2.2二维离散型随机变量
合集下载
概率论第二章习题讲解
j
( )
j
i
i
二. 二维连续随机变量的边缘分布 x +∞ F X ( x ) = F ( x , +∞ ) = ∫ dx ∫ f ( x , y )dy ∞ ∞ d +∞ f X (x ) = FX (x )= ∫ ∞ f ( x , y )dy dx y +∞ FY ( y ) = F (+ ∞ , y ) = ∫ dy ∫ f ( x , y )dx ∞ ∞ +∞ d fY ( y ) = FY ( y ) = ∫ ∞ f ( x , y )dx dy 一. 离散型随机变量的独立性 p xi , y j = pX ( xi ) pY y j 二. 连续随机变量的独立性
+∞ ∞
∞
f (z y( x , y )dy
2. 平方和的分布
n
FZ ( z ) =
∫∫ f ( x , y )dxdy
x2 + y2 < z
n
3.(独立的随机变量) 3.(独立的随机变量)最大值与最小值的分布
Fmax ( z ) = ∏ Fi ( z ),
i =1
p 1 q[ x ] F ( x ) = P ( X ≤ x ) = ∑ pq m 1 = = 1 q [ x ] = 1 (1 p)[ x ] 1 q m =1 其中,[x]为 x 的整数部分. 其中, 为 的整数部分.
8
(
)
当 x ≥ 1 时,
4 自动生产线在调整以后出现废品的概率为 p (0<p<1), 生产过程中出现废品时立即重新调整, 生产过程中出现废品时立即重新调整 求在两次调整之间生产的合格品数的概率分布. 求在两次调整之间生产的合格品数的概率分布 设随机变量X表示自动生产线 解 设随机变量 表示自动生产线 : 在两次调整之间生产的合格品数, 在两次调整之间生产的合格品数, 的所以可能取值:0,1,2,…,n,…. 则X的所以可能取值 的所以可能取值
( )
j
i
i
二. 二维连续随机变量的边缘分布 x +∞ F X ( x ) = F ( x , +∞ ) = ∫ dx ∫ f ( x , y )dy ∞ ∞ d +∞ f X (x ) = FX (x )= ∫ ∞ f ( x , y )dy dx y +∞ FY ( y ) = F (+ ∞ , y ) = ∫ dy ∫ f ( x , y )dx ∞ ∞ +∞ d fY ( y ) = FY ( y ) = ∫ ∞ f ( x , y )dx dy 一. 离散型随机变量的独立性 p xi , y j = pX ( xi ) pY y j 二. 连续随机变量的独立性
+∞ ∞
∞
f (z y( x , y )dy
2. 平方和的分布
n
FZ ( z ) =
∫∫ f ( x , y )dxdy
x2 + y2 < z
n
3.(独立的随机变量) 3.(独立的随机变量)最大值与最小值的分布
Fmax ( z ) = ∏ Fi ( z ),
i =1
p 1 q[ x ] F ( x ) = P ( X ≤ x ) = ∑ pq m 1 = = 1 q [ x ] = 1 (1 p)[ x ] 1 q m =1 其中,[x]为 x 的整数部分. 其中, 为 的整数部分.
8
(
)
当 x ≥ 1 时,
4 自动生产线在调整以后出现废品的概率为 p (0<p<1), 生产过程中出现废品时立即重新调整, 生产过程中出现废品时立即重新调整 求在两次调整之间生产的合格品数的概率分布. 求在两次调整之间生产的合格品数的概率分布 设随机变量X表示自动生产线 解 设随机变量 表示自动生产线 : 在两次调整之间生产的合格品数, 在两次调整之间生产的合格品数, 的所以可能取值:0,1,2,…,n,…. 则X的所以可能取值 的所以可能取值
32二维离散型随机变量的分布律及性质
P { X x , Y y }p i j ij P { X x Y y } ,i 1 , 2 , (2.4) i j P { Y y } p j j
易知,上述条件概率满足概率分布的性质
(1) P { X x y } 0 , i 1 , 2 , iY j
(2)
p 1 j p 1 i j p p i 1 p 1 j j i j
p i j
P { X x } 0 同理,设 p ,则可得到在 X xi i i 时随机变量 Y的条件概率分布为:
P { X x , Y y } p i j i j P { Y y X x } ,j 1 , 2 ,( 2 . 5 ) j i P { X x } p i i
{ X x , Y y } P { X x } P { Y y } 即P (2.7) i j i j
例4
X ,Y
相互独立,填如下表3-8空白处的值
解:
例5 设 X 表示把硬币掷三次时头两次掷出正面的 Y 表示这三次投掷中出现正面的总次数那么, 次数, 二维随机变量 ( X ,Y ) 概率分布如表3-9所示.问随机 变量 X与Y 是不是相互独立?
且
(1) P { Y y x } 0 ,j 1 , 2 , jX i
(2)
p 1 i p 1 ij p p i i i i j 1p 1 p ij
i 1 , 2 , ,
例3 设二维离散形随机变量 ( X ,Y ) 的概率分布如表3-7, 1时关于 X 的条件概率分布及 X 0 时关于 Y 的 求 Y 条件概率分布。
解:
四、 独立性
易知,上述条件概率满足概率分布的性质
(1) P { X x y } 0 , i 1 , 2 , iY j
(2)
p 1 j p 1 i j p p i 1 p 1 j j i j
p i j
P { X x } 0 同理,设 p ,则可得到在 X xi i i 时随机变量 Y的条件概率分布为:
P { X x , Y y } p i j i j P { Y y X x } ,j 1 , 2 ,( 2 . 5 ) j i P { X x } p i i
{ X x , Y y } P { X x } P { Y y } 即P (2.7) i j i j
例4
X ,Y
相互独立,填如下表3-8空白处的值
解:
例5 设 X 表示把硬币掷三次时头两次掷出正面的 Y 表示这三次投掷中出现正面的总次数那么, 次数, 二维随机变量 ( X ,Y ) 概率分布如表3-9所示.问随机 变量 X与Y 是不是相互独立?
且
(1) P { Y y x } 0 ,j 1 , 2 , jX i
(2)
p 1 i p 1 ij p p i i i i j 1p 1 p ij
i 1 , 2 , ,
例3 设二维离散形随机变量 ( X ,Y ) 的概率分布如表3-7, 1时关于 X 的条件概率分布及 X 0 时关于 Y 的 求 Y 条件概率分布。
解:
四、 独立性
2.2离散型随机变量及其概率分布
8
5
k
24
小结
离 散 型 随 机 变 量 的 分 布
二项分布 泊松分布
两点分布
两点分布
n1
二项分布
n 10, p 0.1, np
泊松分布
25
二项分布与 (0 1) 分布、泊松分布之间的 关系 .
二项分布是 (0 1) 分 布 的 推 广 , 对 于n 次 独 立重复伯努利试验 ,每 次 试 验 成 功 的 概 率 为 p, 设 , 1, 若 第 i 次 试 验 成 功 Xi ( i 1,2, , n) . 0, 若 第 i 次 试 验 失 败 它们都服从 (0 1) 分 布 并 且 相 互 独 立 , 那末 X X1 X 2 X n 服 从 二 项 分 布 , 参 数 为( n, p).
定义2 如果随机变量 X 只有两个可能取 值,其概率分布为
P{ X x1 } P , P{ X x2 } q 1 p(0 p 1, p q 1)
则称X服从 x1 , x2 处参数为p的两点分布. 特别,若X服从
x1 1, x 0 处参数为p的两点分布,即
p
k 1
5
k
1
1 a . 15
5
关于分布律的说明:
若已知一个离散型随机变量X的概率分布 X P x1 p1 x2 p2 ... ... xn ... pn ...
则可以求X所生成的任何事件的概率,特别地:
P{a X b} P{ { X xi }} pi
a xi b a xi b
26
以 n, p ( np ) 为参数的二项分布 ,当 n 时趋 于以 为参数的泊松分布 ,即
2.2 离散型随机变量及其分布
∞ k k =1
}
满足下列性质 性质: 满足下列性质:
pk ≥ 0 (k = 1,2,⋯);
概率论与数理统计 数学科学学院 徐 鑫
∑p
k =1
∞
k
常用来确定分布律中的待定参数] 常用来确定分布律中的待定参数 = 1 [常用来确定分布律中的待定参数
这两条也是非负 数列能为某随机 变量分布律的充 要条件
离散型随机变量分布列的求法 求法: 离散型随机变量分布列的求法: 利用古典概率、 利用古典概率、条件概率等计算方法及运算 性质求事件{X=x 概率; 性质求事件{X=xk}概率; 利用已知的重要分布的分布列; 利用已知的重要分布的分布列; 利用分布函数. 利用分布函数. 离散型随机变量分布列的应用 应用: 离散型随机变量分布列的应用: 确定分布列中的待定参数; 确定分布列中的待定参数; 求分布函数; 求分布函数; 求随机事件的概率. 求随机事件的概率.
概率论与数理统计 数学科学学院 徐 鑫
四、几种重要的离散型随机变量 1、(0-1)分布[两点分布] (0-1)分布 两点分布] 分布[ 定义2 定义2 设随机变量X只取0,1两值, 设随机变量X只取0,1两值,且其分布律为 0,1两值
P{X = k} = p (1 − p) (k = 0,1;0 < p < 1)
(−∞, x1 ), [ x1 , x2 ), [ x2 , x3 ) ⋯, [ xk ,+∞)
分别求出F(x)的值,即就x 分别求出F(x)的值,即就x落在上述各区间内计算 F(x)的值 {X≤x}所含可能值概率的累积和; {X≤x}所含可能值概率的累积和; 所含可能值概率的累积和 离散型随机变量X的分布函数是一个右连续的阶梯 离散型随机变量X 函数. 函数.
}
满足下列性质 性质: 满足下列性质:
pk ≥ 0 (k = 1,2,⋯);
概率论与数理统计 数学科学学院 徐 鑫
∑p
k =1
∞
k
常用来确定分布律中的待定参数] 常用来确定分布律中的待定参数 = 1 [常用来确定分布律中的待定参数
这两条也是非负 数列能为某随机 变量分布律的充 要条件
离散型随机变量分布列的求法 求法: 离散型随机变量分布列的求法: 利用古典概率、 利用古典概率、条件概率等计算方法及运算 性质求事件{X=x 概率; 性质求事件{X=xk}概率; 利用已知的重要分布的分布列; 利用已知的重要分布的分布列; 利用分布函数. 利用分布函数. 离散型随机变量分布列的应用 应用: 离散型随机变量分布列的应用: 确定分布列中的待定参数; 确定分布列中的待定参数; 求分布函数; 求分布函数; 求随机事件的概率. 求随机事件的概率.
概率论与数理统计 数学科学学院 徐 鑫
四、几种重要的离散型随机变量 1、(0-1)分布[两点分布] (0-1)分布 两点分布] 分布[ 定义2 定义2 设随机变量X只取0,1两值, 设随机变量X只取0,1两值,且其分布律为 0,1两值
P{X = k} = p (1 − p) (k = 0,1;0 < p < 1)
(−∞, x1 ), [ x1 , x2 ), [ x2 , x3 ) ⋯, [ xk ,+∞)
分别求出F(x)的值,即就x 分别求出F(x)的值,即就x落在上述各区间内计算 F(x)的值 {X≤x}所含可能值概率的累积和; {X≤x}所含可能值概率的累积和; 所含可能值概率的累积和 离散型随机变量X的分布函数是一个右连续的阶梯 离散型随机变量X 函数. 函数.
二维离散型随机变量及其分布
P{ X xi } P{ X xi , } P{ X xi , (Y y j )}
j 1
P{ ( X xi , Y y j )} P{ X xi , Y y j } pij
j 1 j 1 j 1
Two-dimension Discrete Random Variable and Distribution
所以,关于X的边缘分布律为:
X
pi.
x1
x2 …
xi …
pi. …
p1. p2. …
关于Y的边缘分布律为:
Y p.j y1 p.1 y2 … yj …
p.2 … p.j …
Two-dimension Discrete Random Variable and Distribution
[例2]见例1,试求(X,Y)关于X和关于Y的边缘 分布律。
1 2/5
Two-dimension Discrete Random Variable and Distribution
联合分布律 边缘分布律
Two-dimension Discrete Random Variable and Distribution
1、统计学中有两种抽样:不放回抽样和有放 回抽样。将例1中“不放回地取两次球”改为 “有放回地取两次球”,试求(X,Y)的联合分 布律、(X,Y)分别关于X,Y的边缘分布律及判断 X,Y是否相互独立? 2、上述我们解决了:已知二维离散型随机变 量(X,Y)的联合分布律,如何求(X,Y)关于X 或关于Y的边缘分布律的问题。那么,已知X,Y的 边缘分布律,能否求(X,Y)的联合分布律呢?
0, Y 1,
表示第二次取红球 表示第二次取白球
j 1
P{ ( X xi , Y y j )} P{ X xi , Y y j } pij
j 1 j 1 j 1
Two-dimension Discrete Random Variable and Distribution
所以,关于X的边缘分布律为:
X
pi.
x1
x2 …
xi …
pi. …
p1. p2. …
关于Y的边缘分布律为:
Y p.j y1 p.1 y2 … yj …
p.2 … p.j …
Two-dimension Discrete Random Variable and Distribution
[例2]见例1,试求(X,Y)关于X和关于Y的边缘 分布律。
1 2/5
Two-dimension Discrete Random Variable and Distribution
联合分布律 边缘分布律
Two-dimension Discrete Random Variable and Distribution
1、统计学中有两种抽样:不放回抽样和有放 回抽样。将例1中“不放回地取两次球”改为 “有放回地取两次球”,试求(X,Y)的联合分 布律、(X,Y)分别关于X,Y的边缘分布律及判断 X,Y是否相互独立? 2、上述我们解决了:已知二维离散型随机变 量(X,Y)的联合分布律,如何求(X,Y)关于X 或关于Y的边缘分布律的问题。那么,已知X,Y的 边缘分布律,能否求(X,Y)的联合分布律呢?
0, Y 1,
表示第二次取红球 表示第二次取白球
第三节二维随机变量的独立性
或随机变量X与Y的联合分布律. 注: 二维离散型随机变量的分布律也可列表表示如下:
X Y y1 y2 … yj … x1 p11 p12 ... p1j ... x2 p21 p22 ... P2j ...
xi pi1 pi2 ... Pij ...
3. 联合分布律的性质 :
(1) pij 0;(2) pij=1.
F ( x1 ,, xn ) FX1 ( x1 )FX2 ( x2 )FXn ( xn )
则称X1 , X2, …, Xn 相互独立,或称(X1 , X2, …, Xn )是独立的.
一、二维离散型随机变量
1. 定义:若二维随机变量(X, Y)只能取至多可列个值(xi, yj), (i, j=1, 2, … ),则称(X, Y)为二维离散型随机变量。
2. 联合分布律: 若二维随机变量(X, Y) 取 (xi, yj)的概率为Pij, 则称P{X=xi, Y= yj}= Pij为随机变量(X, Y)的分布律,
等价定义:设X, Y为两个随机变量,如果对任意实数a<b, c<d, 有P{a<Xb, c<Yd} =P{a<Xb}P{c<Yd},即事件{a<Xb}与 事件{c<Yd} 独立,则称随机变量X与Y相互独立.
2. 独立的充要条件 (1) 设( X,Y )为离散型随机变量,分布律为 pij,则 X与Y相互独立 pij pi. p. j . (2) 设( X,Y )为连续型随机变量,概率密度为 f ( x,y),则
例2. 设( X,Y )的分布律为 且X与 Y独立,求a,b.
XY 1 2 0 0.15 0.15 1 ab
例2. 设( X,Y )的分布律为 且X与 Y独立,求a,b.
X Y y1 y2 … yj … x1 p11 p12 ... p1j ... x2 p21 p22 ... P2j ...
xi pi1 pi2 ... Pij ...
3. 联合分布律的性质 :
(1) pij 0;(2) pij=1.
F ( x1 ,, xn ) FX1 ( x1 )FX2 ( x2 )FXn ( xn )
则称X1 , X2, …, Xn 相互独立,或称(X1 , X2, …, Xn )是独立的.
一、二维离散型随机变量
1. 定义:若二维随机变量(X, Y)只能取至多可列个值(xi, yj), (i, j=1, 2, … ),则称(X, Y)为二维离散型随机变量。
2. 联合分布律: 若二维随机变量(X, Y) 取 (xi, yj)的概率为Pij, 则称P{X=xi, Y= yj}= Pij为随机变量(X, Y)的分布律,
等价定义:设X, Y为两个随机变量,如果对任意实数a<b, c<d, 有P{a<Xb, c<Yd} =P{a<Xb}P{c<Yd},即事件{a<Xb}与 事件{c<Yd} 独立,则称随机变量X与Y相互独立.
2. 独立的充要条件 (1) 设( X,Y )为离散型随机变量,分布律为 pij,则 X与Y相互独立 pij pi. p. j . (2) 设( X,Y )为连续型随机变量,概率密度为 f ( x,y),则
例2. 设( X,Y )的分布律为 且X与 Y独立,求a,b.
XY 1 2 0 0.15 0.15 1 ab
例2. 设( X,Y )的分布律为 且X与 Y独立,求a,b.
二维离散型随机变量
F
(
x,
y)
1 3
,
1 x 2, y 2, 或 x 2,1 y 2,
1, x 2, y 2.
说明 离散型随机变量 ( X ,Y ) 的分布函数归纳为
F ( x, y) pij ,
xi x y j y
其中和式是对一切满足xi x, y j y 的i, j求和.
注意 联合分布
pij 1.
i1 j1
二维随机变量 ( X,Y ) 的分布律也可表示为
X Y
y1 y2
yj
x1
x2 xi
p11 p21
p12 p22
pi1
pi 2
p1 j p2 j pij
3、离散型随机变量的边缘分布律
定义设二维离散型随机变量( X ,Y )的联合分布
律为
P{X xi ,Y y j } pij , i, j 1, 2, .
3 7
pj (Y ) P{Y yj}
4
7 3
7
1
例2 设随机变量 X 在 1,2,3,4四个整数中等可能地 取值, 另一个随机变量Y 在 1 ~ X 中等可能地取一 整数值.试求 ( X ,Y ) 的分布律.
解 { X i,Y j}的取值情况是 : i 1,2,3,4,
j取不大于i的正整数. 且由乘法公式得
记
pi ( X ) pij P{X xi }, i 1, 2, ,
j 1
p j (Y ) pij P{Y y j }, j 1, 2, , i 1
分别称 pi ( X ) (i 1, 2, ) 和 p j (Y ) ( j 1, 2, ) 为 ( X ,Y )
关于 X 和关于 Y 的边缘分布律.
§2.2离散型随机变量及其分布列
1, x a F ( x) 0, x a
1
例2.2.9 若
.
服从两点分布
0
P
q
求
的分布函数
解: P( x) 0 当 x 0时,F(x) F(x) P( x) P( 0) q 当 0 x 1 时, F ( x) P( x) P( 0) P( 1) 1 当 x 1 时, 例2.2.10 设 的分布列为
0 1 2 3 4 5
k 5 k 5k
k=0,1,2,3,4,5.
q 5 5 pq 4 10 p 2 q 3 10 p 3 q 2 5 p 4 q p 5
3.分布列的性质
由概率的性质可知,任一离散型随机变量 的分布列 p i 都具有下述性质:
非负性:1)pi 0, i 1, 2, 规范性:2) pi 1
k 6 k 6
5000
5000
其中b(k;5000,1/1000)= C
k 5000
1 k 1 5000 k ( ) (1 ) 1000 1000
这时如果直接计算P 5 ,计算量较大。由于n很大 ,p较小,而np=5不很大 ,
可以利用 Poisson定理
5 P( 5) 1 P 5 1 e k 0 k !
i
例2.2.11 设随机变量
的分布函数为 的分布列。
解: 依题意可得
0, x 1 0.4, 1 x 1 F ( x) ,求 0.8,1 x 3 1, x 3
的可能取值为-1,1,3
P 1 F 1 0 F 1 0.4,
P 3 F 3 0 F 3 0.2
所以 的分布列为
2.2离散型随机变量及其分布律
当1≤x<2时, {X≤x}={X=0}∪{X=1} X 0 1x 2
又{X=0}与{X=1}互不相容 得: F(x)=P{X≤x}=P{X=0}+P{X=1}
=0.6+0.3=0.9
当x≥2时, {X≤x}为必然事件
X
0 1 2x
8
得: F(x)=P{X≤x}=1
0, x 0
F
(
x)
0.6, 0.9,
P{X k} C5k pk (1 p)5k
k 0,1,..., 5 18
例.用步枪向某一目标射击,每次击中目标
的概率为0.001,今射击6000次,试求至少有
两弹击中目标的概率.
解:.设X为击中目标的次数.
X : B6000,0.001
P X 2 1 P X 2 1 PX 0 PX 1
0 1
x x
1 2
1 0.9
1, x 2 0.6
注: 左闭右开
0 1 2x
9
0, x 0
F(x)
0.6, 0.9,
0 1
x1 x2
1, x 2
(3)
P(X
1 2
)
F
(
1 2
)
0.6
P
(
1 2
X
3 2
)
F
(
3 2
)
F
(
1 2
)
0.9
0.6
0.3
P(1≤X≤2)=P({X=1}∪{1<X≤2})
P
X k
Ck41 C150
(k 5, 6, 7, 8, 9,10)
具体写出,即可得 X 的分布律:
X 5 6 7 8 9 10
2.2(离散型随机变量)
分布的概率值来近似.
2.2.2 常用离散型分布
泊松定理于1837年由法国数学家泊松引入!
泊松资料
Siméon Poisson
Born: 21 June 1781 in Pithiviers, France
Died: 25 April 1840 in Sceaux (near Paris),
France
B2, B3, TRUE)
▪ 计算例2-8中的概率
【实验2.2】用Excel验证二项分布与泊松分布的关 系.
实验准备:
函数POISSON的使用格式:POISSON(x, mean, cumulative)
功能:返回泊松分布的概率值.其中x为事件数, mean为期望值,cumulative为一逻辑值,确定所 返回的概率形式.如果cumulative为TRUE,函数 POISSON返回泊松累积概率;如果为FALSE,则 返回泊松概率函数值.
2.2.2 常用离散型分布
【例2.7】某种铸件的砂眼(缺陷)数服从参数为 的泊松分布,试求该铸件至多有一个砂眼(合格 品)的概率和至少有2个砂眼(不合格品)的概 率.
解:以X表示铸件的砂眼数,由题意知X~ P(0.5),则该种铸件上至多有1个砂眼的概率为
P{ X 1} 0.50 e0.5 0.51 e0.5 0.91
pk =
, k = 0,1,…,n
定义2.5 如果C随nk机pk变(1 量pX)n的k 分布律是
,k = 0,1,…,n
则称PX{服X 从 k二} 项C分nk p布k (,1 记p为)nXk ~ B(n,p).
2.2.2 常用离散型分布
二项分布与(0 1) 分布的关系.
二 项 分 布 是(0 1) 分 布 的 推 广, 对 于 n 重 伯 努 利
2.2.2 常用离散型分布
泊松定理于1837年由法国数学家泊松引入!
泊松资料
Siméon Poisson
Born: 21 June 1781 in Pithiviers, France
Died: 25 April 1840 in Sceaux (near Paris),
France
B2, B3, TRUE)
▪ 计算例2-8中的概率
【实验2.2】用Excel验证二项分布与泊松分布的关 系.
实验准备:
函数POISSON的使用格式:POISSON(x, mean, cumulative)
功能:返回泊松分布的概率值.其中x为事件数, mean为期望值,cumulative为一逻辑值,确定所 返回的概率形式.如果cumulative为TRUE,函数 POISSON返回泊松累积概率;如果为FALSE,则 返回泊松概率函数值.
2.2.2 常用离散型分布
【例2.7】某种铸件的砂眼(缺陷)数服从参数为 的泊松分布,试求该铸件至多有一个砂眼(合格 品)的概率和至少有2个砂眼(不合格品)的概 率.
解:以X表示铸件的砂眼数,由题意知X~ P(0.5),则该种铸件上至多有1个砂眼的概率为
P{ X 1} 0.50 e0.5 0.51 e0.5 0.91
pk =
, k = 0,1,…,n
定义2.5 如果C随nk机pk变(1 量pX)n的k 分布律是
,k = 0,1,…,n
则称PX{服X 从 k二} 项C分nk p布k (,1 记p为)nXk ~ B(n,p).
2.2.2 常用离散型分布
二项分布与(0 1) 分布的关系.
二 项 分 布 是(0 1) 分 布 的 推 广, 对 于 n 重 伯 努 利
2.2离散型随机变量及其分布
例1
从中任取3 从中任取 个球 取到的白球数X是一个随机变量 取到的白球数 是一个随机变量 X可能取的值是 0,1,2 可能取的值是
C 1 取每个值的概率为 P(X=0)= = C 10 3 且 CC 6 ∑P( X = i) = 1 P(X= )= 1 = i=1 C 10 1 2 这样,我们就掌握了X这个 这样,我们就掌握了 这个 C3C2 3 P(X=2)= 3 = 随机变量取值的概率规律. 随机变量取值的概率规律 C5 10
P( X =1) = p,0 < p <1 P( X = 0) =1 p = q
或 P(X=k)=pk(1-p)1-k, (0<p<1;k=0,1) = = - - = 1)
2. 二项分布
每次试验中, 设将试验独立重复进行n次,每次试验中, 事件A发生的概率均为p,则称这n次试验为 n重贝努里试验. 重贝努里试验. 表示n重贝努里试验中事件 用X表示 重贝努里试验中事件 (成功) 表示 重贝努里试验中事件A(成功) 出现的次数, 出现的次数,则
P(X=k)=C (0.8) (0.2) , k = 0,1,2,3 把观察一个灯泡的使用
时数看作一次试验, 时数看作一次试验 P(X ≤ =P(X=0)+P(X=1) 1)
k 3 k
3k
“使用到 使用到1000小时已坏” 小时已坏” 使用到 小时已坏 视为“成功” 每次试验, 视为“成功 每次试验 )3+3(0.8)(0.2)2 ”.每次试验 =(0.2 “成功”的概率为 成功” 成功 的概率为0.8
例5 解: 当 当
X p
0 1 2 1 1 1 3 6 2
,求 F(x).
F(x) = P(X ≤ x)
二维随机变量及其分布
一维随机变量X——R1上的随机点坐标; 二维随机变量(X,Y)——R2上的随机点坐标; …… n维随机变量(X1,X2,…,Xn)———Rn上的随 机点坐标。 多维随机变量的研究方法也与一维类似, 用分布函数、概率密度、或分布律来描述其统 计规律。
2、二维随机变量的联合分布函数 定义3.1 实值函数 设(X,Y)是二维随机变量,二元
FY (y)=F(+,y)=
1 e y ye 0
y 0 y 0
二、二维离散型随机变量及其分布
1、二维离散型随机变量 若二维随机变量(X,Y)的所有可能取值是有限多对或 可列无限多对,则称(X,Y)是二维离散型随机变量。 2、联合分布律
设(X,Y)是二维离散型随机变量,其所有可能取值为
1 arctan 2 2
1 arctan 2 2 x 1 1 x arctan 2 2 2 y 1 1 arctan 2 2 y 2
2
x arctan 2 2
2
y 2
x
(4)函数F(x,y)关于x是右连续的,关于y也是右连续的,
即对任意xR,yR,有
F ( x 0 0 , y ) lim F ( x , y ) F ( x 0 , y )
x x0
F ( x , y 0 0 ) lim F ( x , y ) F ( x , y 0 )
1 X 0 第一次所取的球为红球 第一次所取的球为白球
1 Y 0 第二次所取的球为红球 第二次所取的球为白球
求二维随机变量(X,Y)的分布律。 解 X的可能取值为0,1,Y的可能取值为0,1。
P ( X 1, Y 1 ) P ( X 1 ) P ( Y 1 X 1 ) a ab abc
二维离散型随机变量
ρ(X,Y)=Cov(X,Y)σ(X)σ(Y)
相关系数具有对称性,即 ρ(X,Y)=ρ(Y,X)。
05 二维离散型随机变量的函 数变换
线性变换
线性变换的定义
线性变换是指对二维离散型随机变量进行加、减、缩放等线性运算,得到新的二维离散型 随机变量。
线性变换的性质
线性变换保持了概率分布的平移、旋转和伸缩不变性,即变换后的随机变量的概率分布与 原随机变量的概率分布相同。
协方差与相关系数
协方差
计算公式
相关系数
计算公式
性质
二维离散型随机变量的 协方差是每个取值的横 坐标与期望值之差的乘 积和每个取值的纵坐标 与期望值之差的乘积的 期望值之和。
Cov(X,Y)=∑[(x−E(X))*(y −E(Y))]p(x,y)dxdy
协方差除以两个随机变 量的标准差的乘积,用 于衡量两个随机变量的 线性相关程度。
意义
联合概率分布函数提供了两个随机变量之间 关系的完整描述,包括它们同时发生的概率 。
性质
非负性
联合概率分布函数 F(x, y) 的值总是非负的。
01
归一化
联合概率分布函数满足条件,即所有可 能取值的概率之和为1。
02
03
独立性
如果两个随机变量是独立的,则它们 的联合概率分布函数可以表示为两个 边缘概率分布函数的乘积。
性质
可数性
二维离散型随机变量的取值可以 一一对应到自然数集上,即其取 值是可数的。
有限性
二维离散型随机变量的取值集合 通常是有限的,即其取值个数是 有限的。
独立性
在某些情况下,二维离散型随机 变量可能具有独立性,即两个随 机事件的发生与否相互独立。
联合概率分布
2.2离散型随机变量及其概率分布
a P X k , k 1,2,, N , N
试确定常数a.
解 由离散型随机变量分布列的性质(2)规范性,
a a P{ X k} N N N 1 k 1 k 1
N
N
a 1
旧书(56页1题)
1. 判断下面各数列是否为随机变量的分布列,并说明理由.
易于验证:
1) P{ X k}
k
k!
e 0, k 0,1,2,, 非负性
2)
P{ X k}
k 0 k 0
k
k!
e
k
规范性
e
k!
k 0
e e
1
例6:某商店根据过去的销售记录,总结出某种商品每 月的销售量可以用参数为 5 的泊松分布来描述,求: (1)下个月该商店销售2件此种商品的概率是多少?
的概率为:
记为
k n k n k
X ~ B(n, p).源自P X k C p (1 p)
(k 0,1 n)
练习:某射手每次射击时命中10环的概率为 p, 现 进行 4 次独立射击,求 恰有 k 次命中10环的概率。
解:用X 表示 4 次射击后, 命中10环的次数, 则
X 的概率分布为
参数为 np 1 的泊松分布近似计算,得
1 解 因为 500 个错字随机分布在 500 页书上,所以错字出现在每一页的概率都是 . 500 1 ), 设 X 表示在给定的某一页上出现错字的个数,则 X ~ B(500 , 500
1, X ( ) 0,
X
反面, 正面.
1
2.2 离散型随机变量的概率分布
xk S
xk S
概率统计(ZYH)
离散型随机变量的概率分布完全由 分布律 反映:
概率统计(ZYH)
例1 袋中有2个白球和3个黑球,每次从袋中任 取1个球,直至取得白球为止,若每次取出的黑球 不再放回去,求取球次数X 的分布律.
解 因为每次取出的黑球不再放回去,所以X 的所有可能取值是1, 2, 3, 4.故由古典概型易知
例6 已知每枚地对空导弹击中来犯敌机的概率为 96﹪,问至少需要发射多少枚导弹才能保证有99.9﹪ 的把握击中敌机?
解 将导弹的每次发射看成一次 试验, 设共发射n次, 击中的次数为X, 则X~B(n,0.96). 故击中敌机的概率为
P{X 1} 1 P{X 0} 1 0.960(1 0.96)n 1 0.04n 因此,要保证有99.9﹪的把握击中敌机, n就应满足
概率统计(ZYH)
2) 二项分布
伯努利资料
将试验E重复进行n次, 若各次试验的结果互不 影响, 即每次试验结果出现的概率都不依赖于其它 各次试验的结果, 则称这n次试验是相互独立的.
设试验E只有两个可能结果:事件A或者发生, 或者不发生. 将试验E重复独立地进行n次,则称这 一串重复独立试验为n重伯努利(Bernoulli)试验. 简称伯努利试验.
k0
故称该分布为二项分布. 记为 X ~ B(n, p).
用矩阵表示即得分布矩阵:
0 1 k n
X ~ qn
Cn1 pqn1
C
k n
pkqnk
pn
特别地: 二项分布 n 1 0-1分布
应用与背景: n重伯努利试验的概率分布就是二项分布
概率统计(ZYH)
二项分布的图形
概率统计(ZYH)
2.2离散型随机变量
用 ③ 某地区拨错号的电话呼唤次数;
场 合
④ 某地区发生的交通事故的次数.
⑤ 放射性物质发出的 粒子数;
⑥ 一匹布上的疵点个数;
⑦ 一个容器中的细菌数;
⑧ 一本书一页中的印刷错误数;
30 September 2019
概率统计教研室
2.2 离散型随机变量
第29页
例 设某地区每年发表有关“利用圆规与直尺三
2.2 离散型随机变量
第27页
在生物学、医学、工业统计、保险科学及 公用事业的排队等问题中 , 泊松分布是常见的. 例如地震、火山爆发、特大洪水、交换台的电 话呼唤次数等, 都服从泊松分布.
30 September 2019
概率统计教研室
2.2 离散型随机变量
第28页
在某个时段内:
应
① 大卖场的顾客数; ② 市级医院急诊病人数;
xn pn
(4) 图形: 在随机变量每个可能取值的点处画一长度 为相应概率值的线段。
P{X k}
O 123 4
30 September 2019
x
概率统计教研室
2.2 离散型随机变量
第6页
分布律的形象化解释
设想有一单位质量的物质(如一克面粉),被分配在
随机变量X的所有可能取值
2.2 离散型随机变量
第1页
第二节 离散型随机变量
一、离散型随机变量的分布律 二、常见离散型随机变量的概率分布 三、小结
30 September 2019
概率统计教研室
2.2 离散型随机变量
第2页
一、离散型随机变量的分布律
定义 设离散型随机变量X 所有可能取的值为 xk (k 1,2,), X 取各个可能值的概率, 即事件 { X xk } 的概率, 为
2.2离散型随机变量及其分布律
2. 等可能分布
如果随机变量 X 的分布律为
X
pk
a1 1 n
a2 an 1 1 n n
其中 (ai a j ), ( i j ) , 则称 X 服从等可能分布.
例 抛掷骰子并记出现的点数为随机变量 X,
则有
X
pk
1 1 6
2 1 6
3 1 6
4 1 6
5 1 6
6 1 6
3. 贝努里(伯努利)试验和二项分布
C C P( X 2) 0.00618 C
1 2 95 5 3 100
例9 某类灯泡使用时数在1000小时以上 的概率是0.2,求三个灯泡在使用1000 小时以后最多只有一个坏了的概率.
解: 设X为三个灯泡在使用1000小时已坏的灯泡数 . 把观察一个灯泡的使用 k 3k P( X k )C (0时数看作一次试验 .8) (0.2) , k , 0,1,2,3 “使用到1000小时已坏” P{X 1} =P{X=0}+ P{X=1} 视为事件 A .每次试验, 2 0.8 出现的概率为 =(0.2)3A +3(0.8)(0.2)
k e
,
k 0,1,2, ,
X ~ P( ).
泊松分布是常见的。 例如
地震 火山爆发 特大洪水
商场接待的顾客数 电话呼唤次数 交通事故次数
n k n k p ( 1 p ) 二项分布与泊松分布的关系 k 历史上,泊松分布是作为二项分布的近似,于 1837年由法国数学家泊松引入的 .
k 0,1,, n
称这样的分布为二项分布.记为 X ~ b( n, p).
二项分布
n1
两点分布
显然, 若X~B(n,p), 则 P{X=k} 表示在n次独立重复试验中A恰好发生k次的概率; P{X≤k} 表示A发生的次数不超过k次的概率;
中国海洋大学 《概率论》第二章-离散型随机变量
4 则答5道题相当于做5重Bernoulli试验.
设:X:该学生靠猜测能答对的题数 则 X ~ B 5, 1 4
概率论
所以
P至少能答对4道题 P X 4
P X 4 P X 5
C54
1 4
4
3 4
1 4
5
解: 显然,X 可能取的值是1,2,… ,
设 Ak = {第k期中奖},k =1, 2, …, 于是
P( X k ) P( A1A2 Ak1Ak )
P( A1)P( A2 ) P( Ak1)P( Ak )
(1 p)k1 p
k1,2,
概率论
二、离散型随机变量的分布函数
例子
或 记作 X ~ B1, p 其中0 p 1 为参数
概率论
Bernoulli分布也称作 0-1 分布或两点分布.
Bernoulli分布的概率背景
进行一次Bernoulli试验,设:
PA p, PA 1 p q
令X:在这次Bernoulli试验中事件A发生的次数.
n
c
1
n
n1 4
c
1
4
1
c 3
4
所以
c=3
概率论
概率论
例2 一汽车沿一街道行驶,需要通过三个均设有红绿 信号灯的路口,每个信号灯为红或绿与其它信号灯为 红或绿相互独立,且红绿两种信号灯显示的时间相等. 以X表示该汽车首次停下时已通过的路口的个数,求 X的分布律.
概率论
P(Bk ) P( A1A2 Ak Ak1 An ) P( A1A2 Ank Ank1 An )
设:X:该学生靠猜测能答对的题数 则 X ~ B 5, 1 4
概率论
所以
P至少能答对4道题 P X 4
P X 4 P X 5
C54
1 4
4
3 4
1 4
5
解: 显然,X 可能取的值是1,2,… ,
设 Ak = {第k期中奖},k =1, 2, …, 于是
P( X k ) P( A1A2 Ak1Ak )
P( A1)P( A2 ) P( Ak1)P( Ak )
(1 p)k1 p
k1,2,
概率论
二、离散型随机变量的分布函数
例子
或 记作 X ~ B1, p 其中0 p 1 为参数
概率论
Bernoulli分布也称作 0-1 分布或两点分布.
Bernoulli分布的概率背景
进行一次Bernoulli试验,设:
PA p, PA 1 p q
令X:在这次Bernoulli试验中事件A发生的次数.
n
c
1
n
n1 4
c
1
4
1
c 3
4
所以
c=3
概率论
概率论
例2 一汽车沿一街道行驶,需要通过三个均设有红绿 信号灯的路口,每个信号灯为红或绿与其它信号灯为 红或绿相互独立,且红绿两种信号灯显示的时间相等. 以X表示该汽车首次停下时已通过的路口的个数,求 X的分布律.
概率论
P(Bk ) P( A1A2 Ak Ak1 An ) P( A1A2 Ank Ank1 An )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
3
P{ X 0,Y 1} P52
10 10 33
10 10
P{ X
0,Y
0}
P32 P52
例2 ( X ,Y ) 的联合分布律如下表
X Y
01
0
0.5 0
1
0 0.5
求其布函数F(X,Y)
答案:
0 F ( X ,Y ) 0.5
1
x 0或y 0 其他
x 1或y 1
2.2二维离散型 r.v.及其分布
定义 若二维 r.v.(X ,Y )所有可能的取值
为有限多个或无穷可列多个, 则称 (X ,Y ) 为二维离散型 r.v.
要描述二维离散型 r.v.的概率特性及 其与每个 r.v.之间的关系常用其联合 概率分布
联合分布律
设( X ,Y )的所有可能的取值为
(xi , y j ), i, j 1,2,
则称 P(X xi ,Y y j ) pij , i, j 1,2,
为二维 r.v.( X ,Y ) 的联合概率分布.也简称 概率分布 或 分布律 显然, pij 0, i, j 1,2,
pij 1
i1 j1
( X ,Y ) 的联合分布律
X Y
y1
x1 p11
yj
p1 j
xi pi1
pij
pij P(X xi , Y yj ) 的求法
⑴ 利用古典概型直接求; ⑵ 利用乘法公式
pij P(X xi )P(Y yj X xi ) .
二维离散 r.v.的联合分布函数
F(x, y) pij, x , y . xi x y j y
已知联合分布律可以求出其联合分布函数
例1.袋中有两只红球,三只白球,现不放回摸球二次, 令
1 第 一 次 摸 到 红 球,求(X,Y)的分布律。
X 0 第 一 次 摸 到 白 球
1 第 二 次 摸 到 红 球 Y 0 第 二 次 摸 到 白 球
Y X
1
0
P{ X
1,Y
1}
P22 P52
P{ X
1,Y
0}
23 P52
32
01