下一个值}}}if (notfinish){++count;printf ((count - 1) % 3 ? "[%2d]:" : "\n[%2d]:", count);for (k = 1; k <= NUM; k++) //输出结果{printf (" %d", a[k]);} if (a[NUM - 1] < NUM) //修改倒数第二位的值{a[NUM - 1]++;}else{a[NUM - 1] = 1;} i = NUM - 1; //开始寻找下一个满足条件的解}}//whileprintf ("\n");return 0;}(2)批处理作业调度import java.util.*;public class FlowShop{static int n; //作业数static int f1; //机器1完成处理时间static int f; //完成时间和static int bestf; //当前最优值static int[][] m; //各作业所需要的处理时间static int[] x; //当前作业调度static int[] bestx; //当前最优作业调度static int[] f2; //机器2完成处理时间public static void trackback(int i) {if (i == n) {for (int j = 0; j < n; j++) {bestx[j] = x[j];}bestf = f;} else {for (int j = i; j < n; j++) {f1 += m[x[j]][0];if (i > 0) {f2[i] = ((f2[i - 1] > f1) ? f2[i - 1] : f1) + m[x[j]][1]; } else {f2[i] = f1 + m[x[j]][1];}f += f2[i];if (f < bestf) {swap(x, i, j);trackback(i + 1);swap(x, i, j);}f1 -= m[x[j]][0];f -= f2[i];}}}private static void swap(int[] x, int i, int j) {int temp = x[i];x[i] = x[j];x[j] = temp;}private static void test() {n = 3;int[][] testm = {{2, 1}, {3, 1}, {2, 3}};m = testm;int[] testx = {0, 1, 2};x = testx;bestx = new int[n];f2 = new int[n];f1 = 0;f = 0;bestf = Integer.MAX_V ALUE;trackback(0);System.out.println(Arrays.toString(bestx)); System.out.println(bestf);}public static void main(String[] args){test();System.out.println("Hello World!");}}(3)数字全排列问题#include "stdio.h"#include "conio.h"int num,cont=0;main(){ int i,n,a[30];printf("enter N :");scanf("%d",&num);for(i=1;i<=num;i++)a[i]=i;perm(a,1);printf("\n%d",cont);getch();}int perm(int b[], int i){int k,j,temp;if(i==num){for(k=1;k<=num;k++)printf("%d ",b[k]);printf("\t");cont++;}elsefor(j=i;j<=num;j++){temp=b[i];b[i]=b[j],b[j]=temp;perm(b,i+1);temp=b[i];b[i]=b[j],b[j]=temp;}return(0);}六、实验结果与思想这次的实验是回溯法,我也对回溯法有了一个基本印象,所谓回溯法,就是把所有的可行解都遍历一遍,遇到不可行的就回溯到上一步,然后通过添加约束条件和限界条件就可以得到最优解。
算法设计与分析课件--回溯法-图的m着色问题
4
5
C
C
n=5, m=3的GCP: 解形式(x1,x2, x3, x4, x5) xi =1(红色), 2(绿色), 3(蓝色)
X3=3
D
9
5.6 图的m着色问题
GCP示例
1
A
AA
A
A X1=1
2
3
X1=1
X1=1 X1=1
B
B
B
B X2=2
4
5
X2=2
C
X2=2
C
C X3=3
n=5, m=3的GCP: 解形式(x1,x2, x3, x4, x5) xi =1(红色), 2(绿色), 3(蓝色)
7
5.6 图的m着色问题
GCP示例
1
AA
A
2
3
X1=1
X1=1
B
B
X2=2
4
5
C
n=5, m=3的GCP: 解形式(x1,x2, x3, x4, x5) xi =1(红色), 2(绿色), 3(蓝色)
8
5.6 图的m着色问题
GCP示例
1
AA
A
A
2
3
X1=1
X1=1 X1=1
B
B
B
X2=2 X2=2
A
X1=1
2
3
B
X2=2 X2=3
4
5
C
X3=3
G
X3=2
n=5, m=3的GCP: 解形式(x1,x2, x3, x4, x5) xi =1(红色), 2(绿色), 3(蓝色)
D
X4=1
E
X5=3
F
H
X4=1
算法设计与分析 第七章回溯法
第七章 回 溯 法§1. 回溯法的基本思想回溯法有“通用的解题法”之称。
应用回溯法解问题时,首先应该明确问题的解空间。
一个复杂问题的解决往往由多部分构成,即,一个大的解决方案可以看作是由若干个小的决策组成。
很多时候它们构成一个决策序列。
解决一个问题的所有可能的决策序列构成该问题的解空间。
解空间中满足约束条件的决策序列称为可行解。
一般说来,解任何问题都有一个目标,在约束条件下使目标达优的可行解称为该问题的最优解。
在解空间中,前k 项决策已经确定的所有决策序列之集称为k 定子解空间。
0定子解空间即是该问题的解空间。
例1.旅行商问题: 某售货员要到若干个城市去推销商品。
已知各个城市之间的路程(或旅费)。
他要选定一条从驻地出发,经过每个城市一遍,最后回到驻地的路线,使得总的路程(或总旅费)最小。
我们用一个带权图G(V, E)来表示,顶点代表城市,边表示城市之间的道路。
图中各边所带的权即是城市间的路程(或城市间的旅费)。
则旅行商问题即是:在带权图G 中找到一条路程最短的周游路线,即权值之和最小的Hamilton 圈。
如果假定城市A 是驻地。
则推销员从A 地出发,第一站有3种选择:城市B 、C 或城市D ;第一站选定后,第二站有两种选择:如第一站选定B ,则第二站只能选C 、D 两者之一。
当第一、第二两站都选定时,第三站只有一种选择:比如,当第一、第二两站先后选择了B 和C 时,第三站只能选择D 。
最后推销员由城市D 返回驻地A 。
推销员所有可能的周游路线可由下面的图反映出来。
例2.定和子集问题: 已知一个正实数的集合 },,,{21n w w w A 和正实数M .试求A 的所有子集S ,使得S 中的数之和等于M 。
这个问题的解可以表示成0/1数组),,,(21n x x x ,依据1w 是否属于S ,1x 分别取值1或0。
故解空间中共有2n 个元素。
它的树结构是一棵完全二叉树。
例3. 4皇后问题: 在4×4棋盘上放置4个皇后,要使得每两个之间都不求赋权图G 的 具有最小权的 Hamilton 圈能互相攻击,即任意两个皇后都不能放在同一行、同一列及同一对角线上。
算法设计与分析--回溯法
算法设计与分析--回溯法回溯算法的应⽤课程名称:算法设计与分析院系:学⽣姓名:学号:专业班级:指导教师:2013年12⽉27⽇回溯算法的应⽤摘要:回溯法是⼀个既带有系统性⼜带有跳跃性的的搜索算法。
它在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。
算法搜索⾄解空间树的任⼀结点时,总是先判断该结点是否肯定不包含问题的解。
如果肯定不包含,则跳过对以该结点为根的⼦树的系统搜索,逐层向其祖先结点回溯。
否则,进⼊该⼦树,继续按深度优先的策略进⾏搜索。
回溯法在⽤来求问题的所有解时,要回溯到根,且根结点的所有⼦树都已被搜索遍才结束。
⽽回溯法在⽤来求问题的任⼀解时,只要搜索到问题的⼀个解就可以结束。
这种以深度优先的⽅式系统地搜索问题的解的算法称为回溯法,它适⽤于解⼀些组合数较⼤的问题。
回溯法在⽤来求问题的所有解时,要回溯到根,且根结点的所有可⾏的⼦树都已被搜索遍才结束。
⽽回溯法在⽤来求问题的任⼀解时,只要搜索到问题的⼀个解就可以结束。
这就是以深度优先的⽅式系统地搜索问题解的回溯算法,它适⽤于解决⼀些类似n 皇后问题等求解⽅案问题,也可以解决⼀些最优化问题。
在做题时,有时会遇到这样⼀类题⽬,它的问题可以分解,但是⼜不能得出明确的动态规划或是递归解法,此时可以考虑⽤回溯法解决此类问题。
回溯法的优点在于其程序结构明确,可读性强,易于理解,⽽且通过对问题的分析可以⼤⼤提⾼运⾏效率。
关键词:回溯法深度优先搜索递归⽬录第1章绪论 (1)1.1 回溯算法的背景知识 (1)1.2 回溯法的前景意义 (1)第2章回溯算法的理论知识 (2)2.1 回溯算法设计过程 (2)2.2 回溯算法框架 (2)2.3 回溯算法的⼀般性描述 (4)第3章找n个数中r个数的组合问题 (5)3.1 问题描述 (5)3.2 问题分析 (5)3.3 算法设计 (5)3.4 测试结果与分析 (6)第4章流⽔作业车间调度问题 (8)4.1 问题描述 (8)4.2 问题分析 (8)4.3 算法设计 (8)4.4 测试结果与分析 (10)第5章结论 (11)参考⽂献 (12)第1章绪论1.1 回溯算法的背景知识回溯算法是尝试搜索算法中最为基本的算法,在递归算法中,其存在的意义是在递归知道可解的最⼩问题后,逐步返回原问题的过程。
《算法设计与分析》-第五章 回溯法
例1(8-皇问题)
皇问题) 例1(8-皇问题) ( 皇问题
在8×8的棋盘上放置8个皇后,使得这8个皇 后不在同一行,同一列及同一斜角线上.如下 1 2 3 4 5 6 7 8 图6.1: Q
1 2 3 4 5 6 7 8
Q Q Q Q Q Q Q
5.1 回溯法的基本思想
(1)解空间 设问题的解向量为X=(x1,x2,…,xn) ,xi的取值范 围为有穷集Si .把xi的所有可能取值组合,称 为问题的解空间.每一个组合是问题的一个可 能解.
5.1 回溯法的基本思想
(1)解空间 例:0/1背包问题,S={0,1},当n=3时,0/1背 包问题的解空间是: {(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1, 1,0),(1,1,1)} 当输入规模为n时,有2n种可能的解.
A 2 C 3 F 4 L 4 2 G H 3 4 M N 1 B 3 D
4 4 I 2 O E 2 J 3 P 3 K 2 Q
----排列树 解空间大小: n!
5.1 回溯法的基本思想
(3)状态空间树的动态搜索
可行解和最优解: 可行解:满足约束条件的解,解空间中的一个子集 最优解:使目标函数取极值(极大或极小)的可行解,一 个或少数几个 例:货郎担问题,有nn种可能解. n!种可行解,只有一个或 几个解是最优解. 例:背包问题,有2n种可能解,有些是可行解,只有一个或 几个是最优解. 有些问题,只要可行解,不需要最优解,例如八后问题.
5.1 回溯法的基本思想
回溯法(backtracking)是一种系统地搜索问 题解的方法.为实现回溯,首先需要定义一个 解空间(solution space),然后以易于搜索 的方式组织解空间,最后用深度优先的方法搜 索解空间,获得问题的解.
算法设计与分析课件--回溯法-算法框架
32
5.2 回溯法算法框架
解空间: • 对于待求解问题,满足约束的所有解构成了 该问题的一个解空间 (Solution Space)。 • 通常情况下,解空间越小,算法的搜索效率 越高。 • 为了方便搜索,一般用树或图的形式将问题 的解空间有效地组织起来。
• 解空间树: • 三种解空间树:子集树、排列树、满m叉树。
5.1 搜索概述
搜索法: • 假设问题的初始状态、目标状态和算法定义都已确定, 那么问题的解空间就是确定的。问题的求解就是指如 何有效地搜索这个确定的解空间,从中找出问题的真 正解。 • 包括穷举搜索、深度优先搜索、广度优先搜索等。
5
5.1 搜索概述-穷举法
穷举搜索思想:
• 针对问题的可能解是有限种的情况,逐一检查所有可 能的情况,从中找到问题真正的解。
19
5.2 回溯法算法框架
回溯法的搜索思想: • 搜索过程直到找到问题的解或根结点变成死结
点为止。 • 递归式搜索 或 迭代式搜索。
20
5.2 回溯法算法框架
• 举例:0-1背包问题: 1.A是活节点
• w = (16, 15, 15),v = (45, 25, 25),W = 30 2.选择B扩展后,B 变为当前扩展结点。 A和B都是活结点
34
5.2 回溯法算法框架
子集树:
• 初始状态(根)、中间状态(中间)、结束状态(叶子)。
• 树中从根到叶子的路径描述了一个n元0-1向量,该n元 0-1向量表示集合S的一个子集,这个子集由对应分量 为1的元素组成。如(1,0,1,1,0) 表示子集{x1,x3,x4}
35
5.2 回溯法算法框架
17
5.2 回溯法算法框架
深度优先的问题状态生成法:在一个扩展结点变成 死结点之前,它一直是扩展结点。
算法设计与分析 回溯算法2
解空间树第j层的成员由 的值进行分割
24
解空间
子集树: n=4
1
1
0
0
1
0
25
0-1背包问题
约束函数
用cw(i)到达第i层时扩展节点的重量,即
=
=
那么,约束函数为:
= − +
剪枝
如果C(i)>W,那么停止搜索第i层及该节点以下的层搜索,否则继续搜索。
—许多着色问题可以用回溯法来解决
2
着色问题
●四色定理
表述任何一个平面地图可以用不超过四种颜色进行着色,使得
拥有同一边界线的国家有着不同的颜色。
●对大多数地图,要找到合法的着色方案很容易
●对某些地图,要找到合法的着色方案却是很困难的
●更一般的问题
你可以把地图着色问题转化为m-着色问题
3
四色原理
●世界近代三大数学难题之一(另外两个是费马定理和哥德巴赫猜想)。
解空间
假设解可以有向量( , ,…, )表示, ∈{0,1}, =1表示物品i被放进
背包, =0表示物品i不被放进背包。
23
0-1背包问题
σ
●0-1背包问题可以被形式地描述为如下形式: =
使得σ= <
●解空间树
有 个叶子节点的子集树
2
If w[i,j]=1 and x[j]=x[i] then return False
3
return True
10
时间复杂度分析
算法的计算时间上界可由状态空间树内部节点的个数得到,n个节点的
算法分析与设计回溯法
组织解空间(3)
子集和数问题
解空间由根结点到叶结点旳全部途径拟定
状态空间树
– 对于任何一种问题,一旦设想出一种状态空间 树,那么就能够先系统地生成问题状态,接着 拟定这些问题状态中旳哪些是解状态,最终拟 定哪些解状态是答案状态从而将问题解出
– 生成问题状态旳两种措施 便于问题旳描述,给出下列概念:
索过程中用剪枝函数防止无效搜索;
回溯算法旳形式描述
假设回溯算法要找出全部旳答案结点而不是仅 仅只找出一种。 ① 设(x1,x2,…,xi-1)是状态空间树中由根到一种 结点(问题状态)旳途径。 ② T(x1,x2,…,xi-1)是下述全部结点旳xi旳集合, 它使得对于每一种xi, (x1,x2,…,xi)是一条由 根到结点xi旳途径 ③ 存在某些限界函数Bi(能够表达成某些谓词), 假如途径(x1,x2,…,xi)不可能延伸到一种答案 结点,则Bi(x1,x2,…,xi)取假值,不然取真值。
end BACKTRACK
回溯算法旳递归表达
procedure RBACKTRACK(k)
global n, X(1:n) for 满足下式旳每个X(k)
X(k) ∈T(X(1),…X(k-1)) and B(X(1),…X(k))=true do
if(X(1),…,X(k)) 是一条已到达一答案结点旳途 径
m=1+m1+m1m2+m1m2m3+…
Monte Carlo效率估计算法
procedure ESTIMATE m1; r 1; k 1 loop Tk{X(k):X(k)∈ T(X(1),…X(k-1)) and B(X(1),…X(k))} if SIZE(Tk)=0 then exit endif rr*SIZE(Tk) mm+r X(k)CHOOSE(Tk) KK+1 repeat return(m)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
J P
K Q
3 4
最优解: n 1,3,2,4,1
25
L
O
智能信息处理研究中心(RCIIP)
装载问题
有一批共n个集装箱要装上2艘载重量分别为c1和c2的轮船, 其中集装箱i的重量为wi,且 P
装载问题 确定是否有一个合理的装载方案可将这n个集装箱装上这2艘 转换问题 a 轮船。如果有,找出一种装载方案。 将第一艘轮船尽量装满等价于选取全体集装箱的一个子集, 容易证明,如果一个给定装载问题有解,则采用下面的策略 使该子集中集装箱重量之和最接近第一艘轮船的载重量。 可得到最优装载方案。 由此可知,装载问题等价于以下特殊的0-1背包问题。 (1)首先将第一艘轮船尽可能装满; n 用回溯法设计解装载问题的O(2n)计算时间算法。 (2)将剩余的集装箱装上第二艘轮船。 在某些情况下该算法优于动态规划算法。
回溯法效率分析
通过前面具体实例的讨论容易看出,回溯算法的效率在很大 程度上依赖于以下因素: P (1)产生x[k]的时间; (2)满足显约束的x[k]值的个数; (3)计算约束函数constraint的时间; (4)计算上界函数bound的时间; a (5)满足约束函数和上界函数约束的所有x[k]的个数。 好的约束函数能显著地减少所生成的结点数。但这样的约束 函数往往计算量较大。因此,在选择约束函数时通常存在生 成结点数与约束函数计算量之间的折衷。n 对于许多问题而言,在搜索试探时选取x[i]的值顺序是任意 35 的。在其它条件相当的前提下,让可取值最少的x[i]优先。
26
智能信息处理研究中心(RCIIP)
装载问题
可行性约束函数(选择当前元素)
上界函数(不选择当前元素): 当前载重量cw + 剩余集装箱的重量r 当前最优载重量bestw 解空间树
P
a
n
27
智能信息处理研究中心(RCIIP)
批处理作业调度
给定n个作业的集合{J1,J2,…,Jn}。 P 每个作业必须先由机器1处理,然后由机器2处理。 作业Ji需要机器j的处理时间为tji。 对于一个确定的作业调度,设Fji是作业i在机器j上完成处 理的时间。所有作业在机器2上完成处理的时间和称为该作 业调度的完成时间和。 a 批处理作业调度问题 对于给定的n个作业,制定最佳作业调度方案,使其完成 时间和达到最小。
n
2 5
3 4
33
智能信息处理研究中心(RCIIP)
图的m着色问题
实例 5顶点,3着色 解向量:(x1, x2, x3, x4 , x5) 解空间:35种可能 显约束:xi=1,2, 3 隐约束: 顶点i与已着色的相邻顶点颜 色不重复 解空间树:3叉树
b
P
d
a c e
a
n
34
智能信息处理研究中心(RCIIP)
n
28
智能信息处理研究中心(RCIIP)
批处理作业调度
实例 tji 作业1 作业2 作业3 机器1 2 3 2
P 机器2
1 1 3
a
解空间 这3个作业共有6种可能的调度方案 1,2,3;1,3,2;2,1,3;2,3,1;3,1,2;3,2,1;
n
29
智能信息处理研究中心(RCIIP)
批处理作业调度
a
31
智能信息处理研究中心(RCIIP)
n后问题
实例 4皇后 解向量:(x1, x2, x3, x4) 解空间:44 4! 种可能 显约束:xi=1,2, 3,4 1 2 3
PQ Q Q Q
1 2 3 4
4 隐约束: 1)不同列:xixj 2)不处于同一正、反对角线: |i-j||xi-xj| 解空间树:4叉树
a
n
32
智能信息处理研究中心(RCIIP)
图的m着色问题
给定无向连通图G和m种不同的颜色。用这些颜色为图G 的各顶点着色,每个顶点着一种颜色。是否有一种着色法 P 使G中每条边的2个顶点着不同颜色。这个问题是图的m可 着色判定问题。 若一个图最少需要m种颜色才能使图中每条边连接的2个 顶点着不同颜色,则称这个数m为该图的色数。求一个图 a 的色数m的问题称为图的m可着色优化问题。 1 4 3 2 1 5
a
n
20
智能信息处理研究中心(RCIIP)
迭代回溯
采用树的非递归深度优先遍历算法,可将回溯法表示为一个 非递归迭代过程。 P
void iterativeBacktrack () { int t=1; while (t>0) { if (f(n,t)<=g(n,t)) for (int i=f(n,t);i<=g(n,t);i++) { x[t]=h(i); if (constraint(t)&&bound(t)) { if (solution(t)) output(x); else t++;} } else t--; } }
a
n
21
智能信息处理研究中心(RCIIP)
旅行售货员问题
给定n个顶点的带权图G=(V, E),图中各边的权为正数, P 图中的一条周游路线是包括V中的每个顶点在内的一条回 路,一条周游路线的费用是这条路线上所有边的权之和。
a 旅行商问题(Traveling Salesperson)是要在图G中找出一
智能信息处理研究中心(RCIIP)
第5章 回溯法
潘海为
1
智能信息处理研究中心(RCIIP)
递归回溯
回溯法对解空间作深度优先搜索,因此,在一般情况下用递 归方法实现回溯法。 P void backtrack (int t) { if (t>n) output(x); else for (int i=f(n,t);i<=g(n,t);i++) { x[t]=h(i); if (constraint(t)&&bound(t)) backtrack(t+1); } }
解空间树
1 2
P 作业1
B
2 1 3 3 1 作业2 作业3
tji
机器1
机器2
2 3 2
1 1 3
C
3
D
E
2
F
3
G M
18
H N
20
I
1 2
J P
19
K
1
a
2 3
L
19
O
21
Q
19
n
30
最佳调度方案是1,3,2,其完成时间和为18。
智能信息处理研究中心(RCIIP)
n后问题
在n×n格的棋盘上放置彼此不受攻击的n个皇后。按照国际 象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜 P 线上的棋子。n后问题等价于在n×n格的棋盘上放置n个皇 后,任何2个皇后不放在同一行或同一列或同一斜线上。 Q 1 Q 2 Q 3 Q 4 5 Q n 6 Q Q 7 Q 8 1 2 3 4 5 6 7 8
条有最小费用的周游路线。此问题是NP完全问题。
n
22
智能信息处理研究中心(RCIIP)
旅行售货员问题
实例
解空间: 三条周游路径 [1,2,4,3,1] [1,3,2,4,1] [1,4,3,2,1] [……] 约束函数: 限界函数: 1 30 5 4 3 20 4 2 10
P
6
P
a
n
37
a
n
23
智能信息处理研究中心(RCIIP)
旅行售货员问题
实例
解空间树 A
1 2 3
ห้องสมุดไป่ตู้
1
30 5 4
2 10 4
P
6 3
B
3 2
20
4 4 2
a
C
4
D
E
3
F
4
G M
H N
I
2 3
J P
K
2
3 4
最优解: n 1,3,2,4,1
24
L
O
Q
智能信息处理研究中心(RCIIP)
旅行售货员问题
实例
智能信息处理研究中心(RCIIP)
回溯法效率分析
实例 图中关于同一问题的2棵不同解空间树 P
(a)
a
n
前者的效果明显比后者好
(b)
36
智能信息处理研究中心(RCIIP)
总结
理解回溯法的深度优先搜索策略 掌握用回溯法解题的算法框架 (1)递归回溯最优子结构性质 (2)迭代回溯贪心选择性质 (3)子集树算法框架 (4)排列树算法框架
解空间树 1 30 5 2 10
P
6
A 定义(排列树) 4 当所给的问题是确定n个元素满足某种性质的排列时, 1 3 4 20 相应的解空间树称为排列树 B
3 n! 个叶结点 排列树通常有 C D E 遍历解空间树需要 (n!) 3 4 2 4 2 2 4
a
3 2
F
4
G M
H N
I
2 3