溶液颜色药典比较
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
溶液颜色
中国药典:
附录Ⅺ A 溶液颜色检查法
药物溶液的颜色及其与规定颜色的差异能在一定程度上反映药物的纯度。
本法系将药物溶液的颜色与规定的标准比色液相比较,或在规定的波长处测定其吸光度,以检查其颜色。
品种项下规定的“无色或几乎无色”,其“无色”系指供试品溶液的颜色与所用溶剂相同,“几乎无色”系指浅用于水稀释1倍后的相应色调1号标准比色液。
第一法
除另有规定外,取各药品项下规定量的供试品,加水溶解,置于25ml的纳氏比色管中,加水稀释至10ml。
另取规定色调和色号的标准比色液10ml,置于纳氏比色管中,两管同置白色背景上,自上向下透视,或同置白色背景前,平视观察;供试品管呈现的颜色与对照管比较,不得更深。
如供试品管呈现的颜色与对照管的颜色深浅非常接近或色调不尽一致,使目视观察无法辨别二者的深浅时应改用第三法(色差计法),并将其测定结果作为判定依据。
比色用重铬酸钾液取重铬酸钾,研细后,在120℃干燥至恒重,精密称取0.4000g,置500ml量瓶中,加适量水溶解并稀释至刻度,摇匀,即得。
每1ml溶液中含0.800mg的K2Cr2O7。
比色用硫酸铜液取硫酸铜约32.5g,加适量的盐酸溶液(1→40)使溶解成500ml,精密量取10ml,置碘量瓶中,加水50ml、醋酸4ml与碘化钾2g,用硫代硫酸钠滴定液(0.1mol/L)滴定,至近终点时,加淀粉指示液2ml,继续滴定至蓝色消失。
每1ml的硫代硫酸钠滴定液(0.1mol/L)相当于24.97mg的CuSO4·5H2O。
根据上述测定结果,在剩余的原溶液中加适量的盐酸溶液(1→40),使每1ml溶液中适含62.4mg的CuSO4·5H2O,即得。
比色用氯化钴液取氯化钴约32.5g,加适量的盐酸溶液(1→40)使溶解成500ml,精密量取2ml,置锥形瓶中,加水200ml,摇匀,加氨试液至溶液由浅红色转变至绿色后,加醋酸-醋酸钠缓冲液(pH6.0)10ml,加热至60℃,再加二甲酚橙指示液5滴,用乙二胺四醋酸二钠滴定液(0.05mol/L)滴定至溶液显黄色。
每1ml的乙二胺四醋酸二钠滴定液(0.05mol/L)相当于11.90mg的CoCl2·6H2O。
根据上述测定结果,在剩余的原溶液中加适量的盐酸溶液(1→40),使每1ml溶液中适含59.5mgCoCl2·6H2O,即得。
各种色调标准贮备液的制备按表1量取比色用氯化钴液、比色用重铬酸钾液、比色用硫酸铜液与水,摇匀,即得。
表1各种色调标准贮备液的配制
各种色调色号标准比色液的制备按表2量取各色调标准贮备液与水,摇匀,即得。
加水量/ml
9.5 9.0 8.5 8.0 7.5 7.0 5.5 4.0 2.5 0
第二法
除另有规定外,取各该药品项下规定量的供试品,加水溶解使成10ml , 必要时滤过,滤液照分光光度法于规定波长处测定,吸收度不得超过规定值。
第三法(色差计法)。
本法是通过色差计直接测定溶液的透射三刺激值,对其颜色进行定量表述和分析的方法。
当目视比色法较难判定供试品与标准比色液之间的差异时,应考虑采用本法进行测定与判断。
供试品与标准比色液之间的颜色差异,可以通过分别比较它们与水之间的色差值来得到,也可以通过直接比较它们之间的色差值来得到。
现代颜色视觉理论认为,在人眼视网膜上有三种感色的锥体细胞,分别对红、绿、蓝三种颜色敏感。
颜色视觉过程可分为两个阶段:第一阶段,视网膜上三种独立的锥体感色物质,有选择地吸收光谱不同波长的辐射,同时每一物质又可单独产生白和黑的反应,即在强光作用下产生白的反应,无外界刺激时产生黑的反应;第二阶段,在神经兴奋由锥体感受器向视觉中枢的传导过程中,这三种反应又重新组合,最后形成三对对立性的神经反应,即红或绿、黄或蓝、白或黑的反应。
最终在大脑皮层的视觉中枢产生各种颜色感觉。
自然界中的每种颜色都可以用选定的、能刺激人眼中三种受体细胞的红、绿、蓝三原色,按适当比例混合而成。
由此引入一个新的概念——三刺激值,即在给定的三色系统中与待测色达到色匹配所需要的三个原刺激量,分别以X 、Y 、Z 表示。
通过对众多具有正常色觉的人体(称为标准观察者,即标准眼)进行广泛的颜色比较试验,测定了每一种可见波长(400~760nm)的光引起每种锥体刺激的相对数量的色匹配函数,这些色匹配函数分别用-
x (λ)、-y (λ)、-
z (λ)来表示。
把这些色匹配函数组合起来,描绘成曲线,就叫做CIE 色度标准观察者的光谱三刺激值曲线(见图1)。
图1 CIE 1931色度标准观察者的光谱三刺激值曲线(10º视场) 色匹配函数和三刺激值间的关系以下列方程表示:
X=K∫S(λ)P(λ) -
x (λ)d(λ)
Y=K∫S(λ)P(λ) -
y (λ)d(λ)
Z=K∫S(λ)P(λ) -
z (λ)d(λ)
式中 K为归化系数;
S(λ)为光源的相对光谱功率分布;
P(λ)为物质色的光谱反射比或透射比;
-
x(λ)、-
y(λ)、-z(λ)为标准观察者的色匹配函数;
d(λ)为波长间隔,一般采用10nm或5nm。
当某种颜色的三刺激值确定之后,则可用其计算出该颜色在一个理想的三维颜色空间中的坐标,由此推导出许多组的颜色方程(称为表色系统)来定义这一空间。
如:CIE1931-XYZ 表色系统,CIE1964补充标准色度系统,CIE1976L*a*b*色空间(CIELab均匀色空间),Hunter 表色系统等。
为便于理解和比对,人们通常采用CIELab均匀色空间来表示颜色及色差。
该色空间由直角坐标L*a*b*构成。
在三维色坐标系的任一点都代表一种颜色,其与参比点之间的几何距离代表两种颜色之间的色差(见图2和图3)。
相等的距离代表相同的色差值。
用仪器对供试品溶液与其规定的标准比色液的颜色进行比较时,需比较的参数就是空白对照液的颜色和供试溶液或其标准比色液颜色在均匀色空间中的差值。
图2和图3
在CIELab均匀色空间中,三维色坐标L*、a*、b*与三刺激值X、Y、Z和色差之间的关系如下:明度指数L*=116×(Y/Yn)1/3-16
色品指数a*=500×[(X/Xn)1/3-(Y/Yn)1/3]
色品指数b*=200×[(Y/Yn)1/3-(Z/Zn)1/3]
色差△E*=
以上公式仅适用于X/Xn、Y/Yn、Z/Zn>0.008 856时。
式中 X、Y、Z为待测样品的三刺激值;
Xn、Yn、Zn为完全漫反射体的三刺激值;
△E*为供试品溶液与标准比色液的色差;
△L*为供试品溶液与标准比色液的明度指数之差,其中△L*为正,表示供试品溶液比标准色液颜色亮(鲜艳);
△a*、△b*为供试品溶液色与标准比色液色的色品指数之差,其中△a*、△b*为正,
表示供试品比标准比色液颜色更深(饱和)。
色差计的工作原理简单地说即是模拟人眼的视觉系统,利用仪器内部的模拟积分光学系统,把光谱光度数据的三刺激值进行积分而得到颜色的数学表达式,从而计算出L*、a*、b*值及对比色的色差。
在仪器使用的标准光源与日常观察供试品所使用光源光谱功率分布一致(比如昼光),其光电响应接收条件与标准观察者的色觉特性一致(比如10°视场)的条件下,用仪器方法测定颜色,不但能够精确、定量地测定颜色和色差,而且比目测法更为科学客观,且不随时间、地点、人员变化而发生变化。
1.对仪器的一般要求。
使用的测色仪器一般为光电积分型色差计,照明观察条件为o/d条件或d/o条件,D65光源照明,10°视场,可直接测出三刺激值X、Y、Z,并能直接计算给出L*、a*、b*和△E*及供试品溶液的色调色号。
因溶液的颜色随着被测定溶液的液层厚度而变,所以除另有规定外,测量透色时,应使用1cm厚度液槽。
为保证测量的可靠性,应定期对仪器进行全面的检定。
在每次测量时,要用无彩色物质如水或空气对仪器进行校准,并规定它在所有波长下的透射率均为1.000。
室温时,在D65为光源、10°视场条件下,水或空气的三刺激值分别为:
X=94.81;Y=100.00;Z=107.32。
2.测定法
除另有规定外,用水对仪器进行校准,取按各品种项下规定的方法分别制得的供试品溶液和标准比色液,置仪器上进行测定,供试品溶液与水的色差值△E*应不超过相应色调的标准比色液与水的色差值△E*。
如品种项下规定的色调有两种,且供试品溶液的实际色调介于两种规定色调之间,且难以判断更倾向何种色调时,将测得的供试品溶液与水的色差值(△E*)与两种色调标准比色液与水的色差值的平均值[△E*≤(△E s1*+△E s2*)/2]比较,不得更深。
美国药典:
631 COLOR AND ACHROMICITY
Definition— For the purposes of this chapter, color may be defined as the perception or subjective response by an observer to the objective stimulus of radiant energy in the visible spectrum extending over the range 400 nm to 700 nm in wavelength. Perceived color is a function of three variables: spectral properties of the object, both absorptive and reflective; spectral properties of the source of illumination; and visual characteristics of the observer.
定义:颜色可以被定义为在可见光的光谱范围400nm—700nm波长处,观测到的客观物质的视觉反应,颜色感知有三个变量函数:物质光谱的属性,吸收光和反射照明光源的光谱特性,以及观察者的视觉特性。
Two objects are said to have a color match for a particular source of illumination when an observer cannot detect a color difference. Where a pair of objects exhibit a color match for one source of illumination and not another, they constitute a metameric pair. Color matches of two objects occur for all sources of illumination if the absorption and
reflectance spectra of the two objects are identical.
当试验人员不能发现颜色的差别时可以用特殊照明光源对两种样品进行配色。
一组样品在只有一种照明光且没有其他的光源时进行配色时,它们组成同分异构对。
样品在吸收光和反射光相同的情况下进行配色。
Achromicity or colorlessness is one extreme of any color scale for transmission of light. It implies the complete absence of color, and therefore the visible spectrum of the object lacks absorbances. For practical purposes, the observer in this case perceives little if any absorption taking place in the visible spectrum.
溶液颜色的消色或无色是指在灯光下观察无任何颜色透光,意味着完全没有颜色,因此,试样在可见光谱下没有吸光度。
出于实用的目的,在这种情况下,检验员在可见光谱处几乎没有发现任何吸光度。
Color Attributes—Because the sensation of color has both a subjective and an objective part, color cannot be described solely in spectrophotometric terms. The common attributes of color therefore cannot be given a one-to-one correspondence with spectral terminology.
颜色属性—由于色彩的感知是主观和客观的一部分,颜色不能在光谱光度测量组中单独描述。
因此,颜色的光谱共同属性不能与光谱术语一一对应。
Three attributes are commonly used to identify a color: (1) hue, or the quality by which one color family is distinguished from another, such as red, yellow, blue, green, and intermediate terms; (2) value, or the quality that distinguishes a light color from a dark one; and (3) chroma, or the quality that distinguishes a strong color from a weak one, or the extent to which a color differs from a gray of the same value.
定义颜色常用的三个共同属性:(1)色相,区别于其他颜色的一种色系的特性,例如红色,黄色,蓝色,绿色和中间色;(2)明度,区别于深色的一种淡色的特性;(3)彩度,区别于弱色彩的一种强烈的色彩,或不同于灰色值的一种颜色的延伸。
The three attributes of color may be used to define a three-dimensional color space in which any color is located by its coordinates. The color space chosen is a visually uniform one if the geometric distance between two colors in the color space is directly a measure of the color distance between them. Cylindrical coordinates are often conveniently chosen. Points along the long axis represent value from dark to light or black to white and have indeterminate hue and no chroma. Focusing on a cross-section perpendicular to the value axis, hue is determined by the angle about the long axis and chroma is determined by the distance from the long axis. Red, yellow, green, blue, purple, and intermediate hues are given by different angles. Colors along a radius of a cross-section have the same hue, which become more intense farther out. For example, colorless or achromic water has indeterminate hue, high value, and no chroma. If a colored solute is added, the water takes on a particular hue. As more is added, the color becomes darker, more intense, or deeper; i.e., the chroma generally increases and value decreases. If, however, the solute is a neutral color, i.e., gray, the value decreases, no increase in chroma is observed, and the hue remains indeterminate.
颜色的三个属性被用来定义为颜色在一个三维空间中的坐标。
合理地选择柱面坐标,点沿长轴分别代表值由深到浅或由黑到白,有不确定的色相,无彩度。
围绕垂直横截面的数值轴,色相由长轴的角度决定,彩度是由长轴的距离决定。
红,黄,绿,蓝,紫,中间色有不同的角度。
沿横截面有相同色相的颜色将更强.例如无色水有不确定的色相,高明度,无彩度。
如果加入一种有颜色的溶质,水将呈现一个特殊的色相。
加得愈多,颜色与深,色彩愈强烈或深,即彩度的增加和明度的减少。
如果溶质是中性的,即灰色,彩度不再增加,值减少且色相仍然不确定。
Laboratory spectroscopic measurements can be converted to measurements of the three color attributes. Spectroscopic results for three chosen lights or stimuli are weighted by three distribution functions to yield the tristimulus values, X, Y, Z (see Color—Instrumental Measurement 1061). The distribution functions were determined in color matching experiments with human subjects.
实验室的光谱测量能转换三种颜色属性的测量值。
三种选择光线或刺激的光谱结果由三个分布函数产生的三刺激值,X,Y,Z(见溶液的颜色—仪器测量1061)。
分布函数由人们对样品进行配色试验时决定。
The tristimulus values are not coordinates in a visually uniform color space; however, several transformations have been proposed that are close to being uniform, one of which is given in the chapter cited 1061 Color—Instrumental Measurement. The value is often a function of only the Y value. Obtaining uniformity in the chroma-hue subspace has been less satisfactory. In a practical sense, this means in visual color comparison that if two objects differ significantly in hue, deciding which has a higher chroma becomes difficult. This points out the importance of matching standard to sample color as closely as possible, especially for the attributes of hue and chroma.
三刺激值在可见颜色空间中无坐标,然而已经提出一些转变,见章节颜色1061—仪器测量。
明度通常是Y轴的函数。
很少获得色彩-明度的子空间的一致性。
在实际意义上,这意味着比较在色相上显著不同的两种物质获得高彩度将很困难。
这点指出尽可能的靠近标准样品的属性,特别是色相和彩度属性的重要性。
Color Determination and Standards—The perception of color and color matches is dependent on conditions of viewing and illumination. Determinations should be made using diffuse, uniform illumination under conditions that reduce shadows and nonspectral reflectance to a minimum. The surface of powders should be smoothed with gentle pressure so that a planar surface free from irregularities is presented. Liquids should be compared in matched color-comparison tubes, against a white background. If results are found to vary with illumination, those obtained in natural or artificial daylight are to be considered correct. Instead of visual determination, a suitable instrumental method may be used.
颜色的测定方法和标准—色彩感知和配色依赖于可见光的条件。
应在分散的,均匀分布光线条件下减少阴影和非光谱反射率最低的情况下测定。
粉末的表面应光滑,施以适当的压力使得从分散状压成一个平面。
液体应在白色背景下比较相匹配的试管的液体颜色。
如果发现结果随光线而变化,在自然光线或人工光线下获得的结果被认为是可行的。
Colors of standards should be as close as possible to those of test specimens for quantifying color differences. Standards for opaque materials are available as sets of color chips that are arranged in a visually uniform space.* Standards identified by a letter for matching the colors of fluids can be prepared according to the accompanying table. To prepare the matching fluid required, pipet the prescribed volumes of the colorimetric test solutions [see under Colorimetric Solutions (CS) in the section Reagents, Indicators, and Solutions] and water into one of the matching containers, and mix the solution in the container. Make the comparison as directed in the individual monograph, under the viewing conditions previously described. The matching fluids, or other combinations of the colorimetric solutions, may be used in very low concentrations to measure deviation from achromicity.
标准色应尽可能接近量化试样的颜色,不透明材料的标准色可用来被安排在统一的空间内。
由字母标识的液体色标准可参照下面表格。
对比液配制,用移液管吸取一定的比色液[见比色液(CS)一节中试剂,指示剂,溶液]和水到相应的容器中,混合。
在先前描述的观测条件下直接作出比较。
对比液或其他比色液将被用于消色中的低浓度测量偏差。
欧洲药典:
Degree of coloration of liquids
The examination of the degree of coloration of liquids in the range brown-yellow-red is carried out by one of the 2 methods below, as prescribed in the monograph.
A solution is colourless if it has the appearance of water R or the solvent or is not more intensely coloured than reference solution B9.
按本药典规定,用下面两种方法之一可以检出溶液在棕色-黄色-红色范围内的颜色。
如果溶液A的外观与水或所用溶剂相同,或者颜色浅于标准比色液B9,则可判定溶液A为无色。
METHOD I方法I
Using identical tubes of colourless, transparent, neutral glass of 12 mm external diameter, compare 2.0 mL of the liquid to be examined with 2.0 mL of water R or of the solvent or of the reference solution (see Tables of reference solutions) prescribed in the monograph. Compare the colours in diffused daylight, viewing horizontally against a white background. 用外径为12mm的无色、透明中性玻璃管取2ml的供试溶液,与相同玻璃管中的2ml的水,或2ml本文所规定的标准比色液(见标准比色液表)进行比较。
在散射自然光,白色的背景下,水平观察比较颜色。
METHOD II 方法Ⅱ
Using identical tubes of colourless, transparent, neutral glass with a flat base and an internal diameter of 15 mm to 25 mm, compare the liquid to be examined with water R or the solvent or the reference solution (see Tables of reference solutions) prescribed in the monograph, the depth of the layer being 40 mm. Compare the colours in diffused daylight, viewing vertically against a white background.
用同样平底、内径为15~25mm的无色透明中性玻璃管,液位的深度为40mm,将供试溶液与水或溶剂或本文中规定的标准比色液(见标准比色液表)对比。
在散射自然光,白色的背景下,垂直地观察比较颜色。
REAGENTS
Primary solutions 贮备液
Yellow solution. Dissolve 46 g of ferric chloride R in about 900 mL of a mixture of 25 mL of hydrochloric acid R and 975 mL of water R and dilute to 1000.0 mL with the same mixture. 黄色液称取46克氯化铁,加大约900ml盐酸溶液(25ml浓盐酸和975ml水混和)溶解,继续添加,并定容1000.0ml。
Titrate and adjust the solution to contain 45.0 mg of FeCl3,6H2O per millilitre by adding the same acidic mixture. Protect the solution from light.
滴定并以上述盐酸溶液调整,使黄色液每毫升含45.0mg FeCl3﹒6H2O。
避光保存。
Titration. Place in a 250 mL conical flask fitted with a ground-glass stopper, 10.0 mL of the solution, 15 mL of water R, 5 mL of hydrochloric acid R and 4 g of potassium iodide R, close the flask, allow to stand in the dark for 15 min and add 100 mL of water R. Titrate the liberated iodine with 0.1 M sodium thiosulfate, using 0.5 mL of starch solution R, added towards the end of the titration, as indicator.
滴定在一个配有磨口塞的250ml锥形瓶内,加入10.0ml黄色液,15ml 水,5ml浓盐酸和4g碘化钾,塞上瓶塞,在暗处放置15分钟,再加100ml 水。
用0.1M的硫代硫酸钠标准溶液滴定游离的碘,在滴定接近终点时加0.5ml淀粉试液作指示剂。
1 mL of 0.1 M sodium thiosulfate is equivalent to 27.03 mg of FeCl3,6H2O.
1ml 0.1M的硫代硫酸钠标准溶液相当于27.03mg FeCl3﹒6H2O。
Red solution. Dissolve 60 g of cobalt chloride R in about 900 mL of a mixture of 25 mL of hydrochloric acid R and 975 mL of water R and dilute to 1000.0 mL with the same mixture. 红色液称取60克氯化钴,加大约900ml盐酸溶液(25ml浓盐酸和975ml水混和)溶解,继续添加,并定容1000.0ml。
Titrate and adjust the solution to contain 59.5 mg of CoCl2,6H2O per millilitre by adding the same acidic mixture.
滴定并以上述盐酸溶液调整,使红色液每毫升含59.5mg CoCl2﹒6H2O。
Titration. Place in a 250 mL conical flask fitted with a ground-glass stopper, 5.0 mL of the solution, 5 mL of dilute hydrogen peroxide solution R and 10 mL of a 300 g/L solution of sodium hydroxide R. Boil gently for 10 min, allow to cool and add 60 mL of dilute sulfuric acid R and 2 g of potassium iodide R. Close the flask and dissolve the precipitate by shaking gently. Titrate the liberated iodine with 0.1 M sodium thiosulfate, using 0.5 mL of starch solution R, added towards the end of the titration, as indicator. The end-point is reached when the solution turns pink.
滴定在一个配有磨口塞的250ml锥形瓶内,加入5.0ml红色液,5ml稀过氧化氢溶液和10ml 300g/l的氢氧化钠溶液,缓慢煮沸10分钟,冷却后,加60ml稀硫酸和2g碘化钾,塞上瓶塞,缓慢摇动锥形瓶,使沉淀溶解完全。
用0.1M的硫代硫酸钠标准溶液滴定游离的碘,在滴定接近终点时加入0.5ml淀粉试液作为指示剂。
溶液变成粉红色时到达滴定终点。
1 mL of 0.1 M sodium thiosulfate is equivalent to 23.79 mg of CoCl2,6H2O.
1ml0.1M的硫代硫酸钠标准溶液相当于23.79mg CoCl2﹒6H2O。
Blue primary solution. Dissolve 63 g of copper sulfate R in about 900 mL of a mixture of 25 mL of hydrochloric acid R and 975 mL of water R and dilute to 1000.0 mL with the same mixture. Titrate and adjust the solution to contain 62.4 mg of CuSO4,5H2O per millilitre by adding the same acidic mixture.
蓝色液称取63克硫酸铜加大约900ml盐酸溶液(25ml浓盐酸和975ml水混和)溶解,继续添加,并定容1000.0ml。
滴定并以上述盐酸溶液调整,使蓝色液每毫升含62.4mg CuSO4﹒5H2O。
Titration. Place in a 250 mL conical flask fitted with a ground-glass stopper, 10.0 mL of the solution, 50 mL of water R, 12 mL of dilute acetic acid R and 3 g of potassium iodide R. Titrate the liberated iodine with 0.1 M sodium thiosulfate, using 0.5 mL of starch solution R, added towards the end of the titration, as indicator. The end-point is reached when the solution shows a slight pale brown colour.
滴定在一个配有磨口塞的250ml锥形瓶内,加入10.0ml蓝色液,50ml水,12ml稀醋酸和3g碘化钾。
用0.1M的硫代硫酸钠标准溶液滴定游离碘,在滴定接近终点时加入0.5ml 淀粉试液作为指示剂。
当溶液变为轻微的淡褐色时到达滴定终点。
1 mL of 0.1 M sodium thiosulfate is equivalent to 24.97 mg of CuSO4,5H2O.
1ml0.1M的硫代硫酸钠标准溶液相当于24.97mg CuSO4﹒5H2O。
Standard solutions颜色标准溶液
Using the 3 primary solutions, prepare the 5 standard solutions as follows:
用3种贮备液制备5种颜色标准液。
如表2-1
Table 2.2.2.-1
Reference solutions for Methods I and II
Using the 5 standard solutions, prepare the following reference solutions.
Storage
For Method I, the reference solutions may be stored in sealed tubes of colourless, transparent, neutral glass of 12 mm external diameter, protected from light.
For Method II, prepare the reference solutions immediately before use from the standard solutions.
储存
对于方法I,标准比色液在外径为12mm的无色透明中性封口的玻璃管中储存,避光。
对于方法Ⅱ,使用前直接从颜色标准液制备标准比色液。