一次函数的定义附答案
八年级下数学刷题答案
八年级下数学刷题答案第二十章 一次函数第一节 一次函数的概念 20.2一次函数的概念【知识要点】1.一次函数的概念一般地,解析式形如(0)y kx b k =+≠的函数叫一次函数,这里特别强调k ≠0,如果0k =,则解析式就是一个常值函数,不再是一次函数,而b 则可取零也可以不取零。
当k =0且0b =时,则解析式变成0y =,它是特殊的常值函数,其图像即为x 轴,若k =0,0b ≠时,它是常值函数,其图像是一条平行于x 轴的直线。
一般地,对于任意一个常值函数,它的图像是一条垂直于x 轴的直线。
正比例函数的特殊的一次函数。
2.待定系数法求一次函数解析式 求一次函数解析式的一般步骤:(1) 代入将两个变量 x 、y 的两组对应值分别代入(0)y kx b k =+≠中,注意代入字母的值不要混淆,若这一步出错,后面的计算是徒劳的。
(2) 解这个二元一次方程组,得k 、b 的值。
(3) 将k 、b 代入(0)y kx b k =+≠中,求得一次函数解析式。
需要注意的是,经过两个点可以确定一条直线,但是只有当这两个点的横坐标不相等、纵坐标也不相等时,才能确定一个一次函数图像。
3. 一次函数的定义域每一个函数都有它的定义域,一次函数的定义域是一切实数,也可以是部分实数。
用解析法给出一次函数时,如果对函数的定义域不加以说明,那么就意味着定义域由解析式确定为一切实数,如果给出的这个一次函数的定义域不是一切实数,那么必须指明。
【典型例题】1. 一次函数的概念【例1】下列解析式中,哪些是一次函数?① 15y x=+ ②y kx b =+ ③2(1)y k x b =++ ④163s t =+⑤8h t = ⑥1x y x+= ⑦3m n = ⑧32q m =-【分析】可以根据一次函数的定义来区分。
【解答】一次函数有③、⑤、⑦、⑧。
【点评】②、③中,为什么③是一次函数而②不是呢,因为一次函数(0)y kx b k =+≠电脑定义中k 必须不等于零,②中没有对k 作说明,如果k 等于零,则不能成为一次函数,而在③中,由于一次项系数是21k +,而不管k 取何值,21k +均不等于零;本题要注意抓住一次函数定义的实质。
一次函数
一次函数知识点聚焦一、函数的概念定义:在某一变化过程中,可以取不同数值的量,叫做变量,例如x 和y ,对于x 的每一个值,y 都有惟一..的值与之对应,我们就说x 是自变量,y 是因变量,此时也称y 是x 的函数. 二、一次函数概念:1.一次函数的概念:一般地,如果y =kx +b(k 、b 是常数,k ≠0),那么y 叫做x 的一次函数.特别地,当b =0时,一次函数y =kx +b 就成为y =kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数.由定义知:y 是x 的一次函数⇔它的解析式是y =kx +b ,其中k 、b 是常数,且k ≠0.2.一次函数解析式y =kx +b(k ≠0)的结构特征:(1)k ≠0;(2)x 的次数是1;(3)常数项b 可为任意实数.3.正比例函数解析式y =kx(k ≠0)的结构特征:(1)k ≠0;(2)x 的次数是1;(3)没有常数项或者说常数项为0.4. 正比例函数是一次函数,但一次函数y =kx +b(k ≠0)不一定是正比例函数,只有当b=0时才是正比例函数。
三、一次函数的图像1.一次函数y =kx +b(k≠0)的图象是经过点(0,b)和(-b k,0)的一条直线.2.正比例函数y =kx(k ≠0)的图象是经过点(0,0)和(1,k)的一条直线.注意:画一次函数的图像,只需要过图像上两点作直线即可,一般取(0,b )、(-b k,0)两点。
四、一次函数图像的性质1. 一次函数y =kx +b ,当k >0时,y 随x 的增大而增大,图象一定经过第一、三象限;当k <0时,y 随x 的增大而减小,图象一定经过第二、四象限.b>0时,直线交y 轴正半轴,b<0时,直线交y 轴负半轴。
2.一次函数y=kx+b(k ≠0)的图象是经过点(0,b)且平行于直线y=kx (k ≠0)的一条直线3. 平移规律在原有函数的基础上“k 值正右移,负左移;b 值正上移,负下移”。
5.3 一次函数(答案版)
第5章一次函数一次函数知识提要1.一次函数与正比例函数:一般地,函数y=kx+b(k,b都是常数,且k≠0)叫做一次函数.当b=0时,一次函数y=kx+b就成为y=kx,叫做正比例函数,常数k叫做比例系数.2.待定系数法:一般地,已知一次函数的自变量与函数的两对对应值,可以按以下步骤求这个一次函数的表达式:(1)设所求的一次函数表达式为y=kx+b,其中k,b是待确定的常数,k≠0.(2)把两对已知的自变量与函数的对应值分别代入y=kx+b,得到关于k,b的二元一次方程组.(3)解这个关于k,b的二元一次方程组,求出k,b的值.(4)把求得的k,b的值代入y=kx+b,就得到所求的一次函数表达式.典型例题例1:已知函数y=(m-4)x+m2-16.(1)m为何值时,这个函数是一次函数;(2)m为何值时,这个函数是正比例函数.解:(1)根据一次函数的定义,得m-4≠0,∴m≠4时,这个函数是一次函数;(2)根据正比例函数的定义,得m-4≠0且m2-16=0,∴m=-4时,这个函数是正比例函数.例2:设有三个变量x,y,z,其中y是x的正比例函数,z是y的正比例函数.(1)求证:z是x的正比例函数;(2)如果z=1时,x=4,求出z关于x的函数关系式.解:(1)证明:设y =kx (k ≠0),z =ny (n ≠0),则有z =knx ,故z 是x 的正比例函数;(2)将z =1,x =4代入z =knx ,得1=4kn ,解得kn =14,则z =14x .一、选择题 1.下列y 关于x 的函数中,是正比例函数的为( C )A .y =x 2B .y =2xC .y =x 2D .y =x +122. 下列函数(1)y =πx ;(2)y =2x -1;(3)y =22-3x ;(4)y =x 2-1中,是一次函数的有( B )A .4个B .3个C .2个D .1个【解析】B 函数(1)y =πx ;(2)y =2x -1;(3)y =22-3x 符合一次函数的一般形式,故(1),(2),(3)正确;(4)y =x 2-1不符合一次函数的一般形式,故(4)不符合题意.3. 已知函数y =(k -1)xk 2+1为一次函数,则k 的值为( C )A .k ≠±1B .k =±1C .k =-1D .k =1【解析】C 根据一次函数的定义,得k 2=1且k -1≠0,解得k =±1且k ≠1,∴k =-1.4. 若y=x+2-3b 是正比例函数,则b 的值是 ( B )A . 0B .32C .-32D .-23 【解析】 B 由正比例函数的定义可得:2-3b=0,解得:b=32. 5. 某小汽车的油箱可装汽油30升,原有汽油10升,现再加汽油x 升.如果每升汽油2.6元,求油箱内汽油的总价y (元)与x (升)之间的函数关系是(D )A .y=2.6x (0≤x≤20)B .y=2.6x+26(0<x <30)C .y=2.6x+10(0≤x <20)D .y=2.6x+26(0≤x≤20)【解析】D 依题意有y=(10+x )×2.6=2.6x+26,0≤汽油总量≤30,则0≤x≤20.6. 已知y =(m -3)x|m|-2+1是一次函数,则m 的值是( A )A .-3B .3C .±3D .±2练习【解析】A 由y =(m -3)x|m|-2+1是一次函数,得⎩⎪⎨⎪⎧|m|-2=1,m -3≠0,解得m =-3. 7. 某水池现有水100m 3,每小时进水20m 3,排水15m 3,t 小时后水池中的水为Qm 3,它的解析式为( C )A .Q=100+20tB .Q=100-15tC .Q=100+5tD .Q=100-5t【解析】C 由题意得:Q=100+20t -15t=100+5t8. 小林购买一部手机想入网,中国联通130网收费标准是月租费30元,每月来电显示6元,本地电话费每分钟0.4元;中国电信“神州行”储值卡收费标准是本地电话费每分钟0.6元,月租费、来电显示费全免,小林的亲戚朋友都在本地,他想拥有来电显示服务,且估计他每月通话时间都在3h 以上,则小林应选择(A )更省钱.A .中国联通B .“神州行”储值卡C .一样D .无法确定【解析】A 设通话时间为x 分钟,则联通收费为(0.4x+36)元,神州行收费为0.6x 元, 3h=180分钟,得通话时间在3小时时联通收费为0.4×180+36=108元,神州行收费为0.6×180=108元,即通话时间在3小时时,收费一样.而在3h 以上时0.4x+36<0.6x ,故选择联通.9.一个贮水池中贮水100 m 3,若每分钟排水2 m 3,则排水时间t (单位:min)与排水量y (单位:m 3)之间的函数关系式为( A )A .y =2tB .y =100+2tC .y =100-2tD .y =1002t【解析】A ∴排水速度是每分钟排水2 m 3,∴排水量y 随排水时间t 的变化关系式为y =2t .二、填空题1.已知函数y=(k+2)x+k 2﹣4,当k≠-【解析】根据一次函数定义得,k+2≠0,解得k≠-2.2. (凉山州中考)已知函数y =2x2a +3+a +2b 是正比例函数,则a =_-1_____,b =21____. 3. 设0<k <1,关于x 的一次函数y=kx+ k1 (1-x),当1≤x≤2时y 的最大值是k______. 【解析】原式可化为:y=(k -k 1 )x+ k 1,∴0<k <1,∴k - k1<0,∴y 随x 的增大而减小,∴1≤x≤2,∴当x=1时,y 最大=k .故答案为:k .4. 从2001年2月21日零时起,中国电信执行新的固定电话收费标准,其中本地网营业区内通话费是:前3分钟是0.2元(不足3分钟近3分钟计算),以后每分钟加收0.1元(不足1分钟按1分钟科计算),现有一个学生星期天打本地网营业区内电话t 分钟(t >3)应交电话费(0.1t -0.1)______元.【解析】依题意得,打电话t 分钟(t >3)应交电话费为:0.1(t -3)+0.2=(0.1t -0.1)元5. 小英存入银行2000元人民币,年利率为x ,两年到期时,本息和为y 元,则y 与x 之间的函数关系式是______,若年利率为7%,两年到期时的本息和为______元. 【解析】∴本息和=本金×(1+利率),∴一年后的本息和为:2000×(1+x ),两年后本息和y=2000×(1+x )(1+x )=2000(1+x )2,当x=7%时,y=2289.8元.故答案为:y=2000(1+x )2,2289.8.6. 某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y (单位:元)与购书数量x (单位:本)之间的函数关系________.【解析】⎩⎨⎧>+≤≤=)20(10020)200(25x x x x y 根据20本及以下单价为25元,20本以上,超过20本的部分打八折分别求出付款金额y 与购书数x 的函数关系式,再进行整理即可得出答案: 根据题意得:⎩⎨⎧>-⨯+⨯≤≤=)20)(20250.82052)200(25x x x x y (,即⎩⎨⎧>+≤≤=)20(10020)200(25x x x x y 。
一次函数难题经典例题及答案
一次函数难题经典例题及答案知识点一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b ……①和y2=kx2+b ……②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
第12讲一次函数
考点知识精讲
考点三 一次函数图象的性质
一次函数y=kx+b,当k>0时,y随x的增大而 增大 ,图象一定经 过第 一、三 象限;当k<0时,y随x的 增大 而减小,图象一定经过第 二、四 __________象限. 考点四 一次函数的应用
用一次函数解决实际问题的一般步骤为:①设定实际问题中的变量 ;②建立一次函数关系式;③确定自变量的取值范围;④利用函数性质解 决问题;⑤答.
第12讲 一次函数
考点知识精讲
考点一 一次函数的定义
一般地,如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数.
特别地,当b= 0 时,一次函数y=kx+b就成为 y=kx(k是常数,
正比例函数. k≠0),这时,y叫做x的______________. 1.由定义知:y是x的一次函数⇔它的解析式是 y=kx+b ,其中k 、b是常数,且k≠0. 2.一次函数解析式y=kx+b(k≠0)的结构特征: (1)k ≠ 0;(2)x的次数是1;(3)常数项b可为任意实数. 3.正比例函数解析式y=kx(k≠0)的结构特征: (1)k ≠ 0;(2)x的次数是 1 ;(3)没有常数项或者说常数项为 0 .
6.如右图所示,直线l过A、B两点,A(0,-1),
B(1,0),则直线l的解析式为
y=x-1 .
举
一
反
三
7.小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山 顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路
长的2倍.小颖在小亮出发后50 min才乘上缆车,缆车的平均速度为180
b =5 , 2 解得 k=1, 4
1 5 所以 y 乙= x+ . 4 2
专题12 一次函数(知识点串讲)(解析版)
专题12 一次函数知识网络重难突破一. 一次函数的认识一般地,形如y=kx+b(k、b为常数,且k≠0)的函数叫做一次函数.正比例函数也是一次函数,是一次函数的特殊形式.典例1.(2018春•青龙县期末)下列关系式中:y=﹣3x+1、y、y=x2+1、y x,y是x的一次函数的有()A.1个B.2个C.3个D.4个【答案】B【解析】解:函数y=﹣3x+1,y,y=x2+1,y x中,是一次函数的是:y=﹣3x+1、y x,共2个.故选:B.【点睛】利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.典例2.(2018春•颍东区期末)已知函数y=(m﹣1)x|m|+5m是一次函数,则m的值为()A.1 B.﹣1 C.0或﹣1 D.1或﹣1【答案】B【解析】解:由题意可知:解得:m =﹣1 故选:B .典例3.(2018秋•浦东新区期末)已知函数y =(m ﹣1)x+m 2﹣1是正比例函数,则m =____. 【答案】﹣1【解析】解:由正比例函数的定义可得:m 2﹣1=0,且m ﹣1≠0, 解得:m =﹣1, 故答案为:﹣1.【点睛】由正比例函数的定义可得m 2﹣1=0,且m ﹣1≠0.本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y =kx 的定义条件是:k 为常数且k ≠0,自变量次数为1. 典例4.(2017秋•沙坪坝区校级期末)若函数y =(k ﹣2)x |k|﹣1是正比例函数,则k =____.【答案】-2【解析】解:∵函数y =(k ﹣2)x |k|﹣1是正比例函数,∴,解得k =﹣2, 故答案为:﹣2.【点睛】根据正比例函数的定义可得|k|﹣1=1,且k ﹣2≠0,再解方程即可.此题主要考查了正比例函数的定义,关键是掌握形如y =kx (k 是常数,k ≠0)的函数叫做正比例函数.二. 一次函数的图象与性质1.一次函数y =kx +b(k≠0)的图象是一条经过点(0,b )、()的直线,一次函数y =kx +b 的图象也称为直线y =kx +b. 2.一次函数y =kx +b 的性质(1)增减性⎩⎪⎨⎪⎧k >0,y 随x 的增大而增大k <0,y 随x 的增大而减小(2)图象所过象限⎩⎪⎨⎪⎧k >0,b >0:第一、二、三象限k >0,b <0:第一、三、四象限k <0,b >0:第一、二、四象限k <0,b <0:第二、三、四象限(3)倾斜度⎩⎪⎨⎪⎧|k|越大,直线越接近y 轴|k|越小,直线越远离y 轴典例1.(2017秋•太仓市期末)如图,三个正比例函数的图象分别对应函数关系式:①y =ax ,②y =bx ,③y =cx ,将a ,b ,c 从小到大排列并用“<”连接为( )A .a <b <cB .c <a <bC .c <b <aD .a <c <b【答案】D【解析】解:根据三个函数图象所在象限可得a <0,b >0,c >0, 再根据直线越陡,|k|越大,则b >c . 则b >c >a , 即a <c <b . 故选:D .【点睛】根据直线所过象限可得a <0,b >0,c >0,再根据直线陡的情况可判断出b >c ,进而得到答案.此题主要考查了正比例函数图象,关键是掌握:当k >0时,图象经过一、三象限,y 随x 的增大而增大;当k <0时,图象经过二、四象限,y 随x 的增大而减小.同时注意直线越陡,则|k|越大典例2 .(2018秋•雅安期末)直线l 1:y =kx+b 与直线l 2:y =bx+k 在同一坐标系中的大致位置是( )A .B .C.D.【答案】C【解析】解:根据一次函数的系数与图象的关系依次分析选项可得:A、由图可得,y1=kx+b中,k<0,b<0,y2=bx+k中,b>0,k<0,b、k的取值矛盾,故本选项错误;B、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b>0,k>0,b的取值相矛盾,故本选项错误;C、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k>0,k的取值相一致,故本选项正确;D、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k<0,k的取值相矛盾,故本选项错误;故选:C.【点睛】根据一次函数的系数与图象的关系依次分析选项,找k、b取值范围相同的即得答案.本题主要考查了一次函数的图象性质,要掌握它们的性质才能灵活解题.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.典例3.(2018春•武昌区期末)已知一次函数y=(m﹣4)x+2m+1的图象不经过第三象限,则m的取值范围是()A.m<4 B.m<4 C.m≤4 D.m【答案】B【解析】解:根据题意得,解得m<4.故选:B.【点睛】依据一次函数y=(m﹣4)x+2m+1的图象不经过第三象限,可得函数表达式中一次项系数小于0,常数项不小于0,进而得到m的取值范围.本题考查了一次函数与系数的关系:对于一次函数y =kx+b(k≠0),k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.典例4.(2018春•德阳期末)若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=cx+a的图象一定不经过()A.第四象限B.第三象限C.第二象限D.第一象限【答案】C【解析】解:∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定),∵a<0,∴函数y=cx+a的图象与y轴负半轴相交,∵c>0,∴函数y=cx+a的图象经过第一、三、四象限.故选:C.【点睛】先判断出a是负数,c是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与y轴的交点的位置即可得解.本题主要考查了一次函数图象与系数的关系,先确定出a、c的正负情况是解题的关键,也是本题的难点.典例5.(2018春•大余县期末)下图中表示一次函数y=mx+n与正比例函数y=nx(m,n是常数,且mn <0)图象的是()A.B.C.D.【答案】B【解析】解:A、根据图中正比例函数y=nx的图象知,n<0;∵m,n是常数,且mn<0,∴m>0,∴一次函数y=mx+n的图象经过第一、三、四象限;故本选项错误;B、根据图中正比例函数y=nx的图象知,n>0;∵m,n是常数,且mn<0,∴m<0,∴一次函数y=mx+n的图象经过第一、二、四象限;故本选项正确;C、根据图中正比例函数y=nx的图象知,n<0;∵m,n是常数,且mn<0,∴m>0,∴一次函数y=mx+n的图象经过第一、三、四象限;故本选项错误;D、根据图中正比例函数y=nx的图象知,n>0;∵m,n是常数,且mn<0,∴m<0,∴一次函数y=mx+n的图象经过第一、二、四象限;故本选项错误;故选:B.【点睛】根据正比例函数的图象确定n的符号,然后由“两数相乘,同号得正,异号得负”判断出n的符号,再根据一次函数的性质进行判断.本题综合考查了正比例函数、一次函数图象与系数的关系.一次函数y=kx+b(k≠0)的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.典例6.(2018春•镇原县期末)已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.【答案】见解析【解析】解:(1)∵函数图象经过原点,∴m﹣3=0,且2m+1≠0,解得:m=3;(2)∵函数图象在y轴的截距为﹣2,∴m﹣3=﹣2,且2m+1≠0,解得:m=1;(3)∵函数的图象平行直线y=3x﹣3,∴2m+1=3,解得:m=1;(4)∵y随着x的增大而减小,∴2m+1<0,解得:m.【点睛】(1)根据函数图象经过原点可得m﹣3=0,且2m+1≠0,再解即可;(2)根据题意可得m﹣3=﹣2,解方程即可;(3)根据两函数图象平行,k值相等可得2m+1=3;(4)根据一次函数的性质可得2m+1<0,再解不等式即可.此题主要考查了一次函数的性质,关键是掌握与y轴的交点就是y=kx+b中,b的值,k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.典例7.(2018春•确山县期末)小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了研究,下面是小慧的研究过程,请补充完成:(1)函数y=|x﹣1|的自变量x的取值范围是______;(2)列表,找出y与x的几组对应值.其中,b=___;(3)在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:__________.【答案】见解析【解析】解:(1)∵x无论为何值,函数均有意义,∴x为任意实数.故答案为:任意实数;(2)∵当x=﹣1时,y=|﹣1﹣1|=2,∴b=2.故答案为:2;(3)如图所示;(4)由函数图象可知,函数的最小值为0.故答案为:函数的最小值为0(答案不唯一).【点睛】(1)根据一次函数的性质即可得出结论;(2)把x=﹣1代入函数解析式,求出y的值即可;(3)在坐标系内描出各点,再顺次连接即可;(4)根据函数图象即可得出结论.本题考查的是一次函数的性质,根据题意画出函数图象,利用数形结合求解是解答此题的关键.三. 待定系数法求一次函数解析式用待定系数法时需要根据两个条件列二元一次方程组(以k和b为未知数),解方程组后就能具体写出一次函数的解析式.用待定系数法求一次函数解析式的步骤如下:①设一次函数解析y=kx+b(k≠0);②代入两个已知点的坐标,得到关于k、b的方程组;③解方程组得到k、b的值;④写出一次函数的解析式.若一次函数为正比例函数,则b=0,只需代入一个点的坐标,求出系数k即可.典例1.(2018秋•蚌埠期末)已知y与(x﹣2)成正比例,当x=1时,y=﹣2.则当x=3时,y的值为()A.2 B.﹣2 C.3 D.﹣3【答案】A【解析】解:∵y与(x﹣2)成正比例,∴设y=k(x﹣2),由题意得,﹣2=k(1﹣2),解得,k=2,则y=2x﹣4,当x=3时,y=2×3﹣4=2,故选:A.【点睛】本题考查的是待定系数法求一次函数解析式,掌握待定系数法求一次函数解析式一般步骤是解题的关键.典例2.(2018春•泸县期末)如图,已知直线y=x+4与x轴、y轴交于A,B两点,直线l经过原点,与线段AB交于点C,并把△AOB的面积分为2:3两部分,求直线l的解析式.【答案】y x或y x【解析】解:直线l的解析式为:y=kx,对于直线y=x+4的解析式,当x=0时,y=4,y=0时,x=﹣4,∴A(﹣4,0)、B(0,4),∴OA=4,OB=4,∴S△AOB4×4=8,当直线l把△AOB的面积分为S△AOC:S△BOC=2:3时,S△AOC,作CF⊥OA于F,CE⊥OB于E,∴AO•CF,即4×CF,∴CF.当y时,x,则k,解得,k,∴直线l的解析式为y x;当直线l把△ABO的面积分为S△AOC:S△BOC=3:2时,同理求得CF,解得直线l的解析式为y x.故答案为y x或y x.【点睛】根据直线y=x+4的解析式可求出A、B两点的坐标,当直线l把△ABO的面积分为S△AOC:S=2:3时,作CF⊥OA于F,CE⊥OB于E,可分别求出△AOB与△AOC的面积,再根据其面积△BOC公式可求出两直线交点的坐标,从而求出其解析式;当直线l把△ABO的面积分为S△AOC:S△BOC=2:3时,同(1).本题考查的是待定系数法求一次函数的解析式,掌握待定系数法求一次函数解析式的一般步骤是解题的关键,涉及到三角形的面积公式及分类讨论的方法.典例3.(2018春•茌平县期末)已知一次函数y=kx+b的图象经过点A(﹣1,﹣1)和点B(1,﹣3).求:(1)求一次函数的表达式;(2)求直线AB与坐标轴围成的三角形的面积;(3)请在x轴上找到一点P,使得PA+PB最小,并求出P的坐标.【答案】见解析【解析】解:(1)设y与x的函数关系式为y=kx+b,把A(﹣1,﹣1)B(1,﹣3)带入得:﹣k+b=﹣1,k+b=﹣3,解得:k=﹣1,b=﹣2,∴一次函数表达式为:y=﹣x﹣2;(2)设直线与x轴交于C,与y轴交于D,把y=0代入y=﹣x﹣2,解得x=﹣2,∴OC=2,把x=0代入y=﹣x﹣2,解得:y=﹣2,∴OD=2,∴S△COD OC×OD2×2=2;(3)作A与A1关于x轴对称,连接A1B交x轴于P,则P即为所求,由对称知:A1(﹣1,1),设直线A1B解析式为y=ax+c,得﹣k+b=1,k+b=﹣3,解得:k=﹣2,b=﹣1,∴y=﹣2x﹣1,另y=0得﹣2x﹣1=0,解得:x,∴P(,0).【点睛】(1)设y=kx+b,把A与B坐标代入求出k与b的值,即可确定出一次函数解析式;(2)分别令x与y为0求出y与x的值,确定出OC与OD的长,即可求出三角形COD面积;(3)作A与A1关于x轴对称,连接A1B交x轴于P,则P即为所求,利用待定系数法求出直线A1B 解析式,确定出P点坐标即可.此题考查了待定系数法求一次函数解析式,一次函数图象上的点的坐标特征,以及轴对称﹣最短线路问题,熟练掌握待定系数法是解本题的关键.典例4.(2018春•郾城区期末)如图,过点A(3,0)的两条直线l1,l2分别交y轴于点B,C,其中点B 在原点上方,点C在原点下方,已知AB=5.(1)求点B的坐标;(2)若△ABC的面积为9,求直线l2的解析式.【答案】见解析【解析】解:(1)∵点A(3,0),AB=5∴BO 4∴点B的坐标为(0,4);(2)∵△ABC的面积为9∴BC×AO=9∴BC×3=9,即BC=6∵BO=4∴CO=2∴C(0,﹣2)设l2的解析式为y=kx+b,则,解得∴l2的解析式为y x﹣2.【点睛】(1)先根据勾股定理求得BO的长,再写出点B的坐标;(2)先根据△ABC的面积为9,求得CO的长,再根据点A、C的坐标,运用待定系数法求得直线l2的解析式.本题主要考查了两条直线的交点问题,解题的关键是掌握勾股定理以及待定系数法.注意:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解,反之也成立.四. 一次函数的图象变换1.一次函数平移的方法:左加右减,上加下减.2.一次函数图象的常见对称变换:对于直线y=kx+b(k≠0,且k,b为常数),①关于x轴对称,就是x不变,y变成﹣y:﹣y=kx+b,即y=﹣kx﹣b(关于x轴对称,横坐标不变,纵坐标是原来的相反数);②关于y轴对称,就是y不变,x变成﹣x:y=k(﹣x)+b,即y=﹣kx+b(关于y轴对称,纵坐标不变,横坐标是原来的相反数);③关于原点对称,就是x和y都变成相反数:﹣y=k(﹣x)+b,即y=kx﹣b(关于原点对称,横、纵坐标都变为原来的相反数).典例1.(2018春•永清县期末)若一次函数y=kx+b(x≠0)(k≠0)与一次函数y的图象关于x 轴对称,则一次函数y=kx+b的解析式为_____.【答案】y x﹣1【解析】解:∵y=kx+b与y x+1关于x轴对称,∴b=﹣1,∴k,∴y x﹣1.故答案为:y x﹣1.【点睛】根据一次函数y=kx+b(k≠0)与函数y x+1的图象关于x轴对称,解答即可.本题考查的是一次函数的图象与几何变换,熟知关于x轴对称的点的坐标特点是解答此题的关键.典例2.(2018春•松滋市期末)在同一直角坐标系中,将一次函数y=x﹣3(x>1)的图象,在直线x=2(横坐标为2的所有点构成该直线)的左侧部分沿直线x=2翻折,图象的其余部分保持不变,得到一个新图象.若关于x的函数y=2x+b的图象与此图象有两个公共点,则b的取值范围是()A.8>b>5 B.﹣8<b<﹣5 C.﹣8≤b≤﹣5 D.﹣8<b≤﹣5【答案】B【解析】解:在y=x﹣3(x>1)中,令x=2,则y=﹣1,若直线y=2x+b经过(2,﹣1),则﹣1=4+b,解得b=﹣5;在y=x﹣3(x>1)中,令x=1,则y=﹣2,点(1,﹣2)关于x=2对称的点为(3,﹣2),若直线y=2x+b经过(3,﹣2),则﹣2=6+b,解得b=﹣8,∵关于x的函数y=2x+b的图象与此图象有两个公共点,∴b的取值范围是﹣8<b<﹣5,故选:B.【点睛】根据直线y=2x+b经过(2,﹣1),可得b=﹣5;根据直线y=2x+b经过(3,﹣2),即可得到b=﹣8,依据关于x的函数y=2x+b的图象与此图象有两个公共点,即可得出b的取值范围是﹣8<b<﹣5.解决问题给的关键是掌握一次函数图象上点的坐标特征:直线上任意一点的坐标都满足函数关系式y=kx+b.巩固练习1.(2017秋•简阳市期末)下列函数关系中表示一次函数的有()①y=2x+1 ②③④s=60t⑤y=100﹣25x.A.1个B.2个C.3个D.4个【答案】D【解析】解:①y=2x+1是一次函数;②y自变量次数不为1,不是一次函数;③y x是一次函数;④s=60t是正比例函数,也是一次函数;⑤y=100﹣25x是一次函数.故选:D.2.(2018春•柳林县期末)已知一次函数y=kx+b,若k•b<0,则该函数的图象可能()A.B.C.D.【答案】A【解析】解:∵在一次函数y=kx+b中k•b<0,∴y=kx+b的图象在一、三、四象限或一、二、四象限.故选:A.3.(2018春•德阳期末)对于函数y下列说法正确的是()A.当x<3时,y随x的增大而增大B.当x>3时,y随x的增大而减小C.当x<0时,y随x的增大而减小D.当x=4时,y=﹣2【答案】C【解析】解:A、当x<3时,y随x的增大而减小,错误;B、当x>3时,y随x的增大而增大,错误;C、当x<0时,y随x的增大而减小,正确;D、当x=4时,y=1,错误;故选:C.4.(2018春•遵义期末)函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置是()A.B.C.D.【答案】B【解析】解:分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,B选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,B选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选:B.5.(2018春•诸城市期末)若一次函数y=(3﹣m)x+5的函数值y随x的增大而减小,则()A.m>0 B.m<0 C.m>3 D.m<3【答案】C【解析】解:根据题意得3﹣m<0,解得m>3.故选:C.6.(2017秋•蜀山区期末)已知n>m,在同一平面直角坐标系内画出一次函数y=nx+m与y=mx+n的图象,则有一组m,n的取值,使得下列4个图中的一个为正确的是()A.B.C.D.【答案】B【解析】解:A、m<0,n>0,则y=mx+n过第一、二、四象限,y=nx+m经过第一、三、四象限;所以A错误;B、m>0,n>0,则y=mx+n过第一、二、三象限,y=nx+m经过第一、二、三象限;所以B正确;C、两直线与x轴的交点坐标为(,0)和(,0),所以C错误;D、m>0,n>0,则y=mx+n过第一、二、三象限,y=nx+m经过第一、二、三象限;所以D错误.故选:B.7.(2018春•繁昌县期末)八个边长为1的正方形如图所示的位置摆放在平面直角坐标系中,经过原点的直线l将这八个正方形分成面积相等的两部分,则这条直线的解析式是___.【答案】y x【解析】解:设直线l和八个正方形的最上面交点为A,过点A作AB⊥y轴于点B,过点A作AC⊥x 轴于点C,如图所示.∵正方形的边长为1,∴OB=3.∵经过原点的一条直线l将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO面积是5,∴OB•AB=5,∴AB,∴OC,∴点A的坐标为(,3).设直线l的解析式为y=kx,∵点A(,3)在直线l上,∴3k,解得:k,∴直线l解析式为y x.故答案为:y x.8.(2018春•营山县期末)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B 的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x﹣5上时,线段BC 扫过的面积为()A.80 B.88 C.96 D.100【答案】B【解析】解:∵点A、B的坐标分别为(2,0)、(8,0),∴AB=6,∵∠CAB=90°,BC=10,∴CA8,∴C点纵坐标为:8,∵将△ABC沿x轴向右平移,当点C落在直线y=x﹣5上时,∴y=8时,8=x﹣5,解得:x=13,即A点向右平移13﹣2=11个单位,∴线段BC扫过的面积为:11×8=88.故选:B.9.(2018春•廉江市期末)已知:如图,正比例函数y=kx的图象经过点A,(1)请你求出该正比例函数的解析式;(2)若这个函数的图象还经过点B(m,m+3),请你求出m的值;(3)请你判断点P(,1)是否在这个函数的图象上,为什么?12 【答案】见解析【解析】解:(1)由图可知点A(﹣1,2),代入y=kx得:﹣k=2,k=﹣2,则正比例函数解析式为y=﹣2x;(2)将点B(m,m+3)代入y=﹣2x,得:﹣2m=m+3,解得:m=﹣1;(3)当x时,y=﹣2×()=3≠1,所以点P不在这个函数图象上.。
一次函数经典例题20题
一次函数经典例题20题(最新版)目录1.题目概述2.一次函数的基本概念3.一次函数的性质4.例题解析5.总结正文一次函数经典例题 20 题一次函数是数学中的基本概念之一,它在各个领域的数学问题中都有广泛的应用。
本文将通过 20 个经典例题,介绍一次函数的基本概念和性质,并解析如何解决一次函数的题目。
一、一次函数的基本概念一次函数是指形如 y=ax+b 的函数,其中 a 和 b 是常数,且 a 不等于 0。
在这个函数中,x 的次数为 1,因此称为一次函数。
其中,y 表示函数的输出,x 表示函数的输入,a 表示斜率,b 表示截距。
二、一次函数的性质1.斜率斜率是指函数图像在坐标系中的倾斜程度。
在一次函数 y=ax+b 中,斜率 a 表示函数图像的倾斜程度。
当 a>0 时,函数图像是向上倾斜的;当 a<0 时,函数图像是向下倾斜的。
2.截距截距是指函数图像与坐标轴的交点。
在一次函数 y=ax+b 中,截距 b表示函数图像与 y 轴的交点。
当 b>0 时,函数图像与 y 轴的交点在 y 轴的正半轴上;当 b<0 时,函数图像与 y 轴的交点在 y 轴的负半轴上。
3.函数的单调性一次函数的单调性是指函数值随着自变量的增大或减小而单调增加或单调减少的性质。
当斜率 a>0 时,函数图像是向上倾斜的,函数值随着 x 的增大而单调增加;当斜率 a<0 时,函数图像是向下倾斜的,函数值随着 x 的增大而单调减少。
三、例题解析以下是 20 个一次函数的经典例题及其解析:1.已知函数 y=2x+3,求当 x=2 时的函数值。
解:将 x=2 代入函数 y=2x+3 中,得到 y=2×2+3=7。
2.已知函数 y=-x+7,求当 x=5 时的函数值。
解:将 x=5 代入函数 y=-x+7 中,得到 y=-5+7=2。
3.已知函数 y=3x-2,求函数的斜率。
解:函数的斜率是 3。
初中数学一次函数讲义
(0,0)的一条直线;一次函数 y=kx+b 与 x 轴交点坐标为
,与 y 轴交
点坐标为(0,b)。 (3)根据几何知识:经过两点能画出一条直线,并且只能画一条直线。即两点确定一
条直线,所以画 一次函数的图象时,只要先描出两点,再连成直线即可。
3、一次函数性质及图象特征 一次函数的性质表达了函数的变化规律及图象的变化趋势,函数的性质是由自变量的系
一次 函数
y=kx+b(k≠0)
k、b
的符 b>0
号
k>0 b<0
b=0
b>0
k<0
b<0
b=0
图象
增减 性
y 随 x 的增大而增大
y 随 x 的增大而减少
一次函数与一元一次不等式(或方程) 一次函数 y=kx+b(k≠0)的图象是直线,当 kx+b>0 时,表示图象在 x 轴上方的部分;
当 kx+b=0 时,表示直线与 x 轴的交点;当 kx+b<0 时,表示图象在 x 轴下方的部分。 事实上,既可以运用函数图象解不等式和方程,也可以运用解不等式帮助研究函数问题,
函数不一定是正比例函数。
2、用待定系数法求解一次函数解析式 先设出式子中的未知系数,再根据已知条件列出方程(组)求出未知系数,从而得到所
求结果的方法,叫做待定系数法。待定系数法是一种很重要的数学方法,是求函数解析式常 用的方法。
待定系数法的基本思想是方程思想,就是把具有某种确定关系的数学问题,通过引入一 些待定的系数,转化为方程(组)来解决,题目中含有几个待定的系数,一般就需列出几个 含有待定系数的方程,本单元构造方程一般有下列几种情况:
解:设 y=kx+b,根据题意,得 20=b……①,44=3k+b……②。 将①式代入②式,得 k=8,所以,y 与 x 之间的关系式为 y=8x+20。 当 y=92 时,92=8x+20,解得 x=9
一次函数的定义
1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。
当0b =时,一次函数y kx =,又叫做正比例函数。
⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数.⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.2、正比例函数及性质一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,•直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小.(1) 解析式:y=kx (k 是常数,k ≠0)(2) 必过点:(0,0)、(1,k )(3) 走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限(4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小(5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴3、一次函数及性质一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数一次函数y=kx+b 的图象是经过(0,b )和(-kb,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx+b(k 、b 是常数,k ≠0)(2)必过点:(0,b )和(-kb,0) (3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<0b k 直线经过第二、三、四象限(4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.(6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.1、反比例函数图象:反比例函数的图像属于以原点为对称中心的中心对称的双曲线反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。
中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)
中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)知识点总结1. 一次函数的定义:一般地,形如()0≠+=k b k b kx y 是常数且,的函数叫做一次函数。
2. 一次函数的图像:是不经过原点的一条直线。
3. 一次函数的图像与性质:一次函数与x 轴的交点坐标公式为:⎪⎭⎫ ⎝⎛−0 ,k b;与y 轴的交点坐标公式为:()b ,0。
专项练习题1.(2022•沈阳)在平面直角坐标系中,一次函数y =﹣x +1的图像是( )A .B .C .D .【分析】依据一次函数y =x +1的图像经过点(0,1)和(1,0),即可得到一次函数y =﹣x +1的图像经过一、二、四象限.【解答】解:一次函数y =﹣x +1中,令x =0,则y =1;令y =0,则x =1, ∴一次函数y =﹣x +1的图像经过点(0,1)和(1,0), ∴一次函数y =﹣x +1的图像经过一、二、四象限, 故选:C .2.(2022•安徽)在同一平面直角坐标系中,一次函数y =ax +a 2与y =a 2x +a 的图像可能是( )A .B .C .D .【分析】利用一次函数的性质进行判断.【解答】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴,图像都经过第一、二、三象限;若a<0,则一次函数y=ax+a2经过第一、二、四象限,y=a2x+a经过第一、三、四象限,且两直线的交点的横坐标为1;故选:D.3.(2022•辽宁)如图,在同一平面直角坐标系中,一次函数y=k1x+b1与y=k2x+b2的图像分别为直线l1和直线l2,下列结论正确的是()A.k1•k2<0B.k1+k2<0C.b1﹣b2<0D.b1•b2<0【分析】根据一次函数y=k1x+b1与y=k2x+b2的图像位置,可得k1>0,b1>0,k2>0,b2<0,然后逐一判断即可解答.【解答】解:∵一次函数y=k1x+b1的图像过一、二、三象限,∴k1>0,b1>0,∵一次函数y=k2x+b2的图像过一、三、四象限,∴k2>0,b2<0,∴A、k1•k2>0,故A不符合题意;B、k1+k2>0,故B不符合题意;C、b1﹣b2>0,故C不符合题意;D、b1•b2<0,故D符合题意;故选:D.4.(2022•六盘水)如图是一次函数y=kx+b的图像,下列说法正确的是()A.y随x增大而增大B.图像经过第三象限C.当x≥0时,y≤b D.当x<0时,y<0【分析】根据一次函数的图像和性质进行判断即可.【解答】解:由图像得:图像过一、二、四象限,则k<0,b>0,当k<0时,y随x的增大而减小,故A、B错误,由图像得:与y轴的交点为(0,b),所以当x≥0时,从图像看,y≤b,故C正确,符合题意;当x<0时,y>b>0,故D错误.故选:C.5.(2022•兰州)若一次函数y=2x+1的图像经过点(﹣3,y1),(4,y2),则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1≤y2D.y1≥y2【分析】先根据一次函数的解析式判断出函数的增减性,再根据﹣3<4即可得出结论.【解答】解:∵一次函数y=2x+1中,k=2>0,∴y随着x的增大而增大.∵点(﹣3,y1)和(4,y2)是一次函数y=2x+1图像上的两个点,﹣3<4,∴y1<y2.故选:A.6.(2022•凉山州)一次函数y=3x+b(b≥0)的图像一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的图像与系数的关系即可得出结论.【解答】解:∵函数y=3x+b(b≥0)中,k=3>0,b≥0,∴当b=0时,此函数的图像经过一、三象限,不经过第四象限;当b>0时,此函数的图像经过一、二、三象限,不经过第四象限.则一定不经过第四象限.故选:D.7.(2022•济宁)已知直线y1=x﹣1与y2=kx+b相交于点(2,1).请写出一个b值(写出一个即可),使x>2时,y1>y2.【分析】由题意可知,当b>﹣1时满足题意,故b可以取0.【解答】解:直线y1=x﹣1与y2=kx+b相交于点(2,1).∵x>2时,y1>y2.∴b>﹣1,故b可以取0,故答案为:0(答案不唯一).8.(2022•上海)已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:.【分析】根据一次函数的性质,写出符合条件的函数关系式即可.【解答】解:∵直线y=kx+b过第一象限且函数值随着x的增大而减小,∴k<0,b>0,∴符合条件的函数关系式可以为:y=﹣x+1(答案不唯一).故答案为:y=﹣x+1(答案不唯一).9.(2022•无锡)请写出一个函数的表达式,使其图像分别与x轴的负半轴、y轴的正半轴相交:.【分析】设函数的解析式为y=kx+b(k≠0),再根据一次函数的图像分别与x轴的负半轴、y轴的正半轴相交可知k>0,b>0,写出符合此条件的函数解析式即可.【解答】解:设一次函数的解析式为y=kx+b(k≠0),∵一次函数的图像分别与x轴的负半轴、y轴的正半轴相交,∴k>0,b>0,∴符合条件的函数解析式可以为:y=x+1(答案不唯一).故答案为:y=x+1(答案不唯一).10.(2022•湘潭)请写出一个y随x增大而增大的一次函数表达式.【分析】根据y随着x的增大而增大时,比例系数k>0即可确定一次函数的表达式.【解答】解:在y=kx+b中,若k>0,则y随x增大而增大,∴只需写出一个k>0的一次函数表达式即可,比如:y=x﹣2,故答案为:y=x﹣2(答案不唯一).11.(2022•宿迁)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y随自变量x增大而减小”;乙:“函数图像经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是.【分析】根据甲、乙两位同学给出的函数特征可判断出该函数为一次函数,再利用一次函数的性质,可得出k<0,b=2,取k=﹣1即可得出结论.【解答】解:∵函数值y随自变量x增大而减小,且该函数图像经过点(0,2),∴该函数为一次函数.设一次函数的表达式为y=kx+b(k≠0),则k<0,b=2.取k=﹣1,此时一次函数的表达式为y=﹣x+2.故答案为:y=﹣x+2(答案不唯一).12.(2022•甘肃)若一次函数y=kx﹣2的函数值y随着自变量x值的增大而增大,则k=(写出一个满足条件的值).【分析】根据函数值y随着自变量x值的增大而增大得到k>0,写出一个正数即可.【解答】解:∵函数值y随着自变量x值的增大而增大,∴k>0,∴k=2(答案不唯一).故答案为:2(答案不唯一).13.(2022•柳州)如图,直线y1=x+3分别与x轴、y轴交于点A和点C,直线y2=﹣x+3分别与x轴、y轴交于点B和点C,点P(m,2)是△ABC内部(包括边上)的一点,则m的最大值与最小值之差为()A.1B.2C.4D.6【分析】由于P的纵坐标为2,故点P在直线y=2上,要求符合题意的m值,则P点为直线y=2与题目中两直线的交点,此时m存在最大值与最小值,故可求得.【解答】解:∵点P(m,2)是△ABC内部(包括边上)的一点,∴点P 在直线y =2上,如图所示,当P 为直线y =2与直线y 2的交点时,m 取最大值, 当P 为直线y =2与直线y 1的交点时,m 取最小值, ∵y 2=﹣x +3中令y =2,则x =1, y 1=x +3中令y =2,则x =﹣1, ∴m 的最大值为1,m 的最小值为﹣1.则m 的最大值与最小值之差为:1﹣(﹣1)=2. 故选:B .14.(2022•遵义)若一次函数y =(k +3)x ﹣1的函数值y 随x 的增大而减小,则k 值可能是( ) A .2B .23C .﹣21 D .﹣4【分析】根据一次项系数小于0时,一次函数的函数值y 随x 的增大而减小列出不等式求解即可.【解答】解:∵一次函数y =(k +3)x ﹣1的函数值y 随着x 的增大而减小, ∴k +3<0, 解得k <﹣3.所以k 的值可以是﹣4, 故选:D .15.(2022•包头)在一次函数y =﹣5ax +b (a ≠0)中,y 的值随x 值的增大而增大,且ab >0,则点A (a ,b )在( ) A .第四象限B .第三象限C .第二象限D .第一象限【分析】根据一次函数的增减性,确定自变量x 的系数﹣5a 的符号,再根据ab >0,确定b 的符号,从而确定点A (a ,b )所在的象限.【解答】解:∵在一次函数y =﹣5ax +b 中,y 随x 的增大而增大, ∴﹣5a >0,∴a <0. ∵ab >0, ∴a ,b 同号, ∴b <0.∴点A (a ,b )在第三象限. 故选:B .16.(2022•眉山)一次函数y =(2m ﹣1)x +2的值随x 的增大而增大,则点P (﹣m ,m )所在象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据一次函数的性质求出m 的范围,再根据每个象限点的坐标特征判断P 点所处的象限即可.【解答】解:∵一次函数y =(2m ﹣1)x +2的值随x 的增大而增大, ∴2m ﹣1>0, 解得:m >,∴P (﹣m ,m )在第二象限, 故选:B .17.(2022•天津)若一次函数y =x +b (b 是常数)的图像经过第一、二、三象限,则b 的值可以是 (写出一个即可).【分析】根据一次函数的图像可知b >0即可.【解答】解:∵一次函数y =x +b (b 是常数)的图像经过第一、二、三象限, ∴b >0, 可取b =1,故答案为:1.(答案不唯一,满足b >0即可) 18.(2022•邵阳)在直角坐标系中,已知点A (23,m ),点B (27,n )是直线y =kx +b(k <0)上的两点,则m ,n 的大小关系是( ) A .m <nB .m >nC .m ≥nD .m ≤n【分析】根据k <0可知函数y 随着x 增大而减小,再根>即可比较m 和n 的大小.【解答】解:点A (,m ),点B (,n )是直线y =kx +b 上的两点,且k <0,∴一次函数y 随着x 增大而减小, ∵>,∴m <n , 故选:A .19.(2022•株洲)在平面直角坐标系中,一次函数y =5x +1的图像与y 轴的交点的坐标为( ) A .(0,﹣1)B .(﹣51,0) C .(51,0) D .(0,1)【分析】一次函数的图像与y 轴的交点的横坐标是0,当x =0时,y =1,从而得出答案. 【解答】解:∵当x =0时,y =1,∴一次函数y =5x +1的图像与y 轴的交点的坐标为(0,1), 故选:D .20.(2022•绍兴)已知(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =﹣2x +3上的三个点,且x 1<x 2<x 3,则以下判断正确的是( ) A .若x 1x 2>0,则y 1y 3>0 B .若x 1x 3<0,则y 1y 2>0C .若x 2x 3>0,则y 1y 3>0D .若x 2x 3<0,则y 1y 2>0【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【解答】解:∵直线y =﹣2x +3,∴y 随x 的增大而减小,当y =0时,x =1.5,∵(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =﹣2x +3上的三个点,且x 1<x 2<x 3, ∴若x 1x 2>0,则x 1,x 2同号,但不能确定y 1y 3的正负,故选项A 不符合题意; 若x 1x 3<0,则x 1,x 3异号,但不能确定y 1y 2的正负,故选项B 不符合题意; 若x 2x 3>0,则x 2,x 3同号,但不能确定y 1y 3的正负,故选项C 不符合题意;若x 2x 3<0,则x 2,x 3异号,则x 1,x 2同时为负,故y 1,y 2同时为正,故y 1y 2>0,故选项D 符合题意; 故选:D .21.(2022•盘锦)点A (x 1,y 1),B (x 2,y 2)在一次函数y =(a ﹣2)x +1的图像上,当x 1>x 2时,y 1<y 2,则a 的取值范围是 . 【分析】根据一次函数的性质,建立不等式计算即可.【解答】解:∵当x1>x2时,y1<y2,∴a﹣2<0,∴a<2,故答案为:a<2.22.(2022•永州)已知一次函数y=x+1的图像经过点(m,2),则m=.【分析】由一次函数y=x+1的图像经过点(m,2),利用一次函数图像上点的坐标特征可得出2=m+1,解之即可求出m的值.【解答】解:∵一次函数y=x+1的图像经过点(m,2),∴2=m+1,∴m=1.故答案为:1.。
一次函数的概念及图象(答案版)
第07讲:一次函数的概念及图象题型一:函数的判定1下列关于变量x,y的关系,其中y不是x的函数的是(B)A. B. C. D.2在下列等式中,y是x的函数的有(C)3x-2y=0,x2-y2=1,y=x,y=x ,x=y .A.1个B.2个C.3个D.4个3下列函数中与y=x表示相同的函数关系式的是(D)A.y=|x|B.y=x2x C.y=x2 D.y=3x34下列各曲线中表示y是x的函数的是(D)A. B. C. D.题型二:函数的表示5下表为某旅游景点旺季时的售票量、售票收入的变化情况,在该变化过程中,常量是(A)日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日售票量x(张)3154222452385048746564262761512714售票收入y(元)3154200224520038540004874600564260027615001271400 A.票价 B.售票量 C.日期 D.售票收入6变量x,y的一些对应值如下表:x⋯-2-10123⋯y⋯-8-101827⋯根据表格中的数据规律,当x=-5时,y的值是(D)A.75B.-75C.125D.-1257弹簧挂重物会伸长,测得弹簧长度y cm最长为20cm,与所挂物体重量x kg间有下面的关系.x01234⋯⋯y88.599.510⋯⋯下列说法不正确的是(D)A.x与y都是变量,x是自变量,y是因变量B.所挂物体为6kg,弹簧长度为11cmC.物体每增加1kg,弹簧长度就增加0.5cmD.挂30kg物体时一定比原长增加15cm8王涵准备测量食用油的沸点(液体沸腾时的温度),已知食食用油的沸点温度高于水的沸点温度(100℃),王涵家只有刻度不超过100度的温度计;她的方法是在锅中导入一些食用油,用媒气灶均匀加热,并每隔10s,测量一下锅中的油温,测量得到的数据如表所示,王涵发现,加热110s时,油沸腾了,则下列判断不正确的是(C)时间t/s010203040油温1030507090A.没有加热时,油的温度是10°CB.每加热10s.油的温度升富20°CC.如热50s时,油的温度是100°CD.这种食用油的沸点温度是230°C9铅笔每支售价0.20元,在平面直角坐标系内表示小明买1支到10支铅笔需要花费的钱数的图像是(D) A.一条直线 B.一条射线 C.一条线段 D.10个不同的点10八年级(6)班一同学感冒发烧住院洽疗,护士为了较直观地了解这位同学这一天24h的体温和时间的关系,可选择的比较好的方法是(B)A.列表法B.图象法C.解析式法D.以上三种方法均可11函数y=(x-a)2(x-b)(0<a<b),则函数的图象大致为(C)A. B. C. D.题型三:函数自变量的取值范围12函数y=11-3x+(x+2)0的自变量x的取值范围是(C)A.x>13B.x<13C.x<13且x≠-2 D.x≠1313下列函数中,自变量取值范围错误的是(D)A.y=12x-1(x≠12) B.y=1-x(x≤1)C.y=x2-1(x为任意实数)D.y=1x-1(x≥1)题型四:一次函数的图象特征14一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是(C)A. B. C. D.15已知如图是函数y=kx+b的图象,则函数y=kbx+k的大致图象是(C)A. B. C. D.16若直线y=(m+5)x+(m-1)经过第一、三、四象限,则常数m的取值范围是-5<m<1答案【答案】-5<m<1题型五:函数图象的判定17“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉. 当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点⋯⋯. 用s1、s2分别表示乌龟和兔子所行的路程,t为时间,则下列图像中与故事情节相吻合的是(A)A. B.C. D.18一天早上小明步行上学,他离开家后不远便发现有东西忘在了家里,马上以相同的速度回家去拿,到家后因事耽误一会,忙完后才离开,为了不迟到,小明跑步到了学校,则小明离学校的距离y与离家的时间t之间的函数关系的大致图象是(B)A. B. C. D.19向一个垂直放置的容器内匀速注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化情况如图所示.则这个容器的形状可能是(D)A. B. C. D.20如图,向一个半径为R、容积为V的球形容器内注水,则能反映容积内水的体积y与容器内水深x之间的关系的图象可能为(A)A. B. C. D.题型六:通过图象信息求解行程问题21在徐州全民健身越野赛中,甲、乙两选手的行程y(干米)随时间(时)变化的图象(全程)如图所示.下列四种说法:①起跑后1小时内,甲最多领先乙5千米;②第1小时两人都跑了10千米;③起跑1小时后,甲在乙的前面;④两人都跑了20千米.正确的个数有(B)A.1个B.2个C.3个D.4个22如图表示一艘船从甲地航行到乙地,到达乙地后旋即返回.横坐标表示航行的时间,纵坐标表示船与甲地的距离.下列说法错误的是(D )A.船从甲地到乙地航行的速度比返航的速度更快B.船从甲地航行到乙地的路程为s 1,时间为t 1C.船往返的平均速度为v =2s1t 2D.t 2表示船在返航时所用的时间23重庆实验外国语学校运动会期间,小明和小欢两人打算匀速从教室跑到600米外的操场参加入场式,出发时小明发现鞋带松了,停下来系鞋带,小欢继续跑往操场,小明系好鞋带后立即沿同一路线开始追赶小欢小明在途中追上小欢后继续前行,小明到达操场时入场式还没有开始,于是小明站在操场等待,小欢继续前往操场.设小明和小欢两人相距s (米),小欢行走的时间为t (分钟),s 关于t 的函数图象如图所示,则在整个运动过程中,小明和小欢第一次相距80米后,再过9分钟两人再次相距80米.题型七:通过图象求解动点问题24如图1,在长方形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止,设点P 运动的路程为x ,三角形ABP 的面积为y ,如果y 关于x 的图象如图2所示,则长方形ABCD 的周长是(C )A.13B.17C.18D.2625如图①.在正方形ABCD的边BC上有一点E,连接AE.点P从正方形的顶点A出发,沿A→D→C以1cm/s的速度匀速运动到点C.图②是点P运动时,△APE的面积y(cm2)随时间x(s)变化的函数图象.当x=7时,y的值为(C)A.7B.6C.132D.1121.变量x、y有如下的关系,其中y是x的函数的是(C)A.y2=8xB.|y|=xC.y=1x D.x=12y42.下列曲线中表示y是x的函数的是(C)A. B. C. D.3.某销售商对某品牌豆浆机的销量与定价的关系进行了调查,结果如下表所示,则(C)定价(元)100110120130140150销量(台)801001101008060A.定价是常量B.销量是自变量C.定价是自变量D.定价是因变量4.变量x,y的一些对应值如下表:x⋯-2-10123⋯y⋯-8-16132027⋯根据表格中的数据规律,当x=-5时,y的值是(B)A.75B.-29C.41D.755.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据温度/℃-20-100102030声速/m/s318324330336342348下列说法错误的是(B)A.这个问题中,空气温度和声速都是变量B.空气温度每降低10℃,声速减少6m/sC.当空气温度为20℃时,声音5s可以传播1710mD.由数据可以推测,在一定范围内,空气温度越高,声速越快6.某游泳池水深20dm,现需换水,每小时水位下降5dm,那么剩下的高度h dm与时间t(小时)的关系图象表示为(D)A. B. C. D.7.在函数y=1-xx-2中,自变量x的取值范围是(C)A.x≥0B.x≠2C.x≥0且x≠2D.0≤x≤28.关于函数y=-3x-1,下列说法正确的是(D)A.它的图像过点2,-9B.y值随着x值的增大而增大C.它的图像不经过第三象限D.当x<-13时,y>09.如图所示,直线l1:y=ax+b和l2:y=-bx+a在同一坐标系中的图象大致是(B)A. B.C. D.10.如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y和x,则y与x的函数图象大致是(A)A. B. C. D.11.成都市双流新城公园是亚洲最大的城市湿地公园,周末小李在这个公园里某笔直的道路上骑车游玩,先前进了a千米,体息了一段时间,又原路返回b千米(b<a),再前进c千米,则他离起点的距离s与时间t的关系的示意图是(D)A. B. C. D.12.已知A、B两地相距600米,甲、乙两人同时从A地出发前往B地,所走路程y(米)与行驶时间x(分)之间的函数关系如图所示,则下列说法中:①甲每分钟走100米;②两分钟后乙每分钟走50米;③甲比乙提前3分钟到达B地;④当x=2或6时,甲乙两人相距100米.正确的有①②④(在横线上填写正确的序号).13.甲、乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了18千米;(2)甲在途中停留了0.5小时;(3)乙比甲晚出发了0.5小时;(4)相遇后,甲的速度大于乙的速度;(5)甲、乙两人同时到达目的地.其中,符合图象描述的说法有(C)A.2个B.4个C.3个D.5个14.如图,在平面直角坐标系中,矩形ABCD的顶点A(6,0),C(0,4)点D与坐标原点O重合,动点P从点O 出发,以每秒2个单位的速度沿O-A-B-C的路线向终点C运动,连接OP、CP,设点P运动的时间为t秒,△CPO的面积为S,下列图象能表示t与S之间函数关系的是(B)A. B.C. D.。
一次函数(含参考答案)
一次函数(含参考答案)一次函数专题【基础知识回顾】一、一次函数的定义:一般的:如果y= (),那么y叫x的一次函数特别的:当b= 时,一次函数就变为y=kx(k≠0),这时y叫x的【名师提醒:正比例函数是一次函数,反之不一定成立,是有当b=0时,它才是正比例函数】二、一次函数的同象及性质:1、一次函数y=kx+b的同象是经过点(0,b),0)的一条,(-bk正比例函数y= kx的同象是经过点和的一条直线。
【名师提醒:因为一次函数的同象是一条直线,所以画一次函数的图象只需选取个特殊的点,过这两个点画一条直线即可】2、正比例函数y= kx(k≠0),当k>0时,其同象过、象限,此时时y随x的增大而;当k<0时,其同象过、象限,时y随x的增大而。
达式3、解关于系数的方程或方程组4、将所求的待定系数代入所设函数表达式中四、一次函数与一元一次方程、一元一次不等式和二元一次方程组1、一次函数与一元一次方程:一般地将x= 或y 代入y= kx+ b中解一元一次方程可求求直线与坐标轴的交点坐标。
2、一次函数与一元一次不等式:kx+ b>0或kx+ b<0即一次函数图象位于x轴上方或下方时相应的x的取值范围,反之也成立3、一次函数与二元一次方程组:两条直线的交点坐标即为两个一次函数所列二元一次方程组的解,反之根据方程组的解可求两条直线的交点坐标【名师提醒:1、一次函数与三者之间的关系问题一定要结合图象去解决2、在一次函数中讨论交点问题即是讨论一元一次不等式的解集或二元一次方程组解的问题】五、一次函数的应用一般步骤:1、设定问题中的变量2、建立一次函数关系式3、确定自变量的取值范围4、利用函数性质解决问题5、作答【名师提醒:一次函数的应用多与二元一次方程组或一元一次不等式(组)相联系,经常涉及交点问题,方案设计问题等】【重点考点例析】考点一:一次函数的图象和性质例1 一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限例2 写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式).例3已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1y2(填“>”或“<”或“=”).考点三:一次函数解析式的确定例4 一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则k的值是__________.考点四:一次函数与方程(组)、不等式(组)的关系例5 函数y =2x 和y =ax +4的图象相交于点A (m ,3),则不等式2x ≥ax +4的解集为( )A . x ≥B . x ≤3C . x ≤D .x ≥3 考点五:一次函数综合题例6 已知两直线L 1:y =k 1x +b 1,L 2:y =k 2x +b 2,若L 1⊥L 2,则有k 1•k 2=﹣1.(1)应用:已知y =2x +1与y =kx ﹣1垂直,求k ;(2)直线经过A (2,3),且与y =x +3垂直,求解析式.考点六:一次函数的应用例7 某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC 做匀速直线运动的模型.甲、乙两车同时分别从A ,B 出发,沿轨道到达C 处,在AC 上,甲的速度是乙的速度的1.5倍,设t (分)后甲、乙两遥控车与B 处的距离分别为d 1,d 2,则d 1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=米/分;(2)写出d1与t的函数关系式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?【聚焦中考】1.直线y=-x+1经过的象限是()A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限2. 若一次函数y=(m-3)x+5的函数值y随x的增大而增大,则()A.m>0 B.m<0 C.m>3 D.m <33. 将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是()A.x>4 B.x>-4 C.x>2 D.x>-24.如图,在平面直角坐标系中,点A(2,m)在第一象限,若点A关于x轴的对称点B在直线y=-x+1上,则m的值为()5. 如图,在直角坐标系中,点A的坐标是(0.3),点C是x轴上的一个动点,点C在x轴上移动时,始终保持△ACP是等边三角形.当点C移动到点O时,得到等边三角形AOB(此时点P与点B重合).(1)点C在移动的过程中,当等边三角形ACP 的顶点P在第三象限时(如图),求证:△AOC ≌△ABP;由此你发现什么结论?(2)求点C 在x 轴上移动时,点P 所在函数图象的解析式.【备考真题过关】一、选择题1.一次函数y =2x +4的图象与y 轴交点的坐标是( )A .(0,﹣4) B . (0,4) C . (2,0) D . (﹣2,0)2.已知直线y =kx +b ,若k +b =﹣5,kb =6,那么该直线不经过( )A .第一象限B . 第二象限C . 第三象限D . 第四象限 3. 正比例函数y=kx (k≠0)的图象在第二、四象限,则一次函数y=x+k 的图象大致是( )A .B .C .D . 4.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③5.一次函数y=kx-k(k<0)的图象大致是()A.B.C.D.6.正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()A.B.C.D.7.正比例函数y=x的大致图象是()A.B.C.D.8.正比例函数y=2x的大致图象是()A.B.C.D.9.已知直线y=mx+n,其中m,n是常数且满足:m+n=6,mn=8,那么该直线经过()A.第二、三、四象限 B.第一、二、三象限 C.第一、三、四象限 D.第一、二、四象限10.已知一次函数y=kx-1,若y随x的增大而增大,则它的图象经过()A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限11.如图,直线l经过第二、三、四象限,l的解析式是y=(m-2)x+n,则m的取值范围在数轴上表示为()A.B.C.D.12.当kb<0时,一次函数y=kx+b的图象一定经过()A.第一、三象限 B.第一、四象限C.第二、三象限 D.第二、四象限二、填空题13.将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为__________.14.过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是__________.15.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y (米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为米.16.直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y轴围城的三角形面积为4,那么b1﹣b2等于.三、解答题17.已知直线y=2x-b经过点(1,-1),求关于x 的不等式2x-b≥0的解集.18. 已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=-1.(1)应用:已知y=2x+1与y=kx-1垂直,求k;(2)直线经过A(2,3),且与y=−13x+3垂直,求解析式.19. 如图,已知函数y=-12x+b的图象与x轴、y 轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=-12x+b和y=x的图象于点C、D.(1)求点A的坐标;(2)若OB=CD,求a的值.20. 如图,一次函数y=-x+m的图象和y轴交于点B,与正比例函数y=32x图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积.一次函数【重点考点例析】例1 解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过一、二、四象限,∴图象不经过第三象限.故选C.例2 解:∵正比例函数y=kx 的图象经过一,三象限, ∴k>0,取k=2可得函数关系式y=2x (答案不唯一). 故答案为:y=2x (答案不唯一).例3 解:∵P 1(1,y 1),P 2(2,y 2)是正比例函数y=x 的图象上的两点, ∴y 1=,y 2=×2=, ∵<, ∴y 1<y 2. 故答案为:<.例4 解:当k >0时,此函数是增函数, ∵当1≤x≤4时,3≤y≤6, ∴当x=1时,y=3;当x=4时,y=6, ∴,解得,∴=2;当k <0时,此函数是减函数, ∵当1≤x≤4时,3≤y≤6, ∴当x=1时,y=6;当x=4时,y=3, ∴,解得,∴=﹣7.故答案为:2或﹣7.例5 解:将点A(m,3)代入y=2x得,2m=3,解得,m=,∴点A的坐标为(,3),∴由图可知,不等式2x≥ax+4的解集为x≥.故选A.例6 解:(1)∵L1⊥L2,则k1•k2=﹣1,∴2k=﹣1,∴k=﹣;(2)∵过点A直线与y=x+3垂直,∴设过点A直线的直线解析式为y=3x+b,把A(2,3)代入得,b=﹣3,∴解析式为y=3x﹣3.例7 解:(1)乙的速度v2=120÷3=40(米/分),故答案为:40;(2)v1=1.5v2=1.5×40=60(米/分),60÷60=1(分钟),a=1,d1=;(3)d2=40t,当0≤t≤1时,d2﹣d1>10,即﹣60t+60﹣40t>10,解得0;当0时,两遥控车的信号不会产生相互干扰;当1≤t≤3时,d1﹣d2>10,即40t﹣(60t﹣60)>10,当1≤时,两遥控车的信号不会产生相互干扰综上所述:当0或1≤t时,两遥控车的信号不会产生相互干扰.【聚焦山东中考】1. B.2. C.3. B.4.B.5.解:(1)证明:∵△AOB与△ACP都是等边三角形,∴AO=AB,AC=AP,∠CAP=∠OAB=60°,∴∠CAP+∠PAO=∠OAB+∠PAO,∴∠CAO=∠PAB,在△AOC与△ABP中,∴△AOC≌△ABP(SAS).∴∠COA=∠PBA=90°,∴点P在过点B且与AB垂直的直线上或PB⊥AB 或∠ABP=90°.故结论是:点P在过点B且与AB垂直的直线上或PB⊥AB或∠ABP=90°;(2)解:点P在过点B且与AB垂直的直线上.∵△AOB是等边三角形,A(0,3),∴B(,).当点C移动到点P在y轴上时,得P(0,﹣3).设点P所在的直线方程为:y=kx+b(k≠0).把点B、P的坐标分别代入,得,解得,所以点P所在的函数图象的解析式为:y=x﹣3.【备考真题过关】一、选择题1.B.2.A.3.B.4. A.5.A.6.B.7. C.8. B.9. B.10. C.11. C.12. A.二、填空题13.y=3x+2.14.(1,4),(3,1).15. 2200.16. 4.解:(1)把P(2,n)代入y=3x得n=3,2所以P点坐标为(2,3),把P(2,3)代入y=-x+m得-2+m=3,解得m=5,即m和n的值分别为5,3;(2)把x=0代入y=-x+5得y=5,所以B点坐标为(0,5),×5×2=5.所以△POB的面积=12。
一次函数知识点汇总
一次函数知识点汇总一、一次函数的概念。
1. 定义。
- 一般地,形如y = kx + b(k,b是常数,k≠0)的函数,叫做一次函数。
当b = 0时,y=kx(k为常数,k≠0),y = kx叫做正比例函数,它是一种特殊的一次函数。
2. 自变量的取值范围。
- 自变量x的取值范围是全体实数。
但在实际问题中,要根据具体情况确定自变量的取值范围。
例如,在计算长方形周长y = 2(x + 3)(设长为x,宽为3),x的取值范围是x>0。
二、一次函数的图象。
1. 图象的形状。
- 一次函数y = kx + b(k≠0)的图象是一条直线。
- 由于两点确定一条直线,所以画一次函数图象时,只要先描出两点,再连成直线即可。
通常选取(0,b)和(-(b)/(k),0)(k≠0)这两点。
2. 图象的性质。
- k的作用。
- 当k>0时,直线y = kx + b从左向右上升,y随x的增大而增大。
例如y = 2x+1,k = 2>0,当x = 1时,y=3;当x = 2时,y = 5,y随着x的增大而增大。
- 当k<0时,直线y = kx + b从左向右下降,y随x的增大而减小。
例如y=-3x + 2,k=-3<0,当x = 1时,y=-1;当x = 0时,y = 2,y随着x的增大而减小。
- b的作用。
- b是直线y = kx + b与y轴交点的纵坐标。
当b>0时,直线与y轴交于正半轴;例如y = x+3,b = 3,直线与y轴交于点(0,3)。
- 当b<0时,直线与y轴交于负半轴;例如y = 2x - 1,b=-1,直线与y轴交于点(0, - 1)。
- 当b = 0时,直线过原点,此时函数为正比例函数。
例如y = 3x,图象过原点(0,0)。
三、一次函数的解析式的确定。
1. 待定系数法。
- 一般步骤:- 设出含有待定系数的函数解析式,例如设一次函数解析式为y = kx + b。
- 把已知条件(自变量与函数的对应值)代入解析式,得到关于待定系数的方程(组)。
初二数学一次函数(含答案)
一次函数例题精讲一、函数的相关概念1.常量与变量在某一变化过程中,可以取不同数值的量叫做变量,取值始终保持不变的量叫做常量.如在圆的面积公式2πS R =中,π是常数,是一个常量,而S 随R 的变化而变化,所以S 、R 是变量. 2.自变量、因变量与函数在某一变化过程中,有两个量,例如x 和y ,对于x 的每一个值,y 都有唯一的值与之对应,其中x 是自变量,y 是因变量,此时也称y 是x 的函数.函数不是数,它是指在一个变化过程中两个变量之间的关系,函数本质就是变量间的对应关系. 注意:⑴对于每一个给定的x 值,y 有一个唯一确定的值与之对应,否则y 就不是x 的函数.例如2y x =就不是函数,因为当4x =时,2y =±,即y 有两个值与x 对应.⑵对于每一个给定的y 值,x 可以有一个值与之对应,也可以有多个值与之对应.例如在函数2(3)y x =-中,2x =时,1y =;4x =时,1y =.二、函数自变量的取值范围函数自变量的取值范围是指是函数有意义的自变量的取值的全体.求自变量的取值范围通常从两方面考虑,一是要使函数的解析式有意义;二是符合客观实际.在初中阶段,自变量的取值范围考虑下面几个方面: ⑴整式:自变量的取值范围是任意实数.⑵分式:自变量的取值范围是使分母不为零的任意实数. ⑶根式:当根指数为偶数时,被开方数为非负数. ⑷零次幂或负整数次幂:使底数不为零的实数.注意:在一个函数关系式中,同时有各种代数式,函数自变量的取值范围是各种代数式中自变量取值范围的公共部分.在实际问题中,自变量的取值范围应该符合实际意义,通常往往取非负数,整数之类.三、函数的表示方法1.函数的三种表示方法:⑴列表法:通过列表表示函数的方法.⑵解析法:用数学式子表示函数的方法叫做解析法.譬如:30S t =,2S R π=. ⑶图象法:用图象直观、形象地表示一个函数的方法. 2.对函数的关系式(即解析式)的理解:⑴函数关系式是等式.例如4y x =就是一个函数关系式. ⑵函数关系式中指明了那个是自变量,哪个是函数.通常等式右边代数式中的变量是自变量,等式左边的一个字母表示函数.例如:y =x 是自变量,y 是x 的函数.⑶函数关系式在书写时有顺序性.例如:31y x =-+是表示y 是x 的函数,若写成13yx -=就表示x 是y 的函数.求y 与x 的函数关系时, 必须是只用变量x 的代数式表示y ,得到的等式右边只含x 的代数式.四、函数的图象1.函数图象的概念:对于一个函数,如果把自变量x 和函数y 的每对值分别作为点的横坐标与纵坐标,在平面直角坐标系内描出相应的点,这些点所组成的图形,就是函数的图象. 2.函数图象的画法⑴列表; ⑵描点; ⑶连线. 3.函数解析式与函数图象的关系:由函数图象的定义可知,图象上任意一点(),P x y 中的x ,y 都是解析式方程的一个解.反之,以解析式方程的任意一个解为坐标的点一定在函数的图象上.判断一个点是否在函数图象上的方法是:将这个点的坐标值代入函数的j 解析式,如果满足函数解析式,这个店就在函数的图象上,否则就不在这个函数的图象上.板块一、函数及其自变量取值范围【例1】 下列关系式中不是函数关系的是( )A.y =0x >)B.y x =(0x >)C.y =0x >)D.y =(x <【答案】A【例2】 在函数y =中,自变量x 的值取值范围是( )A.3x <-B.3x ≤-C.3x ≤D.3x >【答案】D【例3】 函数y 的自变量的取值范围是( )A.22x -<≤B.22x -≤≤C.2x ≤且2x ≠D.22x -<<【答案】A【例4】 求下列各函数中自变量x 的取值范围;⑴y =y;⑶0y x =;⑷y =+【答案】⑴32x ≤且1x ≠-;⑵1x ≥且x ≠40x -≤<或04x <≤;⑷102x ≤<或122x <≤【例5】 等腰三角形的周长为30,写出它的底边长y 与腰长x 之间的函数关系,并写出自变量的取值范围?【答案】⑴302y x =-,由三角形的三边关系可得:2x y >,0x >,0y >,可得15152x <<. 【例6】 如图,周长为24的凸五边形ABCDE 被对角线BE 分为等腰ABE ∆及矩形BCDE ,AE DE =,设AB 的长为x ,CD 的长为y ,求y 与x 之间的函数关系式,写出自变量的取值范围.【答案】244y x =-,在ABE ∆中,2244x x >-, 所以4x >,故46x <<.【例7】 小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( ) A .12分钟 B .15分钟 C .25分钟 D .27分钟【答案】B【例8】 李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。
一次函数 相关概念难点及答案解析
一次函数1.函数1.1变量与函数(1).常量变量的概念①在一个变化过程中,我们称数值不变的量为______,数值变化的量为______.【答案】常量,变量②区别:______是可以变化的,而______是固定不变的.【答案】变量,常量1.2函数1.2.1函数的概念(1)一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有______与其对应,那么我们就说x是______,y是x 的______.【答案】唯一确定的值,自变量,函数(2)如果x=a时y=b,那么b叫做当自变量的值为a时的______.【答案】函数值注意:对函数的理解,要抓住三点:①两个变量;②一个变量的数值随着另一个变量数值的变化而发生变化;③自变量的每一个确定的值,函数都有唯一确定的值与其对应.1.2.2函数自变量的取值范围与函数值(1)自变量的取值范围:使函数关系式_______的自变量取值的全体叫自变量的取值范围。
(2)确定自变量取值范围的方法:其一,要使函数关系式有意义;其二,对实际问题中的函数关系,还应该使得实际问题有意义。
(3)函数值:对于自变量x在取值范围内的某个确定的值a,函数y所对应的值为b,即当x=a,y=b时,b叫做当自变量x的值为a时的函数值。
【答案】(1)有意义1.2.3函数图象及画法(1)函数的图象:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的_______坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。
(2)函数图象的画法步骤①______:列表给出自变量和函数的一些对应值。
②______:以表中各组对应值为坐标,在坐标平面内描出相应的点。
③______:按照自变量由小到大的顺序,把所描各点用平滑的曲线依次连接起来。
【答案】(1)横、纵;(2)列表,描点,连线1.2.4函数的表示【答案】自变量的代数式列表给出y与x的对应值的方法自变量与函数对应关系1.2.5函数的解析式像y=50-0.1x这样,用关于自变量的数学式子表示______与______之间的关系,是描述函数的常用方法.这种式子叫做__________.【答案】函数自变量函数的解析式2.一次函数2.1正比例函数2.2.1正比例函数的定义一般地,形如______的函数,叫做______,其中_______叫做比例系数.【答案】y=kx(k是常数,k≠0),正比例函数,k注意:(1)正比例函数中必定存在成正比例关系的量,但存在成正比例关系不一定就是正比例函数.(2)正比例函数解析式y=kx(k是常数,k≠0)的条件k≠0千万不能忽视,如果k=0,直线y=0就不是正比例函数.(3)在正比例函数y=kx(k是常数,k≠0)中,自变量x的次数只能是1.如果两个变量的比是一个不为0的常数,那么这两个变量之间的关系就是正比例函数关系.2.2.2正比例函数的图象:一般地,正比例函数y=kx(k是常数,k≠0)的图象是一条________的________我们称它为直线y=kx.【答案】经过原点直线2.2.3正比例函数的性质:①当______时,直线y=kx经过________象限,从左向右上升,即随着x的增大y也______;②当k______时,直线y=kx经过______象限,从左向右下降,即随着x的增大y反而减小.【答案】①k>0,第三、第一,增大①k<0,第二、第四,减小2.2.4正比例函数图像的画法:因为两点确定一条直线,所以可用_______画正比例函数y=kx(k≠0)的图象.一般地,过_______和点_______(k是常数,k≠0)的直线,即正比例函数y=kx(k≠0)的图象.【答案】两点法,原点(0,0),(1,k)2.2一次函数2.2.1一次函数的定义:一般地,形如_______的函数,叫做一次函数.当______时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.【答案】y=kx+b(k,b是常数,k≠0),b=02.2.2一次函数的性质当_______时,直线y=kx+b从左向右上升;当_______时,直线y=kx+b从左向右下降。
一次函数的概念与性质习题答案
14.答案:D
解:分为两种情况: ① 过 点 ( -3, 1) 和 ( 1, 9) 代 入 得 :
则有{
,解得{ ,所以 kb=14.
② 过 点 ( -3, 9) 和 ( 1, 1) 代 入 得 :
则有{
,解 得 {
,所以 kb=-6.
综上:k•b=14 或-6. 故选 D.
x=0 时,函数值最大-2×0+3=3.
故选 B.
12.答案:C
解 : 把 ( 1, 1),( 2, -4) 代 入 一 次 函 数 y=kx+b, 得
{
,解得{
,故选 C.
13.答案:C
解:因为直线与 y=2x+3 平行,故可知 k=2,又因为过(1,1)点,所以有 1=2+b,得到 b=-1,即所 求直线方程为 y=2x-1 故选 C.
8.答案:D
解:A、∵一次函数 y=-2x+4 中 k=-2<0,∴ 函数值随 x 的增大而减小,故本选 项正确;
B、∵一次函数 y=-2x+4 中 k=-2<0,b=4>0,∴此函数的图象经过一、二、 四象限,不经过第三象限,故本选项正确;
C、由“ 上 加 下 减 ”的 原 则 可 知 ,函 数 的 图 象 向 下 平 移 4 个 单 位 长 度 得 y=-2x
7.答案:C
解:∵a+b+c=0,且 a<b<c, ∴ a< 0, c> 0,( b 的 正 负 情 况 不 能 确 定 ), ∵a<0, ∴函数 y=cx+a 的图象与 y 轴负半轴相交, ∵c>0, ∴函数 y=cx+a 的图象经过第一象限, ∴函数 y=cx+a 的图象经过第一、三、四象限. 故选 C.
人教版八年级数学下册19.2一次函数的定义(有答案).docx
初中数学试卷 鼎尚图文**整理制作一次函数定义图像(初二数学组2017.3.20)1、判断正误:(1)一次函数是正比例函数; ( ) (2)正比例函数是一次函数; ( )(3)x +2y =5是一次函数; ( )(4)2y -x=0是正比例函数. ( )2.下列说法不正确的是( )A .一次函数不一定是正比例函数。
B .不是一次函数就不一定是正比例函数。
C .正比例函数是特殊的一次函数。
D .不是正比例函数就一定不是一次函数。
3.下列函数中一次函数的个数为( )①y=2x ;②y=3+4x ;③y=21;④y=ax (a ≠0的常数);⑤xy=3;⑥2x+3y-1=0;A .3个B 4个C 5个D 6个4.若函数y=(m-2)x+5是一次函数,则m 满足的条件是____________。
5.当m=__________时,函数y=3x 2m+1+3 是一次函数。
6.关于x 的一次函数y=x+5m-5,若使其成为正比例函数,则m 应取_________。
7.已知函数y=()()112-++m x m 当m 取什么值时,y 是x 的一次函数?当m 取什么值是,y 是x 的正比例函数。
8.函数:①y=-2x+3;②x+y=1;③xy=1;④y=1+x ;⑤y=221x +1;⑥y=0.5x 中,属一次函数的有 ,属正比例函数的有 (只填序号)9.当m= 时,y=()()m x m x m +-+-1122是一次函数。
10.请写出一个正比例函数,且x =2时,y= -6请写出一个一次函数,且x=-6时,y=211.我国是一个水资源缺乏的国家,大家要节约用水.据统计,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.李丽同学在洗手时,没有把水龙头拧紧,当李丽同学离开x 小时后水龙头滴了y 毫升水.则y 与x 之间的函数关系式是12.设圆的面积为s,半径为R,那么下列说法正确的是()A S是R的一次函数B S是R的正比例函数R的正比例函数 D 以上说法都不正确C S是213.说出下面两个问题中两个量的函数关系,并指出它们是不是正比例函数,是不是一次函数。
一次函数概念及习题
一次函数一、1.1.定义定义定义 ((1)在变化过程中有两个变量;)在变化过程中有两个变量;(2)一个变量的数值随着另一个变量的数值的变化而发生变化;)一个变量的数值随着另一个变量的数值的变化而发生变化;(3)自变量的每一个确定值,函数有且只有一个(唯一)值与之对应,即单值对应。
)自变量的每一个确定值,函数有且只有一个(唯一)值与之对应,即单值对应。
二、一次函数(——正比例函数)1.定义1)函数为一次函数Û其解析式可化为y kx b =+(,k b 为常数,0k ¹)的形式。
)的形式。
(2)一次函数y kx b =+结构特征:0k ¹;自变量x 次数为1;常数b 可为任意实数。
可为任意实数。
(3)一般情况下,一次函数中自变量的取值范围是全体实数。
)一般情况下,一次函数中自变量的取值范围是全体实数。
(4)若0k =,则y b =(b 为常数),这样的函数叫做常函数,它不是一次函数;,这样的函数叫做常函数,它不是一次函数; 若0b =,则y=kx (k 为常数),这样的函数叫做正比例函数。
,这样的函数叫做正比例函数。
2.图像:一次函数的图像是一条直线,确定两点,便能确定其图像。
图像:一次函数的图像是一条直线,确定两点,便能确定其图像。
3.性质(1)增减性:0k >时,y 随着x 的增大而增大;0k <时,y 随着x 的增大而减小。
的增大而减小。
(2)图像位置:直线y kx b =+过两个象限或三个象限,由,k b 的符号共同决定。
的符号共同决定。
【问题1】已知函数(12)1y k x k =--+.(1) 当k 取何值时,这个函数是正比例函数;取何值时,这个函数是正比例函数; (2) 当k 取何值时,这个函数是一次函数.取何值时,这个函数是一次函数.注:理解正比例函数和一次函数的概念(整理成一般形式)注:理解正比例函数和一次函数的概念(整理成一般形式) 练习:(1)已知函数23(2)my m x -=-是正比例函数,则m 的值为的值为 .(2)下列函数中,是一次函数的有)下列函数中,是一次函数的有 (填序号)(填序号)① 2c r p =;②;② 2(3)y x =-;③;③ 22n m -=; ④ (50)s x x =-;⑤;⑤ 100t v=. 【问题2】已知y 是x 的一次函数,且当2x =-时,7y =;当3x =时,5y =-.求当0y = 时,自变量x 的值.的值.注:利用待定系数法求函数解析式(基本步骤)注:利用待定系数法求函数解析式(基本步骤)练习:(1)已知100y -与x 成正比例关系,且当10x =时,600y =.求y 关于x 的函数解析式.的函数解析式.(2)已知y m +与x n -成正比例(其中m ,n 是常数).如果当15y =-时,1x =-;当7x =时,1y =.求y 关于x 的函数解析式.的函数解析式.1.已知23(2)3my m x-=-+,当m 为何值时,y 是x 的一次函数?的一次函数?2.2.已知一次函数已知一次函数(2)(1)y m x m =++-,若y 随x 的增大而减小,且该函数图象与x 轴的交点在原点右侧,求m 的取值范围。
第3讲 一次函数(解析)
第3讲 一次函数知识点1 一次函数的概念图像性质1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且k ≠0)的函数,叫做一次函数,其中x 是自变量。
当0b =时,一次函数y kx =,又叫做正比例函数。
⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数2、一次函数图象性质3、正比例函数和一次函数及性质b>0b<0b=0 k>0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y 随x 的增大而增大k<0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y 随x 的增大而减小【典例】例1下列各式①y =﹣8x ;②y =﹣;③y =;④y =﹣8x 2+2;⑤y =0.5x ﹣3,是一次函数有( ) A .1个B .2个C .3个D .4个【解答】解:①y =﹣8x 为正比例函数,符合题意. ②y =﹣为反比例函数,不符合题意. ③y =,不是整式,不符合题意.正比例函数一次函数概 念一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,是y=kx ,所以说正比例函数是一种特殊的一次函数.自变量 范 围 X 为全体实数图 象 一条直线必过点 (0,0)、(1,k )(0,b )和(-kb,0) 走 向k>0时,直线经过一、三象限; k<0时,直线经过二、四象限k >0,b >0,直线经过第一、二、三象限 k >0,b <0直线经过第一、三、四象限 k <0,b >0直线经过第一、二、四象限 k <0,b <0直线经过第二、三、四象限增减性 k>0,y 随x 的增大而增大;(从左向右上升) k<0,y 随x 的增大而减小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17.3.1一次函数的定义一.选择题(共8小题)1.下列函数:①y=x;②y=;③y=;④y=2x+1,其中一次函数的个数是()A.1 B.2 C.3 D.42.下列函数中,一次函数是()A.y=8x2B.y=x+1 C.;D.3.在地表以下不太深的地方,温度y(℃)与所处的深度x(km)之间的关系可以近似用关系式y=35x+20表示,这个关系式符合的数学模型是()A.正比例函数B.反比例函数C.二次函数D.一次函数4.下列关于x的函数中,是一次函数的是()A.y=3(x﹣1)2+1 B.y=x+C.y=﹣x D.y=(x+3)2﹣x25.若y=是一次函数,则m的值为()A.0 B.﹣1 C.0或﹣1 D.±16.如果y=(m﹣1)x2﹣m2+3是一次函数,那么m的值是()A.1 B.﹣1 C.+1 D.±7.函数,一次函数和正比例函数之间的包含关系是()A. B.C.D.8.下列函数关系式:①y=﹣x;②y=2x+11;③y=x2+x+1;④.其中一次函数的个数是()A.1个B.2个C.3个D.4个二.填空题(共7小题)9.已知关于x的函数y=(m﹣5)x+m+1是一次函数,则m=_________,直线y=(m﹣5)x+m+1不经过第_________象限.10.一般的,如果两个变量x与y之间的函数关系式可以表示为_________的形式,那么称y是x的一次函数.当_________时,y是x的正比例函数.11.若y=(a2﹣4)x2+(a+2)x+5﹣b是正比例函数,则a﹣b=_________.12.若函数是正比例函数,则常数m的值是_________.13.已知函数y=(m﹣1)+1是一次函数,则m=_________.14.已知函数y=3x+1,当自变量增加3时,相应的函数值增加_________.15.当x=_________时,函数y=(m﹣2)x+(m﹣2)x+1是一次函数.三.解答题(共6小题)16.当m是何值时,函数y=(m+2)x+m+1是:(1)一次函数;(2)是正比例函数.17.已知函数y=(2﹣m)x+2m﹣3.求当m为何值时.(1)此函数为一次函数?(2)此函数为正比例函数?18.试将函数3x+2y=1改成y=kx+b的形式,并指出k和b的值.19.已知一次函数y=(5m﹣3)x2﹣n+m+n,①求m、n的值和取值范围;②若函数经过原点,求m、n的值.20.已知函数是一次函数,求k和b的取值范围.21.已知y=(m+1)x2﹣|m|+n+4(1)当m、n取何值时,y是x的一次函数?(2)当m、n取何值时,y是x的正比例函数?17.3.1一次函数的定义参考答案与试题解析一.选择题(共8小题)1.下列函数:①y=x;②y=;③y=;④y=2x+1,其中一次函数的个数是()A. 1 B.2 C.3 D. 4考点:一次函数的定义.分析:根据一次函数的定义条件进行逐一分析即可.解答:解:①y=x是一次函数,故①符合题意;②y=是一次函数,故②符合题意;③y=自变量次数不为1,故不是一次函数,故③不符合题意;④y=2x+1是一次函数,故④符合题意.综上所述,是一次函数的个数有3个,故选:C.点评:本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.2.下列函数中,一次函数是()A.y=8x2B.y=x+1 C.;D.考点:一次函数的定义.分析:一次函数y=kx+b的定义条件逐一分析即可.解答:解:A、自变量次数不为1;B、是一次函数;C、不符合一次函数的形式;D、分母中含有未知数不是一次函数.故选B.点评:解题关键是掌握一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.3.在地表以下不太深的地方,温度y(℃)与所处的深度x(km)之间的关系可以近似用关系式y=35x+20表示,这个关系式符合的数学模型是()A.正比例函数B.反比例函数C.二次函数D.一次函数考点:一次函数的定义.分析:根据一次函数的定义解答即可.解答:解:∵关系式y=35x+20符合一次函数的形式,∴这个关系式符合的数学模型是一次函数.故选D.点评:本题考查一次函数的定义,即形如y=kx+b,(k≠0,k、b为常数)的函数叫一次函数.4下列关于x的函数中,是一次函数的是()A.y=3(x﹣1)2+1 B.y=x+C.y=﹣x D.y=(x+3)2﹣x2考点:一次函数的定义.分析:化简后,看是否符合y=kx+b(k≠0)的形式即可.解答:解:A、y=3(x﹣1)2+1自变量次数不为1,故不是一次函数,不符合题意;B、y=x+不符合一次函数的一般形式,不符合题意;C、y=﹣x不符合一次函数的一般形式,不符合题意;D、化简后可得y=6x+9,符合一次函数的一般形式,符合题意;故选D.点评:掌握一次函数的一般形式是关键,注意判断函数应化简后再判断.5.若y=是一次函数,则m的值为()A.0 B.﹣1 C.0或﹣1 D.±1考点:一次函数的定义.分析:根据形如y=kx+b (k、b为常数,k≠0)是一次函数,可得答案.解答:解:由y=是一次函数,得,解得m=﹣1,故选:B.点评:本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.6.如果y=(m﹣1)x2﹣m2+3是一次函数,那么m的值是()A. 1 B.﹣1 C.+1 D.±考点:一次函数的定义.分析:根据一次函数的一次项的系数不等于零,可得不等式,根据解不等式,可得答案.解答:解:y=(m﹣1)x2﹣m2+3是一次函数,得.解得m=1(不符合题意要舍去),m=﹣1,故选:B.点评:本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.7.函数,一次函数和正比例函数之间的包含关系是()A.B.C.D.考点:一次函数的定义.专题:数形结合.分析:根据函数、正比例函数及一次函数的定义解答.解答:解:函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量.根据函数的定义知,一次函数和正比例函数都属于函数的范畴;一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.当b=0时,则成为正比例函数y=kx;所以,正比例函数是一次函数的特殊形式;故选A.点评:本题主要考查了一次函数、正比例函数的定义.解题关键是掌握一次函数的定义条件:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.8.下列函数关系式:①y=﹣x;②y=2x+11;③y=x2+x+1;④.其中一次函数的个数是()A.1个B.2个C.3个D.4个考点:一次函数的定义.分析:根据一次函数的定义解答即可.解答:解:①y=﹣x是一次函数;②y=2x+11是一次函数;③y=x2+x+1是二次函数;④是反比例函数.故选B.点评:本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.二.填空题(共7小题)9.已知关于x的函数y=(m﹣5)x+m+1是一次函数,则m=﹣5,直线y=(m﹣5)x+m+1不经过第一象限.考点:一次函数的定义;一次函数图象与系数的关系.分析:一次函数的系数m﹣5≠0,自变量x的次数m2﹣24=1,据此解答m、n的值.解答:解:(1)m﹣5≠0,m≠5;m2﹣24=1m=±5,所以m=﹣5;(2)∵m=﹣5,∴y=﹣10x﹣4,﹣10<0,﹣4<0,图象过二、三、四象限,∴不经过第一象限.故答案为:﹣5,一.点评:本题主要考查了一次函数的定义:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.还考查了一次函数的图象与性质,在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x 的增大而减小.10.一般的,如果两个变量x与y之间的函数关系式可以表示为y=kx+b(k≠0,k、b是常数)的形式,那么称y是x的一次函数.当b=0时,y是x的正比例函数.考点:一次函数的定义;正比例函数的定义.分析:根据一次函数的定义和正比例函数的定义解答.解答:解:一般的,如果两个变量x与y之间的函数关系式可以表示为y=kx+b(k≠0,k、b是常数)的形式,那么称y是x的一次函数.当b=0时,y是x的正比例函数.故答案为:y=kx+b(k≠0,k、b是常数);b=0.点评:本题考查了一次函数的定义,是基础题,熟记概念是解题的关键.11.若y=(a2﹣4)x2+(a+2)x+5﹣b是正比例函数,则a﹣b=﹣3.考点:正比例函数的定义.分析:根据正比例函数y=kx的定义条件:k为常数且k≠0,自变量次数为1,即可列出有关a或b的方程,求出a、b值.解答:解:∵y=(a2﹣4)x2+(a+2)x+5﹣b是正比例函数,∴a2﹣4=0,5﹣b=0,且a+2≠0,解得a=2,b=5,则a﹣b=2﹣5=﹣3.故答案是:﹣3.点评:本题主要考查了正比例函数的定义,难度不大,注意基础概念的掌握.12.若函数是正比例函数,则常数m的值是﹣3.考点:正比例函数的定义.专题:待定系数法.分析:正比例函数的一般式为y=kx,k≠0.根据题意即可完成题目要求.解答:解:依题意得:,解得:m=﹣3.点评:本题考查了正比例函数的一般形式及其性质.13.已知函数y=(m﹣1)+1是一次函数,则m=﹣1.考点:一次函数的定义.专题:计算题.分析:根据一次函数的定义,令m2=1,m﹣1≠0即可解答.解答:若两个变量x和y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量).因而有m2=1,解得:m=±1,又m﹣1≠0,∴m=﹣1.点评:本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.14.已知函数y=3x+1,当自变量增加3时,相应的函数值增加9.考点:一次函数的定义.专题:计算题.分析:把x+3代入函数y=3x+1计算即可.解答:解:当自变量增加3时,y=3(x+3)+1=3x+10,则相应的函数值增加9.点评:本题主要考查了一次函数的增值问题,注意细心运算即可.15.当x=﹣2或时,函数y=(m﹣2)x+(m﹣2)x+1是一次函数.考点:一次函数的定义.分析:此题要分两种情况进行讨论:①m2﹣3=1且m﹣2≠0;②m2﹣3=0分别算出m的值即可.解答:解:由题意得:①m2﹣3=1,解得:m=±2,∵m﹣2≠0,∴m=﹣2,②m2﹣3=0,解得:m=,故答案为:﹣2或.点评:此题主要考查了一次函数的定义,关键是掌握形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.三.解答题(共6小题)16.当m是何值时,函数y=(m+2)x+m+1是:(1)一次函数;(2)是正比例函数.考点:一次函数的定义;正比例函数的定义.分析:(1)根据一次函数定义y=kx+b(k≠0)可得m+2≠0,再解即可.(2)根据正比例函数y=kx(k≠0)可得m+1=0,m+2≠0,再解即可.解答:解:(1)由题意得:m+2≠0,解得:m≠﹣2;(2)由题意得:m+1=0,m+2≠0,解得:m=﹣1.点评:此题主要考查了一次函数,关键是掌握一次函数的形式:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.17.已知函数y=(2﹣m)x+2m﹣3.求当m为何值时.(1)此函数为一次函数?(2)此函数为正比例函数?考点:一次函数的定义;正比例函数的定义.分析:(1)根据形如y=kx+b (k≠0)的形式是一次函数,可得答案;(2)根据形如y=kx (k≠0)的形式是正比例函数,可得答案.解答:解:(1)2﹣m≠0,即m≠2时,y=(2﹣m)x+2m﹣3是一次函数;(2)2m﹣3=0,且2﹣m≠0,即m=时,y=(2﹣m)x+2m﹣3是正比例函数.点评:本题考查了一次函数的定义,利用了一次函数的定义.18.试将函数3x+2y=1改成y=kx+b的形式,并指出k和b的值.考点:一次函数的定义.分析:把3x+2y=1通过移项、化系数为1化为y=kx+b的形式,对比求出k、b的数值即可.解答:解:由3x+2y=1,得2y=﹣3x+1,化系数为1,得y=﹣x+,则k=﹣,b=.点评:本题考查了一次函数的定义.任何二元一次方程都可以化为y=kx+b(k、b为常数,且k≠0)的形式,且以二元一次方程的解为坐标的所有点组成的图象与相应的一次函数的图象是相同的.19.已知一次函数y=(5m﹣3)x2﹣n+m+n,①求m、n的值和取值范围;②若函数经过原点,求m、n的值.考点:一次函数的定义;一次函数图象上点的坐标特征.分析:①根据一次函数的定义,x的次数等于1,且x的系数不等于0即可求解;②把(0,0)代入函数解析式即可求解.解答:解:①根据题意得:2﹣n=1,且5m﹣3≠0,解得:n=1且m≠;②函数的解析式是y=(5m﹣1)x+m+1,把(0,0)代入解析式得:m+1=0,解得:m=﹣1,则m=﹣1,n=1.点评:本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.20.已知函数是一次函数,求k和b的取值范围.考点:一次函数的定义.专题:计算题.分析:若两个变量x和y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量),因而函数是一次函数的条件是k2﹣3=1,且k﹣2≠0.解答:解:根据题意得:k2﹣3=1,且k﹣2≠0,∴k=﹣2或k=2(舍去)∴k=﹣2.b是任意的常数.点评:本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.21.已知y=(m+1)x2﹣|m|+n+4(1)当m、n取何值时,y是x的一次函数?(2)当m、n取何值时,y是x的正比例函数?考点:一次函数的定义;正比例函数的定义.分析:(1)根据一次函数的定义:一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,据此求解即可;(2)根据正比例函数的定义:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数,据此求解即可.解答:解:(1)根据一次函数的定义,得:2﹣|m|=1,解得m=±1.又∵m+1≠0即m≠﹣1,∴当m=1,n为任意实数时,这个函数是一次函数;(2)根据正比例函数的定义,得:2﹣|m|=1,n+4=0,解得m=±1,n=﹣4,又∵m+1≠0即m≠﹣1,∴当m=1,n=﹣4时,这个函数是正比例函数.点评:本题主要考查了一次函数与正比例函数的定义,比较简单.一次函数解析式y=kx+b的结构特征:k≠0;自变量的次数为1;常数项b可以为任意实数.正比例函数y=kx的解析式中,比例系数k是常数,k≠0,自变量的次数为1.。