2.2二维离散型随机变量

合集下载

概率论第二章习题讲解

概率论第二章习题讲解
j
( )
j
i
i
二. 二维连续随机变量的边缘分布 x +∞ F X ( x ) = F ( x , +∞ ) = ∫ dx ∫ f ( x , y )dy ∞ ∞ d +∞ f X (x ) = FX (x )= ∫ ∞ f ( x , y )dy dx y +∞ FY ( y ) = F (+ ∞ , y ) = ∫ dy ∫ f ( x , y )dx ∞ ∞ +∞ d fY ( y ) = FY ( y ) = ∫ ∞ f ( x , y )dx dy 一. 离散型随机变量的独立性 p xi , y j = pX ( xi ) pY y j 二. 连续随机变量的独立性
+∞ ∞

f (z y( x , y )dy
2. 平方和的分布
n
FZ ( z ) =
∫∫ f ( x , y )dxdy
x2 + y2 < z
n
3.(独立的随机变量) 3.(独立的随机变量)最大值与最小值的分布
Fmax ( z ) = ∏ Fi ( z ),
i =1
p 1 q[ x ] F ( x ) = P ( X ≤ x ) = ∑ pq m 1 = = 1 q [ x ] = 1 (1 p)[ x ] 1 q m =1 其中,[x]为 x 的整数部分. 其中, 为 的整数部分.
8
(
)
当 x ≥ 1 时,
4 自动生产线在调整以后出现废品的概率为 p (0<p<1), 生产过程中出现废品时立即重新调整, 生产过程中出现废品时立即重新调整 求在两次调整之间生产的合格品数的概率分布. 求在两次调整之间生产的合格品数的概率分布 设随机变量X表示自动生产线 解 设随机变量 表示自动生产线 : 在两次调整之间生产的合格品数, 在两次调整之间生产的合格品数, 的所以可能取值:0,1,2,…,n,…. 则X的所以可能取值 的所以可能取值

32二维离散型随机变量的分布律及性质

32二维离散型随机变量的分布律及性质
P { X x , Y y }p i j ij P { X x Y y } ,i 1 , 2 , (2.4) i j P { Y y } p j j
易知,上述条件概率满足概率分布的性质
(1) P { X x y } 0 , i 1 , 2 , iY j
(2)
p 1 j p 1 i j p p i 1 p 1 j j i j

p i j
P { X x } 0 同理,设 p ,则可得到在 X xi i i 时随机变量 Y的条件概率分布为:
P { X x , Y y } p i j i j P { Y y X x } ,j 1 , 2 ,( 2 . 5 ) j i P { X x } p i i
{ X x , Y y } P { X x } P { Y y } 即P (2.7) i j i j
例4
X ,Y
相互独立,填如下表3-8空白处的值
解:
例5 设 X 表示把硬币掷三次时头两次掷出正面的 Y 表示这三次投掷中出现正面的总次数那么, 次数, 二维随机变量 ( X ,Y ) 概率分布如表3-9所示.问随机 变量 X与Y 是不是相互独立?

(1) P { Y y x } 0 ,j 1 , 2 , jX i
(2)

p 1 i p 1 ij p p i i i i j 1p 1 p ij


i 1 , 2 , ,
例3 设二维离散形随机变量 ( X ,Y ) 的概率分布如表3-7, 1时关于 X 的条件概率分布及 X 0 时关于 Y 的 求 Y 条件概率分布。
解:
四、 独立性

2.2离散型随机变量及其概率分布

2.2离散型随机变量及其概率分布

8
5
k
24
小结
离 散 型 随 机 变 量 的 分 布
二项分布 泊松分布
两点分布
两点分布
n1
二项分布
n 10, p 0.1, np
泊松分布
25
二项分布与 (0 1) 分布、泊松分布之间的 关系 .
二项分布是 (0 1) 分 布 的 推 广 , 对 于n 次 独 立重复伯努利试验 ,每 次 试 验 成 功 的 概 率 为 p, 设 , 1, 若 第 i 次 试 验 成 功 Xi ( i 1,2, , n) . 0, 若 第 i 次 试 验 失 败 它们都服从 (0 1) 分 布 并 且 相 互 独 立 , 那末 X X1 X 2 X n 服 从 二 项 分 布 , 参 数 为( n, p).
定义2 如果随机变量 X 只有两个可能取 值,其概率分布为
P{ X x1 } P , P{ X x2 } q 1 p(0 p 1, p q 1)
则称X服从 x1 , x2 处参数为p的两点分布. 特别,若X服从
x1 1, x 0 处参数为p的两点分布,即
p
k 1
5
k
1
1 a . 15
5
关于分布律的说明:
若已知一个离散型随机变量X的概率分布 X P x1 p1 x2 p2 ... ... xn ... pn ...
则可以求X所生成的任何事件的概率,特别地:
P{a X b} P{ { X xi }} pi
a xi b a xi b
26
以 n, p ( np ) 为参数的二项分布 ,当 n 时趋 于以 为参数的泊松分布 ,即

2.2 离散型随机变量及其分布

2.2 离散型随机变量及其分布
∞ k k =1
}
满足下列性质 性质: 满足下列性质:
pk ≥ 0 (k = 1,2,⋯);
概率论与数理统计 数学科学学院 徐 鑫
∑p
k =1

k
常用来确定分布律中的待定参数] 常用来确定分布律中的待定参数 = 1 [常用来确定分布律中的待定参数
这两条也是非负 数列能为某随机 变量分布律的充 要条件
离散型随机变量分布列的求法 求法: 离散型随机变量分布列的求法: 利用古典概率、 利用古典概率、条件概率等计算方法及运算 性质求事件{X=x 概率; 性质求事件{X=xk}概率; 利用已知的重要分布的分布列; 利用已知的重要分布的分布列; 利用分布函数. 利用分布函数. 离散型随机变量分布列的应用 应用: 离散型随机变量分布列的应用: 确定分布列中的待定参数; 确定分布列中的待定参数; 求分布函数; 求分布函数; 求随机事件的概率. 求随机事件的概率.
概率论与数理统计 数学科学学院 徐 鑫
四、几种重要的离散型随机变量 1、(0-1)分布[两点分布] (0-1)分布 两点分布] 分布[ 定义2 定义2 设随机变量X只取0,1两值, 设随机变量X只取0,1两值,且其分布律为 0,1两值
P{X = k} = p (1 − p) (k = 0,1;0 < p < 1)
(−∞, x1 ), [ x1 , x2 ), [ x2 , x3 ) ⋯, [ xk ,+∞)
分别求出F(x)的值,即就x 分别求出F(x)的值,即就x落在上述各区间内计算 F(x)的值 {X≤x}所含可能值概率的累积和; {X≤x}所含可能值概率的累积和; 所含可能值概率的累积和 离散型随机变量X的分布函数是一个右连续的阶梯 离散型随机变量X 函数. 函数.

二维离散型随机变量及其分布

二维离散型随机变量及其分布
P{ X xi } P{ X xi , } P{ X xi , (Y y j )}
j 1
P{ ( X xi , Y y j )} P{ X xi , Y y j } pij
j 1 j 1 j 1



Two-dimension Discrete Random Variable and Distribution
所以,关于X的边缘分布律为:
X
pi.
x1
x2 …
xi …
pi. …
p1. p2. …
关于Y的边缘分布律为:
Y p.j y1 p.1 y2 … yj …
p.2 … p.j …
Two-dimension Discrete Random Variable and Distribution
[例2]见例1,试求(X,Y)关于X和关于Y的边缘 分布律。
1 2/5
Two-dimension Discrete Random Variable and Distribution
联合分布律 边缘分布律
Two-dimension Discrete Random Variable and Distribution
1、统计学中有两种抽样:不放回抽样和有放 回抽样。将例1中“不放回地取两次球”改为 “有放回地取两次球”,试求(X,Y)的联合分 布律、(X,Y)分别关于X,Y的边缘分布律及判断 X,Y是否相互独立? 2、上述我们解决了:已知二维离散型随机变 量(X,Y)的联合分布律,如何求(X,Y)关于X 或关于Y的边缘分布律的问题。那么,已知X,Y的 边缘分布律,能否求(X,Y)的联合分布律呢?
0, Y 1,
表示第二次取红球 表示第二次取白球

第三节二维随机变量的独立性

第三节二维随机变量的独立性
或随机变量X与Y的联合分布律. 注: 二维离散型随机变量的分布律也可列表表示如下:
X Y y1 y2 … yj … x1 p11 p12 ... p1j ... x2 p21 p22 ... P2j ...
xi pi1 pi2 ... Pij ...
3. 联合分布律的性质 :
(1) pij 0;(2) pij=1.
F ( x1 ,, xn ) FX1 ( x1 )FX2 ( x2 )FXn ( xn )
则称X1 , X2, …, Xn 相互独立,或称(X1 , X2, …, Xn )是独立的.
一、二维离散型随机变量
1. 定义:若二维随机变量(X, Y)只能取至多可列个值(xi, yj), (i, j=1, 2, … ),则称(X, Y)为二维离散型随机变量。
2. 联合分布律: 若二维随机变量(X, Y) 取 (xi, yj)的概率为Pij, 则称P{X=xi, Y= yj}= Pij为随机变量(X, Y)的分布律,
等价定义:设X, Y为两个随机变量,如果对任意实数a<b, c<d, 有P{a<Xb, c<Yd} =P{a<Xb}P{c<Yd},即事件{a<Xb}与 事件{c<Yd} 独立,则称随机变量X与Y相互独立.
2. 独立的充要条件 (1) 设( X,Y )为离散型随机变量,分布律为 pij,则 X与Y相互独立 pij pi. p. j . (2) 设( X,Y )为连续型随机变量,概率密度为 f ( x,y),则
例2. 设( X,Y )的分布律为 且X与 Y独立,求a,b.
XY 1 2 0 0.15 0.15 1 ab
例2. 设( X,Y )的分布律为 且X与 Y独立,求a,b.

二维离散型随机变量

二维离散型随机变量

F
(
x,
y)
1 3
,
1 x 2, y 2, 或 x 2,1 y 2,
1, x 2, y 2.
说明 离散型随机变量 ( X ,Y ) 的分布函数归纳为
F ( x, y) pij ,
xi x y j y
其中和式是对一切满足xi x, y j y 的i, j求和.
注意 联合分布
pij 1.
i1 j1
二维随机变量 ( X,Y ) 的分布律也可表示为
X Y
y1 y2
yj
x1
x2 xi
p11 p21
p12 p22
pi1
pi 2
p1 j p2 j pij
3、离散型随机变量的边缘分布律
定义设二维离散型随机变量( X ,Y )的联合分布
律为
P{X xi ,Y y j } pij , i, j 1, 2, .
3 7
pj (Y ) P{Y yj}
4
7 3
7
1
例2 设随机变量 X 在 1,2,3,4四个整数中等可能地 取值, 另一个随机变量Y 在 1 ~ X 中等可能地取一 整数值.试求 ( X ,Y ) 的分布律.
解 { X i,Y j}的取值情况是 : i 1,2,3,4,
j取不大于i的正整数. 且由乘法公式得

pi ( X ) pij P{X xi }, i 1, 2, ,
j 1
p j (Y ) pij P{Y y j }, j 1, 2, , i 1
分别称 pi ( X ) (i 1, 2, ) 和 p j (Y ) ( j 1, 2, ) 为 ( X ,Y )
关于 X 和关于 Y 的边缘分布律.

§2.2离散型随机变量及其分布列

§2.2离散型随机变量及其分布列

1, x a F ( x) 0, x a
1
例2.2.9 若
.
服从两点分布
0
P
q

的分布函数
解: P( x) 0 当 x 0时,F(x) F(x) P( x) P( 0) q 当 0 x 1 时, F ( x) P( x) P( 0) P( 1) 1 当 x 1 时, 例2.2.10 设 的分布列为
0 1 2 3 4 5
k 5 k 5k
k=0,1,2,3,4,5.
q 5 5 pq 4 10 p 2 q 3 10 p 3 q 2 5 p 4 q p 5
3.分布列的性质
由概率的性质可知,任一离散型随机变量 的分布列 p i 都具有下述性质:
非负性:1)pi 0, i 1, 2, 规范性:2) pi 1
k 6 k 6
5000
5000
其中b(k;5000,1/1000)= C
k 5000
1 k 1 5000 k ( ) (1 ) 1000 1000
这时如果直接计算P 5 ,计算量较大。由于n很大 ,p较小,而np=5不很大 ,
可以利用 Poisson定理
5 P( 5) 1 P 5 1 e k 0 k !
i
例2.2.11 设随机变量
的分布函数为 的分布列。
解: 依题意可得
0, x 1 0.4, 1 x 1 F ( x) ,求 0.8,1 x 3 1, x 3
的可能取值为-1,1,3
P 1 F 1 0 F 1 0.4,
P 3 F 3 0 F 3 0.2
所以 的分布列为

2.2离散型随机变量及其分布律

2.2离散型随机变量及其分布律

当1≤x<2时, {X≤x}={X=0}∪{X=1} X 0 1x 2
又{X=0}与{X=1}互不相容 得: F(x)=P{X≤x}=P{X=0}+P{X=1}
=0.6+0.3=0.9
当x≥2时, {X≤x}为必然事件
X
0 1 2x
8
得: F(x)=P{X≤x}=1
0, x 0
F
(
x)
0.6, 0.9,
P{X k} C5k pk (1 p)5k
k 0,1,..., 5 18
例.用步枪向某一目标射击,每次击中目标
的概率为0.001,今射击6000次,试求至少有
两弹击中目标的概率.
解:.设X为击中目标的次数.
X : B6000,0.001
P X 2 1 P X 2 1 PX 0 PX 1
0 1
x x
1 2
1 0.9
1, x 2 0.6
注: 左闭右开
0 1 2x
9
0, x 0
F(x)
0.6, 0.9,
0 1
x1 x2
1, x 2
(3)
P(X
1 2
)
F
(
1 2
)
0.6
P
(
1 2
X
3 2
)
F
(
3 2
)
F
(
1 2
)
0.9
0.6
0.3
P(1≤X≤2)=P({X=1}∪{1<X≤2})
P
X k
Ck41 C150
(k 5, 6, 7, 8, 9,10)
具体写出,即可得 X 的分布律:
X 5 6 7 8 9 10

2.2(离散型随机变量)

2.2(离散型随机变量)
分布的概率值来近似.
2.2.2 常用离散型分布
泊松定理于1837年由法国数学家泊松引入!
泊松资料
Siméon Poisson
Born: 21 June 1781 in Pithiviers, France
Died: 25 April 1840 in Sceaux (near Paris),
France
B2, B3, TRUE)
▪ 计算例2-8中的概率
【实验2.2】用Excel验证二项分布与泊松分布的关 系.
实验准备:
函数POISSON的使用格式:POISSON(x, mean, cumulative)
功能:返回泊松分布的概率值.其中x为事件数, mean为期望值,cumulative为一逻辑值,确定所 返回的概率形式.如果cumulative为TRUE,函数 POISSON返回泊松累积概率;如果为FALSE,则 返回泊松概率函数值.
2.2.2 常用离散型分布
【例2.7】某种铸件的砂眼(缺陷)数服从参数为 的泊松分布,试求该铸件至多有一个砂眼(合格 品)的概率和至少有2个砂眼(不合格品)的概 率.
解:以X表示铸件的砂眼数,由题意知X~ P(0.5),则该种铸件上至多有1个砂眼的概率为
P{ X 1} 0.50 e0.5 0.51 e0.5 0.91
pk =
, k = 0,1,…,n
定义2.5 如果C随nk机pk变(1 量pX)n的k 分布律是
,k = 0,1,…,n
则称PX{服X 从 k二} 项C分nk p布k (,1 记p为)nXk ~ B(n,p).
2.2.2 常用离散型分布
二项分布与(0 1) 分布的关系.
二 项 分 布 是(0 1) 分 布 的 推 广, 对 于 n 重 伯 努 利

2.2离散型随机变量及其分布

2.2离散型随机变量及其分布

例1
从中任取3 从中任取 个球 取到的白球数X是一个随机变量 取到的白球数 是一个随机变量 X可能取的值是 0,1,2 可能取的值是
C 1 取每个值的概率为 P(X=0)= = C 10 3 且 CC 6 ∑P( X = i) = 1 P(X= )= 1 = i=1 C 10 1 2 这样,我们就掌握了X这个 这样,我们就掌握了 这个 C3C2 3 P(X=2)= 3 = 随机变量取值的概率规律. 随机变量取值的概率规律 C5 10
P( X =1) = p,0 < p <1 P( X = 0) =1 p = q
或 P(X=k)=pk(1-p)1-k, (0<p<1;k=0,1) = = - - = 1)
2. 二项分布
每次试验中, 设将试验独立重复进行n次,每次试验中, 事件A发生的概率均为p,则称这n次试验为 n重贝努里试验. 重贝努里试验. 表示n重贝努里试验中事件 用X表示 重贝努里试验中事件 (成功) 表示 重贝努里试验中事件A(成功) 出现的次数, 出现的次数,则
P(X=k)=C (0.8) (0.2) , k = 0,1,2,3 把观察一个灯泡的使用
时数看作一次试验, 时数看作一次试验 P(X ≤ =P(X=0)+P(X=1) 1)
k 3 k
3k
“使用到 使用到1000小时已坏” 小时已坏” 使用到 小时已坏 视为“成功” 每次试验, 视为“成功 每次试验 )3+3(0.8)(0.2)2 ”.每次试验 =(0.2 “成功”的概率为 成功” 成功 的概率为0.8
例5 解: 当 当
X p
0 1 2 1 1 1 3 6 2
,求 F(x).
F(x) = P(X ≤ x)

二维随机变量及其分布

二维随机变量及其分布

一维随机变量X——R1上的随机点坐标; 二维随机变量(X,Y)——R2上的随机点坐标; …… n维随机变量(X1,X2,…,Xn)———Rn上的随 机点坐标。 多维随机变量的研究方法也与一维类似, 用分布函数、概率密度、或分布律来描述其统 计规律。
2、二维随机变量的联合分布函数 定义3.1 实值函数 设(X,Y)是二维随机变量,二元
FY (y)=F(+,y)=
1 e y ye 0
y 0 y 0
二、二维离散型随机变量及其分布
1、二维离散型随机变量 若二维随机变量(X,Y)的所有可能取值是有限多对或 可列无限多对,则称(X,Y)是二维离散型随机变量。 2、联合分布律
设(X,Y)是二维离散型随机变量,其所有可能取值为
1 arctan 2 2
1 arctan 2 2 x 1 1 x arctan 2 2 2 y 1 1 arctan 2 2 y 2

2
x arctan 2 2
2
y 2
x
(4)函数F(x,y)关于x是右连续的,关于y也是右连续的,
即对任意xR,yR,有
F ( x 0 0 , y ) lim F ( x , y ) F ( x 0 , y )
x x0
F ( x , y 0 0 ) lim F ( x , y ) F ( x , y 0 )
1 X 0 第一次所取的球为红球 第一次所取的球为白球
1 Y 0 第二次所取的球为红球 第二次所取的球为白球
求二维随机变量(X,Y)的分布律。 解 X的可能取值为0,1,Y的可能取值为0,1。
P ( X 1, Y 1 ) P ( X 1 ) P ( Y 1 X 1 ) a ab abc

二维离散型随机变量

二维离散型随机变量

ρ(X,Y)=Cov(X,Y)σ(X)σ(Y)
相关系数具有对称性,即 ρ(X,Y)=ρ(Y,X)。
05 二维离散型随机变量的函 数变换
线性变换
线性变换的定义
线性变换是指对二维离散型随机变量进行加、减、缩放等线性运算,得到新的二维离散型 随机变量。
线性变换的性质
线性变换保持了概率分布的平移、旋转和伸缩不变性,即变换后的随机变量的概率分布与 原随机变量的概率分布相同。
协方差与相关系数
协方差
计算公式
相关系数
计算公式
性质
二维离散型随机变量的 协方差是每个取值的横 坐标与期望值之差的乘 积和每个取值的纵坐标 与期望值之差的乘积的 期望值之和。
Cov(X,Y)=∑[(x−E(X))*(y −E(Y))]p(x,y)dxdy
协方差除以两个随机变 量的标准差的乘积,用 于衡量两个随机变量的 线性相关程度。
意义
联合概率分布函数提供了两个随机变量之间 关系的完整描述,包括它们同时发生的概率 。
性质
非负性
联合概率分布函数 F(x, y) 的值总是非负的。
01
归一化
联合概率分布函数满足条件,即所有可 能取值的概率之和为1。
02
03
独立性
如果两个随机变量是独立的,则它们 的联合概率分布函数可以表示为两个 边缘概率分布函数的乘积。
性质
可数性
二维离散型随机变量的取值可以 一一对应到自然数集上,即其取 值是可数的。
有限性
二维离散型随机变量的取值集合 通常是有限的,即其取值个数是 有限的。
独立性
在某些情况下,二维离散型随机 变量可能具有独立性,即两个随 机事件的发生与否相互独立。
联合概率分布

2.2离散型随机变量及其概率分布

2.2离散型随机变量及其概率分布

a P X k , k 1,2,, N , N
试确定常数a.
解 由离散型随机变量分布列的性质(2)规范性,
a a P{ X k} N N N 1 k 1 k 1
N
N
a 1
旧书(56页1题)
1. 判断下面各数列是否为随机变量的分布列,并说明理由.
易于验证:
1) P{ X k}

k
k!
e 0, k 0,1,2,, 非负性

2)
P{ X k}
k 0 k 0
k
k!
e
k

规范性
e

k!
k 0



e e

1
例6:某商店根据过去的销售记录,总结出某种商品每 月的销售量可以用参数为 5 的泊松分布来描述,求: (1)下个月该商店销售2件此种商品的概率是多少?
的概率为:
记为
k n k n k
X ~ B(n, p).源自P X k C p (1 p)
(k 0,1 n)
练习:某射手每次射击时命中10环的概率为 p, 现 进行 4 次独立射击,求 恰有 k 次命中10环的概率。
解:用X 表示 4 次射击后, 命中10环的次数, 则
X 的概率分布为
参数为 np 1 的泊松分布近似计算,得
1 解 因为 500 个错字随机分布在 500 页书上,所以错字出现在每一页的概率都是 . 500 1 ), 设 X 表示在给定的某一页上出现错字的个数,则 X ~ B(500 , 500
1, X ( ) 0,
X
反面, 正面.
1

2.2 离散型随机变量的概率分布

2.2 离散型随机变量的概率分布

xk S
xk S
概率统计(ZYH)
离散型随机变量的概率分布完全由 分布律 反映:
概率统计(ZYH)
例1 袋中有2个白球和3个黑球,每次从袋中任 取1个球,直至取得白球为止,若每次取出的黑球 不再放回去,求取球次数X 的分布律.
解 因为每次取出的黑球不再放回去,所以X 的所有可能取值是1, 2, 3, 4.故由古典概型易知
例6 已知每枚地对空导弹击中来犯敌机的概率为 96﹪,问至少需要发射多少枚导弹才能保证有99.9﹪ 的把握击中敌机?
解 将导弹的每次发射看成一次 试验, 设共发射n次, 击中的次数为X, 则X~B(n,0.96). 故击中敌机的概率为
P{X 1} 1 P{X 0} 1 0.960(1 0.96)n 1 0.04n 因此,要保证有99.9﹪的把握击中敌机, n就应满足
概率统计(ZYH)
2) 二项分布
伯努利资料
将试验E重复进行n次, 若各次试验的结果互不 影响, 即每次试验结果出现的概率都不依赖于其它 各次试验的结果, 则称这n次试验是相互独立的.
设试验E只有两个可能结果:事件A或者发生, 或者不发生. 将试验E重复独立地进行n次,则称这 一串重复独立试验为n重伯努利(Bernoulli)试验. 简称伯努利试验.
k0
故称该分布为二项分布. 记为 X ~ B(n, p).
用矩阵表示即得分布矩阵:
0 1 k n
X ~ qn
Cn1 pqn1
C
k n
pkqnk
pn
特别地: 二项分布 n 1 0-1分布
应用与背景: n重伯努利试验的概率分布就是二项分布
概率统计(ZYH)
二项分布的图形
概率统计(ZYH)

2.2离散型随机变量

2.2离散型随机变量

用 ③ 某地区拨错号的电话呼唤次数;
场 合
④ 某地区发生的交通事故的次数.
⑤ 放射性物质发出的 粒子数;
⑥ 一匹布上的疵点个数;
⑦ 一个容器中的细菌数;
⑧ 一本书一页中的印刷错误数;

30 September 2019
概率统计教研室
2.2 离散型随机变量
第29页
例 设某地区每年发表有关“利用圆规与直尺三
2.2 离散型随机变量
第27页
在生物学、医学、工业统计、保险科学及 公用事业的排队等问题中 , 泊松分布是常见的. 例如地震、火山爆发、特大洪水、交换台的电 话呼唤次数等, 都服从泊松分布.
30 September 2019
概率统计教研室
2.2 离散型随机变量
第28页
在某个时段内:

① 大卖场的顾客数; ② 市级医院急诊病人数;

xn pn

(4) 图形: 在随机变量每个可能取值的点处画一长度 为相应概率值的线段。
P{X k}
O 123 4
30 September 2019
x
概率统计教研室
2.2 离散型随机变量
第6页
分布律的形象化解释
设想有一单位质量的物质(如一克面粉),被分配在
随机变量X的所有可能取值
2.2 离散型随机变量
第1页
第二节 离散型随机变量
一、离散型随机变量的分布律 二、常见离散型随机变量的概率分布 三、小结
30 September 2019
概率统计教研室
2.2 离散型随机变量
第2页
一、离散型随机变量的分布律
定义 设离散型随机变量X 所有可能取的值为 xk (k 1,2,), X 取各个可能值的概率, 即事件 { X xk } 的概率, 为

2.2离散型随机变量及其分布律

2.2离散型随机变量及其分布律

2. 等可能分布
如果随机变量 X 的分布律为
X
pk
a1 1 n
a2 an 1 1 n n
其中 (ai a j ), ( i j ) , 则称 X 服从等可能分布.
例 抛掷骰子并记出现的点数为随机变量 X,
则有
X
pk
1 1 6
2 1 6
3 1 6
4 1 6
5 1 6
6 1 6
3. 贝努里(伯努利)试验和二项分布
C C P( X 2) 0.00618 C
1 2 95 5 3 100
例9 某类灯泡使用时数在1000小时以上 的概率是0.2,求三个灯泡在使用1000 小时以后最多只有一个坏了的概率.
解: 设X为三个灯泡在使用1000小时已坏的灯泡数 . 把观察一个灯泡的使用 k 3k P( X k )C (0时数看作一次试验 .8) (0.2) , k , 0,1,2,3 “使用到1000小时已坏” P{X 1} =P{X=0}+ P{X=1} 视为事件 A .每次试验, 2 0.8 出现的概率为 =(0.2)3A +3(0.8)(0.2)
k e
,
k 0,1,2, ,
X ~ P( ).
泊松分布是常见的。 例如
地震 火山爆发 特大洪水
商场接待的顾客数 电话呼唤次数 交通事故次数
n k n k p ( 1 p ) 二项分布与泊松分布的关系 k 历史上,泊松分布是作为二项分布的近似,于 1837年由法国数学家泊松引入的 .
k 0,1,, n
称这样的分布为二项分布.记为 X ~ b( n, p).
二项分布
n1
两点分布
显然, 若X~B(n,p), 则 P{X=k} 表示在n次独立重复试验中A恰好发生k次的概率; P{X≤k} 表示A发生的次数不超过k次的概率;

中国海洋大学 《概率论》第二章-离散型随机变量

中国海洋大学 《概率论》第二章-离散型随机变量
4 则答5道题相当于做5重Bernoulli试验.
设:X:该学生靠猜测能答对的题数 则 X ~ B 5, 1 4
概率论
所以
P至少能答对4道题 P X 4
P X 4 P X 5

C54

1 4

4

3 4


1 4
5
解: 显然,X 可能取的值是1,2,… ,
设 Ak = {第k期中奖},k =1, 2, …, 于是
P( X k ) P( A1A2 Ak1Ak )
P( A1)P( A2 ) P( Ak1)P( Ak )
(1 p)k1 p
k1,2,
概率论
二、离散型随机变量的分布函数
例子
或 记作 X ~ B1, p 其中0 p 1 为参数
概率论
Bernoulli分布也称作 0-1 分布或两点分布.
Bernoulli分布的概率背景
进行一次Bernoulli试验,设:
PA p, PA 1 p q
令X:在这次Bernoulli试验中事件A发生的次数.
n


c
1

n
n1 4

c

1
4
1

c 3
4
所以
c=3
概率论
概率论
例2 一汽车沿一街道行驶,需要通过三个均设有红绿 信号灯的路口,每个信号灯为红或绿与其它信号灯为 红或绿相互独立,且红绿两种信号灯显示的时间相等. 以X表示该汽车首次停下时已通过的路口的个数,求 X的分布律.
概率论
P(Bk ) P( A1A2 Ak Ak1 An ) P( A1A2 Ank Ank1 An )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
3
P{ X 0,Y 1} P52
10 10 33
10 10
P{ X
0,Y
0}
P32 P52
例2 ( X ,Y ) 的联合分布律如下表
X Y
01
0
0.5 0
1
0 0.5
求其布函数F(X,Y)
答案:
0 F ( X ,Y ) 0.5
1
x 0或y 0 其他
x 1或y 1
2.2二维离散型 r.v.及其分布
定义 若二维 r.v.(X ,Y )所有可能的取值
为有限多个或无穷可列多个, 则称 (X ,Y ) 为二维离散型 r.v.
要描述二维离散型 r.v.的概率特性及 其与每个 r.v.之间的关系常用其联合 概率分布
联合分布律
设( X ,Y )的所有可能的取值为
(xi , y j ), i, j 1,2,
则称 P(X xi ,Y y j ) pij , i, j 1,2,
为二维 r.v.( X ,Y ) 的联合概率分布.也简称 概率分布 或 分布律 显然, pij 0, i, j 1,2,
pij 1
i1 j1
( X ,Y ) 的联合分布律
X Y
y1
x1 p11
yj
p1 j
xi pi1
pij
pij P(X xi , Y yj ) 的求法
⑴ 利用古典概型直接求; ⑵ 利用乘法公式
pij P(X xi )P(Y yj X xi ) .
二维离散 r.v.的联合分布函数
F(x, y) pij, x , y . xi x y j y
已知联合分布律可以求出其联合分布函数
例1.袋中有两只红球,三只白球,现不放回摸球二次, 令
1 第 一 次 摸 到 红 球,求(X,Y)的分布律。
X 0 第 一 次 摸 到 白 球
1 第 二 次 摸 到 红 球 Y 0 第 二 次 摸 到 白 球
Y X
1
0
P{ X
1,Y
1}
P22 P52
P{ X
1,Y
0}
23 P52
32
01
相关文档
最新文档