高中数学《平面向量的实际背景及基本概念》公开课优秀教学设计最新版
高中数学《平面向量的实际背景及基本概念》公开课优秀教学设计
第二章平面向量2.1平面向量的实际背景及基本概念教学设计一、内容和内容解析向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何和三角函数的一种工具,它有着丰富的现实背景和物理背景。
向量是刻画位置的重要数学工具,在诸如卫星定位、飞船设计等领域有着广泛的应用。
向量也是刻画物理量——力、位移、速度、加速度、动量、电场强度这些物理量的数学工具,它体现了数学和物理的天然联系。
向量的学习有助于学生认识数学和实际生活以及物理学科的紧密联系,体会向量在刻画和解决实际问题中的作用,从中感受数学的应用价值。
在教学中需要引导学生对现实原型的观察分析和比较,得出抽象的数学模型,所以本节内容是渗透“数学抽象”很好的载体。
在本节中,学生将了解平面向量丰富的实际背景,理解平面向量的意义,能用向量的语言和方法表达和解决数学和物理中的一些问题。
本节课是一节概念课,在向量基本概念的形成过程中,需要将学生已有的旧知识作为新知识的固着点和生长点,在探究向量的几何表示时让学生经历以物理中学习力的图示,位移的表示,速度的表示为起点,归纳并确定向量的几何表示以及符号表示,而在探索向量间的特殊关系时,引导学生借助图形进行,这样不仅使研究有序,同时更锻炼学生的直观想象能力,有助于感受向量集数与形于一身的特性。
通过类比学习数量的过程,让学生自然的获得新知识的探究方向,在基本概念的学习中,要让学生体验概念的生成过程,获得这些概念的“基本思路”即获得数学研究对象,认识数学新对象的基本方法,用数学的观点刻画和研究现实事物的方法和途径。
二、目标和目标解析1. 通过对平面向量概念的抽象概括,体验数学概念的形成过程,了解平面向量的实际背景;2. 理解平面向量的意义和两个向量相等的含义;3. 理解平面向量的几何表示和基本要素,会用有向线段表示向量,会判断零向量,单位向量,能做一个向量和已知向量相等,能根据图形判定向量是否是平行,共线,相等向量。
4.通过类比“学习数量的过程”而获得研究的内容与方法的启发,再一次体会研究一类新的数学问题的基本思路.学生已经学习过数量,但是形如确定位置的问题,只用数量是无法满足需要的,这就使得学习新知识是自然的有必要的,同时可以引导学生类比“学习数量的过程”明确研究向量概念的基本方向,因此,复习回顾数量的相关知识是有必要的。
高中数学必修四《平面向量的实际背景及基本概念》优秀教学设计
平面向量的实际背景及基本概念教材分析本节课的内容是选自人教A版普通高中课程标准实验教科书数学(必修4)第二章第一节”平面向量的实际背景及基本概念”.向量是沟通代数,几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学中具有广泛的应用.平面向量的基本概念是在学生了解了物理学中的力,位移,速度,加速度等矢量概念的基础上,进一步对向量的深入学习. 为学习向量的知识体系奠定了知识和方法基础。
二、课标的分析《课程标准》的表述与《教学大纲》的要求对比《课程标准》的表述——通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示.《教学大纲》的要求——理解向量的概念,掌握向量的几何表示,了解共线向量.可以看出,《课程标准》注重了概念的产生及发展形成的过程,更关注相等向量,对向量的几何表示在要求上有所降低.所以我将本节课的教学目标确定为:1.从生活实例和物理素材中感受向量以及研究向量的必要性.2 . .理解平面向量的含义、向量的几何表示,向量的模3.理解零向量、单位向量、平行向量、相等向量、共线向量的含义,能在图形中辨认相等向量和共线向量.4.从“平行向量→相等向量→共线向量”的逐步认识,充分揭示向量的两个要素及向量可以平移的特点三、学情分析1、学生的知识、技能的基础。
学生通过本节的学习,让学生感受向量的概念,方法源于现实世界,从而激发学生学习数学的热情,培养学生学习数学的兴趣。
2、学生认知心理特点及认知发展水平。
高一学生对于物理向量有一定的了解,因此创设教学情境,激发学习兴趣显得尤为重要,但学生的动机水平往往较低,意志力不强,学习主动性还有待于调动。
3、学生的社会背景。
我们的学生数学的学习基础较差,没有形成好的学习习惯,还有的初中没有培养成良好的数学思维,给教学上带来一定困难。
在教学中要多注重培养学生良好的数学思维。
四、教学目标的设计知识与技能:了解向量的物理背景,理解平面向量的一些基本概念,能正确进行平面向量的几何表示,掌握向量的模、零向量、单位向量、平行向量等概念。
平面向量的实际背景及基本概念 说课稿 教案 教学设计
2.1 平面向量的实际背景及基本概念整体设计教学理念新的课程标准要求我们创造性地使用教材,积极开发、利用各种教学资源,创设教学情境,让学生通过主动参与、积极思考、合作交流和创新等过程,获得知识、能力、情感的全面发展.本节课将充分体现以“学生为本”的教学观念,实现课程理念、教学方式和学生学习方式的转变.教学目标1.通过力的分析等实例,了解向量的实际背景;理解向量的概念.2.理解向量的几何表示;掌握零向量、单位向量、平行向量等概念;3.理解相等向量和共线向量等概念,并会辨认图形中的相等向量或作出与某一已知向量的相等向量.教学重点、难点1.通过学生自主探究,并在教师的引导下,使学生理解向量的概念、相等向量的概念、向量的几何表示等是本节课的重点.2.难点是学生对向量的概念和共线向量的概念的理解.学情和教材分析《向量》是高中数学新教材必修四第二章第1节.向量是近代数学中重要和基本的概念之一,有深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量的运算体系.向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用.所以,向量是高考必考的重点内容,又因为其抽象性,它还是学生在学习中的一个难学内容.本节内容是向量一章的第一节课,因此,是十分关键、重要的一节课.教学准备多媒体课件教学过程导入新课位置是几何学研究的重要内容之一,几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.如图1,如何由点A确定点B的位置?图1一种常用的方法是,以A为参照点,用B点A点之间的方位和距离确定B点的位置.如,B点在A点东偏南45°,30千米处.这样,在A点与B点之间,我们可以用有向线段AB表示B点相对于A点的位置.有向线段AB就是A点与B点之间的位移.位移简明地表示了位置之间的相对关系.像位移这种既有大小又有方向的量,加以抽象,就是我们本章要研究的向量.推进新课新知探究本章引言中,我们知道,位移是既有大小,又有方向的量,你还能举出一些这样的量吗?图2请大家阅读课本2.1.1向量的物理背景与概念;2.1.2向量的几何表示.并回答下面问题:(1)什么是向量?向量和数量有何不同?(2)向量如何表示?(3)什么是零向量和单位向量?(4)什么是平行向量?待学生阅读完后,老师总结并展示课件:1.什么是向量?向量和数量有何不同?(数量:只有大小,没有方向的量)在质量、重力、速度、加速度、身高、面积、体积这些量中,哪些是数量?哪些是向量?数量有:质量、身高、面积、体积向量有:重力、速度、加速度提问:角度,海拔,温度是向量吗?2.向量如何表示?(1)几何表示——向量常用有向线段表示:有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.图3注:以A 为起点,B 为终点的有向线段记为AB →,线段AB 的长度记作|AB →|(读为模); (2)也可以表示为a ,b ,c ,…,大小记作:|a|、|b|、|c |、…说明一:我们所说的向量,与起点无关,用有向线段表示向量时,起点可以取任意位置.所以数学中的向量也叫自由向量.如图4:它们都表示同一个向量.图4练习:向量AB →和BA →是同一个向量吗?为什么? 不是,方向不同.探究:向量就是有向线段吗?有向线段就是向量吗? 说明二:有向线段与向量的区别: 有向线段:有固定起点、大小、方向.向量:可选任意点作为向量的起点、有大小、有方向.图5有向线段AB →、CD →是不同的.图6向量AB →、CD →是同一个向量. 3.什么是零向量和单位向量? 零向量:长度为0的向量,记为0; 单位向量:长度为1的向量.注:零向量,单位向量都是只限制大小,不确定方向的.向量之间的关系: 4.什么是平行向量?方向相同或相反的非零向量叫平行向量. 注:1.若是两个平行向量,则记为a ∥b .2.我们规定,零向量与任一向量平行,即对任意向量a ,都有0∥a . 练习:判断下列各组向量是否平行?图7向量的平行与线段的平行有什么区别? 练习:已知下列命题:(1)向量AB →和向量BA →长度相等;(2)方向不同的两个向量一定不平行;(3)向量就是有向线段;(4)向量0=0;(5)向量AB →大于向量CD →.其中正确命题的个数是( )A .0B .1C .2D .3 答案:B例1试根据图8中的比例尺以及三地的位置,在图中分别用向量表示A 地至B 、C 两地的位移,并求出A 地至B 、C 两地的实际距离(精确到1 km).图8请同学们阅读课本2.1.3相等向量与共线向量,并回答问题:什么是相等向量和共线向量?待学生回答后,老师总结并展示课件: 5.什么是相等向量和共线向量? 长度相等且方向相同的向量叫相等向量.a =b =c A 1B 1→=A 2B 2→=A 3B 3→=A 4B 4→图9注:1.若向量a ,b 相等,则记为a =b ;2.任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.平行向量也叫共线向量.注:任一组平行向量都可以平移到同一直线上. 练习:判断下列命题是否正确:(1)两个向量相等,则它们的起点相同,终点相同;(2)若|a|=|b |,则a =b ;(3)若AB →=DC →,则四边形ABCD 是平行四边形;(4)平行四边形ABCD 中,一定有AB →=DC →;(5)若m =n ,n =k ,则m =k ;(6)若a ∥b ,b ∥c ,则a ∥c .其中不正确命题的个数是( )A .2B .3C .4D .5 答案:C练习:下列说法正确的是( ) A .若|a|>|b|,则a>b B .若|a |=0,则a =0C .若|a|=|b|,则a =b 或a =-bD .若a ∥b ,则a =bE .若a =b ,则|a|=|b |F .若a ≠b ,则a 与b 不是共线向量G .若a =0,则-a =0 答案:EG例2如图10,设O 是正六边形ABCDEF 的中心,分别写出图中与OA →、OB →、OC →相等的向量.图10解:OA →=CB →=DO →, OB →=DC →=EO →, OC →=AB →=ED →=FO →.练习:如图11,EF 是△ABC 的中位线,AD 是BC 边上的中线,在以A 、B 、C 、D 、E 、F 为端点的有向线段表示的向量中请分别写出:图11(1)与向量CD →共线的向量有________个,分别是________________________________; (2)与向量DF →的模一定相等的向量有________个,分别是______________________; (3)与向量DE →相等的向量有________个,分别是__________.答案:(1)7 DC →、DB →、BD →、FE →、EF →、CB →、BC → (2)5 FD →、EB →、BE →、EA →、AE →(3)2 CF →、F A →课堂小结通过本节课的学习,要求大家能够理解向量的概念;掌握向量的几何表示;理解零向量、单位向量、平行向量、相等向量等概念,并能进行简单的应用.。
平面向量的实际背景及基本概念 说课稿 教案 教学设计
向量的实际背景及基本概念一、教学目标知识与技能了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量。
过程与方法通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别。
情感、态度与价值观通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力。
二.重点难点重点理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.难点平行向量、相等向量和共线向量的区别和联系.三、教材与学情分析本节是本章的入门课,概念较多,但难度不大.学生可根据原有的位移、力等物理概念学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.由于向量于物理,并且兼具“数”和“形”的特点,所以它在物理和几何中具有广泛的应用,可通过几个具体的例子说明它的应用.位移是物理中的基本量之一,也是几何研究的重要对象.几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.位移简明地表示了点的位置之间的相对关系,它是向量的重要的物理模型.力是常见的物理量.重力、浮力、弹力等都是既有大小又有方向的量.物理中还有其他力,让学生举出物理学中力的其他一些实例,目的是要建立物理课中学过的位移、力及矢量等概念与向量之间的联系,以此更加自然地引入向量概念,并建立学习向量的认知基础.四、教学方法问题引导,主动探究,启发式教五、教学过程(一)导入新课思路1.(情境导入)如图1,在同一时刻,老鼠由A向西北方向的C处逃窜,猫在B处向正东方向的D处追去,猫能否追到老鼠呢?学生马上得出结论追不上,猫的速度再快也没用,因为方向错了.教师适时设问如何从数学的角度揭示这个问题的本质?由此展开新课.图1思路2.两列火车先后从同一站台沿相反方向开出,各走了相同的路程,怎样用数学式子表示这两列火车的位移?从中国象棋中规定“马”走日,象走“田”,让学生在图上画出马、象走过的路线引入也是一个不错的选择.(二)新知探究、提出问题①在物理课中,我们学过力的概念.请回顾一下力的三要素是什么?还有哪些量和力具有同样特征呢?这些量的共同特征是什么?怎样利用你所学的数学中的知识抽象这些具有共同特征的量呢?②新的概念是对这些具有共同特征的量的描述,应怎样定义这样的量呢?③数量与向量的区别在哪里?活动教师指导学生阅读教材,思考讨论并解决上述问题,学生讨论列举与位移一样的一些量.物体受到的重力是竖直向下的,物体的质量越大,它受到的重力越大;物体在液体中受到的浮力是竖直向上的,物体浸在液体中的体积越大它受到的浮力就越大;速度与加速度都是既有大小,又有方向的量;物理中的动量与矢量都有方向,且有大小;物理学中存在着许多既有大小,又有方向的量.教师引导学生观察思考这些量的共同特征,我们能否在数学学中对这些量加以抽象,形成一种新的量.至此时机成熟,引入向量,并把那些只有大小,没有方向的量,如年龄、身高、长度、面积、体积、质量等称为数量,物理学上称为标量.显然数量和向量的区别就在于方向问题.讨论结果①略.②我们把既有大小,又有方向的量叫做向量.物理中称为矢量.③略.提出问题①如何表示向量?②有向线段和线段有何区别和联系?分别可以表示向量的什么?③长度为零的向量叫什么向量?长度为1的向量叫什么向量?④满足什么条件的两个向量是相等向量?单位向量是相等向量吗?⑤有一组向量,它们的方向相同或相反,这组向量有什么关系?怎样定义平行向量?⑥如果把一组平行向量的起点全部移到一点O,它们是不是平行向量?这时各向量的终点之间有什么关系?⑦数量与向量有什么区别?⑧数学中的向量与物理中的力有什么区别?活动 教师指导学生阅读教材,通过阅读教材思考讨论以上问题.特别是有向线段,是学习向量的关键.但不能说“向量就是有向线段,有向线段就是向量”,有向线段只是向量的一种几何表示,二者有本质的区别.向量只由方向和大小决定,而与向量的起点的位置无关,但有向线段不仅与方向、长度有关,也与起点的位置有关.如图2,在线段AB 的两个端点中,规定一个顺序,假设A 为起点、B 为终点,我们就说线段AB 具有方向,具有方向的线段叫做有向线段,通常在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB .起点要写在终点的前面.已知AB ,线段AB 的长度也叫做有向线段AB 的长度,记作|AB |.有向线段包含三个要素 起点、方向、长度.图2知道了有向线段的起点、方向和长度,它的终点就唯一确定. 用有向线段表示向量的方法是1°起点是A,终点是B 的有向线段,对应的向量记作 AB .这里要提醒学生注意AB 的方向是由点A 指向点B,点A 是向量的起点.2°用字母a,b,c,…表示.(一定要学生规范书写 印刷用黑体a,书写用a )3°向量(或a)的大小,就是向量(或a)的长度(或称模),记作 (或 a ).教师要注意引导学生将数量与向量的模进行比较,数量有大小而没有方向,其大小有正、负和0之分,可进行运算,并可比较大小;向量的模是正数或0,也可以比较大小.由于方向不能比较大小,像a >b 就没有意义,而 a > b 有意义.讨论结果 ①向量也可用字母a,b,c,…表示(印刷用粗黑体表示),手写用a → 表示,或用表示向量的有向线段的起点和终点字母表示,如AB 、.注意手写体上面的箭头一定不能漏写.②有向线段具有方向的线段就叫做有向线段,其有三个要素起点、方向、长度.向量与有向线段的区别向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.图3③长度为0的向量叫零向量,长度为1个单位长度的向量,叫单位向量.但要注意,零向量、单位向量的定义都只是限制了大小.长度为0的向量叫做零向量,记作0,规定零向量的方向是任意的.长度等于1个单位的向量,叫做单位向量.④长度相等且方向相同的向量叫做相等向量.⑤是平行向量.平行向量定义的理解第一,方向相同或相反的非零向量叫平行向量;第二,我们规定0与任一向量平行即0∥a.综合第一、第二才是平行向量的完整定义;向量a,b,c平行,记作a∥b∥c.如图3.图4又如图4,a,b,c是一组平行向量,任作一条与a所在直线0平行的直线l,在l上任取一点O,则可在l上分别作出OA=a,OB=b, OC=c.这就是说,任一组平行向量都可以移动到同一直线上,因此,平行向量也叫做共线向量.说明平行向量可以在同一直线上,要区别于两平行线的位置关系.⑥是共线向量,也就是平行向量.但要注意,平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).平行向量可以在同一直线上,要区别于两平行线的位置关系;共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.⑦数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向、大小双重性质,不能比较大小.⑧力有大小、方向、作用点三个要素,而数学中的向量是由物理中的力抽象出的,只有大小与方向两个要素,与起点的位置无关.(三)应用示例例1 如图5,试根据图中的比例尺以及三地的位置,在图中分别用有向线段表示A地至B、C 两地的位移.(精确到1 m)图5分析本例是一个简单的实际问题,要求画出有向线段表示位移,目的在于巩固向量概念及其几何表示.解AB表示A地至B地的位移,且AB≈232 m;(AB长度×8 000 000÷100 000)AC表示A地至C地的位移,且AC≈296 m.(AC长度×8 000 000÷100 000) 点评位置是几何学研究的重要内容之一,几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.如图5,由A点确定B点、C点的位置.变式训练1. 一个人从A点出发沿东北方向走了100 m到达B点,然后改变方向,沿南偏东15°方向又走了100 m到达C点,求此人从C点走回A点的位移.图6解根据题意画出示意图,如图6所示. =100 m, BC=100 m,∠ABC=45°+15°=60°, ∴△ABC为正三角形.∴=100 m,即此人从C点返回A点所走的路程为100 m.∵∠BAC=60°,∴∠CAD=∠BAC-∠BAD=15°,即此人行走的方向为西偏北15°.故此人从C点走回A点的位移为沿西偏北15°方向100 m.图7例2 判断下列命题是否正确,若不正确,请简述理由.(1) ABCD 中,AB 与CD 是共线向量;(2)单位向量都相等.活动 教师引导学生画出平行四边形,如图7. 因为AB//CD,所以AB ∥CD .由于上面已经明确,单位向量只限制了大小,方向不确定,所以单位向量不一定相等,即单位向量模均相等且为1,但方向不确定.解 (1)正确; (2)不正确. 点评 本题考查基本概念,对于单位向量、平行向量的概念特征及相互关系必须把握好.图8例3 如图8,设O 是正六边形ABCDEF 的中心,分别写出图中所示向量与、OC 、OB 、OA 相等的量.活动 本例是结合正六边形的一些几何性质,让学生巩固相等向量和平行向量的概念,正六边形是边长等于半径并且对边互相平行的正多边形,它既是轴对称图形,又是中心对称图形,具有丰富的几何性质.教 书中要求判断OA 与,OB 与是否相等,是要通过长度相等方向相反的两个向量的不等,让学生从反面认识向量相等的概念.解 OA =CB =DO ;OB =DC =EO ;OC ===FO .点评 向量相等是一个重要的概念,今后经常用到.让学生在训练中明确,向量相等不仅大小相等,还要方向相同.变式训练2.本例变式一 与向量长度相等的向量有多少个? (11个)本例变式二是否存在与向量OA长度相等、方向相反的向量?(存在)例4 下列命题正确的是( )A.a与b共线,b与c共线,则a与c也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行活动由于零向量与任一向量都共线,所以A不正确.由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确.向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确.对于C,其条件以否定形式给出,所以可从其逆否命题入手考虑,假若a与b 不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,即只有C正确.答案C点评对于有关向量基本概念的考查,可以从概念特征入手,也可以从反面进行考虑.即要判断一个结论不正确,只需举一个反例即可.要启发学生注意这两方面的结合.六、课堂小结本节课从平面向量的物理背景和几何背景入手,利用类比的方法,介绍了向量的两种表示方法几何表示和字母表示,几何表示为用向量处理几何问题打下了基础,字母表示则利于向量的运算;然后又介绍了向量的模、平行向量、共线向量、相等向量等重要概念,这些概念是进一步学习后续课程的基础,必须要在理解的基础上把握好.。
高中数学必修四《平面向量的实际背景及基本概念》教学设计
2. 1平面向量的实际背景及基本概念一、教学目标:1、知识目标:⑴通过对位移、速度、力等实例的分析,形成平面向量的概念;⑵学会平面向量的表示方法,理解向量集形与数于一身的基本特征;⑶理解零向量、单位向量、相等向量、平行向量的含义。
2、能力目标:培养用联系的观点,类比的方法研究向量;获得研究数学新问题的基本思路,学会概念思维;3、情感目标:使学生自然的、水到渠成的实现“概念的形成”;让学生积极参与到概念本质特征的概括活动中,享受寓教于乐。
二、教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.三、教学难点:向量概念的理解,平行向量、相等向量和共线向量的区别和联系.四、学法:引入向量概念之后,随之带来一系列相关概念是比较多的,如零向量,单位向量,相等向量,平行向量,共线向量。
对于它们要抓住本质特征,让学生分析比较这些概念的区别与联系。
由于向量同时具有几何图象的特征,在学习时还要辩清它们在图形中表现相等、平行的意义,且图形还可以从简单到复杂逐步分清向量所对应的有向线段的身份,地位和作用。
对于单位向量与以前的单位长度的区别要给学生讲解清楚,单位向量不止一个,因为要表示不同的方向。
讲清基本概念后,可让学生归纳数量和向量的区别和联系.五、教具:多媒体或实物投影仪,尺规六、授课类型:新授课七、教学过程:情境创设问题1:一只老鼠和一只猫相距6米,老鼠以每秒4米的速度逃窜,猫以每秒7米的速度追,猫在多少时间里会追上老鼠?结论:猫的速度再快也没用,因为方向错了.问题2:美国“小鹰”号航空母舰导弹发射处获得信息:伊拉克的军事目标距“小鹰”号1200公里。
试问只知道这一信息导弹是否能击中目标?结论:不能,因为没有给定发射的方向.问题3:新华网东京3月30日电日本部署“爱国者-3”型拦截导弹拟拦截可能落入日本境内的朝鲜发射物。
不考虑其他因素,导弹击中拦截目标取决于导弹运行的路程还是位移?结论:位移,位移是有大小和方向的量问题提出请指出与位移具有同样特征的量:速度、重力、浮力、弹力……力、速度也是有大小和方向的量。
《平面向量的实际背景及基本概念》教案全面版
《平面向量的实际背景及基本概念》教案全面版一、教学目标:1. 了解平面向量的实际背景,理解向量的概念及物理意义。
2. 掌握平面向量的基本运算,包括加法、减法、数乘和共线定理。
3. 能够运用平面向量的知识解决实际问题。
二、教学内容:1. 平面向量的实际背景:引入向量的概念,解释向量在物理学、几何学等领域的应用。
2. 向量的概念:定义向量的基本属性,包括大小、方向和起点。
3. 向量的表示:介绍平面向量的几何表示法和坐标表示法。
4. 向量的加法:定义向量加法,讲解平行四边形法则和三角形法则。
5. 向量的减法:定义向量减法,转化为加法运算。
6. 向量的数乘:定义向量的数乘,讲解数乘对向量大小和方向的影响。
7. 向量共线定理:介绍共线定理及其应用。
三、教学方法:1. 采用问题驱动的教学方法,引导学生从实际问题中抽象出向量的概念。
2. 利用几何图形和物理情境,帮助学生直观地理解向量的运算。
3. 运用案例分析和练习题,巩固学生对向量知识的理解和应用。
四、教学评估:1. 通过课堂提问,检查学生对向量概念的理解。
2. 布置课后作业,检验学生掌握向量运算的能力。
3. 进行小组讨论和报告,评估学生对向量应用问题的解决能力。
五、教学资源:1. 教案、PPT课件。
2. 几何图形和物理情境的图片或视频。
3. 练习题和案例分析题。
4. 小组讨论和报告的评价标准。
六、教学重点与难点:1. 教学重点:向量的概念、表示方法、基本运算(加法、减法、数乘)及共线定理。
2. 教学难点:向量加法、减法的几何意义,数乘对向量的影响,共线定理的应用。
七、教学步骤:1. 引入向量的概念:通过实际问题,引导学生认识向量,理解向量表示物体运动和力的作用。
2. 向量的表示:讲解几何表示法和坐标表示法,让学生能用图形和坐标表示向量。
3. 向量加法:讲解平行四边形法则和三角形法则,让学生理解向量加法的几何意义。
4. 向量减法:转化为加法运算,让学生掌握减法与加法的联系。
平面向量的实际背景及基本概念》教学设计
平面向量的实际背景及基本概念》教学设计本节课的教学法应采用引导发现法和讨论相结合的方式。
在引导学生逐步理解向量的概念和运算性质的基础上,通过不同的例题和实例,让学生自己发现向量的特点和规律。
同时,教师应该及时引导学生讨论和交流,促进学生之间的互动和合作,提高学生的思维能力和解决问题的能力。
三、教学过程设计1.导入(5分钟)通过实际生活中的例子,引出向量的概念和作用,让学生初步了解向量的实际背景和重要性。
2.概念讲解(15分钟)讲解向量的概念、模、零向量、单位向量、平行向量、相等向量、共线向量等概念,重点讲解平面向量的几何表示和向量的运算性质。
3.例题讲解(20分钟)通过不同的例题,让学生掌握向量的运算方法和应用技巧,同时引导学生思考和讨论,提高学生的解决问题的能力。
4.练与讨论(15分钟)让学生自主完成一些练题,并在教师的引导下进行讨论和交流,促进学生之间的互动和合作,提高学生的思维能力和解决问题的能力。
5.总结(5分钟)对本节课的重点内容进行总结,并展示向量的实际应用和重要性,让学生深入理解向量在现实生活中的作用。
四、教学反思本节课的教学重点是向量的概念和运算性质,通过引导学生发现和讨论,让学生深入理解向量的特点和规律,提高学生的思维能力和解决问题的能力。
同时,通过实际生活中的例子,让学生认识到向量在现实生活中的应用和重要性,培养学生对数学的兴趣和热爱。
教师在教学过程中应及时引导学生思考和讨论,促进学生之间的互动和合作,提高学生的研究效果和成绩。
有一个系统的认识,可以加深研究印象。
为了巩固研究效果,老师可以布置适当的作业。
作业可以帮助学生巩固所学知识,同时也可以为老师提供学生的研究反馈。
在板书设计方面,老师可以按照以下内容进行设计:一、向量的定义及几何表示;二、向量的相关概念;三、平行向量的定义(从向量的方向关系进行引入);四、相等向量的定义;五、共线向量与平行向量的关系(可以通过课件展示来进行说明)。
平面向量的实际背景及基本概念 说课稿 教案 教学设计
1 / 2向量的物理背景与概念一、课题:向量二、教学目标:1.理解向量的概念,掌握向量的二要素(长度、方向);2.能正确地表示向量,初步学会求向量的模长; 3.注意向量的特点:可以平行移动(长度、方向确定,起点不确定)。
三、教学重、难点:1.向量、相等向量、共线向量的概念;2.向量的几何表示。
四、教学过程:(一)问题引入:老鼠由A 向西北方向逃窜,如果猫由B 向正东方向追赶,那么猫能否抓到老鼠?为什么?(二)新课讲解:1.向量定义:既有大小又有方向的量叫做向量。
2.向量的表示方法:(1)用有向线段表示;(2)用字母表示:a说明:(1)具有方向的线段叫有向线段。
有向线段的三要素:起点、方向和长度;(2)向量AB 的长度(或称模):线段AB 的长度叫向量AB 的长度,记作||AB .3.单位向量、零向量、平行向量、相等向量、共线向量的定义:(1)单位向量:长度为1的向量叫单位向量,即||1AB =;(2)零向量:长度为零的向量叫零向量,记作0;(3)平行向量:方向相同或相反的非零向量叫平行向量,记作:////a b c ;(4)相等向量:长度相等,方向相同的向量叫相等向量。
即:a b =;(5)共线向量:平行向量都可移到同一直线上。
平行向量也叫共线向量。
说明:(1)规定:零向量与任一向量平行,记作0//a ;(2)零向量与零向量相等,记作00=;(3)任意二个非零相等向量可用同一条有向线段表示,与有向线段的起点无关。
4.例题分析:例1 如图1,设O 是正六边形ABCDEF 的中心,分别写出图中与向量OA ,OB ,OC 相等的向量。
B (终点) A (起点)1)2 / 2 解:OA CB DO ==EF =;OB DC EO AF ===; OC AB ED FO ===.例2 如图2,梯形ABCD 中,E ,F 分别是腰AB 、DC 的三等分点,且||AD 2=,||5BC =,求||EF . 解:分别取BE ,CF 的中点分别记为M ,N , 由梯形的中位线定理知:1||(||)2MN EF BC =+ 1111||()(||||)2222EF AD MN AD EF BC =+=++∴3159||(2)4224EF =+=∴||3EF =.五、课堂练习:六、课堂小结:七、作业:2)。
高中数学《平面向量的实际背景及基本概念》公开课优秀课件
表示
特殊 元素
运算 关系 (比较 大小)
a=b或 加、 a>b或 减、 a<b 乘、 (相反) 除、 幂等
应 用
… …
•几何表 单位1 示:数 和0 轴上的 点; •符号表 示: a,b,c
问题3、数学中,定义概念后,通常要用符 号表示它。怎样把你举例中的向量表示出来。
你们知道,谁是第 一个用有向线段表 示向量的人?
抽 象 概 括
向 量
像位移,力,速度等既有大小又有方向的量 经过抽象就叫向量。
向量(矢量)这个术语作 为现代数学—物理学中的一个 重要概念,首先是由英国数学 家哈密顿使用的。 一、物理学中的速度与力的平行四边形法则 二、位置几何 三、复数的几何表示
向量理 论的起 源与发 展主要 有三条 线索:
18世纪中叶之后,欧拉,拉格朗日,拉普 拉斯和柯西等的工作,直接决定了在19世纪 中期向量力学的建立。 向量有着深刻的几何背景,它始于莱布尼兹 的位置几何。向量概念是近代数学中重要和基 本概念之一。
但是很可惜……
学习目标
1. 通过对平面向量概念的抽象概括,体验数学
概念的形成过程,了解平面向量的实际背景;
2. 理解平面向量的意义和两个向量相等的含义; 3. 理解平面向量的几何表示和基本要素,会用 有向线段表示向量,会判断零向量,单位向量, 能做一个向量和已知向量相等,能根据图形判 定向量是否是平行,共线,相等向量。
(6)方向为南偏西 60 的向量与北偏东 60 的向量是共线向量。( )
四、小结: 你能否画个图,把今天学习的内容梳理一下?
•
今天我们引入了一个新的量---向量,已经学 习了它的基本概念,表示,特殊元素以及特殊的 关系。 • 每引入一个新的量就会随之学习它的运算, 运算律,应用等等内容…..
平面向量的实际背景及基本概念教案
为起点、B 为终点的有向线段记作 AB,起点写在终点前面
B(终点)
有向线段包含三个要素:起点、方向、长度.
表示: AB
A(起点)
(1)用有向线段的起点和终点字母表示向量 (2)用小写字母表示 a , b , c , . . . (3)坐标表示
书本练习 P77 练习 1 三、向量的有关概念
1、 向量 AB 的大小,也就是向量 AB 的长度(或称模),记作|AB|. 2、两个特殊向量:
长度为 0 的向量叫做零向量,记作 0. |0|=0. 长度等于 1 个单位的向量,叫做单位向量.
注:①零向量是长度为零的向量,大小为 0,有方向,约定其方向任意。 ②单位向量是长度为 1 一个单位的向量,对一个具体的向量来说,其单位向量方向是
确定的,跟其方向一致。 讨论:数量是可以比较大小的,向量能比较大小吗? 向量既有大小,又有方向,本身不能比较大小,但是其长度(模)可以比较大小
5.小结与布置作业
七、板书设计
定义:大小、方向 表示:有向线段 概念:平行(共线)向量
相等向量 相反向量
定义画图
练习画图
一、课题:2.1 平面向量的实际背景及基本概念
二、教学目标
1.知识与技能 了解向量的实际背景; 理解向量的含义、几何表示、向量的模; 理解零向量、单位向量、相等向量、共线向量的概念,能在图形中辨认相等向量和共线
向量
2.过程与方法 体会数形结合、化归等思想方法; 提高观察、类比、分析、概括等能力
3.情感态度与价值观 通过联系实际生活,认识到学习向量是实际的需要,提高学习数学的积极性,形成积极
思考:1、时间、路程、功是向量吗?
2、温度有零上零下之分,“温度”是否为向量?
平面向量的实际背景及基本概念(教学设计)
2.1 平面向量的实际背景及基本概念(教学设计)[教学目标]一、知识与能力:理解向量、零向量、单位向量、平行向量的概念:掌握向量的几何表示,会用字母表示向量;理解相等向量与共线向量的含义.二、过程与方法:通过力和力的分析等实例,了解向量的实际背景;渗透数形结合的数学思想方法.三、情感、态度与价值观:培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题.[教学重点]向量的概念,向量的几何表示.[教学难点]向量的概念.[教学要求]向量概念的教学应从物理背景和几何背景入手,物理背景是力、速度、加速度等概念,几何背景是有向线段。
了解这些物理背景和几何背景,对于学生理解向量和运用向量解决实际问题都是十分重要的。
[教学过程]一、创设情境,新课引入问题 1:我们已经知道位移是既有大小,又有方向的量。
请再举出一些这样的量.学生思考讨论,举出物理学中既有大小,又有方向的量,例如力,包括重力G、浮力F、拉力F等。
在学生讨论的基础上,抽象概括出向量的概念:数学中,把既有大小,又有方向的量叫做向量,而把那些只有大小,没有方向的量,称为数量(或标量)。
教师提问,学生回答,并再次强调向量的两要素。
有学生总结判断方法。
课堂练习1:判定下列各量中哪些是向量:(1)浮力;(2)密度;(3)质量;(4)路程;(5)面积;(6)电流强度.二、师生互动,新课讲解:向量的表示1.几何表示:用有向线段表示向量,以A为起点,B为终点的向量记作向量AB,注意起点在前,终点在后。
2.字母表示:印刷体可用黑体小写字母,,a b c表示向量,手写时写成带箭头的小写字母,如a。
3.图示表示:4.向量的模向量的长度称为向量的模,如向量AB的模记作||AB,向量a的模记作||a。
零向量:长度等于0的向量叫做零向量,记作0。
单位向量:长度等于1的向量叫做单位向量。
思考:两个向量能否比较大小?两个向量的模能否比较大小?5.平行向量(共线向量)方向相同或相反的非零向量叫做平行向量。
示范教案(2.1--平面向量的实际背景及基本概念)
示范教案(2.1--平面向量的实际背景及基本概念)第二章平面向量本章教材分析1•丰富多彩的背景,引人入胜的内容•教材首先从力、位移等量讲清向量的实际背景以及研究向量的必要性,接着介绍了平面向量的有关知识•学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,能用向量语言与方法表述和解决数学、物理中的一些问题,发展运算能力和解决实际问题的能力•平面向量基本定理是平面向量正交分解及坐标表示的基础,从学生熟知的功的概念出发,引出了平面向量数量积的概念及其几何意义,接着介绍了向量数量积的性质、运算律及坐标表示•向量数量积把向量的长度和三角函数联系了起来,这样为解决有关的几何问题提供了方便,特别能有效地解决线段的垂直问题•最后介绍了平面向量的应用•2.教学的最佳契机,全新的思维视角.向量具有几何形式和代数形式的双重身份”这一概念是由物理学和工程技术抽象出来的.反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题•这一章的内容虽然概念多,但大都有其物理上的来源,虽然抽象,却与图形有着密切的联系,向量应用的优越性也是非常明显的.全新的思维视角,恰当的教与学,使得向量不仅生动有趣,而且是培养学生创新精神与能力的极佳契机.3 •本章充分体现出新教材特点.以学生已有的物理知识和几何内容为背景,直观介绍向量的内容,注重向量运算与数的运算的对比,特别注意知识的发生过程•对概念、法则、公综合、抽象、概括得出结论•这一章中的一些例题,教科书不是先给出解法,而是先进行分析,探索出解题思路,再给出解法.解题后有的还总结出解决该题时运用的数学思想和数学方法,有的还让学生进一步考虑相关的问题•对知识的处理,都尽量设计成让学生自己观察、比较、猜想、分析、归纳、类比、想象、抽象、概括的形式,从而培养学生的思维能力•向量的坐标实际上是把点与数联系起来,进而可把曲线与方程联系起来,这样就可用代数方程研究几何问题,同时也可以用几式、定理等的处理主要通过观察、比较、分析、何的观点处理某些代数问题.4.本章教学约需12课时,具体分配如下,仅供参考.2.1平面向量的实际背景及基本概念整体设计教学分析本节是本章的入门课,概念较多,但难度不大. 学生可根据原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.由于向量来源于物理,并且兼具数”和形”的特点,所以它在物理和几何中具有广泛的应用,可通过几个具体的例子说明它的应用.位移是物理中的基本量之一,也是几何研究的重要对象.几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置•位移简明地表示了点的位置之间的相对关系,它是向量的重要的物理模型•力是常见的物理量•重力、浮力、弹力等都是既有大小又有方向的量•物理中还有其他力,让学生举出物理学中力的其他一些实例目的是要建立物理课中学过的位移、力及矢量等概念与向量之间的联系,以此更加自然地引入向量概念,并建立学习向量的认知基础• 三维目标1•通过实例,利用平面向量的实际背景以及研究平面向量的必要性,理解平面向量的概念以及确定平面向量的两个要素,搞清数量与向量的区别2•理解自由向量、相等向量、相反向量、平行向量等概念,并能判断向量之间的关系,并会辨认图形中的相等向量或作出与某一已知向量相等的向量. 3•在教学过程中,应充分根据平面向量的两个要素加以研究向量的关系,揭示向量可以平移这一特性•重点难点教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量• 教学难点:平行向量、相等向量和共线向量的区别和联系•课时安排1课时教学过程导入新课思路1.(情境导入)如图1,在同一时刻老鼠由A向西北方向的C处逃窜,猫在B处向正东方向的D处追去,猫能否追到老鼠呢?学生马上得出结论:追不上,猫的速度再快也没用,因为方向错了.教师适时设问:如何从数学的角度来揭示这个问题的本质?由此展开新课•CS A D图1思路2•两列火车先后从同一站台沿相反方向开出,各走了相同的路程,怎样用数学式子表示这两列火车的位移?从中国象棋中规定马”走日,象走田”让学生在图上画出马、象走过的路线引入也是一个不错的选择• 推进新课新知探究提出问题①在物理课中,我们学过力的概念•请回顾一下力的三要素是什么?还有哪些量和力具有同样特征呢?这些量的共同特征是什么?怎样利用你所学的数学中的知识抽象这些具有共同特征的量呢?②新的概念是对这些具有共同特征的量的描述, 应怎样定义这样的量呢?③数量与向量的区别在哪里?活动:教师指导学生阅读教材,思考讨论并解决上述问题,学生讨论列举与位移一样的一些量• 物体受到的重力是竖直向下的,物体的质量越大, 它受到的重力越大;物体在液体中受到的浮力是竖直向上的,物体浸在液体中的体积越大它受到的浮力就越大;速度与加速度都是既有大小,又有方向的量;物理中的动量与矢量都有方向,且有大小;物理学中存在着许多既有大小,又有方向的量•教师引导学生观察思考这些量的共同特征, 我们能否在数学学科中对这些量加以抽象,形成一种新的量•至此时机成熟,引入向量,并把那些只有大小,没有方向的量,如年龄、身高、长度、面积、体积、质量等称为数量,物理学上称为标量•显然数量和向量的区别就在于方向问题• 讨论结果:①略•②我们把既有大小,又有方向的量叫做向量•物理中称为矢量.③略•提出问题①如何表示向量?②有向线段和线段有何区别和联系?分别可以表示向量的什么?③长度为零的向量叫什么向量?长度为1的向量叫什么向量?④满足什么条件的两个向量是相等向量?单位向量是相等向量吗?⑤有一组向量,它们的方向相同或相反,这组向量有什么关系?怎样定义平行向量?⑥如果把一组平行向量的起点全部移到一点O, 它们是不是平行向量?这时各向量的终点之间有什么关系?⑦数量与向量有什么区别?⑧数学中的向量与物理中的力有什么区别?活动:教师指导学生阅读教材,通过阅读教材思考讨论以上问题•特别是有向线段,是学习向量的关键•但不能说向量就是有向线段,有向线段就是向量”有向线段只是向量的一种几何表示, 二者有本质的区别.向量只由方向和大小决定,而与向量的起点的位置无关,但有向线段不仅与方向、长度有关,也与起点的位置有关.如图2,在线段AB的两个端点中,规定一个顺序,假设A为起点、B为终点,我们就说线段AB具有方向,具有方向的线段叫做有向线段,通常在有向线段的终点处画上箭头表示它的方向.以A为起点、B为终点的有向线段记作AB.起点要写在终点的前面.已知AB,线段AB的长度也叫做有向线段AB 的长度,记作両.有向线段包含三个要素:起点、方向、长度.A(起甸图2知道了有向线段的起点、方向和长度,它的终点就唯一确定.用有向线段表示向量的方法是:1°起点是A,终点是B的有向线段,对应的向量记作:AB .这里要提醒学生注意AB的方向是由点A指向点B,点A是向量的起点.2°用字母a,b,c, ••表示.(一定要学生规范书写:印刷用黑体a,书写用a)3°向量AB(或a)的大小,就是向量AB(或a)的长度(或称模),记作|AB|(或|a|).教师要注意引导学生将数量与向量的模进行比较,数量有大小而没有方向,其大小有正、负和0 之分,可进行运算,并可比较大小;向量的模是正数或0,也可以比较大小.由于方向不能比较大小,像a>b就没有意义,而|a|>|b|有意义.讨论结果:①向量也可用字母a,b,c, ••表示(印刷用粗黑体表示),手写用a T来表示,或用表示向量的有向线段的起点和终点字母表示,如AB、C D. 注意:手写体上面的箭头一定不能漏写.②有向线段:具有方向的线段就叫做有向线段,其有三个要素:起点、方向、长度.向量与有向线段的区别:向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段图3 ③长度为0的向量叫零向量,长度为1个单位长度的向量,叫单位向量.但要注意,零向量、单位向量的定义都只是限制了大小.长度为0的向量叫做零向量,记作0,规定零向量的方向是任意的.长度等于1个单位的向量,叫做单位向量.④长度相等且方向相同的向量叫做相等向量.⑤是平行向量.平行向量定义的理解:第一,方向相同或相反的非零向量叫平行向量;第二,我们规定0与任一向量平行即0// a.综合第一、第二才是平行向量的完整定义;向量a,b,c平行,记作a / b / c.如图3.图4又如图4,a,b,c是一组平行向量,任作一条与a所在直线0平行的直线I,在I上任取一点O,则可在I 上分别作出OA = a,OB=b,OC=C.这就是说,任一组平行向量都可以移动到同一直线上,因此,平行向量也叫做共线向量.说明:平行向量可以在同一直线上,要区别于两平行线的位置关系.⑥是共线向量,也就是平行向量.但要注意,平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).平行向量可以在同一直线上,要区别于两平行线的位置关系;共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.⑦数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向、大小双重性质,不能比较大小.⑧力有大小、方向、作用点三个要素,而数学中的向量是由物理中的力抽象出来的,只有大小与方向两个要素,与起点的位置无关.应用示例例1如图5,试根据图中的比例尺以及三地的位置,在图中分别用有向线段表示A地至B、C两地的位移.(精确到1 km)图5分析:本例是一个简单的实际问题,要求画出有向线段表示位移,目的在于巩固向量概念及其几何表示.解:AB表示A地至B地的位移,且|AB|〜232 km;(AB 长度X8 000 000 100 000)处表示A地至C地的位移,且|处|农296 km.(A(长度X8 000 000 100 000)点评:位置是几何学研究的重要内容之一,几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.如图5,由A点确定B点、C 点的位置.变式训练一个人从A点出发沿东北方向走了100 m到达B 点,然后改变方向,沿南偏东15°方向又走了100 m 到达C点,求此人从C点走回A点的位移.图6解:根据题意画出示意图,如图6所示.|AB|=100 m,|BC|=100 m,Z ABC=45 +15°60° ・•・△ ABC为正三角形./• |CA|=100 m,即此人从C点返回A点所走的路程为100 m.•・•/ BAC=60 ,・•・/ CAD= / BAC- / BAD=15 ,即此人行走的方向为西偏北15°.故此人从C点走回A点的位移为沿西偏北15° 方向100 m.沖------------------ 4图7例2判断下列命题是否正确,若不正确,请简述理由•(1RABCD中,忑与CD是共线向量;⑵单位向量都相等.活动:教师引导学生画出平行四边形,如图7.因为AB//CD,所以AB // CD.由于上面已经明确,单位向量只限制了大小,方向不确定,所以单位向量不一定相等,即单位向量模均相等且为1, 但方向不确定.解:⑴正确;(2)不正确.点评:本题考查基本概念,对于单位向量、平行向量的概念特征及相互关系必须把握好.图8 例3如图8,设0是正六边形ABCDEF的中心, 分别写出图中所示向量与OAOBOC、相等的量.活动:本例是结合正六边形的一些几何性质, 让学生巩固相等向量和平行向量的概念,正六边形是边长等于半径并且对边互相平行的正多边形,它既是轴对称图形,又是中心对称图形,具有丰富的几何性质.教科书中要求判断0A与EF,OB与AF是否相等,是要通过长度相等方向相反的两个向量的不等,让学生从反面认识向量相等的概念. 解:OA = CB = DO ;OB = DC = EO ;OC = AB = ED =F0 .点评:向量相等是一个重要的概念,今后经常用到.让学生在训练中明确,向量相等不仅大小相等,还要方向相同.变式训练本例变式一:与向量OA长度相等的向量有多少个?(11个)本例变式二:是否存在与向量OA长度相等、方向相反的向量?(存在)例4下列命题正确的是()A.a与b共线,b与c共线,则a与c也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行活动:由于零向量与任一向量都共线,所以A 不正确.由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确.向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确.对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,即只有C正确.答案:C点评:对于有关向量基本概念的考查,可以从概念特征入手,也可以从反面进行考虑•即要判断一个结论不正确,只需举一个反例即可•要启发学生注意这两方面的结合• 变式训练1•判断:(1)平行向量是否一定方向相同?(不一定)(2)不相等的向量是否一定不平行?(不一定)(3)与零向量相等的向量必定是什么向量?(零向量)(4)与任意向量都平行的向量是什么向量?(零向量)(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)(6)两个非零向量相等当且仅当什么?(长度相等且方向相同)(7)共线向量一定在同一直线上吗?(不一定)2•把一切单位平面向量归结到共同的始点,那么这些向量的终点所构成的图形是()A.—条线段B. —段圆弧C.两个点D.—个圆答案:D3. 将平行于一直线的所有单位向量的起点平移 到同一始点,则这些向量的终点所构成的图形是 ()A.B. 两个点C.C. —条线段 答案:B 知能训练 课本本节练习. 解答: 1. 通过具体的例子,让学生动手画两个方向不同、 大小不等的力(向量),图略.2. |AB |,|BA |,这两个向量的长度相等,但它们不等. 点评:向量是既有大小,又有方向的量.长度相等 的两个向量未必是两个相等的量.3. |A B |=2,|CD |=2.5,|E F |=3,|G H |=2应.点评:方格纸是学生学习几何、向量等内容的好 工具.在方格纸中,长度和角度非常容易表现.建 议在向量内容的学习中把方格纸作为重要的学 具 /、・4. (1)它们的终点相同;(2)它们的终点不同. 点评:方向相同的两个向量,如果它们的起点相同 它们的终点只与长度有关.课堂小结占 八本节课从平面向量的物理背景和几何背景入手,利用类比的方法,介绍了向量的两种表示方法:几何表示和字母表示,几何表示为用向量处理几何问题打下了基础,字母表示则利于向量的运算;然后又介绍了向量的模、平行向量、共线向量、相等向量等重要概念,这些概念是进一步学习后续课程的基础,必须要在理解的基础上把握好. 作业课本习题2.1 1、2.设计感想本节是平面向量的第一节,显然属于概念课"概念的理解无疑是重点,但也是难点.本教案设计的指导思想是:把学生划分小组合作讨论学习,经过小组成员们的合作探究,对平面向量的基本概念和基本解题方法都明了了不少,应该有很多的成功之处或收获.对失败或教训之处可能是由于一些概念性问题没有深入研究,导致解题存在困难,不过这些会通过学习的深入弥补过来的. 作为现代数学重要标志之一的向量引入中学数学以后,给中学数学带来了无限生机•通过本节具体问题的解决,让学生体会到数学在生活中的重要作用,并在实际课堂教学中规范学生的习惯,培养严谨的思考习惯和代数与几何相结合的习惯,为后面学习打下基础.。
《平面向量的实际背景及基本概念》教案全面版
《平面向量的实际背景及基本概念》教案全面版一、教学目标1. 让学生理解平面向量的实际背景,了解向量在现实生活中的应用。
2. 掌握平面向量的基本概念,包括向量的定义、表示方法、相等向量、相反向量等。
3. 掌握向量的线性运算,包括加法、减法、数乘等。
4. 培养学生的数学思维能力和实际问题解决能力。
二、教学内容1. 向量的实际背景:介绍向量在物理学、工程学等领域的应用,如力的表示、位移的表示等。
2. 向量的定义:介绍向量的概念,强调向量是有大小和方向的量。
3. 向量的表示方法:介绍向量的表示方法,包括箭头表示法、坐标表示法等。
4. 相等向量、相反向量:介绍相等向量和相反向量的概念,强调它们的性质和运算规律。
5. 向量的线性运算:介绍向量的加法、减法和数乘运算,包括运算规则、运算性质等。
三、教学方法1. 采用问题驱动的教学方法,引导学生从实际问题中抽象出向量的概念和运算规律。
2. 利用多媒体辅助教学,通过动画、图片等形式展示向量的实际背景和运算过程。
3. 采用小组讨论、合作学习的方式,培养学生的团队协作能力和交流表达能力。
4. 结合例题讲解,让学生通过实践操作理解和掌握向量的运算方法和技巧。
四、教学评估1. 通过课堂提问、作业批改等方式及时了解学生的学习情况,发现问题并及时解决。
2. 设计一些实际问题,让学生运用所学的向量知识解决,评估学生对知识的掌握程度。
3. 组织课堂讨论,评估学生的参与程度和团队协作能力。
五、教学资源1. 多媒体教学课件:包括向量的实际背景图片、向量运算的动画演示等。
2. 教材:提供相关章节的学习材料,供学生预习和复习使用。
3. 练习题库:提供丰富的练习题,包括填空题、选择题、解答题等,用于巩固所学知识。
4. 参考资料:提供一些相关的研究论文、书籍等,供有兴趣深入学习的学生参考。
六、教学安排1. 课时安排:本章节共需4课时,每课时45分钟。
2. 课堂活动安排:第一课时:向量的实际背景介绍,向量的定义和表示方法学习。
平面向量的实际背景及基本概念优质课
向量可以在平面内任意平移,与位置无关?
二、向量的几何表示
1、有向线段的三要素:起点、方向、长度
A(起点)
B(终点)
2、向量的表示 (1)向量的几何表示:可以用有向线段表示.
(2)向量的符号表示:① , , , . . . ② ,
五、作业:
六、当堂检测
判断对错:
(4)若A、B、C、D四点 不在同一条直线上 ,若 ( )
3、①平行向量是否一定方向相同? ②不相等的向量是否一定不平行? ③与零向量相等的向量必定是什么向量? ④与任意向量都平行的向量是什么向量? ⑤若两个向量在同一直线上,则这两个向量一定是什么向量? ⑥两个非零向量相等的充要条件是什么? ⑦共线向量一定在同一直线上吗?
二、向量的几何表示
画示意图,分别表示一个竖直向下,大小为1N的力和一个水平向左,大小为2N的力,(1CM的长度表示1N)
有向线段的三要素:起点、方向、长度
A(起点)
B(终点)
质量;(2)速度;(3)力;(4)加速度;(5)路程;(6)密度;(7)功;(8)面积;(9)重力
在物理学中称(2) (3) (4) (9)这样的量为矢量
02
单击添加大标题
情境创设
唉, 哪儿去了?
嘻嘻!大笨猫!
猫能捉住老鼠吗?
老鼠由A向东北方向以6m/s的速度逃窜,而猫由B向东南方向10m/s的速度追. 问猫能否抓到老鼠?
C
找准方向+看到差距+努力=成功
你位移错了!
小练习:判断
(1)角度和温度都是向量. ( )
(2)直角坐标平面上的x轴、y轴都是向量. ( )
D
C
若有向线段的起点不同,则有向线段不同.
2.1 平面向量的实际背景及基本概念 教学设计 教案
教学准备1. 教学目标1、知识与技能:了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量。
2、过程与方法:通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别。
3、情感态度与价值观:通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力。
2. 教学重点/难点教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.教学难点:平行向量、相等向量和共线向量的区别和联系.3. 教学用具多媒体4. 标签平面向量的实际背景及基本概念教学过程(一)导入新课思路1.(情境导入)如图1,在同一时刻,老鼠由A向西北方向的C处逃窜,猫在B处向正东方向的D处追去,猫能否追到老鼠呢?学生马上得出结论:追不上,猫的速度再快也没用,因为方向错了.教师适时设问:如何从数学的角度来揭示这个问题的本质?由此展开新课.(二)推进新课、新知探究、提出问题①在物理课中,我们学过力的概念.请回顾一下力的三要素是什么?还有哪些量和力具有同样特征呢?这些量的共同特征是什么?怎样利用你所学的数学中的知识抽象这些具有共同特征的量呢?②新的概念是对这些具有共同特征的量的描述,应怎样定义这样的量呢?③数量与向量的区别在哪里?活动:教师指导学生阅读教材,思考讨论并解决上述问题,学生讨论列举与位移一样的一些量.物体受到的重力是竖直向下的,物体的质量越大,它受到的重力越大;物体在液体中受到的浮力是竖直向上的,物体浸在液体中的体积越大它受到的浮力就越大;速度与加速度都是既有大小,又有方向的量;物理中的动量与冲量都有方向,且有大小;物理学中存在着许多既有大小,又有方向的量.教师引导学生观察思考这些量的共同特征,我们能否在数学学科中对这些量加以抽象,形成一种新的量.至此时机成熟,引入向量,并把那些只有大小,没有方向的量,如年龄、身高、长度、面积、体积、质量等称为数量,物理学上称为标量.显然数量和向量的区别就在于方向问题.讨论结果:①略.②我们把既有大小,又有方向的量叫做向量.物理中称为矢量.③略.提出问题①如何表示向量?②有向线段和线段有何区别和联系?分别可以表示向量的什么?③长度为零的向量叫什么向量?长度为1的向量叫什么向量?④满足什么条件的两个向量是相等向量?单位向量是相等向量吗?⑤有一组向量,它们的方向相同或相反,这组向量有什么关系?怎样定义平行向量?⑥如果把一组平行向量的起点全部移到一点O,它们是不是平行向量?这时各向量的终点之间有什么关系?⑦数量与向量有什么区别?⑧数学中的向量与物理中的力有什么区别?活动:教师指导学生阅读教材,通过阅读教材思考讨论以上问题.特别是有向线段,是学习向量的关键.但不能说“向量就是有向线段,有向线段就是向量”,有向线段只是向量的一种几何表示,二者有本质的区别.向量只由方向和大小决定,而与向量的起点的位置无关,但有向线段不仅与方向、长度有关,也与起点的位置有关.如图2,在线段AB的两个端点中,规定一个顺序,假设A为起点、B为终点,我们就说线段AB具有方向,具有方向的线段叫做有向线段,通常在有向线段的终点处画上箭头表示它的方向.以A为起点、B为终点的有向线段记作.起点要写在终点的前面.已知,线段AB的长度也叫做有向线段的长度,记作.有向线段包含三个要素:起点、方向、长度.知道了有向线段的起点、方向和长度,它的终点就唯一确定.用有向线段表示向量的方法是:1°起点是A,终点是B的有向线段,对应的向量记作:.这里要提醒学生注意的方向是由点A指向点B,点A是向量的起点.2°用字母a,b,c,…表示.(一定要学生规范书写:印刷用黑体a,书写用)3°向量(或a)的大小,就是向量(或a)的长度(或称模),记作||(或|a|).教师要注意引导学生将数量与向量的模进行比较,数量有大小而没有方向,其大小有正、负和0之分,可进行运算,并可比较大小;向量的模是正数或0,也可以比较大小.由于方向不能比较大小,像a>b就没有意义,而|a|>|b|有意义.讨论结果:①向量也可用字母a,b,c,…表示(印刷用粗黑体表示),手写用来表示,或用表示向量的有向线段的起点和终点字母表示,如、.注意:手写体上面的箭头一定不能漏写.②有向线段:具有方向的线段就叫做有向线段,其有三个要素:起点、方向、长度.向量与有向线段的区别:向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.图3③长度为0的向量叫零向量,长度为1个单位长度的向量,叫单位向量.但要注意,零向量、单位向量的定义都只是限制了大小.长度为0的向量叫做零向量,记作0,规定零向量的方向是任意的.长度等于1个单位的向量,叫做单位向量.④长度相等且方向相同的向量叫做相等向量.⑤对平行向量定义的理解:第一,方向相同或相反的非零向量叫平行向量;第二,我们规定0与任一向量平行即0∥a.综合第一、第二才是平行向量的完整定义;向量a,b,c平行,记作a∥b∥c.如图3.图4又如图4,a,b,c是一组平行向量,任作一条与a所在直线0平行的直线l,在l上任取一点O,则可在l上分别作出=a,=b,=c.这就是说,任一组平行向量都可以移动到同一直线上,因此,平行向量也叫做共线向量.说明:平行向量可以在同一直线上,要区别于两平行线的位置关系.⑥是共线向量,也就是平行向量.但要注意,平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).平行向量可以在同一直线上,要区别于两平行线的位置关系;共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.⑦数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向、大小双重性质,不能比较大小.⑧力有大小、方向、作用点三个要素,而数学中的向量是由物理中的力抽象出来的,只有大小与方向两个要素,与起点的位置无关.(三)应用示例例1 如图5,试根据图中的比例尺以及三地的位置,在图中分别用有向线段表示A地至B、C两地的位移.(精确到1 km)分析:本例是一个简单的实际问题,要求画出有向线段表示位移,目的在于巩固向量概念及其几何表示.解:表示A地至B地的位移,且||≈232 km;(AB长度×8 000 000÷100 000)表示A地至C地的位移,且||≈296 km.(AC长度×8 000 000÷100 000)点评:位置是几何学研究的重要内容之一,几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.如图5,由A点确定B点、C点的位置.例2 判断下列命题是否正确,若不正确,请简述理由.(1)ABCD中,与是共线向量;(2)单位向量都相等.活动:教师引导学生画出平行四边形,如图7.因为AB//CD,所以∥.由于上面已经明确,单位向量只限制了大小,方向不确定,所以单位向量不一定相等,即单位向量模均相等且为1,但方向不确定.解:(1)正确;(2)不正确.课堂小结本节课从平面向量的物理背景和几何背景入手,利用类比的方法,介绍了向量的两种表示方法:几何表示和字母表示,几何表示为用向量处理几何问题打下了基础,字母表示则利于向量的运算;然后又介绍了向量的模、平行向量、共线向量、相等向量等重要概念,这些概念是进一步学习后续课程的基础,必须要在理解的基础上把握好.课后习题1.判断:(1)平行向量是否一定方向相同?(不一定)(2)不相等的向量是否一定不平行?(不一定)(3)与零向量相等的向量必定是什么向量?(零向量)(4)与任意向量都平行的向量是什么向量?(零向量)(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)(6)两个非零向量相等当且仅当什么?(长度相等且方向相同)(7)共线向量一定在同一直线上吗?(不一定)2.把一切单位平面向量归结到共同的始点,那么这些向量的终点所构成的图形是( )A.一条线段B.一段圆弧 C.两个点 D.一个圆答案:D3.将平行于一直线的所有单位向量的起点平移到同一始点,则这些向量的终点所构成的图形是( )A.一个点B.两个点C.一个圆D.一条线段答案:B板书2.1.1 向量的物理背景与概念2.1.2向量的几何表示2.1.3相等向量与共线向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量的实际背景及基本概念一.教学内容分析本节课是《普通高中课程标准实验教科书•数学4》(人教A版)第二章第一节的第一课时(2.1)《平面向量的实际背景及基本概念》.本节内容属于概念性知识.向量是集数与形于一身的数学概念,有着丰富的实际背景和广泛应用,是沟通几何、代数、三角等内容的桥梁.在现实生活中随处可见的力、位移、速度等既有大小,又有方向的量是其物理背景,有向线段是其几何背景,向量就是从这些实际对象中抽象出来的数学概念,经过研究,建立起完整的知识体系之后,向量又作为数学工具,广泛地应用于解决数学、物理学科或实际生活中的问题.因此,它在整个高中数学的地位是很重要的.本节课是《平面向量》的起始课,通过本节课的学习,让学生体会到向量具有大小和方向两个基本特征,研究向量我们可以从大小和方向两个角度入手.另外,实数学习的经验可以启发我们对向量的学习,引进一个量,就要研究它的运算,研究相应的运算律,因此,《平面向量》这一章,后续将要研究的内容就比较明朗了,这体现了本节课内容,对这一章的教学具有“统领全局”的作用.另外,对于本节课的教学,重要的是让学生去体会研究数学新对象的方法和基本思路,而不是向量的形式化定义及几个相关概念.因此,本节课内容的学习,它的理论意义远远大于它在解题中的作用.因此,我认为本节课的教学重点是向量的概念,向量的几何表示,相等向量的概念.二. 学生学情分析学生在物理中已经学习了力、位移、速度等矢量的概念,认识到一些既有大小,又有方向的量,也能认识到生活中一些只有大小,没有方向的量,这些学习内容及生活经验为本节课奠定了一定的基础.学生在之前也学习了实数的概念及实数的运算,也学习了直线平行等知识,这都为本节课的学习作了一定的准备.北京二中是北京市示范高中,我所任教的班级学生基础比较扎实,思维有一定的灵活性.但对于向量的学习,其研究内容和研究方法都是陌生的,学生的严谨性和深刻性仍需培养.本节课的教学难点是:研究向量的基本方法.三.教学目标设置根据本节课的内容特点以及学生的认知水平,确定本节课的教学目标是:1. 通过力和力的分析等实例,了解向量的实际背景,理解向量相等的含义,理解向量的几何表示.2. 在向量概念的形成过程中,提高抽象与概括能力,在向量的表示、特殊向量、向量的特殊关系的探讨过程中,体会向量具有数和形两个特征.3. 由具有物理意义的量抽象出向量的概念,积累从具体到抽象的活动经验;在向量的概念、向量的表示、特殊向量、向量的特殊关系的探讨过程中,自觉形成从大小和方向两个角度来进行思考的习惯,培养理性思维.四.教学策略分析为了更好的突出教学重点,突破教学难点,完成教学目标,我采用引导启发的教学方式,通过“创设情境,引入课题——问题引领,逐步探究——阅读课本,巩固练习——归纳小结,延伸课堂”这些环节循序渐进地将问题逐步引向深入,从而完成本节课的目标.为了让学生体会引入向量的必要性,我提出一个生活中有关物理的问题,让学生直观感知,引导学生思考,并和学生一起完成一个试验,进行操作确认,最后利用TI图形计算器来进行理论分析,在这个过程中让学生体会到,我们不仅要关心力的大小,还要关心力的方向,从而为引入向量的概念作准备.在向量的表示、零向量和单位向量、相等向量、共线向量等概念的形成过程中,不急于得到结论,而是让学生充分利用向量的物理背景和几何背景,通过作出力的图示,在正六边形中画出一些具体的向量,在丰富的实例中进行概括.并且教师利用投影,图形计算器,自制教具等进行教学,让演示更直观,让探究更便捷,从而帮助学生进行理解.五.教学过程设计(一)创设情境,引入课题【问题1】晾衣服的绳可不可以拉成一条直线?如果可以,那我们就可以晾更多的衣服了.师生活动:教师提出问题,并引导学生思考.设计意图:教师提出一个生活中的实际问题,学生进行直观感知、猜想、思考,激发学生学习兴趣,为下一步引出试验作铺垫.【课堂活动】师生分别握住一根绳子的一端,中间系一个重物.开始的时候,将绳的两端接近,将重物抬起,慢慢将绳的两端离远一点,将重物抬起,感受一下绳作用在手上的力的变化.师生活动:教师和学生一同演示试验,学生认真观察试验现象并进行思考,教师组织学生交流.设计意图:1.通过试验操作,进一步让学生思考现象背后的原理,让学生经历由直观感知到操作确认的过程;2.让学生初步体会到在这个试验过程当中,起决定作用的不仅只有力的大小,还有力的方向,为向量概念的引出作准备;3.通过试验,让学生对现象背后的原理产生浓厚的兴趣,为进一步利用图形计算器进行探究作铺垫.【课堂活动】学生利用图形计算器对试验中涉及到的力的分析进行探究.师生活动:教师将课件发到学生的图形计算器上,学生利用课件进行探究,教师演示同学们的操作过程,并组织学生交流.设计意图:1.利用图形计算器进行探究,让学生完整经历由生活经验到试验操作确认,再到严谨的理论分析,提高学生分析问题解决问题的能力;2.利用动态演示,让学生能直观观察到力的合成情况,从而提高课堂效率,并进一步从理论上认识到在对实际问题的分析中,不仅要关注力的大小,还要关注力的方向.【问题2】大家能否再举出一些既有大小,又有方向的量?生活中有没有只有大小,没有方向的量?请你举例.师生活动:教师提出问题,学生回答老师提出的问题,由其他同学补充.设计意图:通过设问激活学生已有的相关经验、知识,从丰富的实例中让学生感知概念的本质特征,发现并意识到概念的非本质特征,引导学生提炼、概括向量的本质属性,形成对向量的初步认识,为进一步抽象概括做准备.1.向量的概念回顾学习数的概念,我们从一枝笔,一棵树,一本书中抽象出只有大小的数量“1”,类似地,我们可以从力、位移、速度等这些既有大小又有方向的量进行抽象,形成一种新的研究对象——向量.数学中,我们把这种既有大小,又有方向的量叫做向量.而把那些只有大小,没有方向的量叫做数量.(二)问题引领,逐步探究2.向量的表示【问题3】你认为怎样表示一个向量比较合理?【课堂活动】如图是一个放置在水平桌面上的物体,其受到的重力是10N,请作出物体受力的图示.师生活动:教师提出问题,并设计一个课堂活动,学生进行作图练习,教师组织大家讨论,并进行交流,学生之间进行相互补充,在此基础上得出向量的几何表示和字母表示.设计意图:1.让学生通过作图,回顾物理中是如何表示力的,进而让学生进一步体会到向量的实际背景,自觉接受向量的几何表示;2.字母表示是比较抽象的,通过回忆初中平面几何的学习中是如何表示一条线段、一条直线的,实数的学习中是如何表示一个实数的,让学生在已有的基础之上受到启发,得到向量的字母表示,并理解字母表示的抽象性;3.通过对向量的几何表示和字母表示的探讨,让学生体会从大小和方向两个角度来思考向量的问题,体会到几何表示突出向量“形”的特征,而字母表示有利于我们进行表达,为后续学习作准备.3. 特殊向量【问题4】现在我们建立起了一个向量的集合,这个集合中有没有特殊元素?师生活动:教师组织学生进行思考,并进行讨论、交流,学生思维受阻时引导学生从大小的角度类比实数进行思考,从而得到:长度为0的向量叫做零向量,记作0.长度为1个单位长度的向量叫做单位向量.设计意图:根据先行组织者理论,引导学生充分挖掘原有知识与新知识的关联,为新知识的学习提供借鉴,从学生所熟知的实数的知识出发,得出零向量和单位向量的概念.在后续学习中,也可以类比实数的运算和运算律,来学习向量的运算和运算律,这样更能吸引学生不断求知的欲望,提高学生学习的兴趣.OFEDC B A4.向量的特殊关系【问题5】向量和向量之间有没有一些特殊关系呢? 【课堂活动】请同学们在图中画出一些向量(也可以自选图形),并通过你画出的向量来探索它们之间的关系.师生活动:教师提出问题,引发学生思考,让学生进行作图练习,画出一些向量,并通过画出的向量来进行探讨.组织学生进行交流、讨论,学生代表发言后由其他同学补充,逐步完善,在此过程中得出向量之间的特殊关系.学情预设:学习障碍1:学生画出了一些向量,但是不知道如何去考察它们之间的特殊关系.引导方案:引导学生认识到向量是具有大小和方向的研究对象,我们可以从大小和方向这两个角度入手,最后请学生对研究方法加以总结.学习障碍2:学生提出向量加法、减法等运算,认为这就是向量的关系.引导方案:类比实数的学习,向量加法、减法等属于运算的范畴,而不是两个向量的关系,我们可以类比实数之间的关系来探讨向量的关系.学习障碍3:学生提出两个向量垂直,两个向量夹角为60︒等等. 引导方案:两个向量垂直,两个向量夹角为60︒等等,由于涉及到向量的夹角的定义,我们放到后续去研究,可以预见,对于向量,还有很多内容等着我们去探讨,引导学生关注本节课的教学内容.学习障碍4:难以接受共线向量的概念.引导方案:在得出相等向量的概念后,教师指出“值得注意的是,由相等向量我们可以知道,对于一个向量,只要不改变它的大小和方向,就可以任意平行移动”,从而为理解共线向量的概念奠定基础.在学生得出平行向量的概念后,教师利用自制教具来展示我们可以将一组平行向量通过平移(不改变大小和方向)到一条直线上,来让学生直观感知平行向量其实就是共线向量.最后,教师指出,共线向量和平行向量是研究向量的基础, 由此可以将一组平行向量平移(不改变大小和方向)到一条直线上,这给问题的研究带来方便.设计意图:1.通过设置开放性的问题,让学生通过作图、交流、讨论,让学生参与概念的定义过程,让概念成为学生观察、交流、概括之后的自然产物;2.在画出有关向量并且用字母去进行表示的过程中,体会数形结合的数学思想,进一步巩固向量的几何表示和字母表示,自觉应用这两种方法来对向量进行表示;3.在知识的形成过程中进一步体会从大小和方向两个角度去研究向量,形成研究向量的基本方法,培养理性思维.【问题6】向量与物理中的矢量有什么区别和联系?向量平行、共线与线段的平行、共线有什么区别和联系?设计意图:和本节课开始的内容首尾呼应,让学生明确向量概念与其物理背景、几何背景的区别和联系,进一步体会向量是从实际背景中抽象出来的一个新的研究对象,抓住向量的本质特征.(三)阅读课本,巩固练习【课堂活动】阅读教材73页到76页,看看我们的讨论有没有遗漏的地方,并思考下面的例题.例如图,在方格纸上的平行四边形ABCD和折线MPQRST中,点O 是平行四边形ABCD对角线的交点,,,OA a OB b AB c,分别写出图中与===a b c相等的向量.(图附后),,师生活动:教师指导学生阅读教材,在阅读的基础上让学生提出疑问,教师组织学生思考例题,在此过程中关注学生能否在方格纸中正确识别出向量的大小与方向, 引导学生从大小和方向两个角度去思考.设计意图:通过指导学生阅读教材,让学生重视教材,培养学生的阅读能力和自学能力,通过对例题的讨论,巩固向量的概念、向量的表示以及相等向量等概念.进一步体会从大小和方向两个角度去思考向量问题.(四)归纳小结,延伸课堂【归纳小结】教师与学生一起回顾本节课所学知识,并请学生回答以下问题:(1)这节课你学到了哪些知识?(2)通过本节课的学习,对于研究数学新对象,你有什么体会?(3)你觉得后续我们还将学习什么内容?设计意图:通过设置三个问题,回顾本节课所学知识,并且用结构图来进行展示,使得知识间的逻辑关系更清晰.通过本节课的学习,学生体会研究数学新对象的基本思路.并且作为章起始课,向学生交代本章大致学习内容和学习方法,构建研究蓝图.【布置作业】1.(必做作业)教材P77A组习题2.(选做作业)平面向量既有大小,又有方向,集数与形于一身.我们也知道,平面直角坐标系中,坐标与点是一一对应的,实质上也是沟通了数与形之间的关系,那么,平面向量有没有坐标表示呢?如果有,你觉得应该怎么定义?请课后进行研究.设计意图:布置课后作业,必做作业旨在落实本节课教学内容,教师鼓励学生课后根据自己的兴趣拓展相关知识,继续对问题进行研究. (五)目标检测设计判断下列结论是否正确.(1) 若,a b都是单位向量,则=a b;(2) 若=a b,则,a b是共线向量;(3) 平行向量方向一定相同.设计意图:检测学生对向量的概念、相等向量的概念、共线向量的概念的理解.关于“平面向量的实际背景及基本概念”一课的点评“平面向量的实际背景及基本概念”是“平面向量”的第一课时,本节课包括“章引言”和“2.1平面向量的实际背景及基本概念”两部分.老师充分重视章引言的教学,并将章引言渗透到本节课的具体内容中.具体教学时,老师设计了“晾衣服的绳可不可以拉成一条直线?”等问题,通过教师演示,引发学生学习兴趣.让学生直观感受物理现象,思考现象背后的原理,学生利用图形计算器进行探究,通过探究,让学生感受到试验中力的方向是引起试验现象的一个关键因素,从而体会到力是一个既有大小,又有方向的量.老师通过这样的教学设计,让学生开展概括活动的过程,引导学生经历从具体事例(力)中领悟向量概念的本质特征,类比数的概念获得向量概念的定义及表示,类比数的集合认识“向量的集合”,类比直线(段)的基本关系认识向量的基本关系.本节课是一节概念课型,涉及到向量(矢量)、数量(标量)、有向线段、长度(模)、零向量、单位向量、平行向量(共线向量)、相等向量等不同的概念.老师在教学过程中,始终以学生为中心,启发学生通过自主观察,主动思考,相互讨论,逐步抽象并完善每一个概念.整个教学过程中,注重数学思想方法的渗透,反复利用联系的观点、类比的思想引导学生结合已有数学知识和数学经验.随着课堂师生互动的逐步推进,明显感受到部分学生已经能主动用类比的观点来探索与向量有关的基本概念.课题:《 》班级: 姓名:课堂活动课堂活动(备用图)OF ED CBAOFEDCBA课堂活动目标检测设计判断下列结论是否正确.(1) 若,a b都是单位向量,则=a b;(2) 若=a b,则,a b是共线向量;(3) 平行向量方向一定相同.。