隆阳区高级中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

隆阳区高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知直线x+y+a=0与圆x 2+y 2=1交于不同的两点A 、B ,O 是坐标原点,且,那么实数
a 的取值范围是( )
A .
B .
C .
D .
2. 已知向量=(1,),=(
,x )共线,则实数x 的值为( )
A .1
B .
C .
tan35°
D .tan35°
3. 已知a ,b 都是实数,那么“a 2>b 2”是“a >b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件
4. 已知函数f (x )=x 3+mx 2+(2m+3)x (m ∈R )存在两个极值点x 1,x 2,直线l 经过点A (x 1,x 12),B
(x 2,x 22),记圆(x+1)2+y 2
=上的点到直线l 的最短距离为g (m ),则g (m )的取值范围是( )
A .[0,2]
B .[0,3]
C .[0,)
D .[0,)
5. 在ABC ∆中,b =3c =,30B =,则等于( )
A B . C D .2 6. 二进制数)(210101化为十进制数的结果为( ) A .15 B .21 C .33 D .41
7. 若全集U={﹣1,0,1,2},P={x ∈Z|x 2<2},则∁U P=( ) A .{2} B .{0,2} C .{﹣1,2} D .{﹣1,0,2}
8. 若函数f (x )=ax 2+bx+1是定义在[﹣1﹣a ,2a]上的偶函数,则该函数的最大值为( )
A .5
B .4
C .3
D .2
9. 已知命题:()(0x
p f x a a =>且1)a ≠是单调增函数;命题5:(,)44
q x ππ
∀∈,sin cos x x >.
则下列命题为真命题的是( )
A .p q ∧
B .p q ∨⌝ C. p q ⌝∧⌝ D .p q ⌝∧ 10.命题:“∀x >0,都有x 2﹣x ≥0”的否定是( )
A.∀x≤0,都有x2﹣x>0 B.∀x>0,都有x2﹣x≤0
C.∃x>0,使得x2﹣x<0 D.∃x≤0,使得x2﹣x>0
11.若集合A={-1,1},B={0,2},则集合{z|z=x+y,x∈A,y∈B}中的元素的个数为( )
A5
B4
C3
D2
12.函数f(x)=lnx﹣的零点所在的大致区间是()
A.(1,2) B.(2,3) C.(1,)D.(e,+∞)
二、填空题
13.如图,在长方体ABCD﹣A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A﹣BB1D1D的体积为
cm3.
14.设f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣2)=0,当x>0时,xf′(x)﹣f(x)>0,则使得f (x)>0成立的x的取值范围是.
15.已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2﹣x.给出如下结论:
①对任意m∈Z,有f(2m)=0;②函数f(x)的值域为[0,+∞);③存在n∈Z,使得f(2n+1)=9;④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)⊆(2k,2k+1)”;其中所有正确结论的序号是.
16.如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100m,则山高MN=m.
17.在△ABC中,角A,B,C的对边分别为a,b,c,sinA,sinB,sinC依次成等比数列,c=2a且•=24,则△ABC的面积是.
18.设f(x)是(x2+)6展开式的中间项,若f(x)≤mx在区间[,]上恒成立,则实数m的取值范围是.
三、解答题
19.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.
(Ⅰ)若a=b,求cosB;
(Ⅱ)设B=90°,且a=,求△ABC的面积.
20.某公司春节联欢会中设一抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖;奖金30元,三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金.
(1)员工甲抽奖一次所得奖金的分布列与期望;
(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?
21.已知椭圆E的中心在坐标原点,左、右焦点F1、F2分别在x轴上,离心率为,在其上有一动点A,A
到点F1距离的最小值是1,过A、F1作一个平行四边形,顶点A、B、C、D都在椭圆E上,如图所示.(Ⅰ)求椭圆E的方程;
(Ⅱ)判断▱ABCD能否为菱形,并说明理由.
(Ⅲ)当▱ABCD的面积取到最大值时,判断▱ABCD的形状,并求出其最大值.
22.(本小题满分12分)
某校高二奥赛班N名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100-110的学生
数有21人.
(1)求总人数N和分数在110-115分的人数;
)中任选3人,求其中恰好含有一名女生的概率;(2)现准备从分数在110-115的名学生(女生占1
3
(3)为了分析某个学生的学习状态,对其下一阶段的学生提供指导性建议,对他前7次考试的数学成绩(满分150分),物理成绩y进行分析,下面是该生7次考试的成绩.
已知该生的物理成绩y 与数学成绩是线性相关的,若该生的数学成绩达到130分,请你估计他的物理 成绩大约是多少?
附:对于一组数据11(,)u v ,22(,)u v ……(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分 别为:^
1
2
1
()()
()
n
i
i
i n
i
i u u v v u u β==--=
-∑∑,^^
a v u β=-.
23.(本小题满分10分)选修4-1:几何证明选讲.
如图,AB 是⊙O 的直径,AC 是
⊙O 的切线,BC 交⊙O 于E ,过E 的切线与AC 交于D .
(1)求证:CD =DA ;
(2)若CE =1,AB =2,求DE 的长.
24.已知数列{a n}的前n项和为S n,且S n=a n﹣,数列{b n}中,b1=1,点P(b n,b n+1)在直线x﹣y+2=0
上.
(1)求数列{a n},{b n}的通项a n和b n;
(2)设c n=a n•b n,求数列{c n}的前n项和T n.
隆阳区高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】A
【解析】解:设AB的中点为C,则
因为,
所以|OC|≥|AC|,
因为|OC|=,|AC|2=1﹣|OC|2,
所以2()2≥1,
所以a≤﹣1或a≥1,
因为<1,所以﹣<a<,
所以实数a的取值范围是,
故选:A.
【点评】本题考查直线与圆的位置关系,考查点到直线的距离公式,考查学生的计算能力,属于中档题.2.【答案】B
【解析】解:∵向量=(1,),=(,x)共线,
∴x====,
故选:B.
【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题.
3.【答案】D
【解析】解:∵“a2>b2”既不能推出“a>b”;
反之,由“a>b”也不能推出“a2>b2”.
∴“a2>b2”是“a>b”的既不充分也不必要条件.
故选D.
4.【答案】C
【解析】解:函数f(x)=x3+mx2+(2m+3)x的导数为f′(x)=x2+2mx+2m+3,
由题意可得,判别式△>0,即有4m2﹣4(2m+3)>0,
解得m>3或m<﹣1,
又x1+x2=﹣2m,x1x2=2m+3,
直线l 经过点A (x 1,x 12),B (x 2,x 22
),
即有斜率k==x 1+x 2=﹣2m ,
则有直线AB :y ﹣x 12
=﹣2m (x ﹣x 1), 即为2mx+y ﹣2mx 1﹣x 12
=0,
圆(x+1)2+y 2
=的圆心为(﹣1,0),半径r 为

则g (m )=d ﹣r=
﹣,
由于f ′(x 1)=x 12
+2mx 1+2m+3=0,
则g (m )=﹣,
又m >3或m <﹣1,即有m 2
>1.
则g (m )<

=,
则有0≤g (m )<.
故选C .
【点评】本题考查导数的运用:求极值,同时考查二次方程韦达定理的运用,直线方程的求法和点到直线的距离公式的运用,以及圆上的点到直线的距离的最值的求法,属于中档题.
5. 【答案】C 【解析】

点:余弦定理. 6. 【答案】B 【解析】
试题分析:()21212121101010
2
4
2=⨯+⨯+⨯=,故选B. 考点:进位制 7. 【答案】A
【解析】解:∵x 2
<2 ∴﹣
<x <
∴P={x∈Z|x2<2}={x|﹣<x<,x∈Z|}={﹣1,0,1},
又∵全集U={﹣1,0,1,2},
∴∁U P={2}
故选:A.
8.【答案】A
【解析】解:函数f(x)=ax2+bx+1是定义在[﹣1﹣a,2a]上的偶函数,
可得b=0,并且1+a=2a,解得a=1,
所以函数为:f(x)=x2+1,x∈[﹣2,2],
函数的最大值为:5.
故选:A.
【点评】本题考查函数的最大值的求法,二次函数的性质,考查计算能力.
9.【答案】D
【解析】
考点:1、指数函数与三角函数的性质;2、真值表的应用.
10.【答案】C
【解析】解:命题是全称命题,则根据全称命题的否定是特称命题得命题的否定是:
∃x>0,使得x2﹣x<0,
故选:C.
【点评】本题主要考查含有量词的命题的否定,比较基础.
11.【答案】C
【解析】由已知,得{z|z=x+y,x∈A,y∈B}={-1,1,3},所以集合{z|z=x+y,x∈A,y∈B}中的元素的个数为3.
12.【答案】B
【解析】解:函数的定义域为:(0,+∞),有函数在定义域上是递增函数,所以函数只有唯一一个零点.
又∵f(2)﹣ln2﹣1<0,f(3)=ln3﹣>0
∴f(2)•f(3)<0,
∴函数f(x)=lnx﹣的零点所在的大致区间是(2,3).
故选:B.
二、填空题
13.【答案】6
【解析】解:过A作AO⊥BD于O,AO是棱锥的高,所以AO==,
所以四棱锥A﹣BB1D1D的体积为V==6.
故答案为:6.
14.【答案】(﹣2,0)∪(2,+∞).
【解析】解:设g(x)=,则g(x)的导数为:
g′(x)=,
∵当x>0时总有xf′(x)﹣f(x)>0成立,
即当x>0时,g′(x)>0,
∴当x>0时,函数g(x)为增函数,
又∵g(﹣x)====g(x),
∴函数g(x)为定义域上的偶函数,
∴x<0时,函数g(x)是减函数,
又∵g(﹣2)==0=g(2),
∴x>0时,由f(x)>0,得:g(x)>g(2),解得:x>2,
x<0时,由f(x)>0,得:g(x)<g(﹣2),解得:x>﹣2,
∴f(x)>0成立的x的取值范围是:(﹣2,0)∪(2,+∞).
故答案为:(﹣2,0)∪(2,+∞).
15.【答案】①②④.
【解析】解:∵x∈(1,2]时,f(x)=2﹣x.
∴f(2)=0.f(1)=f(2)=0.
∵f(2x)=2f(x),
∴f(2k x)=2k f(x).
①f(2m)=f(2•2m﹣1)=2f(2m﹣1)=…=2m﹣1f(2)=0,故正确;
②设x∈(2,4]时,则x∈(1,2],∴f(x)=2f()=4﹣x≥0.
若x∈(4,8]时,则x∈(2,4],∴f(x)=2f()=8﹣x≥0.

一般地当x∈(2m,2m+1),
则∈(1,2],f(x)=2m+1﹣x≥0,
从而f(x)∈[0,+∞),故正确;
③由②知当x∈(2m,2m+1),f(x)=2m+1﹣x≥0,
∴f(2n+1)=2n+1﹣2n﹣1=2n﹣1,假设存在n使f(2n+1)=9,
即2n﹣1=9,∴2n=10,
∵n∈Z,
∴2n=10不成立,故错误;
④由②知当x∈(2k,2k+1)时,f(x)=2k+1﹣x单调递减,为减函数,
∴若(a,b)⊆(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确.故答案为:①②④.
16.【答案】150
【解析】解:在RT△ABC中,∠CAB=45°,BC=100m,所以AC=100m.
在△AMC中,∠MAC=75°,∠MCA=60°,从而∠AMC=45°,
由正弦定理得,,因此AM=100m.
在RT△MNA中,AM=100m,∠MAN=60°,由
得MN=100×=150m.
故答案为:150.
17.【答案】4.
【解析】解:∵sinA,sinB,sinC依次成等比数列,
∴sin2B=sinAsinC,由正弦定理可得:b2=ac,
∵c=2a,可得:b=a,
∴cosB===,可得:sinB==,
∵•=24,可得:accosB=ac=24,解得:ac=32,
∴S
△ABC=acsinB==4.
故答案为:4.
18.【答案】[5,+∞).
【解析】二项式定理.
【专题】概率与统计;二项式定理.
【分析】由题意可得f(x)=x3,再由条件可得m≥x2在区间[,]上恒成立,求得x2在区间[,]上的最大值,可得m的范围.
【解答】解:由题意可得f(x)=x6=x3.
由f(x)≤mx在区间[,]上恒成立,可得m≥x2
在区间[,]上恒成立,
由于x2在区间[,]上的最大值为5,故m≥5,
即m的范围为[5,+∞),
故答案为:[5,+∞).
【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,函数的恒成立问题,属于中档题.
三、解答题
19.【答案】
【解析】解:(I)∵sin2B=2sinAsinC,
由正弦定理可得:>0,
代入可得(bk)2=2ak•ck,
∴b2=2ac,
∵a=b,∴a=2c,
由余弦定理可得:cosB===.
(II)由(I)可得:b2=2ac,
∵B=90°,且a=,
∴a2
+c2=b2=2ac,解得a=c=.
∴S△ABC==1.
20.【答案】
【解析】解:(1)由题意知甲抽一次奖,基本事件总数是C103=120,
奖金的可能取值是0,30,60,240,
∴一等奖的概率P(ξ=240)=,
P(ξ=60)=
P(ξ=30)=,
P(ξ=0)=1﹣
∴变量的分布列是ξ
0 30 60 240
∴E ξ==20
(2)由(1)可得乙一次抽奖中奖的概率是1﹣
四次抽奖是相互独立的
∴中奖次数η~B(4,)
∴Dη=4×
【点评】本题考查离散型随机变量的分布列和期望,考查二项分布的方差公式,解本题的关键是看清题目中所给的变量的特点,看出符合的规律,选择应用的公式.
21.【答案】
【解析】解:(I)由题意可得:,解得c=1,a=2,b2=3.
∴椭圆E的方程为=1.
(II)假设▱ABCD能为菱形,则OA⊥OB,k OA•k OB=﹣1.
①当AB⊥x轴时,把x=﹣1代入椭圆方程可得:=1,解得y=,
取A,则|AD|=2,|AB|=3,此时▱ABCD不能为菱形.
②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).
联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,
∴x1+x2=﹣,x1x2=.

k OA•k OB=====

假设=﹣1,化为k2=﹣,因此平行四边形ABCD不可能是菱形.
综上可得:平行四边形ABCD不可能是菱形.
(III)①当AB⊥x轴时,由(II)可得:|AD|=2,|AB|=3,此时▱ABCD为矩形,S矩形ABCD=6.
②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).
联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,
∴x1+x2=﹣,x1x2=.
|AB|==.
点O 到直线AB 的距离d=.
∴S 平行四边形ABCD =4×S △OAB =
=2×
×
=

则S 2=
=<36,
∴S <6.
因此当平行四边形ABCD 为矩形面积取得最大值6.
22.【答案】(1)60N =,6n =;(2)8
15
P =;(3)115. 【解析】

题解析:
(1)分数在100-110内的学生的频率为1(0.040.03)50.35P =+⨯=,所以该班总人数为21
600.35
N =
=, 分数在110-115内的学生的频率为21(0.010.040.050.040.030.01)50.1P =-+++++⨯=,分数在110-115内的人数600.16n =⨯=.
(2)由题意分数在110-115内有6名学生,其中女生有2名,设男生为1234,,,A A A A ,女生为12,B B ,从6名学生中选出3人的基本事件为:12(,)A A ,13(,)A A ,14(,)A A ,11(,)A B ,12(,)A B ,23(,)A
A ,24(,)A A ,21(,)A
B ,22(,)A B ,34(,)A A ,31(,)A B ,32(,)A B ,41(,)A B ,42(,)A B ,12(,)B B 共15个.
其中恰 好含有一名女生的基本事件为11(,)A B ,12(,)A B ,22(,)A B ,
21(,)A B ,31(,)A B ,32(,)A B ,41(,)A B ,42(,)A B ,共8个,所以所求的概率为8
15
P =
. (3)1217178812
1001007
x --+-++=+
=;
6984416
1001007
y --+-+++=+=;
由于与y 之间具有线性相关关系,根据回归系数公式得到
^
4970.5994
b ==,^
1000.510050a =-⨯=,
∴线性回归方程为0.550y x =+,
∴当130x =时,115y =.1
考点:1.古典概型;2.频率分布直方图;3.线性回归方程.
【易错点睛】本题主要考查古典概型,频率分布直方图,线性回归方程,数据处理和计算能力.求线性回归方程,关键在于正确求出系数,a b ,一定要将题目中所给数据与公式中的,,a b c 相对应,再进一步求解.在求解过程中,由于,a b 的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误,特别是回归直线方程中一次项系数为,b 常数项为这与一次函数的习惯表示不同. 23.【答案】
【解析】解:(1)证明:
如图,连接AE , ∵AB 是⊙O 的直径, AC ,DE 均为⊙O 的切线, ∴∠AEC =∠AEB =90°, ∠DAE =∠DEA =∠B , ∴DA =DE .
∠C =90°-∠B =90°-∠DEA =∠DEC , ∴DC =DE , ∴CD =DA .
(2)∵CA 是⊙O 的切线,AB 是直径, ∴∠CAB =90°,
由勾股定理得CA 2=CB 2-AB 2, 又CA 2=CE ×CB ,CE =1,AB =2, ∴1·CB =CB 2-2,
即CB 2-CB -2=0,解得CB =2, ∴CA 2=1×2=2,∴CA = 2.
由(1)知DE =12CA =2
2,
所以DE 的长为2
2.
24.【答案】
【解析】解:(1)∵S n =a n ﹣,
∴当n ≥2时,a n =S n ﹣S n ﹣1=a n ﹣﹣,
即a n =3a n ﹣1,.
∵a 1=S 1=
﹣,∴a 1=3.
∴数列{a n }是等比数列,∴a n =3n

∵点P (b n ,b n+1)在直线x ﹣y+2=0上, ∴b n+1﹣b n =2,
即数列{b n }是等差数列,又b 1=1,∴b n =2n ﹣1.
(2)∵c n =a n •b n =(2n ﹣1)•3n

∵T n =1×3+3×32+5×33+…+(2n ﹣3)3n ﹣1+(2n ﹣1)3n
, ∴3T n =1×32+3×33+5×34+…+(2n ﹣3)3n +(2n ﹣1)3n+1
, 两式相减得:﹣2T n =3+2×(32+33+34+…+3n )﹣(2n ﹣1)3n+1

=﹣6﹣2(n ﹣1)3n+1,
∴T n =3+(n ﹣1)3n+1
.。

相关文档
最新文档