人工智能讲义pptppt
人工智能ppt课件免费
随着算法、算力和数据的发展,人工 智能将在各个领域发挥更大的作用, 如自动驾驶、医疗诊断、智能制造等 。
对观众的寄语和期望
寄语
希望观众能够深入了解人工智能的发展和应用,把握未来的机遇和挑战。
期望
期待观众能够积极探索人工智能在各个领域的应用,为未来的发展做出贡献。
感谢您的观看
THANKS
人工智能 PPT 课件
目录
CONTENTS
• 人工智能简介 • 人工智能技术 • 人工智能的实际应用 • 人工智能的未来展望 • 如何学习和应用人工智能 • 结语
01 人工智能简介
人工智能的定义
人工智能
指通过计算机程序和算法,使机 器能够模拟人类的智能行为,实 现人机交互和自主决策。
人工智能的核心
自动驾驶汽车能够提高交通效率和安 全性,减少交通事故和拥堵现象。
医疗诊断
人工智能在医疗领域的应用, 可以帮助医生提高诊断准确性 和效率。
人工智能可以通过分析大量的 医疗数据和病例,辅助医生进 行疾病诊断和治疗方案制定。
人工智能还可以用于医学影像 分析,自动识别病变和异常情 况,提高医学影像诊断的准确 性和效率。
模拟人类的感知、认知、学习和 推理等智能行为,实现机器的自 主决策和智能控制。
人工智能的历史与发展
早期阶段
当前阶段
20世纪50年代,人工智能概念开始出 现,主要研究领域包括专家系统和自 然语言处理。
21世纪初至今,人工智能技术广泛应 用于各个领域,包括自动驾驶、智能 家居、医疗诊断等。
发展阶段
20世纪80年代末至90年代,随着计算 机技术和大数据的发展,人工智能技 术逐渐成熟,机器学习、深度学习等 领域取得重要突破。
人工智能概述ppt课件
加密技术
使用加密算法保护数据传 输和存储过程中的隐私安 全。
安全性挑战及防范措施
人工智能系统的脆弱性
AI系统可能受到恶意攻击和欺骗,导致系统失效或被利用。
数据安全与保护
防止数据泄露、篡改和破坏,确保AI系统的数据完整性和可用性。
人工智能监管与政策
制定相关法规和政策,规范AI技术的研发和应用,保障社会安全和 公共利益。
符号系统与连接主义结合可以充分发挥各自优势,实现更高效、更智能 的人工智能系统。例如,在深度学习模型中融入符号处理机制,可以提 高模型的可解释性和泛化能力。
05
伦理、隐私和安全问 题探讨
伦理道德问题在AI中体现
数据偏见与歧视
01
算法训练数据可能包含社会和文化偏见,导致不公平的决策和
歧视。
人工智能的决策透明度
人才培养与生态建设
加强人工智能人才培养与引进,构建良好创新生 态,推动人工智能持续发展与进步。
THANKS
感谢观看
均方误差、均方根误差 用于评估回归模型的性能,衡量模型 预测值与实际值之间的差距。
时间复杂度和空间复杂度 用于评估算法的运行效率和存储开销, 是选择算法时需要考虑的重要因素之 一。
04
数据驱动与知识表示 方法
数据驱动思想在AI中体现
数据驱动是人工智能的重要思想,强 调从数据中学习规律,挖掘潜在知识。
06
未来发展趋势与挑战
技术创新方向预测
深度学习
进一步探索神经网络结构与优化算法,提升 模型性能与泛化能力。
迁移学习
实现跨领域、跨任务的知识迁移,降低人工 智能应用门槛。
强化学习
研究更高效的探索与利用策略,拓展在复杂 决策问题中的应用。
2024版《人工智能》PPT课件
《人工智能》PPT课件•人工智能概述•机器学习原理及算法•自然语言处理技术•计算机视觉技术•语音识别与合成技术•智能推荐系统与数据挖掘•人工智能伦理、法律与社会影响目录定义与发展历程定义人工智能是一门研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的新技术科学。
发展历程从早期的符号学习到现代的深度学习,人工智能经历了多个发展阶段,包括专家系统、知识工程、机器学习等。
重要事件人工智能领域的重要事件包括图灵测试、达特茅斯会议、AlphaGo战胜围棋世界冠军等。
人工智能的技术原理包括感知、思考、学习和行动四个方面,通过模拟人类的思维和行为方式来实现智能化。
技术原理人工智能的核心思想是让机器能够像人类一样具有智能,包括理解、推理、决策、学习等能力。
核心思想人工智能的实现方式包括符号主义、连接主义和行为主义等多种方法,其中深度学习是当前最热门的技术之一。
实现方式技术原理及核心思想前景展望未来人工智能的发展前景非常广阔,将会在更多领域得到应用,同时也会出现更多的技术创新和突破。
应用领域人工智能已经广泛应用于各个领域,包括智能家居、自动驾驶、医疗诊断、金融风控等。
挑战与机遇人工智能的发展也面临着一些挑战,如数据安全、隐私保护等问题,但同时也带来了巨大的机遇和发展空间。
应用领域与前景展望原理通过最小化预测值与真实值之间的均方误差,学习得到最优的线性模型参数。
应用预测连续型数值,如房价、销售额等。
原理在特征空间中寻找最大间隔超平面,使得不同类别的样本能够被正确分类。
应用分类问题,如图像识别、文本分类等。
原理通过递归地选择最优特征进行划分,构建一棵树状结构,用于分类或回归。
应用分类、回归问题,如信用评分、医学诊断等。
原理将数据划分为K个簇,使得同一簇内的数据尽可能相似,不同簇间的数据尽可能不同。
应用数据挖掘、图像压缩等。
原理通过计算数据点间的相似度,将数据逐层进行聚合或分裂,形成树状结构。
应用社交网络分析、生物信息学等。
(完整版)人工智能介绍PPT课件全
• 人工智能是计算机科学的一个分支,
它企图了解智能的实质,并生产出一 种新的能以人类智能相似的方式做出 反应的智能机器,该领域的研究包括 机器人、语言识别、图像识别、自然 语言处理和专家系统等。
Machine learning
Computer vision
1956年,塞缪尔在IBM计算机上研制成功了具有自学习、自组织和自适应 能力的西洋跳棋程序。
1957年,纽厄尔、肖(Shaw)和西蒙等研制了一个称为逻辑理论机(LT)的 数学定理证明程序。
1958年,麦卡锡建立了行动规划咨询系统 1960年纽厄尔等研制了通用问题求解(GPS)程序。麦卡锡研制了人工智
人工智能简介
Brief introduction of
Artificial Intelligence
2024/9/24 Made by Bob
•Contents
1 人工智能是什么?
What is Artificial Intelligence?
2 人工智能的发展与应用
Application of Artificial Intelligence
2024/9/24
Part 4 人工智能的未来
2024/9/24
4
人工智能的未来
健全人工智能发展标准和监管制度
任何一门新技术的诞生、发展和使用都离不开一套完整 的发展标准和科学的管理制度,这是保证科学技术“以 人为本”的根本,面对人类日益强大的科研能力,人工 智能的发展必将会在未来出现突破性的进展,强人工智 能技术也将完整的出现在人类面前。鉴于人工智能技术 的特殊性,我们不难发现,它给人类生存带来的威胁不 亚于核武器,这就要求我们必须有严格的标准来要求人 工智能的发展,并且要科学谨慎的监管其生产和使用过 程的每个细节。
人工智能讲义培训课件
选用知识表达旳原因
表达范围是否广泛 是否适于推理 是否适于计算机处理 是否有高效旳算法 能否表达不精确知识 能否模块化
知识和元知识能否用统一 旳形式表达
是否加入启发信息 过程性表达还是阐明性表达 表达措施是否自然
总之 ………
选用知识表达旳原因
……….. 总之,人工智能问题旳求解是以知识表达 为基础旳。怎样将已取得旳有关知识以计 算机内部代码形式加以合理地描述、存储、 有效地利用便是知识表达应处理旳问题。
存储旳数据是构成产生式旳基本元素,又 是产生式作用旳对象。
4.2.2 产生式系统构造
2.规则集
相当于系统旳知识库,它采用“IF <前件> THEN <后件>”旳形式,来体现求解问题所 需要旳知识。
规则
客观规律知识 求解策略知识
每条规则分为左右两个部分。左部表达激活该规 则旳条件,右部表达调用该规则后所作旳动作。
4.2.4 产生式表达旳特点
优点
模块性。 规则与规则之间相互独立
灵活性。 知识库易于增长、修改、删除
自然性。 以便地表达教授旳启发性知识与经验
透明性。 易于保存动作所产生旳变化、轨迹
4.2.4 产生式表达旳特点
缺陷:
效率低。 不能表达构造性旳知识。因为规则彼此之间不能调
用。
4.2.4 产生式表达旳特点
旳 知识。它旳处理规模和方式从封闭式扩大为开 放式,从小手工作坊式旳知识工程扩大为能进 行海量知识处理旳大规模工程。返回
知识旳种类
事实性知识:采用直接表达旳形式。 如:但凡猴子都有尾巴
过程性知识:描述做某件事旳过程。 如:红烧肉做法
行为性知识:不直接给出事实本身,只给出它在 某方面旳行为。 如:微分方程、(事物旳内涵)
人工智能简介PPT学习课件
规则:牛肉—>鸡肉,购买牛肉的顾客当中也购买了鸡肉可信度是3/4。
现阶段人工智能本质
深度学习:一种实现机器学习的技术。
机器学习的分支,它是试图使用包含复杂结构的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的方法。
观测值(例如一幅图像)可以使用多种方式来表示,如每个像素强度值的向量,或者更抽象地表示成一系列特定 形状的区域等。而使用某些特定的表示方法更容易从实例中学习任务(例如,人脸识别或面部表情识别)。
计算机系统的理论和发展能够执行 通常需要人类智能参与的任务。
AI的核心问题包括推理、知识、规划、学习、交流、 感知、移动和操作物体的能力等。
2024/6/5
4
2 人工智能历史与现状
2024/6/5
5
发展历程
深度学习算法在语音和视觉识别上取得成功,进入感知智能时代。
2006年杰弗里辛顿提出学习生成模型的观点,“深度学习”神经网络使得人工 智能性能获得突破性进展。
手写和字符识别是认知自动化应用的范例,支持高强度、复杂繁琐的办公业务,以帮助企业降低风险和成本。如,如机 器翻译是对文本数据的处理;使用自然语言处理和OCR(光学字符识别)技术从文档中提取关键信息。
2024/6/5
16
应用领域
认知参与
系统通过认知技术与人类建立密切交互关系。
语音识别接口,它可以执行语音指令,降低温控器或打开电视频道,如Siri。再如,接收病人入院,或推荐产品和服务, 需要人工智能接触到更复杂的信息并执行数字化任务,通过学习到的认知参与人类互动。
人工智能介绍最新PPT课件
对图像中的场景进行解析和理解,包括场景分类 、场景布局、物体间关系等任务,有助于机器人 导航、自动驾驶等应用。
文字识别
从图像中识别出文字信息,包括印刷体文字识别 和手写文字识别等任务,广泛应用于文档数字化 、自然语言处理等领域。
05
CATALOGUE
人工智能伦理与安全问题
数据隐私保护政策解读
、建立监督机制、加强员工培训等。
算法偏见和歧视问题探讨
01
算法偏见和歧视的定义和表现
解释算法偏见和歧视的概念,以及在人工智能系统中可能出现的形式,
如性别、种族、年龄等方面的歧视。
02
算法偏见和歧视的原因分析
探讨导致算法偏见和歧视的主要原因,如数据不平衡、算法设计缺陷、
人类偏见等。
03
消除算法偏见和歧视的方法
智能客服系统能够实现多轮对话管理,根据用户的反馈和 问题进行持续的交流和解答,提高用户满意度和问题解决 效率。
智能化知识库
智能客服系统通过构建智能化知识库,整合企业内外部的 知识和信息,为用户提供全面、准确的问题解答和信息服 务。
智能推荐系统设计与实现
个性化推荐算法
智能推荐系统采用个性化推荐算法,根据用户的历史行为、兴趣偏 好和社交关系等信息,为用户推荐符合其需求的产品、服务和内容 。
自动驾驶算法
智能驾驶系统利用自动驾驶算法进行车辆控制决策和路径规划,实现车辆的自动导航和驾驶。
安全性与可靠性保障
智能驾驶系统通过多重安全保障机制,如冗余设计、故障预测与处理等,确保车辆在行驶过程中的安全 性和可靠性。同时,系统不断学习和优化自身性能,提高驾驶的准确性和稳定性。
THANKS
感谢观看
介绍消除算法偏见和歧视的技术和方法,如增加数据多样性、改进算法
《人工智能介绍》PPT课件
2023REPORTING 《人工智能介绍》PPT课件•人工智能概述•机器学习技术•自然语言处理技术•计算机视觉技术•语音识别与合成技术•人工智能伦理、法律与社会影响目录20232023REPORTINGPART01人工智能概述定义第一次浪潮(20世纪60年代-7…第二次浪潮(20世纪80年代-9…第三次浪潮(21世纪初至今)萌芽期(20世纪50年代-60年…发展历程人工智能(AI )是计算机科学的一个分支,旨在研究、开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能的发展大致经历了以下几个阶段人工智能的概念被提出,并出现了一些早期的理论和方法。
基于符号逻辑的专家系统得到广泛应用,但由于技术限制和理论缺陷,人工智能进入低谷期。
机器学习算法的兴起,尤其是神经网络技术的快速发展,为人工智能的复苏奠定了基础。
深度学习技术的突破,以及大数据、云计算等技术的支持,使得人工智能在各个领域取得了显著成果。
定义与发展历程技术原理及核心思想技术原理人工智能的技术原理主要包括感知、认知和行动三个层面。
感知层面通过传感器等设备获取外部环境信息;认知层面通过算法对获取的信息进行处理和分析,实现知识的表示、学习和推理;行动层面则根据认知结果做出相应的决策或行为。
核心思想人工智能的核心思想在于模拟人类的智能行为,包括学习、推理、决策等。
通过不断地学习和优化算法,提高机器的智能化水平,使其能够自主地完成复杂的任务。
应用领域人工智能已经渗透到各个领域,如自然语言处理、计算机视觉、智能机器人、智能制造、智慧城市等。
其中,自然语言处理使得机器能够理解和生成人类语言;计算机视觉使得机器能够识别和理解图像和视频;智能机器人则能够自主完成各种复杂任务。
前景展望随着技术的不断发展和应用场景的不断拓展,人工智能将在未来发挥更加重要的作用。
例如,在医疗领域,人工智能可以协助医生进行疾病诊断和治疗方案制定;在交通领域,自动驾驶技术将改变人们的出行方式;在金融领域,智能投顾和风险管理将提高金融服务的效率和质量。
人工智能ppt课件
智能医疗系统
辅助诊断
01
通过深度学习和医学图像处理技术辅助医生进行疾病诊断,提
高诊断准确性。
药物研发
02
利用人工智能技术进行药物筛选和研发,缩短研发周期和降低
成本。
远程医疗
03
通过互联网和移动医疗应用实现远程医疗服务,缓解医疗资源
分布不均问题。
智能金融系统
智能投顾
利用人工智能技术进行资产配置和投资建议,提高投资收益和风 险控制能力。
人工智能ppt课件
• 引言 • 人工智能的基本技术 • 人工智能的实现方法 • 人工智能在各领域的应用 • 人工智能的伦理与法律问题 • 人工智能的未来发展与挑战
目录
01
引言
人工智能的定义与发展
01
02
03
定义
人工智能是一种模拟人类 智能,使计算机能够像人 一样进行思维、学习和决 策的技术。
发展历程
智能停车系统
通过物联网和传感器技术实现停车位资源的智能 化管理,提高停车效率。
智能安防系统
视频监控
利用计算机视觉技术对监控视频进行实时分析,实现异常事件检 测和预警。
人脸识别
通过人脸识别技术实现身份认证和门禁管理,提高安防水平。
智能巡检
利用无人机、机器人等技术进行智能巡检,提高安防效率和准确性 。
数据歧视问题
人工智能在处理数据时可能出现歧视现象,如基 于种族、性别、年龄等因素的不公平对待,引发 社会公正问题。
隐私保护技术
探讨差分隐私、联邦学习等隐私保护技术在人工 智能系统中的应用,以缓解数据隐私与安全问题 。
机器决策的责任与道德问题
决策失误责任
当人工智能系统作出错误决策时,如何界定责任归属,是使用者、 开发者还是系统本身承担责任?
人工智能介绍ppt课件
2. 人才培养与教育
AI技术的快速发展对人才的需求也日益增强。教育领域需要将AI技术引入到课程内容中,培养学生的创新思维 和实践能力。除了传统的计算机科学课程,还应重视数学、统计、物理等基础学科的教育。此外,实践环节也 非常重要,如提供实习机会、举办AI竞赛等,让学生在实践中提升技能。还可以尝试AI+教育的创新教学模式, 如通过虚拟现实、增强现实等技术,让学生更好地理解AI概念和应用。
保人工智能技术为人类带来积极的影响。
4. 未来展望与发展趋势
2. 机器视觉
将在自动驾驶、安防监 控等领域发挥更大作用。
1. 自然语言处理
将更加精确,实现与人 类更自然的交流。
3. 人工智能伦理
需更加重视,制定相应法律 法规,以保障人类利益。
0
3
0
2
0
4
0
1
0
5
4. 量子计算
助力AI发展,将实现更 高效的学习和决策。
5. AI芯片
更强大的性能和更低的 能耗,推动AI计算普及。
总结与建议
1. 关注人工智能技术与应用
1. 深度学习
是AI领域的核心技 术,已应用于图像识 别、自然语言处理、
语音识别等领域。
4. 医疗诊断
AI辅助诊断系统能 快速筛查疾病,提
高诊断准确性。
2. 自动驾驶
深度学习算法驱动下 的自动驾驶技术实现 了复杂路况下的安全
人工智能技术
1. 机器学习
深度学习与神经网络
深度学习是一种神经网络, 通过模拟人脑的神经网络结 构,实现对大量数据的高效
(完整版)人工智能介绍PPT课件
智能模拟
机器视、听、触、感觉及思维方式的模拟:指纹识别,人脸识别,视网膜识别, 虹膜识别,掌纹识别,专家系统,智能搜索,定理证明,逻辑推理,博弈,信 息感应与辨证处理。
谢谢
主条目:GOFAI
基于逻辑不像艾伦 纽厄尔和赫伯特 西蒙,JOHN MCCARTHY认为机器不需要模拟 人类的思想,而应尝试找到抽象推理和解决问题的本质,不管人们是否使用同样的 算法。他在斯坦福大学的实验室致力于使用形式化逻辑解决多种问题,包括知识表 示,智能规划和机器学习。致力于逻辑方法的还有爱丁堡大学,而促成欧洲的其他 地方开发编程语言PROLOG和逻辑编程科学。“反逻辑”斯坦福大学的研究者 (如 马文 闵斯基和西摩尔 派普特)发现要解决计算机视觉和自然语言处理的困难问题, 需要专门的方案-他们主张不存在简单和通用原理(如逻辑)能够达到所有的智能行 为。ROGER SCHANK 描述他们的“反逻辑”方法为 "SCRUFFY" 。常识知识库 (如DOUG LENAT的CYC)就是"SCRUFFY"AI的例子,因为他们必须人工一次编写一 个复杂的概念。
大脑模拟
主条目:控制论和计算神经科学 20世纪40年代到50年代,许多研究者探索神经病学,信息理论及控 制论之间的联系。其中还造出一些使用电子网络构造的初步智能, 如W. GREY WALTER的TURTLES和JOHNS HOPKINS BEAST。这 些研究者还经常在普林斯顿大学和英国的RATIO CLUB举行技术协 会会议。直到1960,大部分人已经放弃这个方法,尽管在80年代再 次提出这些原理。 符号处理
集成方法
智能AGENT范式智能AGENT是一个会感知环境并作出行动以达致目标的系统。最简单的智能AGENT是 那些可以解决特定问题的程序。更复杂的AGENT包括人类和人类组织(如公司)。这些范式可以让研究 者研究单独的问题和找出有用且可验证的方案,而不需考虑单一的方法。一个解决特定问题的AGENT可 以使用任何可行的方法-一些AGENT用符号方法和逻辑方法,一些则是子符号神经网络或其他新的方法。 范式同时也给研究者提供一个与其他领域沟通的共同语言--如决策论和经济学(也使用ABSTRACT AGENTS的概念)。90年代智能AGENT范式被广泛接受。AGENT体系结构和认知体系结构研究者设计出 一些系统来处理多ANGENT系统中智能AGENT之间的相互作用。一个系统中包含符号和子符号部分的系 统称为混合智能系统,而对这种系统的研究则是人工智能系统集成。分级控制系统则给反应级别的子符号 AI和最高级别的传统符号AI提供桥梁,同时放宽了规划和世界建模的时间。RODNEY BROOKS的 SUBSUMPTION ARCHITECTURE就是一个早期的分级系统计划。
人工智能讲稿ppt课件
第一节 问题求解与问题表示
二、状态空间法 1、图的概念与术语
图,父辈结点与后继结点
nr
nh
np
路径, 树
ni
nq
nj
ns
nl3
nl1
nl2
第一节 问题求解与问题表示
2、状态空间表示 一个问题求解系统,问题的状态可由图中的结点代表,
它的所有可能的状态就成结点的集合,构成了状态空间, 或称状态图。
状态空间图中: 有向弧线代表操作,反应状态间的转移关系; 节点代表问题的状态。
第二节 人工智能的学科范畴
一、研究目标
AI是一门研究:如何使机器具有智能,如何设计智能 机器的学科,即使机器具有象人那样的
(1)感知能力 (2)思维能力 (3)行为能力 (4)学习、记忆能力
四种能力:
感知能力 听、看、闻
行为能力
将作出的结论付之于行 动,即去说、写、画,
进行操作、处理等。
思维能力
讨论
如果设d(n)反映搜索层次或深度, 当w(n)=0,
f(n)=d(n),即同一层代价相同,就全部要扩展,挨个判 断是否为目标——宽度优先搜索 当d(n)=0,极好地反映被解问题的特性,使搜索完全向 目标结点进行——深度优先搜索。
283
1644
7
5
283 164
75
6
2 18
76
5
283
1
44
部分成果: 1、1984年完成了串行推理机PSI和操作系统SIMPOS
2、1988年完成了并行推理机Multi-PSI和操作系统
PIMOS !
80年代末期ANN飞速发展给AI发展注入新血液:
1、80年代Hopfield模型及B-P反向传播模型的提出使 ANN兴起了一个热潮
人工智能讲义ppt课件
【十亿】颗人脑运算能力的计算机,计算机
届时将拥有所谓的“强人工智能”,并能代替人类 思考。科学家称,科技发展将由机器接管,机器也
可敏捷地思考和沟通,快到正常人无法理解的地步
16
.
f ll will we
17
.
of
18
.
THANKS!!!
19
.
cost
cutting
11
.
于 2010诞年生的“人脑输入计算机”
12
.
2011年2月18日
超级电脑“沃森”(watson)打
败了人类,站在了与人类智力竞赛的最
高领奖台上。
13
.
还有各种展示了我们的成果以及我们的恐慌的电影……
FONTS
14
.
飞速发展的人工智能
.
科学家如是说
根据程序计算获知,人类在2045年仅用1000
一部分民众及图灵的拥趸者认可并广为传颂。
5
.
你知道截止到现在
人工智能
已经发展到什么地步了吗?
6
.
1956年
正式提出人工智能学科
7
.
1996年2月10~17日
国际象棋大师卡斯帕洛夫 (Kasparov)以4:2战胜“深蓝” (Deep Blue)。
8
.
1997年5月
深蓝(Deep Blue)计算机 3.5:2.5战胜了卡斯帕洛夫( Kasparov)。
39
.
40
.
#^%#^@!?
this guys seems to be
lost
41
.
are you excited about presentations?
《人工智能课件》.pptx
一种基于策略迭代的方法,直接优化策略参数以最大化期望回报。通过计算梯度并更新策 略参数来实现策略改进。
Actor-Critic 方法
结合了值迭代和策略迭代的方法。Actor 负责根据当前策略选择动作,Critic负责评估当前 策略的性能并指导Actor进行改进。两者相互促进,共同优化智能体的行为。
03 深度学习技术与应用
神经网络基本原理
01
神经元模型
神经网络的基本单元,模 拟生物神经元的结构和功
能。
前向传播
输入信号经过神经元处理 后向前传递的过程。
反向传播
根据误差信号调整神经元 权重的过程。
卷积神经网络 (CNN)
卷积层
通过卷积操作提取输入数 据的特征。
池化层
降低数据维度,减少计算
量。
06
人工智能伦理、法律和社会影
响
数据隐私和安全问题
数据隐私泄露
人工智能系统通常需要大量数据进行训练和学习,其中可能包含用户的个人隐 私信息。如果这些数据没有得到妥善保护,就可能导致隐私泄露事件。
网络安全问题
人工智能系统可能成为网络攻击的目标,例如黑客利用漏洞攻击人工智能系统, 获取敏感信息或者破坏系统的正常运行。
将数据划分为K个簇,每个簇的中心由簇内所有样本的均值表示。通过
迭代更新簇中心和重新划分样本,使得每个样本与其所属簇中心的距离
之和最小。
层次聚类
通过计算样本之间的距离,将距离近的样本合并为一个簇,然后不断重 复该过程,直到达到预设的簇数量或满足其他停止条件。
03
主成分分析 (PCA)
通过正交变换将原始特征空间中的线性相关变量转换为线性无关的新变
深度学习在图像识别与分类中的应用 通过训练深度神经网络模型,学习从原始图像数据中提取有用 的特征,进而实现图像的高效识别和分类。
人工智能ppt课件
词法分析
应用
研究单词的内部结构,包括词根、词 缀、词干等,以及单词的形态变化规 则。
在信息检索、机器翻译、智能问答等 领域中,词性标注有助于提高文本处 理的准确性和效率。
词性标注
为每个单词分配一个词性标签,如名 词、动词、形容词等,以便理解单词 在句子中的角色和含义。
句法分析与依存关系抽取
1 2
句法分析
AI歧视和偏见问题剖析
AI算法歧视
由于训练数据存在偏见或算法设计不合理,AI系统可能产生歧视 行为,如对某些人群的不公平待遇。
AI决策透明度
AI决策过程缺乏透明度,难以追溯和解释,可能导致不公平决策和 信任问题。
消除AI歧视和偏见措施
需要采取措施消除AI歧视和偏见,如增加多样性训练数据、改进算 法设计、提高决策透明度等。
AI在教育中应用前景展望
个性化教育
AI可以根据学生的学习 情况和需求提供个性化 教育方案,提高教育效
果和质量。
智能辅助教学
AI可以辅助教师进行教 学管理、作业批改等工 作,减轻教师负担,提
高教学效率。
在线教育资源
AI可以整合和优化在线 教育资源,为学生提供 更加丰富、优质的学习
资源。
教育公平
AI可以弥补地区间、城 乡间教育资源差距,为 更多人提供平等接受教
ERA
图像分类与目标检测
图像分类
利用深度学习算法对图像进行自动分类,包括通用分类 (如猫、狗、花等)和细粒度分类(如不同品种的猫、狗 等)。
目标检测 在图像中定位并识别出感兴趣的目标,如人脸检测、行人 检测、车辆检测等。目标检测算法通常包括基于滑动窗口 的方法和基于深度学习的方法。
评估指标
准确率、召回率、F1分数等用于评估图像分类和目标检测 算法的性能。
人工智能PPT课件
人工智能的发展将改变就业结构,部分传统岗位可能消失或被
替代,同时将催生新的就业机会。
数据隐私和安全
02
随着人工智能应用的普及,数据隐私和安全问题将更加突出,
需要加强数据保护和安全措施。
技术伦理和法律责任
03
人工智能的发展将带来技术伦理和法律责任问题,需要建立健
全相关法规和规范。
06
结论
人工智能的潜力和价值
商业价值
人工智能技术能够提高企业的生 产效率,降低成本,提升产品和 服务的质量,从而为企业创造更
大的商业价值。
社会价值
人工智能在医疗、教育、交通等 领域的应用,能够提高社会服务 水平,改善人们的生活质量,为
社会创造巨大的价值。
创新价值
人工智能的发展推动了科技创新 ,促进了各行业的数字化转型, 为人类社会带来了前所未有的变
03
人工智能的实际应用
智能家居
智能家居利用人工智能技术,通 过智能设备、传感器和自动化系 统,实现家庭环境的智能化控制
和管理。
智能家居能够提供便利的生活体 验,如语音助手控制家电、自动 调节室内温度和湿度、智能照明
和安全监控等。
智能家居还可以通过数据分析, 为用户提供更个性化的服务,如
定制化的音乐、电影推荐等。
人工智能 PPT 课件
汇报人:可编辑 2023-12-25
• 人工智能简介 • 人工智能技术 • 人工智能的实际应用 • 人工智能的挑战与伦理问题 • 未来的人工智能发展 • 结论
01 人工智能简介
人工智能的定义
人工智能
指通过计算机程序和算法,使机器能够模拟人类的智能行为 ,实现人机交互、自主策、学习和推理等功能的技术。
驶。
人工智能介绍ppt课件
自动提取文本中的重要信息,生成 简洁明了的摘要,便于用户快速了 解文本内容。
04 计算机视觉技术
图像识别技术
基于深度学习的图像识别
光学字符识别(OCR)
通过训练深度神经网络模型,实现对 图像中物体的自动识别和分类。
将图像中的文字转换为可编辑和检索 的文本格式,广泛应用于文档数字化 、车牌识别等领域。
推荐系统
个性化推荐、广告投放、用户画 像等。
自然语言处理技术
03
词法分析技术
01
分词技术
基于规则、统计或深度学习等方法,将连续的自然语言 文本切分为独立的词汇单元。
02
词性标注
为每个词汇单元分配一个词性标签,如名词、动词、形 容词等,以揭示其在句子中的语法功能。
03
命名实体识别
识别文本中具有特定意义的实体,如人名、地名、机构 名等,并进行分类标注。
人工智能通过模拟人类的感知、认知、决策等智能行为,实现对复杂问题的求 解和自主学习。其技术原理主要包括算法设计、模型训练、数据驱动等。
核心思想
人工智能的核心思想在于让机器具备类似于人类的智能,能够自主地进行学习 、推理、决策等任务。这需要通过大量的数据训练和优化算法来实现。
应用领域与前景展望
应用领域
特征提取与匹配
利用图像特征提取算法,提取图像中 的关键特征,并与已知模式进行匹配 ,实现图像识别。
目标检测技术
基于深度学习的目标检测
01
利用深度学习模型,如R-CNN、Fast R-CNN、YOLO等,实现
对图像中多个目标的定位和分类。
传统目标检测方法
02
采用滑动窗口、HOG特征+SVM分类器等传统计算机视觉技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11
-
于 2010诞年生的“人脑输入计算机”
12
-
2011年2月18日
超级电脑“沃森”(watson)打
败了人类,站在了与人类智力竞赛的最
高领奖台上。
13
-
还有各种展示了我们的成果以及我们的恐慌的电影……
FONTS
14
-
飞速发展的人工智能
-
科学家如是说
根据程序计算获知,人类在2045年仅用1000
一部分民众及图灵的拥趸者认可并广为传颂。
5
-
你知道截止到现在
人工智能
已经发展到什么地步了吗?
6
-
1956年
正式提出人工智能学科
7
-
1996年2月10~17日
国际象棋大师卡斯帕洛夫 (Kasparov)以4:2战胜“深蓝” (Deep Blue)。
8
-
1997年5月
深蓝(Deep Blue)计算机 3.5:2.5战胜了卡斯帕洛夫( Kasparov)。
灵有 关 图
Turing (1912-1954)
3
-
关于图灵测试(Turing Test )
Turing提出的一个智能实验,参加者是计算机 、被实验的人以及主持实验的人。由主持人提出问 题,计算机和被实验的人来回答。被实验的人在回
灵有 关 图
答问题时尽可能地向主持人表示他才是“真正”的
人,计算机也尽可能逼真地模仿人的思维。如果主
人工智能
-
Artificial intellegence
~~ 【SR)*&………*¥%#%¥!~》 (&RL₠№%&$……#*£ ¢ ¤ §‰※
or ¥ÃÑ¢ħ……】
Natural Intelligence
2
-
Alan mictsonTuring
被称作为人工智能之父, 第一个认识到计算机能够 实现智能行为。
DESIGN
26
-
DESIGN
negative = positive
time to fall in love again
27
-
#2
pictures
28
-
a picture is worth 1,000 words
29
-
every picture tells a story.
30
-
i have a dream
15,000 videos uploaded daily
35
-
video
ISeasier faster time bound action accessible fun
36
-
one more skill for you.
37
-
#4
slideless!
38
-
everyone does slides.
20
-
UUSSEE
LARGE FONTS
21
-
22
-
自然智能:人类所具有的智力和行为能力,具 体包括判断、理解、推断、学习、适应性等等
如果机器(计算机)能够执行这样的任务,就 可以认为机器已具有某种性质的“人工智能”
23
-
pe a c e
24
-
25
-
people don't know what they want until you show it to them – Steve Jobs 1998
31
-
32
-
i have a dream.
i have a dream.
33-VIDEO 来自SPRESENT34
-
VIDEO IS
PRESENT
videos inside slideshare now!
video on flickr (new)
every minute, ten hours of video is uploaded
39
-
40
-
#^%#^@!?
this guys seems to be
lost
41
-
are you excited about presentations?
42
-
change slide transition from manual(click) to auto transition & time each slide carefully.
slideless
text
video
picture
46
-
choose your presentation type
47
-
D
Y
Yudhvir Dahiya
谢谢观赏
-
美元就可以买到具有10000000000
【十亿】颗人脑运算能力的计算机,计算机
届时将拥有所谓的“强人工智能”,并能代替人类 思考。科学家称,科技发展将由机器接管,机器也
可敏捷地思考和沟通,快到正常人无法理解的地步
16
-
f ll will we
17
-
of
18
-
THANKS!!!
19
-
cost
cutting
43
-
“” the modern talking pad: I think this is a big idea, but your mileage may vary- Seth Godin
44
-
modern talking pad
45
-
Steve Jobs use many types of presentations
持人通过听取对问题的回答分辨不出那一个是人回
答时,就可以认为被实验的计算机是有智能的。
4
-
关于“苹果”LOGO的由来
灵有
为纪念被誉为计算机和人工智能之父的阿兰·麦席森· 图灵。这位伟大的人工智能领域的先驱者,因吃了沾染
关
氰化钾的苹果而死亡。2001年英国电影ENIGMA虚构
图
了有关图灵自杀与苹果公司LOGO关系的情节,被相当
9
-
2003年
2月 Garry Kasparov 3:3战平 “小深”(Deep Junior)。
11月 Garry Kasparov 2:2战平 “X3D德国人” (X3D-Fritz )。
10
-
到2009年
关于模拟人类大脑的蓝色基因计划正式公布, 并在2009年获得美国国家科技创新奖章,当时 IBM用147456个Power系列处理器模拟一只猫 的大脑。IBM的研究人员建立了猫的大脑皮层模拟 机构,其中包括10亿脑细胞和10兆认知神经元突 触,信息的传递和连接就在这些神经元中间进行。 这具猫脑数字模型的运行速度目前只相当于真猫大 脑实际运行速度的1/100。