【精校】2020年河南省许昌市中考一模试卷数学
许昌市数学中考一模试卷
许昌市数学中考一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列运算正确的是()A .B .C .D .2. (2分)已知x=1是方程的一个根,则方程的另一个根是()A . 1B . 2C . -1D . -23. (2分)已知在⊿ABC中,∠A=48°,∠C=84°且AB=3cm,AC=4cm,则三角形的周长是()A . 7cmB . 10cmC . 11cmD . 10cm或11cm4. (2分)在0,-2,1,6这四个数中,最小的数是()A . 6B . 1C . -2D . 05. (2分) (2020八下·重庆期中) 在四边形中,从以下四个条件中:① ② ③④ ,其中任选两个能判定四边形ABCD为平行四边形的概率为()A .B .C .D .6. (2分)(2019·海港模拟) 如图,将矩形纸片ABCD按如图所示的方式折叠,恰好得到菱形AECF.若AD=,则菱形AECF的面积为()A .B . 2C . 4D . 87. (2分)(2017·平邑模拟) 如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于()A . 60°B . 50°C . 40°D . 30°8. (2分)(2017·潍坊模拟) 已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积是()A . 40πB . 24πC . 20 πD . 12π9. (2分)(2017·大连模拟) 一圆锥的底面直径为4cm,高为 cm,则此圆锥的侧面积为()A . 20πcm2B . 10πcm2C . 4 πcm2D . 4 πcm210. (2分)如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE-ED-DC 运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ 的面积为ycm2 .已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分).则下列结论错误的是()A . AD=BE=5㎝B . cos∠ABE=C . 当0<t≤5时,y=t2D . 当t=秒时,△ABE∽△QBP二、填空题 (共6题;共6分)11. (1分) (2016八下·黄冈期中) 若在实数范围内有意义,则x的取值范围是________.12. (1分)(2017·达州) 因式分解:2a3﹣8ab2=________.13. (1分)(2019·郴州) 某校举行演讲比赛,七个评委对小明的打分如下:9,8,7,6,9,9,7,这组数据的中位数是________.14. (1分)从﹣2,﹣1,0,1,2这5个数中,随机抽取一个数记为a,则使关于x的不等式组有解,且使关于x的一元一次方程+1=的解为负数的概率为________ .15. (1分) (2018九上·天台月考) 如图,直线(k≠0)与抛物(n≠0) 分别交于A(-2,m),B(4,-3)两点,那么当时,x的取值范围是________.16. (1分) (2019八下·端州月考) 一艘帆船由于风向的原因先向正东方向航行了16km,然后向正北方向航行了12km,这时它离出发点有________km.三、解答题 (共9题;共86分)17. (10分)(1)解方程组(2)解不等式组18. (5分)(2018·益阳模拟) 如图,在□ABCD中,AE⊥BD于E,CF⊥BD于F,连接AF,CE.求证:AF=CE.19. (5分)先化简,再求值:分式 ,其中 .20. (5分) (2019八上·同安期中) 如图,△ABC中,∠A>∠B .请用直尺和圆规在∠A的内部作射线AM ,使∠BAM=∠B ,射线AM交BC于点M(保留作图痕迹,不写作法)21. (15分)(2017·庆云模拟) 李老师为了了解所教班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)李老师一共调查了多少名同学?(2) C类女生有3名,D类男生有1名,将图1条形统计图补充完整;(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.22. (5分)某工人师傅先后两次加工零件各1500个,当第二次加工时,他革新了工具,改进了操作方法,结果比第一次少用了18个小时.已知他第二次加工效率是第一次的2.5倍,求他第二次加工时每小时加工多少零件?23. (15分)(2017·开江模拟) 如图,在平面直角坐标系中,抛物线y=ax2+ x+c(a≠0)与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C,点A的坐标为(4,0),抛物线的对称轴是直线x= .(1)求抛物线的解析式;(2) M为第一象限内的抛物线上的一个点,过点M作MG⊥x轴于点G,交AC于点H,当线段CM=CH时,求点M的坐标;(3)在(2)的条件下,将线段MG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段MG与抛物线交于点N,在线段GA上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请求出点P的坐标;如果不存在,请说明理由.24. (11分)(2017·扬州) 如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以 PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE=________;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.25. (15分)如图(1),抛物线与x轴交于A(−1,0)、B(t,0)(t >0)两点,与y轴交于点C(0,−3),若抛物线的对称轴为直线x=1,(1)求抛物线的函数解析式;(2)若点D是抛物线BC段上的动点,且点D到直线BC的距离为,求点D的坐标(3)如图(2),若直线y=mx+n经过点A,交y轴于点E(0,−1),点P是直线AE下方抛物线上一点,过点P 作x轴的垂线交直线AE于点M,点N在线段AM延长线上,且PM=PN,是否存在点P,使△PMN的周长有最大值?若存在,求出点P的坐标及△PMN的周长的最大值;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共86分)17-1、17-2、18-1、19-1、20-1、21-1、21-2、21-3、22-1、23-1、24-1、24-2、24-3、25-1、25-2、25-3、。
2020年河南省许昌市实验学校中考模拟数学试题一
甲种客车
已和客车
载客量(人/量)
租金(元/辆)
10.C
【解析】
【分析】
依题意,求出每段的函数解析式,把y=1代入函数关系式为相关的函数的解析式,求出时间即可.
【详解】
当点 与点 重合时, ,
∴正方形 的面积为 .
∴正方形的边长为 ,
∴ .
当 时, ,此时 .
当 时, ,此时 ,
当 时, ,此时 ,
当 时, ,解得 (负值已舍);
或 ,解得 或 (不合题意,舍去).
21.如图,一次函数 与反比例函数 的图象交于 , 两点,与 轴, 轴分别交于 , 两点.
(1)求一次函数的解析式;
(2)根据图象直接写出 ,时 的取值范围;
(3)求 的面积.
22.如图①,正方形 中,点 是对角线 的中点,点 是线段 上(不与点 , 重合)的一个动点,过点 作 且 交边 于点 .
(1)求证: .
(3) 是第一象限对称轴右侧抛物线上的一点,连接 抛物线的对称轴上是否存在点 .使得 与 相似,且 为直角,若存在,请直接写出点 的坐标,若不存在,请说明理由.
参考答案
1.B
【解析】
【分析】
根据相反数的定义即可求解.
【详解】
根据“只有符号不同的两个数叫做互为相反数”,知 的相反数是 ,
故选B.
【点睛】
6.D
【解析】
【分析】
河南省许昌市2020年中考数学一模试卷(II)卷
河南省许昌市2020年中考数学一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共9题;共18分)1. (2分) (2019七上·昌平期中) ﹣0.5的倒数是()A . ﹣2B . 0.5C . 2D . ﹣0.52. (2分) (2019九下·江苏月考) 下列运算正确的是()A . (-2x2)3=-6x6B . (y+x)(-y+x)=y2-x2C . 4x+2y=6xyD . x4÷x2=x23. (2分)下列说法中,正确的是()。
A . 在成中心对称的图形中,连结对称点的线段不一定都经过对称中心B . 在成中心对称的图形中,连结对称点的线段都被对称中心平分C . 若两个图形的对应点连成的线段都经过某一点,那么这两个图形一定关于这一点成中心对称D . 以上说法都正确4. (2分) (2017九上·兰山期末) 已知反比例函数的图象经过点P(a,﹣a),则这个函数的图象位于()A . 第一、三象限B . 第二、三象限C . 第二、四象限D . 第三、四象限5. (2分) (2017九上·沂源期末) 从3,﹣1,,1,﹣3这5个数中,随机抽取一个数记为a,若数a使关于x的不等式组无解,且使关于x的分式方程﹣ =﹣1有整数解,那么这5个数中所有满足条件的a的值之积是()A .B . ﹣2C . ﹣3D . ﹣6. (2分)(2018·潍坊) 如图,菱形的边长是4厘米, ,动点以1厘米/秒的速度自点出发沿方向运动至点停止,动点以2厘米/秒的速度自点出发沿折线运动至点停止若点同时出发运动了秒,记的面积为 ,下面图象中能表示与之间的函数关系的是()A .B .C .D .7. (2分)如图点P为弦AB上一点,连接OP,过P作PC⊥OP,PC交⊙O于点C,若AP=4,PB=2,则PC的长为()A .B .C .D .8. (2分)直角三角形两直角边和为7,面积为6,则斜边长为()A .B .C .D .9. (2分)已知梯形ABCD的四个顶点的坐标分別为A(-1,0),B(5,0),C(2,2),D(0,2),直线y=kx+2将梯形分成面积相等的两部分,则k的值为()A . -B . -C . -D . -二、填空题 (共10题;共10分)10. (1分)(2018·建邺模拟) 辽宁号是中国人民解放军海军第一艘可以搭载固定翼飞机的航空母舰,其满载排水量为67500吨.用科学记数法表示67500是________.11. (1分) (2017八下·简阳期中) 已知等腰三角形的周长为18,设底边长为x,腰长为y,则y与x之间的函数关系式为:________ (要求写出自变量x的取值范围).12. (1分)(2017·遵义) 计算: =________.13. (1分)(2016·南平模拟) 分解因式:3a2﹣6a+3=________.14. (1分) (2016九上·仙游期末) 如图,已知A为⊙O外一点,连结OA交⊙O于P,AB为⊙O的切线,B 为切点,AP=5㎝,AB=㎝,则劣弧与AB,AP所围成的阴影的面积是________.15. (1分)(2012·锦州) 如图,∠PAC=30°,在射线AC上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O 交射线AP于E、F两点,则线段EF的长是________cm.16. (1分) (2018九上·宝应月考) 抛物线的顶点坐标是________.17. (1分) (2016八下·青海期末) 如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是________.18. (1分)(2018·黄石) 在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为________19. (1分) (2019八上·瑞安期中) 如图,分别以Rt△ABC为边长向外作等边三角形,若AC=2,∠ACB=90°,∠ABC=30°,则三个等边三角形的面积之和是________.三、解答题 (共7题;共71分)20. (5分)(2016·湘西) 计算:(﹣3)0﹣2sin30°﹣.21. (10分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C (﹣1,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留π).22. (7分)(2017·玄武模拟) 某公司在某市五个区投放共享单车供市民使用,投放量的分布及投放后的使用情况统计如下.(1)该公司在全市一共投放了________万辆共享单车;(2)在扇形统计图中,B区所对应扇形的圆心角为________°;(3)该公司在全市投放的共享单车的使用量占投放量的85%,请计算C区共享单车的使用量并补全条形统计图.23. (15分) (2017八下·乌海期末) 如图,在等边三角形ABC中,BC=6cm. 射线AG//BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s) ;(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)求当t为何值时,四边形ACFE是菱形;(3)是否存在某一时刻t,使以A、F、C、E为顶点的四边形内角出现直角?若存在,求出t的值;若不存在,请说明理由.24. (10分)(2017·邵阳) 某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满,已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.25. (9分)(2017·启东模拟) 在平面直角坐标系xOy中,⊙C的半径为r(r>1),P是圆内与圆心C不重合的点,⊙C的“完美点”的定义如下:若直线CP与⊙C交于点A,B,满足|PA﹣PB|=2,则称点P为⊙C的“完美点”,如图为⊙C及其“完美点”P的示意图.(1)当⊙O的半径为2时,①点M(,0)________⊙O的“完美点”,点N(0,1)________⊙O的“完美点”,点T(﹣,﹣)________⊙O的“完美点”(填“是”或者“不是”);②若⊙O的“完美点”P在直线y= x上,求PO的长及点P的坐标;________(2)⊙C的圆心在直线y= x+1上,半径为2,若y轴上存在⊙C的“完美点”,求圆心C的纵坐标t的取值范围.26. (15分)(2017·娄底模拟) 如图1(注:与图2完全相同),二次函数y= x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.(1)求该二次函数的解析式;(2)设该抛物线的顶点为D,求△ACD的面积(请在图1中探索);(3)若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动,当P,Q运动到t秒时,△APQ沿PQ所在的直线翻折,点A恰好落在抛物线上E点处,请直接判定此时四边形APEQ的形状,并求出E点坐标(请在图2中探索).参考答案一、选择题 (共9题;共18分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、二、填空题 (共10题;共10分)10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、三、解答题 (共7题;共71分)20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。
河南省许昌市2020届九年级中招第一次模拟考试数学试题
2.新冠肺炎疫情期间,粮食安全问题受到许多国家的重视据新华社报道,我国粮食总产量
连续 5 年稳定在 6500 亿公斤以上,粮食储备充足,口粮绝对安全,将数据“6500 亿”
用科学记数法表示为
A. 65 1011
B. 6.51011
C. 65 1012
D. 6.51012
3.如图,将一块三角尺的直角顶点放在直尺的一边上,当 1= 35 时,∠2 的度数为
A. 9 3
B.12
C. 9 3 2
D.6
10.如图,在正方形 ABCD 中,顶点 A(−1, 0) ,C(1, 2) ,点 F 是 BC 的中点,CD 与 y 轴交于
点 E , AF 与 BE 交于点 G .将正方形 ABCD 绕点 O 顺时针旋转,每次旋转 90 ,则第 99 次旋转结束时,点 G 的坐标为
A.
3 5
,
4 5
B.
−
4 5
,
3 5
二、填空题(每小题 3 分,共 15 分)
C.
−
3 5
,
4 5
D.
4 5
,
−
3 5
11.计算: ( + 1)0 +
3
−
2
−
1 2
ห้องสมุดไป่ตู้
−2
=
________.
12 方程 (x + 2)(x − 3) = x + 2 的解是________.
13.在机器人社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任 选两名参加机器人大赛恰好选中甲、乙两位同学的概率为________.
A.0, −4
B.0, −3
精品解析:2020年河南省许昌市中考数学一模试题(解析版)
2020年中考数学一模试卷一、选择题(共10小题) 1. 16的相反数是 ( ) A. 6B. -6C. 16D. 16- 【答案】D【解析】【分析】 根据相反数的定义解答即可. 【详解】根据相反数的定义有:16的相反数是16-. 故选D .【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2. 新冠肺炎疫情期间,粮食安全问题受到许多国家的重视.据新华社报道,我国粮食总产量连续5年稳定在6500亿公斤以上,粮食储备充足,口粮绝对安全.将数据“6500亿”用科学记数法表示为( )A. 65×1011 B. 6.5×1011 C. 65×1012 D. 6.5×1012 【答案】B【解析】【分析】科学记数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以 6.5a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数。
本题小数点往左移动到4的后面,所以11.n =【详解】解:6500亿=6500×108=6.5×1011.故选:B .【点睛】本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好,a n 的值,同时掌握小数点移动对一个数的影响.3. 如图,将一块三角尺直角顶点放在直尺的一边上,当∠1=35°时,∠2的度数为()A. 35°B. 45°C. 55°D. 65°【答案】C【解析】【分析】 先根据平行线的性质得出3135∠=∠=︒,再根据2390∠+∠=︒即可求解. 【详解】//DE FG ,3135∴∠=∠=︒ .90ACB ∠=︒ ,2318090ACB ∴∠+∠=︒-∠=︒ ,290355∴∠=︒-∠=︒ .故选:C .【点睛】本题主要考查平行线的性质和平角的定义,掌握平行线的性质是解题的关键.4. 下面计算正确的是( )A. 3a ﹣2a =1B. 2a 2+4a 2=6a 4C. (x 3)2=x 5D. x 8÷x 2=x 6【答案】D【解析】【分析】根据各个选项中的式子可以计算出正确的结果,本题得以解决.【详解】解:∵3a ﹣2a =a ,故选项A 错误;∵2a2+4a2=6a2,故选项B错误;∵(x3)2=x6,故选项C错误;∵x8÷x2=x6,故选项D正确;故选D.【点睛】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.5. 桌上摆放着一个由相同正方体组成的组合体,其俯视图如图所示,图中数字为该位置小正方体的个数,则这个组合体的左视图为()A. B.C. D.【答案】D【解析】【分析】根据从左边看到的图形是左视图解答即可.【详解】由俯视图可知,该组合体的左视图有3列,其中中间有3层,两边有2层,故选D.【点睛】本题考查了简单组合体的三视图,从左边看到的图形是左视图.6. 不等式组322113x xxx<+⎧⎪+⎨-≤⎪⎩的解集在数轴上表示正确的是()A. B.C. D.【答案】A【解析】【分析】先分别求出各不等式的解集,再求其公共解集即可.【详解】解不等式3x <2x +2,得:x <2, 解不等式113x x -≤﹣,得:x ≥﹣1, 则不等式组的解集为﹣1≤x <2,故选A .【点睛】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.求不等式组的解集应遵循“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.7. 九年级一班同学根据兴趣分成 A 、B 、C 、D 、E 五个小组,把各小组 人数分布绘制成如图所示的不完整统计图.则 D 小组的人数是( )A. 10 人B. l1 人C. 12 人D. 15 人【答案】C【解析】【分析】 从条形统计图可看出 A 的具体人数,从扇形图找到所占的百分比,可求出总人数,然后结合 D 所占的百分比求得 D 小组的人数.【详解】总人数=510%=50(人), D 小组的人数=50×86.4360=12(人)), 故选C .【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体,读懂统计图,从不同的统计图中找到必要的信息进行解题是关键.8. 在二次函数y =x 2-2x -3中,当03x ≤≤时,y 的最大值和最小值分别是( )A. 0,-4B. 0,-3C. -3,-4D. 0,0 【答案】A【解析】【分析】首先求得抛物线的对称轴,抛物线开口向上,在顶点处取得最小值,在距对称轴最远处取得最大值.【详解】解:∵()222314y x x x =--=--,∴抛物线的对称轴是1x =,则当1x =时,1234y =--=-,是最小值;当3x =时,9630y =--=是最大值.故选:A .【点睛】本题考查二次函数的图象和性质,正确理解取得最大值和最小值的条件是关键.9. 如图,在平行四边形ABCD 中,以点A 为圆心,AB 长为半径画弧交AD 于点F ,再分别以点B 、F 为圆心,大于12BF 的长为半径画弧,两弧交于点P ;连接AP 并延长交BC 于点E ,连接EF .若四边形ABEF 的周长为12,∠C =60°,则四边形ABEF 的面积是( )A. 3B. 12 93 D. 6【答案】C【解析】【分析】根据题意可知AE 是∠BAF 的角平分线,根据平分线性质和AF=AB ,可证明四边形ABEF 是菱形,菱形的对角线相互垂直平分,再由∠C=60︒,可得△ABF 为正三角形,再由30︒所对直角边是斜边一半,可以算出AG 的长,四边形ABEF 面积即可算出.【详解】由作法得AE 平分∠BAD ,AB =AF ,则∠1=∠2,∵四边形ABCD 为平行四边形,∴BE ∥AF ,∠BAF =∠C =60°,∴∠2=∠BEA ,∴∠1=∠BEA =30°,∴BA =BE ,∴AF =BE ,∴四边形AFEB 为平行四边形,△ABF 是等边三角形,而AB =AF ,∴四边形ABEF 是菱形;∴BF ⊥AE ,AG =EG ,∵四边形ABEF 的周长为12,∴AF =BF =AB =3,在Rt △ABG 中,∠1=30°,∴BG =12AB =1.5,AG BG ,∴AE =2AG =∴菱形ABEF 的面积=12BF ×AE =12×3×; 故选:C .【点睛】本题考查了角平分线、平行线、平行四边形、菱形、等边三角形等的判定和性质,熟练掌握相关知识点是解题关键.10. 如图,在正方形ABCD 中,顶点A (﹣1,0),C (1,2),点F 是BC 的中点,CD 与y 轴交于点E ,AF 与BE 交于点G .将正方形ABCD 绕点O 顺时针旋转,每次旋转90°,则第99次旋转结束时,点G 的坐标为( )A. (35,45) B. (﹣45,35) C. (﹣35,45) D. (45,﹣35)【答案】B【解析】【分析】根据正方形的性质得到AB=BC=CD=2,∠C=∠ABF=90°,根据全等三角形的性质得到∠BAF=∠CBE,根据余角的性质得到∠BGF=90°,过G作GH⊥AB于H,根据相似三角形的性质得到BH=452=25,求得OH=35,根据勾股定理得到HG22OG OH-45,求得G(35,45),找出规律即可得到结论.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=2,∠C=∠ABF=90°,∵点F是BC的中点,CD与y轴交于点E,∴CE=BF=1,∴△ABF≌△BCE(SAS),∴∠BAF=∠CBE,∵∠BAF+∠BF A=90°,∴∠FBG+∠BFG=90°,∴∠BGF=90°,∴BE⊥AF,∵AF22AB BF+2221+5∴BG=AB BFAF⋅25,过G作GH⊥AB于H,∴∠BHG=∠AGB=90°,∵∠HBG=∠ABG,∴△ABG∽△GBH,∴BG BH AB BG=,∴BG2=BH•AB,∴BH=452=25,∴OH=35,∵OG=12AB=1,∴HG=22OG OH-=45,∴G(35,45),∵将正方形ABCD绕点O顺时针每次旋转90°,∴第一次旋转90°后对应的G点的坐标为(45,﹣35),第二次旋转90°后对应的G点的坐标为(﹣35,﹣45),第三次旋转90°后对应的G点的坐标为(﹣45,35),第四次旋转90°后对应的G点的坐标为(35,45),…,∵99=4×24+3,∴每4次一个循环,第99次旋转结束时,相当于正方形ABCD绕点O顺时针旋转3次,∴第99次旋转结束时,点G的坐标为(﹣45,35).故选:B.【点睛】本题考查了正方形的性质,坐标与图形变换−旋转,相似三角形的判定和性质,勾股定理,正确的理解题意是解题的关键.二、填空题(每小题3分,共15分)11.计算:201(1)|2|2π-⎛⎫++-= ⎪⎝⎭_____.【答案】1--【解析】【分析】先计算0次幂,绝对值和负指数幂,再算加减.【详解】201(1)|2|2π-⎛⎫++- ⎪⎝⎭124=+1=-故答案为1--【点睛】考核知识点:实数的混合运算.理解0次幂,绝对值和负指数幂的意义是关键.12. 方程(2)(3)2x x x +-=+的解是___________________. 【答案】12x =-, 24x =【解析】【分析】 利用因式分解法解一元二次方程即可得.【详解】原式可化为(2)(3)(2)0x x x +--+=,提取公因式得(2)(4)0x x +-=,解得12x =-,24x =,故答案为:12x =-,24x =.【点睛】本题考查了解一元二次方程,主要解法包括:直接开平方法、配方法、公式法、因式分解法、换元法等,熟练掌握各解法是解题关键.13. 在机器人社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加机器人大赛,恰好选中甲、乙两位同学的概率为_____. 【答案】16. 【解析】 【分析】根据题意绘制树状图,根据树状图可得出结果.【详解】画树状图得:∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P (选中甲、乙)=212=16. 故答案为:16. 【点睛】本题考查求解概率,初中阶段,求解概率常用的方法有:树状图法、列表法和穷举法三种.14. 如图,在扇形OAB 中,∠AOB =90°,C 是OA 的中点,D 是AB 的中点,连接CD 、CB .若OA =2,则阴影部分的面积为_____.(结果保留π)【答案】2 +22﹣1. 【解析】【分析】阴影部分面积=扇形DOB 的面积+△CDO 的面积-△BCO 的面积可得.【详解】连接OD ,过D 作DH ⊥OA 于H ,∵∠AOB =90°,D 是AB 的中点, ∴∠AOD =∠BOD =45°, ∵OD =OA =2, ∴DH =22OC =2, ∵C 是OA 的中点, ∴OC =1,∴阴影部分的面积=S 扇形DOB +S △CDO ﹣S △BCO =2452360+122⨯×11122-⨯⨯=2π+22﹣1, 故答案为:2π+22﹣1. 【点睛】本题考查求解不规则图形的面积,解题关键是通过转化或者割补,转化为规则图形进行求解. 15. 如图,在△ABC 中,AB =AC =3,∠B =30°,D 是BC 上一点,连接AD ,把△ABD 沿直线AD 折叠,点B 落在B ′处,连接B 'C ,若△AB 'C 是直角三角形,则BD 的长为_____.【答案】3233-【解析】 【分析】存在2种情况,一种是点B ′在直线BC 的下方∠CAB ′=90°,另一种是点B ′在直线BC 的上方∠CAB ′=90°,分别作垂线构造直角三角形,可求得.【详解】如图1中,当点B ′在直线BC 的下方∠CAB ′=90°时,作AF ⊥BC 于F .∵AB=AC3∴∠B=∠ACB=30°,∴∠BAC=120°,∵∠CAB′=90°,∴∠BAB′=30°,∴∠DAB=∠DAB′=15°,∴∠ADC=∠B+∠DAB=45°,∵AF⊥DF,∴AD=DF=AB•sin30°=32,BF3=32,∴BD=BF﹣DF 33 -.如图2中,当点B′在直线BC的上方∠CAB′=90°时,可得∠ADB=45°,AF=DF 3,BD=BF+FD=33 +,综上所述,满足条件的BD 33± 3+333-【点睛】本题考查折叠问题,注意题干未能唯一确定图形形状,故存在多解的情况.三、解答题(本大题8个小题,共75分)16. 先化简,再求值:22222212x y x xy x xy y x y xy -⋅÷-+-,其中x 、y 满足yx=2. 【答案】1+yx,3. 【解析】 【分析】先将分式进行适当的因式分解,化简变形为字母仅含有yx的形式,然后代值计算可得. 【详解】22222212x y xxy x xy y x y xy -⋅÷-+- =2()()(1())x y x y x y xy x y xy x---⋅⋅+=+x y x =1+y x当yx=2时,原式=1+2=3.【点睛】本题考查分式的化简与求值,注意题干告知的不是x、y的值,而是yx的值,故我们应将分式化简为字母仅含有yx的式子的形式.17. 为普及防治新型冠状病毒感染的科学知识和有效方法,不断增强同学们的自我保护意识,学校举办了新型冠状病毒疫情防控网络知识竞答活动,试卷题目共10题,每题10分.现分别从七年级的三个班中各随机取10名同学的成绩(单位:分),收集数据如表:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:分析数据:根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让同学们重视疫情防控知识的学习,学校将给竞答成绩满分的同学颁发奖状,该校七年级新生共600人,试估计需要准备多少张奖状?【答案】(1)a=4,b=83,c=85,d=90;(2)2班成绩比较好;理由见解析;(3)估计需要准备80张奖状.【解析】【分析】(1)用2班参加比赛的人数-得分不为90的人数,得到a的值;分别求出3班平均数、2班中位数和2班众数,得到b、c、d的值;(2)从平均数、中位数和众数三个方面综合评判;(3)用总人数×抽样满分的比例求得.【详解】(1)a=10-1-1-3-1=4,b=6070804902100210++⨯+⨯+⨯=83,2班抽样人数为10人,最中间2个数据为第5和第6人的成绩,分别为:80、90∴c=80902+=85,2班考90分的人数为4人,人数最多∴d=90;(2)从平均数上看三个班都一样;从中位数看,1班和3班一样是80,2班最高是85;从众数上看,1班和3班都是80,2班是90;综上所述,2班成绩比较好;(3)600×430=80(张),答:估计需要准备80张奖状.【点睛】本题考查调查与统计,注意在第(1)问中求解中位数时,因为是偶数组数据,故中位数应为最中间2组数据的平均数.18. 如图,AB是半圆O的直径,C是半圆O上一点(不与点A、B重合),D是AC的中点,DE⊥AB于点E,过点C作半圆O的切线,交ED的延长线于点F.(1)求证:∠FCD=∠ADE;(2)填空:①当∠FCD的度数为时,四边形OADC是菱形;②若AB=22,当CF∥AB时,DF的长为.【答案】(1)见解析;(2)①30°;②2﹣1.【解析】【分析】(1)如下图,先推导出∠OAD=∠OCD,然后再利用CF⊥OC和DE⊥AB进行角度转化,推导出∠FCD =∠ADE;(2)①当∠FCD=30°时,可得到△OAD是等边三角形,然后再推导出△COD也是等边三角形,从而证菱形;②如下图,先证△ADE≌△DCF,得出AE=DF,DE=CF,推导出△ODE是等腰直角三角形,从而求出DF的长.【详解】(1)证明:连接OC、AC.如图1所示:∵D是AC的中点,∴DA=DC,∴DA=DC,∴∠DAC=∠DCA.∵OA=OC,∴∠OAC=∠OCA.∴∠DAC+∠OAC=∠DCA+∠OCA,即∠OAD=∠OCD.∵CF是半圆O的切线,∴CF⊥OC,∴∠FCD+∠OCD=90°,∵DE⊥AB,∴∠ADE+∠OAD=90°,∴∠FCD=∠ADE.(2)解:①当∠FCD的度数为30°时,四边形OADC是菱形;理由如下:连接OD,如图2所示:∵∠FCD=30°,∴∠ADE=30°,∵DE⊥AB,∴∠OAD=60°,∵OA=OD,∴△OAD是等边三角形,∴AD=OA,∠AOD=60°,∵D是AC的中点,∴DA=DC,∴∠AOD=∠COD=60°,∵OC=OD,∴△COD等边三角形,∴CD=OD=OC,∴OA=AD=CD=OC,∴四边形OADC是菱形;故答案为:30°;②连接OD,如图3所示:∵AB=2∴OA=OD2,∵CF∥AB,DE⊥AB,∴CF⊥EF,∴∠CFD=90°=∠DEA,在△ADE和△DCF中,ADE FCDDEA CFDDA CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△DCF(AAS),∴AE=DF,DE=CF,∵CF半圆O的切线,∴CF⊥OC,∴四边形OCFE是矩形,∴CF=OE,∴DE=OE,∴△ODE是等腰直角三角形,∴OE=22OD=1,∴DF=AE=OA﹣OE2﹣1;21.【点睛】本题考查利用圆的性质进行推导求解,解题关键是通过D是AC的中点,推导出∠AOD=∠COD.19. 数学兴趣小组想测量河对岸两颗大树C、D之间的距离.如图所示,在河岸A点测得大树C位于正北方向上,大树D位于北偏东42°方向上.再沿河岸向东前进100米到达B处,测得大树D位于北偏东31°方向上.求两颗大树C、D之间的距离.(结果精确到1米.参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin42°≈0.67,coo42°≈0.74,tan42°≈0.90).【答案】两颗大树C、D之间的距离约为300米.【解析】【分析】如下图,过点D作DE⊥AB,垂足为点E,设CD=x米,在Rt△ACD中,可求得DE的长,然后在Rt△BED 中,求得BE的长,从而得出x的值.【详解】如图,过点D作DE⊥AB,垂足为点E,由题意知,∠ACD=∠CAE=∠AED=90°,∴四边形ACDE是矩形,∴AC=ED,CD=AE.设CD=x米,则BE=(x﹣100)米,在Rt△ACD中,tan∠ADE=AE DE,∴DE=AEtan ADE≈109x,在Rt△BED中,tan∠BDE=BE DE,则BE≈109x×35=23x,由题意得,x﹣23x=100,解得,x=300,答:两颗大树C、D之间的距离约为300米.【点睛】本题考查三角函数的运用,解题关键是构造出直角三角形,利用三角函数进行边的转化和求值. 20. 某商场销售A 、B 两种型号的电风扇,进价及售价如表:(1)该商场4月份用21000元购进A 、B 两种型号的电风扇,全部售完后获利6000元,求商场4月份购进A 、B 两种型号电风扇的数量;(2)该商场5月份计划用不超过42000元购进A 、B 两种型号电风扇共300台,且B 种型号的电风扇不少于50台;销售时准备A 种型号的电风扇价格不变,B 种型号的电风扇打9折销售.那么商场如何进货才能使利润最大?【答案】(1)商场4月份购进A 种型号的电风扇100台,B 种型号的电风扇50台;(2)A 种型号的电风扇购进200台,B 种型号的电风扇购进100台时,利润最大. 【解析】 【分析】(1)设4月份购进A 种型号的电风扇x 台,B 种型号的电风扇y 台,根据购买费用和获利分别可列写一个关于x 、y 的方程,求解可得;(2)设5月份购进A 种型号的电风扇m 台,利润为w 元,根据题意得出w 关于m 的一次函数,然后再根据m 的取值范围确定最大值情况.【详解】(1)设4月份购进A 种型号的电风扇x 台,B 种型号的电风扇y 台,依题意得:()()120180210001501202401806000x y x y +=⎧⎨-+-=⎩,解得:10050x y =⎧⎨=⎩.答:商场4月份购进A 种型号的电风扇100台,B 种型号的电风扇50台.(2)设5月份购进A 种型号的电风扇m 台,则购进B 种型号的电风扇(300﹣m)台,利润为w 元. 由题意得,120m +180(300﹣m)≤42000, 解不等式得:m ≥200, 又∵300﹣m ≥50,即m ≤250, ∴200≤m ≤250,w =(150﹣120)m +(0.9×240﹣180)(300﹣m)=﹣6m +10800, ∵﹣6<0,w 随m 的增大而减小,∴当m=200时,w有最大值,此时,300﹣m=100.答:A种型号的电风扇购进200台,B种型号的电风扇购进100台时,利润最大.【点睛】本题考查二元一次方程的运用和利用一次函数求解最值问题,解题关键是抽象出题干中的等量关系式.21. 若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数,下面我们参照学习函数的过程与方法,探究分段函数y=1(1) 2(1)x xxx⎧+≤⎪⎨>⎪⎩的图象与性质,探究过程如下,请补充完整.(1)列表:x …-4 -3 -2 -1 0 1 2 3 4 …y … 3 m 1 0 1 2 1 n12…其中,m=,n=.(2)描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示,请画出函数的图象.(3)研究函数并结合图象与表格,回答下列问题:①点A(72,y1),B(5,y2),C(x1,52),D(x2,6)在函数图象上,则y1y2,x1x2;(填“>”,“=”或“<”)②当函数值y=1时,求自变量x的值;(4)若直线y=﹣x+b与函数图象有且只有一个交点,请直接写出b的取值范围.【答案】(1)2,23;(2)如图所示,见解析;(3)①>,>;②x=0或x=﹣2或x=2;(4)﹣1<b<2或b>3.【解析】【分析】(1)将x=﹣3代入y=|x+1|得m的值;将x=3代入y=2x中得n的值;(2)用平滑的曲线连接坐标系中描的点可得;(3)A与B在y=2x上,C与D在y=|x﹣1|上,分别根据函数增减性判断;(4)如下图,求解出直线y=﹣x+b与函数图象有一个交点的临界点,从而得出b的取值范围.【详解】(1)x=﹣3代入y=|x+1|得,y=2,∴m=2,把x=3代入y=2x中得,y=23,∴n=23,故答案为2,23;(2)如图所示:(3)由图象可知A与B在y=2x上,y随x的增大而减小,所以y1>y2;C与D在y=|x﹣1|上,所以x1>x2;故答案>,>;②当y=1时,x≤1时,有1=|x+1|,∴x=0或x=﹣2,当y=1时,x>1时,有1=2x,∴x=2,故x=0或x=﹣2或x=2;(4)∵函数解析式为:y=1(1)2(1)x xxx⎧+≤⎪⎨>⎪⎩,图像如下当直线y =﹣x +b 在向右平移的过程中,如下图,与函数的交点个数是在变化的:由图形可知,当直线向右平移过程中,直线与函数交点个数为:①0个,②然后变为1个,③然后变为2个,④然后又变为1个我们分别求出①②、②③、③④之间的临界点即可有图形可知,①②之间的临界点为:x=-1我们求出直线与函数有2个交点的情况: 联立解析式2y x b y x =-+⎧⎪⎨=⎪⎩得: 220x bx -+-=当△>0时,即直线与函数有两个个交点△>2420b -=解得b >2或b <-2故而﹣1<b <2时,直线与含有有且仅有一个交点还存在一种情况:如下图由上面分析可知当b>22时,直线是与函数有2个交点的但是反比例函数的取值范围为x>1的部分∴如上图,反比例函数是点A(1,2)右侧的部分∴当直线y=-x+b从A点继续向右平移时,直线与反比例函数仅有一个交点将点A代入直线得:2=-1+b,解得:b=3∴当b>3时,直线与函数也仅有一个交点综上得,﹣1<b<22或b>3.【点睛】本题考查分段函数,解题关键是依据分段函数划分的范围,选取合适的函数进行分析求解.22. (1)发现如图1,△ABC和△ADE均为等边三角形,点D在BC边上,连接CE.填空:①∠DCE的度数是;②线段CA、CE、CD之间的数量关系是.(2)探究如图2,△ABC 和△ADE 均为等腰直角三角形,∠BAC =∠DAE =90°,点D 在BC 边上,连接CE .请判断∠DCE 的度数及线段CA 、CE 、CD 之间的数量关系,并说明理由.(3)应用如图3,在Rt △ABC 中,∠A =90°,AC =4,AB =6.若点D 满足DB =DC ,且∠BDC =90°,请直接写出DA 的长.【答案】(1)①120°,②CA =CE +CD ;(2)∠DCE =90=CD +CE .理由见解析;(3)DA =【解析】【分析】(1)①证△BAD ≌△CAE ,从而得出∠ACE =∠B =60°,进而得出∠DCE 的大小;②根据△BAD ≌△CAE 可知BD =CE ,从而得出CA =CE +CD ;(2)先证△BAD ≌△CAE ,得出BD =CE ,然后在等腰直角三角形ABC 中,得出CBCA ,从而得出CA 、CE 、CD 之间的数量关系;(3)如下图,先证点B ,C ,A ,D 四点共圆,得出△ADE 是等腰直角三角形,最后在Rt △BED 中,利用勾股定理可求得.【详解】(1)发现解:①∵在△ABC 中,AB =AC ,∠BAC =60°,∴∠BAC =∠DAE =60°,∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC ,即∠BAD =∠CAE ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAE (SAS),∴∠ACE =∠B =60°,∴∠DCE =∠ACE +∠ACB =60°+60°=120°;故答案为:120°,②∵△BAD ≌△CAE ,∴BD =CE ,∴BC=BD+CD=EC+CD,∴CA=BC=CE+CD;故答案为:CA=CE+CD.(2)探究∠DCE=90°;2CA=CD+CE.理由:∵△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE.∴△BAD≌△CA E(SAS).∴BD=CE,∠B=∠ACE=45°.∴∠DCE=∠ACB+∠ACE=90°.在等腰直角三角形ABC中,CB=2CA,∵CB=CD+DB=CD+CE,∴2CA=CD+CE.(3)应用DA=52或2.作DE⊥AB于E,连接AD,∵在Rt△ABC中,AB=6,AC=4,∠BAC=90°,∴BC2264+=13+22AB AC∵∠BDC=90°,DB=DC,∴DB=DC26,∠BCD=∠CBD=45°,∵∠BDC=∠BAC=90°,∴点B,C,A,D四点共圆,∴∠DAE=45°,∴△ADE 是等腰直角三角形,∴AE =DE ,∴BE =6﹣DE ,∵BE 2+DE 2=BD 2,∴DE 2+(6﹣DE)2=26,∴DE =1,DE =5,∴AD =2或AD =52.【点睛】本题考查三角形全等的证明与性质,勾股定理的运用,解题关键是找出全等三角形,利用对应边相等的关系进行边长转换,得出线段之间的关系.23. 如图,直线y =﹣2x +c 交x 轴于点A (3,0),交y 轴于点B ,抛物线y =﹣x 2+bx +c 经过点A ,B .(1)求抛物线的解析式;(2)点M (m ,0)是线段OA 上一动点(点M 不与点O ,A 重合),过点M 作y 轴的平行线,交直线AB 于点P ,交抛物线于点N ,若NP 5AP ,求m 的值; (3)若抛物线上存在点Q ,使∠QBA =45°,请直接写出相应的点Q 的坐标.【答案】(1)y =﹣x 2+x +6;(2)m =52;(3)点Q 的坐标为(43,509)或(﹣2,0). 【解析】【分析】(1)将点A 、B 代入函数解析式,可求得b 、c 的值;(2)利用△APM ∽△ABO ,可取得AP 的值,然后再根据NP 5,可求出m 的值; (3)存在2种情况,一种是点Q 在AB 的上方,另一种是点Q 在AB 的下方,分别利用几何性质计算可求得.【详解】(1)∵y =﹣2x +c 与x 轴交于点A (3,0),与y 轴交于点B ,∴﹣2×3+c =0,解得c =6,∴B (0,6),∵抛物线y=﹣x2+bx+c经过点A,B,∴9306b cc-++=⎧⎨=⎩,解得16bc=⎧⎨=⎩,∴抛物线解析式为y=﹣x2+x+6.(2)由点M(m,0),得点P(m,﹣2m+6),点N(m,﹣m2+m+6),∴NP=﹣m2+3m.在Rt△OAB中,AB=2236+=35,∵MP∥y轴,∴△APM∽△ABO,∴AP AMAB AO=,即3335m-=,∴AP=5(3﹣m),∵NP=5 AP,∴﹣m2+3m=5×5(3﹣m),解得:m=52或3(舍去3),∴m=52.(3)点Q的坐标为(43,50)9或(﹣2,0).①当点Q在AB上方时,设点Q的横坐标为n,如图,分别作QC⊥AB,QD⊥x轴,交AB于点E.则点E(n,﹣2n+6),点Q(n,﹣n2+n+6),则QE=﹣n2+n+6﹣(﹣2n+6)=﹣n2+3n,∵∠CQE=90°﹣∠QEC=90°﹣∠AED=∠EAD,∴Rt△QEC∽Rt△ABO,QE CE QC AB OB AO==, 则QC2CE22n 3n -+, ∵∠QBA =45°, ∴BC=QC 2 ∵ED ∥OB ,∴AB AO EBOD =3n=,解得:BE , 而BE =BC +CE ,22,解得n =43, ∴点Q 的坐标为(43,509); ②当点Q 在AB 下方时,同理可求,另一点Q 的坐标为(﹣2,0), 故点Q 的坐标为(43,509)或(﹣2,0). 【点睛】本题考查二次函数的综合,用到了三角形的相似和勾股股定理,建议在解决二次函数综合题时,先根据几何图形特点进行分析,得出一些比较好计算的几何关系后,在代值进行计算求解,这样计算量相对会小一些.。
【附5套中考模拟试卷】河南省许昌市2019-2020学年中考数学一模试卷含解析
河南省许昌市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在△ABC 中,DE ∥BC ,∠ADE =∠EFC ,AD ∶BD =5∶3,CF =6,则DE 的长为( )A .6B .8C .10D .122.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是 11()1323x x x ▲---+=-, 这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x =5,于是,他很快便补好了这个常数,并迅速地做完了作业。
同学们,你能补出这个常数吗?它应该是( )A .2B .3C .4D .53.某班体育委员对本班学生一周锻炼(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是( )A .10B .11C .12D .13 4.分式方程()22111x x x -++=1的解为( ) A .x=1 B .x=0 C .x=﹣23 D .x=﹣15.已知5a b =r r ,下列说法中,不正确的是( ) A .50a b -=r rB .a r 与b r 方向相同C .//a b r rD .||5||a b =r r6.如图,∠ACB=90°,D 为AB 的中点,连接DC 并延长到E ,使CE=13CD ,过点B 作BF ∥DE ,与AE 的延长线交于点F ,若AB=6,则BF 的长为( )A .6B .7C .8D .107.如图,直线a ∥b ,∠ABC 的顶点B 在直线a 上,两边分别交b 于A ,C 两点,若∠ABC=90°,∠1=40°,则∠2的度数为( )A .30°B .40°C .50°D .60°8.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是( )A .8B .9C .10D .119.已知抛物线y=ax 2﹣(2a+1)x+a ﹣1与x 轴交于A (x 1,0),B (x 2,0)两点,若x 1<1,x 2>2,则a 的取值范围是( )A .a <3B .0<a <3C .a >﹣3D .﹣3<a <010.如图,Rt AOB V 中,AB OB ⊥,且AB OB 3==,设直线x t =截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的( )A .B .C .D .11.已知直线2y kx =-与直线32y x =+的交点在第一象限,则k 的取值范围是( )A .3k =B .3k <-C .3k >D .33k -<<12.方程x 2+2x ﹣3=0的解是( )A .x 1=1,x 2=3B .x 1=1,x 2=﹣3C .x 1=﹣1,x 2=3D .x 1=﹣1,x 2=﹣3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.下图是在正方形网格中按规律填成的阴影,根据此规律,则第n 个图中阴影部分小正方形的个数是 .14.如图,李明从A 点出发沿直线前进5米到达B 点后向左旋转的角度为α,再沿直线前进5米,到达点C 后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.15.二次函数2(1)3y x =--的图象与y 轴的交点坐标是________.16.如图,矩形ABCD 面积为40,点P 在边CD 上,PE ⊥AC ,PF ⊥BD ,足分别为E ,F .若AC =10,则PE+PF =_____.17.如图,在平面直角坐标系xOy 中,点A ,P 分别在x 轴、y 轴上,∠APO =30°.先将线段PA 沿y 轴翻折得到线段PB ,再将线段PA 绕点P 顺时针旋转30°得到线段PC ,连接BC .若点A 的坐标为(﹣1,0),则线段BC 的长为_____.18.关于x 的一元二次方程x 2﹣2kx+k 2﹣k=0的两个实数根分别是x 1、x 2,且x 12+x 22=4,则x 12﹣x 1x 2+x 22的值是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:8﹣4cos45°+(12)﹣1+|﹣2|.20.(6分)某市对城区部分路段的人行道地砖、绿化带、排水管等公用设施进行全面更新改造,根据市政建设的需要,需在35天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作,只需10天完成.甲、乙两个工程队单独完成此项工程各需多少天?若甲工程队每天的工程费用是4万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.21.(6分)某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?22.(8分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A 处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B 处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25 m,已知李明直立时的身高为1.75 m,求路灯的高CD的长.(结果精确到0.1 m)23.(8分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70︒方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37︒方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.24.(10分)(1)问题发现:如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为;(2)深入探究:如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;(3)拓展延伸:如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=2,试求EF的长.25.(10分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.26.(12分)请根据图中提供的信息,回答下列问题:一个水瓶与一个水杯分别是多少元?甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)27.(12分)解不等式组:1(1)1213xx⎧-≤⎪⎨⎪-<⎩,并求出该不等式组所有整数解的和.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,又∵∠ADE=∠EFC,∴∠B=∠EFC,△ADE∽△EFC,∴BD∥EF,DE AD FC EF=,∴四边形BFED是平行四边形,∴BD=EF,∴563DE ADBD==,解得:DE=10.故选C.2.D【解析】【分析】设这个数是a,把x=1代入方程得出一个关于a的方程,求出方程的解即可.【详解】设这个数是a,把x=1代入得:13(-2+1)=1-5a3-,∴1=1-5a3-,解得:a=1.故选:D.【点睛】本题主要考查对解一元一次方程,等式的性质,一元一次方程的解等知识点的理解和掌握,能得出一个关于a的方程是解此题的关键.3.B【解析】【分析】根据统计图中的数据可以求得本班的学生数,从而可以求得该班这些学生一周锻炼时间的中位数,本题得以解决.【详解】由统计图可得,本班学生有:6+9+10+8+7=40(人),该班这些学生一周锻炼时间的中位数是:11,故选B.【点睛】本题考查折线统计图、中位数,解答本题的关键是明确题意,会求一组数据的中位数.4.C【解析】【分析】首先找出分式的最简公分母,进而去分母,再解分式方程即可.【详解】解:去分母得:x2-x-1=(x+1)2,整理得:-3x-2=0,解得:x=-23,检验:当x=-23时,(x+1)2≠0,故x=-23是原方程的根.故选C.【点睛】此题主要考查了解分式方程的解法,正确掌握解题方法是解题关键.5.A【解析】【分析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.【详解】A 、50a b -=r r r ,故该选项说法错误B 、因为5a b =r r ,所以a r 与b r的方向相同,故该选项说法正确, C 、因为5a b =r r ,所以//a b r r ,故该选项说法正确,D 、因为5a b =r r ,所以||5||a b =r r;故该选项说法正确,故选:A .【点睛】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.6.C【解析】∵∠ACB=90°,D 为AB 的中点,AB=6, ∴CD=12AB=1. 又CE=13CD , ∴CE=1,∴ED=CE+CD=2.又∵BF ∥DE ,点D 是AB 的中点,∴ED 是△AFB 的中位线,∴BF=2ED=3.故选C .7.C【解析】【分析】依据平行线的性质,可得∠BAC 的度数,再根据三角形内和定理,即可得到∠2的度数.【详解】解:∵a ∥b ,∴∠1=∠BAC =40°,又∵∠ABC =90°,∴∠2=90°−40°=50°,故选C .【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.8.A【解析】分析:根据多边形的内角和公式及外角的特征计算.详解:多边形的外角和是360°,根据题意得:110°•(n-2)=3×360°解得n=1.故选A .点睛:本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.9.B【解析】由已知抛物线2(21)1y ax a x a =-++-求出对称轴212a x a+=+, 解:抛物线:2(21)1y ax a x a =-++-,对称轴212a x a +=+,由判别式得出a 的取值范围. 11<x ,22x >, ∴21122a a+<<, ①2(21)4(1)0a a a ∆=+-->,18a ≥-.②由①②得0<<3a .故选B .10.D【解析】【分析】Rt △AOB 中,AB ⊥OB ,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A ,即∠AOD=∠OCD=45°,进而证明OD=CD=t ;最后根据三角形的面积公式,解答出S 与t 之间的函数关系式,由函数解析式来选择图象.【详解】解:∵Rt △AOB 中,AB ⊥OB ,且AB=OB=3,∴∠AOB=∠A=45°,∵CD ⊥OB ,∴CD ∥AB ,∴∠OCD=∠A ,∴∠AOD=∠OCD=45°,∴OD=CD=t ,∴S△OCD=12×OD×CD=12t2(0≤t≤3),即S=12t2(0≤t≤3).故S与t之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象;故选D.【点睛】本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.11.C【解析】【分析】根据题意画出图形,利用数形结合,即可得出答案.【详解】根据题意,画出图形,如图:当3k=时,两条直线无交点;当3k>时,两条直线的交点在第一象限.故选:C.【点睛】本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.12.B【解析】【分析】本题可对方程进行因式分解,也可把选项中的数代入验证是否满足方程.【详解】x2+2x-3=0,即(x+3)(x-1)=0,∴x 1=1,x 2=﹣3故选:B .【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.n 1+n +1.【解析】试题解析:仔细观察图形知道:每一个阴影部分由左边的正方形和右边的矩形构成,分别为:第一个图有:1+1+1个,第二个图有:4+1+1个,第三个图有:9+3+1个,…第n 个为n 1+n+1.考点:规律型:图形的变化类.14.40︒.【解析】【分析】根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再根据外角和计算左转的角度.【详解】连续左转后形成的正多边形边数为:4559÷=,则左转的角度是360940︒÷=︒.故答案是:40︒.【点睛】本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键.15.(0,2)-【解析】【分析】求出自变量x 为1时的函数值即可得到二次函数的图象与y 轴的交点坐标.【详解】把0x =代入2(1)3y x =--得:132y =-=-,∴该二次函数的图象与y轴的交点坐标为(0,2)-,故答案为(0,2)-.【点睛】本题考查了二次函数图象上点的坐标特征,在y轴上的点的横坐标为1.16.4【解析】【分析】由矩形的性质可得AO=CO=5=BO=DO,由S△DCO=S△DPO+S△PCO,可得PE+PF的值.【详解】解:如图,设AC与BD的交点为O,连接PO,∵四边形ABCD是矩形∴AO=CO=5=BO=DO,∴S△DCO=14S矩形ABCD=10,∵S△DCO=S△DPO+S△PCO,∴10=12×DO×PF+12×OC×PE∴20=5PF+5PE∴PE+PF=4故答案为4【点睛】本题考查了矩形的性质,利用三角形的面积关系解决问题是本题的关键.17.2【解析】【分析】只要证明△PBC是等腰直角三角形即可解决问题.【详解】解:∵∠APO=∠BPO=30°,∴∠APB=60°,∵PA=PC=PB,∠APC=30°,∴∠BPC=90°,∴△PBC是等腰直角三角形,∵OA=1,∠APO=30°,∴PA=2OA=2,∴BC=PC=2,故答案为2.【点睛】本题考查翻折变换、坐标与图形的变化、等腰直角三角形的判定和性质等知识,解题的关键是证明△PBC 是等腰直角三角形.18.1【解析】【分析】根据根与系数的关系结合x1+x2=x1•x2可得出关于k的一元二次方程,解之即可得出k的值,再根据方程有实数根结合根的判别式即可得出关于k的一元二次不等式,解之即可得出k的取值范围,从而可确定k的值.【详解】∵x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,∴x1+x2=2k,x1•x2=k2﹣k,∵x12+x22=1,∴(x1+x2)2-2x1x2=1,(2k)2﹣2(k2﹣k)=1,2k2+2k﹣1=0,k2+k﹣2=0,k=﹣2或1,∵△=(﹣2k)2﹣1×1×(k2﹣k)≥0,k≥0,∴k=1,∴x1•x2=k2﹣k=0,∴x12﹣x1x2+x22=1﹣0=1,故答案为:1.【点睛】本题考查了根的判别式以及根与系数的关系,熟练掌握“当一元二次方程有实数根时,根的判别式△≥0”是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.4【解析】分析:代入45°角的余弦函数值,结合“负整数指数幂的意义”和“二次根式的相关运算法则”进行计算即可. 详解:原式=42242⨯++=. 点睛:熟记“特殊角的三角函数值、负整数指数幂的意义:1p p aa-=(0a p ≠,为正整数)”是正确解答本题的关键. 20.(1)甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)应该选择甲工程队承包该项工程.【解析】【分析】(1)设甲工程队单独完成该工程需x 天,则乙工程队单独完成该工程需2x 天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.【详解】(1)设甲工程队单独完成该工程需x 天,则乙工程队单独完成该工程需2x 天. 根据题意得:101012x x+= 方程两边同乘以2x ,得230x =解得:15x =经检验,15x =是原方程的解.∴当15x =时,230x =.答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天.(2)因为甲乙两工程队均能在规定的35天内单独完成,所以有如下三种方案:方案一:由甲工程队单独完成.所需费用为:41560⨯=(万元);方案二:由乙工程队单独完成.所需费用为:2.53075⨯=(万元);方案三:由甲乙两队合作完成.所需费用为:(4 2.5)1065+⨯=(万元).∵756560>>∴应该选择甲工程队承包该项工程.【点睛】本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.(1)2400,60;(2)见解析;(3)500【解析】整体分析:(1)由C 品牌1200个占总数的50%可得鸡蛋的数量,用A 品牌占总数的百分比乘以360°即可;(2)计算出B 品牌的数量;(3)用B 品牌与总数的比乘以1500.解:(1)共销售绿色鸡蛋:1200÷50%=2400个, A 品牌所占的圆心角:4002400×360°=60°; 故答案为2400,60;(2)B 品牌鸡蛋的数量为:2400﹣400﹣1200=800个,补全统计图如图:(3)分店销售的B 种品牌的绿色鸡蛋为:8002400×1500=500个. 22.路灯的高CD 的长约为6.1 m.【解析】 设路灯的高CD 为xm ,∵CD ⊥EC ,BN ⊥EC ,∴CD ∥BN ,∴△ABN ∽△ACD ,∴BN AB CD AC=, 同理,△EAM ∽△ECD ,又∵EA =MA ,∵EC =DC =xm ,∴1.75 1.251.75x x =-,解得x =6.125≈6.1. ∴路灯的高CD 约为6.1m .23.还需要航行的距离BD 的长为20.4海里.【解析】分析:根据题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD 中,由三角函数得出CD=27.2海里,在直角三角形BCD 中,得出BD ,即可得出答案.详解:由题知:70ACD ∠=︒,37BCD ∠=︒,80AC =.在Rt ACD ∆中,cos CD ACD AC ∠=,0.3480CD ∴=,27.2CD ∴=(海里). 在Rt BCD ∆中,tan BD BCD CD ∠=,0.7527.2BD ∴=,20.4BD ∴=(海里). 答:还需要航行的距离BD 的长为20.4海里.点睛:此题考查了解直角三角形的应用-方向角问题,三角函数的应用;求出CD 的长度是解决问题的关键.24.(1)NC ∥AB ;理由见解析;(2)∠ABC=∠ACN ;理由见解析;(3)241;【解析】【分析】(1)根据△ABC ,△AMN 为等边三角形,得到AB=AC ,AM=AN 且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM ,即∠BAM=∠CAN ,证明△BAM ≌△CAN ,即可得到BM=CN . (2)根据△ABC ,△AMN 为等腰三角形,得到AB :BC=1:1且∠ABC=∠AMN ,根据相似三角形的性质得到AB AC AM AN=,利用等腰三角形的性质得到∠BAC=∠MAN ,根据相似三角形的性质即可得到结论; (3)如图3,连接AB ,AN ,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出BM AB CN AC =,得到BM=2,CM=8,再根据勾股定理即可得到答案. 【详解】(1)NC ∥AB ,理由如下:∵△ABC 与△MN 是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN =60°,∴∠BAM=∠CAN ,在△ABM 与△ACN 中,AB AC BAM CAN AM AN =⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△ACN (SAS ),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN ∥AB ;(2)∠ABC=∠ACN ,理由如下:∵AB AM BC MN==1且∠ABC=∠AMN , ∴△ABC ~△AMN∴AB AC AM AN=, ∵AB=BC , ∴∠BAC=12(180°﹣∠ABC ), ∵AM=MN ∴∠MAN=12(180°﹣∠AMN ), ∵∠ABC=∠AMN ,∴∠BAC=∠MAN ,∴∠BAM=∠CAN ,∴△ABM ~△ACN ,∴∠ABC=∠ACN ;(3)如图3,连接AB ,AN ,∵四边形ADBC ,AMEF 为正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC ﹣∠MAC=∠MAN ﹣∠MAC即∠BAM=∠CAN ,∵AB AM BC AN== ∴AB AC AM AN =, ∴△ABM ~△ACN ∴BM AB CN AC=,∴CN AC BM AB ==cos45°=2,∴2BM =, ∴BM=2,∴CM=BC ﹣BM=8,在Rt △AMC ,=∴.【点睛】本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.25.(1)见解析;(2)见解析;【解析】【分析】(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四边形BFDE是平行四边形.26.(1)一个水瓶40元,一个水杯是8元;(2)当10<n<25时,选择乙商场购买更合算.当n>25时,选择甲商场购买更合算.【解析】【分析】(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果.【详解】解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意得:3x+4(48﹣x)=152,解得:x=40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(40×5+8n)×80%=160+6.4n乙商场所需费用为5×40+(n﹣5×2)×8=120+8n则∵n>10,且n为整数,∴160+6.4n﹣(120+8n)=40﹣1.6n讨论:当10<n<25时,40﹣1.6n>0,160+0.64n>120+8n,∴选择乙商场购买更合算.当n>25时,40﹣1.6n<0,即160+0.64n<120+8n,∴选择甲商场购买更合算.【点睛】此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.27.1【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:()111213xx⎧-≤⎪⎨⎪-<⎩①②,解不等式①得:x≤3,解不等式②得:x>﹣2,所以不等式组的解集为:﹣2<x≤3,所以所有整数解的和为:﹣1+0+1+2+3=1.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.Administrator A d m i n i s t r a t o rGT ? M i c r o s o f t W o r d。
2020年河南省许昌市中考数学一模试卷(解析版)
2020年河南省许昌市中考数学一模试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.下列四个数中,是正整数的是()A.﹣1B.0C.D.12.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm =10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m3.如图,它是由5个完全相同的小正方体搭建的几何体,若将最右边的小正方体拿走,则下列结论正确的是()A.主视图不变B.左视图不变C.俯视图不变D.三视图都不变4.下列运算正确的是()A.2m2+m2=3m4B.(mn2)2=mn4C.2m•4m2=8m2D.m5÷m3=m25.受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()每天阅读时间(小时)0.51 1.52人数89103A.2,1B.1,1.5C.1,2D.1,16.若二次函数y=x2﹣2x+m的图象与x轴有两个交点,则实数m的取值范围是()A.m≥1B.m≤1C.m>1D.m<I7.如图,在△ABC中,AB=AC,点D在AC上,DE∥AB,若∠CDE=160°,则∠B的度数为()A.80°B.75C.65°D.60°8.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.B.C.D.9.如图,AC是矩形ABCD的一条对角线,E是AC中点,连接BE,再分别以A,D为圆心,大于的长为半径作弧,两弧相交于点F,连接EF交AD于点G.若AB=3,BC=4,则四边形ABEG 的周长为()A.8B.8.5C.9D.9.510.如图1,在Rt△ABC中,∠C=90°,点P从点A出发,沿A→C→B的路径匀速运动到点B停止,作PD⊥AB于点D,设点P运动的路程为x,PD长为y,y与x之间的函数关系图象如图2所示,当x=12时,y的值是()A.6B.C.D.2二、填空题(每小题3分,共15分)11.计算:()2﹣|﹣2|=.12.不等式组的解集是.13.已知点A(1,m),B(2,n)在一次函数y=3x+b的图象上,则m与n的大小关系为.14.如图,等边三角形△ABC的边长为4,以BC为直径的半圆O交AB于点D,交AC于点E,阴影部分的面积是.15.如图,正方形ABCD的边长是9,点E是AB边上的一个动点,点F是CD边上一点,CF=4,连接EF,把正方形ABCD沿EF折叠,使点A,D分别落在点A′,D′处,当点D′落在直线BC上时,线段AE的长为.三、解答题(本大题8个小题,共75分)16.(8分)先化简,再求值(﹣)÷,其中a,b满足a+b﹣=0.17.(9分)在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:类别家庭藏书m本学生人数A0≤m≤2520B26≤m≤100aC101≤m≤20050D m≥20166根据以上信息,解答下列问题:(1)该调查的样本容量为,a=;(2)在扇形统计图中,“A”对应扇形的圆心角为°;(3)若该校有2000名学生,请估计全校学生中家庭藏书200本以上的人数.18.(9分)如图,将▱ABCD放置在平面直角坐标系xOy中,已知A(﹣2,0),B(2,0),D (0,3),反比例函数y=(x>0)的图象经过点C.(1)求反比例函数的解析式;(2)能否通过平移▱ABCD,使它的两个顶点恰好同时落在反比例函数的图象上?若能,请直接写出平移过程;若不能,请说明理由.19.(9分)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC,分别交AC、AB的延长线于点E、F.(1)求证:EF是⊙O的切线;(2)①当∠BAC的度数为时,四边形ACDO为菱形;②若⊙O的半径为5,AC=3CE,则BC的长为.20.(9分)如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角∠HDE为45°,此时教学楼顶端G恰好在视线DH上,再向前走9米到达B处,又测得教学楼顶端G的仰角∠GEF为68°,点A、B、C三点在同一水平线上.(1)计算古树BH的高;(2)计算教学楼CG的高.(结果精确到0.1米,参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.50,≈1.41).21.(10分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件,此产品年销售量y(万件)与售价x(元/件)之间满足一次函数关系,其函数图象如图所示(1)求y与x之间的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元再次投入研发(20万元只计入第二年成本),以降低产品的生产成本,预计第二年的年销售量与售价仍存在(1)中的函数关系.为保持市场占有率,公司规定第二年产品售价为14元/件,若想实现第二年利润不低于88万元的目标,该产品的生产成本单价应控制在不超过多少元?22.(10分)(1)阅读理解利用旋转变换解决数学问题是一种常用的方法.如图1,点P是等边三角形ABC内一点,PA=1,PB=,PC=2.求∠BPC的度数.为利用已知条件,不妨把△BPC绕点C顺时针旋转60°得△AP′C,连接PP′,则PP′的长为;在△PAP′中,易证∠PAP′=90°,且∠PP′A的度数为,综上可得∠BPC 的度数为;(2)类比迁移如图2,点P是等腰Rt△ABC内的一点,∠ACB=90°,PA=2,PB=,PC=1,求∠APC 的度数;(3)拓展应用如图3,在四边形ABCD中,BC=3,CD=5,AB=AC=AD.∠BAC=2∠ADC,请直接写出BD的长.23.(11分)如图,二次函数y=ax2+bx+c交x轴于点A(1,0)和点B(3,0),交y轴于点C,抛物线上一点D的坐标为(4,3)(1)求该二次函数所对应的函数解析式;(2)如图1,点P是直线BC下方抛物线上的一个动点,PE∥x轴,PF∥y轴,求线段EF的最大值;(3)如图2,点M是线段CD上的一个动点,过点M作x轴的垂线,交抛物线于点N,当△CBN 是直角三角形时,请直接写出所有满足条件的点M的坐标.2020年河南省许昌市中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.【分析】正整数是指既是正数还是整数,由此即可判定求解.【解答】解:A、﹣1是负整数,故选项错误;B、0是非正整数,故选项错误;C、是分数,不是整数,错误;D、1是正整数,故选项正确.故选:D.【点评】此题主要考查正整数概念,解题主要把握既是正数还是整数两个特点,比较简单.2.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:28nm=28×10﹣9m=2.8×10﹣8m.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【分析】根据三视图的定义,即可判断.【解答】解:根据三视图的定义,若将最右边的小正方体拿走,俯视图、主视图都发生变化,左视图不变.故选:B.【点评】本题考查几何体的三视图,解题的关键是理解三视图的定义,灵活运用所学知识解决问题,属于基础题.4.【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算得出答案.【解答】解:A、2m2+m2=3m2,故此选项错误;B、(mn2)2=m2n4,故此选项错误;C、2m•4m2=8m3,故此选项错误;D、m5÷m3=m2,正确.故选:D.【点评】此题主要考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题关键.5.【分析】根据表格中的数据可知七年级2班有30人,从而可以得到全班学生平均每天阅读时间的中位数和众数,本题得以解决.【解答】解:由表格可得,全班学生平均每天阅读时间的中位数和众数分别是1、1.5,故选:B.【点评】本题考查众数、加权平均数、中位数,解答本题的关键是明确题意,会求一组数据的众数和中位数.6.【分析】根据二次函数的图象与性质即可求出答案.【解答】解:由题意可知:△=4﹣4m>0,∴m<1,故选:D.【点评】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.7.【分析】利用平角的定义可得∠ADE=15°,再根据平行线的性质知∠A=∠ADE=20°,再由内角和定理可得答案.【解答】解:∵∠CDE=160°,∴∠ADE=20°,∵DE∥AB,∴∠A=∠ADE=20°,∴∠B=(180°﹣∠A)=(180°﹣20°)=80°.故选:A.【点评】本题考查的是等腰三角形的性质,平行线的性质以及三角形内角和定理的运用,解题时注意:两直线平行,内错角相等.8.【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【解答】解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为,故选:A.【点评】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.9.【分析】连接ED,如图,利用基本作图得FA=FD,再根据矩形的性质判断B、E、D共线,EA =ED,所以EF垂直平分AD,接着证明GE为△ABD的中位线得到GE=,然后利用勾股定理计算出AC后便可计算出四边形ABEG的周长.【解答】解:连接ED,如图,由作法得FA=FD,∵AC是矩形ABCD的一条对角线,E是AC中点,∴B、E、D共线,EA=ED,∴EF垂直平分AD,∴AG=DG=AD=BC=×4=2,∵G为AD的中,E为BD的中点,∴GE为△ABD的中位线,∴GE=AB=,在Rt△ABC中,AC==5,∴BE=,∴四边形ABEG的周长=3+++2=9.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质和矩形的性质.10.【分析】设P的速度为v,根据图2可判断AC=6v,BC=8v,则可确定x=12时BP的值,利用sin∠B的值,可求出PD.【解答】解:设P的速度为v,由图2可得,AC=6v,BC=8v,∴AB=,当x=12时,如图所示:,此时AC+CP=12v,故BP=BC﹣CP=2v,∵sin B=,∴PD=BP sin∠B=2v×=.故y的值是.故选:C.【点评】本题考查了动点问题的函数图象,解答本题的关键是根据图2得到AC、BC的长度,此题难度一般.二、填空题(每小题3分,共15分)11.【分析】原式第一项利用平方根定义化简,第二项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=3﹣2=1.故答案为:1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.12.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:,解①得:x>﹣5,解②得:x<﹣2,则不等式组的解集是:﹣5<x<﹣2.故答案是:﹣5<x<﹣2.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.13.【分析】根据一次函数解析式中k>0,所以y随x的增大而增大,B点的横坐标大,所以对应的纵坐标大;【解答】解:一次函数y=3x+b中,k=3,∴y随x的增大而增大,∵点A(1,m),B(2,n)中,2>1,∴n>m;故答案为n>m.【点评】本题考查一次函数图象的性质.牢记k对x、y的变化情况的影响是解题的关键14.【分析】连接OD、DE、OE,根据菱形的面积公式、扇形面积公式计算,得到答案,【解答】解:连接OD、DE、OE,∵△ABC为等边三角形,∴∠B=∠C=60°,∴∠BOD=60°,∠COE=60°,∴∠DOE=60°,即△DOE为等边三角形,∵∠A=∠ODB=60°,∴OD∥AE,同理,OE∥OD,∴四边形ADOE为菱形,∴阴影部分的面积=2×﹣=2,故答案为:2,【点评】本题考查的是扇形面积计算,掌握扇形面积公式:S=是解题的关键.15.【分析】分两种情况:①当D′落在线段BC上时,连接ED、ED′、DD′,由折叠可得,D,D'关于EF对称,即EF垂直平分DD',得出DE=D′E,求出DF=D′F=CD﹣CF=5,CD′==3,得出BD'=BC﹣CD'=6,设AE=x,则BE=9﹣x,在Rt△AED和Rt△BED'中,由勾股定理得出方程,解方程即可;②当D′落在线段BC延长线上时,连接ED、ED′、DD′,解法同①.【解答】解:分两种情况:①当D′落在线段BC上时,连接ED、ED′、DD′,如图1所示:由折叠可得,D,D'关于EF对称,即EF垂直平分DD',∴DE=D′E,∵正方形ABCD的边长是9,∴AB=BC=CD=AD=9,∵CF=4,∴DF=D′F=CD﹣CF=9﹣4=5,∴CD′==3,∴BD'=BC﹣CD'=6,设AE=x,则BE=9﹣x,在Rt△AED和Rt△BED'中,由勾股定理得:DE2=AD2+AE2=92+x2,D'E2=BE2+BD'2=(9﹣x)2+62,∴92+x2=(9﹣x)2+62,解得:x=2,即AE=2;②当D′落在线段BC延长线上时,连接ED、ED′、DD′,如图2所示:由折叠可得,D,D'关于EF对称,即EF垂直平分DD',∴DE=D′E,∵正方形ABCD的边长是9,∴AB=BC=CD=AD=9,∵CF=4,∴DF=D′F=CD﹣CF=9﹣4=5,CD′==3,∴BD'=BC+CD'=12,设AE=x,则BE=9﹣x,在Rt△AED和Rt△BED'中,由勾股定理得:DE2=AD2+AE2=92+x2,D'E2=BE2+BD'2=(9﹣x)2+122,∴92+x2=(9﹣x)2+122,解得:x=8,即AE=8;综上所述,线段AE的长为2或8;故答案为:2或8.【点评】本题考查了正方形的性质、折叠变换的性质、线段垂直平分线的性质、勾股定理等知识;熟练掌握折叠变换的性质,由勾股定理得出方程是解题的关键,注意分类讨论.三、解答题(本大题8个小题,共75分)16.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:原式=•=,由a+b﹣=0,得到a+b=,则原式=2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.【分析】(1)根据“C”的人数和在扇形图中所占的百分比,先求出样本容量,再根据“B”的百分比计算出a的值;(2)利用圆心角计算公式,即可得到“A”对应的扇形的圆心角;(3)依据家庭藏书200本以上的人数所占的比例,即可估计该校家庭藏书200本以上的人数.【解答】解:(1)因为“C”有50人,占样本的25%,所以样本=50÷25%=200(人)因为“B”占样本的32%,所以a=200×32%=64(人)故答案为:200,64;(2)“A”对应的扇形的圆心角=×360°=36°,故答案为:36°;(3)全校学生中家庭藏书200本以上的人数为:2000×=660(人)答:全校学生中家庭藏书200本以上的人数为660人.【点评】本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.18.【分析】(1)由A与B的坐标求出AB的长,根据四边形ABCD为平行四边形,求出DC的长,进而确定出C坐标,设反比例解析式为y=,把C坐标代入求出k的值,即可确定出反比例解析式;(2)设D'和B'根据平移后落在反比例函数的图象上,代入反比例解析式解答即可.【解答】解:(1)∵▱ABCD中,A(﹣2,0),B(2,0),D(0,3),∴AB=CD=4,DC∥AB,∴C(4,3),设反比例解析式为y=,把C坐标代入得:k=12,则反比例解析式为y=;(2)∵B(2,0),D(0,3)∴平移▱ABCD,使它的两个顶点恰好同时落在反比例函数的图象上,B'(2+a,0+b),D'(0+a,3+b),即可得:0+b=,3+b=,解得:a1=2,a2=﹣4(不合题意舍去),把a=2代入b=,所以点D,点B落在反比例函数图象上,平移规律为向右平移2个单位,再向上平移3个单位.【点评】此题考查了反比例函数的综合题,平行四边形的性质,反比例函数图象上点的坐标特征,以及待定系数法求反比例函数解析式,熟练掌握待定系数法是解本题的关键.19.【分析】(1)连接OD,由OA=OD知∠OAD=∠ODA,由AD平分∠EAF知∠DAE=∠DAO,据此可得∠DAE=∠ADO,继而知OD∥AE,根据AE⊥EF即可得证;(2)①连接CD,根据平行线的性质得到∠OAD=∠ADC=30°,求得∠CAO=∠ADC=30°,根据全等三角形的性质得到AC=AO,于是得到结论;(3)设OD与BC交于G,根据圆周角定理得到∠ACB=90°,推出四边形CEDG是矩形,得到DG=CE,根据勾股定理即可得到结论.【解答】解:(1)如图,连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠EAF,∴∠DAE=∠DAO,∴∠DAE=∠ADO,∴OD∥AE,∵AE⊥EF,∴OD⊥EF,∴EF是⊙O的切线;(2)①当∠BAC的度数为60时,四边形ACDO为菱形;∵∠BAC=60°,∴∠AOD=120°,∵OA=OD,∴∠OAD=∠ODA=30°,∴∠CAD=30°,连接CD,∵OD∥AE,∴∠OAD=∠ADC=30°,∴∠CAO=∠ADC=30°,∴AC=CD,∵AD=AD,∴△ACD≌△AOD(ASA),∴AC=AO,∴AC=AO=CD=OD,∴四边形ACDO为菱形;故答案为:60°;(3)设OD与BC交于G,∵AB为直径,∴∠ACB=90°,∵DE⊥AC,∴四边形CEDG是矩形,∴DG=CE,∵AC=3CE,∴OG=AC=1.5CE,∴OD=2.5CE=5,∴CE=2,∴AC=6,∵AB=2×5=10,∴BC==8.故答案为:60°,8.【点评】本题考查了切线的判定和性质,矩形的判定和性质,全等三角形的判定和性质,正确的作出辅助线是解题的关键.20.【分析】(1)利用等腰直角三角形的性质即可解决问题;(2)作HJ⊥CG于G.则△HJG是等腰三角形,四边形BCJH是矩形,设HJ=GJ=BC=x.构建方程即可解决问题;【解答】解:(1)由题意:四边形ABED是矩形,可得DE=AB=9米,AD=BE=1.5米,在Rt△DEH中,∵∠EDH=45°,∴HE=DE=9米.∴BH=EH+BE=10.5米.(2)作HJ⊥CG于G.则△HJG是等腰三角形,四边形BCJH是矩形,设HJ=GJ=BC=x.在Rt△EFG中,tan68°=,∴2.5=,∴x=6,∴GF=6+9=15∴CG=CF+FG=1.5+15≈16.5米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.21.【分析】(1)由题目已知,设y=kx+b,:把(8,18),(20,6)代入,解出k,b即可求出一次函数关系式;(2)利润=售价﹣成本,即可列出等量关系,解出x即可;(3)设若想实现第二年利润不低于88万元的目标,该产品的生产成本单价应控制在不超过a元,根据题目利润大于88,即可列出不等式,解出不等式即可.【解答】解:(1)设y=kx+b,由题意可得:把(8,18),(20,6)代入y=kx+b,得,解得,故函数关系式y=﹣x+26(2)根据题意,(x﹣6)(﹣x+26)﹣80=20,解得x=16,故该产品第一年的售价是16元.(3)设若想实现第二年利润不低于88万元的目标,该产品的生产成本单价应控制在不超过a元.根据题意,当售价为14元时,销售量为:﹣14+26=12元12(14﹣a)﹣20≥88,解得a≤5,故若想实现第二年利润不低于88万元的目标,该产品的生产成本单价应控制在不超过5元【点评】本题主要考查了一次函数,一元二次方程,一元一次不等式的实际应用,熟练掌握等量关系式解此题的关键.22.【分析】(1)由旋转性质、等边三角形的判定可知△CP′P是等边三角形,由等边三角形的性质知∠CP′P=60°,根据勾股定理逆定理可得△AP′P是直角三角形,继而可得答案.(2)如图2,把△BPC绕点C顺时针旋转90°得△AP'C,连接PP′,同理可得△CP′P是等腰直角三角形和△AP′P是直角三角形,所以∠APC=90°;(3)如图3,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,根据勾股定理求CG的长,就可以得BD的长.【解答】解:(1)把△BPC绕点C顺时针旋转60°得△AP'C,连接PP′(如图1).由旋转的性质知△CP′P是等边三角形;∴P′A=PB=、∠CP′P=60°、P′P=PC=2,在△AP′P中,∵AP2+P′A2=12+()2=4=PP′2;∴△AP′P是直角三角形;∴∠P′AP=90°.∵PA=PC,∴∠AP′P=30°;∴∠BPC=∠CP′A=∠CP′P+∠AP′P=60°+30°=90°.故答案为:2;30°;90°;(2)如图2,把△BPC绕点C顺时针旋转90°得△AP'C,连接PP′.由旋转的性质知△CP′P是等腰直角三角形;∴P′C=PC=1,∠CPP′=45°、P′P=,PB=AP'=,在△AP′P中,∵AP'2+P′P2=()2+()2=2=AP2;∴△AP′P是直角三角形;∴∠AP′P=90°.∴∠APP'=45°∴∠APC=∠APP'+∠CPP'=45°+45°=90°(3)如图3,∵AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,∵∠BAD=∠CAG,∴∠BAC=∠DAG,∵AB=AC,AD=AG,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG,∵AD=2AB,∴DG=2BC=6,过A作AE⊥BC于E,∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG===,∴BD=CG=.【点评】本题是四边形的综合题,考查了等腰直角三角形的判定和性质、三角形全等的性质和判定、等腰三角形的性质、勾股定理、相似三角形的判定和性质和旋转的性质等知识,解题的关键是学会用旋转法添加辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.23.【分析】(1)由A、B两点坐标在二次函数图象上,设二次函数解析式的交点式,将D点坐标代入求出a的值,最后将二次函数的交点式转化成一般式形式.(2)点P在二次函数图象上,坐标为(p,p2﹣4p+3).又因为PF∥y轴,点F在直线BC上,P的坐标为(p,﹣p+3),在Rt△FPE中,可得FE=PF,用纵坐标差的绝对值可求线段EF 的最大值.(3)求△CBN是直角三角形,分为∠CBN=90°和∠CNB=90°两类情况计算,利用三角形相似知识求解.【解答】解:(1)设二次函数的解析式为y=a(x﹣b)(x﹣c),∵y=ax2+bx+与x轴r的两个交点A、B的坐标分别为(1,0)和(3,0),∴二次函数解析式:y=a(x﹣1)(x﹣3).又∵点D(4,3)在二次函数上,∴(4﹣3)×(4﹣1)a=3,∴解得:a=1.∴二次函数的解析式:y=(x﹣1)(x﹣3),即y=x2﹣4x+3.(2)如图1所示.因点P在二次函数图象上,设P(p,p2﹣4p+3).∵y=x2﹣4x+3与y轴相交于点C,∴点C的坐标为(0,3).又∵点B的坐标为B(3,0),∴OB=OC∴△COB为等腰直角三角形.又∵PF∥y轴,PE∥x轴,∴△PEF为等腰直角三角形.∴EF=PF.设一次函数的l BC的表达式为y=kx+b,又∵B(3,0)和C(0,3)在直线BC上,,解得:,∴直线BC的解析式为,y=﹣x+3.∴y F=﹣p+3.FP=﹣p+3﹣(p2﹣4p+3)=﹣p2+3p.∴EF=﹣p2+3p.∴线段EF的最大值为,EF max==.(3)①如图2所示:若∠CNB=90°时,点N在抛物线上,作MN∥y轴,l∥x轴交y轴于点E,BF⊥l交l于点F.设点N的坐标为(m,m2﹣4m+3),则点M的坐标为(m,3),∵C、D两点的坐标为(0,3)和(4,3),∴CD∥x轴.又∵∠CNE=∠NBF,∠CEN=∠NFB=90°,∴△CNE∽△NBF.∴=,又∵CE=﹣m2+4m,NE=m;NF=3﹣m,BF=﹣m2+4m﹣3,∴=,化简得:m2﹣5m+5=0.解得:m1=,m2=.∴M点坐标为(,3)或(,3)②如图3所示:当∠CBN=90°时,过B作BG⊥CD,∵∠NBF=∠CBG,∠NFB=∠BGC=90°,∴△BFN∽△CGB.∵△BFN为等腰直角三角形,∴BF=FN,∴0﹣(m2﹣4m+3)=3﹣m.∴化简得,m2﹣5m+6=0.解得,m=2或m=3(舍去)∴M点坐标为,(2,3).综上所述,满足题意的M点坐标为可以为(2,3),(,3),(,3).【点评】本题考查了待定系数法求解函数解析式,二次函数和三角函数求值,三角形相似等相关知识点;同时运用数形结合和分类讨论的思想探究点在几何图形上的位置关系.。
【附5套中考模拟试卷】河南省许昌市2019-2020学年中考数学一模试卷含解析
河南省许昌市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在△ABC 中,DE ∥BC ,∠ADE =∠EFC ,AD ∶BD =5∶3,CF =6,则DE 的长为( )A .6B .8C .10D .122.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是 11()1323x x x ▲---+=-, 这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x =5,于是,他很快便补好了这个常数,并迅速地做完了作业。
同学们,你能补出这个常数吗?它应该是( )A .2B .3C .4D .53.某班体育委员对本班学生一周锻炼(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是( )A .10B .11C .12D .13 4.分式方程()22111x x x -++=1的解为( ) A .x=1 B .x=0 C .x=﹣23 D .x=﹣15.已知5a b =r r ,下列说法中,不正确的是( ) A .50a b -=r rB .a r 与b r 方向相同C .//a b r rD .||5||a b =r r6.如图,∠ACB=90°,D 为AB 的中点,连接DC 并延长到E ,使CE=13CD ,过点B 作BF ∥DE ,与AE 的延长线交于点F ,若AB=6,则BF 的长为( )A .6B .7C .8D .107.如图,直线a ∥b ,∠ABC 的顶点B 在直线a 上,两边分别交b 于A ,C 两点,若∠ABC=90°,∠1=40°,则∠2的度数为( )A .30°B .40°C .50°D .60°8.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是( )A .8B .9C .10D .119.已知抛物线y=ax 2﹣(2a+1)x+a ﹣1与x 轴交于A (x 1,0),B (x 2,0)两点,若x 1<1,x 2>2,则a 的取值范围是( )A .a <3B .0<a <3C .a >﹣3D .﹣3<a <010.如图,Rt AOB V 中,AB OB ⊥,且AB OB 3==,设直线x t =截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的( )A .B .C .D .11.已知直线2y kx =-与直线32y x =+的交点在第一象限,则k 的取值范围是( )A .3k =B .3k <-C .3k >D .33k -<<12.方程x 2+2x ﹣3=0的解是( )A .x 1=1,x 2=3B .x 1=1,x 2=﹣3C .x 1=﹣1,x 2=3D .x 1=﹣1,x 2=﹣3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.下图是在正方形网格中按规律填成的阴影,根据此规律,则第n 个图中阴影部分小正方形的个数是 .14.如图,李明从A 点出发沿直线前进5米到达B 点后向左旋转的角度为α,再沿直线前进5米,到达点C 后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.15.二次函数2(1)3y x =--的图象与y 轴的交点坐标是________.16.如图,矩形ABCD 面积为40,点P 在边CD 上,PE ⊥AC ,PF ⊥BD ,足分别为E ,F .若AC =10,则PE+PF =_____.17.如图,在平面直角坐标系xOy 中,点A ,P 分别在x 轴、y 轴上,∠APO =30°.先将线段PA 沿y 轴翻折得到线段PB ,再将线段PA 绕点P 顺时针旋转30°得到线段PC ,连接BC .若点A 的坐标为(﹣1,0),则线段BC 的长为_____.18.关于x 的一元二次方程x 2﹣2kx+k 2﹣k=0的两个实数根分别是x 1、x 2,且x 12+x 22=4,则x 12﹣x 1x 2+x 22的值是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:8﹣4cos45°+(12)﹣1+|﹣2|.20.(6分)某市对城区部分路段的人行道地砖、绿化带、排水管等公用设施进行全面更新改造,根据市政建设的需要,需在35天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作,只需10天完成.甲、乙两个工程队单独完成此项工程各需多少天?若甲工程队每天的工程费用是4万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.21.(6分)某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?22.(8分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A 处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B 处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25 m,已知李明直立时的身高为1.75 m,求路灯的高CD的长.(结果精确到0.1 m)23.(8分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70︒方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37︒方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.24.(10分)(1)问题发现:如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为;(2)深入探究:如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;(3)拓展延伸:如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=2,试求EF的长.25.(10分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.26.(12分)请根据图中提供的信息,回答下列问题:一个水瓶与一个水杯分别是多少元?甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)27.(12分)解不等式组:1(1)1213xx⎧-≤⎪⎨⎪-<⎩,并求出该不等式组所有整数解的和.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,又∵∠ADE=∠EFC,∴∠B=∠EFC,△ADE∽△EFC,∴BD∥EF,DE AD FC EF=,∴四边形BFED是平行四边形,∴BD=EF,∴563DE ADBD==,解得:DE=10.故选C.2.D【解析】【分析】设这个数是a,把x=1代入方程得出一个关于a的方程,求出方程的解即可.【详解】设这个数是a,把x=1代入得:13(-2+1)=1-5a3-,∴1=1-5a3-,解得:a=1.故选:D.【点睛】本题主要考查对解一元一次方程,等式的性质,一元一次方程的解等知识点的理解和掌握,能得出一个关于a的方程是解此题的关键.3.B【解析】【分析】根据统计图中的数据可以求得本班的学生数,从而可以求得该班这些学生一周锻炼时间的中位数,本题得以解决.【详解】由统计图可得,本班学生有:6+9+10+8+7=40(人),该班这些学生一周锻炼时间的中位数是:11,故选B.【点睛】本题考查折线统计图、中位数,解答本题的关键是明确题意,会求一组数据的中位数.4.C【解析】【分析】首先找出分式的最简公分母,进而去分母,再解分式方程即可.【详解】解:去分母得:x2-x-1=(x+1)2,整理得:-3x-2=0,解得:x=-23,检验:当x=-23时,(x+1)2≠0,故x=-23是原方程的根.故选C.【点睛】此题主要考查了解分式方程的解法,正确掌握解题方法是解题关键.5.A【解析】【分析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.【详解】A 、50a b -=r r r ,故该选项说法错误B 、因为5a b =r r ,所以a r 与b r的方向相同,故该选项说法正确, C 、因为5a b =r r ,所以//a b r r ,故该选项说法正确,D 、因为5a b =r r ,所以||5||a b =r r;故该选项说法正确,故选:A .【点睛】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.6.C【解析】∵∠ACB=90°,D 为AB 的中点,AB=6, ∴CD=12AB=1. 又CE=13CD , ∴CE=1,∴ED=CE+CD=2.又∵BF ∥DE ,点D 是AB 的中点,∴ED 是△AFB 的中位线,∴BF=2ED=3.故选C .7.C【解析】【分析】依据平行线的性质,可得∠BAC 的度数,再根据三角形内和定理,即可得到∠2的度数.【详解】解:∵a ∥b ,∴∠1=∠BAC =40°,又∵∠ABC =90°,∴∠2=90°−40°=50°,故选C .【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.8.A【解析】分析:根据多边形的内角和公式及外角的特征计算.详解:多边形的外角和是360°,根据题意得:110°•(n-2)=3×360°解得n=1.故选A .点睛:本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.9.B【解析】由已知抛物线2(21)1y ax a x a =-++-求出对称轴212a x a+=+, 解:抛物线:2(21)1y ax a x a =-++-,对称轴212a x a +=+,由判别式得出a 的取值范围. 11<x ,22x >, ∴21122a a+<<, ①2(21)4(1)0a a a ∆=+-->,18a ≥-.②由①②得0<<3a .故选B .10.D【解析】【分析】Rt △AOB 中,AB ⊥OB ,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A ,即∠AOD=∠OCD=45°,进而证明OD=CD=t ;最后根据三角形的面积公式,解答出S 与t 之间的函数关系式,由函数解析式来选择图象.【详解】解:∵Rt △AOB 中,AB ⊥OB ,且AB=OB=3,∴∠AOB=∠A=45°,∵CD ⊥OB ,∴CD ∥AB ,∴∠OCD=∠A ,∴∠AOD=∠OCD=45°,∴OD=CD=t ,∴S△OCD=12×OD×CD=12t2(0≤t≤3),即S=12t2(0≤t≤3).故S与t之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象;故选D.【点睛】本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.11.C【解析】【分析】根据题意画出图形,利用数形结合,即可得出答案.【详解】根据题意,画出图形,如图:当3k=时,两条直线无交点;当3k>时,两条直线的交点在第一象限.故选:C.【点睛】本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.12.B【解析】【分析】本题可对方程进行因式分解,也可把选项中的数代入验证是否满足方程.【详解】x2+2x-3=0,即(x+3)(x-1)=0,∴x 1=1,x 2=﹣3故选:B .【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.n 1+n +1.【解析】试题解析:仔细观察图形知道:每一个阴影部分由左边的正方形和右边的矩形构成,分别为:第一个图有:1+1+1个,第二个图有:4+1+1个,第三个图有:9+3+1个,…第n 个为n 1+n+1.考点:规律型:图形的变化类.14.40︒.【解析】【分析】根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再根据外角和计算左转的角度.【详解】连续左转后形成的正多边形边数为:4559÷=,则左转的角度是360940︒÷=︒.故答案是:40︒.【点睛】本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键.15.(0,2)-【解析】【分析】求出自变量x 为1时的函数值即可得到二次函数的图象与y 轴的交点坐标.【详解】把0x =代入2(1)3y x =--得:132y =-=-,∴该二次函数的图象与y轴的交点坐标为(0,2)-,故答案为(0,2)-.【点睛】本题考查了二次函数图象上点的坐标特征,在y轴上的点的横坐标为1.16.4【解析】【分析】由矩形的性质可得AO=CO=5=BO=DO,由S△DCO=S△DPO+S△PCO,可得PE+PF的值.【详解】解:如图,设AC与BD的交点为O,连接PO,∵四边形ABCD是矩形∴AO=CO=5=BO=DO,∴S△DCO=14S矩形ABCD=10,∵S△DCO=S△DPO+S△PCO,∴10=12×DO×PF+12×OC×PE∴20=5PF+5PE∴PE+PF=4故答案为4【点睛】本题考查了矩形的性质,利用三角形的面积关系解决问题是本题的关键.17.2【解析】【分析】只要证明△PBC是等腰直角三角形即可解决问题.【详解】解:∵∠APO=∠BPO=30°,∴∠APB=60°,∵PA=PC=PB,∠APC=30°,∴∠BPC=90°,∴△PBC是等腰直角三角形,∵OA=1,∠APO=30°,∴PA=2OA=2,∴BC=PC=2,故答案为2.【点睛】本题考查翻折变换、坐标与图形的变化、等腰直角三角形的判定和性质等知识,解题的关键是证明△PBC 是等腰直角三角形.18.1【解析】【分析】根据根与系数的关系结合x1+x2=x1•x2可得出关于k的一元二次方程,解之即可得出k的值,再根据方程有实数根结合根的判别式即可得出关于k的一元二次不等式,解之即可得出k的取值范围,从而可确定k的值.【详解】∵x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,∴x1+x2=2k,x1•x2=k2﹣k,∵x12+x22=1,∴(x1+x2)2-2x1x2=1,(2k)2﹣2(k2﹣k)=1,2k2+2k﹣1=0,k2+k﹣2=0,k=﹣2或1,∵△=(﹣2k)2﹣1×1×(k2﹣k)≥0,k≥0,∴k=1,∴x1•x2=k2﹣k=0,∴x12﹣x1x2+x22=1﹣0=1,故答案为:1.【点睛】本题考查了根的判别式以及根与系数的关系,熟练掌握“当一元二次方程有实数根时,根的判别式△≥0”是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.4【解析】分析:代入45°角的余弦函数值,结合“负整数指数幂的意义”和“二次根式的相关运算法则”进行计算即可. 详解:原式=42242⨯++=. 点睛:熟记“特殊角的三角函数值、负整数指数幂的意义:1p p aa-=(0a p ≠,为正整数)”是正确解答本题的关键. 20.(1)甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)应该选择甲工程队承包该项工程.【解析】【分析】(1)设甲工程队单独完成该工程需x 天,则乙工程队单独完成该工程需2x 天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.【详解】(1)设甲工程队单独完成该工程需x 天,则乙工程队单独完成该工程需2x 天. 根据题意得:101012x x+= 方程两边同乘以2x ,得230x =解得:15x =经检验,15x =是原方程的解.∴当15x =时,230x =.答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天.(2)因为甲乙两工程队均能在规定的35天内单独完成,所以有如下三种方案:方案一:由甲工程队单独完成.所需费用为:41560⨯=(万元);方案二:由乙工程队单独完成.所需费用为:2.53075⨯=(万元);方案三:由甲乙两队合作完成.所需费用为:(4 2.5)1065+⨯=(万元).∵756560>>∴应该选择甲工程队承包该项工程.【点睛】本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.(1)2400,60;(2)见解析;(3)500【解析】整体分析:(1)由C 品牌1200个占总数的50%可得鸡蛋的数量,用A 品牌占总数的百分比乘以360°即可;(2)计算出B 品牌的数量;(3)用B 品牌与总数的比乘以1500.解:(1)共销售绿色鸡蛋:1200÷50%=2400个, A 品牌所占的圆心角:4002400×360°=60°; 故答案为2400,60;(2)B 品牌鸡蛋的数量为:2400﹣400﹣1200=800个,补全统计图如图:(3)分店销售的B 种品牌的绿色鸡蛋为:8002400×1500=500个. 22.路灯的高CD 的长约为6.1 m.【解析】 设路灯的高CD 为xm ,∵CD ⊥EC ,BN ⊥EC ,∴CD ∥BN ,∴△ABN ∽△ACD ,∴BN AB CD AC=, 同理,△EAM ∽△ECD ,又∵EA =MA ,∵EC =DC =xm ,∴1.75 1.251.75x x =-,解得x =6.125≈6.1. ∴路灯的高CD 约为6.1m .23.还需要航行的距离BD 的长为20.4海里.【解析】分析:根据题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD 中,由三角函数得出CD=27.2海里,在直角三角形BCD 中,得出BD ,即可得出答案.详解:由题知:70ACD ∠=︒,37BCD ∠=︒,80AC =.在Rt ACD ∆中,cos CD ACD AC ∠=,0.3480CD ∴=,27.2CD ∴=(海里). 在Rt BCD ∆中,tan BD BCD CD ∠=,0.7527.2BD ∴=,20.4BD ∴=(海里). 答:还需要航行的距离BD 的长为20.4海里.点睛:此题考查了解直角三角形的应用-方向角问题,三角函数的应用;求出CD 的长度是解决问题的关键.24.(1)NC ∥AB ;理由见解析;(2)∠ABC=∠ACN ;理由见解析;(3)241;【解析】【分析】(1)根据△ABC ,△AMN 为等边三角形,得到AB=AC ,AM=AN 且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM ,即∠BAM=∠CAN ,证明△BAM ≌△CAN ,即可得到BM=CN . (2)根据△ABC ,△AMN 为等腰三角形,得到AB :BC=1:1且∠ABC=∠AMN ,根据相似三角形的性质得到AB AC AM AN=,利用等腰三角形的性质得到∠BAC=∠MAN ,根据相似三角形的性质即可得到结论; (3)如图3,连接AB ,AN ,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出BM AB CN AC =,得到BM=2,CM=8,再根据勾股定理即可得到答案. 【详解】(1)NC ∥AB ,理由如下:∵△ABC 与△MN 是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN =60°,∴∠BAM=∠CAN ,在△ABM 与△ACN 中,AB AC BAM CAN AM AN =⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△ACN (SAS ),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN ∥AB ;(2)∠ABC=∠ACN ,理由如下:∵AB AM BC MN==1且∠ABC=∠AMN , ∴△ABC ~△AMN∴AB AC AM AN=, ∵AB=BC , ∴∠BAC=12(180°﹣∠ABC ), ∵AM=MN ∴∠MAN=12(180°﹣∠AMN ), ∵∠ABC=∠AMN ,∴∠BAC=∠MAN ,∴∠BAM=∠CAN ,∴△ABM ~△ACN ,∴∠ABC=∠ACN ;(3)如图3,连接AB ,AN ,∵四边形ADBC ,AMEF 为正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC ﹣∠MAC=∠MAN ﹣∠MAC即∠BAM=∠CAN ,∵AB AM BC AN== ∴AB AC AM AN =, ∴△ABM ~△ACN ∴BM AB CN AC=,∴CN AC BM AB ==cos45°=2,∴2BM =, ∴BM=2,∴CM=BC ﹣BM=8,在Rt △AMC ,=∴.【点睛】本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.25.(1)见解析;(2)见解析;【解析】【分析】(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四边形BFDE是平行四边形.26.(1)一个水瓶40元,一个水杯是8元;(2)当10<n<25时,选择乙商场购买更合算.当n>25时,选择甲商场购买更合算.【解析】【分析】(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果.【详解】解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意得:3x+4(48﹣x)=152,解得:x=40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(40×5+8n)×80%=160+6.4n乙商场所需费用为5×40+(n﹣5×2)×8=120+8n则∵n>10,且n为整数,∴160+6.4n﹣(120+8n)=40﹣1.6n讨论:当10<n<25时,40﹣1.6n>0,160+0.64n>120+8n,∴选择乙商场购买更合算.当n>25时,40﹣1.6n<0,即160+0.64n<120+8n,∴选择甲商场购买更合算.【点睛】此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.27.1【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:()111213xx⎧-≤⎪⎨⎪-<⎩①②,解不等式①得:x≤3,解不等式②得:x>﹣2,所以不等式组的解集为:﹣2<x≤3,所以所有整数解的和为:﹣1+0+1+2+3=1.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.Administrator A d m i n i s t r a t o rGT ? M i c r o s o f t W o r d。
河南省许昌市2019-2020学年中考数学一模考试卷含解析
河南省许昌市2019-2020学年中考数学⼀模考试卷含解析河南省许昌市2019-2020学年中考数学⼀模考试卷⼀、选择题(本⼤题共12个⼩题,每⼩题4分,共48分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.) 1.计算25()77-+-的正确结果是() A .37B .-37C .1D .﹣12.如图,已知抛物线21y x 4x =-+和直线2y 2x =.我们约定:当x 任取⼀值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较⼩值记为M ;若y 1=y 2,记M= y 1=y 2. 下列判断:①当x >2时,M=y 2;②当x <0时,x 值越⼤,M 值越⼤;③使得M ⼤于4的x 值不存在;④若M=2,则x=" 1" . 其中正确的有A .1个B .2个C .3个D .4个3.计算36÷(﹣6)的结果等于() A .﹣6B .﹣9C .﹣30D .64.如图,圆O 是等边三⾓形内切圆,则∠BOC 的度数是()A .60°B .100°C .110°D .120°5.甲、⼄两船从相距300km 的A 、B 两地同时出发相向⽽⾏,甲船从A 地顺流航⾏180km 时与从B 地逆流航⾏的⼄船相遇,⽔流的速度为6km/h ,若甲、⼄两船在静⽔中的速度均为xkm/h ,则求两船在静⽔中的速度可列⽅程为()A .1806x +=1206x - B .1806x -=120D .180x =1206x -6.如图所⽰,若将△ABO 绕点O 顺时针旋转180°后得到△A 1B 1O ,则A 点的对应点A 1点的坐标是()A .(3,﹣2)B .(3,2)C .(2,3)D .(2,﹣3)7.a≠0,函数y =ax与y =﹣ax 2+a 在同⼀直⾓坐标系中的⼤致图象可能是() A . B .C .D .8.如图,取⼀张长为a 、宽为b 的长⽅形纸⽚,将它对折两次后得到⼀张⼩长⽅形纸⽚,若要使⼩长⽅形与原长⽅形相似,则原长⽅形纸⽚的边,a b 应满⾜的条件是()A .2a b =B .2a b =C .2a b =D .2a b =9.已知点M 、N 在以AB 为直径的圆O 上,∠MON=x°,∠MAN= y°,则点(x ,y)⼀定在() A .抛物线上B .过原点的直线上C .双曲线上D .以上说法都不对10.今年,我省启动了“关爱留守⼉童⼯程”.某村⼩为了了解各年级留守⼉童的数量,对⼀到六年级留守⼉童数量进⾏了统计,得到每个年级的留守⼉童⼈数分别为10,15,10,17,18,1.对于这组数据,下列说法错误的是() A .平均数是15B .众数是10C .中位数是17D .⽅差是44311.如图,⼀场暴⾬过后,垂直于地⾯的⼀棵树在距地⾯1⽶处折断,树尖B 恰好碰到地⾯,经测量AB=2m,则树⾼为()⽶A.5B.3C.5+1 D.3AC的值是()A.1 B.2C.2 D.3⼆、填空题:(本⼤题共6个⼩题,每⼩题4分,共24分.)13.如图,△OAC 和△BAD 都是等腰直⾓三⾓形,∠ACO=∠ADB=90°,反⽐例函数y=3x在第⼀象限的图象经过点B,则△OAC 与△BAD 的⾯积之差S△OAC﹣S△BAD 为_______.14.已知x=2是⼀元⼆次⽅程x2﹣2mx+4=0的⼀个解,则m的值为.15.在平⾯直⾓坐标系中,将点A(﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.16.如图,P为正⽅形ABCD内⼀点,PA:PB:PC=1:2:3,则∠APB=_____________ .17.如图,正⽅形ABCD的边长为2,点B与原点O重合,与反⽐例函数y=kx的图像交于E、F两点,若△DEF的⾯积为98,则k的值_______ .18.现有⼀张圆⼼⾓为108°,半径为40cm的扇形纸⽚,⼩红剪去圆⼼⾓为θ的部分扇形纸⽚后,将剩下的纸⽚制作成⼀个底⾯半径为10cm 的圆锥形纸帽(接缝处不重叠),则剪去的扇形纸⽚的圆⼼⾓θ为_____.三、解答题:(本⼤题共9个⼩题,共78分,解答应写出⽂字说明、证明过程或演算步骤.19.(6分)如图,矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线249y x bx c =-++经过A 、C 两点,与AB 边交于点D .(1)求抛物线的函数表达式;(2)点P 为线段BC 上⼀个动点(不与点C 重合),点Q 为线段AC 上⼀个动点,AQ=CP ,连接PQ ,设CP=m ,△CPQ 的⾯积为S .①求S 关于m 的函数表达式,并求出m 为何值时,S 取得最⼤值;②当S 最⼤时,在抛物线249y x bx c =-++的对称轴l 上若存在点F ,使△FDQ 为直⾓三⾓形,请直接写出所有符合条件的F 的坐标;若不存在,请说明理由.20.(6分)如图,在平⾯直⾓坐标系中,函数的图象经过点,直线与x 轴交于点.求的值;过第⼆象限的点作平⾏于x 轴的直线,交直线于点C ,交函数的图象于点D .①当时,判断线段PD 与PC 的数量关系,并说明理由;②若,结合函数的图象,直接写出n 的取值范围.21.(6分)有⼀个⼆次函数满⾜以下条件:①函数图象与x轴的交点坐标分别为A(1,0),B(x1,y1)(点B 在点A的右侧);②对称轴是x=3;③该函数有最⼩值是﹣1.(1)请根据以上信息求出⼆次函数表达式;(1)将该函数图象x>x1的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平⾏于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),结合画出的函数图象求x3+x4+x5的取值范围.22.(8分)如图,直线y=12x+2与双曲线y=kx相交于点A(m,3),与x轴交于点C.求双曲线的解析式;点P在x轴上,如果△ACP的⾯积为3,求点P的坐标.23.(8分)已知△ABC 中,AD 是∠BAC 的平分线,且AD=AB,过点C 作AD 的垂线,交AD 的延长线于点H.(1)如图1,若∠BAC=60°.①直接写出∠B 和∠ACB 的度数;②若AB=2,求AC 和AH 的长;(2)如图2,⽤等式表⽰线段AH 与AB+AC 之间的数量关系,并证明.24.(10分)在平⾯直⾓坐标系xOy中,函数ayx(1)求a,b的值;(2)直线l2:y=-x+m与x轴交于点B,与直线l1交于点C,若S△ABC≥6,求m的取值范围.25.(10分)⼀辆汽车在某次⾏驶过程中,油箱中的剩余油量y(升)与⾏驶路程x(千⽶)之间是⼀次函数关系,其部分图象如图所⽰.求y关于x的函数关系式;(不需要写定义域)已知当油箱中的剩余油量为8升时,该汽车会开始提⽰加油,在此次⾏驶过程中,⾏驶了500千⽶时,司机发现离前⽅最近的加油站有30千⽶的路程,在开往该加油站的途中,汽车开始提⽰加油,这时离加油站的路程是多少千⽶?26.(12分)如图,AD是△ABC的中线,CF⊥AD于点F,BE⊥AD,交AD的延长线于点E,求证:AF+AE=2AD.27.(12分)(1)如图1,半径为2的圆O内有⼀点P,切OP=1,弦AB过点P,则弦AB长度的最⼤值为__________;最⼩值为___________.图①(2)如图2,△ABC是葛叔叔家的菜地⽰意图,其中∠ABC=90°,AB=80⽶,BC=60⽶,现在他利⽤周边地的情况,把原来的三⾓形地拓展成符合条件的⾯积尽可能⼤、周长尽可能长的四边形地,⽤来建鱼塘.已知葛叔叔想建的鱼塘是四边形ABCD,且满⾜∠ADC=60°,你认为葛叔叔的想法能实现吗?若能,求出这个四边形鱼塘⾯积和周长的最⼤值;若不能,请说明理由.图②参考答案⼀、选择题(本⼤题共12个⼩题,每⼩题4分,共48分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.)1.D【解析】【分析】根据有理数加法的运算⽅法,求出算式2577-+-的正确结果是多少即可.【详解】原式251.77故选:D.【点睛】此题主要考查了有理数的加法的运算⽅法,要熟练掌握,解答此题的关键是要明确:①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加减,取绝对值较⼤的加数符号,并⽤较⼤的绝对值减去较⼩的绝对值.互为相反数的两个数相加得1.③⼀个数同1相加,仍得这个数.2.B【解析】试题分析:∵当y 1=y 2时,即2x 4x 2x -+=时,解得:x=0或x=2,∴由函数图象可以得出当x >2时, y 2>y 1;当0<x <2时,y 1>y 2;当x <0时, y 2>y 1.∴①错误.∵当x <0时, -21y x 4x =-+直线2y 2x =的值都随x 的增⼤⽽增⼤,∴当x <0时,x 值越⼤,M 值越⼤.∴②正确.∵抛物线()221y x 4x x 24=-+=--+的最⼤值为4,∴M ⼤于4的x 值不存在.∴③正确;∵当0<x <2时,y 1>y 2,∴当M=2时,2x=2,x=1;∵当x >2时,y 2>y 1,∴当M=2时,2x 4x 2-+=,解得12x 2x 2==.∴使得M=2的x 值是1或2+ 综上所述,正确的有②③2个.故选B . 3.A 【解析】分析:根据有理数的除法法则计算可得.详解:31÷(﹣1)=﹣(31÷1)=﹣1.故选A .点睛:本题主要考查了有理数的除法,解题的关键是掌握有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.2除以任何⼀个不等于2的数,都得2. 4.D 【解析】【分析】由三⾓形内切定义可知OB 、OC 是∠ABC 、∠ACB 的⾓平分线,所以可得到关系式∠OBC+∠OCB=12(∠ABC+∠ACB ),把对应数值代⼊即可求得∠BOC 的值.【详解】解:∵△ABC 是等边三⾓形,∴∠A=∠ABC=∠ACB=60°,∵圆O 是等边三⾓形内切圆,∴OB 、OC 是∠ABC 、∠ACB 的⾓平分线,∴∠OBC+∠OCB=12(∠ABC+∠ACB )=12(180°﹣60°)=60°,∴∠BOC=180°﹣60=120°,故选D .【点睛】此题主要考查了三⾓形的内切圆与内⼼以及切线的性质.关键是要知道关系式∠OBC+∠OCB=(∠ABC+∠ACB).5.A【解析】分析:直接利⽤两船的⾏驶距离除以速度=时间,得出等式求出答案.详解:设甲、⼄两船在静⽔中的速度均为xkm/h,则求两船在静⽔中的速度可列⽅程为:1806x+=1206x-.故选A.点睛:此题主要考查了由实际问题抽象出分式⽅程,正确表⽰出⾏驶的时间和速度是解题关键.6.A【解析】【分析】由题意可知,点A与点A1关于原点成中⼼对称,根据图象确定点A的坐标,即可求得点A1的坐标. 【详解】由题意可知,点A与点A1关于原点成中⼼对称,∵点A的坐标是(﹣3,2),∴点A关于点O的对称点A'点的坐标是(3,﹣2).故选A.【点睛】本题考查了中⼼对称的性质及关于原点对称点的坐标的特征,熟知中⼼对称的性质及关于原点对称点的坐标的特征是解决问题的关键.7.D【解析】【分析】分a>0和a<0两种情况分类讨论即可确定正确的选项【详解】当a>0时,函数y=ax的图象位于⼀、三象限,y=﹣ax2+a的开⼝向下,交y轴的正半轴,没有符合的选项,的图象位于⼆、四象限,y=﹣ax2+a的开⼝向上,交y轴的负半轴,D选项符合;故选D.【点睛】本题考查了反⽐例函数的图象及⼆次函数的图象的知识,解题的关键是根据⽐例系数的符号确定其图象的位置,难度不⼤.8.B【解析】【分析】由题图可知:得对折两次后得到的⼩长⽅形纸⽚的长为b ,宽为14a ,然后根据相似多边形的定义,列出⽐例式即可求出结论.【详解】解:由题图可知:得对折两次后得到的⼩长⽅形纸⽚的长为b ,宽为14a ,∵⼩长⽅形与原长⽅形相似,,14a b b a ∴=2a b ∴=故选B .【点睛】此题考查的是相似三⾓形的性质,根据相似三⾓形的定义列⽐例式是解决此题的关键. 9.B 【解析】【分析】由圆周⾓定理得出∠MON 与∠MAN 的关系,从⽽得出x 与y 的关系式,进⽽可得出答案. 【详解】∵∠MON 与∠MAN 分别是弧MN 所对的圆⼼⾓与圆周⾓,∴∠MAN=12∠MON ,∴12y x =,∴点(x ,y)⼀定在过原点的直线上. 故选B. 【点睛】本题考查了圆周⾓定理及正⽐例函数图像的性质,熟练掌握圆周⾓定理是解答本题的关键. 10.C 【解析】【详解】解:中位数应该是15和17的平均数16,故C 选项错误,其他选择正确.故选C .【点睛】。
【解析版】河南省许昌市中考数学一模试卷
河南省许昌市中考数学一模试卷一、选择题(每小题3分,共24分)下列小题均有四个答案,其中只有一个是正确的,将正确的答案的代号字母填入题号括号里1.﹣2是2的()A.倒数 B.相反数 C.绝对值 D.平方根2.下列立体图形中,侧面展开图是扇形的是()A. B. C. D.3.将下列多项式分解因式,结果中不含因式x﹣1的是()A. x2﹣1 B. x(x﹣2)+ C. x2﹣2x+1 D. x2+2x+14.如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=45°,若使直线b与直线c 平行,则可将直线b绕点A逆时针旋转()A. 15° B. 30° C. 45° D. 60°5.已知一组数据:1,2,6,3,3,下列说法正确的是()A.众数是3 B.中位数是6 C.平均数是4 D.方差是56.若方程mx+ny=6的两个解,,则m,n的值为()A. 4,2 B. 2,4 C.﹣4,﹣2 D.﹣2,﹣47.已知点A(n2+1,n)在正比例函数y=﹣2x的图象上,则()A. n>0 B. n<0 C. n≥﹣2 D. n≤﹣28.如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD 的面积是()A. B. C. 2 D.二、填空题(共7小题,每小题3分,满分21分)9.计算=.10.如图,已知∠C=∠D,∠CAB=∠DBA,AD交BC于点O,请写出图中一组相等的线段.11.若关于x的方程x2﹣6x+m=0有两个相等的实数根,则实数m=.12.甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是.13.如图,点A在函数y=x(x≥0)图象上,且OA=,如果将函数y=x2的图象沿射线OA方向平移个单位长度,那么平移后的图象的函数关系式为.14.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是.15.如图,正方形ABCD的边长是4,E是BC的中点,动点P、Q在正方形ABCD的边上运动,且PQ=4.若点P从点A出发,沿A→B→E的线路,向点E运动,相应的,点Q在DA,AB上运动.则点P从A到E的运动过程中,PQ的中点O所经过的路线长等于.三、解答题(本大题8个小题,共75分)16.若(x+1)2=6,求多项式(x+2)2+(1﹣x)﹣3的值.17.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?18.一次函数y1=﹣x﹣1与反比例函数y2=的图象交于点A(﹣4,m).(1)观察图象,在y轴的左侧,当y1>y2时,请直接写出x的取值范围;求出反比例函数的解析式.19.为了对一棵倾斜的古杉树AB进行保护,需测量其长度.如图,在地面上选取一点C,测得∠ACB=45°,AC=24m,∠BAC=66.5°,求这棵古杉树AB的长度.(结果取整数)参考数据:≈1.41,sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30.20.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形,若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.21.为了缓解市内交通拥堵,市政府决定对长4000米的某路段进行扩建,由甲乙两个工程队拟在30天内(含30天)合作完成.已知两个工程队各有10名工人(设甲乙两个工程队的工人全部参与生产,甲工程队每人每天的工作量相同,乙工程队每人每天的工作量相同),甲工程队每天修路长度是乙工程队的2倍;乙工程队单独完成这项工程比甲工程队单独完成要多用40天.(1)试问甲乙两个工程队每天分别修路多少米?已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工总费用最低,甲乙两队应各做多少天?最低费用是多少?22.如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5.OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)试判断线段AB与AC的数量关系,并说明理由;若PC=2,求⊙O的半径和线段PB的长;(3)若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,求⊙O的半径r的取值范围.23.如图,抛物线y=x2﹣2x﹣3与x轴交于A,B两点,与y轴交于点C,点D为抛物线的顶点,连结BD,CD,抛物线的对称轴与x轴交于点E.(1)点B的坐标为,点D的坐标为,∠CDE的度数为;点M是折线B﹣D﹣C上的一个动点,过点M作MN⊥DE,垂足为N,连接BM、BN.如果M点的横坐标为m,△BMN的面积为S,求S与m之间的函数关系式,并求出S的最大值;(3)若抛物线上有一点P,作PQ⊥CD,交射线CD于点Q,使∠CPQ=∠BDE,请直接写出点P 的坐标.河南省许昌市中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共24分)下列小题均有四个答案,其中只有一个是正确的,将正确的答案的代号字母填入题号括号里1.﹣2是2的()A.倒数 B.相反数 C.绝对值 D.平方根考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:﹣2是2的相反数,故选:B.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.下列立体图形中,侧面展开图是扇形的是()A. B. C. D.考点:几何体的展开图.分析:圆锥的侧面展开图是扇形.解答:解:根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选:B.点评:解题时勿忘记圆锥的特征及圆锥展开图的情形.3.将下列多项式分解因式,结果中不含因式x﹣1的是()A. x2﹣1 B. x(x﹣2)+ C. x2﹣2x+1 D. x2+2x+1考点:因式分解-提公因式法;因式分解-运用公式法.专题:因式分解.分析:分别将各选项利用公式法和提取公因式法分解因式进而得出答案.解答:解:A、x2﹣1=(x+1)(x﹣1),故A选项不合题意;B、x(x﹣2)+=(x﹣2)(x﹣1),故B选项不合题意;C、x2﹣2x+1=(x﹣1)2,故C选项不合题意;D、x2+2x+1=(x+1)2,故D选项符合题意.故选:D.点评:此题主要考查了提取公因式法以及公式法分解因式,熟练掌握公式法分解因式是解题关键.4.如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=45°,若使直线b与直线c 平行,则可将直线b绕点A逆时针旋转()A. 15° B. 30° C. 45° D. 60°考点:平行线的判定.专题:几何图形问题.分析:先根据邻补角的定义得到∠3=60°,根据平行线的判定当b与a的夹角为45°时,b∥c,由此得到直线b绕点A逆时针旋转60°﹣45°=15°.解答:解:∵∠1=120°,∴∠3=60°,∵∠2=45°,∴当∠3=∠2=45°时,b∥c,∴直线b绕点A逆时针旋转60°﹣45°=15°.故选:A.点评:本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;两条直线都和第三条直线平行,那么这两条直线平行.5.已知一组数据:1,2,6,3,3,下列说法正确的是()A.众数是3 B.中位数是6 C.平均数是4 D.方差是5考点:众数;算术平均数;中位数;方差.专题:常规题型.分析:利用众数、算术平均数、中位数及方差的定义分别求解后即可确定正确的选项.解答:解:A、数据3出现2次,最多,故众数为3,故A选项正确;B、排序后位于中间位置的数为3,故中位数为3,故B选项错误;C、平均数为3,故C选项错误;D、方差为2.8,故D选项错误.故选:A.点评:本题考查了众数、算术平均数、中位数及方差的定义,属于基础题,比较简单.6.若方程mx+ny=6的两个解,,则m,n的值为()A. 4,2 B. 2,4 C.﹣4,﹣2 D.﹣2,﹣4考点:二元一次方程的解.分析:将已知代入方程mx+ny=6得出关于m,n的方程组求出即可.解答:解:∵方程mx+ny=6的两个解,,∴,解得:.故选:C.点评:此题主要考查了二元一次方程的解,正确解二元一次方程组是解题关键.7.已知点A(n2+1,n)在正比例函数y=﹣2x的图象上,则()A. n>0 B. n<0 C. n≥﹣2 D. n≤﹣2考点:一次函数图象上点的坐标特征.分析:直接把点A(n2+1,n)代入正比例函数y=﹣2x,根据n2≥0即可得出结论.解答:解:∵点A(n2+1,n)在正比例函数y=﹣2x的图象上,∴n=﹣2(n2+1)=﹣2n2﹣2,∵n2≥0,∴n≤﹣2.故选D.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD 的面积是()A. B. C. 2 D.考点:勾股定理;含30度角的直角三角形.专题:计算题.分析:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.构建矩形AEFD和直角三角形,通过含30度角的直角三角形的性质求得AE的长度,然后由三角形的面积公式进行解答即可.解答:解:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.设AB=AD=x.又∵AD∥BC,∴四边形AEFD是矩形形,∴AD=EF=x.在Rt△ABE中,∠ABC=60°,则∠BAE=30°,∴BE=AB=x,∴DF=AE==x,在Rt△CDF中,∠FCD=30°,则CF=DF•cot30°=x.又∵BC=6,∴BE+EF+CF=6,即x+x+x=6,解得 x=2∴△ACD的面积是:AD•DF=x×x=×22=,故选:A.点评:本题考查了勾股定理,三角形的面积以及含30度角的直角三角形.解题的难点是作出辅助线,构建矩形和直角三角形,目的是求得△ADC的底边AD以及该边上的高线DF的长度.二、填空题(共7小题,每小题3分,满分21分)9.计算=4.考点:实数的运算;零指数幂.专题:计算题.分析:本题涉及零指数幂、绝对值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3+1=4,故答案为4.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握0指数幂、绝对值等考点的运算.10.如图,已知∠C=∠D,∠CAB=∠DBA,AD交BC于点O,请写出图中一组相等的线段AD=BC.考点:全等三角形的判定与性质.专题:开放型.分析:易证△CAB≌△DBA,根据全等三角形对应边相等的性质可得BC=AD,即可解题.解答:解:在△CAB和△DBA中,,∴△CAB≌△DBA(AAS),∴BC=AD.点评:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△CAB≌△DBA是解题的关键.11.若关于x的方程x2﹣6x+m=0有两个相等的实数根,则实数m=9.考点:根的判别式.分析:根据方程有两个相等的实数根,得出根的判别式等于0,即可求出m的值.解答:解:∵方程有两个相等实数根,∴△=(﹣6)2﹣4m=0,∴m=9.故答案为:9.点评:此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙二人相邻的情况,再利用概率公式求解即可求得答案.解答:解:画树状图得:∵共有6种等可能的结果,甲、乙二人相邻的有4种情况,∴甲、乙二人相邻的概率是:=.故答案为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.13.如图,点A在函数y=x(x≥0)图象上,且OA=,如果将函数y=x2的图象沿射线OA方向平移个单位长度,那么平移后的图象的函数关系式为y=x2﹣2x+2.考点:二次函数图象与几何变换.分析:先求出平移后顶点的坐标,再根据平移不改变二次项系数,即可写出二次函数的顶点式.解答:解:∵函数y=x2的顶点为O(0,0),∴将函数y=x2的图象沿射线OA方向平移个单位长度,OA=,∴点O的对应点为点A.设A(x,x),由OA=,得A(1,1),则平移后的图象的顶点为A.又∵平移前后二次项系数不变,∴其函数解析式为:y=(x﹣1)2+1,即y=x2﹣2x+2.故答案为y=x2﹣2x+2.点评:本题考查二次函数的平移问题,用到的知识点为:二次函数的平移,不改变二次项的系数;得到新抛物线的顶点坐标是解决本题的关键.14.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是(0,3).考点:轴对称-最短路线问题;坐标与图形性质.分析:根据轴对称做最短路线得出AE=B′E,进而得出B′O=C′O,即可得出△ABC的周长最小时C 点坐标.解答:解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,此时△ABC的周长最小,∵点A、B的坐标分别为(1,4)和(3,0),∴B′点坐标为:(﹣3,0),AE=4,则B′E=4,即B′E=AE,∵C′O∥AE,∴B′O=C′O=3,∴点C′的坐标是(0,3),此时△ABC的周长最小.故答案为(0,3).点评:此题主要考查了利用轴对称求最短路线以及平行线的性质,根据已知得出C点位置是解题关键.15.如图,正方形ABCD的边长是4,E是BC的中点,动点P、Q在正方形ABCD的边上运动,且PQ=4.若点P从点A出发,沿A→B→E的线路,向点E运动,相应的,点Q在DA,AB上运动.则点P从A到E的运动过程中,PQ的中点O所经过的路线长等于.考点:轨迹;直角三角形斜边上的中线.专题:应用题.分析:画出点O运动的轨迹,如图红线部分,利用弧长公式求出中点O经过的路线即可.解答:解:画出点O运动的轨迹,如图红线部分,则点P从A到E的运动过程中,PQ的中点O所经过的路线长等于+=,故答案为:点评:此题考查了轨迹,直角三角形斜边上的中线,以及弧长公式,画出点O运动的轨迹是解本题的关键.三、解答题(本大题8个小题,共75分)16.若(x+1)2=6,求多项式(x+2)2+(1﹣x)﹣3的值.考点:整式的混合运算—化简求值.分析:由(x+1)2=6,得x+1=±,进一步把单项式利用完全平方公式、整式的乘法计算合并,整体代入求得答案即可.解答:解:∵(x+1)2=6,∴x+1=±.∴(x+2)2+(1﹣x)﹣3=x2+4x+4+2﹣2x+x﹣x2﹣3=(x2﹣x2)+(4x﹣2x+x)+(4+2﹣3)=3x+3=3(x+1)=±3.点评:此题考查整式的化简求值,注意先化简,再进一步代入求得数值即可.17.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000名;把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?考点:条形统计图;用样本估计总体;扇形统计图.专题:图表型.分析:(1)用没有剩的人数除以其所占的百分比即可;用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可.解答:解:(1)这次被调查的同学共有400÷40%=1000(名);故答案为:1000;剩少量的人数是;1000﹣400﹣250﹣150=200,补图如下;(3)18000×=3600(人).答:该校18000名学生一餐浪费的食物可供3600人食用一餐.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.一次函数y1=﹣x﹣1与反比例函数y2=的图象交于点A(﹣4,m).(1)观察图象,在y轴的左侧,当y1>y2时,请直接写出x的取值范围;求出反比例函数的解析式.考点:反比例函数与一次函数的交点问题.分析:(1)先观察函数图象得到在y轴的左侧,当x<﹣4时,一次函数图象都在反比例函数图象上方,即有y1>y2;先根据一次函数解析式确定A点坐标,然后把A点坐标代入y2=可计算出k的值,从而得到反比例函数解析式.解答:解:(1)在y轴的左侧,当y1>y2时,x<﹣4;把点A(﹣4,m)代入y1=﹣x﹣1得m=﹣×(﹣4)﹣1=1,则A点坐标为(﹣4,1),把A(﹣4,1)代入y2=得k=﹣4×1=﹣4,所以反比例函数的解析式为y2=﹣.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.19.为了对一棵倾斜的古杉树AB进行保护,需测量其长度.如图,在地面上选取一点C,测得∠ACB=45°,AC=24m,∠BAC=66.5°,求这棵古杉树AB的长度.(结果取整数)参考数据:≈1.41,sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30.考点:解直角三角形的应用.专题:几何图形问题.分析:过B点作BD⊥AC于D.分别在Rt△ADB和Rt△CDB中,用BD表示出AD和CD,再根据AC=AD+CD=24m,列出方程求解即可.解答:解:过B点作BD⊥AC于D.∵∠ACB=45°,∠BAC=66.5°,∴在Rt△ADB中,AD=,在Rt△CDB中,CD=BD,∵AC=AD+CD=24m,∴+BD=24,解得BD≈17m.AB=≈18m.故这棵古杉树AB的长度大约为18m.点评:本题考查解三角形的实际应用,解题的关键是作出辅助线构造直角三角形,利用三角函数求三角形的边.20.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形,若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.考点:相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;平行四边形的判定;菱形的判定.分析:(1)由AB=DE,∠A=∠D,AF=DC,易证得△ABC≌DEF,即可得BC=EF,且BC∥EF,即可判定四边形BCEF是平行四边形;由四边形BCEF是平行四边形,可得当BE⊥CF时,四边形BCEF是菱形,所以连接BE,交CF与点G,证得△ABC∽△BGC,由相似三角形的对应边成比例,即可求得AF的值.解答:(1)证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF,∠ACB=∠DFE,∴BC∥EF,∴四边形BCEF是平行四边形.解:连接BE,交CF于点G,∵四边形BCEF是平行四边形,∴当BE⊥CF时,四边形BCEF是菱形,∵∠ABC=90°,AB=4,BC=3,∴AC==5,∵∠BGC=∠ABC=90°,∠ACB=∠BCG,∴△ABC∽△BGC,∴=,即=,∴CG=,∵FG=CG,∴FC=2CG=,∴AF=AC﹣FC=5﹣=,∴当AF=时,四边形BCEF是菱形.点评:此题考查了相似三角形的判定与性质、全等三角形的判定与性质、平行四边形的判定与性质、菱形的判定与性质以及勾股定理等知识.此题综合性较强,难度适中,注意数形结合思想的应用,注意掌握辅助线的作法.21.为了缓解市内交通拥堵,市政府决定对长4000米的某路段进行扩建,由甲乙两个工程队拟在30天内(含30天)合作完成.已知两个工程队各有10名工人(设甲乙两个工程队的工人全部参与生产,甲工程队每人每天的工作量相同,乙工程队每人每天的工作量相同),甲工程队每天修路长度是乙工程队的2倍;乙工程队单独完成这项工程比甲工程队单独完成要多用40天.(1)试问甲乙两个工程队每天分别修路多少米?已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工总费用最低,甲乙两队应各做多少天?最低费用是多少?考点:分式方程的应用;二元一次方程的应用;一次函数的应用.分析:(1)设乙队每天修路x米,则甲队每天修路2x米.根据乙工程队单独完成这项工程比甲工程队单独完成要多用40天,列方程求解;设甲工程队修a天,乙工程队修b天,根据路段全程长4000米列出方程100a+50b=4000,那么b=80﹣2a.根据甲乙两个工程队拟在30天内(含30天)合作完成得到a的取值范围,再设总费用为W万元,则W=0.6a+0.35b=﹣0.1a+28,然后根据一次函数的性质即可求解.解答:解:(1)设乙队每天修路x米,则甲队每天修路2x米,依题意得,﹣=40,解得x=50,经检验,x=50是原方程的解,且符合题意,当x=50时,2x=100.答:甲工程队每天修路100米,乙工程队每天修路50米;设甲工程队修a天,乙工程队修b天,依题意得,100a+50b=4000,所以,b=80﹣2a,∵0≤b≤30,∴0≤80﹣2a≤30,解得25≤a≤40,又∵0≤a≤30,∴25≤a≤30,设总费用为W万元,依题意得W=0.6a+0.35b=0.6a+0.35(80﹣2a)=﹣0.1a+28,∵﹣0.1<0,∴当a=30时,W最小=﹣0.1×30+28=25(万元),此时b=80﹣2a=80﹣2×30=20.答:甲工程队应做30天,乙工程队应做20天,最低费用为25万元.点评:本题考查了分式方程的应用,二元一次方程的应用,一次函数的应用.分析题意,找到合适的等量关系是解决问题的关键.22.如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5.OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)试判断线段AB与AC的数量关系,并说明理由;若PC=2,求⊙O的半径和线段PB的长;(3)若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,求⊙O的半径r的取值范围.考点:切线的性质;等腰三角形的性质;勾股定理;直线与圆的位置关系;相似三角形的判定与性质.专题:计算题;几何综合题;压轴题.分析:(1)连接OB,根据切线的性质和垂直得出∠OBA=∠OAC=90°,推出∠OBP+∠ABP=90°,∠ACP+∠CPA=90°,求出∠ACP=∠ABC,根据等腰三角形的判定推出即可;延长AP交⊙O于D,连接BD,设圆半径为r,则OP=OB=r,PA=5﹣r,根据AB=AC推出52﹣r2=﹣(5﹣r)2,求出r,证△DPB∽△CPA,得出=,代入求出即可;(3)根据已知得出Q在AC的垂直平分线上,作出线段AC的垂直平分线MN,作OE⊥MN,求出OE<r,求出r范围,再根据相离得出r<5,即可得出答案.解答:解:(1)AB=AC,理由如下:连接OB.∵AB切⊙O于B,OA⊥AC,∴∠OBA=∠OAC=90°,∴∠OBP+∠ABP=90°,∠ACP+∠APC=90°,∵OP=OB,∴∠OBP=∠OPB,∵∠OPB=∠APC,∴∠ACP=∠ABC,∴AB=AC;延长AP交⊙O于D,连接BD,设圆半径为r,则OP=OB=r,PA=5﹣r,则AB2=OA2﹣OB2=52﹣r2,AC2=PC2﹣PA2=﹣(5﹣r)2,∴52﹣r2=﹣(5﹣r)2,解得:r=3,∴AB=AC=4,∵PD是直径,∴∠PBD=90°=∠PAC,又∵∠DPB=∠CPA,∴△DPB∽△CPA,∴=,∴=,解得:PB=.∴⊙O的半径为3,线段PB的长为;(3)作出线段AC的垂直平分线MN,作OE⊥MN,则可以推出OE=AC=AB=又∵圆O与直线MN有交点,∴OE=≤r,≤2r,25﹣r2≤4r2,r2≥5,∴r≥,又∵圆O与直线相离,∴r<5,即≤r<5.点评:本题考查了等腰三角形的性质和判定,相似三角形的性质和判定,切线的性质,勾股定理,直线与圆的位置关系等知识点的应用,主要培养学生运用性质进行推理和计算的能力.本题综合性比较强,有一定的难度.23.如图,抛物线y=x2﹣2x﹣3与x轴交于A,B两点,与y轴交于点C,点D为抛物线的顶点,连结BD,CD,抛物线的对称轴与x轴交于点E.(1)点B的坐标为(3,0),点D的坐标为(1,﹣4),∠CDE的度数为45°;点M是折线B﹣D﹣C上的一个动点,过点M作MN⊥DE,垂足为N,连接BM、BN.如果M点的横坐标为m,△BMN的面积为S,求S与m之间的函数关系式,并求出S的最大值;(3)若抛物线上有一点P,作PQ⊥CD,交射线CD于点Q,使∠CPQ=∠BDE,请直接写出点P 的坐标.考点:二次函数综合题.分析:(1)由x2﹣2x﹣3=0得点B的坐标为(3,0),根据顶点坐标公式求出点D的坐标,过点C作CM⊥DE与M,证出DM=CM即可得出∠CDE=4∠DCM=45°,当点M在BD上时,先求出直线BD的解析式,得出点M的坐标为(m,2m﹣6),得出S△BMN=﹣m2+4m﹣3,求出当m=2时,S有最大值1,当点M在CD上时,根据MN=DN=1﹣m,得出S△BMN=﹣m2﹣m+,求出当m=0时,S有最大值,最后即可得出S的最大值;(3)延长PQ交y轴与点F,过点P作PG⊥y轴,根据△PCQ∽△DBE,得出PQ=2CQ,设CQ=a,则PQ=2a,根据△CQF,△PGF均为等腰直角三角形,得出PG=FG=a,CG=a,再把P(a,﹣3+a),代入抛物线y=x2﹣2x﹣3,得出a的值即可.解答:解:(1)由x2﹣2x﹣3=0得:x1=﹣1,x2=3,则点B的坐标为(3,0),∵点D为抛物线的顶点,∴点D的坐标为(1,﹣4),如图1,过点C作CM⊥DE与M,∵点C的坐标是(0,﹣3),∴EM=3,∴DM=4﹣3=1,∵CM=1,∴DM=CM,∴∠CDE=∠DCM=45°,故答案为:(3,0),(1,﹣4),45°;如图2:当点M在BD上时,1≤m≤4,设直线BD的解析式为y=kx+b,由题意解得,∴直线BD的解析式为y=2x﹣6,点M的坐标为(m,2m﹣6).∴S△BMN=(m﹣1)(6﹣2m)=﹣m2+4m﹣3.当m=2时,S有最大值1.如图3:当点M在CD上时,0≤m≤1.∵∠CDE=45°,∴MN=DN=1﹣m,∴S△BMN=(1﹣m)(4﹣1+m)=﹣m2﹣m+.当m=0时,S有最大值,综上,S的最大值为.(3)如图4:延长PQ交y轴与点F,过点P作PG⊥y轴,∵△PCQ∽△DBE,∴==,∴PQ=2CQ,设CQ=a,则PQ=2a,∵△CQF,△PGF均为等腰直角三角形,∴QF=a,CF=a,PF=3a,∴PG=FG=a,∴CG=a﹣a=a,∴P(a,﹣3+a),代入抛物线y=x2﹣2x﹣3,解得a=,∴P(,﹣).点评:本题是二次函数的综合题型,其中涉及到的知识点二次函数的图象与性质、三角形的面积求法、相似三角形的判定与性质,在求有关动点问题时要注意分情况讨论结果.。
河南省许昌市2020年中考数学试卷(I)卷
河南省许昌市2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2017九下·建湖期中) ﹣1是1的()A . 倒数B . 相反数C . 绝对值D . 立方根2. (2分)(2019·梅列模拟) 如图所示的几何体的主视图是()A .B .C .D .3. (2分) (2019七下·马山期末) 海关总署5月8日公布中国进口数据显示,今年前4个月我国货物贸易进出口总值9 510 000 000 000元,其中数据9 510 000 000 000科学记数法表示是()A . 95.1×1011B . 9.51×1012C . 0.951×1013D . 951×10104. (2分) (2019九上·临洮期末) 下列图形中,既是中心对称图形又是轴对称图形的是()A .B .C .D .5. (2分)(2016高二下·连云港期中) 下列推理正确的是()A . 因为a∥d,b∥c,所以c∥dB . 因为a∥c,b∥d,所以c∥dC . 因为a∥b,a∥c,所以b∥cD . 因为a∥b,d∥c,所以a∥c6. (2分)(2020·西安模拟) 将不等式组,的解集表示在数轴上正确的是()A .B .C .D .7. (2分)列等式表示:x的2倍与10的和等于18 ()A . 2x-10=18B . x+10=18C . 2x+10=18D . 2x+18=108. (2分)尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP,由作法可得△OCP≌△ODP,判定这两个三角形全等的根据是()A . SASB . ASAC . AASD . SSS9. (2分) (2019七下·闽侯期中) 下列语句中,假命题的是()A . 对顶角相等B . 若直线a、b、c满足b∥a,c∥a,那么b∥cC . 两直线平行,同旁内角互补D . 互补的角是邻补角10. (2分)(2018·德阳) 下列说法正确的是()A . “明天降雨的概率为50%”,意味着明天一定有半天都在降雨B . 了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C . 掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件D . —组数据的方差越大,则这组数据的波动也越大11. (2分)(2017·武汉模拟) 如图,⊙O是△ABC的外接圆,弦AC的长为3,sinB= ,则⊙O的半径为()A . 4B . 3C . 2D .12. (2分) (2019九上·新蔡期中) 如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD= .其中正确的结论有()A . 4个B . 3个C . 2个D . 1个二、填空题 (共4题;共5分)13. (1分) (2018九下·鄞州月考) 分解因式: ________14. (1分)某校准备组织师生观看北京奥运会球类比赛,在不同时间段里有3场比赛,其中2场是乒乓球赛,1场是羽毛球赛,从中任意选看2场,则选看的2场恰好都是乒乓球比赛的概率是________ .15. (2分) (2019九上·鄂州期末) 定义符号min{a,b}的含义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.如:min{1,﹣2}=﹣2,min{﹣1,2}=﹣1.(1)min{x2﹣1,﹣2}=________;(2)若min{x2﹣2x+k,﹣3}=﹣3,则实数k的取值范围是________.16. (1分)(2019·驻马店模拟) 如图,矩形中,,点是线段上一动点,连接,将沿直线折叠,点落到处,连接,,当△BFC 为等腰三角形时,的长为________.三、解答题 (共7题;共45分)17. (5分)(2017·宁波模拟) 计算:18. (5分)先化简,再求值:÷ ﹣,其中x=2 ﹣2.19. (10分)调查员希望了解某水库中鱼的养殖情况.(1)怎样了解鱼的平均质量?(2)怎样了解鱼的总条数?20. (10分) (2017·绍兴) 某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为为50m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,问饲养室长x为多少时,占地面积y最大?(2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大。
2020年许昌市中考数学模拟试题与答案
2020年许昌市中考数学模拟试题与答案(试卷满分120分,考试时间120分钟)一、选择题(本题共12小题。
每小题3分,共36分。
在每小题给出的四个选项中,只有一项是正确的。
)1.下列因式分解正确的是()A.x2﹣xy+x=x(x﹣y)B.a3+2a2b+ab2=a(a+b)2C.x2﹣2x+4=(x﹣1)2+3 D.ax2﹣9=a(x+3)(x﹣3)2.12月2日,2018年第十三届南宁国际马拉松比赛开跑,2.6万名跑者继续刷新南宁马拉松的参与人数纪录!把2.6万用科学记数法表示为()A.0.26×103B.2.6×103C.0.26×104D.2.6×1043.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④4.如图,在△ABC中,BC边上的高是()A.AF B.BH C.CD D.EC5.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A.B.C.D.6.点A(x1,y1)、B(x2,y2)都在直线y=kx+2(k<0)上,且x1<x2则y1、y2的大小关系是()A.y1 =y2B.y1 <y2C.y1 >y2D.y1 ≥y27. 已知三角形ABC的三个内角满足关系∠B+∠C=3∠A,则此三角形( )A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形8. 学校团委组织“阳光助残”捐款活动,九年一班学生捐款情况如下表:则学生捐款金额的中位数是()A.13人B.12人C.10元D.20元9.下列图形中,既是中心对称图形,又是轴对称图形的是()A. B.C. D.10.下列正比例函数中,y随x的值增大而增大的是()A.y=﹣2014x B.y=(﹣1)x C.y=(﹣π﹣3)x D.y=(1﹣π2)x11.如图,下列说法正确的是( )A.∠B>∠2B.∠2+∠D<180°C.∠1>∠B+∠DD.∠A>∠1 12.如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m为常数且m≠0)的图象都经过A(﹣1,2),B(2,﹣1),结合图象,则不等式kx+b>的解集是()A.x<﹣1 B.﹣1<x<0 C.x<﹣1或0<x<2 D.﹣1<x<0或x>2 二、填空题(本题共6小题,满分18分。
2020届河南省许昌市许昌县中考数学一模试卷(一)(有答案)
河南省许昌市许昌县中考数学一模试卷一.选择题(共10小题,满分30分,每小题3分)1.若一元二次方程x2﹣8x+a=0有一个根是x=3,则方程的另一个根是()A.x=﹣5B.x=5C.x=15D.x=﹣152.如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=60°,BC=1,则BB′的长为()A.4B.C.D.3.已知∠A为锐角,且sin A=,那么∠A等于()A.15°B.30°C.45°D.60°4.如图,在△ABC中,已知∠ADE=∠B,则下列等式成立的是()A.B.C.D.5.如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、BD、OD、OC,若∠ABD=15°,且AD∥OC,则∠BOC的度数为()A.120°B.105°C.100°D.110°6.如图,直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,那么当y1>y2时,x的取值范围是()A.﹣1<x<2B.x>2C.x<﹣1或x>2D.x≤﹣17.小明、小颖和小凡都想去看山西第二届文博会,但现在只有一张门票,三人决定一起做游戏,谁获胜谁就去,游戏规则是:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜,若两枚反面朝上,则小颖获胜;若一枚正面朝上,一枚反面朝上,则小凡获胜,关于这个游戏,下列判断正确的是()A.三人获胜的概率相同B.小明获胜的概率大C.小颖获胜的概率大D.小凡获胜的概率大8.对于二次函数y=﹣x2+x﹣4,下列说法正确的是()A.当x>0时,y随x的增大而增大B.图象的顶点坐标为(﹣2,﹣7)C.当x=2时,y有最大值﹣3D.图象与x轴有两个交点9.如图,菱形OABC的一边OA在x轴的正半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,则△COD的面积为()A.12B.20C.24D.4010.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,∠ACB=36°,AB=BC,AC=2,则AB的长度是()A.﹣1B.1C.D.二.填空题(共5小题,满分15分,每小题3分)11.方程2x2﹣5x﹣1=0的解是.12.如图,在平面直角坐标系中,直线y=x与双曲线y=(k≠0)交于点A,过点C(0,2)作AO的平行线交双曲线于点B,连接AB并延长与y轴交于点D(0,4),则k的值为.13.如图,在△ABC中,AD、BE分别是边BC、AC上的中线,AB=AC=5,cos∠C=,那么GE=.14.如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(7,3),点E在边AB上,且AE=1,已知点P为y轴上一动点,连接EP,过点O作直线EP的垂线段,垂足为点H,在点P从点F (0,)运动到原点O的过程中,点H的运动路径长为.15.如图,点E是矩形ABCD中CD边上一点,将△BCE沿BE折叠为△BFE,点F落在边AD上,若AB =8,BC=10,则CE=.三.解答题(共8小题,满分75分)16.已知等腰△ABC的一边长为5,另两边的长是关于x的一元二次方程x2﹣6x+m=0的两个根,求m的值.17.消费者在许昌市某火锅店饭后买单时可以参与一个抽奖游戏,规则如下:有4张纸牌,它们的背面都是小猪佩奇头像,正面为2张笑脸、2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让消费者去翻纸牌.(1)现小杨有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机翻开一张纸牌,小芳获奖的概率.(2)如果小杨、小月都有翻两张牌的机会.小杨先翻一张,放回后再翻一张;小月同时翻开两张纸牌.他们翻开的两张纸牌中只要出现一张笑脸就获奖.他们谁获奖的机会更大些?通过树状图或列表法分析说明理由.18.如图,点C是⊙O直径AB上一点,过C作CD⊥AB交⊙O于点D,连接DA,延长BA至点P,连接DP,使∠PDA=∠ADC.(1)求证:PD是⊙O的切线;(2)若AC=3,tan∠PDC=,求BC的长.19.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.20.如图,一艘轮船在A处测得灯塔P在船的北偏东30°的方向,轮船沿着北偏东60°的方向航行16km 后到达B处,这时灯塔P在船的北偏西75°的方向.求灯塔P与B之间的距离(结果保留根号).21.某工厂大门是一抛物线型水泥建筑物,如图①所示,大门地面宽AB=4 m,顶部C离地面高度为4.8 m.(1)在图②所建立的平面直角坐标系xOy中,求这条抛物线对应的函数表达式;(2)现有一辆运货卡车高2.6m,宽2.4m,欲通过这个大门,请判断这辆卡车能否顺利通过.22.如图,正方形ABCD的边长为+1,对角线AC、BD相交于点O,AE平分∠BAC分别交BC、BD于E、F(1)求证:△ABF∽△ACE;(2)求tan∠BAE的值;(3)在线段AC上找一点P,使得PE+PF最小,求出最小值.23.在平面直角坐标系中,已知抛物线y=ax2+bx+c(a≠0)经过点A(1,0)、B(4,0),C(0,2)三点,直线y=kx+t经过B、C两点,点D是抛物线上一个动点,过点D作y轴的平行线,与直线BC相交于点E.(1)求直线和抛物线的解析式;(2)当点D在直线BC下方的抛物线上运动,使线段DE的长度最大时,求点D的坐标;(3)点D在运动过程中,若使O、C、D、E为顶点的四边形为平行四边形时,请直接写出满足条件的所有点D的坐标.河南省许昌市许昌县中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】利用根与系数的关系求得方程的另一根.【解答】解:设方程的另一根为x,则x+3=8,解得x=5.故选:B.【点评】本题考查了根与系数的关系、一元二次方程的解的定义.在利用根与系数的关系x1+x2=﹣时,一定要弄清楚公式中字母a、b所表示的意义.2.【分析】在直角△ABC中根据30°角所对的直角边等于斜边的一半求得AB,而BB′=2AB,据此即可求解.【解答】解:∵∠C=90°,∠B=60°,∴∠BAC=30°,∵BC=1,∴AB=2,根据中心对称的性质得到BB′=2AB=4.故选:A.【点评】本题主要考查了直角三角形的性质:30°的锐所对的直角边等于斜边的一半,以及旋转的性质.3.【分析】直接利用特殊角的三角函数值得出答案.【解答】解:∵sin A=,∴∠A=60°.故选:D.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.4.【分析】首先证明△AED∽△ACB,再根据相似三角形的性质:对应边成比例可得答案.【解答】解:∵∠A=∠A,∠ADE=∠B,∴△AED∽△ACB,∴=.故选:A.【点评】此题主要考查了相似三角形的性质与判定,关键是掌握判断三角形相似的方法和相似三角形的性质.5.【分析】根据直径所对的圆周角是90°和平行线的性质解答即可.【解答】解:∵AB是⊙O的直径,∠ABD=15°,∴∠ADB=90°,∴∠A=75°,∵AD∥OC,∴∠AOC=75°,∴∠BOC=180°﹣75°=105°,故选:B.【点评】此题考查圆周角定理,关键是根据直径所对的圆周角是90°和平行线的性质解答.6.【分析】根据函数图象,分别讨论当x<﹣1,x=﹣1,﹣1<x<2,x=2,x>2时,y1和y2的大小关系,即可得到答案.【解答】解:根据图象可知:当x<﹣1时,y1<y2,当x=﹣1时,y1=y2,当﹣1<x<2时,y1>y2,当x=2时,y1=y2,当x>2时,y1<y2,故选:A.【点评】本题考查了二次函数与不等式(组),正确掌握观察函数图象是解题的关键.7.【分析】利用树状图法得出所有的可能,进而分别求出获胜的概率即可.【解答】解:如图所示:,所有的可能为;(正,正),(正,反),(反,正),(反,反),故小明获胜的概率为:,小颖获胜的概率为:,小凡获胜的概率为:,故此游戏小凡获胜概率大,故选:D.【点评】本题主要考查了游戏公平性,正确利用树状图法求概率是解题关键.8.【分析】先把函数的解析式化成顶点式,再逐个判断即可.【解答】解:A、y=﹣x2+x﹣4=﹣(x﹣2)2﹣3,当x<2时,y随x的增大而增大,故本选项不符合题意;B、顶点坐标为(2,﹣3),故本选项不符合题意;C、当x=2时,y有最大值是﹣3,故本选项符合题意;D、∵顶点坐标为(2,﹣3),函数图象开口向下,∴图象和x轴没有交点,故本选项不符合题意;故选:C .【点评】本题考查了二次函数的图象、性质和最值,能熟记二次函数的图象和性质的内容是解此题的关键.9.【分析】易证S 菱形ABCO =2S △CDO ,再根据tan ∠AOC 的值即可求得菱形的边长,即可求得点C 的坐标,可得菱形的面积和结论.【解答】解:作DF ∥AO ,CE ⊥AO ,∵tan ∠AOC =,∴设CE =4x ,OE =3x ,∴3x •4x =24,x =±, ∴OE =3,CE =4,由勾股定理得:OC =5,∴S 菱形OABC =OA •CE =5×=40, ∵四边形OABC 为菱形,∴AB ∥CO ,AO ∥BC ,∵DF ∥AO ,∴S △ADO =S △DFO ,同理S △BCD =S △CDF ,∵S 菱形ABCO =S △ADO +S △DFO +S △BCD +S △CDF ,∴S 菱形ABCO =2(S △DFO +S △CDF )=2S △CDO =40,∴S △CDO =20;故选:B .【点评】本题考查了菱形的性质,反比例函数的性质,三角函数的定义,考查了菱形面积的计算,本题中求得S 菱形ABCO =2S △CDO 是解题的关键.10.【分析】首先证明DA =ED =EC ,设AB =x ,则AD =DE =EC =x ,由△DAE ∽△CAD ,可得AD 2=AE•AC ,由此构建方程即可解决问题.【解答】解:∵AB =BC ,∠ACB =36°,∴∠BAC =∠ACB =36°,∠B =∠CED =108°,∴∠AED =72°,∴CA =CD ,∠ACD =36°,∴∠CAD=∠CDA=72°,∴∠ADE=∠ACD=36°,∴DA=ED=EC,设AB=x,则AD=DE=EC=x,∵∠DAE=∠CAD,∠ADE=∠ACD,∴△DAE∽△CAD,∴AD2=AE•AC,∴x2=(2﹣x)•2,∴x=﹣1或﹣﹣1(舍弃),∴AB=﹣1,故选:A.【点评】本题考查相似三角形的应用,等腰三角形的性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.二.填空题(共5小题,满分15分,每小题3分)11.【分析】利用公式法求解可得.【解答】解:∵a=2,b=﹣5,c=﹣1,∴△=25﹣4×2×(﹣1)=33>0,则x=,即x1=,x2=,故答案为:x1=,x2=.【点评】此题考查了一元二次方程的解法.此题难度不大,注意选择适宜的解题方法是解此题的关键.12.【分析】根据“直线y=x与双曲线y=(k≠0)交于点A,过点C(0,2)作AO的平行线交双曲线于点B”,得到BC的解析式,根据“OD=4,OC=2,BC∥AO”,得到△BCD~△AOD,结合点A 和点B的坐标,根据点A和点B都在双曲线上,得到关于m的方程,解之,得到点A的坐标,即可得到k的值.【解答】解:∵OA的解析式为:y=,又∵AO∥BC,点C的坐标为:(0,2),∴BC的解析式为:y=,设点B的坐标为:(m,m+2),∵OD=4,OC=2,BC∥AO,∴△BCD~△AOD,∴点A的坐标为:(2m,m),∵点A和点B都在y=上,∴m()=2m•m,解得:m=2,即点A的坐标为:(4,),k=4×=,故答案为:.【点评】本题考查了反比例函数与一次函数的交点问题,正确掌握代入法和三角形相似的判定定理是解题的关键.13.【分析】根据题意,作出合适的辅助线,然后根据勾股定理、三角形相似可以求得GE的长,本题得以解决.【解答】解:作EF⊥BC于点F,∵AD、BE分别是边BC、AC上的中线,AB=AC=5,cos∠C=,∴AD⊥BC,AD=3,CD=4,∴AD∥EF,BC=8,∴EF=1.5,DF=2,△BDG∽△BFE,∴,BF=6,∴DG=1,∴BG=,∴,得BE=,∴GF=BE﹣BG==,故答案为:.【点评】本题考查解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.14.【分析】H经过的路径是以OE为直径的弧,连接OE,首先求得△OPE的面积,然后利用三角形面积公式求得OH的长,然后在直角△OEH中,利用三角函数求得∠OEH的度数,然后利用长公式即可求解.【解答】解:连接OE.S=××7=,△OPE在直角△OEA中,OE====5,PE==,=PE•OH,即×OH=,∵S△OPE∴OH=5,∴在直角△OEH中,sin∠OEH===,∴∠OEH=45°,点H的运动路径长是:=.故答案是:.【点评】本题考查了点的运动轨迹以及弧长公式,理解H运动的路径,求得对应的圆心角是关键.15.【分析】由矩形的性质可得AB=CD=8,AD=BC=10,∠A=∠D=90°,由折叠的性质可求BF=BC =10,EF=CE,由勾股定理可求AF的长,CE的长.【解答】解:∵四边形ABCD是矩形∴AB=CD=8,AD=BC=10,∠A=∠D=90°,∵将△BCE沿BE折叠为△BFE,∴BF=BC=10,EF=CE,在Rt△ABF中,AF==6∴DF=AD﹣AF=4在Rt△DEF中,DF2+DE2=EF2=CE2,∴16+(8﹣CE)2=CE2,∴CE=5故答案为:5【点评】本题考查了翻折变换,矩形的性质,折叠的性质,勾股定理,灵活运用这些性质进行推理是本题的关键.三.解答题(共8小题,满分75分)16.【分析】分腰长为5和底边为5两种情况,根据三角形三边关系定理及等腰三角形的特点,确定另两边的长,从而确定m的值.【解答】解:方程x2﹣6x+m=0,得x1+x2=6,当5为腰长时,则x2﹣6x+m=0的一个根为5,则另一根为1,∵5,5,1能组成等腰三角形,∴此时m=5×1=5;当5为底边时,x2﹣6x+m=0有两个相等的实数根,故b2﹣4ac=36﹣4m=0,解得:m=9,∴方程为x2﹣6x+9=0,解得:x1=x2=3,∵3,3,5能组成等腰三角形,∴此时m=9.所以m的值为5或9.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程的解的定义,三角形三边关系和等腰三角形的性质.17.【分析】(1)根据概率公式直接求解即可;(2)首先根据题意分别画出树状图,然后由树状图即可求得所有等可能的结果与获奖的情况,再利用概率公式求解即可求得他们获奖的概率,比较即可求得答案.【解答】解:(1)有4张纸牌,它们的背面都是小猪佩奇头像,正面为2张笑脸、2张哭脸,翻一次牌正面是笑脸的就获奖,正面是哭脸的不获奖,则小芳获奖的概率=;(2)设两张笑脸牌分别为笑1,笑2,两张哭脸牌分别为哭1,哭2,画树状图如下:小杨:∵共有12种等可能的结果,翻开的两张纸牌中出现笑脸的有10种情况,∴小杨获奖的概率是:=;小月:∵共有16种等可能的结果,翻开的两张纸牌中出现笑脸的有12种情况, ∴小月获奖的概率是:=; ∵>,∴P (小杨获奖)>P (小月获奖),∴小杨获奖的机会更大些.【点评】此题考查了列表法或树状图法求概率.注意小杨属于不放回实验,小月属于放回实验.用到的知识点为:概率=所求情况数与总情况数之比.18.【分析】(1)求出∠ODA +∠PDA =∠ADC +∠DAO =90°,根据切线的判定得出即可;(2)求出∠PDC =∠DOC ,解直角三角形求出=,设DC =4x ,OC =3x ,求出3x +3=5x ,求出x ,即可得出答案. 【解答】(1)证明:连接OD ,∵OD =OA ,∴∠ODA =∠OAD ,∵CD ⊥AB 于点C ,∴∠OAD +∠ADC =90°,∴∠ODA +∠ADC =90°,∵∠PDA =∠ADC ,∴∠PDA +∠ODA =90°,即∠PDO =90°,∴PD ⊥OD ,∵D 在⊙O 上,∴PD 是⊙O 的切线;(2)解:∵∠PDO =90°,∴∠PDC +∠CDO =90°,∵CD ⊥AB 于点C ,∴∠DOC +∠CDO =90°,∴∠PDC=∠DOC,∵,∴=,设DC=4x,CO=3x,则OD=5x,∵AC=3,∴OA=3x+3,∴3x+3=5x,∴x=,∴OC=3x=,OD=OB=5x=,∴BC=12.【点评】本题考查了勾股定理、与圆有关的计算、切线的性质和判定等知识点,能综合运用定理进行推理和计算是解此题的关键.19.【分析】(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;(2)利用一次函数解析式求得C(4,0),即OC=4,即可得出△AOB的面积=×4×3=6;(3)分类讨论:当AO为等腰三角形腰与底时,求出点E坐标即可.【解答】解:(1)如图,在Rt△OAD中,∠ADO=90°,∵tan∠AOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=,考点:n=3×(﹣2)=﹣6,所以反比例函数解析式为:y=﹣,把B(m,﹣1)代入y=﹣,得:m=6,把A(﹣2,3),B(6,﹣1)分别代入y=kx+b,得:,解得:,所以一次函数解析式为:y=﹣x+2;(2)当y=0时,﹣x+2=0,解得:x=4,则C(4,0),所以;(3)当OE3=OE2=AO=,即E2(﹣,0),E3(,0);当OA=AE1=时,得到OE1=2OD=4,即E1(﹣4,0);当AE4=OE4时,由A(﹣2,3),O(0,0),得到直线AO解析式为y=﹣x,中点坐标为(﹣1,1.5),令y=0,得到y=﹣,即E4(﹣,0),综上,当点E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)时,△AOE是等腰三角形.【点评】此题考查了反比例函数与一次函数的交点问题,熟练掌握各自的性质是解本题的关键.20.【分析】作PH⊥AB,由题意得∠PAB=30°,∠PBA=45°,设PH=x,则AH=x,BH=x,PB =x,由AB=16可得关于x的方程,解之可得.【解答】解:过点P作PH⊥AB于点H,由题意得∠PAB=30°,∠PBA=45°,设PH=x,则AH=x,BH=x,PB=x,∵AB=16,∴x+x=16,解得:x=8﹣8,∴PB=x=8﹣8,答:灯塔P与B之间的距离为(8﹣8)km.【点评】本题考查的是解直角三角形的应用﹣方向角问题,注意在解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.21.【分析】(1)由图象可知:B(2,﹣4.8),将点B坐标代入函数y=ax2即可求解;(2)设货车从中间通过,设点D在抛物线上,则D横坐标为1.2,求得BD即可求解.【解答】解:(1)由图象可知:B(2,﹣4.8),将点B坐标代入函数y=ax2,解得:a=﹣1.2,则函数的表达式为:y=﹣1.2x2,(2)设货车从中间通过,如下图BD为车辆通过的最大高度,设点D在抛物线上,则D横坐标为1.2,代入二次函数表达式,解得BD=1.2×1.22=1.728米,即最大通过高度为1.728米,而2.6>1.728,故不能通过.【点评】本题考查了二次函数的性质在实际生活中的应用.要弄清楚题意,考虑到最大允许的高度即可.22.【分析】(1)根据两角对应相等的两个三角形相似判断即可;(2)如图1中,作EH⊥AC于H.首先证明BE=EH=HC,设BE=EH=HC=x,构建方程求出x即可解决问题;(3)如图2中,作点F关于直线AC的对称点H,连接EH交AC于点P,连接PF,此时PF+PE的值最小,最小值为线段EH的长;【解答】(1)证明:∵四边形ABCD是正方形,∴∠ACE=∠ABF=∠CAB=45°,∵AE平分∠CAB,∴∠EAC=∠BAF=22.5°,∴△ABF∽△ACE.(2)解:如图1中,作EH⊥AC于H.∵EA平分∠CAB,EH⊥AC,EB⊥AB,∴BE=EH,∵∠HCE=45°,∠CHE=90°,∴∠HCE=∠HEC=45°,∴HC=EH,∴BE=EH=HC,设BE=HE=HC=x,则EC=x,∵BC=+1,∴x+x=+1,∴x=1,在Rt△ABE中,∵∠ABE=90°,∴tan∠EAB===﹣1.(3)如图2中,作点F关于直线AC的对称点H,连接EH交AC于点P,连接PF,此时PF+PE的值最小.作EM⊥BD于M.易知BM=EM=,∵AC==2+,∴OA=OC=OB=AC=,∴OH=OF=OA•tan∠OAF=OA•tan∠EAB=•(﹣1)=,∴HM=OH+OM=,在Rt△EHM中,EH===.∴PE+PF的最小值为.【点评】本题考查正方形的性质,相似三角形的判定,勾股定理,最短问题等知识,解题的关键是学会添加常用辅助线,学会利用轴对称解决最短问题,属于中考常考题型.23.【分析】(1)利用待定系数法求解可得;(2)设点D坐标为(m,m2﹣m+2),则E点的坐标为(m,﹣m+2),由DE=(﹣m+2)﹣(m2﹣m+2)=﹣m2+2m=﹣(m﹣2)2+2可得答案;(3)分点D在DE上方和下方两种情况,用m的代数式表示出DE的长度,依据DE=2得出关于m的方程,解之可得.【解答】解:(1)把点B(4,0),C(0,2)代入直线y=kx+t,得:,解得,∴y=﹣x+2;把点A(1,0)、B(4,0),C(0,2)代入y=ax2+bx+c,得:,解得,∴y=x2﹣x+2;(2)设点D坐标为(m,m2﹣m+2),E点的坐标为(m,﹣m+2),∴DE=(﹣m+2)﹣(m2﹣m+2)=﹣m2+2m=﹣(m﹣2)2+2,∴当m=2时,DE的长最大,为2,当m=2时,m2﹣m+2=﹣1,∴D(2,﹣1);(3)①当D在E下方时,如(2)中,DE=﹣m2+2m,OC=2,OC∥DE,∴当DE=OC时,四边形OCED为平行四边形,则﹣m2+2m=2,解得m=2,此时D(2,﹣1);②当D在E上方时,DE=(m2﹣m+2)﹣(﹣m+2)=m2﹣2m,令m2﹣2m=2,解得m=2,∴此时D(2+2,3﹣)或(2﹣2,3+),综上所述,点D的坐标是(2,﹣1)或(2+2,3﹣)或(2﹣2,3+)时,都可以使O、C、D、E为顶点的四边形为平行四边形.【点评】本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式,二次函数的性质及平行四边形的判定与性质等知识点.。
河南省许昌市2019-2020学年中考一诊数学试题含解析
河南省许昌市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,正方形ABCD的边长为4,点M是CD的中点,动点E从点B出发,沿BC运动,到点C时停止运动,速度为每秒1个长度单位;动点F从点M出发,沿M→D→A远动,速度也为每秒1个长度单位:动点G从点D出发,沿DA运动,速度为每秒2个长度单位,到点A后沿AD返回,返回时速度为每秒1个长度单位,三个点的运动同时开始,同时结束.设点E的运动时间为x,△EFG的面积为y,下列能表示y与x的函数关系的图象是()A.B.C.D.2.如图,△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为()A.5 B.4 C.3 D.23.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.94.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A.1个B.2个C.3个D.4个5.如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于()A.90°B.120°C.60°D.30°6.我国古代数学著作《九章算术》卷七“盈不足”中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:几个人合伙买一件物品,每人出8元,则余3元;若每人出7元,则少4元,问几人合买?这件物品多少钱?若设有x人合买,这件物品y元,则根据题意列出的二元一次方程组为()A.8374x yx y=-⎧⎨=+⎩B.8+473x yx y=⎧⎨=-⎩C.3+847x yx y=⎧⎨=-⎩D.8+374x yx y=⎧⎨=-⎩7.不等式组302xx+>⎧⎨-≥-⎩的整数解有()A.0个B.5个C.6个D.无数个8.已知抛物线y=(x﹣1a)(x﹣11a+)(a为正整数)与x轴交于M a、N a两点,以M a N a表示这两点间的距离,则M1N1+M2N2+…+M2018N2018的值是()A.20162017B.20172018C.20182019D.201920209.两个有理数的和为零,则这两个数一定是()A.都是零B.至少有一个是零C.一个是正数,一个是负数D.互为相反数10.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( )A .±1B .1C .-1D .011.如图,在▱ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E .若BF=8,AB=5,则AE 的长为( )A .5B .6C .8D .1212.如图,△ABC 为直角三角形,∠C=90°,BC=2cm ,∠A=30°,四边形DEFG 为矩形,DE=23cm , EF=6cm ,且点C 、B 、E 、F 在同一条直线上,点B 与点E 重合.Rt △ABC 以每秒1cm 的速度沿矩形DEFG 的边EF 向右平移,当点C 与点F 重合时停止.设Rt △ABC 与矩形DEFG 的重叠部分的面积为ycm 2,运动时间xs .能反映ycm 2与xs 之间函数关系的大致图象是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.不等式1﹣2x <6的负整数解是___________.14.如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n 个图形的周长是___.15.二次函数2(1)3y x =--的图象与y 轴的交点坐标是________.16.抛物线y=mx 2+2mx+5的对称轴是直线_____.17.分式方程231x x =+的解为x=_____. 18.若a 2﹣2a ﹣4=0,则5+4a ﹣2a 2=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)调查了________名学生;(2)补全条形统计图;(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;(4)学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学(,,)A B C 和2位女同学(,)D E ,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.20.(6分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?21.(6分)综合与实践﹣﹣旋转中的数学问题背景:在一次综合实践活动课上,同学们以两个矩形为对象,研究相似矩形旋转中的问题:已知矩形ABCD ∽矩形A′B′C′D′,它们各自对角线的交点重合于点O ,连接AA′,CC′.请你帮他们解决下列问题: 观察发现:(1)如图1,若A′B′∥AB ,则AA′与CC′的数量关系是______;操作探究:(2)将图1中的矩形ABCD 保持不动,矩形A′B′C′D′绕点O 逆时针旋转角度α(0°<α≤90°),如图2,在矩形A′B′C′D′旋转的过程中,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;操作计算:(3)如图3,在(2)的条件下,当矩形A′B′C′D′绕点O 旋转至AA′⊥A′D′时,若AB=6,BC=8,A′B′=3,求AA′的长.22.(8分)为了预防“甲型H 1N 1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y (mg )与时间x (min )成正比例,药物燃烧后,y 与x 成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?23.(8分)如图,抛物线y=﹣x2+bx+c(a≠0)与x轴交于点A(﹣1,0)和B(3,0),与y轴交于点C,点D的横坐标为m(0<m<3),连结DC并延长至E,使得CE=CD,连结BE,BC.(1)求抛物线的解析式;(2)用含m的代数式表示点E的坐标,并求出点E纵坐标的范围;(3)求△BCE的面积最大值.24.(10分)如图,在Rt△ABC中,∠C=90°,AC=12AB.求证:∠B=30°.请填空完成下列证明.证明:如图,作Rt△ABC的斜边上的中线CD,则CD=12AB=AD ().∵AC=12 AB,∴AC=CD=AD 即△ACD是等边三角形.∴∠A=°.∴∠B=90°﹣∠A=30°.25.(10分)某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?26.(12分)如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.(1)求证:四边形ADEF是平行四边形;(2)若∠ABC=60°,BD=6,求DE的长.27.(12分)为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.求A,B两种品牌的足球的单价.求该校购买20个A品牌的足球和2个B品牌的足球的总费用.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】当点F在MD上运动时,0≤x<2;当点F在DA上运动时,2<x≤4.再按相关图形面积公式列出表达式即可.【详解】解:当点F在MD上运动时,0≤x<2,则:y=S 梯形ECDG -S △EFC -S △GDF =()()()2421144224222x x x x x x x -+⨯--+-⨯-=+, 当点F 在DA 上运动时,2<x≤4,则: y=()142244162x x ⎡⎤--⨯⨯=-+⎣⎦, 综上,只有A 选项图形符合题意,故选择A.【点睛】本题考查了动点问题的函数图像,抓住动点运动的特点是解题关键.2.B【解析】【分析】根据旋转的性质可得AB=AE ,∠BAE=60°,然后判断出△AEB 是等边三角形,再根据等边三角形的三条边都相等可得BE=AB .【详解】解:∵△ABC 绕点A 顺时针旋转 60°得到△AED ,∴AB=AE ,∠BAE=60°,∴△AEB 是等边三角形,∴BE=AB ,∵AB=1,∴BE=1.故选B .【点睛】本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.3.A【解析】【详解】解:∵x ﹣2y=3,∴3﹣2x+4y=3﹣2(x ﹣2y )=3﹣2×3=﹣3;故选A .4.A【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确, 乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选A.【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键. 5.C【解析】解:∵A(0,1),B(0,﹣1),∴AB=1,OA=1,∴AC=1.在Rt△AOC中,cos∠BAC=OAAC=12,∴∠BAC=60°.故选C.点睛:本题考查了垂径定理的应用,关键是求出AC、OA的长.解题时注意:垂直弦的直径平分这条弦,并且平分弦所对的两条弧.6.D【解析】【分析】根据题意可以找出题目中的等量关系,列出相应的方程组,从而可以解答本题.【详解】由题意可得:8+3 74x yx y=⎧⎨=-⎩,故选D.【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.7.B【解析】【分析】先解每一个不等式,求出不等式组的解集,再求整数解即可.【详解】解不等式x+3>0,得x>﹣3,解不等式﹣x≥﹣2,得x≤2,∴不等式组的解集为﹣3<x≤2,∴整数解有:﹣2,﹣1,0,1,2共5个,故选B.【点睛】本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.8.C【解析】【分析】代入y=0求出x 的值,进而可得出M a N a =1a -1a+1,将其代入M 1N 1+M 2N 2+…+M 2018N 2018中即可求出结论. 【详解】解:当y=0时,有(x-1a)(x-1a+1)=0, 解得:x 1=1a+1,x 2=1a, ∴M a N a =1a -1a+1, ∴M 1N 1+M 2N 2+…+M 2018N 2018=1-12+12-13+…+12018-12019=1-12019=20182019. 故选C .【点睛】本题考查了抛物线与x 轴的交点坐标、二次函数图象上点的坐标特征以及规律型中数字的变化类,利用二次函数图象上点的坐标特征求出M a N a 的值是解题的关键.9.D【解析】解:互为相反数的两个有理数的和为零,故选D .A 、C 不全面.B 、不正确.10.C【解析】【分析】 根据已知和根与系数的关系12c x x a =得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.【详解】解:设1x 、2x 是22(2)0x k x k +-+=的两根,由题意得:121=x x ,由根与系数的关系得:212x x k =, ∴k 2=1,解得k=1或−1,∵方程有两个实数根,则222=(2)43440∆--=--+>k k k k ,当k=1时,34430∆=--+=-<,∴k=1不合题意,故舍去,当k=−1时,34450∆=-++=>,符合题意,∴k=−1,故答案为:−1.【点睛】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键. 11.B【解析】试题分析:由基本作图得到AB=AF ,AG 平分∠BAD ,故可得出四边形ABEF 是菱形,由菱形的性质可知AE ⊥BF ,故可得出OB=4,再由勾股定理即可得出OA=3,进而得出AE=2AO=1.故选B .考点:1、作图﹣基本作图,2、平行四边形的性质,3、勾股定理,4、平行线的性质12.A【解析】∵∠C=90°,BC=2cm ,∠A=30°,∴AB=4,由勾股定理得:AC=23,∵四边形DEFG 为矩形,∠C=90,∴DE=GF=23,∠C=∠DEF=90°,∴AC ∥DE ,此题有三种情况:(1)当0<x <2时,AB 交DE 于H ,如图∵DE ∥AC , ∴EH BE AC BC =, 即223EH x =, 解得:EH=3x , 所以y=12•3x•x=32x 2, ∵x 、y 之间是二次函数,所以所选答案C 错误,答案D 错误,∵a=32>0,开口向上; (2)当2≤x≤6时,如图,此时y=12×2×23=23, (3)当6<x≤8时,如图,设△ABC 的面积是s 1,△FNB 的面积是s 2,BF=x ﹣6,与(1)类同,同法可求3﹣3∴y=s 1﹣s 2,=12×2×312×(x ﹣6)×3﹣3, =323﹣3, 30, ∴开口向下,所以答案A 正确,答案B 错误,故选A .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.﹣2,﹣1【解析】试题分析:根据不等式的性质求出不等式的解集,找出不等式的整数解即可.解:1﹣2x <6,移项得:﹣2x <6﹣1,合并同类项得:﹣2x <5,不等式的两边都除以﹣2得:x >﹣,∴不等式的负整数解是﹣2,﹣1,故答案为:﹣2,﹣1.点评:本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的性质求出不等式的解集是解此题的关键.14.2n+1【解析】观察摆放的一系列图形,可得到依次的周长分别是3,4,5,6,7,…,从中得到规律,根据规律写出第n 个图形的周长.解:由已知一系列图形观察图形依次的周长分别是:(1)2+1=3,(2)2+2=4,(3)2+3=5,(4)2+4=6,(5)2+5=7,…,所以第n 个图形的周长为:2+n .故答案为2+n .此题考查的是图形数字的变化类问题,关键是通过观察分析得出规律,根据规律求解.15.(0,2)-【解析】【分析】求出自变量x 为1时的函数值即可得到二次函数的图象与y 轴的交点坐标.【详解】把0x =代入2(1)3y x =--得:132y =-=-,∴该二次函数的图象与y 轴的交点坐标为(0,2)-,故答案为(0,2)-.【点睛】本题考查了二次函数图象上点的坐标特征,在y 轴上的点的横坐标为1.16.x=﹣1【解析】【分析】根据抛物线的对称轴公式可直接得出.【详解】解:这里a=m ,b=2m∴对称轴x=2122b m a m-=-=- 故答案为:x=-1.【点睛】解答本题关键是识记抛物线的对称轴公式x=2b a -. 17.2【解析】根据分式方程的解法,先去分母化为整式方程为2(x+1)=3x ,解得x=2,检验可知x=2是原分式方程的解.故答案为2.18.-3【解析】试题解析:∵2240a a ,--= 即224a a ,-= ∴原式()2522583a a ,=--=-=-故答案为 3.-三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.50 见解析(3)115.2° (4)35【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 º×它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答解:(1)由题意可知该班的总人数=15÷30%=50(名)故答案为50;(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=50﹣15﹣9﹣16=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,故答案为115.2°;(4)画树状图如图.由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)==.点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.20.(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到110元,且更有利于减少库存,则商品应降价2.1元.【解析】【分析】(1)设每次降价的百分率为x,(1﹣x)2 为两次降价后的百分率,40元降至32.4元就是方程的等量条件,列出方程求解即可;(2)设每天要想获得110 元的利润,且更有利于减少库存,则每件商品应降价y 元,由销售问题的数量关系建立方程求出其解即可【详解】解:(1)设每次降价的百分率为x.40×(1﹣x)2=32.4x=10%或190%(190%不符合题意,舍去)(2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由题意,得()4030y (448)5100.5y --⨯+= 解得:1y =1.1,2y =2.1,∵有利于减少库存,∴y =2.1.答:要使商场每月销售这种商品的利润达到 110 元,且更有利于减少库存,则每件商品应降价 2.1 元.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.21.(1)AA′=CC′;(2)成立,证明见解析;(3)AA′=22132- 【解析】【分析】(1)连接AC 、A′C′,根据题意得到点A 、A′、C′、C 在同一条直线上,根据矩形的性质得到OA=OC ,OA′=OC′,得到答案;(2)连接AC 、A′C′,证明△A′OA ≌△C′OC ,根据全等三角形的性质证明;(3)连接AC ,过C 作CE ⊥AB′,交AB′的延长线于E ,根据相似多边形的性质求出B′C′,根据勾股定理计算即可.【详解】(1)AA′=CC′,理由如下:连接AC 、A′C′,∵矩形ABCD ∽矩形A′B′C′D′,∠CAB=∠C′A′B′,∵A′B′∥AB ,∴点A 、A′、C′、C 在同一条直线上,由矩形的性质可知,OA=OC ,OA′=OC′,∴AA′=CC′,故答案为A A′=CC′;理由如下:连接AC 、A′C′,则AC 、A′C′都经过点O ,由旋转的性质可知,∠A′OA=∠C′OC ,∵四边形ABCD 和四边形A′B′C′D′都是矩形,∴OA=OC ,OA′=OC′,在△A′OA 和△C′OC 中,{OA OCA OA C OC OA OC =∠=∠'=''',∴△A′OA ≌△C′OC ,∴AA′=CC′;(3)连接AC ,过C 作CE ⊥AB′,交AB′的延长线于E ,∵矩形ABCD ∽矩形A′B′C′D′, ∴AB BC A B B C ='''',即683B C ='', 解得,B′C′=4,∵∠EB′C=∠B′C′C=∠E=90°,∴四边形B′ECC′为矩形,∴EC=B′C′=4,在Rt △ABC 中,22AB BC +=10, 在Rt △AEC 中,22AC CE -21∴21﹣3,又AA′=CC′=B′E ,∴AA′=22132.本题考查的是矩形的性质、旋转变换的性质、全等三角形的判定和性质,掌握旋转变换的性质、矩形的性质是解题的关键.22.(1)()3084{?48(8)x x y x x≤≤=>;(2)至少需要30分钟后生才能进入教室.(3)这次消毒是有效的. 【解析】【分析】(1)药物燃烧时,设出y 与x 之间的解析式y=k 1x ,把点(8,6)代入即可,从图上读出x 的取值范围;药物燃烧后,设出y 与x 之间的解析式y=2k x,把点(8,6)代入即可; (2)把y=1.6代入反比例函数解析式,求出相应的x ;(3)把y=3代入正比例函数解析式和反比例函数解析式,求出相应的x ,两数之差与10进行比较,大于或等于10就有效.【详解】解:(1)设药物燃烧时y 关于x 的函数关系式为y=k 1x (k 1>0)代入(8,6)为6=8k 1∴k 1=34设药物燃烧后y 关于x 的函数关系式为y=2k x (k 2>0)代入(8,6)为6=2k 8, ∴k 2=48 ∴药物燃烧时y 关于x 的函数关系式为3y x 4=(0≤x≤8)药物燃烧后y 关于x 的函数关系式为48y x =(x >8) ∴()30x 84y 48(8)xx x ⎧≤≤⎪⎪⎨=⎪>⎪⎩ (2)结合实际,令48y x =中y≤1.6得x≥30 即从消毒开始,至少需要30分钟后生才能进入教室.(3)把y=3代入3y x 4=,得:x=4 把y=3代入48y x=,得:x=16 ∵16﹣4=12所以这次消毒是有效的.现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.23.(1)y=﹣x 2+2x+1.(2)2≤E y <2.(1)当m=1.5时,S △BCE 有最大值,S △BCE 的最大值=278. 【解析】分析:(1) 1)把A 、B 两点代入抛物线解析式即可;(2)设()()2,23,0,3D m m m C CE CD -++=,利用求线段中点的公式列出关于m 的方程组,再利用0<m <1即可求解;(1) 连结BD ,过点D 作x 轴的垂线交BC 于点H,由BCE BCD S S ∆∆=,设出点D 的坐标,进而求出点H 的坐标,利用三角形的面积公式求出BCE S ∆,再利用公式求二次函数的最值即可.详解:(1)∵抛物线 2y x bx c =-++ 过点A (-1,0)和B (1,0) 10930b c b c ---=⎧∴⎨-++=⎩ 22233b y x xc =⎧∴∴=-++⎨=⎩ (2)∵()()2,23,0,3D m m m C CE CD -++= ∴点C 为线段DE 中点设点E (a,b )()20236a m b m m +=⎧⎪∴⎨+-++=⎪⎩ ()2,23E m m m ∴--+∵0<m <1, ()222312m m m -+=-+∴当m=1时,纵坐标最小值为2当m=1时,最大值为2∴点E 纵坐标的范围为26E y ≤<(1)连结BD ,过点D 作x 轴的垂线交BC 于点H∵CE=CD ()2,23,:3BCE BCD S S D m m m BC y x ∆∆∴=-++=-+Q∴H (m ,-m+1) ∴()211=233322BCD S DH OB m m m ∆=⨯-+++-⨯ 23922m m =-+ 当m=1.5时,max 278EBC S ∆=.点睛:本题考查了二次函数的综合题、待定系数法、一次函数等知识点,解题的关键是灵活运用所学知识解决问题,会用方程的思想解决问题.24.直角三角形斜边上的中线等于斜边的一半;1.【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半和等边三角形的判定与性质填空即可.【详解】证明:如图,作Rt△ABC的斜边上的中线CD,则CD=12AB=AD(直角三角形斜边上的中线等于斜边的一半),∵AC=12 AB,∴AC=CD=AD 即△ACD是等边三角形,∴∠A=1°,∴∠B=90°﹣∠A=30°.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等边三角形的判定与性质,重点在于逻辑思维能力的训练.25.(1)购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)这所学校最多可购买2个乙种足球【解析】【分析】(1)根据题意可以列出相应的分式方程,从而可以求得购买一个甲种足球、一个乙种足球各需多少元;(2)根据题意可以列出相应的不等式,从而可以求得这所学校最多可购买多少个乙种足球.【详解】(1)设购买一个甲种足球需要x元,则购买一个乙种篮球需要(x+2)元,根据题意得:200014002=⨯,经检验,x=50是原方程的解,且符合题意,∴x+2=1.答:购买一个甲种足球需要50元,购买一个乙种篮球需要1元.(2)设可购买m个乙种足球,则购买(50﹣m)个甲种足球,根据题意得:50×(1+10%)(50﹣m)+1×(1﹣10%)m≤2910,解得:m≤2.答:这所学校最多可购买2个乙种足球.【点睛】本题考查分式方程的应用,一元一次不等式的应用,解答此类问题的关键是明确题意,列出相应的分式方程和一元一次不等式,注意分式方程要检验,问题(2)要与实际相联系.26.(1)证明见解析;(2)【解析】【分析】(1)由BD是△ABC的角平分线,DE∥AB,可证得△BDE是等腰三角形,且BE=DE;又由BE=AF,可得DE=AF,即可证得四边形ADEF是平行四边形;(2)过点E作EH⊥BD于点H,由∠ABC=60°,BD是∠ABC的平分线,可求得BH的长,从而求得BE、DE的长,即可求得答案.【详解】(1)证明:∵BD是△ABC的角平分线,∴∠ABD=∠DBE,∵DE∥AB,∴∠ABD=∠BDE,∴∠DBE=∠BDE,∴BE=DE;∵BE=AF,∴AF=DE;∴四边形ADEF是平行四边形;(2)解:过点E作EH⊥BD于点H.∵∠ABC=60°,BD是∠ABC的平分线,∴∠ABD=∠EBD=30°,∴DH=12BD=12×6=3,∵BE=DE,∴BE==23,∴DE=BE=23.【点睛】此题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及三角函数等知识.注意掌握辅助线的作法.27.(1)一个A 品牌的足球需90元,则一个B 品牌的足球需100元;(2)1.【解析】【分析】(1)设一个A 品牌的足球需x 元,则一个B 品牌的足球需y 元,根据“购买2个A 品牌的足球和3个B 品牌的足球共需380元;购买4个A 品牌的足球和2个B 品牌的足球共需360元”列出方程组并解答; (2)把(1)中的数据代入求值即可.【详解】(1)设一个A 品牌的足球需x 元,则一个B 品牌的足球需y 元,依题意得:23380{42360x y x y +=+=,解得:40{100x y ==.答:一个A 品牌的足球需40元,则一个B 品牌的足球需100元;(2)依题意得:20×40+2×100=1(元). 答:该校购买20个A 品牌的足球和2个B 品牌的足球的总费用是1元.考点:二元一次方程组的应用.。
河南省许昌市2020版中考数学一模考试试卷(II)卷
河南省许昌市2020版中考数学一模考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题(每小题4分,共48分) (共12题;共40分)1. (4分)下列各式的运算正确的是()A . (﹣3)2=﹣9B .C . (a3)2=a5D . 2a•3a5=6a63. (4分) 2008年北京承办奥运会取得圆满成功。
据统计某日奥运会网站的访问人次为201949,用四舍五入法取近似值保留两个有效数字,得()A . 2.0×105B . 2.0×106C . 2×105D . 0.2×1064. (2分)已知圆锥侧面积为10πcm2 ,侧面展开图的圆心角为36º,圆锥的母线长为()A . 100cmB . 10cmC . cmD . cm5. (4分)下列抛物线中,对称轴是x= 的是()A .B . y=x2+2xC . y=x2+x+2D . y=x2﹣x﹣26. (2分) (2020七上·高淳期末) 有理数a、b在数轴上的位置如图所示,则化简|a+b|-|a-b|的结果为()A . 2aB . -2bC . -2a7. (4分)不等式组的非负整数解有()A . 6个B . 5个C . 4个D . 3个8. (4分)(2016·广元) 某市2015年国内生产总值GDP比2014年增长10%,由于受到客观条件影响,预计2016年的GDP比2015年增长7%.若这两年GDP平均增长率为x%,则x应满足的等量关系是()A . 10%+7%=x%B . (1+10%)(1+7%)=2(1+x%)C . (10%+7%)=2x%D . (1+10%)(1+7%)=(1+x%)29. (4分) (2019九上·慈溪期中) 如图,扇形AOB的圆心角为90°,四边形OCDE是边长为1的正方形,点C、E、D分别在OA、OB、AB上,过A作AF⊥ED交ED的延长线于点F ,那么图中阴影部分的面积为().A .B . -1C . 2-D .10. (4分)(2017·萧山模拟) 如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于点E,且DE∥BC.已知AE=2 ,AC=3 ,BC=6,则⊙O的半径是()A . 3C . 4D . 211. (2分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,则正确的结论是()A . abc>0B . 3a +c<0C . 4a+2b+c<0D . b2 -4ac<012. (2分)(2018·东营) 如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A .B .C .D .二、填空题(每小题4分,共2分) (共6题;共22分)13. (4分)(2018·鄂尔多斯模拟) 计算: =________.14. (2分) (2020九上·宽城期末) 计算:sin60°+tan30°=________。
许昌市2020版中考数学一模试卷D卷
许昌市2020版中考数学一模试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2020·宜宾) 6的相反数为()A . -6B . 6C .D .2. (2分) (2020八上·自贡期末) 2019年3.15曝光,“电子烟烟液中含有尼古丁、甲醛、丙二醇、甘油,会威胁到吸烟者和被吸烟者的健康.”一个尼古丁分子的质量为0.000000000000000269 ,数据0.000000000000000269”用科学记数法表示为()A .B .C .D .3. (2分)在平面直角坐标系中,点M(-3,2)关于x轴对称的点在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限4. (2分)(2020·淮安模拟) 抽样调查了某校30位女生所穿鞋子的尺码,数据如下(单位:码)码号3334353637人数761511这组数据的中位数和众数分别是()A . 35,35B . 35,37C . 15,15D . 15,355. (2分) (2019九上·芜湖月考) 下列选项中,能描述函数与图象的是()A .B .C .D .6. (2分) (2019九下·萧山开学考) 下列事件中,属于必然事件的是()A . 旭日东升B . 守株待兔C . 大海捞针D . 明天放假7. (2分)下列结论正确的是()A . 5a2b-3a2b=2B . 单项式-x4的系数是-1C . 使式子有意义的x的取值范围是x>-5D . 若分式的值等于0,则m=±18. (2分) (2020七下·沭阳月考) 如图,将周长为10的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A . 8B . 10C . 12D . 149. (2分)(2017·东湖模拟) 如图是用小正方体搭成的几何体的主视图和俯视图,俯视图上的数字表示小正方体的个数,则搭这个几何体最多要()个小正方体.A . 3B . 4C . 5D . 610. (2分)已知为方程的两实根,则的值为()A .B . -28C . 20D . 28二、填空题 (共5题;共5分)11. (1分) (2019八上·哈尔滨月考) 把多项式a2b﹣2ab+b分解因式的结果是________.12. (1分)(2018·青岛) 计算:2﹣1× +2cos30°=________.13. (1分)如图,已知函数y1=2x﹣1和y2=x﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式y1>y2的解集是________.14. (1分)(2019·鹿城模拟) 如图,四边形ABCD是矩形,AD=5,AB=,点E在CD边上,DE=2,连接BE,F是BE边上的一点,过点F作FG⊥AB于G,连接DG,将△ADG沿DG翻折的△PDG,设EF=x,当P落在△EBC 内部时(包括边界),x的取值范围是________.15. (1分) (2018九上·东台期中) 某学习小组全体同学都为本组其他人员送了一张新年贺卡,若全组共送贺卡78张,设这个小组的同学共有x人,可列方程:________.三、解答题 (共8题;共73分)16. (5分) (2020九上·双台子期末) 先化简,再求值:,其中.17. (5分)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.18. (12分)(2020·淮安) 为了响应市政府创建文明城市的号召,某校调查学生对市“文明公约十二条”的内容了解情况,随机抽取部分学生进行问卷调查,问卷共设置“非常了解”、“比较了解”、“一般了解”、“不了解”四个选项,分别记为A、B、C、D,根据调查结果绘制了如下尚不完整的统计图.请解答下列问题:(1)本次问卷共随机调查了________名学生,扇形统计图中C选项对应的圆心角为________度;(2)请补全条形统计图;(3)若该校有1200名学生,试估计该校选择“不了解”的学生有多少人?19. (5分) (2017八上·濮阳期中) 如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.试判断△OEF的形状,并说明理由.20. (5分)(2018·广安) 据调查,超速行驶是引发交通事故的主要原因之一.小强用所学知识对一条笔直公路上的车辆进行测速,如图所示,观测点C到公路的距离CD=200m,检测路段的起点A位于点C的南偏东60°方向上,终点B位于点C的南偏东45°方向上.一辆轿车由东向西匀速行驶,测得此车由A处行驶到B处的时间为10s.问此车是否超过了该路段16m/s的限制速度?(观测点C离地面的距离忽略不计,参考数据:≈1.41,≈1.73)21. (11分) (2019八上·瑞安月考) 如图,在平面直角坐标系中,点B坐标为(-3,0),点A是y轴正半轴上一点,且AB=5,点P是x轴上位于点B右侧的一个动点,设点P的坐标为(m,0)(1)点A的坐标为()(2)当△ABP是等腰三角形时,求P点的坐标;(3)如图2,过点P作PE⊥AB交线段AB于点E,连接OE.若点A关于直线OE的对称点为A',当点A'恰好落在直线PE上时,BE= ________(直接写出答案)22. (15分)(2019·海门模拟) 我国为了实现到2020年达到全面小康社会的目标,近几年加大了扶贫工作的力度,合肥市某知名企业为了帮助某小型企业脱贫,投产一种书包,每个书包制造成本为18元,试销过程中发现,每月销售量y(万个)与销售单价x(元)之间的关系可以近似看作一次函数y=kx+b,据统计当售价定为30元/个时,每月销售40万个,当售价定为35元/个时,每月销售30万个.(1)请求出k、b的值.(2)写出每月的利润w(万元)与销售单价x(元)之间的函数解析式.(3)该小型企业在经营中,每月销售单价始终保持在25≤x≤36元之间,求该小型企业每月获得利润w(万元)的范围.23. (15分) (2017·盘锦模拟) 如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4),以A为顶点的抛物线y=ax2+bx+c过点C,动点P从点A出发,以每秒个单位的速度沿线段AD 向点D运动,运动时间为t秒,过点P作PE⊥x轴交抛物线于点M,交AC于点N.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)当t为何值时,△ACM的面积最大?最大值为多少?(3)点Q从点C出发,以每秒1个单位的速度沿线段CD向点D运动,当t为何值时,在线段PE上存在点H,使以C,Q,N,H为顶点的四边形为菱形?参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共73分)16-1、17-1、18-1、18-2、18-3、19-1、20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年河南省许昌市中考一模试卷数学一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.12-的相反数是( )A.1 2B.1 2 -C.2D.-2解析:根据概念得:12-的相反数是12.答案:A2.许昌市2020年国内生产总值完成1915.5亿元,同比增长9.3%,增速居全省第一位,用科学记数法表示1915.5亿应为( )A.1915.15×108B.19.155×1010C.1.9155×1011D.1.9155×1012解析科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.用科学记数法表示1915.5亿应为1.9155×1011.答案:C3.一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,投掷这样的骰子一次,向上一面点数是偶数的结果有( )A.1种B.2种C.3种D.6种解析:一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的有3种情况.答案:C4.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为( )A.B.C.D.解析:从左面看所得到的图形是正方形,切去部分的棱能看到,用实线表示.答案:C5.下列运算正确的是( )A.a6÷a3=a2B.3a2·2a=6a3C.(3a)2=3a2D.2x2-x2=1解析:A、a6÷a3=a3,故原题计算错误;B、3a2·2a=6a3,故原题计算正确;C、(3a)2=9a2,故原题计算错误;D、2x2-x2=x2,故原题计算错误.答案:B6.上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是( )A.8.2,8.2B.8.0,8.2C.8.2,7.8D.8.2,8.0解析:按从小到大的顺序排列小明5次投球的成绩:7.5,7.8,8.0,8.2,8.2. 其中8.2出现2次,出现次数最多,8.0排在第三,∴这组数据的众数与中位数分别是:8.2,8.0. 答案:D7.如图,四边形ABCD 是平行四边形,点E 在BA 的延长线上,点F 在BC 的延长线上,连接EF ,分别交AD ,CD 于点G ,H ,则下列结论错误的是( )A.EA EGBE EF =B.EG AG GH GD =C.AB BC AE CF =D.FH CF EH AD= 解析:∵四边形ABCD 是平行四边形,∴AD ∥BF ,BE ∥DC ,AD=BC , ∴.EA EG EG AG HF FC CFBE EF GH GD EH BC AD====,, 答案:C8.如图,将△ABC 绕点C(0,-1)旋转180°得到△A'B'C ,设点A 的坐标为(a ,b),则点A ′的坐标为( )A.(-a ,-b)B.(-a.-b-1)C.(-a ,-b+1)D.(-a ,-b-2)解析:把AA ′向上平移1个单位得A 的对应点A 1坐标为(a ,b+1).因A1、A2关于原点对称,所以A′对应点A2(-a,-b-1).∴A′(-a,-b-2).答案:D9.若关于x的分式方程2122x ax-=-的解为非负数,则a的取值范围是( )A.a≥1B.a>1C.a≥1且a≠4D.a>1且a≠4解析:去分母得:2(2x-a)=x-2,解得:x=223a-,由题意得:223a-≥0且223a-≠2,解得:a≥1且a≠4.答案:C10.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A 出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是( )A.B.C.D.解析:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小.答案:D二、填空题(每小题3分,共15分)11.计算:(12)-2-(3.14-π)0= .解析:根据负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1.原式=4-1=3. 答案:312.不等式组11251xx-≥⎧⎨-⎩,<的解集是 .解析:11251xx-≥⎧⎨-⎩①,<②,由不等式①,得x≥2,由不等式②,得x<3,由不等式①②可得,原不等式组的解集是2≤x<3.答案:2≤x<313.抛物线y=x2-2x+m与x轴只有一个交点,则m的值为 .解析:∵抛物线y=x2-2x+m与x轴只有一个交点,∴△=0,∴b2-4ac=22-4×1×m=0;∴m=1. 答案:114.如图,正方形ABCD的边长为2,分别以A、D为圆心,2为半径画弧BD、AC,则图中阴影部分的面积为 .解析:如图所示,过点F 作FE ⊥AD 于点E ,∵正方形ABCD 的边长为2,∴AE=1122AD AF ==1,∴∠AFE=∠BAF=30°,∴.∴S 弓形AF =S 扇形ADF -S △ADF =230212236023ππ⋅-⨯=-∴S 阴影=2(S 扇形BAF -S 弓形AF )=230222236033πππ⋅-=⎛ ⎝.答案:23π15.如图,矩形纸片ABCD 中,AB=3,AD=5,点P 是边BC 上的动点,现将纸片折叠使点A 与点P 重合,折痕与矩形边的交点分别为E ,F ,要使折痕始终与边AB ,AD 有交点,BP 的取值范围是 .解析:如图:①当F 、D 重合时,BP 的值最小;根据折叠的性质知:AF=PF=5;在Rt △PFC 中,PF=5,FC=3,则PC=4;∴BP=x min =1;②当E 、B 重合时,BP 的值最大;由折叠的性质可得BP=AB=3.所以BP 的取值范围是:1≤x ≤3.答案:1≤x ≤3三、解答题(本大题8个小题,共75分)16.先化简,再求值:2311221x x x x x x --÷-++⎛ ⎪⎝⎭+⎫,其中x 满足x 2-x-1=0. 解析:根据分式的减法和除法可以化简题目中的式子,再根据x 2-x-1=0,即可解答本题. 答案:()2231231221211x x x x x xx x x x x x x +-+--÷-=⋅-+++⎛⎫-⎭+ ⎝+⎪()2221211111x x x x x x x x x x x x x x x x +-+-=⋅-=-==+-++++, ∵x 2-x-1=0,∴x 2=x+1,∴原式=11x x ++=1.17.2020年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A 、非常了解B 、比较了解C 、基本了解D 、不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.(1)n= ;(2)扇形统计图中,D部分扇形所对应的圆心角是;(3)请补全条形统计图;(4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平.解析:(1)根据统计图可以求出这次调查的n的值;(2)根据统计图可以求得扇形统计图中D部分扇形所对应的圆心角的度数;(3)根据题意可以求得调查为D的人数,从而可以将条形统计图补充完整;(4)根据题意可以写出树状图,从而可以解答本题.答案:(1)n=1-10%-15%-35%=40%.(2)扇形统计图中D部分扇形所对应的圆心角是:360°×40%=144°.(3)调查的结果为D等级的人数为:400×40%=160,故补全的条形统计图如图所示.(4)由题意可得,树状图如图所示,P(奇数)=82123=,P(偶数)=41123=,故游戏规则不公平.18.已知:如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,DE⊥AC于E.(1)求证:DE为⊙O的切线;(2)G是ED上一点,连接BE交圆于F,连接AF并延长交ED于G.若GE=2,AF=3,求EF的长. 解析:(1)根据中位线定理证明:OD∥AC,得:DE⊥OD,可得DE为⊙O的切线;(2)证明△GEF∽△GAE,列比例式EG FGAG EG=,解方程可得结论.答案:(1)连结OD,∵AB=AC,∴∠C=∠ABC,又∵OD=OB,∴∠ODB=∠ABC,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∴DE为⊙O的切线.(2)∵AB为直径,∴∠BFA=90°,则∠FEA+∠FAE=90°∵∠GEF+∠FEA=90°,∴∠GEF=∠FAE,又∵∠EGF=∠AGE,∴△GEF∽△GAE,∴EG FGAG EG=,即EG2=AG·FG,设FG=x ,则AG=3+x ,又∵EG=2,AF=3,∴22=x(3+x),解得x=1或-4(舍去).∴FG=1,在Rt △EFG 中,由勾股定理得:19.许昌文峰塔又称文明寺塔,为全国重点文物保护单位,某校初三数学兴趣小组的同学想要利用学过的知识测量文峰塔的高度,他们找来了测角仪和卷尺,在点A 处测得塔顶C 的仰角为30°,向塔的方向移动60米后到达点B ,再次测得塔顶C 的仰角为60°,试通过计算求出文峰塔的高度CD.(结果保留两位小数)解析:先根据三角形外角的性质得出∠ACB=30°,进而得出AB=BC=60,在Rt △BDC 中,sin60°=CDBC即可求出CD 的长. 答案:∵∠CBD=60°,∠CAB=30°,∴∠ACB=30°.∴AB=BC=60.在Rt △BDC 中,sin60°=CDBC,∴CD=BC ·sin60°=60=51.96(米). 答:文峰塔的高度CD 约为51.96米.20.如图,已知A(-4,12),B(-1,m)是一次函数=kx+b 与反比例函数y=nx图象的两个交点,AC ⊥x 轴于点C ,BD ⊥y 轴于点D.(1)求m 的值及一次函数解析式;(2)P 是线段AB 上的一点连接PC 、PD ,若△PCA 和△PDB 面积相等,求点P 坐标. 解析:(1)根据反比例函数y=n x 的图象过点(-4,12),求得n=-2,由于点B(-1,m)也在该反比例函数的图象上,得到m=2,设一次函数的解析式为y=kx+b ,将A 、B 两点的坐标代入,解方程组即可得到一次函数的解析式; (2)连接PC 、PD ,如图,设P(x ,1522x +),根据△PCA 和△PDB 面积相等得到方程,解方程即可得到结论.答案:(1)∵反比例函数y=n x 的图象过点(-4,12),∴n=-4×12=-2, ∵点B(-1,m)也在该反比例函数的图象上,∴-1·m=-2,∴m=2;设一次函数的解析式为y=kx+b ,由y=kx+b 的图象过点A(-4,12),B(-1,2),则1422k b k b ⎧-+=⎪⎨⎪-+=⎩,,解得1252k b ⎧=⎪⎪⎨⎪=⎪⎩,, ∴一次函数的解析式为1522y x =+; (2)连接PC 、PD ,如图,设P(x ,1522x +),∵△PCA 和△PDB 面积相等,∴()1111541222222x x ⨯+=⨯-⨯--⎛⎫ ⎪⎝⎭, 解得:51552224x y x =-=+=,,∴P 点坐标是(5524-,).21.2020年10月31日,在广州举行的世界城市日全球主场活动开幕式上,住建部公布许昌成为“国家生态园林城市”在2020年植树节到来之际,许昌某中学购买了甲、乙两种树木用于绿化校园.若购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元.(1)求甲种树和乙种树的单价;(2)按学校规划,准备购买甲、乙两种树共200棵,且甲种树的数量不少于乙种树的数量的12,请设计出最省钱的购买方案,并说明理由.解析:(1)设甲种树的单价为x 元/棵,乙种树的单价为y 元/棵,根据“购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论; (2)设购买甲种树a 棵,则购买乙种树(200-a)棵,根据甲种树的数量不少于乙种树的数量的12,可得出关于a 的一元一次不等式,解之即可得出a 的取值范围,再由甲种树的单价比乙种树的单价贵,即可找出最省钱的购买方案.答案:(1)设甲种树的单价为x元/棵,乙种树的单价为y元/棵,根据题意得:7451035350x yx y+=⎧⎨+=⎩,,解得:5040.xy==⎧⎨⎩,答:甲种树的单价为50元/棵,乙种树的单价为40元/棵.(2)设购买甲种树a棵,则购买乙种树(200-a)棵,根据题意得:a≥12(200-a),解得:a≥2003,∵a为整数,∴a≥67.∵甲种树的单价比乙种树的单价贵,∴当购买67棵甲种树、133棵乙种树时,购买费用最低.22.(1)观察猜想如图①点B、A、C在同一条直线上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,则BC、BD、CE 之间的数量关系为;(2)问题解决如图②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC为直角边向外作等腰Rt△DAC,连结BD,求BD的长;(3)拓展延伸如图③,在四边形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,请直接写出BD的长.解析:(1)观察猜想:证明△ADB≌△EAC,可得结论:BC=AB+AC=BD+CE;(2)问题解决:作辅助线,同理证明:△ABC≌△DEA,可得DE=AB=2,AE=BC=4,最后利用勾股定理求BD的长;(3)拓展延伸:同理证明三角形全等,设AF=x,DF=y,根据全等三角形对应边相等列方程组可得结论.答案:(1)观察猜想结论:BC=BD+CE,理由是:如图①,∵∠B=90°,∠DAE=90°,∴∠D+∠DAB=∠DAB+∠EAC=90°,∴∠D=∠EAC,∵∠B=∠C=90°,AD=AC,∴△ADB≌△EAC,∴BD=AC,EC=AB,∴BC=AB+AC=BD+CE;(2)问题解决如图②,过D作DE⊥AB,交BA的延长线于E,由(1)同理得:△ABC ≌△DEA , ∴DE=AB=2,AE=BC=4, Rt △BDE 中,BE=6,由勾股定理得:BD == (3)拓展延伸如图③,过D 作DE ⊥BC 于E ,作DF ⊥AB 于F ,同理得:△CED ≌△AFD , ∴CE=AF ,ED=DF , 设AF=x ,DF=y ,则42x y x y +=+=⎧⎨⎩,,解得:13x y =⎧⎨=⎩,,∴BF=2+1=3,DF=3,由勾股定理得:BD ==23.如图,抛物线y=-x 2+bx+c 与x 轴交于点A(-1,0)和点B ,与y 轴交于C(0,3),直线y=12-x+m 经过点C ,与抛物线的另一交点为点D ,点P 是直线CD 上方抛物线上的一个动点,过点P 作PF ⊥x 轴于点F ,交直线CD 于点E ,设点P 的横坐标为m.(1)求抛物线解析式并求出点D 的坐标;(2)连接PD ,△CDP 的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由;(3)当△CPE 是等腰三角形时,请直接写出m 的值.解析:(1)利用待定系数法求抛物线解析式和直线CD 的解析式,然后解方程组213223y x y x x ⎧=-+⎪⎨⎪=-++⎩,得D 点坐标; (2)设P(m ,-m 2+2m+3),则E(m ,-12m+3),则PE=-m 2+52m ,利用三角形面积公式得到S △PCD =2215552522248m m m m ⎛⎫ ⋅⋅-+=-+⎪⎝⎭,然后利用二次函数的性质解决问题; (3)讨论:当PC=PE 时,m 2+(-m 2+2m+3-3)2=(-m 2+52m)2;当CP=CE 时,m 2+(-m 2+2m+3-3)2=m 2+(-12m+3-3)2;当EC=EP 时,2222153322m m m m ⎛⎫⎛⎫ ⎪+-+ ⎪⎝⎭⎝-+⎭-=,然后分别解方程即可得到满足条件的m 的值.答案:(1)把A(-1,0),C(0,3)分别代入y=-x 2+bx+c 得103b c c -⎨-+==⎧⎩,,解得23b c =⎧⎨=⎩,,∴抛物线的解析式为y=-x 2+2x+3; 把C(0,3)代入y=-12x+n ,解得n=3,∴直线CD 的解析式为y=-12x+3, 解方程组213223y x y x x ⎧=-+⎪⎨⎪=-++⎩,,解得03x y =⎧⎨=⎩,,或5274x y ⎧⎪=⎨⎪⎪=⎪⎩,,∴D 点坐标为(5724,); (2)存在.设P(m ,-m 2+2m+3),则E(m ,12-m+3), ∴PE=-m 2+2m+3-215322m m m ⎛⎫⎪⎝⎭-+=-+,∴S △PCD =22215552555125222484464m m m m m ⎛⎫⋅⋅-+=-+=--+⎛⎫ ⎪⎝⎭ ⎪⎝⎭,当m=54时,△CDP 的面积存在最大值,最大值为12564; (3)当PC=PE 时,m 2+(-m 2+2m+3-3)2=(-m 2+52m)2,解得m=0(舍去)或m=54;当CP=CE 时,m 2+(-m 2+2m+3-3)2=m 2+(-12m+3-3)2,解得m=0(舍去)或m=52(舍去)或m=32;当EC=EP 时,2222153322m m m m ⎛⎫⎛⎫ ⎪+-+ ⎪⎝⎭⎝-+⎭-=,解得舍去)或综上所述,m 的值为54或32考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。