二维离散型随机变量及其分布律

合集下载

3.2二维离散型随机变量

3.2二维离散型随机变量
j
ξ
Pi•
证明: 证明
x1 p1•
x2 p2•
… …
xi pi •
… …
pi• = P{ξ = xi } = P{ξ = xi , −∞ < η < +∞} = ∑ P{ξ = xi ,η = y j } = ∑ pij
j j
信息系刘康泽
边缘分布: 2、 (ξ ,η ) 关于 η 的边缘分布:
p• j = ∑ pij
η ( ξ = 0时)
p
另外两个同理可得。 另外两个同理可得。
1 1/2
2 1/2
信息系刘康泽 的两点分布, 例 5、已知 ξ 服从参数 2 / 3 的两点分布,又 、 η (ξ = 0) 1 2 3 1/2 1/4 1/4 P
η (ξ = 1)
的概率分布. 求 (ξ ,η ) 的概率分布.
1 1/3
证明: 证明
pij p• j
,
p• j ≠ 0 , i = 1, 2,⋯ .
pij p• j
P{ξ = xi | η = y j } =
P{ξ = xi ,η = y j } P{η = y j }
=
.
分布: 2、在 ξ = xi 的条件下 η 的分布:
P{η = y j | ξ = xi } =
pij pi •
信息系刘康泽
联合分布律也可用表格的形式来表示。 联合分布律也可用表格的形式来表示。
ξ
η
x1 x2 ⋮ xi ⋮
y1 p11 p 21 ⋮ p i1 ⋮
y2 p12 p 22 ⋮ pi 2 ⋮
… … … …
yj p1 j p2 j ⋮ pij ⋮
… … … …

多维随机变量函数的分布

多维随机变量函数的分布

i ,k : g ( x i , y j ) = z k

p ij
=pk ,
(x1,y1) (x1,y2) … p11 p12
(xi,yj) pij g(xi,yj)

Z=g(X,Y)
g(x1,y1) g(x1,y2)
例1 设(X,Y)的联合分布列如下所列: 试求(1)Z1=X+Y (2)Z2=X-Y (3)Z3=max{X,Y}的分布列
练习:设随机变量X与Y独立,且均服从0-1 分布,其分布律均为
X P 0 q 1 p
(1) 求W=X+Y的分布律; (2) 求V=max(X, Y)的分布律; (3) 求U=min(X, Y)的分布律。 (4)求w与V的联合分布律。
(X,Y) pij
W=X+Y
V=max(X, Y) U=min(X, Y)
−∞ 或 ∞ −∞
−∞
∫f
X
( z − y ) f Y ( y )dy = ∫ f X ( x) f Y ( z − x)dx.
例2 设X和Y相互独立,并且服从[-1,1]上的均匀分 布,求Z=X+Y的密度函数。
解:
1 f Y ( x) = 2 0
+∞
当 −1 ≤ x ≤ 1 其他
其中α>0,β>0,试分别就以上两 种联结方式写出L的寿命Z的概率 密度.
αe − αx , x > 0, f X ( x) = x ≤ 0, 0,
βe − βy , y > 0, fY ( y ) = y ≤ 0, 0,
其中 α > 0, β > 0 且 α ≠ β . 试分别就以上三种联 接方式写出 L 的寿命 Z 的概率密度 .

二维离散型随机变量及其分布

二维离散型随机变量及其分布
P{ X xi } P{ X xi , } P{ X xi , (Y y j )}
j 1
P{ ( X xi , Y y j )} P{ X xi , Y y j } pij
j 1 j 1 j 1



Two-dimension Discrete Random Variable and Distribution
所以,关于X的边缘分布律为:
X
pi.
x1
x2 …
xi …
pi. …
p1. p2. …
关于Y的边缘分布律为:
Y p.j y1 p.1 y2 … yj …
p.2 … p.j …
Two-dimension Discrete Random Variable and Distribution
[例2]见例1,试求(X,Y)关于X和关于Y的边缘 分布律。
1 2/5
Two-dimension Discrete Random Variable and Distribution
联合分布律 边缘分布律
Two-dimension Discrete Random Variable and Distribution
1、统计学中有两种抽样:不放回抽样和有放 回抽样。将例1中“不放回地取两次球”改为 “有放回地取两次球”,试求(X,Y)的联合分 布律、(X,Y)分别关于X,Y的边缘分布律及判断 X,Y是否相互独立? 2、上述我们解决了:已知二维离散型随机变 量(X,Y)的联合分布律,如何求(X,Y)关于X 或关于Y的边缘分布律的问题。那么,已知X,Y的 边缘分布律,能否求(X,Y)的联合分布律呢?
0, Y 1,
表示第二次取红球 表示第二次取白球

二维离散随机变量及其分布(3.2)

二维离散随机变量及其分布(3.2)

yj p1 j p2 j pij
x2
… … …

pi
p1 p2
pi
xi
p j pi1源自p1 pi 2
p2





p j

第三章 二维随机变量及其分布
§2 二维离散随机变量
例 3 从 1 ,2 ,3 ,4 这4个数中随机取出一个,记为 X,
再从 1 到 X 中随机地取出一个数,记为 Y, 试求 X , Y 的联合分布律与X 及 Y 各自的边缘 分布律.
PX 1, Y 1
1 PX 2, Y 0 9
PX 2, Y 1 P 0
2 9
PX 2, Y 2 P 0
第三章
二维随机变量及其分布
§2 二维离散随机变量
由此得 X, Y 的联合分布律为
Y X
0 1 2
0
1
2
1 9 2 9 1 9
j 1,2,
X, Y 的联合分布律也可以由 下表表示
Y X x1
y1
y2
… … …
yj p1 j p2 j
pij
… … … …
p11 p21
pi1
p12 p22
x2

xi

第三章 二维随机变量及其分布
§2 二维离散随机变量
3)二维离散型随机变量联合分布律的性质
性质 1 :非负性
i, j , i,j 1, 2, 对任意的
解:
0, 1, 2. X 的可能取值为 0, 1, 2;Y 的可能取值为
1 1 PX 0, Y 0 2 9 3
第三章
二维随机变量及其分布

第三节二维随机变量的独立性

第三节二维随机变量的独立性
或随机变量X与Y的联合分布律. 注: 二维离散型随机变量的分布律也可列表表示如下:
X Y y1 y2 … yj … x1 p11 p12 ... p1j ... x2 p21 p22 ... P2j ...
xi pi1 pi2 ... Pij ...
3. 联合分布律的性质 :
(1) pij 0;(2) pij=1.
F ( x1 ,, xn ) FX1 ( x1 )FX2 ( x2 )FXn ( xn )
则称X1 , X2, …, Xn 相互独立,或称(X1 , X2, …, Xn )是独立的.
一、二维离散型随机变量
1. 定义:若二维随机变量(X, Y)只能取至多可列个值(xi, yj), (i, j=1, 2, … ),则称(X, Y)为二维离散型随机变量。
2. 联合分布律: 若二维随机变量(X, Y) 取 (xi, yj)的概率为Pij, 则称P{X=xi, Y= yj}= Pij为随机变量(X, Y)的分布律,
等价定义:设X, Y为两个随机变量,如果对任意实数a<b, c<d, 有P{a<Xb, c<Yd} =P{a<Xb}P{c<Yd},即事件{a<Xb}与 事件{c<Yd} 独立,则称随机变量X与Y相互独立.
2. 独立的充要条件 (1) 设( X,Y )为离散型随机变量,分布律为 pij,则 X与Y相互独立 pij pi. p. j . (2) 设( X,Y )为连续型随机变量,概率密度为 f ( x,y),则
例2. 设( X,Y )的分布律为 且X与 Y独立,求a,b.
XY 1 2 0 0.15 0.15 1 ab
例2. 设( X,Y )的分布律为 且X与 Y独立,求a,b.

二维离散型随机变量的边缘分布律

二维离散型随机变量的边缘分布律

y
1•
27
1 9

1 9

1• 2 • 1•
9
9
9
1
27•
1 9

1 9

1
27 •
x
F(x,y) =
0, 1/27, 4/27, 7/27, 8/27, 4/27, 13/27, 19/27, 20/27,
x < 0 或 y < 0, 0 x <1, 0 y < 1, 0 x <1, 1 y < 2, 0 x <1, 2 y < 3, 0 x <1, y 3, 1 x <2, 0 y < 1, 1 x <2, 1 y < 2, 1 x <2, 2 y < 3, 1 x <2, y 3,
3
C30
1 2
0
1
1 2
3
一般的,
P( X i,Y j) P( X i)P(Y j X i)
C3i
1
i
3
2 3
3i
Cj 3i
1 2
j
1
1 2
3i
j
j 0,,3 i; i 0,1,2,3;
其联合分布与边缘分布如下表所示
pij X 0 1 2 3
p• j
(1) ( X , Y ) 的联合分布律与边缘分布律; (2) P (X = Y ), P (Y > X ); (3) F (x, y)
解: (1) X的可能取值为0、1、2、3
Y的可能取值为0、1、2、3
P(X 0,Y 0) P(X 0)P(Y 0 X 0)
C30
1 3
0

二维离散型随机变量

二维离散型随机变量

F
(
x,
y)
1 3
,
1 x 2, y 2, 或 x 2,1 y 2,
1, x 2, y 2.
说明 离散型随机变量 ( X ,Y ) 的分布函数归纳为
F ( x, y) pij ,
xi x y j y
其中和式是对一切满足xi x, y j y 的i, j求和.
注意 联合分布
pij 1.
i1 j1
二维随机变量 ( X,Y ) 的分布律也可表示为
X Y
y1 y2
yj
x1
x2 xi
p11 p21
p12 p22
pi1
pi 2
p1 j p2 j pij
3、离散型随机变量的边缘分布律
定义设二维离散型随机变量( X ,Y )的联合分布
律为
P{X xi ,Y y j } pij , i, j 1, 2, .
3 7
pj (Y ) P{Y yj}
4
7 3
7
1
例2 设随机变量 X 在 1,2,3,4四个整数中等可能地 取值, 另一个随机变量Y 在 1 ~ X 中等可能地取一 整数值.试求 ( X ,Y ) 的分布律.
解 { X i,Y j}的取值情况是 : i 1,2,3,4,
j取不大于i的正整数. 且由乘法公式得

pi ( X ) pij P{X xi }, i 1, 2, ,
j 1
p j (Y ) pij P{Y y j }, j 1, 2, , i 1
分别称 pi ( X ) (i 1, 2, ) 和 p j (Y ) ( j 1, 2, ) 为 ( X ,Y )
关于 X 和关于 Y 的边缘分布律.

二维离散型随机变量及其分布律

二维离散型随机变量及其分布律

则(ξ ,η )的可能取值为(0,0),(0,1),(1,0),(1,1), 故 (ξ ,η )为二维离散型随机变量。
1
2. 联合分布律
定义: 设二维随机变量(ξ ,η )的所有可能取的值是 (xi ,yj ),i,j=1,2, ,若{ξ = xi ,η = yj }的概率 L pij = p{ξ = xi ,η = yj} (1) (2) pij ≥ 0 i,j=1,2, L i,j=1,2, L
第2-3节 二维离散型随机变量及其分布律
1.二维离散型随机变量的定义
定义: 若二维随机变量(ξ ,η )的所有可能取的值是 有限对或可列多对, (ξ ,η )=(xi ,yj ),i,j=1,2, L 则称(ξ ,η )为二维离散型随机变量。
例:抛掷两枚硬币一次,观察出现正反的情况,令
⎧0 ξ=⎨ ⎩1 ⎧0 ,η= ⎨ A币出现正面 ⎩1 A币出现反面 B币出现反面 B币出现正面
称之为随机变量η 在ξ = xi条件下的条件分布律。
4
5. 随机变量的独立性
定义: 设二维随机变量(ξ ,η )联合分布律为 pij = p{ξ = xi ,η = yj} i,j=1,2, L 若对于任意的i, j,恒有pij ≡ pi. p. j,即 p{ξ = xi ,η = yj} = p{ξ = xi} p{η = yj} 则称为随机变量ξ 与η 独立。
ij
∑∑ p
i =1 j =1


=1 L i,j=1,2, 为二维离散
则称为pij = p{ξ = xi ,η = yj}
型随机变量(ξ ,η )的联合分布律。
2
3. 边缘ห้องสมุดไป่ตู้布律
定义: 设二维随机变量(ξ ,η )的联合分布律为:pij = p{ξ = xi ,η = yj} i,j=1,2, 则称为pξ(xi ) = p{ξ = xi ,η < +∞} = pi. L 为(ξ ,η )关于分量ξ的边缘分布律。 类似,(ξ ,η )关于分量η的边缘分布律为: pη(η = yj ) = p{ξ < +∞,η = yj} = p.j j=1,2, L i,=1,2, L

二维随机变量及其分布

二维随机变量及其分布
5
一、二维随机变量的联合分布函数与边缘分布函数
1、联合分布函数: F(x,y)
(1)定义:设(X,Y)为二维随机变量,对任意实数 x、y, 称
F (x, y) P {X x , Y y} P {(X x) (Y y )}
为二维随机变量(X,Y)的联合分布函数。
6
(2)联合分布函数的几何意义 (X,Y)平面上随机点的 坐标
三、二维连续型随机变量
23
1、联合概率密度函数:f(x,y)
定义:设二维随机变量(X,Y)的分布函数为 F
(x,y),若存在非负函数f(x,y),使对任意实数
x,y 有
xy
F(x, y)
f (u,v)dudv
则称(X,Y)是二维连续型随机变量,f(x,y)称为(X, Y)的联合概率密度函数。
f (x, y)
0, 其他
求:(1)k; (2)P(Y X );
(3)分布函数F (x, y);
(4)P(0 X 1, o Y X )
26
解:(1)1
f (x, y)dxdy
y
dx
ke2x3ydy
0
0
0
x
k e2xdx e3ydy k
0
0
6
e2xdx 1 e2xd (2x)
X与Y独立.
43
例2:设二维随机变量(X,Y)的概率密度为
f
(
x,
y)
2,
0
x 0,
y, 0 其他
y
1
问X与Y是否独立。
解:f X (x)
f (x, y)dy
3
二维随机变量的定义:
设E是一个随机试验,其样本空间为S .设X、Y是定义在S 上的两个随机变量,由 X,Y 构成的向量(X,Y)称为S的 一个二维随机变量。

二维随机变量函数的分布

二维随机变量函数的分布

V min{X1 ,X2 , ,Xn} 的分布函数分别为
Fmax (u) FX1 (u)FX2 (u) FXn (u) ,
(3-34)
Fmin (v) 1 [1 FX1 (v)][1 FX2 (v)] [1 FXn (v)] .
(3-35)
特别地,当 X1 ,X2 , ,Xn 相互独立且有相同的分布函数 F(x) 时,有
0
0dt
z 1
z
1dt
z

0
当1
z 2 时, fZ (z)
z
z1 fX (t)dt
1
1dt
z 1
z 0dt 2 z ;
1
当 z
2 时, fZ (z)
z
z1 f X (t)dt
z 0dt 0 .
z 1
综上所述,随机变量 Z X Y 的概率密度为
z , 0 z 1, fZ (z) 2 z , 1 z 2 ,
二维随机变量函数的分布
1.1 二维离散型随机变量函数的分布
因此, X Y 的分布律如表 3-13 所示.
表 3-13
X Y
0
1
2
3
3
7
5
1
P
16
16
16
16
(2)同理, XY 的分布律如表 3-14 所示.
表 3-14
XY
0
1
2
13
1
1
P
16
8
16
多维随机变量及其分布
二维随机变量函数的分布
1.1 二维离散型随机变量函数的分布
多维随机变量及其分布
二维随机变量函数的分布
1.2 二维连续型随机变量函数的分布

概率论:二维随机变量的函数的分布

概率论:二维随机变量的函数的分布

( X ,Y ) Z X Y
(1, 2 ) (1,4 ) ( 3, 2 ) ( 3 ,4 )
3 5 5 7
所以
Z X Y P
3
0.18
5
7
0.54
0.28
具有可加性的两个离散分布
设 X ~B (n1, p), Y ~B (n2, p), 且独立, 则 X + Y ~ B ( n1+n2, p) 设 X ~ P (1), Y ~ P (2), 且独立, 则 X + Y ~ P(1+ 2)
证明过程见73页例3.21
三、连续型随机变量函数的分布
问题 已知二维随机变量( X ,Y )的密度函数, g(x,y)为已知的二元函数, 求 Z= g( X ,Y ) 的密度函数. 方法 从求Z 的分布函数出发,将Z 的分布函数 转化为( X ,Y )的事件
连续型随机变量函数的分布主要形式
(1) Z X Y 的分布

卷积计算思路
f Z ( z) f X ( x) fY ( z x)dx


在xoz平面上确定被积函数及其非零区域D;
参照D就z在(-∞,+∞)上进行分段;
对上述各分段中取定的z值,就x从- ∞积分至 +∞,实际只需在非零区域D上一段积分. 注意:上述也是一般参量积分的计算方法。

x2 2
e
( z x)2 2
dx
1 e z 2 t x
2
z 2 z ( x ) 2 4 2
e
dx
1 e 2
z 2 t 2 4
e
dt
1 e 2 z 1 2( 2 ) e ( z ). 2 2

二维随机变量函数的分布

二维随机变量函数的分布

试求 U X Y , V XY 的分布律.
例2 设随机变量 X 和 Y 相互独立,它们分别
服从参数为 1 和 2 的泊松分布.
二、二维连续型随机变量函数分布
随机变量 X 和 Y 的联合概率密度函数 f (x, y)
从公式
FZ (z) P{Z z} P{g(X ,Y ) z} P{(X ,Y ) Dz}
f (x, y)dxdy
( x, y)Dz
确定分布函数 FZ (z) 。
注:Dz 是由不等式 g(x, y) z 规定的 xOy 平面上的一个区域,且不必是连通的。
(1) Z X Y 的分布
y
x y z
x z y
y
x y z
yzx
x y z
x y z
x
x
(a)
(b)
图4-1 x y z 的区域
fX (x) fY ( y)
1
x2
e 2,
2
1
y2
e 2,
2
x y
(2) M max(X ,Y ) 及 N min(X ,Y ) 的分布 设 X 与 Y 是两个相互独立的随机变量,它们的 分布函数分别为 FX (x), FY ( y),则 M max(X ,Y ) 及 N min(X ,Y ) 的分布函数分别为什么?
的分布律为:
P{Z zk}
pij
( xi , y j )Ak
其中 Ak {( xi , y j ) | g(xi , y j ) zk}, k 1,2,3,
例1 已知随机变量 ( X,Y ) 的联合分布律如下:
Y X
1
2
-1
0
1
0.07 0.28 0.15 0.09 0.22 0.19

二维离散型随机变量及其分布律

二维离散型随机变量及其分布律

例2Байду номын сангаас10 看书
例 一个口袋中有三个球, 依次标有数字1, 2, 2, 从中任
取一个, 不放回袋中, 再任取一个, 设每次取球时, 各球被 取到的可能性相等.以X、Y分别记第一次和第二次取到的球
上标有的数字, 求( X , Y ) 的联合分布列.
解 ( X , Y ) 的可能取值为(1, 2), (2, 1), (2, 2).
P{X=1,Y=2}=(1/3) × (2/2)=1/3, P{X=2,Y=1}=(2/3) ×(1/2)=1/3, P{X=2,Y=2}= (2/3) ×(1/2)=1/3,
Y X 1




1/3
1/3
1/3
2.边缘分布律
1). 通过联合分布律,求各个分量的分布律.
定义2.5 ( X ,Y ) 关于分量X的边缘分布律 pi· =P{Xxi}= pij (i1,2, ); j1 ( X ,Y ) 关于分量Y的边缘分布律 p· j=P{Yyj}= pij (j1,2, ). i1
2.补例1
练习题
边缘分布律是分布律.
由联合分布 律得到边缘 分布律
相同的边缘 分布律,不同 的联合分布 律
表2.7-2.8
联合分布律<=|=边缘分布律
补例
二 条件分布律 1.定义
P{Xxi |Yyj}P(xi,yj)/P{Yyj} pij ,j1,2,3,...
p·j 2.条件分布律是分布律(满足分布律的特征)
3.由例2.10求条件分布律
补例
三.随机变量的独立性 1.定义 随机变量的独立性
P {Xxi,Yyj}P (Xxi)P {Yyj} i,j1,2,3,...

概率论与数理统计-第3章-第2讲-二维离散型随机变量及其分布

概率论与数理统计-第3章-第2讲-二维离散型随机变量及其分布

求分布律方法:先定值再求概率
Y
X
0
1
2
3
0
0
0
1
0
2
0
取4只球 P{X 0,Y 0} P{X 0,Y 1} P{X 1,Y 0} P{X 3,Y 2} 0
14
03 二维离散型随机变量的边缘分布律
例 盒子里装有3只黑球, 2只红球, 2只白球, 在其中任取4只球, 以 X 表示取 到黑球的只数, 以 Y 表示取到红球的只数, 求(X, Y)的联合分布律.
主讲教师 |
18
由此得 X , Y 的联合分布律为
X Y
0
1
0
0
0
6
1
0
35
1
6
2
35
35
2
3
3
2
35
35
12
2
35
35
3 0
35
16
第2讲 二维离散型随机变量及其分布
本节我们认识了二维离散型随机变量, 以及联合分布律和边 缘分布律, 要求理解它们概念和性质, 并且会求相应的概率.
17
概率论与数理统计
学海无涯, 祝你成功!
3
本讲内容
01 二维离散型随机变量 02 联合分布律 03 二维离散型随机变量的边缘分布律
4
02 联合分布律
2.联合分布律
设( X ,Y )的所有可能的取值为
(xi , y j ), i, j 1,2,
则称
P( X xi ,Y y j ) pij , i, j 1,2,
为二维随机变量( X ,Y ) 的联合概率分布, 简称概率分布或分布律.
7
02 联合分布律 已知联合分布律可以求概率

概率论与数理统计(二维随机变量函数的分布)

概率论与数理统计(二维随机变量函数的分布)

将上述x与z的关系描绘在xOz平面上便是图中的阴 影部分.
3.5.2
二维连续型随机变量函数的分布
e y , y 0 , 1 , 0 x 1 , fY ( y ) fX ( x) 0 , 其它 , 0 , 其它,
fZ ( z )


f X ( x ) fY ( z x )dx
定理3.1(正态分布的重要性质)若X1,X2 ,…,Xn 为相互独立的随机变量,且 X i ~ N (i , i 2 ), i 1,2,...,n C1,C2,…,Cn为n个任意常数,则
C X
i 1 i
n
i
~ N ( C i i , C i i )
2 2 i 1 i 1
i 1 n
3.5.2
二维连续型随机变量函数的分布
(2) 将Xi共同的分布函数F(x)代入(1)的结果中, 得 n
FY ( y) [F ( y)] FZ ( z ) 1 [1 F ( z )]n
(3) Y和Z的分布函数仍为上述两式,概率密度可 由上述两式分别对y和z求导得到
fY ( y) n[F ( y)]n1 f ( y) fZ ( z ) n[1 F ( z )]n1 f ( z )
二维连续型随机变量函数的分布
【例3.22】(和的分布)设(X,Y)的概率密度为
f(x,y),求Z = X + Y的概率密度.
解:事件X + Y Z所占有的区域如图,
由 FZ ( z ) P{ X Y z }
x y z
f ( x, y)dxdy
f ( x, y)dx]dy
t 2



2.3 二维离散型随机变量及其分布律.

2.3 二维离散型随机变量及其分布律.
1). 通过联合分布律,求各个分量的分布律.
定义2.5 (X ,Y ) 关于分量X的边缘分布律 pi·=P{X xi} = pij (i 1, 2,L ); j1 (X ,Y ) 关于分量Y的边缘分布律 p·j =P{Y y j} = pij ( j 1,2,L ). i1
第三节 二维离散型随机变量及其分布律
一、联合分布律与边缘分布律 1.定义.设X,Y为定义在同一样本空间Ω上的随 机变量,则称向量(X,Y )为Ω上的一个二维随 机变量。 二维随机变量(X,Y )的取值可看作平面上的点
A (x,y)
二维离散型随机变量:若二维随机变量(X,Y )的所 有可能取值只有限对或可列对,则称(X,Y )为二 维离散型随机变量。
3). P{( X ,Y ) G}
pij
( xi , y j )G
例2.10 看书
例 一个口袋中有三个球, 依次标有数字1, 2, 2, 从中任
取一个, 不放回袋中, 再任取一个, 设每次取球时, 各球被 取到的可能性相等.以X、Y分别记第一次和第二次取到的球
上标有的数字, 求(X ,Y ) 的联合分布列.
p·j 2.条件分布律是分布律(满足分布律的特征)
3.由例2.10求条件分布律
补例
三.随机变量的独立性 1.定义 随机变量的独立性
P{X xi ,Y y j} P( X xi )P{Y y j} i, j 1,2,3,...
若随机变量独立,则
P{X xi | Y y j} P(xi , y j ) / P{Y y j} P{X xi} P{Y y j | X xi} P{Y y j} 与条件无关
pi1
... 。。。

二维随机变量及其分布

二维随机变量及其分布

§5.1 二维随机变量及分布函数
二、联合分布函数 性质 ③ F(x,y)关于x、关于y 右连续
F(x0
0,
y)
lim
xx00
F(x,
y)
F(x0
,
y)
F(x,
y0
0) lim yy00
F(x,
y)
F(x,
y0
)
整理课件
§5.1 二维随机变量及分布函数
二、联合分布函数 性质 ④ F(, ) lim F(x,y)0
2
1
x 1, y 1
整理课件
§5.3 二维连续型随机变量
一、二维连续型随机变量及联合密度函数
1.定义:设(X,Y)的分布函数为F(x,y),若存在一非负函 数f(x,y),使得对于任意的实数x,y有
yx
F(x,y) f(x,y)dydx
则称(X,Y)是连续型二维随机变量,函数 f(x,y)称为二 维随机变量(X,Y)的(联合)概率密度函数. 2.概率密度f(x,y)的性质
第五章 二维随机变量及其分布
➢ 二维随机变量及分布函数 ➢ 二维离散型随机变量 ➢ 二维连续型随机变量 ➢ 边缘分布 ➢ 随机变量的独立性 ➢ 条件分布
整理课件
§1.1 二维随机变量及分布函数
一、 二维随机变量 一般地,如果两个变量所组成的有序数组即二 维变量(X,Y),它的取值是随着实验结果而 确定的,那么称这个二维变量(X,Y)为二维 随机变量,相应地,称(X,Y)的取值规律为 二维分布
1
2
9P(X=2,Y=1)=2/9 1 1/9
2/9
P(X=2,Y=2)=4/ 2 2/9
4/9
9
整理课件
§5.2 二维离散型随机变量

3.4-3.5 二维随机变量的函数的分布

3.4-3.5 二维随机变量的函数的分布
§3.4
二维随机变量的函数 的分布
一、 离散型随机变量的函数的分布 二、 连续型随机变量的函数的分布
Z=X+Y 的分布
三、最大值、最小值的分布
一、 离散型随机变量的函数的分布
例1 设(X,Y)的分布律为
Y X 求 (1) Z=X+Y (2) Z=XY -1 (3) Z=max(X,Y) (4)Z=min(X,Y) 2
的分布律.
0 0.2 0.1
1 0.3 0.1
2 0.1 0.2

(X,Y) (-1,0) (-1,1) (-1,2) (2,0) (2,1) (2,2) -1 0 1 2 3 4 Z=X+Y Z=XY 0 -1 -2 0 2 4 Z= max(X,Y) 0 1 2 2 2 2 0.2 0.3 0.1 0.1 0.1 0.2 Z=XY -2 -1 0 2 4 0.1 0.3 0.3 0.1 0.2
FZ ( z ) P{ Z z} P{ g( X , Y ) z }
P{( X ,Y ) DZ }
f ( x , y )dxdy
Dz
DZ {( x, y) | ( x, y) g( x, y) z}
H (u)du

z
(z) H (z) f Z ( z ) FZ
例1. 设二维随机变量(x,y)服从二维均匀分布, 联合概率密度为 1 , 0 x 2, 0 y 2, f ( x, y ) 4 其它. 0, 令Z=X-Y,求Z的概率密度函数。(P90)
0, 1 (2 z ) 2 , 8 答案:FZ ( z ) 1 1 (2 z ) 2 , 8 1, z 2, 2 z 0, 0 z 2, z 2.

二维离散型随机变量

二维离散型随机变量

多维随机变量及其分布
二维离散型随机变量
1.2 二维离散型随机变量的边缘分布律
因此, (X ,Y) 关于 X 和关于Y 的边缘分布律如表 3-5 所示.
表 3-5X01Y01pi
2 5
3 5
pj
2 5
3 5
概率论与数理统计
多维随机变量及其分布
所以, (X ,Y) 的分布律如表 3-2 所示.
Y
0
1
X
2
4
0
15
15
4
1
1
15
3
由二维随机变量的分布函数的定义可知, (X ,Y) 的分布函数为
0 , x 0 或 y 0 ,
2

0
F (x ,y) 125, 0
5
x 1,0 x 1,y
y 1, 1 或 x 1,0
概率论与数理统计
多维随机变量及其分布
二维离散型随机变量
1.1 二维离散型随机变量的概念与分布律
定义 1 若二维随机变量 (X ,Y) 所有可能取的值为有限对或可列无限 多对,则称 (X ,Y) 为二维离散型随机 变量.
显然,当且仅当 X 和Y 都是离散 型随机变量时,(X ,Y) 才是二维离散 型随机变量.
p1j
j 1
p2 j
p2 j
j 1
xi
pi1
pi 2
pij
pij
j 1
P{Y yj}
pi1
pi2
pij
1
i 1
i 1
i 1
多维随机变量及其分布
二维离散型随机变量
1.2 二维离散型随机变量的边缘分布律
例 2 已知 (X ,Y) 的分布律如表 3-4 所示,求 (X ,Y) 关于 X 和关于Y 的边缘分布律.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.由例2.10求条件分布律
补例
三.随机变量的独立性 1.定义 随机变量的独立性
P{X xi ,Y y j} P( X xi )P{Y y j} i, j 1,2,3,...
若随机变量独立,则
P{X xi | Y y j} P(xi , y j ) / P{Y y j} P{X xi} P{Y y j | X xi} P{Y y j} 与条件无关
边缘分布律是分布律.
由联合分布 律得到边缘 分布律
相同的边缘 分布律,不同 的联合分布 律
表2.7-2.8
联合分布律<=|=边缘分布律
补例
二 条件分布律 1.定义
P{X xi | Y y j} P(xi , y j ) / P{Y y j} pij , j 1, 2,3,...
p·j 2.条件分布律是分布律(满足分布律的特征)
第三节 二维离散型随机变量及其分布律
一、联合分布律与边缘分布律 1.定义.设X,Y为定义在同一样本空间Ω上的随机 变量,则称向量(X,Y )为Ω上的一个二维随机变 量。 二维随机变量(X,Y )的取值可看作平面上的点
A (x,y)
二维离散型随机变量:若二维随机变量(X,Y )的所 有可能取值只有限对或可列对,则称(X,Y )为二 维离散型随机变量。
独立的二维随机变量,边缘分布律=>联合分布律
2.补例1
练习题
pi 2
。。。... ... 。。。
yj p1 j
p2 j
。。。
...
pij
... 。。。
... 。。。 。。。... 。。。...
...
... 。。。 ... 。。。 ... 。。。 ... 。。。 ... 。。。
。。。
...
2).特征: 0 pij 1 pij 1 i1 j1
3). P{( X ,Y ) G}
P{X=1,Y=2}=(1/3) × (2/2)=1/3, P{X=2,Y ×(1/2)=1/3,
Y X 1




1/3
1/3
1/3
2.边缘分布律
1). 通过联合分布律,求各个分量的分布律.
定义2.5 (X ,Y ) 关于分量X的边缘分布律 pi·=P{X xi} = pij (i 1, 2, ); j1 (X ,Y ) 关于分量Y的边缘分布律 p·j =P{Y y j} = pij ( j 1,2, ). i1
pij
( xi , y j )G
例2.10 看书
例 一个口袋中有三个球, 依次标有数字1, 2, 2, 从中任
取一个, 不放回袋中, 再任取一个, 设每次取球时, 各球被 取到的可能性相等.以X、Y分别记第一次和第二次取到的球
上标有的数字, 求(X ,Y ) 的联合分布列.
解 ( X ,Y ) 的可能取值为(1, 2), (2, 1), (2, 2).
2.联合分布律 1).定义2.4 pij P{xi , y j} P{X xi ,Y y j}
(i 1,2, ; j 1,2, )
表格形式(常见形式)
XY
x1
x2
... 。。。
xi
y y 1
2 。。。
p p 11
12 。。。...
p p 21
22 。。。...
。。。...
pi1
... 。。。
相关文档
最新文档