高三理科数学第周测题

合集下载

高三一轮复习周测卷

高三一轮复习周测卷

……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………湛江一中2019届高三理科数学周二测试卷命题:何敏华 做题:李小林 审题:柯梅清一、单选题(共12题,每题5分,满分60分)1.如图所示的几何体,关于其结构特征,下列说法不.正确的是( ) A . 该几何体是由两个同底的四棱锥组成的几何体 B . 该几何体有12条棱、6个顶点C . 该几何体有8个面,并且各面均为三角形D . 该几何体有9个面,其中一个面是四边形,其余均为三角形2.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( ) A . 若α⊥β,m ⊂α,n ⊂β,则m⊥n B . 若m⊥α,m∥n,n∥β,则α⊥β C . 若m⊥n,m ⊂α,n ⊂β,则α⊥β D . 若α∥β,m ⊂α,n ⊂β,则m∥n3.“九章算术”是我国古代数学名著,在“九章算术”中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”,若某“阳马”的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该“阳马”的表面积为( ) A .21+B .221+C .22+D .222+4.《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑,若三棱锥P ABC -为鳖臑, PA ⊥平面,3,4,5ABC PA AB AC ===,三棱锥P ABC -的四个顶点都在球O 的球面上,则球O 的表面积为( ) A . 17π B . 25π C . 34π D . 50π5.已知三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,SA⊥平面ABC ,AB⊥BC 且AB=BC=1,2,则球O 的表面积是( ) A . 4π B .34π C . 3π D . 43π 6.三棱锥S-ABC 中,SA BC ⊥,SC AB ⊥则S 在底面ABC 的投影一定在三角形ABC 的( ) A . 内心 B . 外心 C . 垂心 D . 重心……○…………外…………○…………装…………○…………订…………○…………线…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………A .623 B . 27 C .67D .4 8.下列各图是正方体或正四面体,P ,Q ,R ,S 分别是所在棱的中点,这四个点中不.共面..的一个图是( )A. B. C. D. 9.一个几何体的三视图如图所示,其中正视图是半径为1的半圆,则该几何体的表面积为A .B .C .D .10.如图,在直三棱柱ABC-A 1B 1C 1中,∠BCA=900,点D 1和F 1分别是A 1B 1和A 1C 1的中点,若BC=CA=CC 1,则BD 1与AF 1所成角的余弦值是( )A .B .C .D .11.下面是某几何体的视图,则该几何体的体积为( ) A .37 B .38 C .39 D .310……○…………外…………○…………装…………○…………订…………○…………线…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线………… A .451π B .241πC . π41D .π31二、填空题(共4题,每题5分,满分20分)13.设m,n 是两条不重合的直线,βα,是两个不同的平面,有下列四个命题: ①若m βαβα//,,⊂⊂n ,则m//n ;②若n m n m //,,βα⊥⊥则βα//; ③若,,,n m n m ⊥⊥⊥βα则βα⊥; ④若α⊂n n m ,//,则α//m .则正确的命题(序号)为____________.14.已知直三棱柱ABC-A 1B 1C 1中,AB=3,AC=4,AB ⊥AC ,AA 1=2,则该三棱柱内切球的表面积与外接球的表面积的和为______ .15.如图,已知三棱锥O-ABC ,OA=OB=OC=1,︒=∠=∠60BOC AOB ,︒=∠90COA ,M 、N 分别是棱OA 、BC 的中点,则直线MN 与AC 所成的角的余弦值为__________.16.一个正方体纸盒展开后如图所示, 在原正方体纸盒中有如下结论 ①AB ⊥EF ;②AB 与CM 所成的角为60°; ③EF 与MN 是异面直线; ④MN ∥CD .以上四个命题中,正确命题的序号是 _________三.解答题(共3题,每题12分,满分36分)17.在直角坐标系xOy 中,已知直线⎩⎨⎧===ααsin cos 1t y t x l (t 为参数),⎪⎪⎩⎪⎪⎨⎧+=+==)4sin()4cos(2παπαt y t x l (t 为参数),其中)43,0(πα∈,以原点O 为极点,x 轴非负半轴为极轴,取相同长度单位建立极坐标系,曲线C 的极坐标方程为.……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)写出l 1,l 2的极坐标方程和曲线C 的直角坐标方程;(2)设l 1,l 2分别与曲线C 交于点A ,B(非坐标原点),求|AB|的值.18.如图,已知四棱锥P-ABCD 中,平面PAD ⊥平面ABCD ,平面PCD ⊥平面ABCD ,E 为PB 上任意一点,O 为菱形ABCD 对角线的交点。

2023届陕西省渭南市高三下学期教学质量检测(Ⅰ)理科数学试题(解析版)

2023届陕西省渭南市高三下学期教学质量检测(Ⅰ)理科数学试题(解析版)
A. B. C. D.
【答案】A
【解析】
【分析】根据线线平行可得 或其补角是异面直线 与 所成的角,利用三角形三边关系,由余弦定理即可求解.
【详解】如图,在棱 上取一点 ,使得 ,取 的中点 ,连接 , ,
由于 分别是棱 的中点,所以 ,故四边形 为平行四边形,进而 ,
又因为 是 的中点,所以 ,所以 ,则 或其补角是异面直线 与 所成的角.
A. B. C. D.
【答案】B
【解析】
【分析】设人交谈时的声强为 ,从而得到 ,求出火箭发射时的声强为 ,代入解析式求出答案.
【详解】设人交谈时的声强为 ,则火箭发射时的声强为 ,
则 ,解得: ,
则火箭发射时的声强为 ,将其代入 中,得:
,故火箭发射时的声强级约为 .
故选:B
6.如图,在直三棱柱 中, ,且 分别是棱 的中点,则异面直线 与 所成角的余弦值是()
【详解】对②:由 ,可得 ,则 ( 与 为常数),
令 ,则 ,所以 ,则 ,
故 关于直线 对称,②正确;
对①:∵ 为偶函数,则 ,
∴ ,则 为奇函数,
故 ,即 ,则 是以4为周期的周期函数,
由 ,令 ,则 ,可得 ,
故 ,①正确;
由 ,令 ,则 ,即 ,
令 ,则 ,即 ,
故 ,则 ,
对③:由 ,即 ,则 ,
【答案】(1)证明见解析
(2)
【解析】
【分析】(1)先证四边形CDNM为平行四边形,进而可得CM//DN,又中位线定理得GF//DN,则GF//CM,再由线面平行的判定定理即可证结论.
(2)过B作BH⊥AC交AC于H,由多面体ABCDE体积最大得BH最大,可知 , 为 的中点,从而建立空间直角坐标系,求面ABE与面DBE的法向量,应用空间向量夹角的坐标表示即可求二面角A BE D的正弦值.

高中高三数学上学期周测试卷 理(1.22,含解析)-人教版高三全册数学试题

高中高三数学上学期周测试卷 理(1.22,含解析)-人教版高三全册数学试题

某某省某某高中2015届高三上学期周测数学试卷(理科)(1.22)一.本大题共12小题,每小题5分,共60分,在每个小题给出的4个选项中,只有一项是符合要求的.1.设复数z1=1﹣i,z2=+i,其中i为虚数单位,则的虚部为( )A.B.C.D.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由题意结合复数代数形式的乘除运算化简得答案.解答:解:∵z1=1﹣i,z2=+i,∴=.∴的虚部为.故选:D.点评:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.已知数列{a n}的前n项和为S n,且S n=2a n﹣2,则a2等于( )A.﹣2 B.2 C.1 D.4考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:利用S n=2a n﹣2,n分别取1,2,则可求a2的值.解答:解:n=1时,S1=2a1﹣2,∴a1=2,n=2时,S2=2a2﹣2,∴a2=a1+2=4.故选D.点评:本题考查数列递推式,考查学生的计算能力,属于基础题.3.“m>0”是“函数f(x)=m+log2x(x≥1)不存在零点”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据充分必要条件的定义集合对数函数的性质分别判断其充分性和必要性,从而得到答案.解答:解:若“m>0”,则函数f(x)=m+log2x>0,(x≥1),故函数f(x)不存在零点,是充分条件,若函数f(x)=m+log2x(x≥1)不存在零点,则m>0,是必要条件,故选:C.点评:本题考查了充分必要条件,考查了对数函数的性质,是一道基础题.4.已知点P(x,y)的坐标满足条件,那么点P到直线3x﹣4y﹣13=0的最小值为( )A.B.2 C.D.1考点:简单线性规划.专题:数形结合;不等式的解法及应用.分析:由约束条件作出可行域,数形结合得到最优解,由点到直线的距离公式求得点P到直线3x﹣4y﹣13=0的最小值.解答:解:由约束条件作出可行域如图,由图可知,当P与A(1,0)重合时,P到直线3x﹣4y﹣13=0的距离最小为d=.故选:B.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.5.已知双曲线kx2﹣y2=1(k>0)的一条渐近线与直线x﹣2y﹣3=0平行,则双曲线的离心率是( )A.B.C.4D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:利用已知条件求出双曲线方程中k的值,然后求解离心率即可.解答:解:双曲线kx2﹣y2=1(k>0)的一条渐近线与直线x﹣2y﹣3=0平行,可得双曲线的渐近线的斜率为:,即,解得k=,双曲线kx2﹣y2=1为:y2=1,得a=2,b=1,c=,∴双曲线的离心率为:.故选:A.点评:本题考查双曲线的简单性质的应用,离心率的求法,考查计算能力.6.一个几何体的三视图如图所示,且其侧(左)视图是一个等边三角形,则这个几何体的体积为( )A.B.C.2D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:此几何体是底面积是S==1的三棱锥,与底面是边长为2的正方形的四棱锥构成的组合体,它们的顶点相同,底面共面,高为,即可得出.解答:解:此几何体是底面积是S==1的三棱锥,与底面是边长为2的正方形的四棱锥构成的组合体,它们的顶点相同,底面共面,高为,∴V==.点评:本题考查了三棱锥与四棱锥的三视图、体积计算公式,属于基础题.7.已知函数f(x)=sin(x+),其中x∈,若f(x)的值域是,则实数a的取值X围是( ) A.(0,] B.C.D.考点:正弦函数的图象.专题:三角函数的图像与性质.分析:先求得x+的取值X围,由x+∈时f(x)的值域是,可知≤a+≤,可解得实数a的取值X围.解答:解:∵x∈,∴x+∈,∵x+∈时f(x)的值域是,∴由函数的图象和性质可知≤a+≤,可解得a∈.故选:D.点评:本题主要考察了正弦函数的图象和性质,由函数的图象和性质得到不等式≤a+≤是解题的关键,属于基本知识的考查.8.抛物线y2=2px(p>0)的焦点为F,已知点A,B为抛物线上的两个动点,且满足∠AFB=120°.过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则的最小值为( ) A.B.C.1 D.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:先画出图象、做出辅助线,设|AF|=a、|BF|=b,由抛物线定义得2|MN|=a+b,由题意和余弦定理可得|AB|2=(a+b)2﹣ab,再根据基本不等式,求得|AB|2的取值X围,代入化简即可得到答案.解答:解:如右图:过A、B分别作准线的垂线AQ、BP,垂足分别是Q、P,设|AF|=a,|BF|=b,连接AF、BF,由抛物线定义,得|AF|=|AQ|,|BF|=|BP|在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b.由余弦定理得,|AB|2=a2+b2﹣2abcos120°=a2+b2+ab,配方得|AB|2=(a+b)2﹣ab,因为ab≤,则(a+b)2﹣ab≥(a+b)2﹣=(a+b)2,即|AB|2≥(a+b)2,所以≥=3,则,即所求的最小值是,故选:D.点评:本题考查抛物线的定义、简单几何性质,基本不等式求最值,余弦定理的应用等知识,属于中档题.9.已知f(x)是定义在R上的奇函数,当0≤x≤1时,f(x)=x2,当x>0时,f(x+1)=f (x)+f(1),若直线y=kx与函数y=f(x)的图象恰有7个不同的公共点,则实数k的取值X围为( )A.(2﹣2,2﹣4)B.(+2,+)C.(2+2,2+4)D.(4,8)考点:函数奇偶性的性质;抽象函数及其应用.专题:函数的性质及应用.分析:本题通过奇函数特征得到函数图象经过原点,且关于原点对称,利用f(x+1)=f(x)+f(1)得到函数类似周期性特征,从而可以画出函数的草图,再利用两个临界状态的研究,得到k的取值X围.解答:解:∵当0≤x≤1时,f(x)=x2,∴f(1)=1.∵当x>0时,f(x+1)=f(x)+f(1),∴f(x+1)=f(x)+1,∴当x∈,n∈N*时,f(x+1)=f(x﹣1)+2=f(x﹣2)+3=…=f(x﹣n)+n+1=(x﹣n)2+n+1,∵函数f(x)是定义在R上的奇函数,∴函数图象经过原点,且关于原点对称.∵直线y=kx与函数y=f(x)的图象恰有7个不同的公共点,∴当x>0时,直线y=kx与函数y=f(x)的图象恰有3个不同的公共点,∴由x>0时f(x)的图象可知:直线y=kx与函数y=f(x)的图象相切位置在x∈时,直线y=kx与函数y=f(x)的图象恰有5个不同的公共点,直线y=kx与函数y=f(x)的图象相切位置在x∈时,直线y=kx与函数y=f(x)的图象恰有9个不同的公共点,∴直线y=kx与函数y=f(x)的图象位置情况介于上述两种情况之间.∵当x∈时,由得:x2﹣(k+2)x+2=0,令△=0,得:k=.由得:x2﹣(k+4)x+6=0,令△=0,得:k=2.∴k的取值X围为().点评:本题考查了函数的奇偶性、周期性、函数图象与性质及其应用,本题有一定的综合性,属于中档题.10.设函数f(x)=e x+2x﹣4,g(x)=lnx+2x2﹣5,若实数a,b分别是f(x),g(x)的零点,则( )A.g(a)<0<f(b)B.f(b)<0<g(a)C.0<g(a)<f(b)D.f(b)<g(a)<0考点:函数零点的判定定理.专题:函数的性质及应用.分析:根据函数的解析式判断单调性,运用f(1)=e﹣2>0,g(1)=0+2﹣5<0,得出a<1,b>1,再运用单调性得出g(a)<g(1)<0,f(b)>f(1)>0,即可选择答案.解答:解:∵函数f(x)=e x+2x﹣4,g(x)=lnx+2x2﹣5,∴f(x)与g(x)在各自的定义域上为增函数,∵f(1)=e﹣2>0,g(1)=0+2﹣5<0,∴若实数a,b分别是f(x),g(x)的零点,∴a<1,b>1,∵g(a)<g(1)<0,f(b)>f(1)>0,故选:A点评:本题考查了函数的性质,运用单调性判断函数的零点的位置,再结合单调性求解即可.11.在Rt△ABC中,CA=CB=3,M,N是斜边AB上的两个动点,且,则的取值X 围为( )A.B.C.D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:通过建立直角坐标系求出AB所在直线的方程,设出M,N的坐标,将=2(b﹣1)2,0≤b≤1,求出X围.解答:解:以C为坐标原点,CA为x轴建立平面坐标系,则A(3,0),B(0,3),∴AB所在直线的方程为:y=3﹣x,设M(a,3﹣a),N(b,3﹣b),且0≤a≤3,0≤b≤3不妨设a>b,∵MN=,∴(a﹣b)2+(b﹣a)2=2,∴a﹣b=1,∴a=b+1,∴0≤b≤2,∴=(a,3﹣a)•(b,3﹣b)=2ab﹣3(a+b)+9=2(b2﹣2b+3),0≤b≤2,∴b=1时有最小值4;当b=0,或b=2时有最大值6,∴的取值X围为故选:D点评:熟练掌握通过建立直角坐标系、数量积得坐标运算是解题的关键.12.设函数f1(x)=x,f2(x)=log2015x,a i=(i=1,2,3,…,2015),记I k=|f k(a2)﹣f k(a1)|+|f k(a3)﹣f k(a2)|+…+|f k(a2015)﹣f k(a2014)|,k=1,2,则( ) A.I1<I2B.I1=I2C.I2<I1D.无法确定考点:对数的运算性质.专题:函数的性质及应用.分析:由于f1(a i+1)﹣f1(a i)==.可得I1=×2014.由于f i+1(a i+1)﹣f i(a i)==.即可得出I2==log20152015.解答:解:∵f1(a i+1)﹣f1(a i)==.∴I1=|f1(a2)﹣f1(a1)|+|f1(a3)﹣f1(a2)|+…+|f1(a2015)﹣f1(a2014)|=×2014=.∵f2(a i+1)﹣f2(a i)==.∴I2=|f2(a2)﹣f2(a1)|+|f2(a3)﹣f2(a2)|+…+|f2(a2015)﹣f2(a2014)|==log20152015=1,∴I1<I2.故选:A.点评:本题考查了对数的运算法则、含绝对值符号式的运算,属于基础题.二.填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卷中横线上.13.已知等比数列{a n},前n项和为S n,,则S6=.考点:等比数列的前n项和.专题:计算题;等差数列与等比数列.分析:设等比数列{a n}的公比为q,运用通项公式,列出方程,解得公比和首项,再由求和公式,即可得到所求值.解答:解:设等比数列{a n}的公比为q,由于,即a1+a1q=,a1q3+a1q4=6,两式相除,可得,q=2,a1=.则S6==.故答案为:点评:本题考查等比数列的通项公式和求和公式,考查运算能力,属于基础题.14.设函数y=f(x)的定义域为D,若对于任意的x1,x2∈D,当x1+x2=2a时,恒有f(x1)+f (x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x3+sinx+2的某一个对称中心,并利用对称中心的上述定义,可得到 (82)考点:函数的值.专题:函数的性质及应用.分析:函数f(x)=x3+sinx+1图象的对称中心的坐标为(0,2),即x1+x2=0时,总有f(x1)+f(x2)=4,再利用倒序相加,即可得到结论解答:解:∵f(x)=x3+sinx+2,∴f'(x)=3x2+cosx,f''(x)=6x﹣sinx,∴f''(0)=0,而f(x)+f(﹣x)=x3+sinx+2+﹣x3﹣sinx+2=4,函数f(x)=x3+sinx+1图象的对称中心的坐标为(0,2),即x1+x2=0时,总有f(x1)+f(x2)=4,∴…=20×4+f(0)=82.故答案为:82.点评:本题考查函数的对称性,确定函数的对称中心,利用倒序相加x1+x2=0时,总有f(x1)+f(x2)=4,是解题的关键.15.给定方程:()x+sinx﹣1=0,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(﹣∞,0)内有且只有一个实数解;④若x0是该方程的实数解,则x0>﹣1.则正确命题是②③④.考点:命题的真假判断与应用.专题:计算题;函数的性质及应用;三角函数的图像与性质.分析:根据正弦函数的符号和指数函数的性质,可得该方程存在小于0的实数解,故①不正确;根据指数函数的图象与正弦函数的有界性,可得方程有无数个正数解,故②正确;根据y=()x﹣1的单调性与正弦函数的有界性,分析可得当x≤﹣1时方程没有实数解,当﹣1<x<0时方程有唯一实数解,由此可得③④都正确.解答:解:对于①,若α是方程()x+sinx﹣1=0的一个解,则满足()α=1﹣sinα,当α为第三、四象限角时()α>1,此时α<0,因此该方程存在小于0的实数解,得①不正确;对于②,原方程等价于()x﹣1=﹣sinx,当x≥0时,﹣1<()x﹣1≤0,而函数y=﹣sinx的最小值为﹣1且用无穷多个x满足﹣sinx=﹣1,因此函数y=()x﹣1与y=﹣sinx的图象在上不可能有交点因此只要x0是该方程的实数解,则x0>﹣1.故答案为:②③④点评:本题给出含有指数式和三角函数式的方程,讨论方程解的情况.着重考查了指数函数的单调性、三角函数的周期性和有界性、函数的值域求法等知识,属于中档题.16.有n个首项都是1的等差数列,设第m个数列的第k项为a mk(m,k=1,2,3,…,n,n≥3),公差为d m,并且a1n,a2n,a3n,…,a nn成等差数列.若d m=p1d1+p2d2(3≤m≤n,p1,p2是m的多项式),则p1+p2=1.考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:先根据首项和公差写出数列的通项公式,利用通项公式表示出数列a1n,a2n,a3n,…,a nn中的第项减第2项,第3项减第4项,…,第n项减第n﹣1项,由此数列也为等差数列,得到表示出的差都相等,进而得到d n是首项d1,公差为d2﹣d1的等差数列,根据等差数列的通项公式表示出d m的通项,令p1=2﹣m,p2=m﹣1,得证,求出p1+p2即可.解答:解:由题意知a mn=1+(n﹣1)d m.则a2n﹣a1n=﹣=(n﹣1)(d2﹣d1),同理,a3n﹣a2n=(n﹣1)(d3﹣d2),a4n﹣a3n=(n﹣1)(d4﹣d3),…,a nn﹣a(n﹣1)n=(n﹣1)(d n ﹣d n﹣1).又因为a1n,a2n,a3n,a nn成等差数列,所以a2n﹣a1n=a3n﹣a2n=…=a nn﹣a(n﹣1)n.故d2﹣d1=d3﹣d2=…=d n﹣d n﹣1,即d n是公差为d2﹣d1的等差数列.所以,d m=d1+(m﹣1)(d2﹣d1)=(2﹣m)d1+(m﹣1)d2.令p1=2﹣m,p2=m﹣1,则d m=p1d1+p2d2,此时p1+p2=1.故答案为:1.点评:此题考查学生灵活运用等差数列的通项公式及前n项和公式化简求值,考查了利用函数的思想解决实际问题的能力,是一道中档题.三.解答题:本大题共5小题,共70分.17.在△ABC中,角A,B,C所对的边分别为a,b,c,已知=(1)求角C的大小,(2)若c=2,求使△ABC面积最大时a,b的值.考点:正弦定理;余弦定理.专题:解三角形.分析:(1)已知等式左边利用正弦定理化简,右边利用诱导公式变形,整理后再利用两角和与差的正弦函数公式及诱导公式变形,根据sinA不为0求出cosC的值,即可确定出C的度数;(2)利用余弦定理列出关系式,将c与cosC的值代入并利用基本不等式求出ab的最大值,进而确定出三角形ABC面积的最大值,以及此时a与b的值即可.解答:解:(1)∵A+C=π﹣B,即cos(A+C)=﹣cosB,∴由正弦定理化简已知等式得:=,整理得:2sinAcosC+sinBcosC=﹣sinCcosB,即﹣2sinAcosC=sinBcosC+cosBsinC=sin(B+C)=sinA,∵sinA≠0,∴cosC=﹣,∵C为三角形内角,∴C=;(Ⅱ)∵c=2,cosC=﹣,∴由余弦定理得:c2=a2+b2﹣2abcosC,即4=a2+b2+ab≥2ab+ab=3ab,∴ab≤,(当且仅当a=b时成立),∵S=absinC=ab≤,∴当a=b时,△ABC面积最大为,此时a=b=,则当a=b=时,△ABC的面积最大为.点评:此题考查了正弦、余弦定理,三角形的面积公式,以及基本不等式的运用,熟练掌握定理及公式是解本题的关键.18.已知四棱锥P﹣ABCD中,底面ABCD为菱形,且PD⊥底面ABCD,∠DAB=60°,E为AB的中点.(1)证明:DC⊥平面PDE;(2)若PD=AD,求面DEP与面BCP所成二面角的余弦值.考点:用空间向量求平面间的夹角;直线与平面垂直的判定.专题:空间角.分析:(1)根据底面为含有60度的菱形,得△DAB为正三角形,从而得到AB⊥DE,结合PD⊥AB 利用线面垂直判定定理,即可证出DC⊥平面PDE;(2)分别以DE,DC,DP所在直线为x,y,z轴,建立空间直角坐标系,求出面DEP与面BCP 的法向量,代入向量夹角公式,可得答案.解答:证明:(1)∵PD⊥底面ABCD,AB⊂底面ABCD,∴PD⊥AB连接DB,在菱形ABCD中,∠DAB=60°∴△DAB为等边三角形…又∵E为AB的中点∴AB⊥DE又∵PD∩DE=D∴AB⊥底面PDE…∵AB∥CD∴CD⊥底面PDE…解:(2)如图,分别以DE,DC,DP所在直线为x,y,z轴,如图建立空间直角坐标系∴….∴∴…∴∴…点评:本题考查的知识点是用空间向量求平面间的夹角,直线与平面垂直的判定,熟练掌握线面垂直的判定定理是解答(1)的关键,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.19.已知数列{a n}满足a1=1,|a n+1﹣a n|=p n,n∈N*.(Ⅰ)若{a n}是递增数列,且a1,2a2,3a3成等差数列,求p的值;(Ⅱ)若p=,且{a2n﹣1}是递增数列,{a2n}是递减数列,求数列{a n}的通项公式.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(Ⅰ)根据条件去掉式子的绝对值,分别令n=1,2代入求出a2和a3,再由等差中项的性质列出关于p的方程求解,利用“{a n}是递增数列”对求出的p的值取舍;(Ⅱ)根据数列的单调性和式子“|a n+1﹣a n|=p n”、不等式的可加性,求出和a2n+1﹣a2n=,再对数列{a n}的项数分类讨论,利用累加法和等比数列前n项和公式,求出数列{a n}的奇数项、偶数项对应的通项公式,再用分段函数的形式表示出来.解答:解:(Ⅰ)∵数列{a n}是递增数列,∴a n+1﹣a n>0,则|a n+1﹣a n|=p n化为:a n+1﹣a n=p n,分别令n=1,2可得,a2﹣a1=p,,即a2=1+p,,∵a1,2a2,3a3成等差数列,∴4a2=a1+3a3,即4(1+p)=1+3(p2+p+1),化简得3p2﹣p=0,解得或0,当p=0时,数列a n为常数数列,不符合数列{a n}是递增数列,∴;(2)由题意可得,|a n+1﹣a n|=,则|a2n﹣a2n﹣1|=,|a2n+2﹣a2n+1|=,∵数列{a2n﹣1}是递增数列,且{a2n}是递减数列,∴a2n+1﹣a2n﹣1>0,且a2n+2﹣a2n<0,则﹣(a2n+2﹣a2n)>0,两不等式相加得a2n+1﹣a2n﹣1﹣(a2n+2﹣a2n)>0,即a2n+1﹣a2n+2>a2n﹣1﹣a2n,又∵|a2n﹣a2n﹣1|=>|a2n+2﹣a2n+1|=,∴a2n﹣a2n﹣1>0,即,同理可得:a2n+3﹣a2n+2>a2n+1﹣a2n,即|a2n+3﹣a2n+2|<|a2n+1﹣a2n|,则a2n+1﹣a2n=当数列{a n}的项数为偶数时,令n=2m(m∈N*),,,,…,,这2m﹣1个等式相加可得,==,则;当数列{a n}的项数为奇数时,令n=2m+1(m∈N*),,,…,,这2m个等式相加可得,…﹣…+=﹣=,则,且当m=0时a1=1符合,故,综上得,.点评:本题考查了等差数列的通项公式,等比数列前n项和公式、数列的单调性,累加法求数列的通项公式,不等式的性质等,同时考查数列的基础知识和化归、分类整合等数学思想,以及推理论证、分析与解决问题的能力.本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大.20.已知动点P到定点F(1,0)和直线l:x=2的距离之比为,设动点P的轨迹为曲线E,过点F作垂直于x轴的直线与曲线E相交于A,B两点,直线l:y=mx+n与曲线E交于C,D两点,与线段AB相交于一点(与A,B不重合)(Ⅰ)求曲线E的方程;(Ⅱ)当直线l与圆x2+y2=1相切时,四边形ABCD的面积是否有最大值,若有,求出其最大值,及对应的直线l的方程;若没有,请说明理由.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与X围问题.分析:(1)设点P(x,y),由题意可得,,化简即可得出;(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得m2+1=n2,直线与椭圆方程联立可得.利用根与系数的关系可得,再利用基本不等式的性质即可得出.解答:解:(1)设点P(x,y),由题意可得,,整理可得:.∴曲线E的方程是.(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得:,即m2+1=n2,联立消去y得.,,所以,,==.当且仅当,即时等号成立,此时.经检验可知,直线和直线符合题意.点评:本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、四边形的面积计算公式、基本不等式的性质,考查了推理能力与计算能力,属于难题.21.已知函数f(x)=(x2﹣2x)lnx+ax2+2.(Ⅰ)当a=﹣1时,求f(x)在点(1,f(1))处的切线方程;(Ⅱ)当a>0时,设函数g(x)=f(x)﹣x﹣2,且函数g(x)有且仅有一个零点,若e﹣2<x<e,g(x)≤m,求m的取值X围.考点:利用导数研究曲线上某点切线方程;函数零点的判定定理.专题:导数的综合应用.分析:(Ⅰ)当a=﹣1时,求导数,可得切线斜率,求出切点坐标,即可求f(x)在(1,f (1))处的切线方程;(Ⅱ)由g(x)=f(x)﹣x﹣2=0,可得a=,令h(x)=,证明h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,可得h(x)max=h(1)=1,即可求得函数g(x)有且仅有一个零点a的值,然后结合e﹣2<x<e,g(x)≤m,求出g(x)max,即可求得m的取值X围.解答:解:(Ⅰ)当a=﹣1时,f(x)=(x2﹣2x)•lnx﹣x2+2,定义域(0,+∞),∴f′(x)=(2x﹣2)•lnx+(x﹣2)﹣2x.∴f′(1)=﹣3,又f(1)=1,∴f(x)在(1,f(1))处的切线方程3x+y﹣4=0;(Ⅱ)g(x)=f(x)﹣x﹣2=0,则(x2﹣2x)•lnx+ax2+2=x+2,即a=,令h(x)=,则h′(x)=,令t(x)=1﹣x﹣2lnx,则t′(x)=,∵x>0,∴t′(x)<0,∴t(x)在(0,+∞)上是减函数,又∵t(1)=h′(1)=0,∴当0<x<1时,h′(x)>0,当x>1时,h′(x)<0,∴h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,∴h(x)max=h(1)=1,∴当函数g(x)有且仅有一个零点时a=1,当a=1时,g(x)=(x2﹣2x)•lnx+x2﹣x,若e﹣2<x<e, g(x)≤m,只需证明g(x)max≤m,∴g′(x)=(x﹣1)(3+2lnx),令g′(x)=0,得x=1或x=e﹣,又∵e﹣2<x<e,∴函数g(x)在(e﹣2,e﹣)上单调递增,在(e﹣,1)上单调递减,在(1,e)上单调递增,又g(e﹣)=﹣e﹣3+2e﹣,g(e)=2e2﹣3e,∵g(e﹣)=﹣e﹣3+2e﹣<2e﹣<2e<2e(e﹣)=g(e),∴g(e﹣)<g(e),∴m≥2e2﹣3e.点评:本题考查导数知识的综合运用,考查导数的几何意义,考查函数的单调性与最值,考查分离参数法的运用,属于难题.请考生在第(22)、(23)二题中任选一题作答.如果多做,则按所做的第一题记分,答题时,用2B铅笔在答题卡上把所选题目的题号涂黑.选修4-1:几何证明选讲22.如图,过圆E外一点A作一条直线与圆E交于B,C两点,且,作直线AF与圆E相切于点F,连结EF交BC于点D,已知圆E的半径为2,∠EBC=30°(1)求AF的长;(2)求证:AD=3ED.考点:与圆有关的比例线段.专题:直线与圆.分析:(1)延长BE交圆E于点M,连结CM,则∠BCM=90°,由已知条件求出AB,AC,再由切割线定理能求出AF.(2)过E作EH⊥BC于H,得到EDH∽△ADF,由此入手能够证明AD=3ED.解答:(1)解:延长BE交圆E于点M,连结CM,则∠BCM=90°,∵BM=2BE=4,∠EBC=30°,∴,又∵,∴,∴,根据切割线定理得,即AF=3(2)证明:过E作EH⊥BC于H,∵∠EOH=∠ADF,∠EHD=∠AFD,∴△EDH∽△ADF,∴,又由题意知CH=,EB=2,∴EH=1,∴,∴AD=3ED.点评:本题考查与圆有关的线段的求法,考查两条线段间数量关系的证明,是中档题,解题时要注意切割线定理的合理运用.选修4-5:不等式选讲23.已知函数f(x)=|2x﹣1|.(1)若对任意a、b、c∈R(a≠c),都有f(x)≤恒成立,求x的取值X围;(2)解不等式f(x)≤3x.考点:绝对值不等式的解法;函数恒成立问题.专题:不等式的解法及应用.分析:(1)根据|a﹣b|+|b﹣c|≥|a﹣c|,可得≥1,再根据f(x)≤恒成立,可得f(x)≤1,即|2x﹣1|≤1,由此求得x的X围.(2)不等式即|2x﹣1|≤3x,可得,由此求得不等式的解集.解答:解:(1)∵|a﹣b|+|b﹣c|≥|a﹣b+(b﹣c)|=|a﹣c|,故有≥1,再根据f(x)≤恒成立,可得f(x)≤1,即|2x﹣1|≤1,∴﹣1≤2x﹣1≤1,求得0≤x≤1.(2)不等式f(x)≤3x,即|2x﹣1|≤3x,∴,求得x≥,即不等式的解集为{x|x≥}.点评:本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化的数学思想,属于基础题.。

南海中学分校2014届高三第二学期理科数学每周一测9 答案

南海中学分校2014届高三第二学期理科数学每周一测9 答案

南海中学分校2014届高三第二学期理科数学每周一测(9)答案一、选择题D B C C A B A C二、填空题9.31 10.2- 11.4312.3y x =± 13.①③ 14.27 15. 63三、解答题(2)设平面BED 与平面RQD 的交线为DG .由BQ=23FE,FR=23FB 知, ||QR EB . 而EB ⊂平面BDF ,∴||QR 平面BDF ,而平面BDF 平面RQD = DG , ∴||||QR DG EB .由(1)知,BE ⊥平面BDF ,∴DG ⊥平面BDF ,而DR ⊂平面B D F , BD ⊂平面B D F ,∴,D G D R D G D Q⊥⊥, ∴RDB ∠是平面BED 与平面RQD 所成二面角的平面角.在Rt BCF ∆中,2222(5)2C F B F B C a a a =-=-=,22sin 55FC a RBD BF a ∠===,21cos 1sin 5RBD RBD ∠=-∠=.5222935sin 29293a RDB a ⋅∠==. 故平面BED 与平面RQD 所成二面角的正弦值是22929.5222935sin 29293a RDB a ⋅∠==.故平面BED 平面RQD 所成二面角的正弦值是22929.南海中学分校2014届高三第二学期理科数学每周一测(9)答案一、选择题D B C C A B A C二、填空题9.31 10.2- 11.4312.3y x =± 13.①③ 14.27 15. 63南海中学分校2014届高三第二学期理科数学每周一测(9)答案一、选择题D B C C A B A C二、填空题9.3110.2-11.4312.3y x=±13.①③14.2715.63南海中学分校2014届高三第二学期理科数学每周一测(9)答案一、选择题D B C C A B A C二、填空题9.3110.2-11.4312.3y x=±13.①③14.2715.63南海中学分校2014届高三第二学期理科数学每周一测(9)答案一、选择题D B C C A B A C二、填空题9.3110.2-11.4312.3y x=±13.①③14.2715.63南海中学分校2014届高三第二学期理科数学每周一测(9)答案一、选择题D B C C A B A C二、填空题9.3110.2-11.4312.3y x=±13.①③14.2715.63。

高三一轮复习 三角向量 周测卷

高三一轮复习 三角向量 周测卷

高三理科数学周测卷(11.1)一、选择题(本大题共12小题,每小题5分,共60分) 1.tan 300°+sin 450°的值为 ( )A .1+ 3B .1- 3C .-1- 3D .-1+ 32.下列函数中,最小正周期为π,且图象关于直线x =π3对称的是 ( )A .y =sin ⎝⎛⎭⎫2x +π6B .y =sin ⎝⎛⎭⎫2x +π3C .y =sin ⎝⎛⎭⎫2x -π3D .y =sin ⎝⎛⎭⎫2x -π6 3.函数y =sin 2x +2sin x cos x +3cos 2x 的最小正周期和最小值为 ( )A .π,0B .2π,0C .π,2- 2D .2π,2- 24.将函数y =sin x 的图象上所有的点向右平行移动π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是 ( )A .y =sin ⎝⎛⎭⎫2x -π10B .y =sin ⎝⎛⎭⎫2x -π5C .y =sin ⎝⎛⎭⎫12x -π10D .y =sin ⎝⎛⎭⎫12x -π205.已知a =(cos 40°,sin 40°),b =(sin 20°,cos 20°),则a·b 等于 ( )A .1 B.32 C.12 D.226.已知f (x )=sin x +3cos x (x ∈R ),函数y =f (x +φ)的图象关于直线x =0对称,则φ的值可以是( )A.π2B.π3C.π4D.π67.已知向量a =(sin x ,cos x ),向量b =(1,3),则|a +b |的最大值 ( )A .1 B. 3 C .3 D .98.使函数f (x )=sin(2x +θ)+3cos(2x +θ) 是奇函数,且在 ⎣⎡⎦⎤0,π4 上是减函数的θ的一个值是 ( ) A.π3 B.2π3 C.4π3 D.5π39.函数y =2sin ⎝⎛⎭⎫π6-2x (x ∈[0,π])为增函数的区间是 ( ) A.⎣⎡⎦⎤0,π3 B.⎣⎡⎦⎤π12,7π12 C.⎣⎡⎦⎤π3,5π6 D.⎣⎡⎦⎤5π6,π 10.设ω>0,函数y =sin(ωx +π3)+2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是( )A.23B.43C.32D .3 11. 平面上O ,A ,B 三点不共线,设OA →=a ,OB →=b ,则△OAB 的面积等于 ( )A.|a|2|b|2-(a·b )2B.|a|2|b |2+(a·b )2C.12|a|2|b|2-(a·b )2D.12|a|2|b |2+(a·b )212.设函数f (x )=4sin(2x +1)-x ,则在下列区间中函数f (x )不存在零点( )A .[-4,-2]B .[-2,0]C .[0,2]D .[2,4]题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案二、填空题(本大题共4小题,每小题5分,共20分)13.若函数f (x )=2sin ωx (ω>0)在 ⎣⎡⎦⎤-2π3,2π3上单调递增,则ω的最大值为________. 14.已知α为第三象限的角,cos 2α=-35,则tan ⎝⎛⎭⎫π4+2α=________. 15.在△ABC 中,角A 、B 、C 对应的边分别为a 、b 、c ,若AB →·AC →=BA →·BC →=1,那么c =________.16.给出下列命题:①函数f (x )=4cos ⎝⎛⎭⎫2x +π3的一个对称中心为 ⎝⎛⎭⎫-5π12,0; ②已知函数f (x )=min{sin x ,cos x },则f (x )的值域为 ⎣⎡⎦⎤-1,22 ;③若α,β均为第一象限角,且α>β,则sin α>sin β.其中所有真命题的序号是________.三、解答题(本大题共6小题,共70分)17.(10分))如图是函数y =A sin(ωx +φ) (A >0,ω>0,|φ|<π) 的图象的一段,求其解析式.18.(12分)已知A 、B 、C 的坐标分别为A (4,0),B (0,4),C (3cos α,3sin α).(1)若 α∈π(-,0),且|AB →|=|BC →|,求角α的大小; (2)若AC →⊥BC →,求2sin 2α+sin 2α1+tan α的值.19.(12分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1) 求A的大小;(2) 若sin B+sin C =1,试判断△ABC的形状.20.(12分) 已知tan α、tan β是方程x2-4x-2=0的两个实根,求cos2(α+β)+2sin(α+β)cos(α+β)-3sin2(α+β)的值.21.(12分) 已知函数f (x)=sin(ωx+φ) (ω>0,0≤φ≤π)为偶函数,其图象上相邻的两个最高点之间的距离为2π.(1)求f (x )的解析式;(2)若α∈⎝⎛⎭⎫-π3,π2,f ⎝⎛⎭⎫α+π3=13,求sin ⎝⎛⎭⎫2α+5π3 的值.22.(12分)已知函数f (x )=12sin 2x sin φ+cos 2x cos φ-12sin ⎝⎛⎭⎫π2+φ (0<φ<π),其图象过点⎝⎛⎭⎫π6,12. (1) 求φ的值;(2) 将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在⎣⎡⎦⎤0,π4上的最大值和最小值.一. 选择题:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BDCCBDCBCCCA二.填空题:13. 34 解析 ∵f (x )在⎣⎡⎦⎤-T 4,T 4上递增,如图,故⎣⎡⎦⎤-2π3,2π3⊆⎣⎡⎦⎤-T 4,T 4,即T 4≥2π3. ∴ω≤34.∴ωmax =34.14.-17 解析 ∵α为第三象限的角,2k π+π<α<2k π+3π2,∴4k π+2π<2α<4k π+3π (k ∈Z ),又cos 2α=-35.∴sin 2α=45,tan 2α=-43,∴tan ⎝⎛⎭⎫π4+2α=1+tan 2α1-tan 2α=-17. 15. 2 解析 设AB =c ,AC =b ,BC =a ,由AB →·AC →=BA →·BC →得:cb cos A =ca cos B .由正弦定理得:sin B cos A =cos B sin A , 即sin(B -A )=0,因为-π<B -A <π 所以B =A ,从而b =a .由已知BA →·BC →]=1 得:ac cos B =1,由余弦定理得:ac a 2+c 2-b 22ac=1,即a 2+c 2-b 2=2,所以c = 2.16. ①② 解析 将x =-5π12代入f (x )=4cos ⎝⎛⎭⎫2x +π3, 得f ⎝⎛⎭⎫-5π12=4cos ⎝⎛⎭⎫-5π6+π3=4cos ⎝⎛⎭⎫-π2=0, 故①为真命题;在同一坐标系内画出y =sin x ,y =cos x 的图象,f (x )=min{sin x ,cos x }的图象 为y =sin x ,y =cos x 的图象中选取函数值小的各部分组成的图象, 由f (x )的图象知②是真命题;由2π+π6>π3,但sin ⎝⎛⎭⎫2π+π6<sin π3知③是假命题.故答案为①②. 17.解 由图象可知振幅A =2,……………………………………………………(2分)又∵周期T =2⎝⎛⎭⎫5π6-π3=π,∴ω=2πT =2ππ=2,………………………………………………………………………(6分)此时函数解析式为y =2sin(2x +φ).又图象过点⎝⎛⎭⎫π3,0,由”五点法“作图的第一个点知, 2×π3+φ=0,∴φ=-2π3.………………………………………………………………(9分) ∴所求函数的解析式为y =2sin ⎝⎛⎭⎫2x -2π3.……………………………………………………………………(10分)19.解 (1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .………………………………………………………………………(4分) 由余弦定理得a 2=b 2+c 2-2bc cos A ,故cos A =-12,∵A ∈(0°,180°)∴A =120°.………………………………………………………………………………(6分) (2)由(1)得sin 2A =sin 2B +sin 2C +sin B sin C .又sin B +sin C =1,得sin B =sin C =12.………………………………………………(9分)因为0°<B <90°,0°<C <90°,故B =C =30°.所以△ABC 是等腰的钝角三角形.…………………………………………………(12分)20.解 由已知有tan α+tan β=4,tan αtan β=-2,………………………………(2分)∴tan(α+β)=tan α+tan β1-tan αtan β=43,………………………………………………………(5分)cos 2(α+β)+2sin(α+β)cos(α+β)-3sin 2(α+β) =cos 2(α+β)+2sin (α+β)cos (α+β)-3sin 2(α+β)cos 2(α+β)+sin 2(α+β)=1+2tan (α+β)-3tan 2(α+β)1+tan 2(α+β)…………………………………………………………(10分)=1+2×43-3×1691+169=-35.………………………………………………………………(12分)21.解 (1)∵图象上相邻的两个最高点之间的距离为2π,∴T =2π,则ω=2πT=1.…………………………………………………………………(2分)∴f (x )=sin(x +φ).∵f (x )是偶函数,∴φ=k π+π2(k ∈Z ),…………………………………………………(5分)又0≤φ≤π,∴φ=π2.∴f (x )=cos x .……………………………………………………(6分)(2)由已知得cos ⎝⎛⎭⎫α+π3=13, ∵α∈⎝⎛⎭⎫-π3,π2, ∴α+π3∈⎝⎛⎭⎫0,5π6, 则sin ⎝⎛⎭⎫α+π3=223.………………………………………………………………………(8分)∴sin ⎝⎛⎭⎫2α+5π3=-sin ⎝⎛⎭⎫2α+2π3 =-2sin ⎝⎛⎭⎫α+π3cos ⎝⎛⎭⎫α+π3=-429.……………………………………………………(12分)22. 解 (1)f (x )=12sin 2x sin φ+cos 2x +12cos φ-12cos φ=12(sin 2x sin φ+cos 2x cos φ) =12cos(2x -φ).…………………………………………………………………………(3分) 又∵ f (x )过点⎝⎛⎭⎫π6,12,∴12=12cos ⎝⎛⎭⎫π3-φ, 即cos(π3-φ)=1.由0<φ<π知φ=π3.………………………………………………………………………(6分)(2)由(1)知f (x )=12cos ⎝⎛⎭⎫2x -π3. 将f (x )图象上所有点的横坐标缩短到原来的12,纵坐标不变,变为g (x )=12cos(4x -π3).……………………………………………………………………………………………(8分)∵0≤x ≤π4,∴-π3≤4x -π3≤2π3.∴当4x -π3=0,即x =π12时,g (x )有最大值12;当4x -π3=2π3,即x =π4时,g (x )有最小值-14.…………………………………………(12分)。

广东省廉江市实验学校2021届高三数学上学期周测试题(10)理(高补班)

广东省廉江市实验学校2021届高三数学上学期周测试题(10)理(高补班)

广东省廉江市实验学校2021届高三数学上学期周测试题(10)理(高补班)考试时间:120分钟(2021.12.17)一、选择题:本题共12小题,每小题5分,共60分。

1.已知集合)}ln(|{},0)1(|{a x y x B x x x A -==≤-=,若A B A = ,则实数a 的取值范围为 ( )A .)0,(-∞B .]0,(-∞C .),1(+∞D .),1[+∞2.已知线段AB 是抛物线x y 22=的一条焦点弦,4||=AB ,则AB 中点C 的横坐标是 ( ) A .21 B .23 C .2 D .253.如图,圆柱的轴截面ABCD 为正方形,E 为的中点,则异面直线AE 与BC 所成角的余弦值为 ( )A .630B .33C .55D .664.已知βα,都为锐角,且721sin =α,1421cos =β,则=-βα ( )A .3π-B .3πC .6π-D .6π5.设∈a R ,)2,0[π∈b ,若对任意实数x 都有)sin(33sin b ax x +=⎪⎭⎫⎝⎛-π,则满足条件的有序实数对(a ,b )的个数为 ( )A .1B .2C .3D .46.已知F 是双曲线154:22=-y x C 的一个焦点,点P 在C 上,O 为坐标原点.若||||OF OP =,则△OPF 的面积为 ( ) A .23 B .25 C .27 D .29 7.如图,在△ABC 中,点P 满足3=,过点P 的直线与AB ,AC 所在的直线分别交于点M ,N ,若>>==μλμλ,0(,)0,则μλ+的最小值为 ( )A .122+ B .123+ C .23 D .258.已知等差数列}{n a 的公差不为零,其前n 项和为n S ,若2793,,S S S 成等比数列,则=39S S ( )A .3B .6C .9D .12 9.如图,点P 在正方体1111D C B A ABCD -的面对角线1BC 上运动,则下 列四个结论:①三棱锥PC D A 1-的体积不变;②//1P A 平面;1ACD ③1BC DP ⊥;④平面⊥1PDB 平面1ACD .其中正确结论的个数是 ( ) A .1 B .2 C .3 D .410.过三点)7,1(),2,4(),3,1(-C B A 的圆被直线02=++ay x 所截得的弦长的最小值等于( )A .32B .13C .34D .132 11.如图,三棱柱111C B A ABC -的高为6,点D ,E 分别在线段C B C A 111,上,E B C B DC C A 111114,3==.点A ,D ,E 所确定的平面把三棱柱切割成体积不相等的两部分,若底面ABC ∆的面积为6,则所切得的较大部分的 几何体的体积为 ( )A .22B .23C .26D .2712.设2)2()(22++-+-=a a e a x D x,其中28718.2≈e ,则D 的最小值为 ( )A .2B .3C .12+D .13+ 二、填空题:本大题共4个小题,每小题5分,共20分。

人教A版高三数学理科一轮复习滚动检测试卷(五)含答案

人教A版高三数学理科一轮复习滚动检测试卷(五)含答案

高三单元滚动检测卷·数学考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分150分.4.请在密封线内作答,保持试卷清洁完整.滚动检测五第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,集合A={x|x(x-2)<0},B={x|x<a},若A与B的关系如图所示,则实数a的取值范围是()A.[0,+∞)B.(0,+∞)C.[2,+∞)D.(2,+∞)2.两个函数的图象经过平移后能够重合,称这两个函数为“同根函数”,给出四个函数:f1(x)=2log2(x+1),f2(x)=log2(x+2),f3(x)=log2x2,f4(x)=log2(2x),则“同根函数”是() A.f2(x)与f4(x) B.f1(x)与f3(x)C.f1(x)与f4(x) D.f3(x)与f4(x)3.若命题p:函数y=lg(1-x)的值域为R;命题q:函数y=2cos x是偶函数,且是R上的周期函数,则下列命题中为真命题的是()A.p∧q B.(綈p)∨(綈q)C.(綈p)∧q D.p∧(綈q)4.(·河南名校联考)在△ABC中,a、b、c分别为角A、B、C的对边,若a2+b2=2 016c2,则2tan A·tan Btan C(tan A+tan B)的值为()A .0B .2 014C .2 015D .2 0165.《张邱建算经》有一道题:今有女子不善织布,逐日所织的布同数递减,初日织五尺,末一日织一尺,计织三十日,问共织布( ) A .110尺 B .90尺 C .60尺D .30尺6.(·渭南模拟)已知椭圆x 24+y 23=1上有n 个不同的点P 1,P 2,…,P n ,且椭圆的右焦点为F ,数列{|P n F |}是公差大于11 000的等差数列,则n 的最大值为( ) A .2 001 B .2 000 C .1 999D .1 9987.(·河北衡水中学第二次调研考试)已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )>f (x )g ′(x ),且f (x )=a x g (x )(a >0,且a ≠1),f (1)g (1)+f (-1)g (-1)=52.若数列{f (n )g (n )}的前n 项和大于62,则n 的最小值为( ) A .6 B .7 C .8D .98.在三棱锥P -ABC 中,P A ⊥平面ABC ,AC ⊥BC ,D 为侧棱PC 上的一点,它的正视图和侧视图如图所示,则下列命题正确的是( )A .AD ⊥平面PBC 且三棱锥D -ABC 的体积为83B .BD ⊥平面P AC 且三棱锥D -ABC 的体积为83C .AD ⊥平面PBC 且三棱锥D -ABC 的体积为163D .BD ⊥平面P AC 且三棱锥D -ABC 的体积为1639.若tt 2+9≤a ≤t +2t 2在t ∈(0,2]上恒成立,则a 的取值范围是( )A .[16,1]B .[16,2 2 ]C .[16,413]D .[213,1]10.已知点G 为△ABC 的重心,∠A =120°,A B →·A C →=-2,则|A G →|的最小值是( ) A.33B.22C.23D.3411.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或712.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤3x -2,x -2y +1≤0,2x +y ≤8,则lg(y +1)-lg x 的取值范围为( )A .[0,1-2lg 2]B .[1,52]C .[12,lg 2]D .[-lg 2,1-2lg 2]第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,P ,Q 是面对角线A 1C 1上的两个不同动点,给出以下判断:①存在P ,Q 两点,使BP ⊥DQ ; ②存在P ,Q 两点,使BP ∥DQ ;③若|PQ |=1,则四面体BDPQ 的体积一定是定值; ④若|PQ |=1,则四面体BDPQ 的表面积是定值;⑤若|PQ |=1,则四面体BDPQ 在该正方体六个面上的正投影的面积的和为定值. 其中真命题是________.(将正确命题的序号全填上)14.已知矩形ABCD 中,AB =3,BC =a ,若P A ⊥平面AC ,在BC 边上取点E ,使PE ⊥DE ,则满足条件的E 点有两个时,a 的取值范围是________.15.设a >1,若曲线y =1x 与直线y =0,x =1,x =a 所围成封闭图形的面积为2,则a =________.16.已知M 是△ABC 内的一点(不含边界),且A B →·A C →=23,∠BAC =30°,若△MBC ,△BMA 和△MAC 的面积分别为x ,y ,z ,记f (x ,y ,z )=1x +4y +9z ,则f (x ,y ,z )的最小值是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π2<φ<π2,x ∈R )的部分图象如图所示.(1)求函数y =f (x )的解析式;(2)当x ∈[-π,-π6]时,求f (x )的取值范围.18.(12分)(·咸阳模拟)数列{a n }的前n 项和为S n ,且a n 是S n 和1的等差中项,等差数列{b n }满足b 1=a 1,b 4=S 3.(1)求数列{a n },{b n }的通项公式;(2)设c n =1b n b n +1,数列{c n }的前n 项和为T n ,证明:13≤T n <12.19.(12分)如图,已知点P在圆柱OO1的底面圆O上,AB、A1B1分别为圆O、圆O1的直径且AA1⊥平面P AB.(1)求证:BP⊥A1P;(2)若圆柱OO1的体积V=12π,OA=2,∠AOP=120°,求三棱锥A1-APB的体积.20.(12分)(·保定调研)已知函数f(x)=ln x+ax-a2x2(a≥0).(1) 若x=1是函数y=f(x)的极植点,求a的值;(2)若f(x)<0在定义域内恒成立,求实数a的取值范围.21.(12分)如图,P -AD -C 是直二面角,四边形ABCD 是∠BAD =120°的菱形,AB =2,P A ⊥AD ,E 是CD 的中点,设PC 与平面ABCD 所成的角为45°.(1)求证:平面P AE ⊥平面PCD ;(2)试问在线段AB (不包括端点)上是否存在一点F ,使得二面角A -PF -D 的大小为45°?若存在,请求出AF 的长,若不存在,请说明理由.22.(12分)(·合肥第二次质检)已知△ABC 的三边长|AB |=13,|BC |=4,|AC |=1,动点M 满足CM →=λCA →+μCB →,且λμ=14.(1)求|CM →|最小值,并指出此时CM →与C A →,C B →的夹角;(2)是否存在两定点F 1,F 2,使||MF 1→|-|MF 2→||恒为常数k ?,若存在,指出常数k 的值,若不存在,说明理由.答案解析1.C 2.A 3.A 4.C 5.B 6.B 7.A 8.C 9.D [t t 2+9=1t +9t,而u =t +9t 在(0,2]上单调递减,故t +9t ≥2+92=132,t t 2+9=1t +9t ≤213(当且仅当t =2时,等号成立),t +2t 2=1t +2t 2=2(1t +14)2-18, 因为1t ≥12,所以t +2t 2=1t +2t 2=2(1t +14)2-18≥1(当且仅当t =2时等号成立),故a 的取值范围是[213,1].]10.C [设BC 的中点为M ,则A G →=23AM →.又M 为BC 的中点,∴AM →=12(A B →+A C →),∴A G →=23AM →=13(A B →+A C →),∴|A G →|=13A B →2+A C →2+2A B →·A C →=13A B →2+A C →2-4.又∵A B →·A C →=-2,∠A =120°, ∴|A B →||A C →|=4.∵|A G →|=13AB →2+AC →2-4≥132|A B →||A C →|-4=23,当且仅当|A B →|=|A C →|=2时取“=”,∴|A G →|的最小值为23,故选C.]11.A [因为y =x 3,所以y ′=3x 2, 设过(1,0)的直线与y =x 3相切于点(x 0,x 30),则在该点处的切线斜率为k =3x 20,所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30.又(1,0)在切线上,则x 0=0或x 0=32.当x 0=0时,由y =0与y =ax 2+154x -9相切,可得a =-2564,当x 0=32时,由y =274x -274与y =ax 2+154x -9相切,可得a =-1.]12.A [如图所示,作出不等式组⎩⎪⎨⎪⎧y ≤3x -2,x -2y +1≤0,2x +y ≤8确定的可行域.因为lg(y +1)-lg x =lg y +1x ,设t =y +1x,显然,t 的几何意义是可行域内的点P (x ,y )与定点E (0,-1)连线的斜率. 由图可知,点P 在点B 处时,t 取得最小值; 点P 在点C 处时,t 取得最大值.由⎩⎪⎨⎪⎧ x -2y +1=0,2x +y =8,解得⎩⎪⎨⎪⎧x =3,y =2,即B (3,2),由⎩⎪⎨⎪⎧ y =3x -2,2x +y =8,解得⎩⎪⎨⎪⎧x =2,y =4,即C (2,4).故t 的最小值为k BE =2-(-1)3=1,t 的最大值为k CE =4-(-1)2=52,所以t ∈[1,52].又函数y =lg x 为(0,+∞)上的增函数, 所以lg t ∈[0,lg 52],即lg(y +1)-lg x 的取值范围为[0,lg 52].而lg 52=lg 5-lg 2=1-2lg 2,所以lg(y +1)-lg x 的取值范围为[0,1-2lg 2]. 故选A.] 13.①③⑤解析 当P 与A 1点重合,Q 与C 1点重合时,BP ⊥DQ , 故①正确;BP 与DQ 异面,故②错误;设平面A 1B 1C 1D 1两条对角线交点为O ,则易得PQ ⊥平面OBD ,平面OBD 可将四面体BDPQ 分成两个底面均为平面OBD ,高之和为PQ 的棱锥,故四面体BDPQ 的体积一定是定值, 故③正确;若|PQ |=1,则四面体BDPQ 的表面积不是定值, 故④错误;四面体BDPQ 在上下两个底面上的投影是对角线互相垂直且对角线长度分别为1和2的四边形,其面积为定值,四面体BDPQ 在四个侧面上的投影, 均为上底为22,下底和高均为1的梯形,其面积为定值, 故四面体BDPQ 在该正方体六个面上的正投影的面积的和为定值, 故⑤正确.14.a >6解析 以A 点为原点,AB ,AD ,AP 所在直线分别为x ,y ,z 轴,如图所示. 则D (0,a,0),设P (0,0,b ),E (3,x,0),PE →=(3,x ,-b ),DE →=(3,x -a,0), ∵PE ⊥DE ,∴PE →·DE →=0, ∴9+x (x -a )=0, 即x 2-ax +9=0,由题意可知方程有两个不同根, ∴Δ>0,即a 2-4×9>0,又a >0,∴a >6. 15.e 2解析 ∵a >1,曲线y =1x 与直线y =0,x =1,x =a 所围成封闭图形的面积为2,∴ʃa 11x d x =2,∴ |ln x a 1=2,ln a =2,∴a =e 2. 16.36解析 由题意得A B →·A C →=|A B →|·|A C →|cos ∠BAC =23,则|A B →|·|A C →|=4,∴△ABC 的面积为12|A B →|·|A C →|·sin ∠BAC =1,x +y +z =1,∴f (x ,y ,z )=1x +4y +9z =x +y +z x +4(x +y +z )y +9(x +y +z )z =14+(y x +4x y )+(9x z +z x )+(4zy +9y z )≥14+4+6+12=36(当且仅当x =16,y =13,z =12时,等号成立). 17.解 (1)由图象得A =1,T 4=2π3-π6=π2,所以T =2π,则ω=1, 将(π6,1)代入得1=sin(π6+φ),而-π2<φ<π2,所以φ=π3, 因此函数f (x )=sin(x +π3). (2)由于x ∈[-π,-π6],-2π3≤x +π3≤π6, 所以-1≤sin(x +π3)≤12, 所以f (x )的取值范围是[-1,12]. 18.(1)解 ∵a n 是S n 和1的等差中项,∴S n =2a n -1.当n =1时,a 1=S 1=2a 1-1,∴a 1=1;当n ≥2时,a n =S n -S n -1=(2a n -1)-(2a n -1-1)=2a n -2a n -1.∴a n =2a n -1,即a n a n -1=2, ∴数列{a n }是以a 1=1为首项,2为公比的等比数列,∴a n =2n -1,S n =2n -1.设{b n }的公差为d ,b 1=a 1=1,b 4=1+3d =7,∴d =2,∴b n =1+(n -1)×2=2n -1.(2)证明 c n =1b n b n +1=1(2n -1)(2n +1)=12(12n -1-12n +1). ∴T n =12(1-13+13-15+…+12n -1-12n +1) =12(1-12n +1)=n 2n +1, ∵n ∈N *,∴T n =12(1-12n +1)<12, T n -T n -1=n 2n +1-n -12n -1=1(2n +1)(2n -1)>0, ∴数列{T n }是一个递增数列,∴T n ≥T 1=13, 综上所述,13≤T n <12. 19.(1)证明 易知AP ⊥BP ,由AA 1⊥平面P AB ,得AA 1⊥BP ,且AP ∩AA 1=A ,所以BP ⊥平面P AA 1,又A 1P ⊂平面P AA 1,故BP ⊥A 1P .(2)解 由题意得V =π·OA 2·AA 1=4π·AA 1=12π,解得AA 1=3.由OA =2,∠AOP =120°,得∠BAP =30°,BP =2,AP =23,∴S △P AB =12×2×23=23, ∴三棱锥A 1-APB 的体积V =13S △P AB ·AA 1=13×23×3=2 3. 20.解 (1)函数的定义域为(0,+∞),f ′(x )=-2a 2x 2+ax +1x. 因为x =1是函数y =f (x )的极值点,所以f ′(1)=1+a -2a 2=0,解得a =-12(舍去)或a =1, 经检验,当a =1时,x =1是函数y =f (x )的极值点,所以a =1.(2)当a =0时,f (x )=ln x ,显然在定义域内不满足f (x )<0恒成立;当a >0时,令f ′(x )=(2ax +1)(-ax +1)x=0 得,x 1=-12a (舍去),x 2=1a,所以当x 变化时,f ′(x ),f (x )的变化情况如下表: x (0,1a ) 1a (1a ,+∞) f ′(x )+ 0 -f (x )极大值所以f (x )max =f (1a )=ln 1a<0,所以a >1. 综上可得a 的取值范围是(1,+∞).21.(1)证明 因为P A ⊥AD ,二面角P -AD -C 是直二面角,所以P A ⊥平面ABCD ,因为DC ⊂平面ABCD ,所以P A ⊥CD ,连接AC ,因为ABCD 为菱形,∠BAD =120°,所以∠CAD =60°,∠ADC =60°,所以△ADC 是等边三角形.因为E 是CD 的中点,所以AE ⊥CD ,因为P A ∩AE =A ,所以CD ⊥平面P AE ,而CD ⊂平面PCD ,所以平面P AE ⊥平面PCD .(2)解 以A 为坐标原点,AB ,AE ,AP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系.因为P A ⊥平面ABCD ,所以∠PCA 是PC 与平面ABCD 所成角,所以∠PCA =45°,所以P A =AC =AB =2,于是P (0,0,2),D (-1,3,0),PD →=(-1,3,-2).设AF =λ,则0<λ<2,F (λ,0,0),所以PF →=(λ,0,-2).设平面PFD 的法向量为n 1=(x ,y ,z ),则有n 1·PD →=0,n 1·PF →=0,所以⎩⎪⎨⎪⎧ -x +3y -2z =0,λx -2z =0, 令x =1,则z =λ2,y =λ+13, 所以平面PFD 的法向量为n 1=(1,λ+13,λ2). 而平面APF 的法向量为n 2=(0,1,0).所以|cos 〈n 1,n 2〉|=2|λ+1|7λ2+8λ+16=22, 整理得λ2+8λ-8=0,解得λ=26-4(或λ=-26-4舍去),因为0<26-4<2,所以在AB 上存在一点F ,使得二面角A -PF -D 的大小为45°,此时AF =26-4.22.解 (1)由余弦定理知cos ∠ACB =12+42-132×1×4=12⇒∠ACB =π3, 因为|CM →|2=CM →2=(λC A →+μC B →)2=λ2+16μ2+2λμC A →·C B →=λ2+1λ2+1≥3, 所以|CM →|≥3, 当且仅当λ=±1时,“=”成立,故|CM →|的最小值是3,此时〈CM →,C A →〉=〈CM →,C B →〉=π6或5π6. (2)以C 为坐标原点,∠ACB 的平分线所在直线为x 轴,建立平面直角坐标系(如图),所以A (32,12),B (23,-2),设动点M (x ,y ), 因为CM →=λC A →+μC B →, 所以⎩⎨⎧ x =32λ+23μ,y =12λ-2μ⇒⎩⎨⎧ x 23=(λ2+2μ)2,y 2=(λ2-2μ)2,再由λμ=14知x 23-y 2=1, 所以动点M 的轨迹是以F 1(-2,0),F 2(2,0)为焦点,实轴长为23的双曲线,即||MF 1→|-|MF 2→||恒为常数23,即存在k =2 3.。

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。

江西省丰城市第九中学2023届高三上学期入学考数学(理)试题(解析版)

江西省丰城市第九中学2023届高三上学期入学考数学(理)试题(解析版)

丰城九中高三上学期理科数学开学考试试卷一、单选题(共12题,共60分)1.已知集合{}{}2220,log 1A x x x B x x =--<=≤,则A B = ()A.{}02x x <≤B.{}02x x <<C.{}12x x -<< D.{}12x x -<≤【答案】B 【解析】【分析】分别解二次不等式和对数不等式,求得集合,A B ,进而利用交集的定义求得A B ⋂.【详解】A {}{}12,02x x B x x =-<<=<≤,则{}02A B x x ⋂=<<.故选:B2.已知命题p :∀x ∈R ,cosx≤1,则()A.¬p :∃x 0∈R ,cosx 0≥1B.¬p :∀x ∈R ,cosx≥1C.¬p :∀x ∈R ,cosx >1D.¬p :∃x 0∈R ,cosx 0>1【答案】D 【解析】【分析】对于全称命题的否命题,首先要将全称量词“∀”改为特称量词“∃”,然后否定原命题的结论,据此可得答案.【详解】解:因为全称命题的否定是特称命题,所以命题p :∀x ∈R ,cosx≤1,¬p :∃x 0∈R ,cosx 0>1.故选D.【点睛】本题考查了命题中全称量词和存在量词,解题的关键是要知晓全称命题的否定形式是特称命题.3.设122a =,133b =,3log 2c =,则A.b a c <<B.a b c <<C.c b a <<D.c<a<b【答案】D 【解析】【详解】试题分析:由已知1221a =>,1331b =>,且616228a ⎛⎫== ⎪⎝⎭,616339b ⎛⎫== ⎪⎝⎭,1b a ∴>>,而3log 2c =<1,所以c<a<b考点:指数的幂运算.4.已知3sin , (,)52πα=α∈π,则πcos()3α+=()A.410- B.410+ C.410+-D.310+【答案】C 【解析】【分析】由两角和的余弦公式展开即可.【详解】 3sin ,(,)52πααπ=∈,4cos 5α∴=-,cos()cos cos sin sin333ππ∴+=-πααα4134525210+=-⨯-⨯=-故选:C5.已知命题()2000:R,110p x x a x ∃∈+-+<,若命题p 是假命题,则a 的取值范围为()A.1≤a ≤3B.-1<a <3C.-1≤a ≤3D.0≤a ≤2【答案】C 【解析】【分析】先写出命题p 的否定,然后结合一元二次不等式恒成立列不等式,从而求得a 的取值范围.【详解】命题p 是假命题,命题p 的否定是:()2R,110x x a x ∀∈+-+≥,且为真命题,所以()()()214130a a a ∆=--=+-≤,解得13a -≤≤.故选:C 6.“04x k ππ=-+,k ∈Z ”是“函数()tan 4f x x π⎛⎫=+ ⎪⎝⎭的图象关于点()0,0x 对称”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据题意,求出函数()f x 的对称中心,即可判断.【详解】函数()tan 4f x x π⎛⎫=+⎪⎝⎭的图象关于点()0,0x 对称042k x ππ⇔+=,k ∈Z ,即042k x ππ=-+,k ∈Z ,故“02442k x k ππππ=-+=-+,k ∈Z ”是“函数()tan 4f x x π⎛⎫=+ ⎪⎝⎭的图象关于点()0,0x 对称”的充分不必要条件.故选:A7.如图,有一古塔,在A 点测得塔底位于北偏东60°方向上的点D 处,塔顶C 的仰角为30°,在A 的正东方向且距D 点60m 的B 点测得塔底位于北偏西45°方向上(A ,B ,D 在同一水平面),则塔的高度CD 约为() 2.4≈)A.38mB.44mC.40mD.48m【答案】D 【解析】【分析】转化为解三角形问题,利用正弦定理、直角三角形的性质进行求解.【详解】如图,根据题意,CD ⊥平面ABD ,30CAD ∠=︒,30BAD ∠=︒,45ABD ∠=︒,60BD =.在ABD △中,因为sin sin BD AD BAD ABD =∠∠,所以60sin 30sin 45AD=︒︒,所以AD =.在Rt ACD △中,3tan 30483CD AD =⋅︒==m .故A ,B ,C 错误.8.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.将函数()f x 的图象向右平移316π个单位长度,再将图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象,则()g x =()A.2sin 8x π⎛⎫- ⎪⎝⎭B.2sin 8x π⎛⎫+⎪⎝⎭C.2sin 48x π⎛⎫-⎪⎝⎭D.2sin 48x π⎛⎫+⎪⎝⎭【答案】A 【解析】【分析】由最值可求得A ,根据最小正周期可求得ω,由28f π⎛⎫= ⎪⎝⎭可求得ϕ,从而得到()f x 解析式;由三角函数平移和伸缩变换原则可得()g x .【详解】由图象可知:()()max min22f x f x A -==,最小正周期3488T πππ⎛⎫=-=⎪⎝⎭,22T πω∴==,()()2sin 2f x x ϕ∴=+,2sin 284f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,()242k k ππϕπ∴+=+∈Z ,解得:()24k k πϕπ=+∈Z ,又2πϕ<,4πϕ∴=,()2sin 24f x x π⎛⎫∴=+ ⎪⎝⎭;将()f x 图象向右平移316π个单位长度可得:332sin 22sin 216848f x x x ππππ⎛⎫⎛⎫⎛⎫-=-+=- ⎪ ⎪⎝⎭⎝⎭⎝⎭;将316f x π⎛⎫-⎪⎝⎭横坐标变为原来的2倍得:()2sin 8g x x π⎛⎫=- ⎪⎝⎭.9.已知()21sin 42f x x x π⎛⎫++ ⎝=⎪⎭,()f x '为()f x 的导函数,则()f x '的大致图象是()A. B.C. D.【答案】A 【解析】【分析】对函数()f x 求导,判断导函数的奇偶性,排除部分答案,接着将6x π=代入导函数即可解得答案.【详解】解:∵()2211sin cos 424f x x x x x π⎛⎫=++=+ ⎪⎝⎭,∴()1sin 2f x x x '=-,∴()()()11sin sin 22f x x x x x '-=---=-+∴()()f x f x ''-=-∴()1sin 2f x x x '=-是奇函数,其图象关于原点对称,故排除B ,D ,将6x π=代入()f x '得:106122f ππ⎛⎫'=-< ⎪⎝⎭,排除C .故选:A .10.已知定义在R 上的函数()f x 在(],3-∞上单调递增,且()3f x +为偶函数,则不等式()()12f x f x +>的解集为().A.51,3⎛⎫ ⎪⎝⎭B.()5,1,3⎛⎫-∞⋃+∞⎪⎝⎭C.()3,2-- D.()(),32,-∞--+∞ 【答案】B 【解析】【分析】根据已知条件,可得()f x 对称轴为3x =,且在[)3,+∞上单调递减.根据函数的对称性与单调性,可得只需223x x -<-即可,解出不等式即可.【详解】由题意可得,()f x 对称轴为3x =,且在[)3,+∞上单调递减.则由()()12f x f x +>,可得出1323x x +-<-,即()()22223x x -<-,即()()23853510x x x x -+=-->,解得1x <或53x >.所以,不等式()()12f x f x +>的解集为()5,1,3⎛⎫-∞⋃+∞ ⎪⎝⎭.故选:B.11.已知a 是()323652f x x x x =--+-的一个零点,b 是()e 1xg x x =++的一个零点,132log 5c =,则()A.a c b <<B.a b c<<C.b<c<a D.a c b <<或c b a<<【答案】A 【解析】【分析】利用导数研究函数()f x 的单调性得()f x 仅有1个零点,且3a <-,结合函数()g x 的单调性与零点的存在性定理得21b -<<-,根据对数运算得3log 25c =-,进而32c -<<-,再根据范围得大小.【详解】解:因为()323652f x x x x =--+-,()()()2336321f x x x x x '=--+=-+-,所以()f x 在(),2-∞-上是减函数,在()2,1-上是增函数,在()1,+∞上是减函数,因为()3102f =-<,所以()f x 仅有1个零点,因为()19302f -=-<,所以3a <-,因为()e 1xg x x =++是增函数,且()110e g -=>,()21210eg -=-<,所以21b -<<-,因为1332log 5log 25c ==-,32log 253<<,所以32c -<<-,所以a c b <<.故选:A .12.已知函数()ln f x x x =-,若()59f x m ≥-恒成立,则实数m 的取值范围为()A.1,e∞⎛⎤- ⎥⎝⎦B.(],1-∞ C.(],2-∞ D.(],e ∞-【答案】C 【解析】【分析】令()0t t =>,问题转化为2e 2ln 59t t t t m --≥-,构造函数()2e 2ln tg t t t t =--,通过导数,对()g t 的单调性进行讨论,进而可以得到()min g t ,进而可求答案.()0t t =>,则2x t =,问题转化为2e 2ln 59t t t t m --≥-恒成立.令()2e 2ln tg t t t t =--,则()()()()()222e 122e 10tt t t g t t t t t t+-=+--'=>,因为0t >,所以20t t+>.令()()2e 10t h t t t =->,则()()22e 0t h t t t =+>',所以()h t 在()0,∞+上单调递增,又()1e 10h =->,11024h ⎛⎫=-<⎪⎝⎭,所以存在01,12t ⎛⎫∈⎪⎝⎭,使得()00h t =,即020e t t 10-=,所以当()00,t t ∈时,()0h t <,即()0g t '<,当()0,t t ∞∈+时,()0h t >,即()0g t '>,所以()g t 在()00,t 上单调递减,在()0,t +∞上单调递增,所以()()020000min e 2ln tg t g t t t t ==--,又020e 10t t -=,所以020e 1tt =,0201et t =,所以()0000min 11ln 11e t g t t t t =--=-+=,所以159m ≥-,解得2m ≤.故选:C二、填空题(共4题,共20分)13.已知幂函数()()213m f x m x-=-在()0,∞+内是单调递减函数,则实数m =______.【答案】2-【解析】【分析】由已知,函数()f x 为幂函数且在()0,∞+内是单调递减,可进行列式,即231m -=且10m -<即可完成求解.【详解】由题意得,函数()f x 为幂函数且在()0,∞+内是单调递减,所以23110m m ⎧-=⎨-<⎩,解得2m =-.故答案为:2-.14.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且2,A C a ==,若228c +=,则ABC ∆的面积为____________.【答案】【解析】【详解】试题分析:由正弦定理,知sin sin a A c C =,即sin 22cos sin 2cos sin sin C C C C C C ===,所以3cos 2C =,所以30C =︒,所以60,90A B =︒=︒.因为a =,所以2b c =228c +=,所以2c =,所以12S ac ==.考点:正弦定理.【方法点睛】解三角形问题,多为边和角的求值问题,其基本步骤是:(1)确定三角形中的已知和所求,(2)根据条件和所求合理选择正弦定理与余弦定理,使边化角或角化边;(3)求解.15.命题[]:1,1p x ∃∈-,使得2x a <成立;命题():0,q x ∀∈+∞,不等式21ax x <+恒成立.若命题p q ∧为假,则实数a 的取值范围为___________.【答案】[)1,2,2⎛⎤-∞+∞ ⎥⎝⎦【解析】【分析】首先求出命题,p q 为真时a 的取值范围,再根据复合命题的真假即得.【详解】命题p :[1,1]x ∃∈-,使得2x a <成立,当[1,1]x ∈-时,1,222x⎡⎤∈⎢⎥⎣⎦,若命题p 为真,则12a >,命题:(0,)q x ∀∈+∞,不等式21ax x <+恒成立,则211x a x x x+<=+,当0x >时,12x x+≥,当且仅当1x =时等号成立,若命题q 为真,则2a <;当命题p q ∧为真命题时,有122a a ⎧>⎪⎨⎪<⎩,即122a <<,所以命题p q ∧为假时,12a ≤或2a ≥,所以实数a 的取值范围为[)1,2,2⎛⎤-∞+∞ ⎥⎝⎦.故答案为:[)1,2,2⎛⎤-∞+∞ ⎥⎝⎦.16.已知sin (20)26()|ln 1(0)x x f x x x πππ⎧⎛⎫+-≤≤⎪ ⎪=⎝⎭⎨⎪-⎩,若方程()(),0f x m m =>恰有4个不同的实数解a ,b ,c ,d ,且a b c d <<<,则cda b=+___________.【答案】2320e -【解析】【分析】画出函数的图象,利用数形结合方法判定易知112m <<,a ,b 关于直线103x =-对称,结合0c e d <<<可知|ln 1||ln 1|c d -=-,进而求得.【详解】如图,易知112m <<,a ,b 关于直线103x =-对称,所以203a b +=-,又0c e d <<<且|ln 1||ln 1|c d -=-,所以1ln ln 1c d -=-,所以ln ln ln 2cd c d =+=,所以2cd e =,从而2320cd e a b =-+.故答案为:2320e -三、解答题(共6题,共70分)17.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足πsin()cos 6⎛⎫+=- ⎪⎝⎭a A Cb A .(1)求角A ;(2)若3,5a b c =+=,求ABC 的面积.【答案】(1)π3A =(2)433【解析】【分析】(1)由条件和正弦定理可得πsin sin sin cos 6A B B A ⎛⎫=- ⎪⎝⎭,然后结合三角函数的知识可得答案;(2)由条件结合余弦定理求出bc 的值即可.【小问1详解】由正弦定理得πsin sin sin cos 6A B B A ⎛⎫=- ⎪⎝⎭,因为0πB <<,所以sin 0B >,所以πsin cos 6A A ⎛⎫=-⎪⎝⎭,化简得1sin sin 22A A A =+,所以πcos 06A ⎛⎫+= ⎪⎝⎭,因为0πA <<,所以π3A =.【小问2详解】因为π3A =,由余弦定理得2222()3a b c bc b c bc =+-=+-,又3,5a b c =+=,所以2229()3b c bc b c bc =+-=+-,即9253=-bc ,解得163bc =,则ABC 的面积1116sin 22323S bc A ==⨯⨯=.18.已知函数()2cos 2cos 1f x x x x =-+.(1)求函数()f x 的最小正周期及单调递增区间;(2)若函数()()g x f x k =-在区间π0,2⎡⎤⎢⎥⎣⎦内有两个不同的零点,求实数k 的取值范围.【答案】(1)πT =,增区间为πππ,π63k k ⎡⎤-++⎢⎥⎣⎦,Z k ∈;(2)12k ≤<.【解析】【分析】(1)用二倍角公式以及辅助角公式化简()π2sin 26f x x ⎛⎫=- ⎪⎝⎭,然后根据正弦函数的性质即得;(2)由题可得()f x k =在区间π0,2⎡⎤⎢⎥⎣⎦内有两个不同的根,然后利用数形结合即得.【小问1详解】由()2cos 2cos 1f x x x x =-+得,()π2cos 22sin 26f x x x x ⎛⎫=-=- ⎪⎭,故最小正周期为2ππ2T ==,由πππ2π22π262k x k -+≤-≤+,解得ππππ63k x k -+≤≤+,k ∈Z ,故()f x 的单调递增区间为πππ,π63k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z ;【小问2详解】令()()0g x f x k =-=,则()f x k =,故问题转化为()f x k =在区间π0,2⎡⎤⎢⎥⎣⎦内有两个不同的根,令π26t x =-,且π5π,66t ⎡⎤∈-⎢⎥⎣⎦,则问题等价于2sin t k =在π5π,66t ⎡⎤∈-⎢⎥⎣⎦有两个根,画出函数2sin y t =的图象,由2sin y t =的图象可知:当12k ≤<时,有两个根,故实数k 的取值范围为12k ≤<.19.在平面直角坐标系xOy 中,曲线C 的参数方程为2cos sin x y αα=⎧⎨=⎩(α为参数),以坐标原点O 为极点,x轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程是cos sin 90ρθθ++=.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)若P 是曲线C 上的动点,求点P 到直线l 距离的最大值,并求此时点P 的坐标.【答案】(1)2214x y +=,90x ++=(232⎛⎫ ⎪ ⎪⎝⎭【解析】【分析】(1)结合22cos sin 1αα+=消元即可得出曲线C 的普通方程;由cos ,sin x y ρθρθ==即可得出直线l 的直角坐标方程;(2)设点()2cos ,sin P αα,结合点线距离公式,讨论最大值即可【小问1详解】由2cos sin x y αα=⎧⎨=⎩(α为参数),得2214x y +=,故曲线C 的普通方程为2214x y +=.由cos sin 90ρθθ++=,得90x ++=,故直线l 的直角坐标方程为90x ++=.【小问2详解】设点()2cos ,sin P αα,则点P 到直线l 的距离π4sin 96d α⎛⎫++ ⎪==故当πsin 16α⎛⎫+= ⎪⎝⎭时,点P 到直线l .此时,点P 的坐标为⎛ ⎝⎭.20.(1)设α,β为锐角,且5sin 5α=,310cos 10β=,求αβ+的值;(2)已知πsin 410α⎛⎫+= ⎪⎝⎭,π,π2α⎛⎫∈ ⎪⎝⎭,求πsin 24α⎛⎫- ⎪⎝⎭的值.【答案】(1)π4;(2)17250-.【解析】【分析】(1)根据三角恒等式求出cos α和sin β,利用两角和的余弦公式求出()cos αβ+,结合范围即可得结果;(2)通过两角和的正弦公式以及三角恒等式求出sin α,cos α,然后利用二倍角公式求出sin 2α,cos 2α的值,最后由两角差的正弦可得结果.【详解】(1)∵α为锐角,5sin 5α=,且22sin cos 1αα+=,∴cos 5α=.∵β为锐角,310cos 10β=,且22sin cos 1ββ+=,∴sin 10β=,∴()253105102cos cos cos sin sin 5105102αβαβαβ+=-=⨯-⨯=,∵()0,παβ+∈,∴π4αβ+=.(2)因为πsin 410α⎛⎫+= ⎪⎝⎭,π,π2α⎛⎫∈ ⎪⎝⎭,所以ππ2sin cos cos sin 4410αα+=,即1sin cos 5αα+=.又π,π2α⎛⎫∈ ⎪⎝⎭,22sin cos 1αα+=,解得:4sin 5α=,3cos 5α=-,所以4324sin 22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭,2222347cos 2cos sin 5525ααα⎛⎫⎛⎫=-=--=- ⎪ ⎪⎝⎭⎝⎭,所以πππsin 2sin 2cos cos 2sin 444ααα⎛⎫-=- ⎪⎝⎭2427217225225250⎛⎫⎛⎫=-⨯--⨯=- ⎪ ⎪⎝⎭⎝⎭.21.已知函数()|26||36|f x x x =---.(1)求不等式()1f x >的解集;(2)若不等式()||f x k x ≤恒成立,求实数k 的取值范围【答案】(1)111,5⎛⎫ ⎪⎝⎭(2)[)1,+∞【解析】【分析】(1)分类讨论去绝对值后再求解不等式即可;(2)讨论0x =,当0x ≠时6623x k x ---≥,利用绝对值的三角不等式求解6623x x---的最大值即可;【小问1详解】(),22636512,23,3x x f x x x x x x x <⎧⎪=---=-+≤≤⎨⎪->⎩,当2x <时,1x >,即12x <<,当23x ≤≤时,5121x -+>,解得115x <,即1125x ≤<,当3x >时,1x ->,解得1x <-,此时无解,综上:不等式()1f x >的解集为111,5⎛⎫ ⎪⎝⎭;【小问2详解】0x =时上述不等式显然成立,当0x ≠时,上述不等式可化为()26362366x x f x x k xx x ---=---≥=,令()()666623231x x x f g x x xx ==---≤--+=,当且仅当02x <≤时等号成立,所以1k ≥,即实数k 的取值范围为[)1,+∞.22.已知函数()ln f x x ax =-.(1)求函数()f x 的单调区间;(2)当1x ≥时,函数()()()1ln 0k x x f x a x =++-⎡⎤⎣⎦≤恒成立,求实数a 取值范围.【答案】(1)答案见解析(2)1,2⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)求出函数()f x 的定义域,求得()1ax f x x='-,分0a ≤、0a >两种情况讨论,分析导数的符号变化,由此可得出函数()f x 的增区间和减区间;(2)由题意可知()2ln 10x x a x --≤对任意的1x ≥恒成立,令()()()2ln 11g x x x a x x =--≥,分0a ≤、102a <<、12a ≥三种情况讨论,利用导数分析函数()g x 在[)1,+∞上的单调性,验证()()10g x g ≥=能否恒成立,综合可得出实数a 的取值范围.【小问1详解】解:函数()f x 的定义域为()0,∞+,()11ax f x a x x-'=-=①当0a ≤时,则()0f x ¢>,所以()f x 在()0,∞+上单调递增;②当0a >时,则由()0f x ¢>知10x a <<,由()0f x '<知1x a>,所以()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减;综上,当0a ≤时,()f x 的单调递增区间为()0,∞+,当0a >时,()f x 的单调递增区间为10,a ⎛⎫ ⎪⎝⎭,单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭.【小问2详解】解:由题意知()0k x ≤恒成立,而()()()()201ln 0ln 10k x x f x a x x x a x ⇔++-⇔-⎡⎤⎣⎦-≤≤≤,由()()()2ln 11g x x x a x x =--≥,得()ln 12g x x ax '=+-,令()ln 12h x x ax =+-,则()1122ax h x a x x-'=-=.①若0a ≤,()0h x '>,则()g x '在[)1,+∞上单调递增,故()()1120g x g a ''-≥=≥,所以()g x 在[)1,+∞上单调递增,所以()()10g x g ≥=,从而()2ln 10x x a x --≥,不符合题意;②若102a <<,则112a >,当11,2x a ⎛⎫∈ ⎪⎝⎭时,()0h x '>,()g x '在11,2a ⎛⎫ ⎪⎝⎭上单调递增,从而()()1120g x g a ''>=->,所以()g x 在11,2a ⎡⎫⎪⎢⎣⎭在单调递增,所以()1102g g a ⎛⎫>= ⎪⎝⎭,不符合题意;③若12a ≥,则1012a<≤,()0h x '≤在[)1,+∞上恒成立,所以()g x '在[)1,+∞上单调递减,()()1120g x g a ≤=-'≤',从而()g x 在[)1,+∞上单调递减,所以()()10g x g ≤=,所以()2ln 10x x a x --≤恒成立.综上所述,a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.【点睛】关键点点睛:本题考查利用函数不等式恒成立求参数,本题涉及端点效应,一般的解题思路就是对参数的取值进行分类讨论,利用导数分析函数在定义域上的单调性,验证对应的不等式能否恒成,由此求解.第17页/共17页。

2025届吉林省长春市高三第一次调研测试数学试卷含解析

2025届吉林省长春市高三第一次调研测试数学试卷含解析

2025届吉林省长春市高三第一次调研测试数学试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知01a b <<<,则( )A .()()111bba a ->- B .()()211b ba a ->- C .()()11ab a b +>+ D .()()11a ba b ->-2.已知数列{}n a 的前n 项和为n S ,11a =,22a =且对于任意1n >,*n N ∈满足()1121n n n S S S +-+=+,则( ) A .47a =B .16240S =C .1019a =D .20381S =3.已知F 为抛物线2:8C y x =的焦点,点()1,A m 在C 上,若直线AF 与C 的另一个交点为B ,则AB =( )A .12B .10C .9D .84.已知111M dx x =+⎰,20cos N xdx π=⎰,由程序框图输出的S 为( )A .1B .0C .2πD .ln 25.下列函数中,在区间()0,∞+上为减函数的是( )A .1y x =+B .21y x =-C .12xy ⎛⎫= ⎪⎝⎭D .2log y x =6.已知函数()f x 的导函数为()f x ',记()()1f x f x '=,()()21f x f x '=,…,()()1n n f x f x +'=(n ∈N *). 若()sin f x x x =,则()()20192021f x f x += ( )A .2cos x -B .2sin x -C .2cos xD .2sin x7.设函数()()f x x R ∈满足()(),(2)()f x f x f x f x -=+=,则()y f x =的图像可能是A .B .C .D .8.若复数z 满足i 2i z -=,则z =( ) A .2B .3C .2D .59.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面 10.若点位于由曲线与围成的封闭区域内(包括边界),则的取值范围是( )A .B .C .D .11.已知点(2,0)M ,点P 在曲线24y x =上运动,点F 为抛物线的焦点,则2||||1PM PF -的最小值为( )A 3B .51)C .5D .412.已知集合2{|1}M x x ==.N 为自然数集,则下列表示不正确的是( ) A .1M ∈B .{1,1}M =-C .M ∅⊆D .M N ⊆二、填空题:本题共4小题,每小题5分,共20分。

高考数学(理)二轮周测卷(6)抛物线(含答案)

高考数学(理)二轮周测卷(6)抛物线(含答案)

衡水万卷周测(六)理科数学抛物线考试时间:120分钟姓名:__________班级:__________考号:__________题号 一 二 三 总分 得分一 、选择题(本大题共求的)1.若抛物线y 2=x 上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为 ( )A .B .C .D . 2.顶点在原点,对称轴为坐标轴的抛物线与直线2x y +=相切,则抛物线的方程是( )A.24x y =-B.24y x =-C.28x y =-或28y x =-D.22x y =-或22y x =-3.抛物线24x y = 上一点A 的纵坐标为4,则点A 到抛物线焦点的距离为( )A.2B.3C.4D.54.抛物线(>)的焦点为,已知点、为抛物线上的两个动点,且满足.过弦的中点作抛物线准线的垂线,垂足为,则的最大值为 ( ) A.B. 1C.D. 2 5.抛物线y =2ax 2(a ≠0)的焦点是( )A .(,0)B .(,0)或(-,0)C .(0,)D .(0,)或(0,-)6.抛物线的弦与过弦的断点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的断点的来两条切线的交点在其准线上,设抛物线22(0)y px x =>,弦AB 过焦点,ABQ ∆且其阿基米德三角形,则ABQ ∆的面积的最小值为( )A .22p B .2p C .22p D .24p7.已知抛物线)0(22>=p px y ,F 为其焦点,l 为其准线,过F 任作一条直线交抛物线于A .B 两点,A '.B '分别为A .B 在l 上的射影,M 为B A ''的中点,给出下列命题:①F B F A '⊥';②BM AM ⊥;③F A '∥BM ;④F A '与AM 的交点在y 轴上;⑤B A '与B A '交于原点.其中真命题的个数为( ) A.2个B.3个C.4个D.5个8.已知F 是抛物线2y x =的焦点,,A B 是该抛物线上的两点,3AF BF +=,则线段AB 的中点到y 轴的距离为( )A.34B.1C.54D.749.直线l 的方向向量为)3,4(=n 且过抛物线y x 42=的焦点,则直线l 与抛物线围成的封闭图形面积为A .885B .24125C . 12125D .2438510.过抛物线y 2=2px (p>0)的焦点F 且倾斜角为60o的直线l 与抛物线在第一、四象限分别交于A 、B 两点,则AFBF=( )A .5B .4C .3D .211.在平面直角坐标系中,抛物线的焦点为,是抛物线上的点,若的外接圆与抛物线的准线相切,且该圆面积为,则 ( ) A . B . C . D . 12.如图,已知点(0,3)S ,,SA SB 与圆22:0(0)C x y my m +-=>和抛物线22(0)x py p =->都相切,切点分别为,M N 和,A B ,//SA ON ,AB MN λ=,则实数λ的值为( )A .4B .23C .3D .33 二 、填空题(本大题共4小题,每小题5分,共20分)13.已知抛物线22(0)y px p =>的焦点为F ,△ABC 的顶点都在抛物线上,且满足FC FB FA -=+,则=++CABC AB k k k 111_______. 14.(陕西高考真题)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为 .15.已知抛物线1C :)0(212>-=p x py 的焦点与双曲线2C :2213x y -=的左焦点的连线交1C 于第三象限的点M 。

安徽省滁州市定远县第二中学2022届高三下学期高考模拟检测理科数学试题(含答案解析)

安徽省滁州市定远县第二中学2022届高三下学期高考模拟检测理科数学试题(含答案解析)

药物浓度,D 正确.
故选:D.
5.B
【分析】根据三视图画出直观图,利用三棱锥的体积公式计算.
【详解】根据三视图画出直观图如图所示:该几何体为三棱锥 P ABC ,
其中 P 到底面 ABC 的距离为 PD 3 ,底面三角形 ABC 的面积为 2 4 4 , 2
∴体积为V 1 4 4 16 ,
试卷第 4页,共 5页
10
10
10
2
10
参考数据: xi 220 , yi 720 , xi x 272 , xi x yi y 429
i 1
i 1
i 1
i 1
n
参考公式: b i1
xi x
n
yi y
2
, $a y $bx
xi x
i 1
(1)已知这些品牌食品的所含热量的百分比 xi 与美食家以百分制给出的对此种食品口味
的评价分数 yi 具有相关关系.试求出回归方程(最后结果精确到 0.1);
(2)某人只能接受食品所含热量的百分比为 20 及以下的食品.现在他想从这些食品中随
机选取两种购买,求他所选取的两种食品至少有一种是美食家以百分制给出的对此种食
品口味的评价分数为 75 分以上的概率.
20.已知抛物线
C
:
y2
2 px
点),且 AM MN .求证:直线 l 过定点.
21.已知函数
f
x
ex
x
a
a
1
R

(1)若函数 f x 的图象在点 P 0, f 0 处的切线 l 与直线 3x-y-6=0 平行,求切线 l 的
方程;
(2)若函数
g
x
ln x x

河南省豫南名校2022-2023学年高三上学期9月质量检测试题数学理科试卷

河南省豫南名校2022-2023学年高三上学期9月质量检测试题数学理科试卷
3
(2) 2 3 + 6
【18 题答案】
【答案】(1)0, 2 ;
(2){m∣m 11}.
【19 题答案】
【答案】(1)
f
(x)
=
2sin
2x
+
3
(2) a − 2 3 【20 题答案】
【答案】(1) f ( x) (0, 2) 上单调递增,在 (2, +) 上单调递减;
(2)
0,
1 2
(1)若 x = 1 是 f ( x) 的极值点,求 f ( x) 的单调区间;
(2)若关于 x 的方程 f (x) =1+ ln a 恰有一个解,求 a 的取值范围.
22.已知函数 f ( x) = sin x cos 2x , g ( x) = a + cos x sin 2x .
(1)求 g ( x) 在 (0, π) 上的极小值点;
0
称#所以)'#/3(/(''!%#(=0'%0! /'!
!-!+!设经过# 天后#%进步%的值是%退步&的值的!---倍#则!---='!%-!#(#'!!###即'-!! !# ((#'!---#所以
#')7>!-!!#(!---'))>>!! --! !-# (-')>$$# ')>$$%)>#*-!!$:/!*!:!
的外部#所以%& 在%"$' 的外部&是%%"$' 为钝角三角形&的充要条件!
"!,!设点 &'#-#(-(#因为)'#(' !$#$%(#%.#所以)*'#('##%(#由##-%('!##-&-#得#-'%$#又

2023年江西省高考理科数学真题及参考答案精选全文

2023年江西省高考理科数学真题及参考答案精选全文

2023年江西省高考理科数学真题及参考答案一、选择题1.设5212ii iz +++=,则=z ()A .i 21-B .i21+C .i -2D .i+22.设集合R U =,集合{}1<=x x M ,{}21<<-=x x N ,则{}=≥2x x ()A .()N M C U ⋃B .MC N U ⋃C .()N M C U ⋂D .NC M U ⋃3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A .24B .26C .28D .304.已知()1-=ax xe xe xf 是偶函数,则=a ()A .2-B .1-C .1D .25.设O 为平面坐标系的坐标原点,在区域(){}41,22≤+≤y x y x 内随机取一点,记该点为A ,则直线OA 的倾斜角不大于4π的概率为()A .81B .61C .41D .216.已知函数()()ϕω+=x x f sin 在区间⎪⎭⎫⎝⎛326ππ,单调递增,直线6π=x 和32π=x 为函数()x f y =的图象的两条对称轴,则=⎪⎭⎫⎝⎛-125πf ()A .23-B .21-C .21D .237.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A .30种B .60种C .120种D .240种8.已知圆锥PO 的底面半径为3,O 为底面圆心,PB P A ,为圆锥的母线,︒=∠120AOB ,若P AB ∆的面积等于439,则该圆锥的体积为()A .πB .π6C .π3D .π639.已知ABC ∆为等腰直角三角形,AB 为斜边,ABD ∆为等边三角形,若二面角D AB C --为150°,则直线CD 与平面ABC 所成角的正切值为()A .51B .52C .53D .5210.已知等差数列{}n a 的公差为32π,集合{}*∈=N n a S n cos ,若{}b a S ,=,则=ab ()A .1-B .21-C .0D .2111.已知B A ,是双曲线1922=-y x 上两点,则可以作为B A ,中点的是()A .()1,1B .()2,1-C .()3,1D .()4,1-12.已知圆122=+y x O :,2=OP ,过点P 作直线1l 与圆O 相切于点A ,作直线2l 交圆O 于C B ,两点,BC 中点为D ,则PD P A ⋅的最大值为()A .221+B .2221+C .21+D .22+二、填空题13.已知点()51,A 在抛物线px y C 22=:上,则A 到C 的准线的距离为.14.若y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+-≤-739213y x y x y x ,则y x z -=2的最大值为.15.已知{}n a 为等比数列,63542a a a a a =,8109-=a a ,则=7a .16.已知()()xxa a x f ++=1,()1,0∈a ,若()x f 在()∞+,0为增函数,则实数a 的取值范围为.三、解答题(一)必做题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i i y x ,()10,2,1 =i ,试验结果如下试验序号i 12345678910伸缩率i x 545533551522575544541568596548伸缩率iy 536527543530560533522550576536记i i i y x z -=()10,2,1 =i ,记1021,z z z 的样本平均数为z ,样本方差为2s ,(1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果1022s z ≥,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).18.在ABC ∆中,︒=∠120BAC ,2=AB ,1=AC .(1)求ABC ∠sin ;(2)若D 为BC 上一点,且︒=∠90BAD ,求ADC ∆的面积.19.如图,在三棱锥ABC P -中,BC AB ⊥,2=AB ,22=BC ,6==PC PB ,BC AP BP ,,的中点分别为O E D ,,,DO AD 5=,点F 在AC 上,AO BF ⊥.(1)证明:EF ∥平面ADO ;(2)证明:平面ADO ⊥平面BEF ;(3)求二面角C AO D --的正弦值.20.已知椭圆C :()012222>>=+b a bx a y 的离心率为35,点()02,-A 在C 上.(1)求C 的方程;(2)过点()3,2-的直线交曲线C 于Q P ,两点,直线AQ AP ,交y 轴于N M ,两点,求证:线段MN 中点为定点.21.已知函数()()1ln 1+⎪⎭⎫⎝⎛+=x a x x f .(1)当1-=a 时,求曲线()x f 在()()1,1f 的切线方程;(2)是否存在实数b a ,使得曲线⎪⎭⎫⎝⎛=x f y 1关于直线b x =对称,若存在,求出b a ,的值;如果不存在,请说明理由;(3)若()x f 在()∞+,0存在极值,求a 的取值范围.(二)选做题【选修4-4】22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为⎪⎭⎫ ⎝⎛≤≤=24sin 2πθπθρ,曲线2C :⎩⎨⎧==ααsin 2cos 2y x (α为参数,παπ<<2).(1)写出1C 的直角坐标方程;(2)若直线m x y +=既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】23.已知()22-+=x x x f .(1)求不等式()x x f -≤6的解集;(2)在直角坐标系xOy 中,求不等式组()⎩⎨⎧≤-+≤06y x yx f 所确定的平面区域的面积.参考答案一、选择题123456789101112BADDCDCBCBDA1.解:()i i ii i i i i i i z 21112211212252-=--=+=+-+=+++=,则i z 21+=2.解:由题意可得{}2<=⋃x x N M ,则()=⋃N M C U {}2≥x x .3.解:如图所示,在长方体1111D C B A ABCD -中,2==BC AB ,31=AA ,点K J I H ,,,为所在棱上靠近点1111,,,A D C B 的三等分点,N M L O ,,,为所在棱的中点,则三视图所对应的几何体为长方体1111D C B A ABCD -去掉长方体11LMHB ONIC -之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方体.4.解:∵()1-=ax xe xe xf 是偶函数,则()()=--x f x f ()()[]01111=--=-------axx a x ax x axx e e e x e e x e xe ,又∵x 不恒为0,可得()01=--xa xee ,则()x a x 1-=,∴2=a .5.解:∵区域(){}41,22≤+≤y x y x 表示以()00,O 为圆心,外圆半径2=R ,内圆半径1=r 的圆环,则直线OA 的倾斜角不大于4π的部分如阴影所示,在第一象限对应的圆心角4π=∠MON ,结合对称性可得所求概率为41242=⨯=ππp .6.解:∵()()ϕω+=x x f sin 在区间⎪⎭⎫⎝⎛326ππ,单调递增,∴26322πππ=-=T ,且0>ω,则π=T ,22==Tπω.当6π=x 时,()x f 取得最小值,则Z k k ∈-=+⋅,2262ππϕπ,则Z k k ∈-=,652ππϕ,不妨取0=k 则()⎪⎭⎫ ⎝⎛-=652sin πx x f ,则2335sin 125=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-ππf .7.解:有1本相同的读物,共有16C 种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有25A 种,根据分布乘法公式则共有⋅16C 12025=A 种.8.解:在AOB ∆中,︒=∠120AOB ,而3==OB OA ,取AC 中点C ,连接PC OC ,,有AB OC ⊥,AB PC ⊥,如图,︒=∠30ABO ,23=OC ,32==BC AB ,由P AB ∆的面积为439得439321=⨯⨯PC ,解得233=PC ,于是6232332222=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-=OC PC PO ,∴圆锥的体积()πππ663313122=⨯⨯=⨯⨯=PO OA V .9.解:取AB 的中点E ,连接DE CE ,,∵ABC ∆为等腰直角三角形,AB 为斜边,则有AB CE ⊥,又ABD ∆为等边三角形,则AB DE ⊥,从而CED ∠为二面角DAB C --的平面角,即︒=∠150CED ,显然E DE CE =⋂,⊂DE CE ,平面CDE ,又⊂AB 平面ABC ,因此平面CDE ⊥平面ABC ,显然平面CDE ∩平面CE ABC =,直线⊂CD 平面CDE ,则直线CD 在平面ABC 内的射影为直线CE ,从而DCE ∠为直线CD 与平面ABC 所成的角,令2=AB ,则1=CE ,3=DE,在CDE ∆中,由余弦定理得:72331231cos 222=⎪⎪⎭⎫⎝⎛-⨯⨯⨯-+=∠⋅-+=CED DE CE DE CE CD ,由正弦定理得CEDCDDCE DE ∠=∠sin sin ,即7237150sin 3sin =︒=∠DCE ,显然DCE ∠是锐角,7257231sin 1cos 22=⎪⎪⎭⎫ ⎝⎛-=∠-=∠DCE DCE ,∴直线CD 与平面ABC 所成角的正切值为53.10.解:依题意,等差数列{}n a 中,()⎪⎭⎫⎝⎛-+=⋅-+=323232111πππa n n a a n ,显然函数==n a y cos ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+3232cos 1ππa n 的周期为3,而*∈N n ,即n a cos 最多有3个不同取值,又{}{}b a Nn a n ,cos =∈*,而在321cos ,cos ,cos a a a 中,321cos cos cos a a a ≠=或321cos cos cos a a a =≠,于是有⎪⎭⎫ ⎝⎛+=32cos cos πθθ,即有Z k k ∈=⎪⎭⎫ ⎝⎛++,232ππθθ,解得Z k k ∈-=,3ππθ213cos cos cos 3cos 343cos 3cos 2-=-=⎪⎭⎫ ⎝⎛--=⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=ππππππππππk k k k k ab 11.解:由对称性只需考虑()1,1,()2,1,()3,1,()4,1即可,注意到()3,1在渐近线上,()1,1,()2,1在渐近线一侧,()4,1在渐近线的另一侧.下证明()4,1点可以作为AB 的中点.设直线AB 的斜率为k ,显然k 存在.设()41+-=x k y l AB :,直线与双曲线联立()⎪⎩⎪⎨⎧=-+-=194122y x x k y ,整理得()()()094429222=------k x k k xk ,只需满足⎩⎨⎧>∆=+0221x x ,∴()29422=--k k k ,解得49=k ,此时满足0>∆.12.解:如图所示,1=OA ,2=OP ,则由题意可知:︒=∠45APO ,由勾股定理可得122=-=OA OP P A ,当点D A ,位于直线PO 异侧时,设40παα≤≤=∠,OPC ,则:⎪⎭⎫ ⎝⎛+⨯=⎪⎭⎫ ⎝⎛+⋅=⋅4cos cos 214cos πααπαPD P A αααααααα2sin 2122cos 1cos sin cos sin 22cos 22cos 22-+=-=⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--=42sin 2221πα∵40πα≤≤,则4424ππαπ≤-≤-,∴当442ππα-=-时,PD P A ⋅有最大值1.当点D A ,位于直线PO 同侧时,设40παα≤≤=∠,OPC ,则:⎪⎭⎫ ⎝⎛-⨯=⎪⎭⎫ ⎝⎛-⋅=⋅4cos cos 214cos πααπαPD P A αααααααα2sin 2122cos 1cos sin cos sin 22cos 22cos 22++=+=⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛++=42sin 2221πα∵40πα≤≤,则2424ππαπ≤+≤,∴当242ππα=+时,PD P A ⋅有最大值为221+.二、填空题13.49;14.8;15.2-;16.⎪⎪⎭⎫⎢⎣⎡-1,21513.解:由题意可得:()1252⨯=p ,则52=p ,∴抛物线的方程为x y 52=,准线方程为45-=x ,点A 到C 的准线的距离为49451=⎪⎭⎫ ⎝⎛--.14.作出可行域如下图所示,∵y x z -=2,∴z x y -=2,联立有⎩⎨⎧=+-=-9213y x y x ,解得⎩⎨⎧==25y x 设()2,5A ,显然平移直线x y 2=使其经过点A 此时截距z -最小,则z 最大,代入得8=z .15.解:设{}n a 的公比为()0≠q q ,则q a q a a a a a a 5263542⋅==,显然0≠n a ,则24q a =,即231q q a =,则11=q a ,∵8109-=a a ,则89181-=⋅q a q a ,则()()3351528-=-==q q,则23-=q ,则25517-==⋅=q q q a a .16.⎪⎪⎭⎫⎢⎣⎡-1,215解析:()()()a a a a x f xx+++='1ln 1ln ,由()x f 在()∞+,0为增函数可知()∞+∈,0x 时,()0≥'x f 恒成立,只需()0min ≥'x f ,而()()()01ln 1ln 22>+++=''a a a a x f xx,∴()()()01ln ln 0≥++='>'a a f x f ,又∵()1,0∈a ,∴⎪⎪⎭⎫⎢⎣⎡-∈1,215a .三、解答题(一)必做题17.解:(1)∵i i i y x z -=()10,2,1 =i ,∴9536545111=-=-=y x z ;62=z ;83=z ;84-=z ;155=z ;116=z ;197=z ;188=z ;209=z ;1210=z .()()[]1112201819111588691011011021=++++++-+++⨯=++=z z z z ∵()∑=-=1012101i i z z s ,将各对应值代入计算可得612=s (2)由(1)知:11=z ,612=s,∴5122106121061210222=⨯==s ,121112==z ,∴1022s z ≥∴甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高18.解:(1)根据题意,由余弦定理可得:72112212cos 222222=⎪⎭⎫ ⎝⎛-⨯⨯⨯-+=∠⋅-+=BAC AC AB AC AB BC ∴7=BC 由正弦定理ABC AC A BC ∠=∠sin sin ,即ABC∠=sin 1237,解得1421sin =∠ABC .(2)由三角形面积公式可得430sin 2190sin 21=︒⨯⨯⨯︒⨯⨯⨯=∆∆AD AC AD AB S S ACDABD ,则103120sin 12215151=⎪⎭⎫⎝⎛︒⨯⨯⨯⨯==∆∆ABC ACD S S .19.解:(1)连接OF OE ,,设tAC AF =,则()BC t BA t AF BA BF +-=+=1,BC BA AO 21+-=,AO BF ⊥,则()[]()()0414********=+-=+-=⎪⎭⎫⎝⎛+-⋅+-=⋅t t BC t BA t BC BA BC t BA t AO BF 解得21=t ,则F 为AC 的中点,由F O E D ,,,分别为AC BC P A PB ,,,的中点,于是AB OF AB DE AB DE 2121∥,,∥=,即OF DE OF DE =,∥,则四边形ODEF 为平行四边形,DO EF DO EF =,∥,又⊄EF 平面ADO ,⊂DO 平面ADO ,∴EF ∥平面ADO .(2)由(1)可知EF ∥OD ,则266==DO AO ,,得2305==DO AD ,因此215222==+AD AO OD ,则AO OD ⊥,有AO EF ⊥,又BF AO ⊥,F EF BF =⋂,⊂EF BF ,平面BEF ,则有AO ⊥平面BEF ,又⊂AO 平面ADO ,∴平面ADO ⊥平面BEF .(3)过点O 作BF OH ∥交AC 于点H ,设G BE AD =⋂,由BF AO ⊥得AO HO ⊥,且AH FH 31=,又由(2)知,AO OD ⊥,则DOH ∠为二面角C AO D --平面角,∵E D ,分别为P A PB ,的中点,因此G 为P AB ∆的重心,即有,31,31BE GE AD DG ==又AH FH 31=,即有GF DH 23=,622642622215234cos 2⨯⨯-+=⨯⨯-+=∠P A ABD ,解得14=P A ,同理得26=BE ,于是3222==+BF EF BE ,即有EF BE ⊥,则35262631222=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⨯=GF ,从而315=GF ,21531523=⨯=DH ,在DOH ∆中,215,262321====DH OD BF OH ,于是22221sin ,22232624154346cos 2=⎪⎪⎭⎫ ⎝⎛--=∠-=⨯⨯-+=∠DOH DOH .∴二面角C AO D --的正弦值为22.20.解:(1)由题意可得⎪⎪⎪⎩⎪⎪⎪⎨⎧==+==352222a c e c b a b ,解得⎪⎩⎪⎨⎧===523c b a ,∴椭圆的方程为14922=+x y。

第一章 有理数周周测7(全章)

第一章 有理数周周测7(全章)

第一章 有理数周周测7一、选择题(每小题3分,共30分)1. 把an a a a a 个⋅⋅记作( ) A. Na B. n+a C. a n D. n a2. (-1)2017的值是( )A. 1B. -1C. 2017D. -20173. 化简-(-1)100的结果是( )A. -100B. 100C. -1D. 14. 计算|-1|+(-1)2的结果是( )A. -2B. -1C. 0D. 25. 由四舍五入法得到的近似数8.8×102,下不说法中正确的是( )A. 精确到十分位B. 精确到个位C. 精确到百位D. 精确到千位6. 下列算式正确的是( )A.34)32(2=- B. 23=2×3=6 C. -32=-3×(-3)=9 D. -23=-87. 小刚学习了有理数运算法则后,编了一个计算程序,当他编入任意一个有理数时,显示屏上出现的结果总等于所输入的有理数的平方与1的和. 当他第一次输入-2,然后又将所得的结果再次输入后,显示屏上出现的结果应是( )A. -8B. 5C. -24D. 268. 下列各组数中:①-22与(-2)2;②(-3)2与-33;③-(-32)与-32;④02016与02017;⑤(-1)2017与-(-1)2. 其中结果相等的数据共有( )A. 1对B. 2对C. 3对D. 4对9. 一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次后剩下的绳子的长度为( )A. )21(2米 B. )21(5米 C. )21(6米 D. )21(12米 10. 若0<x<1,则x ,x 12,x 2从小到大的顺序是( ) A.x 1<x 2<x B. x 2<x<x 1 C.x 1<x<x 2 D. x<x 2<x1 二、填空题(每小题3分,共18分)11. 地球上的海洋面积为36100000千米2,用科学记数法表示为 千米2.12. 已知(a -2)2+|b+3|=0,则b a 的值是 .13. 计算(-3)4÷(-3)2的结果是 .14. 如图,是一个有理数运算程序的流程图,请根据这个程序回答问题. 当输入的x 为4时,最后输出的结果y 是 .15. 设n 为正整数,则21)1()1(+-+-n n 的值是 . 16. 一组按规律排列的式子:a 2,25a -,310a ,417a -,526a ,…,其中第7个式子是 ,第20个式子是 (用含a 、n 的式子表示,n 为正整数).三、解答题(共8题,共72分)17.(8分)计算:(-10)2-5×(-3×2)2+22×10.18.(8分)计算:-32-[-5-0.2÷54×(-2)2]19.(8分)已知a=-3,b=2,c=-1,求下列代数式的值.(1)a 2+b 2+c 2: (2)(a+b+c)2.20.(8分)x 与y 互为相反数,m 与n 互为例数,|a |=1,求a 2-(x+y)2017+(-mn)2014的值.21.(8分)已知a 2=4,|b |=3.(1)已知ab>0,求a+b 的值;(2)若|a -b |=b -a ,求ab 的值.22.(10分)阅读题:根据乘方的意义,可得:2²×2³=(2×2)(2×2×2)=25 请你试一试,完成以下题(1)53×52=(5×5×5)×(5×5)=5( );(2)(3)归纳、概括:()a a a ()()m n m n m n a a a a a a a a a a a a a +=⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅=个个个(4)如果4m x =, 5n x =,运用以上结论计算:m n x += .(说明本题中m ,n 为正整数)23.(10分)记(1)2M =-,(2)(2)(2)M =-⨯-,(3)(2)(2)(2)M =-⨯-⨯-,()2(2)(2)(2)(2)n n M -=-⨯-⨯-⨯⋅⋅⋅⨯-个(1)填空:(5)M = ,分析(50)M 是一个 数(填“正”或“负”);(2)计算:(6)(7)M M +;(3)当()0a M <时,直接写出(a)(a 1)20161008M M ++的值.24.(12分)【阅读材料】如何计算 234991001555555++++⋅⋅⋅++的值?分析观察发现,上式从第二项起,每一项都是它前面一项的5倍,如果将和式各项都乘以5,所得的新和式中除个别项外,其余与原和式中的项相同,于是两式相减易于计算.解:设234991001555555S =++++⋅⋅⋅++①,所以2341001015555555S =++++⋅⋅⋅++②;②-①得101451S =-,∴原式=1011(51)4S =-【学以致用】这是一个很著名的故事,阿基米德与国王下棋,国王输了,国王问阿基米德要什么奖赏? 阿基米德对国王说:“我只要棋盘上第一个格放一一粒米,第二格上放二粒,第三格放四粒,第四格放十六粒…按这个方法放满整个棋盘就行.”国王以为要不了多少粮食,就随口答应了,结果国王输了.(1) 我们知道,国际象棋共有64个格子,则在底64个格子中应该放多少米?(用幂表示)(2) 请探究第①中的数的末位数字是多少? (简要写出探究过程)(3) 你知道国王输给了阿基米德多少粒米吗? 用幂表示 .。

陕西省咸阳市武功县普集高级中学2022-2023学年高三上学期9月阶段性检测理科数学试题

陕西省咸阳市武功县普集高级中学2022-2023学年高三上学期9月阶段性检测理科数学试题

普集高中2022-2023学年度第一学期高三年级9月份数学(理科)阶段性检测试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题的四个选项中,只有一个选项是符合题目要求的)1.设全集{1,A =2,3,4},{|21,}B y y x x A ==-∈,则A B ⋃等于()A.{}1,3 B.{}2,4C.{2,4,5,7} D.{1,2,3,4,5,7}【答案】D 【解析】【分析】先求出集合A ,B ,再利用并集定义能求出结果.【详解】 全集{1,A =2,3,4},{|21,}{1,B y y x x A ==-∈=3,5,7},{1,A B ∴⋃=2,3,4,5,7}.故选D .2.已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T Ç=()A.∅B.SC.TD.Z【答案】C 【解析】【分析】分析可得T S ⊆,由此可得出结论.【详解】任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆,因此,S T T = .故选:C.3.已知集合{1,2,3}A =,20,x B xx Z x -⎧⎫=≤∈⎨⎬⎩⎭∣,则A B ⋃=()A.{1,2}B.{0,1,2,3}C.{1,2,3}D.{0,1,2}【答案】C【分析】化简集合B ,利用并集概念及运算即可得到结果.【详解】由题意可得:{}2|0,1,2x B x x Z x -⎧⎫=≤∈=⎨⎬⎩⎭又{1,2,3}A =∴AB ⋃={}123,,故选:C【点睛】本题考查并集的概念及运算,考查分式不等式的解法,属于基础题.4.()f x 的定义域是()0,∞+,其导函数为()'f x ,()()f x g x x =,其导数为()g x ',若1ln ()x g x x-'=,且2()f e e =(其中e 是自然对数的底数),则()A.(2)(1)g g <B.(3)(4)g g <C.()0f e '= D.()0f x ex -≤【答案】D 【解析】【分析】根据1ln ()x g x x -'=得到()g x 的单调性,即可判断ABD ,由()()()2xf x f x g x x'-'=,()0g e '=求出()f e ',即可判断C.【详解】因为1ln ()xg x x-'=,所以由()0g x '>可得()0,x e ∈,由()0g x '<可得(),x e ∈+∞所以()g x 在()0,e 上单调递增,在(),e +∞上单调递减所以(2)(1)g g >,(3)(4)g g >,故A 、B 错误()()()f e g x g e e e≤==,所以()f x ex ≤,即()0f x ex -≤,所以D 正确因为()()()2xf x f x g x x'-'=,()0g e '=,所以()()20ef e f e e'-=,解得()f e e '=,故C 错误故选:D5.已知命题p :∃x 0∈R,sin x 0≥12,则p ⌝是A.∃x 0∈R,sin x 0≤12 B.∃x 0∈R,sin x 0<12C.∀x ∈R,sin x ≤12D.∀x ∈R,sin x <12【解析】【分析】根据含有量词命题的否定即可得到选项.【详解】p ⌝即为命题p 的否定,由含有量词的否定形式可知,p ⌝为∀x ∈R ,sin x <12所以选D【点睛】本题考查了含有量词的命题的否定,属于基础题.6.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:o C )满足函数关系e kx b y +=(e 2.718= 为自然对数的底数,k ,b 为常数).若该食品在0℃时的保鲜时间是192小时,在33℃时的保鲜时间是24小时,则该食品在22o C 时的保鲜时间是()A.40小时B.44小时C.48小时D.52小时【答案】C 【解析】【分析】根据题意列出方程组求解函数解析式,令22x =代入解析式求y 即可.【详解】根据题意有33192192ln 22411b bk b e e ek +⎧=⎧=⎪⇒⎨⎨==-⎩⎪⎩,所以ln 211192xy e -=⨯,当22x =时,ln 222111192192484y e -⨯=⨯=⨯=,即该食品在22o C 时的保鲜时间是48小时.故选:C7.设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是()A.,12⎫⎪⎪⎣⎭B.1,12⎡⎫⎪⎢⎣⎭C.0,2⎛ ⎝⎦D.10,2⎛⎤ ⎥⎝⎦【答案】C 【解析】【分析】设()00,P x y ,由()0,B b ,根据两点间的距离公式表示出PB ,分类讨论求出PB 的最大值,再构建齐次不等式,解出即可.【详解】设()00,P x y ,由()0,B b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32b b c-≤-,即22b c ≥时,22max 4PB b =,即max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即202e <≤;当32b b c ->-,即22b c <时,42222maxb PB a bc =++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立.故选:C .【点睛】本题解题关键是如何求出PB 的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值.8.若a>2,则函数f(x)=x 3-ax 2+1在区间(0,2)上恰好有()A.0个零点B.1个零点C.2个零点D.3个零点【答案】B 【解析】【分析】求出导数,并由题意得到函数在区间上(0,2)为减函数,然后根据零点存在性定理进行判断可得结论.【详解】∵f(x)=x 3-ax 2+1,∴()22(2)f x x ax x x a '=-=-,且a>2,∴当x∈(0,2)时,f′(x)<0,函数f(x)单调递减.又f(0)=1>0,f(2)=-4a<0,∴f(x)在(0,2)上恰好有1个零点.故选B.【点睛】运用函数零点存在性定理可判断函数在给定区间上是否有零点,但无法判断零点的个数,若函数在给定区间上具有单调性,则可判断出零点的个数了.9.已知f (x )是定义在R 上的函数,其导函数为()'f x ,且不等式()()f x f x '>恒成立,则下列比较大小错误的是()A.e (1)(2)f f <B.()()0e 1f f >- C.()()e 21f f ->- D.()()2e 11f f -<【答案】C 【解析】【分析】由已知条件可得()()0e xf x f x '->,所以构造函数()()x f xg x =e,求导后可得()0g x '>,从而可得g (x )在R 上单调递增,然后分析判断【详解】由已知()()f x f x '>,可得()()0exf x f x '->,设()()x f x g x =e ,则()()()ex f x f x g x '-'=,∵()0g x '>,因此g (x )在R 上单调递增,所以()()()()()()12,10,21g g g g g g <-<-<-,()()11g g -<,即()()()()()()()()21021112102111,,,,e e e e e e e ef f f f f f f f --------<<<<所以()()()()()()()()2e 12,e 10,e 21,e 11f f f f f f f f <-<-<--<,所以ABD 正确,C 错误,故选:C .10.定义在R 上的偶函数()f x 满足:对任意的[)()1212,0,x x x x ∈+∞≠,有()()21210f x f x x x -<-,则()2f -、()f e 、()3f -的大小关系为()A.()()()32f e f f <-<-B.()()()23f f e f -<<-C.()()()32f f f e -<-< D.()()()32f f e f -<<-【答案】D 【解析】【分析】由已知条件得出单调性,再由偶函数把自变量转化到同一单调区间上,由单调性得结论.【详解】因为对任意的[)()1212,0,x x x x ∈+∞≠,有()()21210f x f x x x -<-,所以当12x x <时,12()()f x f x >,所以()f x 在[0,)+∞上是减函数,又()f x 是偶函数,所以(3)(3)f f -=,(2)(2)f f -=,因为23e <<,所以(2)()(3)f f e f >>,即(2)()(3)f f e f ->>-.故选:D .【点睛】本题考查函数的单调性与奇偶性,解题方法是利用奇偶性化自变量为同一单调区间,利用单调性比较大小.11.给出下列说法:①“4x π=”是“tan 1x =”的充分不必要条件;②命题“0x R ∃∈,0012x x +≥”的否定形式是“x R ∀∈,12x x+>”.③将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为30种.其中正确说法的个数为A.0 B.1C.2D.3【答案】C 【解析】【分析】根据充要关系、存在性问题否定形式以及排列组合分别判断,最后得结果.【详解】①4x π=时tan 1x =,反之不然,所以“4x π=”是“tan 1x =”的充分不必要条件;②命题“0x R ∃∈,0012x x +≥”的否定形式是“x R ∀∈,12x x+<”,②错;③四名学生分到三个不同的班,每个班至少分到一名学生,分法有234336C A =种,其中甲、乙两名学生分到同一个班,有336A =种,因此甲、乙两名学生不能分到同一个班的分法种数为30种.综上正确说法的个数为2,选C.【点睛】充分、必要条件的三种判断方法.(1)定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.(2)等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.12.设函数()2sin()1(0,0)2f x x πωϕωϕ=+-> 的最小正周期为4π,且()f x 在[0,5]π内恰有3个零点,则ϕ的取值范围是()A .50,312ππ⎡⎤⎧⎫⋃⎨⎬⎢⎥⎣⎦⎩⎭ B.0,,432πππ⎡⎤⎡⎤⋃⎢⎥⎢⎥⎣⎦⎣⎦C.50,612ππ⎡⎤⎧⎫⋃⎨⎢⎥⎣⎦⎩⎭ D.0,,632πππ⎡⎤⎡⎤⋃⎢⎥⎢⎥⎣⎦⎣⎦【答案】D 【解析】【分析】根据周期求出12ω=,结合ϕ的范围及[0,5]x π∈,得到55322ππϕπ+ ,把52πϕ+看做一个整体,研究1sin 2y x =-在[0,3]π的零点,结合()f x 的零点个数,最终列出关于ϕ的不等式组,求得ϕ的取值范围【详解】因为24T ππω==,所以12ω=.由()0f x =,得11sin()22x ϕ+=.当[0,5]x π∈时,15,22x πϕϕϕ⎡⎤+∈+⎢⎣⎦,又02πϕ ,则55322ππϕπ+ .因为1sin 2y x =-在[0,3]π上的零点为6π,56π,136π,176π,且()f x 在[0,5]π内恰有3个零点,所以0,613517626πϕπππϕ⎧⎪⎪⎨⎪+<⎪⎩ 或,62175,62ππϕππϕ⎧<⎪⎪⎨⎪+⎪⎩ 解得0,,632πππϕ⎡⎤⎡⎤∈⋃⎢⎥⎢⎥⎣⎦⎣⎦.故选:D.二、填空题(每小题5分,共20分)13.设函数()33f x x ax =++,()15f '=,则实数a =______.【答案】2;【解析】【分析】先对()f x 求导,再利用()15f '=即可求解.【详解】()23f x x a '=+,所以()135f a '=+=,解得2a =,故答案为:2.14.已知函数2()log 1f x x =-,若()2f x =的四个根为1234,,,x x x x ,且1234k x x x x =+++,则()1f k +=________.【答案】2【解析】【分析】由()2f x =,根据指对互换原则,可解得134,,,x x x x 的值,代入(1)f k +即可求解.【详解】因为()2f x =,所以12log 2x -=,所以12log 2x -=或12log 2x -=-,所以14x -=或114x -=.解得15=x ,23x =-,354x =,434x =,所以1234k x x x x =+++5353444=-++=,所以512(1)(5)log 2f k f -+===,故答案为2.【点睛】本题考查指对数的互换,含绝对值方程的解法,考查计算化简的能力,属基础题15.已知函数()21ln 2f x x x mx =+有两个极值点,则实数m 的取值范围为___________.【答案】()1,0-【解析】【分析】把函数()21ln 2f x x x mx =+有两个极值点,转化为()0f x '=有两个不同正根12,x x ,利用分离参数法得到ln 1x m x +=-.令()()ln 1,0x h x x x +=->,y m =,只需()ln 1x h x x+=-和y m=有两个交点.利用导数研究()()ln 1,0x h x x x +=->的单调性与极值,即可求出m 的取值范围.【详解】()21ln 2f x x x mx =+的定义域为()0+∞,,()ln 1f x x mx '=++.要使函数()21ln 2f x x x mx =+有两个极值点,只需()0f x '=有两个不同正根12,x x ,并且在1x 的两侧()y f x =的单调性相反,在2x 的两侧()y f x =的单调性相反.由ln 10x mx ++=得,ln 1x m x+=-.令()()ln 1,0x h x x x+=->,y m =,要使函数()21ln 2f x x x mx =+有两个极值点,只需()ln 1x h x x +=-和y m=有两个交点.()2ln x h x x '=,令()2ln 0x h x x '=>得:x >1;令()2ln 0xh x x'=<得:0<x <1;所以()ln 1x h x x+=-在()0,1上单减,在()1,+∞上单增.当0x +→时,y →+∞;当x →+∞时,0y →;作出()ln 1x h x x+=-和y m=的图像如图,所以-1<m <0即实数m 的取值范围为()1,0-.故答案为:()1,0-【点睛】利用导数研究零点问题:(1)确定零点的个数问题:可利用数形结合的办法判断交点个数,如果函数较为复杂,可用导数知识确定极值点和单调区间从而确定其大致图象;(2)方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理.可以通过构造函数g (x )的方法,把问题转化为研究构造的函数g (x )的零点问题;(3)利用导数研究函数零点或方程根,通常有三种思路:①利用最值或极值研究;②利用数形结合思想研究;③构造辅助函数研究,16.若函数3()31f x x x =--在区间(2,23)a a -+上有最大值,则实数a 的取值范围是_________.【答案】122a -<≤-【解析】【分析】由导函数求得极大值,利用极大值点在区间(2,23)a a -+上,且(23)()f a f x +≤的极大值可得参数范围.【详解】2()333(1)(1)f x x x x '=-=+-,1x <-或1x >时,()0f x '>,11x -<<时,()0f x '<,所以()f x 在(,1)-∞-和(1,)+∞上都递增,在(1,1)-上递减,max ()(1)1311f x f =-=-+-=,()f x 在区间(2,23)a a -+上有最大值,则32123(23)(23)3(23)11a a f a a a -<-<+⎧⎨+=+-+-≤⎩,解得122a -<≤-.故答案为:122a -<≤-.三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤)17.写出下列命题的否定,并判断真假.(1)正方形都是菱形;(2)∃x ∈R ,使4x -3>x ;(3)∀x ∈R ,有x +1=2x ;(4)集合A 是集合A ∩B 或集合A ∪B 的子集.【答案】(1)答案见解析(2)答案见解析(3)答案见解析(4)答案见解析【解析】【分析】根据命题的否定的概念,逐一写出,并判断真假即可.【小问1详解】命题的否定:正方形不都是菱形,是假命题.【小问2详解】命题的否定:∀x ∈R ,有4x -3≤x .因为当x =2时,4×2-3=5>2,所以“∀x ∈R ,有4x -3≤x ”是假命题.【小问3详解】命题的否定:∃x ∈R ,使x +1≠2x .因为当x =2时,x +1=2+1=3≠2×2,所以“∃x ∈R ,使x +1≠2x ”是真命题.【小问4详解】命题的否定:集合A 既不是集合A ∩B 的子集也不是集合A ∪B 的子集,是假命题.18.已知函数()31f x x ax =--.(1)若()f x 在区间(1,)+∞上为增函数,求a 的取值范围.(2)若()f x 的单调递减区间为(1,1)-,求a 的值.【答案】(1)(],3-∞;(2)3.【解析】【分析】(1)由题意可得()0f x '≥在(1,)+∞上恒成立,即23a x ≤在(1,)+∞上恒成立,转化为不等式右边的最小值成立,可得答案;(2)显然0a >,否则函数()f x 在R 上递增.利用导数求出函数()f x 的递减区间为(,再根据已知递减区间,可得答案【详解】(1)因为()23f x x a '=-,且()f x 在区间(1,)+∞上为增函数,所以()0f x '≥在(1,)+∞上恒成立,即230x a -≥在(1,+∞)上恒成立,所以23a x ≤在(1,)+∞上恒成立,所以3a ≤,即a 的取值范围是(],3-∞(2)由题意知0a >.因为()31f x x ax =--,所以()23f x x a '=-.由()0f x '<,得x <<所以()f x 的单调递减区间为(,又已知()f x 的单调递减区间为(1,1)-,所以(=(1,1)-,1=,即3a =.【点睛】本题考查了利用导数研究函数的单调性,特别要注意:函数在某个区间[,]a b 上递增或递减与函数的递增或递减区间是[,]a b 的区别,属于基础题.19.(1)求函数2y x =的值域;(2)求函数311x y x -=+的值域.【答案】(1)15,8⎡⎫+∞⎪⎢⎣⎭(2){}3y y ≠【解析】【分析】(1)利用换元法,令0t =≥,解得x 后代入可得()2220y t t t =-+≥,根据二次函数性质可求得值域;(2)利用分离常数法可得431y x =-+,从而可得3y ≠,进而得到值域.【详解】(1)设0t =≥,则21x t =+()()2221220y t t t t t ∴=+-=-+≥∴当14t =时,min 11152848y =-+=2y x ∴=-的值域为15,8⎡⎫+∞⎪⎢⎣⎭(2)()3143143111x x y x x x +--===-+++401x ≠+ 3y ∴≠311x y x -∴=+的值域为{}3y y ≠【点睛】本题考查函数值域的求解,重点考查了换元法和分离常数法求解根式型和分式型函数的值域;求解值域问题的关键是能够熟练掌握解析式的形式所对应的值域的求解方法.20.已知全集U =R ,A ={x |-4≤x ≤2},B ={x |-1<x ≤3},P ={|0x x ≤或52x ⎫≥⎬⎭,(1)求A ∩B ;(2)求(C U B )∪P ;(3)求(A ∩B )∩(C U P ).【答案】(1){}|12x x -<≤;(2){|0x x ≤或52x ⎫≥⎬⎭;(3){}|02x x <≤.【解析】【分析】直接利用集合的基本运算求解.【详解】因为全集U =R ,A ={x |-4≤x ≤2},B ={x |-1<x ≤3},P ={|0x x ≤或52x ⎫≥⎬⎭所以(1)A ∩B {}=|12x x -<≤;(2){|1U B x x =≤-ð或}3x >,则(C U B )∪P ={|0x x ≤或52x ⎫≥⎬⎭;(3)50|2U P x x ⎧⎫=<<⎨⎬⎩⎭ð,则(A ∩B )∩(C U P ){}=|02x x <≤.【点睛】本题主要考查集合的基本运算,属于基础题.21.已知函数()()()log 2log 2a a f x x x =+--,(0a >且1)a ≠.()1求函数()f x 的定义域;()2求满足()0f x ≤的实数x 的取值范围.【答案】(1)()2,2-;(2)见解析.【解析】【分析】()1由题意可得,{2020x x +>->,解不等式可求;()2由已知可得()()log 2log 2a a x x +≤-,结合a 的范围,进行分类讨论求解x 的范围.【详解】(1)由题意可得,{2020x x +>->,解可得,22x -<<,∴函数()f x 的定义域为()2,2-,()2由()()()log 2log 20a a f x x x =+--≤,可得()()log 2log 2a a x x +≤-,1a >①时,022x x <+≤-,解可得,20x -<≤,01a <<②时,022x x <-≤+,解可得,02x ≤<.【点睛】本题主要考查了对数函数的定义域及利用对数函数单调性求解对数不等式,体现了分类讨论思想的应用,属于基础试题.22.已知二次函数2()1()=-+∈f x x kx k R .(1)若()f x 在区间[2,)+∞上单调递增,求实数k 的取值范围;(2)若()0f x ≥在(0,)x ∈+∞上恒成立,求实数k 的取值范围.【答案】(1)4k ≤;(2)k 2≤.【解析】【分析】(1)解不等式22k ≤即得解;(2)化为1≤+k x x 在(0,)x ∈+∞恒成立,令1()g x x x =+,求出函数()g x 的最小值即可.【详解】(1)若()f x 在(2,)x ∈+∞单调递增,则22k ≤,所以4k ≤;(2)因为()0f x ≥在(0,)x ∈+∞上恒成立,所以210-+≥x kx 在(0,)x ∈+∞恒成立,即1≤+k x x在(0,)x ∈+∞恒成立令1()g x x x =+,则1()2=+≥=g x x x ,当且仅当1x =时等号成立所以k 2≤.【点睛】方法点睛:处理参数的(1)分离参数法(先分离参数转化为函数的最值);(2)分类讨论法(对参数分类讨论求解).第15页/共15页。

全国普通高等学校高考数学模拟试卷(理科)及答案

全国普通高等学校高考数学模拟试卷(理科)及答案

全国普通高等学校高考数学模拟试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的•1. (5 分)已知集合A={x| - x2+4x> 0},片&|占<3玄丈歼} , C=(x|x=2n, n€81N},贝U(A U B)n C=()A. {2,4}B. {0,2}C. {0,2,4}D. {x|x=2n, n € N}2. (5分)设i是虚数单位,若-- ' ― ,x,y€ R,则复数x+yi的共轭复数2^1是()A. 2 - iB.- 2 - iC. 2+iD.- 2+i3. (5分)已知等差数列{a n}的前n项和是S h,且%+a5+a6+a z=18,贝U下列命题正确的是()A. a5是常数B. S5是常数C. a i0是常数D. Si o是常数4. (5分)七巧板是我们祖先的一项创造,被誉为东方魔板”它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,贝吐匕点取自黑色部分的概率是()BCD2 25. (5分)已知点F为双曲线C: = 一一(a>0,b>0)的右焦点,直线x=aa b与双曲线的渐近线在第一象限的交点为A,若AF的中点在双曲线上,贝U双曲线的离心率为()A. "B. I ■:C. I」订D. - % -6. (5分)已知函数f&)二sinx, K E [-冗50]诋(0t i]A . 7 .nJTD.——-74 一(5分)执行如图所示的程序框图,则输出的S的值为()2+ n B. C.盒2*出£产〔筠棗)*>201A.二7B. 「」C.. - 厂D. +-8 (5分)已知函数f仗)二sin 3葢X^\/3C^OS23(3> 0) 的相邻两个零点差的绝对值为二,则函数f (x)的图象(4A . 可由函数(X)=cos4x的图象向左平移个单位而得B. 可由函数(X)=cos4x的图象向右平移C. 可由函数(X)=cos4x的图象向右平移D . 可由函数(X)=cos4x的图象向右平移丄个单位而得24丄个单位而得245兀个单位而得9. (5 分)(羽-3)(1的展开式中剔除常数项后的各项系数和为(A . —73 B.—61 C.—55 D.—6310. (5分)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF是边长为1的正六边形,点G为AF的中点,则该几何体的外接球的表面积是(nanA . 317£~6~B.31兀C.481K D丑価兀. ■:6411. (5分)已知抛物线C: y 2=4x 的焦点为F ,过点F 分别作两条直线l i , I 2,直 线l i 与抛物线C 交于A 、B 两点,直线12与抛物线C 交于D 、E 两点,若l i 与12 的斜率的平方和为1,则|AB|+| DE 的最小值为( )A . 16 B. 20 C. 24 D . 3212. (5分)若函数y=f (x ), x € M ,对于给定的非零实数a ,总存在非零常数T , 使得定义域M 内的任意实数x ,都有af (x ) =f (x+T )恒成立,此时T 为f (x ) 的类周期,函数y=f (x )是M 上的a 级类周期函数.若函数y=f (x )是定义在 区间[0 , + %)内的2级类周期函数,且T=2,当x € [0 , 2 )时,zg ■-2,,1 ©卄比)二戈函数.若? X 1€ [6, 8] , ?X 2€L<Y <2’二、填空题(每题5分,满分20分,将答案填在答题纸上) 13 . ( 5分)已知向量, ^占口),-1),且旦丄1,则1)-=为 ______ .15. (5分)在等比数列{a n }中,a 2?a 3=2a 1,且a 4与2a 7的等差中项为17,设b n =a 2n -1- a 2n , n € N*,则数列{b n }的前2n 项和为 ______ .16.(5分)如图,在直角梯形 ABCD 中,AB 丄BC, AD // BC,一二亍「二,点14. ( 5分)已知x , y 满足约束条件(0, +x ),使g (X 2)- f (X 1)w 0成立,则实数m 的取值范围是( 的最小值E是线段CD上异于点C, D的动点,EF丄AD于点^将厶DEF沿EF折起到△ PEF 的位置,并使PF丄AF,则五棱锥P-ABCEF勺体积的取值范围为________ .三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (12分)已知△ ABC的内角A, B, C的对边a, b, c分别满足c=2b=2.2bcosA+acosC+ccosA=Q 又点D 满足■ /(1)求a及角A的大小;18. (12分)在四棱柱ABCD- A i B i C i D i中,底面ABCD是正方形,且匚-:-,/ A1AB=Z A1AD=6C°.(1)求证:BD丄CG;(2)若动点E在棱C1D1上,试确定点E的位置,使得直线DE与平面BDB所成角的正弦值为I .19. (12分)过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数「(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N (卩,d2),利用该正态分布,求Z落在(14.55, 38.45)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这 4 包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为^=V142. 75^11-95;②若〜N — b 2 ),贝U P (卩―crV Z< p+ o)=0.6826,P (卩―2 o< Z< (J+2 C)=0.9544.0e030 ・-0-025 ・*0.020 - 0.0150.01010 2030 4050各水饺质量指标丄一,且以两焦点为直20. (12分)已知椭圆C: 亏〔呂0)的离心率为径的圆的内接正方形面积为2.(1)求椭圆C的标准方程;(2)若直线I: y=kx+2与椭圆C相交于A,B两点,在y轴上是否存在点D,使直线AD与BD的斜率之和k AD+k BD为定值?若存在,求出点D坐标及该定值,若不存在,试说明理由.21. (12分)已知函数f (x) =e x- 2 (a- 1) x- b,其中e为自然对数的底数.(1)若函数f (x)在区间[0,1]上是单调函数,试求实数a的取值范围;(2)已知函数g (x) =e x-(a- 1) x2- bx- 1,且g (1) =0,若函数g (x)在区间[0,1]上恰有3个零点,求实数a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22. (10分)在平面直角坐标系xOy中,圆C i的参数方程为\ K-_Uacos® ( 0ty=-l+asin9为参数,a是大于0的常数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C2的极坐标方程为p =2^2^05 ( .(1)求圆C i的极坐标方程和圆C2的直角坐标方程;(2)分别记直线I: ^吕,P€ R与圆C i、圆C2的异于原点的焦点为A,B,若圆C i与圆C2外切,试求实数a的值及线段AB的长.[选修4-5:不等式选讲]23. 已知函数f (x) =|2x+1| .(1)求不等式f (x)< 10-| x-3|的解集;(2)若正数m,n 满足m+2n=mn,求证:f (m) +f (- 2n)》16.2018年全国普通高等学校高考数学模拟试卷(理科)(一)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的•1. (5 分)已知集合A={x| - x2+4x> 0}, B二丘|丄<罗<27} , C={x|x=2n, n€31N},贝U(A U B)n C=()A. {2,4}B. {0,2}C. {0,2,4}D. {x|x=2n, n € N}【解答】解:A={x| - x2+4x> 0} ={x| 0< x< 4},駐〔兀I去V3y 27} ={x| 3-4v 3x v 33}={x| - 4<x< 3},oJL则A U B={x| - 4< x<4},C={x| x=2n, n € N},可得(A U B)n C={0, 2, 4},故选C.2. (5分)设i是虚数单位,若' ,x, y€ R,则复数x+yi的共轭复数2-1是()A. 2 - iB.- 2 - iC. 2+iD.- 2+i【解答】解:由一「2-1得x+yi= — -i —-! ■=2+i得x+yi= =2+i,•••复数x+yi的共轭复数是2 -i.3(5分)已知等差数列{a n}的前n项和是S,且a4+a5+a e+a7=18,则下列命题正确的是()A. a5是常数B. S5是常数C. a10是常数D. Si0是常数故选:A.【解答】解:•••等差数列{a n }的前n 项和是S n ,且a 4+a 5+a 6+a 7=18, 二 a 4+a 5+a 6+a 7=2 (a i +a io ) =18, --a i +a io =9, …Sg 二乎(有十^10)=45- 故选:D .4. (5分)七巧板是我们祖先的一项创造,被誉为 东方魔板”它是由五块等腰 直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形) 、- 块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,贝吐匕点取自黑色部分的概率是()【解答】解:设AB=2,则BC=CD=DE=EF=1V B —订,S 平行四边形EFG 阳2S BC =2 X — , •••所求的概率为口 +S 平行四边形EPGH g 正方形AB5 =2x7故选:A .2 25. (5分)已知点F 为双曲线C : 云丄尹1 (a >0, b >0)的右焦点,直线x=a 与双曲线的渐近线在第一象限的交点为 A ,若AF 的中点在双曲线上,贝U 双曲线 的离心率为()16BCDA. . 1B. I ■:C.「'.打D. I 口2 2【解答】解:设双曲线C:青冬二1的右焦点F (c, 双曲线的渐近线方程为y丄x,a由x=a代入渐近线方程可得y=b,则A(a,b),可得AF的中点为(誓,寺b),代入双曲线的方程可得卄J -丄=1,可得4a2- 2ac- c2=0,由e*,可得e2+2e- 4=0,a解得e= !.- 1 (- 1 —汀舍去),故选:D. 0),6. (5分)已知函数f&)二则.A. 2+ nB. JT T-2J Ql-/dK=/ cOSdt= J 1 址齐t芒1 2+',J 2开£(只),xE [-TT , 0]2,址© 1]^rcsinx *兀4+ (- COSX:=(2. 故选:D.7. (5分)执行如图所示的程序框图,则输出的 S 的值为()A ...工7B .C.. -厂 D . m【解答】解:第1次循环后,S=-,不满足退出循环的条件,k=2; 第2次循环后,S= -;,不满足退出循环的条件,k=3; 第3次循环后,S= =2,不满足退出循环的条件,k=4;第n 次循环后,S= ,不满足退出循环的条件,k=n+1 ; 第2018次循环后,S=,3.「儿 不满足退出循环的条件,k=2019第2019次循环后,S==2「|「,满足退出循环的条件, 故输出的S 值为2厂「, 故选:C& (5分)已知函数f (瓷)sin® xug®負7勺(3> 0)的相邻两个 零点差的绝对值为「则函数f (x )的图象()A. 可由函数g (x ) =cos4x 的图象向左平移卑匚个单位而得B. 可由函数g (x ) =cos4x 的图象向右平移2二个单位而得24C. 可由函数g (x ) =cos4x 的图象向右平移丄?个单位而得D. 可由函数g (x ) =cos4x 的图象向右平移一个单位而得O【解答】 解:函数 f (7) =sinseesxVsccs5 工=寺 sin7T=sin (2^)-—)(3>0)的相邻两个零点差的绝对值为才?爲=:,二①=2 f (x ) =sin (4x -中=cos[(2 3X )]=cos (4x普).故把函数g (x ) =cos4x 的图象向右平移竺个单位,可得f (X )的图象,24 故选:B.9・(5分)©-3)(代/的展开式中剔除常数项后的各项系数和为( )A .- 73B .- 61C.- 55D .- 63【解答】解:丄广展开式中所有各项系数和为(2- 3) (1+1) 6=- 64; ⑵-3)(1 丄)社(2x -3) (1忑碍+•••),工工/其展开式中的常数项为-3+12=9,• ••所求展开式中剔除常数项后的各项系数和为 -64 - 9=- 73.故选:A . 6【解答】解:如图,可得该几何体是六棱锥 P -ABCDEF 底面是正六边形,有一 PAF 侧面垂直底面,且P 在底面的投影为AF 中点,过底面中心N 作底面垂线, 过侧面PAF 的外心M 作面PAF 的垂线,两垂线的交点即为球心 0, 设厶PAF 的外接圆半径为r ,/二(2P )牛(寺严,解得r #,•価二0昨茅6 (5分)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF 是边长为 1的正六边形,点G 为AF 的中点,则该几何体的外接球的表面积是()A .B .312Z8 C.鋁1叽64D.48MAS11. (5分)已知抛物线C: y 2=4x 的焦点为F ,过点F 分别作两条直线11, 12,直 线11与抛物线C 交于A 、B 两点,直线12与抛物线C 交于D 、E 两点,若11与12 的斜率的平方和为1,则|AB|+| DE 的最小值为()A . 16 B. 20 C. 24 D . 32【解答】解:抛物线C: y 2=4x 的焦点F (1, 0),设直线11: y=k i (x- 1),直线 12: y=k 2 (x - 1),由题意可知,贝U 叭Jk 『二1,设 A (X 1 , y 1), B (X 2 , y 2),贝 U X 1+X 2= -------k l 4设 D (X 3 , y 3), E (X 4 , y 4),同理可得:X 3+X 4=2+ ° ,k2由抛物线的性质可得:丨AB | =X 1+x 2+p=4+则该几何体的外接球的半径•••表面积是则该几何体的外接球的表面积是7 V4M+1 FS=4冗 R =°*l 兀.64联立丿y=k] (i-lj,整理得:k 12x 2-( 2k 12+4) x+k 12=0,R= I :. 故选:C.C,| DE | =X 3+X 4+pk l=84 ,当且仅当k®目时,上式“我立• ••• | AB|+| DE 的最小值 24, 故选:C.12. (5分)若函数y=f (x ), x € M ,对于给定的非零实数a ,总存在非零常数T , 使得定义域M 内的任意实数x ,都有af (x )=f (x+T )恒成立,此时T 为f (x ) 的类周期,函数y=f (x )是M 上的a 级类周期函数.若函数y=f (x )是定义在区间[0 , + %)内的2级类周期函数,且T=2,当x € [0 , 2 )时,f(2-Kb 1<X<2(0 , +x),使g (x 2)- f (X 1)w 0成立,贝U 实数m 的取值范围是(【解答】解:根据题意,对于函数f(x ),当x € [0 , 2)时,f k)弓2fCE-s), Kx<2-2,有最大值f (0)二,最小值f (1)2,当1v x v 2时,f (x ) =f (2 -x ),函数f (x )的图象关于直线x=1对称,则此时 有-一v f (x )v又由函数y=f (x )是定义在区间[0, +7 内的2级类周期函数,且T=2; 则在€ [6, 8) 上, f (x ) =23?f (x -6),则有—12<f (x )w 4,则 f (8) =2f (6) =4f (4) =8f (2) =16f (0) =8,则函数f (x )在区间[6 , 8]上的最大值为8,最小值为-12;A .—] B. (a, 13 ] C. 〔a,32 J2」2」D .[普g| AB|+| DE =8+1 k 24(ki 2+k 2Z ) 8P4、412 J一 _ _ •若? xi € [ 6, 8] , ? X 2 €函数 =-21nx分析可得:当O w x < 1时,f (x) --=84 ,对于函数山)二-加4^5切,有g'(x) =-Z +X+1」®之-炉1)3切L x x x分析可得:在(0 , 1)上,g (x)v0,函数g (x)为减函数,在(1 , +x)上,g r (x)>0,函数g (x)为增函数,则函数g (x )在(0, +x )上,由最小值f (1) =_ +m ,2若? x i € [6, 8] , ? X 2 €(0, +x ),使 g (X 2)— f (x i )< 0 成立, ,即一+m < 8, ,即m 的取值范围为(-x,必有 g (x ) min < f (x ) max 故选:B. 解可得m 13 2 、填空题(每题5分,满分20分,将答案填在答题纸上) 13. (5 分)已知向重.I _ d •二二「,,| 丄---,且-一、,则! . I I ]【解答】解:根据题意,向重 丁(2営cgd ),b=(l, -1), 若;丄卞,则 ^?b=2sin a cos a =0 则有 tan a又由 sin 2 a +COS 2 a=1 则有 则 则 |..|-: 2^5sina=^ a" COS Cl - !_ 亍),或 = sin a 二芈^ 5 n _砸 C0S 或(— 5则崙丄)2=3品2- 21?工半 5故答案为: 14. (5分)已知x , y 满足约束条件 的最小值为L_. 【解答】解:由约束条件作出可行域如图,X = — 22n -4,联立fxWQ ,解得A (2, 4), J 23<2,令t=5x -3y ,化为y 专富诗,由图可知,当直线宾耳过A 时, 」 J "J 直线在y 轴上的截距最大,t 有最小值为-2. •••目标函数 玄二彳; 的最小值为2~^-^. 故答案为:丄.15. (5分)在等比数列{a n }中,a 2?a 3=2a i ,且a 4与2a 7的等差中项为17,设b n =a 2n -1- a 2n , n € N*,则数列{b n }的前2n 项和为—亠〕/" _.丄ka【解答】解:等比数列{a n }中,a 2?a 3=2a i ,且a 4与2a 7的等差中项为17, 设首项为a 1,公比为q , 则:整理得:+血]<1 二 34解得: 则: 所以:b n =a 2n -1 — a 2n =屯一」116. (5分)如图,在直角梯形 ABCD 中,AB 丄BC, AD // BC,上-二一二-_,点 E 是线段CD 上异于点C , D 的动点,EF 丄AD 于点^将厶DEF 沿 EF 折起到△ PEF 的位置,并使PF 丄AF ,则五棱锥P -ABCEF 的体积的取值范围为【解答】 解:T PF 丄AF , PF 丄EF, AF G EF=F 二PF 丄平面ABCD 设 PF=x 贝U O v x v 1, 且 EF=DF=x•五棱锥P-ABCEF 的体积V 丄 丄(3-x 2) x 设 f (x ) (3x - x 3),贝U f ' (x) — (3 - 3x 2)6 6•••当 O v x v 1 时,f'(x )>0,则:T 2n = I' 1-4 故答案为: 討护). (0,丄) •五边形ABCEF 的面积为S=S 弟形ABCD - x( 1+2)x 1-—X 2丄(3-x 2). (3x — x 3), (1-x 2),••• f(x)在(0, 1)上单调递增,又f (0)=0, •五棱锥P-ABCEF的体积的范围是(0,丄).故答案为:三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (12分)已知△ ABC的内角A, B, C的对边a, b, c分别满足c=2b=2.2bcosA+acosC+ccosA=Q 又点 D 满足 【解答】 解:(1)由2bcosA+acosC+ccosA=0及正弦定理得-2sinBcosA=sinAcos&osAsinC 即—2si nBcosA=si n( A+C ) =s inB, 在厶 ABC 中,sinB >0,所以一”二二. 在厶 ABC 中,c=2b=2,由余弦定理得 a 2=b 2+c 2 - 2bccosA=k J +c 2+bc=7, 18. (12分)在四棱柱ABCD — A i B i C i D i 中,底面ABCD 是正方形,且匚-■-,/ A 1AB=Z A 1AD=6C °.(1) 求证:BD 丄CG ;(2) 若动点E 在棱C 1D 1上,试确定点E 的位置,使得直线DE 与平面BDB 所成 角的正弦值为….又A €(0, n),所以(1)求a 及角A 的大小; C所以一 I【解答】解:(1)连接A i B, A i D, AC,因为AB=AA=AD,/ A i AB=Z A i AD=60,所以△ A i AB和厶A i AD均为正三角形,于是A i B=A i D.设AC与BD的交点为0,连接A i O,则A i O丄BD,又四边形ABCD是正方形,所以AC丄BD, 而A i O n AC=O,所以BD丄平面A i AC.又AA i?平面A i AC,所以BD丄AA i, 又CG // AA i,所以BD丄CG.(2)由,及BDW2AB=2,知A i B丄A i D,结合A i O丄BD, AO n AC=O 得A i O丄底面ABCD, 所以OA、OB、OA i两两垂直.如图,以点O为坐标原点,| &的方向为x轴的正方向,建立空间直角坐标系 -xyz 则A (i, 0, 0), B (0 , i , 0), D (0 , - i , 0), A i (0 , 0 , i) , C(- i , 0 , DB=(O, 2, 0),瓦二瓯二(一1・ 0, 1), D]C[二磋(T, 1;",由i 丨,得Di (- i, - i , i).设:,I- ■:.:'(疋[0 , i]),则(X E+i , y E+i , Z E- i)=入(-i , i , 0),即 E (-入—i,入—i , i), 所以;「―■•亠.设平面B i BD的一个法向量为|• • •'!,O 0),B,从而A i O丄AO,设直线DE 与平面BDB 所成角为9, 则血*k^<运,(—'—D+oy m 丨申, V2XV X 2+(-1-\)£+1 14 解得二二或•,二丄(舍去),2 3所以当E 为D i C i 的中点时,直线DE 与平面BDBi 所成角的正弦值为「.19. ( 12分)过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节 前夕,A 市某质检部门随机抽取了 100包某种品牌的速冻水饺,检测其某项质量 指标,(1) 求所抽取的100包速冻水饺该项质量指标值的样本平均数■:(同一组中的 数据用该组区间的中点值作代表);(2) ①由直方图可以认为,速冻水饺的该项质量指标值 Z 服从正态分布N(卩, ;),利用该正态分布,求Z 落在(14.55, 38.45)内的概率;②将频率视为概率,若某人从某超市购买了 4包这种品牌的速冻水饺,记这 4 包速冻水饺中这种质量指标值位于(10, 30)内的包数为X ,求X 的分布列和数 学期望. 附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为②若(卩,^ ),贝U P (卩―eV Z w p+ o ) =0.6826, P (卩―2 eV Z w (J +2 o ) =0.9544.得n=(l, 0, 1),n ・ E6=0 {十…… n • &B-i =0 L得 产。

高三一轮复习 数列 周测卷

高三一轮复习 数列  周测卷

高三理科数学周测卷(数列)(11.7)一、选择题:(本大题共12小题,每小题5分,共60分)1.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是 ( )A .15B .30C .31D .642. 数列{a n }为等差数列,a 10=33,a 2=1,S n 为数列{a n }的前n 项和,则S 20-2S 10等于( )A .40B .200C .400D .203.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6等于 ( )A .3×44B .3×44+1C .45D .45+1 4.等比数列{a n }中,T n 表示前n 项的积,若T 5=1,则 ( )A .a 1=1B .a 3=1C .a 4=1D .a 5=15.由a 1=1,a n +1=a n3a n +1给出的数列{a n }的第34项( )A.34103B .100C.1100D.11046.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 等于 ( )A .9B .8C .7D .67.已知数列{a n }的通项公式是a n =2n -12n ,其前n 项和S n =32164,则项数n 等于 ( )A .13B .10C .9D .68.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于 ( )A .6B .7C .8D .99. 已知数列{a n }中,a 3=2,a 5=1,若⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于( )A .0B.16C.13D.1210. 已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为 ( )A.100101B.99101C.99100D.10110011.在△ABC 中,tan A ,tan B ,tan C 依次成等差数列,则B 的取值范围是 ( )A.⎝⎛⎦⎤0,π3∪⎝⎛⎦⎤π2,2π3B.⎝⎛⎦⎤0,π6∪⎝⎛⎦⎤π2,5π6C.⎣⎡⎭⎫π6,π2D.⎣⎡⎭⎫π3,π212.设{a n }是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,则下列等式中恒成 立的是 ( )A .X +Z =2YB .Y (Y -X )=Z (Z -X )C .Y 2=XZD .Y (Y -X )=X (Z -X ) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二.填空题(本大题共4小题,每小题5分,共20分)13.数列{a n }的通项公式a n =1n +n +1,若{a n }的前n 项和为24,则n =________.14.在等差数列{a n }中,已知log 2(a 5+a 9)=3,则等差数列{a n }的前13项的和S 13=________.15.数列{a n }满足a 1=0,a n +1=a n +2n ,则{a n }的通项公式a n =________.16.在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n =_______时,S n 取得最大值,三.解答题(本大题共6小题,共70分)17.(10分)在等差数列{a n }中,若a 3+a 8+a 13=12,a 3a 8a 13=28,求数列{a n }的通项公式.18.(12分)已知数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1 (n ≥2),且a n +S n =n .(1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{b n }的通项公式.19.(12分)已知数列{a n }的前n 项和为S n ,且向量a =(n ,S n ),b =(4,n +3)共线.(1)求证:数列{a n }是等差数列;(2)求数列 ⎩⎨⎧⎭⎬⎫1na n 的前n 项和T n .20.(12分)设数列{a n}满足a1+3a2+32a3+…+3n-1a n=n3,n∈N*.(1)求数列{a n}的通项;(2)设b n=na n,求数列{b n}的前n项和S n.21.(12分)已知等差数列{a n}满足:a3=7,a5+a7=26,{a n}的前n项和为S n.(1)求a n及S n;(2)令b n=1a2n-1(n∈N*),求数列{b n}的前n项和T n.22.(12分)已知数列{a n }的前n 项和S n 与通项a n 满足S n =12-12a n .(1)求数列{a n }的通项公式;(2)设f (x )=log 3x ,b n =f (a 1)+f (a 2)+…+f (a n ),T n =1b 1+1b 2+…+1b n ,求T 2 012;(3)若c n =a n ·f (a n ),求{c n }的前n 项和U n .参考答案:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 ACCBCBDAAADD13.624 解析 a n =1n +n +1=n +1-n .∴(2-1)+(3-2)+…+(n +1-n )=24, ∴n +1=25,∴n =624. 14.52解析 ∵ log 2(a 5+a 9)=3,∴a 5+a 9=23=8.15.答案 n (n -1)解析 由已知,得a n +1-a n =2n ,故a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =0+2+4+…+2(n -1)=n (n -1).∴S 13=13×(a 1+a 13)2=13×(a 5+a 9)2=13×82=52.16.解 (1)方法一 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d ,∴d =-53.∴a n =20+(n -1)×⎝⎛⎭⎫-53=-53n +653. ∴a 13=0,即当n ≤12时,a n >0,n ≥14时,a n <0,方法二 同方法一求得d =-53.∴S n =20n +n (n -1)2·⎝⎛⎭⎫-53=-56n 2+1256n =-56⎝⎛⎭⎫n -2522+3 12524. ∵n ∈N *,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130.∴当n =12或13时,S n 取得最大值,且最大值为S 13=S 12=12×20+12×112×⎝⎛⎭⎫-53=130.17.解 ∵a 3+a 13=2a 8,a 3+a 8+a 13=12,∴a 8=4,…………………………………………………………………………………(2分)则由已知得⎩⎪⎨⎪⎧a 3+a 13=8,a 3a 13=7,解得⎩⎪⎨⎪⎧a 3=1,a 13=7,或⎩⎪⎨⎪⎧a 3=7,a 13=1.…………………………………………………………(7分)由a 3=1,a 13=7,可知d =a 13-a 313-3=7-110=35.故a n =a 3+(n -3)·35=35n -45;……………………………………………………………(9分)由a 3=7,a 13=1,可知d =a 13-a 313-3=1-710=-35.故a n =a 3+(n -3)·⎝⎛⎭⎫-35 =-35n +445.……………………………………………………………………………(11分)综上可得,a n =35n -45,或a n =-35n +445.……………………………………………(12分)18. 思维启迪:(1)由a n +S n =n 及a n +1+S n +1=n +1转化成a n 与a n +1的递推关系,再构造数列{a n -1}.(2)由c n 求a n 再求b n .(1)证明 ∵a n +S n =n ,① ∴a n +1+S n +1=n +1.②②-①得a n +1-a n +a n +1=1,∴2a n +1=a n +1,∴2(a n +1-1)=a n -1, ∴a n +1-1a n -1=12,∴{a n -1}是等比数列. 又a 1+a 1=1,∴a 1=12,∵首项c 1=a 1-1,∴c 1=-12,公比q =12.又c n =a n -1,∴{c n }是以-12为首项,12为公比的等比数列.(2)解 由(1)可知c n =⎝⎛⎭⎫-12·⎝⎛⎭⎫12n -1=-⎝⎛⎭⎫12n , ∴a n =c n +1=1-⎝⎛⎭⎫12n.∴当n ≥2时,b n =a n -a n -1=1-⎝⎛⎭⎫12n -⎣⎡⎦⎤1-⎝⎛⎭⎫12n -1 =⎝⎛⎭⎫12n -1-⎝⎛⎭⎫12n =⎝⎛⎭⎫12n .又b 1=a 1=12代入上式也符合,∴b n =⎝⎛⎭⎫12n . 19.(1)证明 ∵a =(n ,S n ),b =(4,n +3)共线,∴n (n +3)-4S n =0,∴S n =n (n +3)4.……………………………………………………(3分)∴a 1=S 1=1,当n ≥2时,a n =S n -S n -1=n +12,……………………………………………………(5分)又a 1=1满足此式,∴a n =n +12.………………………………………………………(6分)∴a n +1-a n =12为常数,∴数列{a n }为首项为1,公差为12的等差数列.………………………………………(7分)(2)解 ∵1na n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1,…………………………………………………(9分)∴T n =1a 1+12a 2+…+1na n.=2⎝⎛⎭⎫1-12+2⎝⎛⎭⎫12-13+…+2⎝⎛⎭⎫1n -1n +1=2n n +1.……………………………………(12分)20. 思维启迪:(1)由已知写出前n -1项之和,两式相减.(2)b n =n ·3n 的特点是数列{n }与{3n }之积,可用错位相减法.解 (1)∵a 1+3a 2+32a 3+…+3n -1a n =n 3,①∴当n ≥2时,a 1+3a 2+32a 3+…+3n -2a n -1=n -13,②①-②得3n -1a n =13,∴a n =13n .在①中,令n =1,得a 1=13,适合a n =13n ,∴a n =13n .(2)∵b n =na n,∴b n =n ·3n .∴S n =3+2×32+3×33+…+n ·3n ,③∴3S n =32+2×33+3×34+…+n ·3n +1.④④-③得2S n =n ·3n +1-(3+32+33+…+3n ),即2S n =n ·3n +1-3(1-3n)1-3,∴S n =(2n -1)3n +14+34.21. 解 (1)设等差数列{a n }的首项为a 1,公差为d .因为a 3=7,a 5+a 7=26,所以⎩⎪⎨⎪⎧a 1+2d =7,2a 1+10d =26,解得⎩⎪⎨⎪⎧a 1=3,d =2.[4分]所以a n =3+2(n -1)=2n +1,S n =3n +n (n -1)2×2=n 2+2n .[6分](2)由(1)知a n =2n +1,所以b n =1a 2n -1=1(2n +1)2-1=14·1n (n +1) =14·⎝⎛⎭⎫1n -1n +1,[8分] 所以T n =14·(1-12+12-13+…+1n -1n +1)[10分]=14·(1-1n +1)=n 4(n +1), 即数列{b n }的前n 项和T n =n4(n +1).[12分]22.解 (1)当n =1时,a 1=13,当n ≥2时,a n =S n -S n -1,又S n =12-12a n ,所以a n =13a n -1,即数列{a n }是首项为13,公比为13的等比数列,故a n =⎝⎛⎭⎫13n.(2)由已知可得f (a n )=log 3⎝⎛⎭⎫13n=-n ,则b n =-1-2-3-…-n =-n (n +1)2,故1b n =-2⎝⎛⎭⎫1n -1n +1,又T n =-2⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1 =-2⎝⎛⎭⎫1-1n +1,所以T 2 012=-4 0242 013.(3)由题意得c n =(-n )·⎝⎛⎭⎫13n , 故U n =c 1+c 2+…+c n=-⎣⎡⎦⎤1×⎝⎛⎭⎫131+2×⎝⎛⎭⎫132+…+n ·⎝⎛⎭⎫13n , 则13U n =-⎣⎡⎦⎤1×⎝⎛⎭⎫132+2×⎝⎛⎭⎫133+…+n ·⎝⎛⎭⎫13n +1,两式相减可得 23U n =-⎣⎡⎦⎤⎝⎛⎭⎫131+⎝⎛⎭⎫132+…+⎝⎛⎭⎫13n -n ·⎝⎛⎭⎫13n +1 =-12⎣⎡⎦⎤1-⎝⎛⎭⎫13n +n ·⎝⎛⎭⎫13n +1 =-12+12·⎝⎛⎭⎫13n +n ·⎝⎛⎭⎫13n +1, 则U n =-34+34·⎝⎛⎭⎫13n +32n ·⎝⎛⎭⎫13n +1.。

天津市高三模拟考试(理科)数学试卷-带答案解析

天津市高三模拟考试(理科)数学试卷-带答案解析

天津市高三模拟考试(理科)数学试卷-带答案解析班级:___________姓名:___________考号:___________一、单选题1.集合{}24A x x => 和 {}51B x x =-<<,则()R A B ⋂=( )A .{}52x x -<<-B .{}22x x -<<C .{}21x x -<<D .{}21x x -≤<2.若21:|34|2,:02p x q x x -<<--,则p ⌝是q ⌝的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.函数()2114cos 22x x x xf x ---+=+的部分图象大致是( )A .B .C .D .4.为了了解一片经济林的生长情况 ,随机抽测了其中60株树木的底部周长(单位:cm ) , 所得数据均在区间[]80,130上,其频率分布直方图如图所示 ,则在抽测的60株树木中,树木的底部周长小于100cm 的棵数是( )A .18B .24C .36D .485.当曲线y 240kx y k -++=有两个不同的交点时, 实数k 的取值范围是( ) A .3(,0)4-B .35,4[)12-C .3[1,)4--D .3(,]4-∞-6.设,,1,1x y R a b ∈>>,若3x y a b == 2a b +=,则11x y+的最大值为( )A .4B .3C .2D .17.已知双曲线22:1124x y C -= ,点F 是C 的右焦点,若点P 为C 左支上的动点,设点P 到C 的一条渐近线的距离为d ,则||d PF +的最小值为( )A .2+B .C .8D .108.将函数()()cos 04f x x πωω⎛⎫=+> ⎪⎝⎭的图象向右平移4π个单位长度后得到函数()g x 的图象 若()g x 在5,44ππ⎛⎫ ⎪⎝⎭上单调递减 则ω的最大值为( ) A .14B .34C .12D .19.已知函数222,0()ln ,0x kx k x f x x x ⎧++⎪=⎨>⎪⎩ 若关于x 的不等式()f x k 的解集为[,][,]m n a b ⋃ 且n a <127232mn ab k +-< 则实数k 的取值范围为( )A .54,167⎛⎫⎪⎝⎭B .14,87⎛⎫ ⎪⎝⎭C .15,88⎛⎫ ⎪⎝⎭D .14,27⎡⎫⎪⎢⎣⎭二、填空题10.已知i 为虚数单位 则复数2021i =_______.11.若2nx ⎛ ⎝的展开式中二项式系数之和为256 则展开式中常数项是__________. 12.已知2x > 则42x x +-的最小值是______.13.圆柱的体积为34π 若该圆柱的两个底面的圆周在同一个球的球面上 则该球的体积为____________.三、双空题14.某志愿者召开春季运动会 为了组建一支朝气蓬勃、训练有素的赛会志愿者队伍 欲从4名男志愿者 3名女志愿者中随机抽取3人聘为志愿者队的队长 则在“抽取的3人中至少有一名男志愿者”的前提下“抽取的3人中全是男志愿者”的概率是___________;若用X 表示抽取的三人中女志愿者的人数 则()E X =___________.15.已知平面四边形ABCD AC BD ⊥ 3AB = 2AD = 712DC AB =则BAD ∠=______;动点E F 分别在线段DC CB 上 且DE DC λ= CF CB λ= 则AE AF ⋅的取值范围为____.四、解答题16.记ABC 的内角A B C 的对边分别为a b c 已知点D 为AB 的中点 点E 满足2AE EC = 且()()cos cos cos πsin a A a B C A C +-=-.(1)求A ;(2)若BC =DE =求ABC 的面积. 17.如图,正三棱柱111ABC A B C 中,E 是AC 中点.(1)求证:1AB 平面1BEC ;(2)若2AB =,1AA ,求点A 到平面1BEC 的距离;(3)当1A A AB 为何值时,二面角1E BC C --18.已知坐标平面内三点()()()2,4,2,0,1,1A B C ---. (1)求直线AB 的斜率和倾斜角;(2)若,,,A B C D 可以构成平行四边形且点D 在第一象限 求点D 的坐标; 19.已知等差数列{}n a 的前n 项和为n S 公差0d > 且231424,10a a a a =+=. (1)求数列{}n a 的通项公式; (2)若()*12111N n nT n S S S =++⋯+∈ 求n T . 20.已知函数()2e xf x x =.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)证明:当0x >时 ()3e 2e xf x ≥-.参考答案与解析1.D【分析】解出集合A 利用补集和交集的含义即可得到答案. 【详解】24x > 则2x >或<2x - 则{2A xx =<-∣或2}x > R{22}A x x =-≤≤∣{51}B x x =-<<∣ 则()R {21}A B xx ⋂=-≤<∣ 故选:D. 2.B【分析】首先解不等式得到p ⌝:2x ≥或23x ≤q ⌝:2x ≥或1x ≤- 再根据包含关系即可得到答案. 【详解】|34|2x -< 得2342x -<-< 即223x << 即p ⌝:2x ≥或23x ≤.由2102x x <--得220x x --< 即12x -<< q ⌝:2x ≥或1x ≤-.因为{|2x x ≥或1}x ≤-{|2x x ≥或2}3x ≤所以p ⌝是q ⌝的必要不充分条件. 故选:B 3.C【分析】由已知可得 ()04f = 可得出A 、B 项错误;根据()π0f > 可得出D 项错误. 【详解】由已知可得 ()f x 定义域为R 且()21104cos0442210f --+==+= 所以A 、B 项错误;又()()()()2211114cos 4cos 2222x x x x x x x xf x f x -------+-+-===++ 所以()f x 为偶函数. 又()22π1π1π1π1π4cos ππ4π02222f ------+-==>++ 所以D 项错误 C 项正确.故选:C. 4.B【分析】根据频率直方图中小矩形的面积代表这一组的频率进行求解即可. 【详解】由频率直方图可知:树木的底部周长小于100cm 的棵数为:(0.0150.025)106024+⨯⨯=故选:B 5.C【分析】作曲线y =24y kx k =++的图象 计算出直线24y kx k =++与曲线y =时对应的实数k 的值 数形结合可得结果.【详解】对方程y =224y x =- 即()2204y x y +=≥所以曲线y 224x y +=的上半圆对直线方程变形得()24y k x =++ 该直线过定点()2,4P - 且斜率为k 如下图所示:当直线24y kx k =++与半圆y 2= 解得34k =-当直线24y kx k =++过点()2,0A 时 440k += 解得1k =-.由图形可知 当曲线y 24y kx k =++有两个相异的交点时 31,4k ⎡⎫∈--⎪⎢⎣⎭.故选:C 6.C【分析】先解出,x y 再根据对数性质化简 最后根据基本不等式求最值. 【详解】3log 3,log 3x y a b a b x y ==∴==333log l 1og log ()1a b ab x y∴+=+=29a b ab +=≤(当且仅当2a b =时取等号)因此3log 1192y x +≤=即11x y+的最大值为2 故选:C【点睛】本题考查指数式与对数式转换、对数运算性质、基本不等式求最值 考查综合分析求解能力 属中档题. 7.A【分析】设双曲线左焦点为(40)F '-,,求出其到渐近线的距离 利用双曲线定义将||d PF +转化为2||a PE F P ++' 利用当,,P F E '三点共线时 2F a PE P ++'取得最小值 即可求得答案.【详解】由双曲线22:1124x y C -=,可得2a b == (40)F ,设双曲线左焦点为(40)F '-,不妨设一条渐近线为:b l y x x a =-= 即0x = 作PE l ⊥ 垂足为E 即||PE d = 作F H l '⊥,垂足为H 则||2F H '==因为点P 为C 左支上的动点所以2PF PF a '-= 可得2PF a PF '=+ 故2|2|d FP PE a PF a PE F P '+=++=++'由图可知 当,,P F E '三点共线时 即E 和H 点重合时 2||a PE F P ++'取得最小值最小值为2||2F H '⨯=即||d PF +的最小值为2 故选:A . 8.B【分析】求得()cos 44g x x ωππω⎛⎫=-+ ⎪⎝⎭ 由5,44x ππ⎛⎫∈ ⎪⎝⎭可求得4444x πωπππωωπ<-+<+ 结合函数()g x 的单调性可得出关于ω的不等式 由此可得出ω的最大值.【详解】将()f x 的图象向右平移4π个单位长度后得到()cos 44g x x ωππω⎛⎫=-+ ⎪⎝⎭的图象. 因为5,44x ππ⎛⎫∈ ⎪⎝⎭所以4444x πωπππωωπ<-+<+ 因为()g x 在5,44ππ⎛⎫⎪⎝⎭上单调递减 所以4πωππ+≤ 304ω<≤ 所以ω的最大值为34.故选:B. 9.A【分析】易知0k > 由表达式画出函数图像 再分类讨论y k =与函数图像的位置关系 结合不等关系即可求解【详解】易知当0k > 0x 时 22227()224k f x x kx k x k ⎛⎫=++=++ ⎪⎝⎭()f x 的图象如图所示.当直线y k =在图中1l 的位置时 22724k k k << 得1427k <<,m n 为方程2220x kx k k ++-=的两根即2220x kx k k ++-=的两根 故22mn k k =-; 而1ab =则2211327212122232mn ab k k k k k k +-=-+-=-+<即2644850k k -+< 解得1588k << 所以1427k <<;当直线y k =在图中2l 的位置时 22k k 且0k > 得102k <;此时0n = 则112712232mn ab k k +-=-< 得51162k <≤.所以 k 的取值范围是54,167⎛⎫⎪⎝⎭.故选:A【点睛】本题考查函数零点与方程根的关系 数形结合思想 分类讨论思想 属于中档题 10.i .【解析】直接利用虚数单位i 的运算性质得答案. 【详解】20214505()i i i i ==; 故答案为:i .【点睛】本题考查复数代数形式的乘除运算 考查了虚数单位i 的性质 是基础题. 11.28【分析】根据二项式展开式的系数和公式可得n 的值 然后再利用展开式通项公式求得常数项.【详解】解:因为2nx ⎛ ⎝的展开式中二项式系数之和为256 所以2256n= 故8n = 即该二项式为882223x x x -⎛⎫⎛⎫=- ⎪⎝⎭⎝设其展开式的通项为1k T + 则1k T +=()()()2216282338811kk k kkk k k C xx C x----⎛⎫-=- ⎪⎝⎭当216203k k --=时 即6k = 此时该项为()668128C ⨯-=故答案为:28. 12.6【分析】根据给定条件 利用均值不等式计算作答.【详解】2x >则44(2)22622x x x x +=+-+≥=-- 当且仅当422x x =-- 即4x =时取“=” 所以42x x +-的最小值是6. 故答案为:6 13.43π 【分析】利用柱体的体积公式求出圆柱的高 由勾股定理求出球的半径 根据球的体积公式可得结果.【详解】设圆柱的高为h圆柱体积为34π 234h ππ∴⨯⨯=⎝⎭1h = 设球半径为R 则()22221R =+244R = 可得1R =∴球的体积为34433R ππ= 故答案为43π.【点睛】本题主要考查圆柱与球体的性质 以及柱体与球体的体积公式 意在考查综合运用所学知识解答问题的能力 考查了空间想象能力 属于中档题. 14.217 97##219 【分析】由条件概率公式计算在“抽取的3人中至少有一名男志愿者”的前提下“抽取的3人中全是男志愿者”的概率 由古典概型概率公式计算事件0,1,2,3X =的概率 再由期望公式公式得结论.【详解】由题意三人全是男志愿者 即事件X 0= 34374(0)35C P X C === 21433718(1)35C C P X C ===()12433712235C C P X C === 33371(3)35C P X C ===181219()1233535357E X =⨯+⨯+⨯= 再记全是男志愿者为事件A 至少有一名男志愿者为事件B 4()(0)35P A P X ===34()1(3)35P B P X =-== 4()235(|)34()1735P AB P A B P B ===.故答案为:217;97. 15.2π3##120︒ 819,644⎡⎤⎢⎥⎣⎦【分析】根据向量基本定理和向量垂直的数量积为0计算得到1cos 2BAD ∠=- 求出2π3BAD ∠= 建立直角坐标系 写出点的坐标 表达出向量,AE AF 的坐标 从而求出向量数量积的关系式 求出取值范围. 【详解】712AC AD DC AD AB =+=+BD AD AB =- 所以()22757121212AC BD AD AB AD AB AD AB AD AB ⎛⎫⋅=+⋅-=-⋅- ⎪⎝⎭57554cos 9cos 0121242AB AD BAD BAD =-⋅⋅∠-⨯=--∠= 解得:1cos 2BAD ∠=-因为()0,πBAD ∠∈ 所以2π3BAD ∠=以A 作坐标原点 AB 所在直线为x 轴 垂直AB 的直线为y 轴建立平面直角坐标系 则()()(30,0,3,0,,4A B DC ⎛- ⎝因为DE DC λ= CF CB λ= 01λ≤≤ 所以设((),,E m F n t由()71,0,04m λ⎛⎫+= ⎪⎝⎭得:714m λ=-39,,44nt λ⎛⎛-= ⎝⎝解得:93,44n t λ=+= 所以)279363639144416164AE AF λλλλ⎛⎫⎛⎫⋅=-+=-+ ⎪⎪⎝⎭⎝⎭、26318116264λ⎛⎫=-+ ⎪⎝⎭ 当12λ=时 26318116264AE AF λ⎛⎫⋅=-+ ⎪⎝⎭取得最小值 最小值为8164 当0λ=或1时 取得最大值 最大值为94所以AE AF ⋅的取值范围是819,644⎡⎤⎢⎥⎣⎦故答案为:2π3 819,644⎡⎤⎢⎥⎣⎦16.(1)2π3A =;【分析】(1)由三角形内角性质及正弦定理边角关系可得sin A A = 进而求角的大小;(2)在△ABC 、△ADE 中应用余弦定理可得2219b c bc ++=、32b c =求出b 、c 再由三角形面积公式求面积.(1)由πA B C ++=得:()()cos cos cos sin a B C a B C A C -++-=- 即2sin sin cos sin a B C A C =-由正弦定理得sin sin sin cos sin A B C B A C =在△ABC 中sin 0B > sin 0C > 故sin A A = 则tan A =因为()0,πA ∈ 所以2π3A =. (2)在△ABC 中 由余弦定理2222cos a b c bc A =+- 得2219b c bc ++=在△ADE 中 由余弦定理得2247943b c bc ++= 所以()22224794319b c bc b c bc ++=++ 化简得225224810b bc c --= 即()()2326270b c b c -+= 所以32b c = 代入2219b c bc ++=得:3b = 2c =则△ABC 的面积12πsin 3sin 23ABC S bc A ===. 17.(1)证明见解析(3)1【分析】(1) 连接1CB 交1BC 于点F ,连接EF ,根据中位线即可证明1EF AB ∥,再利用线面平行判定定理即可证明;(2)根据正三棱柱的几何特征,求出各个长度及1,BEC ABE S S ,再用等体积法即可求得;(3)建立合适空间直角坐标系,设出1,AB A A 长度,找到平面1EBC 及平面1BC C 的法向量,建立等式,求出1,AB A A 长度之间的关系即可证明.【详解】(1)证明:连接1CB 交1BC 于点F ,连接EF 如图所示:因为三棱柱111ABC A B C所以四边形11BB C C 为平行四边形所以F 为1CB 中点因为E 是AC 中点所以1EF AB ∥因为EF ⊂平面1BEC ,1AB ⊄平面1BEC所以1AB 平面1BEC ;(2)由题知,因为正三棱柱111ABC A B C所以1CC ⊥平面ABC且ABC 为正三角形因为2AB =,1AA所以BE =1EC 1BC 所以1BEC △为直角三角形11322BEC S =112ABE S =⨯△ 记点A 到平面1BEC 的距离为h则有11A BEC C ABE V V --= 即111133BEC ABE S h S CC ⨯⨯=⨯⨯即131323h ⨯⨯=解得h =故A 到平面1BEC (3)由题,取11A C 中点为H ,可知1EH CC ∥所以EH ⊥平面ABC因为ABC 为正三角形,E 是AC 中点所以BE AC ⊥故以E 为原点,EC 方向为x 轴,EH 方向为y 轴,EB 方向为z 轴建立如图所示空间直角坐标系不妨记1AB a,A A b所以1300000000222a a a E ,,,B ,,,,b,,,,C C 1133,,0,0,,0,,0222,a a ab EB b BC CC记平面1EBC 的法向量为()111,,x n y z =则有100n BC n EB ⎧⋅=⎪⎨⋅=⎪⎩即1111020a x by z ⎧+=⎪⎪=取12x b ,可得()2,,0b a n =-;记平面1BC C 的法向量为()222,,m x y z =则有1100n CC n BC ⎧⋅=⎪⎨⋅=⎪⎩即2222002by a x by z =⎧⎪⎨+=⎪⎩ 取2x =可得()3,0,1m =;因为二面角1E BC C --所以cos ,m nm n m n ⋅===解得: a b = 即当11A AAB =时,二面角1E BC C --18.(1)斜率为1 倾斜角为π4;(2)()3,5;【分析】(1)根据直线的斜率公式可求得AB 的斜率 进而求得倾斜角;(2)根据平行四边形对边平行 可得对边斜率相等 设(),D x y ,由斜率公式列出方程组即可求得答案. 【详解】(1)由题意可知直线AB 的斜率为4122-=--直线倾斜角范围为[0,π) 所以直线AB 的倾斜角为π4;(2)如图 当点D 在第一象限时 ,CD AB BD AC k k k k ==设(),D x y 则11114212y x y x -⎧=⎪⎪+⎨+⎪=⎪--+⎩ 解得35x y =⎧⎨=⎩故点D 的坐标为()3,5;19.(1)2n a n =(2)1n nT n =+【分析】(1)利用等差数列下标和性质得2310a a += 联立解得234,6a a == 求出d 值 写出通项即可;(2)利用等差数列前n 和公式求得(22)(1)2n n n S n n +==+ 则1111n S n n =-+ 最后利用裂项相消求和即可. 【详解】(1)等差数列{}n a 公差0d > 23142324,10a a a a a a =+=+=. 解得234,6a a == 或236,4a a == 但此时20d =-<故2d = ()()224222n a a n d n n ∴=+-=+-=(2)12422a a d =-=-= 则(22)(1)2n n n S n n +==+ 1111(1)1n S n n n n ∴==-++ 1211111111122311n n n T S S S n n n ⎛⎫⎛⎫⎛⎫∴=+++=-+-++-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭ 20.(1)3e 2e 0x y --=;(2)证明见解析.【分析】(1)先求出切线的斜率 再求出切点即得解;(2)令()()3e 2e x F x f x =-+ 利用导数求出函数的最小值即得证.【详解】(1)解:由题得()22e e x x f x x x '=+ 所以()13e f '=又()1f =e 所以切线方程为()e 3e 1y x -=- 即3e 2e 0x y --=.(2)证明:令()()23e 2e e 3e 2e x x x F x f x x =-+=-+()()()()222e e 3e e 23e 31x x x x x F x x x x x x x '=+-=+-=+-当()0,1x ∈时 ()0F x '< 当()1,x ∈+∞时 ()0F x '>.所以()F x 在()0,1上单调递减 在()1,+∞上单调递增.所以当0x >时 ()min ()10F x F == 0x ∴>时 ()0F x ≥故当0x >时 ()3e 2e x f x ≥-.。

2019高三3月理科清北班周测

2019高三3月理科清北班周测

2019高三3月理科清北班数学周测一、选择题:1.已知集合A ={x |2x -2x -3≤0},B ={x |y =ln (2-x )},则A∩B = A .(1,3) B .(1,3] C .[-1,2) D .(-1,2)2.下图是相关变量,x y 的散点图,现对这两个变量进行线性相关分析,方案一:根据图中所有数据,得到线性回归方程11y b x a =+,相关系数为1r ;方案二:剔除点(10,21),根据剩下数据得到线性回归方程:22y b x a =+,相关系数为2r .则( )A. 1201r r <<<B. 2101r r <<<C. 1210r r -<<<D. 2110r r -<<<3.我国古代有着辉煌的数学研究成果.《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、……、《辑古算经》等10部专著,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这10部专著中有7部产生于魏晋南北朝时期.某中学拟从这10部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是魏晋南北朝时期的专著的概率为A .1415 B .115 C .29 D .794.若x ∈(1e-,1),a =lnx ,b =ln 1()2x ,c =ln xe ,则A .b >c >aB .c >b >aC .b >a >cD .a >b >c5.设a =sin xdx π⎰,则6(的展开式中常数项是 A .160 B .-160 C .-20 D .20 6.执行如图所示的程序框图。

若p =0.8,则输出的n = A .3 B .4 C .5 D .67.把边长为1的正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,形成三棱锥C ABD -的正视图与俯视图如下图所示,则侧视图的面积为A.12 B. C. D. 14 8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2a c b-=cos cos CB ,b =4,则△ABC 的面积的最大值为A .B .C .D 9.某校象棋社团组织中国象棋比赛,采用单循环赛制,即要求每个参赛选手必须且只须和其他选手各比赛一场,胜者得2分,负者得0分,平局两人各得1分.若冠军获得者得分比其他人都多,且获胜场次比其他人都少,则本次比赛的参赛人数至少为A.4B.5C.6D.710.如图,已知函数()sin()(0,||)2f x x πωϕωϕ=+><的图象与坐标轴交于点1,,(,0)2-A B C ,直线BC 交()f x 的图象于另一点D ,O 是∆ABD 的重心.则∆ACD 的外接圆的半径为A .2B .6 C .3D .8 11.已知,a b R ∈,直线2y ax b π=++与函数()tan f x x =的图象在4x π=-处相切,设()2x g x e bx =+a +,若在区间[]1,2上,不等式()22m g x m ≤≤-恒成立,则实数mA .有最小值e -B .有最小值eC .有最大值eD .有最大值1e +12.已知P 为椭圆22143x y +=上一个动点,过点P 作圆22(1)1x y ++=的两条切线,切点分别是A ,B ,则⋅的取值范围为A .[-32,+∞) B .[-32,569] C .3,569] D .3,+∞)二、填空题:13.已知向量a 与b 的夹角为30°,且|a |=1,|2a -b |=1,则|b |=_________.14.已知实数x ,y 满足2020()0x y x y y y m -≤⎧⎪+≥⎨⎪-≤⎩,若3z x y =+的最大值为5,则正数m 的值为____.15.双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,点M ,N 分别在双曲线的左右两支上,且12//MN F F ,1212MN F F =,线段1F N 交双曲线C 于点Q ,1125F Q F N =,则该双曲线的离心率是 ____. 16.如图,在长方体1111ABCD A B C D -中,12AA AB ==,1BC =,点P 在侧面11A ABB 上.若点P 到直线1AA 和CD 的距离相等, 则1A P 的最小值是____. 三、解答题:17.(本小题满分12分)已知数列{}n a 满足2n n S a n =-()*n ∈N .(1)证明:{}1n a +是等比数列;(2)求13521...n a a a a +++++()*n ∈N .18. (本小题满分12分)如图,四棱锥P-ABCD 的底面ABCD 为平行四边形,DA=DP ,BA=BP . (1)求证:PA BD ⊥;(2)若,60,2DA DP ABP BA BP BD ⊥∠====,求二面角D —PC —B 的正弦值. 19.(本小题满分12分)据中国日报网报道:2017年11月13日,TOP500发布的最新一期全球超级计算机500强榜单显示,中国超算在前五名中占据两席,其中超算全球第一“神威太湖之光”完全使用了国产品牌处理器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三理科数学第周测题
一.选择题(每题5分)
1.已知集合{1,2},{|10},A B x mx =-=+=若,A B B = 则所有实数m 的值组成的集合是( )
.{1,2}A - 1.{1,}2B -
1.{1,0,}2C - 1
.{1,0,}2
D -
2.已知,,a b c R ∈,命题“若3,a b c ++=则2
2
2
3"a b c ++≥的否命题是 ( ) A.若3,a b c ++≠则2223a b c ++<; B.若3,a b c ++=则222
3a b c ++<; C. A.若3,a b c ++≠则2223a b c ++≥; D. 若3,a b c ++≥则222
3a b c ++=;
3.(2012年高考(福建理))下列不等式一定成立的是
( )
A .2
1lg()lg (0)4
x x x +>>
B .1
sin 2(,)sin x x k k Z x
π+≥≠∈ C .212||()x x x R +≥∈
D .
2
1
1()1
x R x >∈+ 4.(2012年高考(山东理))已知变量,x y 满足约束条件222441x y x y x y +≥⎧⎪
+≤⎨⎪-≥-⎩
,则目标函数3z x y
=-的取值范围是 ( )
A .3[,6]2-
B .3[,1]2--
C .[1,6]-
D .3[6,]2
- 5. 1. (2011年高考山东卷理科4)不等式|5||3|10x x -++≥的解集为 (A )[-5.7] (B )[-4,6] (C )(,5][7,)-∞-⋃+∞ (D )(,4][6,)-∞-⋃+∞ 6.已知0,0,2,a b a b >>+=则14
y a b
=
+的最小值是( ) 7.2A .4B 9
.2C .5D 7. 若11
0,a b
<<则下列不等式正确的有( )
①;a b ab +< ②;a b >③ ;a b < ④ 2.b a
a b
<>
.A 1个 .B 2个 .3C 个 .4D 个
8.已知函数b x a x f x
-+=)(的零点)1,(0+∈k k x )(Z k ∈,且常数b a ,分别满足23a
=,
32b =,则=k ( )
(A )1; (B ) 0; (C ) 1-; (D ) 2
选择题答案:
二、填空题(每题5分)
9.若角α的终边经过点(1,)P m ,且tan 2,α=-则sin α=________________
10.在ABC ∆中,C B C B A sin sin sin sin sin 2
2
2
⋅-+=,则A ∠=__________________.
11.函数lg(sin x 的定义域为__________________ 12.若tan 3α=,则sin(5)cos(3)______________παπα--+=
13.(2012年高考(上海春))若不等式2
10x kx k -+->对(1,2)x ∈恒成立,则实数k 的
取值范围是______.
14.(理)对R b a ∈、,记⎩⎨⎧<≥=b
a b b
a a
b a ,,},max{,设1()1f x x =-,22()65f x x x =-+-,
函数()max
g x ={}12(),()f x f x ,若方程()g x a =有四个不同的实数解,则实数a 的取值
范围是____________________.
三、解答题(18题14分,其余题目12分) 15已知函数1π()sin
cos sin 2222x x f x x ⎛
⎫=++ ⎪⎝
⎭. (1) 写出()f x 的最小正周期以及单调区间; (2)若(0,)x π∈,求)(x f 的值域。

16.设集合2
3
{|4},{|1}3
A x x
B x x =<=>+, (1)求集合;A B
(2)若不等式2
20x ax b ++<的解集为B,求,a b 的值.
17.为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素x ,y 的含量(单位:毫克).下表是乙厂的5件产品的测量数据:
(1)已知甲厂生产的产品共98件,求乙厂生产的产品数量;
(2)当产品中的微量元素x ,y 满足175x ≥且75y ≥,该产品为优等品,用上述样本数据估计乙厂生产的优等品的数量;
(3)从乙厂抽出的上述5件产品中,随即抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值(即数学期望).
18.已知函数()ln()f x x x a =-+在1x =处取得极值. (1)求实数a 的值;
(2)若关于x 的方程2()2f x x x b +=+在1
[,2]2
上恰有两个不相等的实数根,求实数b 的取值范围.。

相关文档
最新文档