054直线与抛物线的位置关系(复习设计)(师)
直线与抛物线的位置关系说课稿
直线与抛物线的位置关系说课稿标题:直线与抛物线的位置关系一、教学目标1.理解直线与抛物线的基本概念和性质。
2.掌握判断直线与抛物线位置关系的方法。
3.能够运用直线与抛物线的位置关系解决实际问题。
二、教学内容1.直线与抛物线的定义和性质。
2.判断直线与抛物线位置关系的方法。
3.实际应用案例。
三、教学方法1.讲解法:通过讲解直线与抛物线的定义和性质,让学生对基础知识有清晰的认识。
2.讨论法:组织学生进行小组讨论,探讨判断直线与抛物线位置关系的方法,提高学生的思维能力和解题技巧。
3.案例分析法:通过实际应用案例的分析,让学生了解直线与抛物线位置关系在实际问题中的应用。
四、教学过程1.导入新课:通过展示一些与直线和抛物线相关的图片或问题,引导学生思考直线与抛物线的位置关系。
2.讲解基础知识:介绍直线与抛物线的定义和性质,包括直线的方程、抛物线的方程、直线与抛物线的交点等。
3.讨论判断方法:组织学生进行小组讨论,探讨判断直线与抛物线位置关系的方法,包括利用直线和抛物线的方程求解交点、利用图像观察等方法。
4.案例分析:通过实际应用案例的分析,让学生了解直线与抛物线位置关系在实际问题中的应用,包括求最值、解方程等问题。
5.课堂练习:布置一些与直线与抛物线位置关系相关的练习题,让学生巩固所学知识,提高解题能力。
6.总结归纳:对本节课所学内容进行总结归纳,强调重点和难点,帮助学生加深对知识的理解和记忆。
五、教学评价1.对学生的课堂表现进行评价,包括参与度、思维活跃度等方面。
2.对学生的作业完成情况进行检查,了解学生对知识的掌握情况。
3.通过考试或测验的方式,对学生的学习成果进行评估。
直线与抛物线的位置关系含答案解析
直线与抛物线的位置关系专题训练一、单选题(共6 分)1“直线与抛物线相切”是“直线与抛物线只有一个公共点”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【答案】A【分析】根据直线与抛物线的位置关系可得答案【详解】“直线与抛物线相切”可得“直线与抛物线只有一个公共点”“直线与抛物线只有一个公共点”时直线可能与对称轴平行此时不相切故“直线与抛物线相切”是“直线与抛物线只有一个公共点”的充分不必要条件故选:A2直线y=k(x−1)+2与抛物线x2=4y的位置关系为()A相交B相切C相离D不能确定【答案】A【分析】直线y=k(x−1)+2过定点(1,2)在抛物线x2=4y内部即可得出结论.【详解】直线y=k(x−1)+2过定点(1,2)∵12<4×2∴(1,2)在抛物线x2=4y内部∴直线y=k(x−1)+2与抛物线x2=4y相交故选:A.二、填空题(共9 分)3直线y=kx+2与抛物线y2=8x有且只有一个公共点则k=________【答案】0或1【分析】当k=0时直线为y=2与抛物线对称轴平行故只有一个交点当k≠0时将y=kx+2代入抛物线y2=8x用判别式法求解【详解】当k=0时直线为y=2与抛物线只有一个交点(12,2)当k≠0时将y=kx+2代入抛物线y2=8x得:k2x2+(4k−8)x+4=0因为直线y=kx+2与抛物线y2=8x有且只有一个公共点所以Δ=(4k−8)2−16k2=0解得k=1综上:k=0或k=1故答案为:0或1【点睛】本题主要考查直线与抛物线的位置关系的应用还考查了分类讨论的思想和运算求解的能力属于基础题4过抛物线x2=4y上一点(4,4)的抛物线的切线方程为________【答案】y=2x−4【分析】解法一:设切线方程为y−4=k(x−4)联立切线方程与抛物线方程由Δ=0得k=2则切线方程可求解法二:利用导数的几何意义直接可求切线斜率再由点斜式方程求得答案【详解】解法一:设切线方程为y−4=k(x−4).由{y−4=k(x−4)x2=4y⇒x2=4(kx−4k+4)⇒x2−4kx+16(k−1)=0由Δ=(−4k)2−4×16(k−1)=0得k2−4k+4=0∴k=2故切线方程为y−4=2(x−4)即y=2x−4故答案为:y=2x−4解法二:由x2=4y得y=x24∴y′=x2∴y′|x=4=42=2∴切线方程为y−4=2(x−4)即y=2x−4故答案为:y=2x−45过点P(2,−1)作抛物线C:x2=2y的两条切线切点分别为AB则直线AB的方程为___________【答案】2x−y+1=0【分析】利用导数的几何意义求出切线方程再利用直线方程的相关知识即可求出【详解】抛物线C:x2=2y可写成:y=x22且y′=x设A(x1,y1),B(x2,y2)则两条切线的斜率分别为k1=x1,k2=x2两条切线的方程为:y−y1=x1(x−x1)y−y1=x1(x−x1)又两条切线过点P(2,−1)所以−1−y1=x1(2−x1)−1−y1=x1(2−x1)所以直线AB的方程为:−1−y=x(2−x)又x2=2y所以直线AB的方程为:2x−y+1=0故答案为:2x−y+1=0三、多选题(共3 分)6已知点O为坐标原点直线y=x−1与抛物线C:y2=4x相交于A,B两点则()A|AB|=8B OA⊥OBC△AOB的面积为2√2D线段AB的中点到直线x=0的距离为2【答案】AC【分析】先判断直线过焦点联立方程组{y =x −1y 2=4x结合韦达定理得两根关系再根据选项一一判断即可.【详解】设A (x 1,y 1),B (x 2,y 2)抛物线C:y 2=4x 则P =2 焦点为(1,0)则直线y =x −1过焦点; 联立方程组{y =x −1y 2=4x消去y 得x 2−6x +1=0 则x 1+x 2=6,x 1x 2=1y 1y 2=(x 1−1)(x 2−1)=x 1x 2−(x 1+x 2)+1=−4所以|AB |=x 1+x 2+P =6+2=8 故A 正确;由OA ⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ =x 1x 2+y 1y 2=1−4=−3≠0所以OA 与OB 不垂直B 错; 原点到直线y =x −1的距离为d =√2=√2所以△AOB 的面积为S =12×d ×|AB |=12×√2×8=2√2 则C 正确;因为线段AB 的中点到直线x =0的距离为x 1+x 22=62=3故D 错故选:AC 【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题要注意直线是否过抛物线的焦点若过抛物线的焦点可直接使用公式|AB |=x 1+x 2+p 若不过焦点则必须用一般弦长公式. 四、填空题(共 3 分)7过抛物线y 2=4x 的焦点F 的直线交该抛物线于A,B 两点若|AF |=3则|BF |=______ 【答案】32 【详解】设∠AFx =θ则由抛物线的定义知x A +1=2+3cos θ=3得cos θ=13 又|BF|=x B +1=1-|BF|cos θ+1=2-13|BF|∴|BF|=32五、单选题(共 9 分)8过抛物线y 2=4x 的焦点F 的直线l 交抛物线于A,B 两点若AB 的中点M 的横坐标为2则线段AB 的长为( ) A 4 B 5 C 6 D 7【答案】C 【分析】结合抛物线的弦长公式求得正确答案 【详解】设点A,B 的横坐标分别为x 1,x 2则x 1+x 2=2x M =4由过抛物线的焦点的弦长公式知:|AB |=x 1+x 2+p =4+2=6 故选:C9已知抛物线C :x 2=2py (p >0)的焦点为F 过点F 且倾斜角为45°的直线交抛物线C 于A 、B 若|AB |=9则抛物线C 的方程为( ) A x 2=3y B x 2=12yC x 2=92yD x 2=16y【答案】C 【分析】设出直线方程然后联立直线方程与抛物线方程借助韦达定理以及过焦点的弦长公式可求出p【详解】由已知得直线AB的方程为y=x+p2联立方程组{y=x+p2,x2=2py消去x得y2−3py+p24=0设A(x1,y1)B(x2,y2)由韦达定理知y1+y2=3p因为|AB|=9所以y1+y2+p=9所以4p=9即p=94所以所求抛物线C的方程为x2=92y故选:C10设F为抛物线C:y2=3x的焦点过F且倾斜角为30°的直线交C于A,B两点O为坐标原点则△OAB的面积为A3√34B9√38C6332D94【答案】D 【分析】【详解】由题意可知:直线AB的方程为y=√33(x−34)代入抛物线的方程可得:4y2−12√3y−9=0设A(x1,y1)、B (x2,y2)则所求三角形的面积为12×34×√(y1+y2)2−4y1y2= 94故选D考点:本小题主要考查直线与抛物线的位置关系考查两点间距离公式等基础知识考查同学们分析问题与解决问题的能力六、填空题(共3 分)11已知直线y=(a+1)x−1与曲线y2=ax恰有一个公共点则实数a的值为________【答案】0或−1或−45【分析】根据给定条件联立方程利用方程组有解求解即得【详解】当a=0时曲线y2=ax为直线y=0显然直线y=x−1与y=0有唯一公共点(1,0)因此a=0;当a≠0时由{y=(a+1)x−1y2=ax消去y并整理得:(a+1)2x2−(3a+2)x+1=0当a=−1时x=−1,y=−1直线y=−1与曲线y2=−x有唯一公共点(−1,−1)因此a=−1;当a≠0且a≠−1时Δ=(3a+2)2−4(a+1)2=5a2+4a=0则a=−45此时直线y=15x−1与曲线y2=−45x相切有唯一公共点因此a=−45所以实数a的值为0或−1或−45故答案为:0或−1或−45七、多选题(共3 分)12已知抛物线Γ:x2=2py(p>0)过其准线上的点T(t,−1)作的两条切线切点分别为AB下列说法正确的是()A p=2B当t=1时TA⊥TBC当t=1时直线AB的斜率为2D△TAB面积的最小值为4【答案】ABD【分析】选项A:由点T(t,−1)在准线上可求出p从而可判断;选项B:设直线y+1=k(x−1)与抛物线方程联立由韦达定理可判断;选项C:设A(x1,y1)B(x2,y2)分别求出TATB方程根据方程结构可判断;选项D:先同C求得直线AB的方程y=t2x+1再表达出△TAB的面积关于t的表达式进而求得面积的最大值即可【详解】对A易知准线方程为y=−1∴p=2C:x2=4y故选项A正确对B设直线y+1=k(x−1)代入y=x 24得x24−kx+k+1=0当直线与C相切时有Δ=0即k2−k−1=0设TATB斜率分别为k1k2易知k1k2是上述方程两根故k1k2=−1故TA⊥TB故选项B正确对C设A(x1,y1)B(x2,y2)其中y1=x124y2=x224则TA:y−x124=x12(x−x1)即y=x12x−y1代入点(1,−1)得x1−2y1+2=0同理可得x2−2y2+2=0故AB:x−2y+2=0故k AB=12故选项C不正确对D同C切线方程TA:y=x12x−y1;TB:y=x22x−y2代入点(t,−1)有−1=x12t−y1−1=x2 2t−y2故直线AB的方程为−1=x2t−y即y=t2x+1联立x2=4y有x2−2tx−4=0则x1+x2=2t,x1x2=−4故|x1−x2|=√(x1+x2)2−4x1x2=2√t2+4又(t,−1)到tx−2y+2=0的距离d =2√t 2+4=√t 2+4故S △TAB =12√1+t 24|x 1−x 2|d =12(t 2+4)32故当t =0时△TAB 的面积小值为12×432=4故D 正确;故选:ABD八、填空题(共 3 分)13在平面直角坐标系xOy 中直线y =kx +4交抛物线C :x 2=4y 于AB 两点交y 轴于点Q 过点AB 分别作抛物线C 的两条切线相交于点M 则以下结论:①∠AOB = 90°;②若直线MQ 的斜率为k 0有kk 0=−8;③点M 的纵坐标为−4;④∠AMB =90°.其中正确的序号是______________. 【答案】①③ 【分析】设A (x 1,y 1)B (x 2,y 2)利用导数求出切线AM 、BM 的方程求出M (x 1+x 22,x 1x 24)利用“设而不求法”得到x 1+x 2=4kx 1x 2=−16即可得到M(2k,−4)可判断③正确;由OA ⃑⃑⃑⃑⃑ ·OB ⃑⃑⃑⃑⃑ =0判断①正确;直接计算出k MQ k =−4可判断②;k MA ·k MB =−4≠0可判断④ 【详解】设A (x 1,y 1)B (x 2,y 2)则由y =x 24可得:y ′=x2所以k AM =x 12直线AM 方程为y −x 124=x 12(x −x 1);同理直线BM 方程为y =x 22x −x 224解得M (x 1+x 22,x 1x 24)将y =kx +4代入x 2=4y =4(kx +4)⇒x 2−4kx −16=0⇒x 1+x 2=4kx 1x 2=−16∴M(2k,−4)故③正确; 因为OA ⃑⃑⃑⃑⃑ ·OB⃑⃑⃑⃑⃑ =x 1x 2+y 1y 2=x 1x 2+(x 1x 2)216=0故∠AOB =90°故①正确; 由k MQ =−82k=−4k ⇒k MQ k =−4故②错误;由k MA ·k MB =14x 1x 2=−4≠0可知∠AMB ≠90°④错误. 故答案为:①③ 【点睛】解析几何问题常见处理方法:(1)正确画出图形利用平面几何知识运算; (2)坐标化把几何关系转化为坐标运算. 九、单选题(共 3 分)14已知线段AB 是过抛物线y 2=2px(p >0)的焦点F 的一条弦过点A (A 在第一象限内)作直线AC 垂直于抛物线的准线垂足为C 直线AT 与抛物线相切于点A 交x 轴于点T 给出下列命题:(1)∠AFx =2∠TAF ; (2)|TF |=|AF |; (3)AT ⊥CF 其中正确的命题个数为 A 0 B 1 C 2 D 3【答案】D 【分析】根据抛物线的定义得到|AF |=|AC |然后判断出过A 点的抛物线的切线垂直CF 进而判断出三个命题正确 【详解】根据抛物线的定义可知|AF |=|AC |由于AC 垂直抛物线的准线所以AC//x 轴 所以∠AFx =∠CAF设A (y 022p ,y 0)则C (−p 2,y 0),F (p2,0)设D 是CF 的中点则D (0,y02)所以直线AD 的方程为y −y 02=y 0−y02y 022p−0(x −0)即y =py 0x +y 02由{y =py 0x +y 02y 2=2px消去y 并化简得p 2y 02x 2−px +y 024=0其判别式Δ=p 2−4×p 2y 02×y 024=0所以直线AD 与抛物线相切故直线AD 与直线AT 重合由于D 是CF 的中点所以AD ⊥CF 也即AT ⊥CF 命题(3)成立根据等腰三角形的性质可知∠CAF =2∠TAF 所以∠AFx =2∠TAF 命题(1)成立 由于AC//x 轴所以∠CAT =∠FTA所以∠FTA =∠TAF 所以|TF |=|AF |命题(2)成立 综上所述正确的命题个数为3个 故选:D 【点睛】本小题主要考查抛物线的定义和抛物线的切线方程属于中档题 十、多选题(共 3 分)15已知抛物线C:y 2=2px (p >0)的焦点为F 直线的斜率为√3且经过点F 直线l 与抛物线C 交于点A 、B 两点(点A 在第一象限)与抛物线的准线交于点D 若|AF |=8则以下结论正确的是 A p =4 B DF ⃑⃑⃑⃑⃑ =FA⃑⃑⃑⃑⃑ C |BD |=2|BF |D |BF |=4【答案】ABC 【分析】作出图形利用抛物线的定义、相似三角形等知识来判断各选项命题的正误 【详解】 如下图所示:分别过点A 、B 作抛物线C 的准线m 的垂线垂足分别为点E 、M抛物线C 的准线m 交x 轴于点P 则|PF |=p 由于直线l 的斜率为√3其倾斜角为60∘ ∵AE//x 轴∴∠EAF =60∘由抛物线的定义可知|AE |=|AF |则ΔAEF 为等边三角形 ∴∠EFP =∠AEF =60∘则∠PEF =30∘∴|AF |=|EF |=2|PF |=2p =8得p =4A 选项正确;∵|AE |=|EF |=2|PF |又PF//AE ∴F 为AD 的中点则DF ⃑⃑⃑⃑⃑ =FA⃑⃑⃑⃑⃑ B 选项正确; ∴∠DAE =60∘∴∠ADE =30∘∴|BD |=2|BM |=2|BF |(抛物线定义)C 选项正确; ∵|BD |=2|BF |∴|BF |=13|DF |=13|AF |=83D 选项错误 故选:ABC 【点睛】本题考查与抛物线相关的命题真假的判断涉及抛物线的定义考查数形结合思想的应用属于中等题 十一、双空题(共 3 分)16直线l 过抛物线C:y 2=2px (p >0)的焦点F (1,0)且与C 交于A,B 两点则p =______1|AF |+1|BF |=______.【答案】 (1) 2 (2) 1 【分析】由题意知p2=1从而p =2所以抛物线方程为y 2=4x .联立方程利用韦达定理可得结果 【详解】由题意知p2=1从而p =2所以抛物线方程为y 2=4x .当直线AB 斜率不存在时:x =1代入解得|AF |=|BF |=2从而1|AF |+1|BF |=1. 当直线AB 斜率存在时:设AB 的方程为y =k (x −1)联立{y =k (x −1)y 2=4x整理得k 2x 2−(2k 2+4)x +k 2=0设A (x 1,y 1)B (x 2,y 2)则{x 1+x 2=2k 2+4k 2x 1x 2=1从而1|AF |+1|BF |=1x1+1+1x 2+1=x 1+x 2+2x 1+x 2+x 1x 2+1=x 1+x 2+2x 1+x 2+2=1. (方法二)利用二级结论:1|AF |+1|BF |=2p 即可得结果. 【点睛】本题考查抛物线的几何性质直线与抛物线的位置关系考查转化能力与计算能力属于基础题 十二、解答题(共 24 分)17已知抛物线C :y 2=3x 的焦点为F 斜率为32的直线l 与C 的交点为AB 与x 轴的交点为P .(1)若|AF |+|BF |=4求l 的方程; (2)若AP⃑⃑⃑⃑⃑ =3PB ⃑⃑⃑⃑⃑ 求|AB |. 【答案】(1)12x −8y −7=0;(2)4√133【分析】(1)设直线l :y =32x +mA (x 1,y 1)B (x 2,y 2);根据抛物线焦半径公式可得x 1+x 2=52;联立直线方程与抛物线方程利用韦达定理可构造关于m 的方程解方程求得结果;(2)设直线l :x =23y +t ;联立直线方程与抛物线方程得到韦达定理的形式;利用AP⃑⃑⃑⃑⃑ =3PB ⃑⃑⃑⃑⃑ 可得y 1=−3y 2结合韦达定理可求得y 1y 2;根据弦长公式可求得结果【详解】(1)设直线l 方程为:y =32x +mA (x 1,y 1)B (x 2,y 2)由抛物线焦半径公式可知:|AF |+|BF |=x 1+x 2+32=4 ∴x 1+x 2=52 联立{y =32x +m y 2=3x得:9x 2+(12m −12)x +4m 2=0则Δ=(12m −12)2−144m 2>0 ∴m <12 ∴x 1+x 2=−12m−129=52解得:m =−78∴直线l 的方程为:y =32x −78即:12x −8y −7=0 (2)设P (t,0)则可设直线l 方程为:x =23y +t 联立{x =23y +t y 2=3x得:y 2−2y −3t =0则Δ=4+12t >0 ∴t >−13∴y 1+y 2=2y 1y 2=−3t∵AP⃑⃑⃑⃑⃑ =3PB ⃑⃑⃑⃑⃑ ∴y 1=−3y 2 ∴y 2=−1y 1=3 ∴y 1y 2=−3 则|AB |=√1+49⋅√(y 1+y 2)2−4y 1y 2=√133⋅√4+12=4√133【点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题涉及到平面向量、弦长公式的应用关键是能够通过直线与抛物线方程的联立通过韦达定理构造等量关系设抛物线C:y2=2px(p>0)的焦点为F点M(2,m)(m>0)在抛物线C上且满足|MF|=3.18 求抛物线C的标准方程;19 过点G(0,a)(a>0)的两直线l1,l2的倾斜角互补直线l1与抛物线C交于AB两点直线l2与抛物线C交于P.Q两点△FAB与△FPQ的面积相等求实数a的取值范围.【答案】18 y2=4x19 (0,1)∪(1,√2)【分析】(1)根据抛物线的定义:到焦点的距离等于到准线的距离即可求解答(2)联立直线与抛物线方程得到根与系数的关系由弦长公式求长度由点到直线的距离求高进而可得三角形的面积即可求解【18题详解】依题意点M(2,m)是抛物线C上的一点点M到焦点的距离为3所以2+p2=3,p=2所以抛物线方程为y2=4x【19题详解】由题意可知直线l1,l2的斜率存在且不为0设直线l1:x=t(y−a)所以设直线l2的方程为x=−t(y−a)联立方程组{y2=4xx=t(y−a)整理得y2−4ty+4at=0可得Δ1=16t2−16at>0,y1+y2=4t,y1y2=4atS△FAB=12×4√1+t2√t2−at×|1+ta|√1+t2=2√t2−at|1+ta|将t用−t代换可得S△FPQ=2√t2+at|ta−1|Δ2=16t2+16at>0由S△FAB=S△FPQ可得2√t2−at|1+ta|=2√t2+at|ta−1|化简可得√t+at−a =|ta+1ta−1|两边平方得t2=12−a2所以2−a2>0解得0<a<√2又由Δ1>0且Δ2>0可得t<−a或t>a可知t2>a2所以12−a2>a2即(a2−1)2>0所以a≠1所以实数a的取值范围是(0,1)∪(1,√2)20已知曲线C:y=x22D为直线y=−12上的动点过D作C的两条切线切点分别为AB(1)证明:直线AB 过定点:(2)若以E (052)为圆心的圆与直线AB 相切且切点为线段AB 的中点求四边形ADBE 的面积【答案】(1)见详解;(2) 3或4√2 【分析】(1)可设A(x 1,y 1)B(x 2,y 2)D(t,−12)然后求出AB 两点处的切线方程比如AD :y 1+12=x 1(x 1−t)又因为BD 也有类似的形式从而求出带参数直线AB 方程最后求出它所过的定点(2)由(1)得带参数的直线AB 方程和抛物线方程联立再通过M 为线段AB 的中点EM ⃑⃑⃑⃑⃑⃑ ⊥AB ⃑⃑⃑⃑⃑ 得出t 的值从而求出M 坐标和|EM |⃑⃑⃑⃑⃑⃑⃑⃑⃑⃑ 的值d 1,d 2分别为点D,E 到直线AB 的距离则d 1=√t 2+1, d 2=√t 2+1结合弦长公式和韦达定理代入求解即可 【详解】(1)证明:设D(t,−12),A(x 1,y 1),则y 1=12x 12. 又因为y =12x 2所以y′=x 则切线DA 的斜率为x 1 故y 1+12=x 1(x 1−t)整理得2tx 1−2y 1+1=0 设B(x 2,y 2)同理得2tx 2−2y 2+1=0A(x 1,y 1),B(x 2,y 2)都满足直线方程2tx −2y +1=0于是直线2tx −2y +1=0过点A,B 而两个不同的点确定一条直线所以直线AB 方程为2tx −2y +1=0即2tx +(−2y +1)=0当2x =0,−2y +1=0时等式恒成立.所以直线AB 恒过定点(0,12) (2)[方法一]【最优解:利用公共边结合韦达定理求面积】 设AB 的中点为G A (x 1,y 1),B (x 2,y 2),则G (x 1+x 22,y 1+y 22)EG⃑⃑⃑⃑⃑ =(x 1+x 22,y 1+y 2−52)BA ⃑⃑⃑⃑⃑ =(x 1−x 2 ,y 1−y 2).由EG ⃑⃑⃑⃑⃑ ⋅BA ⃑⃑⃑⃑⃑ =0得(x 1+x 22)(x 1−x 2)+(y 1+y 2−52)(y 1−y 2)=0将y =x 22代入上式并整理得(x 1−x 2)(x 1+x 2)(x 12+x 22−6)=0 因为x 1−x 2≠0所以x 1+x 2=0或x 12+x 22=6.由(1)知D (x 1+x 22,−12)所以DG ⊥x 轴则S 四边形ADBE =S △ABE +S △ABD = 12|EF|⋅(x 2−x 1)+ 12|GD|⋅(x 2−x 1)=(x 2− x 1)+(x 1+x 2)2+48(x 2−x 1)(设x 2>x 1).当x 1+x 2=0时(x 2−x 1)2=(x 1+x 2)2−4x 1x 2=4即x 2−x 1=2,S 四边形ADBE =3;当x 12+x 22=6时(x 1+x 2)2=4,(x 2−x 1)2=(x 1+ x 2)2−4x 1x 2=8即x 2−x 1=2√2S 四边形ADBE =4√2. 综上四边形ADBE 的面积为3或4√2.[方法二]【利用弦长公式结合面积公式求面积】设D (t,−12)由(1)知抛物线的焦点F 的坐标为(0,12)准线方程为y =−12.由抛物线的定义 得|AB|=x 122+12+x 222+12=(x 1+x 2)2−2x 1x 22+1=4t 2+22+1=2t 2+2.线段AB 的中点为G (t,t 2+12).当x 1+x 2=0时t =0,AB ⊥y 轴|AB|=2 S 四边形ADBE =12×2×(52+12)=3; 当x 1+x 2≠0时t ≠0由EG ⊥AB 得t 2+12−52t−0⋅t =−1即t =±1.所以|AB|=4,G (±1,32)直线AB 的方程为y =±x +12.根据对称性考虑点G (1,32),D (1,−12)和直线AB 的方程y =x +12即可.E 到直线AB 的距离为|EG|=√(0−1)2+(52−32)2= √2D 到直线AB 的距离为|1+12+12|√12+(−1)2=√2.所以S 四边形ADBE =12×4×(√2+√2)=4√2. 综上四边形ADBE 的面积为3或4√2. [方法三]【结合抛物线的光学性质求面积】图5中由抛物线的光学性质易得∠1=∠2又∠1=∠3所以∠2=∠3. 因为AF =AA 1AD =AD 所以△AFD ≌△AA 1D 所以∠AFD =∠AA 1D =90°,DF ⊥AB,DA 1=DF .同理△BDF ≌△BDB 1⇒DB 1=DF 所以DA 1=DB 1即点D 为A 1B 1中点. 图6中已去掉坐标系和抛物线并延长BA,B 1A 1于点H . 因为GE ⊥AB,DF ⊥AB 所以GE ∥DF .又因为GD 分别为AB,A 1B 1的中点所以GD ∥AA 1∥EF故EFDG 为平行四边形从而GD =EF =2,AB =AA 1+BB 1=2GD =4.因为FI ∥GD 且FI =12GD 所以I 为HD 的中点从而DF =GE =√2.S 四边形ADBE =S △ADB +S △ABE = 12AB ⋅DF +12AB ⋅GE =4√2. 当直线AB 平行于准线时易得S 四边形ADBE =3. 综上四边形ADBE 的面积为3或4√2.[方法四]【结合弦长公式和向量的运算求面积】 由(1)得直线AB 的方程为y =tx +12 由{y =tx +12y =x 22可得x 2−2tx −1=0 于是x 1+x 2=2t,x 1x 2=−1,y 1+y 2=t(x 1+x 2)+1=2t 2+1|AB|=√1+t 2|x 1−x 2|=√1+t 2√(x 1+x 2)2−4x 1x 2=2(t 2+1)设d 1,d 2分别为点D,E 到直线AB 的距离则d 1=√t 2+1, d 2=√t 2+1因此四边形ADBE 的面积S =12|AB|(d 1+d 2)=(t 2+3)√t 2+1 设M 为线段AB 的中点则M (t,t 2+12)由于EM ⃑⃑⃑⃑⃑⃑ ⊥AB ⃑⃑⃑⃑⃑ 而EM ⃑⃑⃑⃑⃑⃑ =(t,t 2−2)AB ⃑⃑⃑⃑⃑ 与向量(1,t)平行所以t +(t 2−2)t =0解得t =0或t =±1 当t =0时S =3;当t =±1时S =4√2 因此四边形ADBE 的面积为3或4√2 【整体点评】(2)方法一:利用公共边将一个三角形的面积分割为两个三角形的面积进行计算是一种常用且有效的方法;方法二:面积公式是计算三角形面积的最基本方法;方法三:平稳的光学性质和相似、全等三角形的应用要求几何技巧比较高计算量较少; 方法四:弦长公式结合向量体现了数学知识的综合运用设抛物线C:y 2=2px(p >0)的焦点为F 点D (p,0)过F 的直线交C 于MN 两点.当直线MD 垂直于x 轴时|MF |=3. 21 求C 的方程;22 设直线MD,ND 与C 的另一个交点分别为AB 记直线MN,AB 的倾斜角分别为α,β.当α−β取得最大值时求直线AB 的方程. 【答案】21 y 2=4x ; 22 AB:x =√2y +4 【分析】(1)由抛物线的定义可得|MF |=p +p2即可得解;(2)法一:设点的坐标及直线MN:x =my +1由韦达定理及斜率公式可得k MN =2k AB 再由差角的正切公式及基本不等式可得k AB =√22设直线AB:x =√2y +n 结合韦达定理可解【21题详解】抛物线的准线为x =−p2当MD 与x 轴垂直时点M 的横坐标为p 此时|MF |=p +p2=3所以p =2 所以抛物线C 的方程为y 2=4x ; 【22题详解】[方法一]:【最优解】直线方程横截式设M (y 124,y 1),N (y 224,y 2),A (y 324,y 3),B (y 424,y 4)直线MN:x =my +1 由{x =my +1y 2=4x 可得y 2−4my −4=0Δ>0,y 1y 2=−4由斜率公式可得k MN =y 1−y 2y 124−y 224=4y1+y 2k AB =y 3−y 4y 324−y 424=4y3+y 4直线MD:x =x 1−2y 1⋅y +2代入抛物线方程可得y 2−4(x 1−2)y 1⋅y −8=0Δ>0,y 1y 3=−8所以y 3=2y 2同理可得y 4=2y 1 所以k AB =4y3+y 4=42(y1+y 2)=k MN 2又因为直线MN 、AB 的倾斜角分别为α,β所以k AB =tanβ=k MN 2=tanα2若要使α−β最大则β∈(0,π2)设k MN =2k AB =2k >0则tan (α−β)=tanα−tanβ1+tanαtanβ=k 1+2k 2=11k+2k≤2√1k⋅2k=√24当且仅当1k =2k 即k =√22时等号成立 所以当α−β最大时k AB =√22设直线AB:x =√2y +n代入抛物线方程可得y 2−4√2y −4n =0 Δ>0,y 3y 4=−4n =4y 1y 2=−16所以n =4 所以直线AB:x =√2y +4 [方法二]:直线方程点斜式 由题可知直线MN 的斜率存在设M (x 1,y 1),N (x 2,y 2),A (x 3,y 3),B (x 4,y 4),直线MN:y =k (x −1) 由 {y =k(x −1)y 2=4x得:k 2x 2−(2k 2+4)x +k 2=0x 1x 2=1,同理y 1y 2=−4 直线MD :y =y 1x1−2(x −2),代入抛物线方程可得:x 1x 3=4同理x 2x 4=4代入抛物线方程可得:y 1y 3=−8,所以y 3=2y 2同理可得y 4=2y 1 由斜率公式可得:k AB =y 4−y 3x 4−x 3=2(y 2−y 1)4(1x 2−1x 1)=y 2−y 12(x 2−x 1)=12k MN .(下同方法一)若要使α−β最大则β∈(0,π2)设k MN =2k AB =2k >0则tan (α−β)=tanα−tanβ1+tanαtanβ=k1+2k 2=11k+2k≤2√1k⋅2k=√24当且仅当1k =2k 即k =√22时等号成立 所以当α−β最大时k AB =√22设直线AB:x =√2y +n代入抛物线方程可得y 2−4√2y −4n =0Δ>0,y 3y 4=−4n =4y 1y 2=−16所以n =4所以直线AB:x =√2y +4 [方法三]:三点共线设M (y 124,y 1),N (y 224,y 2),A (y 324,y 3),B (y 424,y 4)设P (t,0),若 P 、M 、N 三点共线由PM ⃑⃑⃑⃑⃑⃑ =(y 124−t,y 1),PN ⃑⃑⃑⃑⃑⃑ =(y 224−t,y 2) 所以(y 124−t)y 2=(y 224−t)y 1化简得y 1y 2=−4t反之若y1y2=−4t,可得MN过定点(t,0)因此由M、N、F三点共线得y1y2=−4由M、D、A三点共线得y1y3=−8由N、D、B三点共线得y2y4=−8则y3y4=4y1y2=−16AB过定点(4,0)(下同方法一)若要使α−β最大则β∈(0,π2)设k MN=2k AB=2k>0则tan(α−β)=tanα−tanβ1+tanαtanβ=k1+2k2=11k+2k≤2√1k⋅2k=√24当且仅当1k =2k即k=√22时等号成立所以当α−β最大时k AB=√22所以直线AB:x=√2y+4【整体点评】(2)法一:利用直线方程横截式简化了联立方程的运算通过寻找直线MN,AB的斜率关系由基本不等式即可求出直线AB的斜率再根据韦达定理求出直线方程是该题的最优解也是通性通法;法二:常规设直线方程点斜式解题过程同解法一;法三:通过设点由三点共线寻找纵坐标关系快速找到直线AB过定点省去联立过程也不失为一种简化运算的好方法.已知椭圆E:x 2a2+y2b2=1(a>b>0)的一个顶点为A(0,1)焦距为2√3.23 求椭圆E的方程;24 过点P(−2,1)作斜率为k的直线与椭圆E交于不同的两点BC直线ABAC分别与x轴交于点MN当|MN|=2时求k的值.【答案】23 x24+y2=124 k=−4【分析】(1)依题意可得{b=12c=2√3c2=a2−b2即可求出a从而求出椭圆方程;(2)首先表示出直线方程设B(x1,y1)、C(x2,y2)联立直线与椭圆方程消元列出韦达定理由直线AB、AC的方程表示出x M、x N根据|MN|=|x N−x M|得到方程解得即可;【23题详解】解:依题意可得b=12c=2√3又c2=a2−b2所以a=2所以椭圆方程为x 24+y2=1;【24题详解】解:依题意过点P(−2,1)的直线为y−1=k(x+2)设B(x1,y1)、C(x2,y2)不妨令−2≤x1<x2≤2由{y−1=k(x+2)x24+y2=1消去y整理得(1+4k2)x2+(16k2+8k)x+16k2+16k=0所以Δ=(16k2+8k)2−4(1+4k2)(16k2+16k)>0解得k<0所以x1+x2=−16k2+8k1+4k2x1⋅x2=16k2+16k1+4k2直线AB的方程为y−1=y1−1x1x令y=0解得x M=x11−y1直线AC的方程为y−1=y2−1x2x令y=0解得x N=x21−y2所以|MN|=|x N−x M|=|x21−y2−x11−y1|=|x21−[k(x2+2)+1]−x11−[k(x1+2)+1]|=|x2−k(x2+2)+x1k(x1+2)|=|(x2+2)x1−x2(x1+2) k(x2+2)(x1+2)|=2|x1−x2||k|(x2+2)(x1+2)=2所以|x1−x2|=|k|(x2+2)(x1+2)即√(x1+x2)2−4x1x2=|k|[x2x1+2(x2+x1)+4]即√(−16k2+8k1+4k2)2−4×16k2+16k1+4k2=|k|[16k2+16k1+4k2+2(−16k2+8k1+4k2)+4]即81+4k2√(2k2+k)2−(1+4k2)(k2+k)=|k|1+4k2[16k2+16k−2(16k2+8k)+4(1+4k2)]整理得8√−k=4|k|解得k=−4十三、单选题(共3 分)25设抛物线E:y 2=8x 的焦点为F 过点M(4,0)的直线与E 相交于AB 两点与E 的准线相交于点C 点B 在线段AC 上|BF|=3则△BCF 与△ACF 的面积之比S△BCF S △ACF=( )A 14 B 15C 16D 17【答案】C 【分析】根据抛物线焦半径公式得到B 点横坐标进而利用抛物线方程求出B 点纵坐标直线AB 的方程求出C 点坐标联立直线与抛物线求出A 点纵坐标利用S △BCF S △ACF=BC AC =y 2−yC y 1−y C求出答案【详解】如图过点B 作BD 垂直准线x =−2于点D 则由抛物线定义可知:|BF|=|BD|=3 设直线AB 为x =my +4 A (x 1,y 1)B (x 2,y 2)C (−2,y C )不妨设m >0则y 1>0,y 2<0所以x 2+2=3解得:x 2=1则y 22=8x 2=8解得:y 2=−2√2则B(1,−2√2)所以−2√2m +4=1解得:m =3√24则直线AB 为x =3√24y +4所以当x =−2时即3√24y +4=−2解得:y C =−4√2则C(−2,−4√2)联立x =my +4与y 2=8x 得:y 2−8my −32=0则y 1y 2=−32 所以y 1=8√2其中S △BCF S △ACF=BC AC =y 2−yC y 1−y C=√212√2=16故选:C十四、解答题(共 6 分)已知抛物线C:x 2=2py (p >0)的焦点为F 且F 与圆M :x 2+(y +4)2=1上点的距离的最小值为427 若点P 在M 上P APB 是C 的两条切线AB 是切点求△PAB 面积的最大值 【答案】26 2 27 20√5 【分析】(1)结合焦点F (0,p2)与圆M 的位置关系可得F 与圆M 的最小距离为|FM |−1即可求解; (2)设切点A(x 1,y 1),B(x 2,y 2)得到直线l PA ,l PB 的方程联立可得P (x 1+x 22,x 1x 24)设直线l AB :y =kx +b 与抛物线进行联立可得x 1+x 2=4k,x 1x 2=−4b 故可得到S △PAB =4(k 2+b)32由点P 在圆上可得k 2=−b 2+8b−154代入面积即可求得范围【26题详解】由圆M :x 2+(y +4)2=1可得圆心圆M (0,−4)半径为1 易得焦点F (0,p2)在圆M 外所以点F (0,p2)到圆M 上的点的距离的最小值为|FM |−1=p2+4−1=4解得p =2 【27题详解】由(1)知抛物线的方程为x 2=4y 即y =14x 2则y ′=12x ,设切点A(x 1,y 1),B(x 2,y 2)则易得直线l PA :y =x 12x −x 124直线l PB :y =x 22x −x 224,由{y =x 12x −x 124y =x 22x −x 224可得P (x 1+x 22,x 1x 24) 设直线l AB :y =kx +b 联立抛物线方程消去y 并整理可得x 2−4kx −4b =0 ∴Δ=16k 2+16b >0即k 2+b >0且x 1+x 2=4k,x 1x 2=−4b∵|AB |=√1+k 2⋅√(x 1+x 2)2−4x 1x 2=√1+k 2⋅√16k 2+16b 点P 到直线AB 的距离d =2√k 2+1∴S △PAB=12|AB |d =4(k 2+b)32①又点P(2k,−b)在圆M:x 2+(y +4)2=1上 故k 2=−b 2+8b−154代入①得S △PAB =4(−b 2+12b−154)32=4[−(b−6)2+214]32而y P =−b ∈[−5,−3]即b ∈[3,5] 因为y =−(b−6)2+214在区间[3,5]内单调递增且y =4x 32在定义域内单调递增所以S △PAB =4[−(b−6)2+214]32在区间[3,5]上单调递增∴当b =5时(S △PAB )max =20√5 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程设交点坐标为(x 1,y 1),(x 2,y 2);(2)联立直线与圆锥曲线的方程得到关于x (或y )的一元二次方程必要时计算Δ; (3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式; (5)代入韦达定理求解 十五、单选题(共 3 分)28过抛物线y 2=2px (p >0)的焦点F 作倾斜角为60°的直线l 交抛物线于AB 两点且|AF |>|BF |则|AF||BF|的值为( )A3 B2C 32D 43【答案】A 【分析】方法1根据抛物线焦点弦的性质直接计算作答方法2根据给定条件求出直线l 的方程再与抛物线方程联立结合抛物线定义求解作答 【详解】方法1:根据抛物线焦点弦的性质可知|AF|=p1−cos60∘=3方法2:抛物线y 2=2px (p >0)的焦点F(p 2,0)准线方程:x =−p2 直线l 方程为:y =√3(x −p2)由{y =√3(x −p2)y 2=2px消去y 得:3x 2−5px +34p 2=0设A(x 1,y 1),B(x 2,y 2)因|AF |>|BF |即有x 1>x 2解得x 1=3p 2,x 2=p6所以|AF||BF|=x 1+p 2x 2+p 2=3p 2+p 2p 6+p 2=3故选:A十六、多选题(共 3 分)29已知O 为坐标原点抛物线E 的方程为y =14x 2E 的焦点为F 直线l 与E 交于AB 两点且AB 的中点到x 轴的距离为2则下列结论正确的是( ) A E 的准线方程为y =−116 B |AB |的最大值为6C 若AF⃑⃑⃑⃑⃑ =2FB ⃑⃑⃑⃑⃑ 则直线AB 的方程为y =±√24x +1 D 若OA ⊥OB 则△AOB 面积的最小值为16 【答案】BCD 【分析】直接求出准线方程即可判断A 选项;由|AF |+|BF |=2|MN |=6以及抛物线的定义结合|AF |+|BF |≥|AB |即可判断B 选项;设出直线AB 的方程为y =kx +1联立抛物线由AF ⃑⃑⃑⃑⃑ =2FB ⃑⃑⃑⃑⃑ 解出A 点坐标即可判断C 选项;由OA ⊥OB 求得直线AB 恒过点(0,4)结合x 1x 2=−16即可求出面积最小值即可判断D 选项 【详解】由题意知E 的标准方程为x 2=4y 故E 的准线方程为y =−1 A 错误; 设AB 的中点为M 分别过点ABM 作准线的垂线垂足分别为CDN 因为M 到x 轴的距离为2所以|MN |=2+1=3由抛物线的定义知|AC |=|AF ||BD |=|BF |所以2|MN |=|AC |+|BD |=|AF |+|BF |=6 因为|AF |+|BF |≥|AB |所以|AB |≤6所以B 正确; 由AF⃑⃑⃑⃑⃑ =2FB ⃑⃑⃑⃑⃑ 得直线AB 过点F (0,1)直线AB 的斜率存在 设直线AB 的方程为y =kx +1联立方程得{y =kx +1,x 2=4y, 化简得x 2−4kx −4=0则x A x B =−4由于AF⃑⃑⃑⃑⃑ =2FB ⃑⃑⃑⃑⃑ 所以(−x A ,1−y A )=2(x B ,y B −1)得x A =−2x B 得x A =±2√2所以y A =14x A 2=2所以k =±√24直线AB 的方程为y =±√24x +1故C 正确;设A (x 1,y 1)B (x 2,y 2)由OA ⊥OB 得x 1x 2+y 1y 2=0又{y 1=x 124,y 2=x 224,所以x 1x 2+116(x 1x 2)2=0由题意知x 1x 2≠0所以x 1x 2=−16 又k AB =y 2−y1x 2−x 1=x 224−x 124x2−x 1=x 1+x 24故直线AB 的方程为y −y 1=x 1+x 24(x −x 1)由于y 1=x 124所以y =x 1+x 24x −x 1x 24=x 1+x 24x +4则直线AB 恒过点(0,4)所以S △OAB =12×4|x 1−x 2|=2√(x 1+x 2)2+64≥16 所以△AOB 面积的是小值为16故D 正确十七、填空题(共 9 分)30设抛物线x 2=2py(p >0)M 为直线y =−2p 上任意一点过M 引抛物线的切线切点分别为AB记ABM 的横坐标分别为x A ,x B ,x M 则下列关系:①x A +x B =2x M ;②x A x B =x M 2;③1x A+1x B=2xM其中正确的是________(填序号). 【答案】① 【分析】利用导数几何意义求出切线MA,MB 的方程联立求出x A ,x B ,x M 的关系再逐一判断各个命题即得 【详解】由x 2=2py 得y =x 22p 求导得y ′=x p 则切线MA,MB 的斜率分别为xA p ,x B p而M(x M ,−2p)于是直线MA 的方程为y +2p =x A p(x −x M )直线MB 的方程为y +2p =x B p(x −x M )因此{x A22p+2p =x A p (x A −x M )x B22p+2p =x B p(x B −x M )则x A −x B p ⋅x M =x A 2−x B 22p而x A ≠x B 从而x A +x B =2x M ①正确;x M 2−x A x B =(x A +x B 2)2−x A x B =(x A −x B 2)2>0即x M 2>x A x B ②错误;当x M =0时③无意义 当x M ≠0时1x A+1x B−2x M=x A +x B x A x B−4xA +x B=(x A −x B )2xA xB (x A +x B )≠0③错误所以正确命题的序号是① 故答案为:①31已知A,B 为抛物线C:x 2=4y 上的两点M(−1,2)若AM ⃑⃑⃑⃑⃑⃑ =MB ⃑⃑⃑⃑⃑⃑ 则直线AB 的方程为_________ 【答案】x +2y −3=0 【分析】由于AM ⃑⃑⃑⃑⃑⃑ =MB ⃑⃑⃑⃑⃑⃑ 可得M 为中点则{x 1+x 2=−2y 1+y 2=4根据点差法即可求得直线AB 的斜率从而得方程.【详解】设A (x 1,y 1),B (x 2,y 2)又M (−1,2) 因为AM⃑⃑⃑⃑⃑⃑ =MB ⃑⃑⃑⃑⃑⃑ 所以{x 1+x 2=−2y 1+y 2=4又x 2=4y ,x 2=4y 则x 2−x 2=4y −4y 得x +x =4y 1−4y 2=−2则直线AB 的斜率为k =−12故直线AB 的方程为y −2=−12(x +1) 化简为x +2y −3=0.联立{x 2=4y x +2y −3=0 可得x 2+2x −6=0 Δ=28>0直线与抛物线有两个交点成立 故答案为:x +2y −3=0.32抛物线y 2=4x 的焦点为F 点P 在双曲线C :x 24−y 22=1的一条渐近线上O 为坐标原点若|OF |=|PF |则△PFO 的面积为____ 【答案】√23##13√2 【分析】由双曲线的标准方程可求其渐近线方程则P 点坐标可设成只有一个参数m 的形式再由|OF |=|PF |可得m 的值则△PFO 的面积可求 【详解】抛物线y 2=4x 的焦点为F (10)双曲线C :x 24−y 22=1的渐近线方程为x ±√2y =0不妨设P 在渐近x −√2y =0上可设P(√2m,m)m >0 由|OF |=|PF |可得 √(√2m-1)2+m 2=1解得m =2√23则△PFO 的面积为12|OF ||y P |=12×1×2√23=√23故答案为:√23。
直线与抛物线的位置关系
点 F 交抛物线于 A , B 两点, O 为坐标原点,则△ ABO 的面积为
64
.
(2)依题意,抛物线 C : y 2=16 x 的焦点为 F (4,0),
直线 l 的方程为 x = 3 y +4.
= 3 + 4,
由൝ 2
= 16,
消去 x ,整理得 y 2-16 3 y -64=0.
12
2
− 2 ,
22 =
22
2
− 2 ,
即 x 1, x 2是方程 x 2-4 x -4p 2=0的两根,
2
2
2 − 1
2 2
2 −1
2
2
所以 x 1+ x 2=4, x 1 x 2=-4 p ,所以 kAB =
=
= ,
2 −1
2 −1
所以| AB |= 1 + 2 · (1 +2 )2 − 41 2 =
直线与抛物线的位置关系
考点一
直线与抛物线的位置关系
过点(0,3)的直线 l 与抛物线 y 2=4 x 只有一个公共点,则直线 l 的
1
y = x +3或 y =3或 x =0
方程为
.
例1
3
1
当直线 l 的斜率 k 存在且 k ≠0时,由相切容易求出直线 l 的方程为 y = x
3
+3;当 k =0时,直线 l 的方程为 y =3,此时直线 l 平行于抛物线的对称
(6)通径:过焦点且垂直于对称轴的弦,长等于2p,通径是过焦点最
短的弦.
跟踪训练
2.
3
2
(2019·全国Ⅰ卷)已知抛物线 C : y =3 x 的焦点为 F ,斜率为 的直线 l
直线与抛物线的位置关系教案
直线与抛物线的位置关系教案一、教学目标:知识与技能:1. 让学生掌握直线与抛物线的位置关系,能够判断直线与抛物线的位置;2. 学会利用数学知识解决实际问题,提高学生的解决问题的能力。
过程与方法:1. 通过观察、分析、归纳直线与抛物线的位置关系;2. 利用数形结合的方法,直观地展示直线与抛物线的交点情况。
情感态度价值观:1. 培养学生的团队协作精神,让学生在合作中学习,提高学习兴趣;2. 培养学生勇于探究、积极思考的科学精神。
二、教学重点与难点:重点:1. 直线与抛物线的位置关系的判断;2. 利用数形结合方法分析直线与抛物线的位置关系。
难点:1. 对直线与抛物线位置关系的理解;2. 如何在实际问题中应用直线与抛物线的位置关系。
三、教学准备:教师准备:1. 教学PPT;2. 相关例题及练习题;3. 数学软件或板书。
学生准备:1. 课本;2. 笔记本;3. 草稿纸。
四、教学过程:1. 导入新课:利用PPT展示直线与抛物线的图像,引导学生观察并思考它们之间的位置关系。
2. 知识讲解:讲解直线与抛物线的位置关系,包括相交、相切、平行等情况,并通过实例进行解释。
3. 例题解析:利用数学软件或板书,展示典型例题,引导学生分析解题思路,总结规律。
4. 课堂练习:让学生独立完成练习题,教师巡回指导,解答学生疑问。
5. 总结归纳:对本节课的内容进行总结,强调直线与抛物线位置关系的判断方法及应用。
五、课后作业:1. 完成课后练习题;2. 结合生活实际,寻找直线与抛物线的位置关系应用实例,下节课分享。
注意事项:1. 注重学生个体差异,因材施教;2. 鼓励学生提问,充分调动学生的积极性;3. 课堂练习环节,关注学生的解题过程,培养学生的思维能力。
六、教学拓展:1. 分析其他类型的曲线(如圆、双曲线等)与直线的position relationship;2. 探讨直线与抛物线的位置关系在实际问题中的应用,如物理中的运动轨迹问题,工程中的优化问题等;3. 利用数学软件,让学生自己尝试绘制不同位置关系的直线与抛物线,加深对知识的理解。
直线与抛物线的位置关系
汇报人:
目录
交点个数
直线与抛物线 相交的个数取 决于直线的斜 率和抛物线的
开口方向
当直线斜率存 在且与x轴不垂 直时直线与抛 物线最多有两
个交点
当直线斜率不 存在(垂直于x 轴)时直线与 抛物线有一个
交点
当直线斜率不 存在(垂直于x 轴)且过抛物 线顶点时直线 与抛物线有无
数多个交点
交点坐标
当夹角达到90度时直线与抛物 线相切
夹角的变化还会影响交点的个 数以及与对称轴的关系
汇报人:
交点性质
交点个数:直线与抛物线可能有一个或两个交点 交点位置:交点位于抛物线的对称轴上或对称轴的一侧 交点坐标:通过联立方程求得交点的坐标 交点性质的应用:判断直线与抛物线的位置关系求解相关问题
直线与抛物线平行无交点
平行
直线与抛物线平行交点在无穷远处
直线与抛物线平行交点在抛物线上
直线与抛物线平行交点在直线两侧
交点坐标的求 法:联立直线 与抛物线的方 程解得交点的x 坐标和y坐标。
交点的性质: 交点是直线与 抛物线的公共 点满足两个方
程。
交点的几何意 义:交点是直 线与抛物线的 交点也是它们
相切的点。
交点与切线的 关系:在切点 处切线的斜率 等于该点的导
数值。
交点与参数关系
当参数为0时直线与抛物线交于原点 当参数不为0时直线与抛物线交于两点与参数的正负有关 参数的正负决定了交点的位置和数量 参数的变化会影响交点的位置和数量
抛物线开口大小变化对位置关系的影响
开口大小变化:影响抛物线的位置关系
开口向上:抛物线与x轴交点随开口增大而增多
开口向下:抛物线与x轴交点随开口减小而减少
开口大小变化对直线与抛物线位置关系的影响:开口增大时直线与抛物线交点增多;开口减小时直线与抛物线交 点减少
《直线与抛物线的位置关系》教学设计
《直线与抛物线的位置关系》教学设计
《直线与抛物线的位置关系》教学设计
一.教学目标
1. 掌握抛物线的定义
2. 了解抛物线的特点:抛物线的性质、识别抛物线的方法
3. 掌握抛物线与直线位置关系,间接联系条件概率
二.教学准备
1. 白板,粉笔
2. 激励故事/简答题
3. 图片和例题
三.教学步骤
(一)引入
1. 播放激励性故事,引起学生对直线与抛物线的兴趣。
2. 设置简答问题,让学生思考直线与抛物线的关系,启发学生思维。
(二)快速拓展
1. 定义抛物线,并介绍抛物线的特点:抛物线的性质、识别抛物线的方法等。
2. 出示图片,解释抛物线与直线的位置关系:直线交抛物线两次,有两个不同的焦点;抛物线有唯一的轴对称性,其实现此轴为中轴线;两个焦点到中轴线的距离相等,为直线的焦点距。
(三)深度应用
1. 针对存在的问题,出示例题,通过研究解答,进一步深入探讨抛物线与直线位置关系的内容。
2. 邀请学生回答问题,让学生认识到解决问题的过程,加深对位置关系的理解。
(四)归纳总结
1. 回顾本节课学习内容,并总结抛物线与直线之间位置关系。
2. 介绍抛物线与条件概率的间接联系,强化对本节内容的理解加深认识。
四.教学反思
本节课学习内容比较复杂,时间较紧张,未能充分挖掘学生的潜力,希望能给学生更多的思考空间,让学生能更好的理解抛物线与条件概率的联系。
直线与抛物线的位置关系 详案
2.4.2直线与抛物线的位置关系一、教材分析及教学对象分析从教材角度分析,本节课选自《普通高中课程标准实验教科书》选修2-1.“直线与圆锥曲线的位置关系”一直是教学的一个重点内容,并且该内容涉及到了很多重要的数学思想,“转化思想”、“分类讨论思想”、“数形结合思想”,这些数学思想在讨论直线与圆锥曲线的位置关系时起着至关重要的作用.鉴于教材并未专门设立“直线与圆锥曲线的位置关系”这一内容,因此本节课通过研究“直线与抛物线的位置关系”,探讨出相应的解决方法,并把相应的研究方法运用到讨论“直线与椭圆、直线与双曲线的位置关系”中,从而提高教材知识的系统性和全面性.从学生的角度分析,学生在之前已学习了“直线与圆的位置关系”,对判断“直线与圆的位置关系”已掌握了基本的方法,但是考虑到学习间断的时间较长,平行班的部分学生对知识与方法的记忆和理解不够扎实,因此本节课利用代数方法研究“直线与抛物线的位置关系”,在知识的衔接上起到了“承上启下”的作用.二、教学目标1、知识与技能:掌握直线与抛物线的位置关系及判断方法;2、过程与方法:联立方程组的解析法与坐标法;3、情感态度价值观:让学生体验研究解析几何的基本思想,感受数学发展史的源远流长.三、教学重点:直线与抛物线的位置关系及其判断方法.四、教学难点:直线与抛物线的位置关系的判断方法.五、教学方法:多媒体教学、学案式教学.教学过程一、课题引入师:之前我们学习了直线与圆的位置关系,根据直线与圆公共点个数进行分类分别为:没有公共点、一个公共点、两个公共点,对应的位置关系我们分别叫做:相离、相切、相交.类比直线与圆的位置关系,你能说出直线与抛物线的位置关系吗?注:利用PPT 演示几种位置关系二、新课讲解生:观察图像,得出结论.师:结合PPT ,此时直线与抛物线没有公共点,称直线与抛物线相离;此时有两个公共点,称直线与抛物线相交;当直线与抛物线有一个公共点时,是否一定是相切呢?演示相切的情形,这时是相切,当直线与抛物线的对称轴平行时,直线与抛物线也只有一个公共点,对于这种位置关系我们也叫做直线与抛物线相交.因此我们要特别注意:若直线与抛物线有一个公共点,此时位置关系有两种可能,即直线与抛物线相切或直线与抛物线的对称轴平行.下面简单地总结一下.(板书:直线与抛物线的位置关系:相离、相切、相交)师:现在我们清楚了直线与抛物线的位置关系,那么利用什么方法判断直线与抛物线的位置关系呢?请大家做一下这个题目,第一组做(1)(2),第二组做(3)(4)判断下列直线与抛物线的公共点个数.(1)1-=y 与2x y =;(2)1=y 与x y =2;(3)12-=x y 与2x y =;(4)x y =与2x y =.注:课前先分好组,第一组做(1)(2),第二组做(3)(4).在学生做题的过程中,教师到学生中观察,找到自己想要的两种方法.鉴于学生的基础,可能会出现的判断方法有图像观察法,解方程组的方法,个别基础好的同学会用判别式法.师:甲同学,说说你的判断结果,并和大家分享一下你所使用的方法.学生甲:作出图像,通过观察图像直接判断公共点的个数,(1)直线与抛物线没有公共点,(2)直线与抛物线只有一个公共点.师:几何法,一种很直观的方法,很不错.展示图像师:乙同学,我发现你用的方法和甲的不一样,说一下你的判断结果和判断方法.学生乙:解方程组,求出交点坐标,(3)公共点坐标为)1,1(,(4)公共点坐标为)1,1(),0,0( 师:非常好,利用解方程组的方法进行判断.展示方法师:对于判断直线与抛物线的位置关系,几何法与代数法都可以使用.但由于手工作图会有一定的误差,这对于我们判断结果是不利的.因此本节课我们重点来学习利用代数法判断直线与抛物线的公共点个数.大家一起来看这样一个例题.三、例题解析例6 已知抛物线的方程为x y 42=,直线l 过定点)1,2(-P ,斜率为k .k 为何值时,直线l 与抛物线x y 42=:只有一个公共点;有两个公共点;没有公共点?师:仿照上述的解方程组的方法,我们来分析一下这道题目.抛物线方程已知,直线方程未知,自然我们要先把直线l 的方程表示出来.提问学生,那这条直线的方程应该怎么表示呢? 生:由于直线l 经过点)1,2(-P ,且斜率为k ,由直线的点斜式方程可得l :)2(1+=-x k y 师:非常好!把直线方程与抛物线方程联立,接下来我们要做的事情就是消元,那我们应该怎么消元呢?生丙:由直线方程)2(1+=-x k y 得1)2(++=x k y ,代入抛物线方程x y 42=,得x x k 42]1)2([=++,整理......师:这是一种非常实用的方法,但是计算的过程略显麻烦.还有其它的方法吗?生丁:由直线方程)2(1+=-x k y 得21--=ky x ,代入抛物线方程x y 42=,得)21(42--=ky y ,整理得0)12(442=++-k y ky 师:这种消元方法有一点瑕疵,哪位同学发现了?生:此时意识到0≠k ,才可以这么做.师:为了避免上述问题,我们可以怎么消元呢?生:也可以由抛物线方程x y 42=得42y x =,代入直线方程)242(1+=-y k y ,整理得0)12(442=++-k y ky ①师:这位同学可谓是一语中的啊.在消元这个环节,大家要特别消元方法的选择.原则上,这几位同学的消元方法都可以,但我们还是以简单为主.并且我们是整理成02=++c by ay的形式.师:那么这个方程0)12(442=++-k y ky 如何求解呢?生:思考,由于含有参数k ,确实不容易求解.师:那我们有没有必要求出具体的解呢?题目要求我们判断公共点的个数,那么公共点个数的问题与对应的方程组有什么关系呢?生:凭感觉能够说出公共点个数就是方程组的解的个数.师:对学生的感觉在理论上给予肯定,借助几何画板简单分析.根据曲线与方程的关系,点既在直线上又在抛物线上,那么点的坐标就是方程组的解.直线与抛物线有几个公共点,对应的直线方程与抛物线方程组成的方程组就有几个解,这样我们就把公共点个数的问题转化为方程组解的个数的问题.而方程组的解的个数又和消元后的方程解的个数相同,因此我们只需判断方程0)12(442=++-k y ky 的解的个数.师:方程0)12(442=++-k y ky 有几个解呢?它的解的个数什么条件有关呢? 生:和方程的判别式有关.师:我们知道判别式是针对一元二次方程而言的,这个方程一定是关于y 的二次方程吗? 生:意识到问题所在,该方程不一定是二次方程,方程类型与二次项系数k 有关. 师:这个时候我们要怎么办呢?生:要对系数k 分类讨论,当0=k 时,方程①变成了关于y 的一次方程,此时①只有一个解;当0≠k 时,方程①是关于y 的二次方程,此时我们再讨论判别式∆.师:补充当0>∆时,方程①有两个解,对应的方程组有两个解,此时直线与抛物线有两个公共点;当0=∆时,方程①有一个解,对应的方程组有一个解,此时直线与抛物线有一个公共点;当0<∆时,方程①有没有解,对应的方程组没有解,此时直线与抛物线没有公共点.有了上述分析过程,我们来看一下具体的书写格式.PPT 展示过程师:边展示过程,边板书重要的步骤.下面我们来做一个变式训练,请两位同学到前面共同完成,其他同学在学案上完成,注意书写的步骤.四、变式训练已知抛物线的方程为x y 42=,直线l 过定点)1,0(P ,斜率为k .k 为何值时,直线l 与抛物线x y 42=:只有一个公共点;有两个公共点;没有公共点?生:仿照例题的步骤,完成变式训练.师:叫同学进行点评,教师再做点评,并把这种方法推广到判断直线与圆锥曲线的位置关系中,进行方法的升华.师:这里给大家留一个思考题.PPT 展示五、课堂总结1、直线与抛物线的位置关系,并注意直线与抛物线有一个公共点时不一定是相切.2、利用代数法判断直线与抛物线的位置关系.3、对于“直线与椭圆、直线与双曲线的位置关系”,我们也可以利用代数方法来研究.4、关于利用代数方法来解决问题早在17世纪就由法国数学家笛卡尔提出,他提出了一种大胆地计划,即:任何问题 数学问题 代数问题 方程求解.。
直线与抛物线的位置关系
第3课时 直线与抛物线的位置关系一、直线与抛物线的位置关系1.直线与抛物线公共点的个数可以有0个、1个或2个. 将直线方程与抛物线方程联立,消元后得到一元二次方程,若Δ=0,则直线与抛物线相切,若Δ>0,则直线与抛物线相交,若Δ<0,则直线与抛物线没有公共点.特别地,当直线与抛物线的轴平行时,直线与抛物线有一个公共点.2.在求解直线与抛物线的位置关系的问题时,要注意运用函数与方程思想,将位置关系问题转化为方程根的问题.题型一、直线与抛物线的位置关系例1、已知抛物线C :y 2=-2x ,过点P (1,1)的直线l 斜率为k ,当k 取何值时,l 与C 有且只有一个公共点,有两个公共点,无公共点?[解析] 直线l :y -1=k (x -1),将x =-y 22代入整理得,ky 2+2y +2k -2=0.(1)k =0时,把y =1代入y 2=-2x 得,x =-12,直线l 与抛物线C 只有一个公共点(-12,1).(2)k ≠0时,Δ=4-4k (2k -2)=-8k 2+8k +4.由Δ=0得,k =1±32, ∴当k <1-32或k >1+32时,Δ<0,l 与C 无公共点.当k =1±32时,Δ=0,l 与C 有且只有一个公共点. 当1-32<k <1+32且k ≠0时,Δ>0,l 与C 有两个公共点. 综上知,k <1-32或k >1+32时,l 与C 无公共点;k =1±32或k =0时,l 与C 只有一个公共点;1-32<k <0或0<k <1+32时,l 与C 有两个公共点. 例2、已知点A(0,2)和抛物线C :2y =6x ,求过点A 且与抛物线C 有且仅有一个公共点的直线l 的方程.[解析] 当直线l 的斜率不存在时,由直线l 过点A (0,2)可知,直线l 就是y 轴,其方程为x =0. 由⎩⎨⎧x =0y 2=6x,得y 2=0.因此,此时直线l 与抛物线C 只有一个公共点O (0,0). 如果直线l 的斜率存在,则设直线l 的方程为y =kx +2.这个方程与抛物线C 的方程联立得方程组 ⎩⎨⎧y =kx +2y 2=6x,由方程组消去x 得方程,ky 2-6y +12=0① 当k =0时,得-6y +12=0,可知此时直线l 与抛物线相交于点()23,2. 当k ≠0时,关于y 的二次方程①的判别式Δ=36-48k .由Δ=0得k =34,可知此时直线l 与抛物线C 有且仅有一个公共点,直线l 的方程为y =34x +2,即3x -4y+8=0.因此,直线l 的方程为x =0,或3x -4y +8=0,或y =2. 题型二、弦长问题例3、顶点在原点,焦点在x 轴上的抛物线,截直线2x -y +1=0所得弦长为15,则抛物线方程为______. [答案] y 2=12x 或y 2=-4x例4、已知抛物线y 2=4x 的一条过焦点的弦AB ,A (x 1,y 1)、B (x 2,y 2),AB 所在直线与y 轴交点坐标(0,2),则1y 1+1y 2=__________________.[答案] 12 题型三、对称问题例5、已知抛物线y 2=x 上存在两点关于直线l :y =k (x -1)+1对称,求实数k 的取值范围.[解析] 设抛物线上的点A (y 21,y 1)、B (y 22,y 2)关于直线l 对称.则⎩⎨⎧k ·y 1-y 2y 21-y 22=-1y 1+y 22=k (y 21+y222-1)+1,得⎩⎨⎧y 1+y 2=-k y 1y 2=k 22+1k -12,∴y 1、y 2是方程t 2+kt +k 22+1k -12=0的两个不同根.∴Δ=k 2-4(k 22+1k -12)>0得-2<k <0.故实数k 的取值范围是-2<k <0.例6、求过点P (0,1)且与抛物线y 2=2x 只有一个公共点的直线方程.[正解] (1)若直线斜率不存在,则过点P (0,1)的直线方程为x =0,由⎩⎨⎧ x =0y 2=2x ,得⎩⎨⎧x =0y =0.即直线x =0与抛物线只有一个公共点.(2)若直线的斜率存在,设为k ,则过点P (0,1)的直线方程为y =kx +1,由方程组⎩⎨⎧y =kx +1,y 2=2x .消去y ,得k 2x 2+2(k -1)x +1=0.当k =0时,得⎩⎨⎧x =12.y =1.即直线y =1与抛物线只有一个公共点;当k ≠0时,直线与抛物线只有一个公共点,则Δ=4(k -1)2-4k 2=0,所以k =12,直线方程为y =12x +1.综上所述,所求直线方程为x =0或y =1或y =12x +1.课后作业一、选择题1.直线y =kx -2交抛物线y 2=8x 于A 、B 两点,若AB 中点的横坐标为2,则k =( ) A .2或-2 B .-1 C .2D .3[答案] C[解析] 由⎩⎪⎨⎪⎧y 2=8xy =kx -2得k 2x 2-4(k +2)x +4=0,则4(k +2)k 2=4,即k =2. 2.过抛物线y 2=4x 的焦点的直线交抛物线于A 、B 两点,O 为坐标原点,则OA →·OB →的值是( )A .12B .-12C .3D .-3[答案] D[解析] 设A (y 214,y 1)、B (y 224,y 2),则OA →=(y 214,y 1),OB →=(y 224,y 2),则OA →·OB →=(y 214,y 1)·(y 224,y 2)=y 21y 2216+y 1y 2,又∵AB 过焦点,则有y 1y 2=-p 2=-4,∴OA →·OB →=(y 1y 2)216+y 1y 2=(-4)216-4=-3,故选D.3.已知AB 是过抛物线2x 2=y 的焦点的弦,若|AB |=4,则AB 的中点的纵坐标是( )A .1B .2 C.58 D.158[答案] D[解析] 如图所示,设AB 的中点为P (x 0,y 0),分别过A ,P ,B 三点作准线l 的垂线,垂足分别为A ′,Q ,B ′,由题意得|AA ′|+|BB ′|=|AB |=4,|PQ |=|AA ′|+|BB ′|2=2,又|PQ |=y 0+18,∴y 0+18=2,∴y 0=158.4.设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若F A →+FB →+FC →=0,则|F A →|+|FB →|+|FC →|等于( )A .9B .6C .4D .3[答案] B[解析] 设A 、B 、C 三点坐标分别为(x 1,y 1)、(x 2,y 2)、(x 3,y 3).由题意知F (1,0),因为F A →+FB →+FC →=0,所以x 1+x 2+x 3=3.根据抛物线定义,有|F A →|+|FB →|+|FC →|=x 1+1+x 2+1+x 3+1=3+3=6.故选B.5.已知抛物线y 2=4x 的焦点为F ,过焦点F 的直线与抛物线交于点A (x 1,y 1)、B (x 2,y 2),则y 21+y 22的最小值为( )A .4B .6C .8D .10[答案] C[解析] 当直线的斜率不存在时,其方程为x =1,∴y 21=4,y 22=4, ∴y 21+y 22=8.当直线的斜率存在时,设其方程为y =k (x -1)(k ≠0),由⎩⎪⎨⎪⎧y =k (x -1)y 2=4x ,得ky 2-4y -4k =0, ∴y 1+y 2=4k,y 1y 2=-4,∴y 21+y 22=(y 1+y 2)2-2y 1y 2=16k2+8, ∵k 2>0,∴y 21+y 22>8,综上可知,y 21+y 22≥8,故y 21+y 22的最小值为8.6.已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A 、B 两点,F 为C 的焦点.若|F A |=2|FB |,则k =( )A.13B.23C.23D.223[答案] D[解析] 设A 、B 两点坐标分别为(x 1,y 1)、(x 2,y 2),由⎩⎪⎨⎪⎧y =k (x +2)y 2=8x 消去y 得,k 2x 2+4x (k 2-2)+4k 2=0, ∴x 1+x 2=4(2-k 2)k 2,x 1x 2=4.由抛物线定义得|AF |=x 1+2,|BF |=x 2+2, 又∵|AF |=2|BF |,∴x 1+2=2x 2+4,∴x 1=2x 2+2代入x 1x 2=4,得x 22+x 2-2=0, ∴x 2=1或-2(舍去),∴x 1=4,∴4(2-k 2)k 2=5,∴k 2=89,∵k >0,∴k =223. 二、填空题6.已知F 是抛物线y 2=4x 的焦点,M 是这条抛物线上的一个动点,P (3,1)是一个定点,则|MP |+|MF |的最小值是______________________.[答案] 4[解析] 过P 作垂直于准线的直线,垂足为N ,交抛物线于M ,则|MP |+|MF |=|MP |+|MN |=|PN |=4为所求最小值.7.在已知抛物线y =x 2上存在两个不同的点M 、N 关于直线y =kx +92对称,则k 的取值范围为__________________.[答案] k >14或k <-14[解析] 设M (x 1,x 21),N (x 2,x 22)关于直线y =kx +92对称, ∴x 21-x 22x 1-x 2=-1k ,即x 1+x 2=-1k .设MN 的中点为P (x 0,y 0),则x 0=-12k ,y 0=k ×(-12k )+92=4.因中点P 在y =x 2内,有4>(-12k )2⇒k 2>116,∴k >14或k <-14.三、解答题8.已知抛物线y 2=6x 的弦AB 经过点P (4,2),且OA ⊥ OB (O 为坐标原点),求弦AB 的长.[解析] 由A 、B 两点在抛物线y 2=6x 上,可设A (y 216,y 1)、B (y 226,y 2).因为OA ⊥OB ,所以OA →·OB →=0.由OA →=(y 216,y 1),OB →=(y 226,y 2),得y 21y 2236+y 1y 2=0.∵y 1y 2≠0,∴y 1y 2=-36,① ∵点A 、B 与点P (4,2)在一条直线上, ∴y 1-2y 216-4=y 1-y 2y 216-y 226, 化简得y 1-2y 21-24=1y 1+y 2,即y 1y 2-2(y 1+y 2)=-24. 将①式代入,得y 1+y 2=-6.②由①和②,得y 1=-3-35,y 2=-3+35,从而点A 的坐标为(9+35,-3-35),点B 的坐标为(9-35,-3+35),所以|AB |=(x 1-x 2)2+(y 1-y 2)2=610. 9.已知抛物线C :y 2=2px (p >0)过点A (1,-2).(1)求抛物线C 的方程,并求其准线方程;(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 的距离等于55?若存在,求出直线l 的方程;若不存在,说明理由. [解析] (1)将(1,-2)代入y 2=2px ,得(-2)2=2p ·1, ∴p =2.故所求的抛物线C 的方程为y 2=4x ,其准线方程为x =-1. (2)假设存在符合题意的直线l ,其方程为y =-2x +t由⎩⎪⎨⎪⎧y =-2x +t ,y 2=4x .消去x 得y 2+2y -2t =0. 因为直线l 与抛物线C 有公共点,所以Δ=4+8t ≥0, 解得t ≥-12.另一方面,由直线OA 与l 的距离d =55, 可得|t |5=15,解得t =±1. 综上知:t =1.所以符合题意的直线l 存在,其方程为2x +y -1=0. 10.已知抛物线y 2=-x 与直线y =k (x +1)相交于A ,B 两点.(1)求证:OA ⊥OB ;(2)当△OAB 的面积等于10时,求k 的值.[解析] (1)如图所示,由⎩⎪⎨⎪⎧y 2=-xy =k (x +1),消去x 得,ky 2+y -k =0.设A (x 1,y 1)、B (x 2,y 2),由根与系数的关系得y 1·y 2=-1,y 1+y 2=-1k .∵A ,B 在抛物线y 2=-x 上,∴y 21=-x 1,y 22=-x 2,∴y 21·y 22=x 1x 2. ∵k OA ·k OB =y 1x 1·y 2x 2=y 1y 2x 1x 2=1y 1y 2=-1,∴OA ⊥OB .(2)设直线与x 轴交于点N ,显然k ≠0. 令y =0,得x =-1,即N (-1,0). ∵S △OAB =S △OAN +S △OBN=12|ON ||y 1|+12|ON ||y 2|=12|ON |·|y 1-y 2|, ∴S △OAB =12·1·(y 1+y 2)2-4y 1y 2=12(-1k)2+4. ∵S △OAB =10, ∴10=121k 2+4,解得k =±16.。
直线与抛物线的位置关系教案
直线与抛物线的位置关系教案一、教学目标:知识与技能:1. 理解直线与抛物线的概念及其性质;2. 掌握直线与抛物线的交点求法;3. 能够判断直线与抛物线的位置关系。
过程与方法:1. 通过观察、分析、归纳直线与抛物线的位置关系;2. 利用数形结合的方法,求解直线与抛物线的交点;3. 培养学生的逻辑思维能力和解决问题的能力。
情感态度价值观:1. 激发学生对数学的兴趣和好奇心;2. 培养学生的团队合作精神;3. 让学生感受数学在生活中的应用。
二、教学重难点:重点:直线与抛物线的概念及其性质,直线与抛物线的交点求法。
难点:判断直线与抛物线的位置关系,解决实际问题。
三、教学准备:教师准备:教学课件、例题、练习题、黑板。
学生准备:笔记本、笔、数学书。
四、教学过程:1. 导入:引导学生回顾直线和抛物线的基本概念和性质。
2. 新课讲解:讲解直线与抛物线的交点求法,举例说明。
3. 案例分析:分析实际问题,引导学生运用直线与抛物线的位置关系解决问题。
4. 课堂练习:学生独立完成练习题,教师解答疑问。
5. 总结:对本节课的内容进行总结,强调直线与抛物线的位置关系在实际问题中的应用。
五、课后作业:1. 完成练习题:要求学生独立完成课后练习题,巩固所学知识。
2. 研究性问题:鼓励学生探索直线与抛物线的位置关系在实际问题中的应用,如:优化路线、最大/最小值问题等。
3. 小组讨论:组织学生进行小组讨论,分享解题心得和思路,培养团队合作精神。
六、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态。
2. 练习完成情况:检查学生课后练习的完成质量,评估学生对知识的掌握程度。
3. 小组讨论:评估学生在小组讨论中的表现,包括思考问题的深度、团队合作能力等。
七、教学反思:教师在课后应对本节课的教学效果进行反思,分析学生的反馈,调整教学方法和策略,以提高教学效果。
关注学生的学习进度和需求,针对性地进行辅导。
直线和抛物线的位置关系
x2
2p
sin2
思考:焦点弦何时最短? 过焦点的所有弦中,通径最短
过抛物线y2=2px(p>0)的焦点的一条直线和抛物线相交,两
交点为A(x1,y1)、B(x2,y2),则 1 1 2
AF BF p
7)
AF
X1
p BF 2
X2
p 2
11
1
1
X1
y1
y2
2ps
x1x2
y12 y22 2p 2p
( 2 ps)2 s2 4p2
(2). 若直线与抛物线y2=2px(p>0)交于A(x1,y1)、B(x2,y2),
且有x1x2=s2;y1y2=-2ps.求证:直线过定点 (s,0)(s>0)
证明:
y
2 1
2
px1
y
2 2
L
则由
y=-4/3 x+b 消x化简得 y2+48y-48b=0
y2=64x
△=482-4×(-48b)=0 ∴b=-12
∴切线方程为:y=-4/3 x-12
y=-4/3 x-12 解方程组
y2=64x
x=9 得
y=-24
∴切点为P(9,-24)
| 4 9 3 (24) 46 |
切点P到L的距离d=
OA OB
(4)M过(3p,0)
x1x2=9p2;y1y2=-6p2.
(5)M过。。。。。。。
y
A
M
x
B
y2=2px
l
过抛物线y2=2px(p>0)的焦点的一条直线和抛物线相交,两 交点为A(x1,y1)、B(x2,y2),则
054直线与抛物线的位置关系(学生学案)(生)
专题054:直线与抛物线的位置关系(学生学案)考点要求:1、熟练掌握直线与抛物线的位置关系。
2、会求弦长和与弦长有关的数学问题。
知识结构:1、直线与抛物线的位置关系设直线:l y kx b =+,抛物线22(0)y px p =>,直线与抛物线的交点的个数等价于方程组22y kx b y px=+⎧⎨=⎩解的个数,也等价于方程2220kx px bp -+=解的个数① 当0k ≠时,当0∆>时,直线和抛物线相交,有两个公共点;当0∆=时,直线和抛物线相切,有一个公共点;当0∆<时,直线和抛物线相离,无公共点② 若0k =,则直线y b =与抛物线22(0)y px p =>相交,有一个公共点,特别地,当直线的斜率不存在时,设x m =,则当0m >, l 与抛物线相交,有两个公共点;当0m =时,与抛物线相切,有一个公共点,当0m <时,与抛物线相离,无公共点. 2.与焦点弦有关的常用结论.(以下图为依据)(1)y 1y 2=-p 2,x 1x 2=p 24. (2)|AB |=x 1+x 2+p =2p sin 2θ(θ为AB 的倾斜角). (3)S △AOB =p 22sin θ(θ为AB 倾斜角). (4)1|AF |+1|BF |为定值2p. (5)以AB 为直径的圆与准线相切.(6)以AF 或BF 为直径的圆与y 轴相切.(7)∠CFD =90°.3.弦长公式:一条斜率存在的直线如果和二次曲线有两个实交点,两个方程联立消去y 之后,是一个关于x 的二次方程,他一定有两个不相等的实数根,两个交点(x 1,y 1)和(x 2,y 2)当然是满足直线方程的,所以基础自测:1.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么|PF |等于( ) A .4 3 B .8 C .8 3D .16 2.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 为抛物线上一点,若OA →·AF →=-4,则点A 的坐标为( )A .(2,±2)B .(1,±2)C .(1,2)D .(2,2)3.已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是( )A .相离B .相交C .相切D .不确定4.已知抛物线方程为y 2=2px (p >0),过该抛物线焦点F 且不与x 轴垂直的直线AB 交抛物线于A 、B 两点,过点A 、点B 分别作AM 、BN 垂直于抛物线的准线,分别交准线于M 、N 两点,那么∠MFN 必是( )A .锐角B .直角C .钝角D .以上皆有可能5.已知A 、B 是抛物线x 2=4y 上的两点,线段AB 的中点为M (2,2),则|AB |=________.例题选讲:1.直线与抛物线的位置关系例1:已知抛物线方程为24y x =,直线l 过定点(2,1)P -,斜率为k ,当k 何值时,直线l 与抛物线:只有一个公共点;有两个公共点;没有公共点.2.焦点弦问题例2:已知AB 是过抛物线22(0)y px p =>的焦点的弦,F 为抛物线的焦点,A(x 1,y 1),B(x 2,y 2),求证: (1) y 1y 2=-p 2, x 1x 2=p 24;续:(3)1222||();sin p AB x x p AB θθ=++=为直线的倾斜角 (4)22sin ∆=ABC p S θ; (5)以AB 为直径的圆与抛物线的准线相切。
直线与抛物线位置关系
【学习目标】直线与抛物线的位置关系及判断方法(1) 直线和抛物线有三种位置关系:相交(两个公共点或一个公共点);相离(无公共点);相切(一 个公共点)。
(2)直线和抛物线的位置关系的判断: 设直线方程:,m kx y +=抛物线方程:,22px y =两方程联立消去y 可得方程:222(22)0k x km p x m +-+=222(22)0k x km p x m +-+=,一般形式为20,Ax Bx C ++=若A=0,则直线与抛物线的对称轴平行或重合,直线与抛物线相交且只有一个交点;若A 0≠其判别式为∆=24B AC -当∆>0时,直线与抛物线相交且直线和抛物线有两个交点;当∆=0时,直线与抛物线相切且只有一个交点;当∆<0时,直线与抛物线相离,没有交点。
(注意:把直线和圆锥曲线的方程联立后得到方程20,ax bx c ++=它不一定是一元二次方程,要分析2x 的系数a ,才能确定。
如果不能确定,要分类讨论)。
(3)中点弦问题:在抛物线y 2=2px (p >0)中,以P (x 0,y 0)为中点的弦所在直线的斜率k =p y 0.考向一:直线与抛物线的位置关系例1 已知抛物线24y x =过定点A(-2, 1)的直线l 的斜率为k,下列情况下分别求k 的 取值范围:(1)l 与抛物线有且仅有一个公共点;(2)l 与抛物线恰有两个公共点;(3) l 与抛物线没有公共点.考向二:弦长及中点弦问题例2、已知抛物线x y 22=,过点)1,2(Q 作一直线交抛物线于A 、B 两点,试求弦AB 的中点轨迹方程。
2.4.3直线与抛物线的位置关系 (第1课时,共1课时)考向三、 对称问题例3:已知抛物线y =ax 2-1(a ≠0)上总有关于直线x +y =0对称的相异两点,求a 的取值范围.考向四 定点与定值问题①定值问题 在几何问题中,有些问题和参数无关,这就是定值问题,解决这类问题常通过取参数和特殊值来确定“定值”是多少,或者将问题涉及的几何式转化为代数式或三角式,证明该式是恒定的。
直线与抛物线的位置关系教案
直线与抛物线的位置关系教案第一章:直线与抛物线的定义及性质一、教学目标:1. 了解直线的定义及其性质。
2. 了解抛物线的定义及其性质。
3. 掌握直线和抛物线的图形特点。
二、教学内容:1. 直线的定义及性质。
2. 抛物线的定义及性质。
3. 直线和抛物线的图形特点。
三、教学步骤:1. 引入直线的定义及性质,引导学生理解直线的特点。
2. 引入抛物线的定义及性质,引导学生理解抛物线的特点。
四、教学评价:1. 学生能准确描述直线的定义及其性质。
2. 学生能准确描述抛物线的定义及其性质。
3. 学生能识别直线和抛物线的图形特点。
第二章:直线与抛物线的交点一、教学目标:1. 了解直线与抛物线的位置关系。
2. 学会求直线与抛物线的交点。
3. 掌握交点的性质和应用。
二、教学内容:1. 直线与抛物线的位置关系。
2. 求直线与抛物线的交点的方法。
3. 交点的性质和应用。
三、教学步骤:1. 引入直线与抛物线的位置关系,引导学生理解它们之间的关系。
2. 讲解求直线与抛物线交点的方法,并通过例题进行演示。
3. 让学生分组讨论并练习求直线与抛物线的交点。
四、教学评价:1. 学生能理解直线与抛物线的位置关系。
2. 学生能运用求交点的方法解决实际问题。
3. 学生能分析交点的性质和应用。
第三章:直线与抛物线的切点一、教学目标:1. 了解直线与抛物线的切点概念。
2. 学会求直线与抛物线的切点。
3. 掌握切点的性质和应用。
二、教学内容:1. 直线与抛物线的切点概念。
2. 求直线与抛物线的切点的方法。
3. 切点的性质和应用。
三、教学步骤:1. 引入直线与抛物线的切点概念,引导学生理解切点的含义。
2. 讲解求直线与抛物线切点的方法,并通过例题进行演示。
3. 让学生分组讨论并练习求直线与抛物线的切点。
四、教学评价:1. 学生能理解直线与抛物线的切点概念。
2. 学生能运用求切点的方法解决实际问题。
3. 学生能分析切点的性质和应用。
第四章:直线与抛物线的交点个数一、教学目标:1. 了解直线与抛物线交点个数与参数的关系。
直线和抛物线的位置关系
此时,方程()的判别式 16 4k(4- 8k) 112 0 1
所以直线l的方程为y -1 2(x - 2),即2x - y - 3 0
解法2:
则x1 x 2 4,y1 y2 2
y12 4 x1 y1 y2 4 由 2 2 y2 4 x2 x1 x2 y1 y2
M(-2,0.5)
dmin 6
例6、已知抛物线y x 2上存在两个不同的点M , N 关于 9 直线y ( x1, y1 ), N ( x2 y2 ), MN中点( x0 , y0 )
y1 x12 y1 y2 由 x1 x2 =2x0 2 相减得: y 2 x2 x1 x2 1 2 x0 k y0 4 9 又y0 kx 0 2
解 : 设P点坐标为 x0 , x0 2 ,
2
由点到直线的距离公式得 d= 2 x0 x0 2 4 5 5 2 x0 2 x0 4 5
5 2 x0 1 3 5 3 5 5 3 5 由上式可知 : 当x0 1时, d min 5 P点坐标为1,1 .
得到一元二次方程 计算判别式 >0 =0 <0
相交
相切
相离
二、讲授新课:
问题:你能说出直线与抛物线位置关系吗?
y
x F
直线与抛物线位置关系种类
1、相离;2、相切;3、相交(一个交 点,两个交点) y
O
x
与双曲线的情况一样
问题:已知直线 l:y=kx+1 和抛物 2 线 C:y =4x,试判断当 k 为何值时, l 与 C 有: ① 一个公共点;②两个不同公共点; ③没有公共点.
直线与抛物线的位置关系教案
课题:直线与抛物线的位置关系教学目地培养学生从形及数两个角度研究分析问题的习惯,学会依形判数,就数论形,互相验证的数学方法,提高数形结合的能力。
教学重点运用解析几何的基本方法建立数形联系。
媒体运用电脑powerpoint 课件,几何画板动态演示,实物投影教学课型新授课教学过程(一)复习引入通过问题复习方程和曲线的关系。
1、怎样判断直线L 与抛物线C 的位置关系?为了使学生思考更有针对性,给出具体的例题:已知直线L :1(1)2y x =+,抛物线C :24y x =,怎样判断它们是否有公共点?若有公共点,怎样求公共点?估计学生都能回答:由方程组21(1)24y x y x ⎧=+⎪⎨⎪=⎩的解判断L 与C 的关系,紧接着提出问题: 2、问为什么说方程组21(1)24y x y x ⎧=+⎪⎨⎪=⎩有解,L 与C 就有公共点,为什么该方程组的解对应的点就是L 与C 的交点?通过这一问题,复习一下的对应关系:直线L 上的点⇔方程1(1)2y x =+的解;抛物线C 上的点⇔方程24y x =的解;L 与C 的公共点⇔方程组21(1)24y x y x ⎧=+⎪⎨⎪=⎩的解。
既然有了这样的一一对应的关系,那么研究直线与抛物线的公共点,可以通过研究对应的方程组的解来解决;同样,讨论方程组是否有解,也可通过研究直线与抛物线是否有公共点来解决。
这样就引出了解决这一类问题的两种方法,代数法和几何法。
(二)分析讨论例题讨论直线L :(1)y m x =+与抛物线C :24y x =公共点的个数。
请一位学生说一下解题思路,估计能回答出:考虑方程组2(1)4y m x y x=+⎧⎨=⎩的解,然后让学生尝试自己解决。
提出下列几个问题:1、从几何图形上估计一下,能否猜想一下结论?如果被提问的学生不会回答,可作引导:直线L 有什么特点?m 表示什么?抛物线C 有什么特点?在解决这些问题的同时画出图形。
2、m 为何值时,L 与C 相切?3、当m 很接近于零但不等于零时(在提问同时用图形表示),L 与C 是否仅有一个公共点?后两个问题从图像看不准,对于问题3,可能有部分同学认为仅有一个公共点,另外一些同学认为会有两个公共点,带着这个问题用代数法验证。
直线与抛物线的位置关系复习省名师优质课赛课获奖课件市赛课一等奖课件
解法 三化简得 x2 6x 1 0.
由韦达定理得
x1 x2 6,
于是 | AB | AF BF
AA' BB'
( x1
p) 2
( x2
p) 2
x1 x2 2 8 .
y
A A`
OF
B` B
x
图2.3 4
小结:求解抛物线与过焦点旳直线相交旳弦长
措施1:利用弦长公式
AB (1 k 2 )[(x1 x2 )2 4x1x2 ]
64x 3y
m
0
y2 16
3y
m
0
由 0得 : m 36
46 36
d min
5
2
思索4、:抛物线y2 x和圆(x 3)2 y2 1上上任意一点Q
PQ
| PQ || PA |
.
OF
A
•C
x
| PQ | 最小值时,连线必经过圆心
X
直线与抛物线旳
位置关系复习
复习回忆 直线与圆、椭圆、双曲线旳位置关系
复习回忆
直线与圆、椭圆、双曲线旳位置关系旳判断 措施:
几何法 代数法
1、对于封闭图形(圆、椭圆),可根据几何 图形直接判断
2、直线与圆 锥曲线旳公 共点旳个数
Ax+By+c=0
解旳个数
f(x,y)=0(圆锥曲线
方程)
探究:直线与抛物线旳位置关系
解法二:由题意可知,直线l斜率一定存在,故可设A(x1, y1), B(x2 , y2() x1 x2), 则x1 x2 4, y1 y2 2
即k 2 由yy1222
4x1 4x2
y1 y2 x1 x2
4 y1 y2
直线与抛物线的位置关系(专题)
抛物线的简单几何性质————叶双能一.教学目标:1. 掌握抛物线的简单几何性质2. 能够熟练运用性质解题3. 掌握直线与抛物线的位置关系的判断方法和弦长问题4. 进一步理解用代数法研究几何性质的优越性,感受坐标法和数形结合的基本思想. 二.教学重难点:重点:抛物线的几何性质难点:抛物线几何性质的运用.易错点:直线与抛物线方程联立时,要讨论二次项系数是否为零. 三.教学过程 (一)复习回顾:(1)抛物线2(0)y ax a =≠的焦点坐标是__________;准线方程__________.(2)顶点在在原点,焦点在坐标轴上的抛物线过点(1,4)M ,则抛物线的标准方程为_______________________. (3)过点()2,0M 作斜率为1的直线l ,交抛物线24y x =于A ,B 两点,求||AB(二)典例分析:例1.已知抛物线24,y x =直线l 过定点()2,1P -,斜率为k .k 为何值时,直线l 与抛物线24y x =:只有一个公共点;有两个公共点;没有公共点? 设计意图:(1)类比直线与双曲线的位置关系的处理方法,解决直线与抛物线的位置关系. (2)掌握直线与抛物线的位置关系的判断方法;(3)培养学生的运算推理能力和分类讨论的数学思想.变式1:已知抛物线方程x y 42=,当b 为何值时,直线b x y l +=:与抛物线(1)只有一个交点;(2)有两个公共点;(3)没有公共点;(4)当直线与抛物线有公共点时,b 的最大值是多少?例2:过点()4,1Q 作抛物线28y x =的弦AB ,恰好被点Q 所平分.(1)求AB 所在的直线方程; (2)求||AB 的长.变式1:斜率为1的直线l 经过抛物线2=4y x 的焦点F ,且与抛物线相交于A 、B 两点,求线段AB 的长.(教材69页例4)方法(一)方程联立−−→求交点坐标−−→根据两点间距离公式 方法(二))方程联立−−→根据韦达定理求12+x x −−→运用弦长公式 方法(三)(数形结合)方程联立−−→根据韦达定理求12+x x −−→运用焦点弦公式 拓展:标准方程对应的焦点弦公式:1212(1):|=||+||+p)||=|y |+||+p AB x x AB y ⎧⎨⎩焦点在x 轴上(2焦点在y 轴上:(由焦半径公式推导而来) 变式2:已知抛物线2y x =-与直线(1)y k x =+相交于两点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题054:直线与抛物线的位置关系(复习设计)考点要求:1、熟练掌握直线与抛物线的位置关系。
2、会求弦长和与弦长有关的数学问题。
知识结构:1、直线与抛物线的位置关系设直线:l y kx b =+,抛物线22(0)y px p =>,直线与抛物线的交点的个数等价于方程组22y kx by px=+⎧⎨=⎩解的个数,也等价于方程2220kx px bp -+=解的个数 ① 当0k ≠时,当0∆>时,直线和抛物线相交,有两个公共点; 当0∆=时,直线和抛物线相切,有一个公共点; 当0∆<时,直线和抛物线相离,无公共点② 若0k =,则直线y b =与抛物线22(0)y px p =>相交,有一个公共点,特别地,当直线的斜率不存在时,设x m =,则当0m >, l 与抛物线相交,有两个公共点;当0m =时,与抛物线相切,有一个公共点,当0m <时,与抛物线相离,无公共点.2.与焦点弦有关的常用结论.(以下图为依据)(1)y 1y 2=-p 2,x 1x 2=p 24.(2)|AB |=x 1+x 2+p =2psin 2θ(θ为AB 的倾斜角).(3)S △AOB =p 22sin θ(θ为AB 倾斜角).(4)1|AF |+1|BF |为定值2p. (5)以AB 为直径的圆与准线相切. (6)以AF 或BF 为直径的圆与y 轴相切. (7)∠CFD =90°. 3.弦长公式:一条斜率存在的直线如果和二次曲线有两个实交点,两个方程联立消去y 之后,是一个关于x 的二次方程,他一定有两个不相等的实数根,两个交点(x 1,y 1)和(x 2,y 2)当然是满足直线方程的,所以基础自测:1.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么|PF |等于( B )A .4 3B .8C .8 3D .162.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 为抛物线上一点,若OA →·AF →=-4,则点A 的坐标为( B )A .(2,±2)B .(1,±2)C .(1,2)D .(2,2)3.已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是( C )A .相离B .相交C .相切D .不确定4.已知抛物线方程为y 2=2px (p >0),过该抛物线焦点F 且不与x 轴垂直的直线AB 交抛物线于A 、B 两点,过点A 、点B 分别作AM 、BN 垂直于抛物线的准线,分别交准线于M 、N 两点,那么∠MFN 必是( B )A .锐角B .直角C .钝角D .以上皆有可能5.已知A 、B 是抛物线x 2=4y 上的两点,线段AB 的中点为M (2,2),则|AB |=________.解析 由题意可设AB 的方程为y =kx +m ,与抛物线方程联立得x 2-4kx -4m =0,线段AB 中点坐标为(2,2),x 1+x 2=4k =4,得k =1.又∵y 1+y 2=k (x 1+x 2)+2m =4,∴m =0.从而直线AB :y =x ,|AB |=2|OM |=4 2. 例题选讲:1.直线与抛物线的位置关系例1:已知抛物线方程为24y x =,直线l 过定点(2,1)P -,斜率为k ,当k 何值时,直线l 与抛物线:只有一个公共点;有两个公共点;没有公共点.略解:(1)当k= -1或k=12或k=0时,直线与抛物线只有一个公共点; (2)当-1<k<12,且k ≠0时,直线与抛物线有两个公共点; (3)当k<-1或k>12时,直线与抛物线没有公共点。
2.焦点弦问题例2:已知AB 是过抛物线22(0)y px p =>的焦点的弦,F 为抛物线的焦点,A(x 1,y 1),B(x 2,y 2),求证: (1) y 1y 2=-p 2, x 1x 2=p 24; 证明 (1)∵y 2=2px (p >0)的焦点F ⎝⎛⎭⎫p 2,0,设直线方程为y =k ⎝⎛⎭⎫x -p2 (k ≠0), 由⎩⎪⎨⎪⎧y =k ⎝⎛⎭⎫x -p 2y 2=2px ,消去x ,得ky 2-2py -kp 2=0. ∴y 1y 2=-p 2,x 1x 2=(y 1y 2)24p 2=p 24,当k 不存在时,直线方程为x =p 2,这时x 1x 2=p 24.因此,x 1x 2=p24恒成立.(2)若F 为抛物线焦点,则有1|AF |+1|BF |=2p.1|AF |+1|BF |=1x 1+p 2+1x 2+p 2=x 1+x 2+p x 1x 2+p 2(x 1+x 2)+p 24. 又∵x 1x 2=p 24,代入上式得1|AF |+1|BF |=2p =常数,所以1|AF |+1|BF |为定值.(3)1222||();sin pAB x x p AB θθ=++=为直线的倾斜角 (4)22sin ∆=ABCp S θ;(5)以AB 为直径的圆与抛物线的准线相切。
解析:设抛物线焦点弦为AB ,中点为M ,准线l ,A 1、B 1分别为A 、B 在直线l 上的射影,则|AA 1|=|AF |,|BB 1|=|BF |,于是M 到l 的距离d =12(|AA 1|+|BB 1|)=12(|AF |+|BF |)=12|AB |=半径,故相切.3.弦长问题:例3:设抛物线C :y 2=4x ,F 为C 的焦点,过F 的直线L 与C 相交于A 、B 两点. (1)设L 的斜率为1,求|AB |的大小; (2)求证:OA →·OB →是一个定值.(1)解 ∵F (1,0),∴直线L 的方程为y =x -1,设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =x -1,y 2=4x得x 2-6x +1=0,∴x 1+x 2=6,x 1x 2=1. ∴|AB |=(x 2-x 1)2+(y 2-y 1)2 =2·(x 1+x 2)2-4x 1x 2 =2·36-4=8.(2)证明 设直线L 的方程为x =ky +1,由⎩⎪⎨⎪⎧x =ky +1,y 2=4x得y 2-4ky -4=0. ∴y 1+y 2=4k ,y 1y 2=-4, OA →=(x 1,y 1),OB →=(x 2,y 2). ∵OA →·OB →=x 1x 2+y 1y 2 =(ky 1+1)(ky 2+1)+y 1y 2 =k 2y 1y 2+k (y 1+y 2)+1+y 1y 2 =-4k 2+4k 2+1-4=-3. ∴OA →·OB →是一个定值.学生练习:已知顶点在原点,焦点在x 轴上的抛物线截直线y =2x +1所得的弦长为15,求抛物线方程.解 设直线和抛物线交于点A (x 1,y 1),B (x 2,y 2),(1)当抛物线开口向右时,设抛物线方程为y 2=2px (p >0),则⎩⎪⎨⎪⎧y 2=2pxy =2x +1,消去y 得,4x 2-(2p -4)x +1=0,∴x 1+x 2=p -22,x 1x 2=14,∴|AB |=1+k 2|x 1-x 2|=5·(x 1+x 2)2-4x 1x 2=5·⎝⎛⎭⎫p -222-4×14=15,则 p 24-p =3,p 2-4p -12=0,解得p =6(p =-2舍去),抛物线方程为y 2=12x .(2)当抛物线开口向左时,设抛物线方程为y 2=-2px (p >0),仿(1)不难求出p =2, 此时抛物线方程为y 2=-4x .综上可得,所求的抛物线方程为y 2=-4x 或y 2=12x .探究提高 (1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系; (2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式. 4.直线与抛物线的综合应用:例4:(2010·福建)已知抛物线C :y 2=2px (p >0)过点A (1,-2). (1)求抛物线C 的方程,并求其准线方程;(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 的距离等于55?若存在,求出直线l 的方程;若不存在,说明理由.实录 (1)将点A (1,-2)代入y 2=2px ,得p =2,故所求抛物线C 的方程为y 2=4x , 其准线方程为x =-1.错因 遗漏判别式的应用.(2)假设存在直线l ,设l :y =-2x +t , 由直线OA 与l 的距离d =55, 得|t |5=15,解得t =±1. 故符合题意的直线l 存在,其方程为2x +y -1=0或2x +y +1=0. 正解 (1)将(1,-2)代入y 2=2px ,得(-2)2=2p ·1, 所以p =2.故所求的抛物线C 的方程为y 2=4x ,其准线方程为x =-1. (2)假设存在符合题意的直线l ,其方程为y =-2x +t ,由⎩⎪⎨⎪⎧y =-2x +t ,y 2=4x ,得y 2+2y -2t =0. 因为直线l 与抛物线C 有公共点, 所以Δ=4+8t ≥0,解得t ≥-12.另一方面,由直线OA 与l 的距离d =55, 可得|t |5=15,解得t =±1. 因为-1∉⎣⎡⎭⎫-12,+∞,1∈⎣⎡⎭⎫-12,+∞, 所以符合题意的直线l 存在,其方程为2x +y -1=0. 巩固作业:1 .(2013年高考课标Ⅱ卷(文10))设抛物线2:4C y x =的焦点为F ,直线l 过F 且与C 交于A ,B 两点。
若||3||AF BF =,则l 的方程为( )(A )1y x =-或1y x =-+ (B )1)y x =-或1)y x =-(C )1)y x =-或1)y x =- (D )(1)2y x =-或(1)2y x =-- 【答案】C抛物线y 2=4x 的焦点坐标为(1,0),准线方程为x=-1,设A (x 1,y 1),B (x 2,y 2),则因为|AF|=3|BF|,所以x 1+1=3(x 2+1),所以x 1=3x 2+2。
因为|y 1|=3|y 2|,x 1=9x 2,所以x 1=3,x 2=13,当x 1=3时,2112y =,所以此时1y ==±,若1y =,则1(3,(,)33A B -,此时AB k =,此时直线方程为1)y x =-。