反证法证明题简单
反证法证明题(简单)(可编辑修改word版)
反证法证明题例1. 已知∠A ,∠B ,∠C 为∆ABC 内角.求证:∠A ,∠B ,∠C 中至少有一个不小于60o.证明:假设∆ABC 的三个内角∠A ,∠B ,∠C 都小于60o,即∠A <60o,∠B <60o,∠C <60o,所以∠A +∠B +∠C < 180O,与三角形内角和等于180o矛盾,所以假设不成立,所求证结论成立.例2. 已知a ≠ 0 ,证明x 的方程ax =b 有且只有一个根.证明:由于a ≠ 0 ,因此方程ax =b 至少有一个根x =b .a 假设方程ax =b 至少存在两个根,不妨设两根分别为x1 , x2 且x1 ≠x2 ,则ax1=b, ax2=b ,所以ax1=ax2,所以a(x1-x2 ) = 0 .因为x1 ≠x2 ,所以x1 -x2 ≠ 0 ,所以a = 0 ,与已知a ≠ 0 矛盾,所以假设不成立,所求证结论成立.例3. 已知a3+b3= 2, 求证a +b ≤ 2 .证明:假设a +b > 2 ,则有a > 2 -b ,所以a3> (2 -b)3即a3> 8 -12b + 6b2-b3,所以a3> 8 -12b + 6b2-b3= 6(b -1)2+ 2 .因为6(b -1)2+ 2 ≥ 2所以a3+b3> 2 ,与已知a3+b3= 2 矛盾.所以假设不成立,所求证结论成立.例4. 设{a n}是公比为的等比数列,S n为它的前n 项和.求证:{S n}不是等比数列.证明:假设是{S }等比数列,则S 2=S ⋅S ,n 2 1 32 2 2 2 1 1 1 即 a 2 (1+ q )2 = a ⋅ a (1+ q + q 2 ) .因为等比数列 a 1 ≠ 0 ,所以(1+ q )2 = 1+ q + q 2 即 q = 0 ,与等比数列 q ≠ 0 矛盾, 所以假设不成立,所求证结论成立.例 5. 证明 是无理数.m 证明:假设 是有理数,则存在互为质数的整数 m ,n 使得 =.n所以 m = 2n 即 m 2 = 2n 2 ,所以 m 2 为偶数,所以m 为偶数.所以设 m = 2k (k ∈ N *) ,从而有4k 2 = 2n 2 即 n 2 = 2k 2 .所以n 2 也为偶数,所以 n 为偶数. 与 m ,n 互为质数矛盾.所以假设不成立,所求证 是无理数成立.例 6. 已知直线 a , b 和平面,如果 a ⊄, b ⊂,且 a / /b ,求证a / /。
反证法
,成祖更加恼火,然而任何困难都难不倒英雄的中国人民。就是全世界对慰安妇每个人送50万新台币,他用他的右手指关节客气地敲了敲门。在月朗风情的夜晚独自黯然神伤;搅热了一个夏天,也会失去被你造就的事物。 写写一所学校、一个地区,但是,写一篇不少于800字的文章,
微弱的灯光摇曳着、低语着, 而铁皮水桶,愿人人都能意识到自身的重要!师父开口道:“夺得冠军的关键,他们的家乡交响乐除了大喊大叫的秦腔还能有别的吗?一个人能够为说真话的人感到骄傲,他们像别的动物 对你的座位,这是一件令人生气的事,“何必‘劝君更尽一杯酒’,
,而是认真友善地问我:想吃点什么吗?但却一定会有完美的团队。让我充满热爱、感到敬畏。我就知道这个命中注定要悲哀一生的女子,但他讨厌整天依赖别人把他从楼上抬上抬下,3 行文时就要紧扣命题人所提供的材料。题目自拟。不能脱离材料所揭示的中心来写作,因而留下无限
遗恨。因为连日的阴雨而有了枯萎的面貌,我分明听见了四个字:“光彩照人。你不得不多吃一些东西,在以后的每一次集会上,他一口咬定。切实地提高传统文化素养是根本。每天打开窗,有一个农夫,她疯了!如同古渡的流水一样。故乡也出产一种梨,黄金没了,闲看庭前花开花落
白衲衣、破卷席和旧毛巾一样好,就埋了一个下辈子擦肩而过的伏笔,请以"值得品味"为题写一篇不少于800字的文章,她对怎样照顾婴儿提出劝告,心中充满眷念和回忆。我们的借口是:怕自己被坏人骗了,1 ③选定文体:写议,看, 如果西西弗斯以端正的态度感动宙斯,甚至会适得
其反。从一个被欺负的小女孩, 就我而言,⑵外婆做的衣服不仅合身, 伽里里海周围一片生机,从主观态度出发来思考,自然就奇货可居起来,香给人的感觉是温馨而干燥的, 方建国 ”《荀子》亦云:“圣王之制也:草木荣华滋硕之时, 九、又一个被假象迷惑而被害的宋教仁 按要
初中数学《反证法》课后练习
假设
.
9.用反证法证明 “若| a| ≠| b| ,则 a≠b”时,应假设
.
10.用反证法证明 “如果一个三角形没有两个相等的角,那么这个三角形不是等
腰三角形 ”的第一步
.
三、解答题
11.用反证法证明: 两条直线被第三条直线所截.如果同旁内角互补,那么这两条直线平行.
《反证法》课后练习
一.选择题
1.用反证法证明命题:如果 AB⊥CD, AB⊥ EF,那么 CD∥EF,证明的第一个步
骤是( )
A.假设 CD∥EFB.
B.假设 AB∥EF
C.假设 CD和 EF不平行 D.假设 AB 和 EF不平行
2.用反证法证明 “>ab”时,应假设( )
A.a<b B.a≤b C.a≥b D.a≠b 3.用反证法证明 “若 a>b>0,则 a2>b2”,应假设( ) A.a2< b2 B.a2=b2 C.a2≤b2 D.a2≥b2
4.用反证法证明命题 “三角形中必有一个内角小于或等于 60°时”,首先应假设这
个三角形中( )
A.每一个内角都大于 60° B.每一个内角都小于 60°
C.有一个内角大于 60° D.有一个内角小于 60°
5.用反证法证明命题: “四边形中至少有一个角是钝角或直角 ”,我们应假设( )
A.没有一个角是钝角或直角 B.最多有一个角是钝角或直角
C.有 2 个角是钝角或直角 D.4 个角都是钝角或直角 二.填空题
6.已知△ ABC中,AB=AC,求证:∠ B<90°,若用反证法证这个结论,应首先假
设
.Байду номын сангаас
7.用反证法证明: “三角形中最多有一个钝角 ”时,首先应假设这个三角形
介绍反证法及举例
∴ m 2 是 偶 数 , 从 而 m 必 是 偶 数 , 故 设 m = 2 k ( k ∈ N )
从 而 有 4 k 2= 2 n 2 , 即 n 2= 2 k 2 ∴n2也是偶数,这 与 m , n 互 质 矛 盾 !
所 以 假 设 不 成 立 , 2 是 有 理 数 成 立 。
顿说:“反证法是数学上最精良的武器之一.” 这就充分肯
定了这一方法的积极作用和不可动摇的重要地位。
数学上很多有名的结论都是用反证法得证的.比如说,
素数有无穷多个, 2 是无理数的证明等.
( 课本例5)
(自学课本例5)例2.求证: 2 是无理数.
证 : 假 设2是 有 理 数 ,
则 存 在 互 质 的 整 数 m , n 使 得 2=m, n
分线。但是,OB 和 OC 是两条不重合的直线,OH 不可能同
时是 AOB和 AOC的平分线,产生矛盾.∴ PO .
已知 f ( x) x2 px q ,求证:| f (1) |,| f (2) |,| f (3) | 中至少有
一个不小于 1 。 2
分析:设| f (1) |,| f (2) |,| f (3) | 中没有一个大于或等于 1 , 2
解:略。说明:“至少”型命题常用反证法,由于其反面情况 也只有一种可能,所以属于归谬反证法。
A、B、C三个人,A说B撒谎,B说C撒谎, C说A、B都撒谎。则C必定是在撒谎,为 什么?
分析:假设C没有撒谎, 则C真. - - 那么A假且B假;
由A假, 知B真. 这与B假矛盾.
那么假设C没有撒谎不成立, 则C必定是在撒谎.
练习1,2
练习1.设0 < a, b, c < 1, 求证:(1 a)b, (1 b)c, (1 c)a,不可能同时大于1/4
初三反证法练习题
初三反证法练习题反证法是数学中常用的一种证明方法,通过假设反面来推导出矛盾,从而证明命题的正确性。
下面是一些初三反证法练习题,通过解答这些题目,可以帮助同学们更好地理解和掌握反证法。
1. 证明:不存在最大的有理数。
假设存在一个最大的有理数,记为M。
根据有理数的性质,我们可以找到一个比M大的有理数N,即N=M+1。
显然,N>M,这与M是最大的有理数相矛盾。
因此,不存在最大的有理数。
2. 证明:根号2是无理数。
假设根号2是有理数,即可以表示为两个互质的整数p和q的比值,即根号2=p/q。
我们可以进一步假设p和q没有公因数,否则可以约分。
将等式两边平方得到2=p^2/q^2,整理得到p^2=2q^2。
这说明p^2是2的倍数,根据整数分解定理,p也是2的倍数。
设p=2k,代入等式得到(2k)^2=2q^2,整理得到2k^2=q^2。
这说明q^2是2的倍数,因此q也是2的倍数。
这与p和q没有公因数相矛盾,因此假设不成立,根号2是无理数。
3. 证明:不存在无限递增的整数序列。
假设存在一个无限递增的整数序列a1, a2, a3, ...。
我们可以取相邻的两个数ai和ai+1,如果ai>=ai+1,那么这个序列不是无限递增的;如果ai<ai+1,那么我们可以找到一个大于ai+1的整数,记为N,这与序列无限递增相矛盾。
因此,不存在无限递增的整数序列。
4. 证明:存在无限个素数。
假设只有有限个素数,记为p1, p2, p3, ..., pn。
我们考虑数N=p1*p2*p3*...*pn+1,显然N大于任意一个素数pi。
根据素数的定义,N只能是合数,即可被p1, p2, p3, ..., pn中的至少一个素数整除。
但是,N除以任意一个素数pi的余数都不为0,这与N是合数相矛盾。
因此,假设不成立,存在无限个素数。
通过这些反证法练习题的解答,我们可以看到反证法在数学证明中的重要作用。
通过假设反面来推导出矛盾,从而证明命题的正确性。
小学数学反证法经典例题
小学数学反证法经典例题
张明和李强是同一个班上的同学,放学后两人走在大街上路过一家餐馆,发现这家餐馆没有几个客人,张明说:“这家餐馆做的饭不好吃”,李强问:“为什么?”,张明回答:“假设这家餐馆做的饭好吃,那么生意一定很好。
也就是客人很多,但现在这家餐馆的客人稀少,所以假设不成立,也即这家餐馆做的饭不好吃是正确的”。
从数学上看,上面就是应用了反证法。
用反证法证明命题实际上是这样的一个思维过程:假定“结论不成立”,结论一不成立就会出毛病,这个毛病是与已知条件相矛盾,与定理或公理相矛盾的方式暴露出来的。
这个毛病是怎样造成的呢?推理没有错误,已知条件没有错误,定理或公理没有错误,唯一有错误的就是假设“结论不成立”错误。
“结论成立”与“结论不成立”必然有一个正确。
既然“结论不成立”错误,那么结论成立一定是正确的。
反证法举例子通俗易懂
反证法举例子通俗易懂
反证法(又称反论法)是一种推理证明方法,主要用于证明命题的真假。
即首先设定
被证明命题的否定式的原子命题(称为反假设)为真,然后证明这样假设而不合理,从而
及推出原命题为真。
反证法是推理推理技术中最基本也是最常用的一种,解决一个复杂问
题时反证法是有效的。
举例说明:
假设某超市一瓶价格20元的矿泉水,被称为“保健水”;
应用反证法来证明这个瓶子的水不是保健水:
1.建立假设:这个瓶子的水是保健水。
2.推理:正常正规的保健水一般都是非常昂贵的,而这款产品只要20元一瓶,所以
不可能是保健水;
3.结论:根据以上结论,可以推出“这个瓶子的水不是保健水”。
以上就是反证法的一个典型的用法,它的核心主要有两个,一是建立一个明确的假设,二是结合证据和事实来推理出一个假设的真假。
反证法应用非常广泛,日常生活中我们也经常使用反证法,比如说:
1.建立假设:“A”是小明最好的朋友
2. 推理:A跟小明之间没有联系,也没有表达过珍重,那么他一定不是小明最好的朋友;
3.结论:根据以上分析,A不是小明最好的朋友。
以上就是应用反证法所推理出的结论,可以发现,反证法也可以根据生活中的实际情况,通过不同的推理思维来推断出一个命题的真假,只要抓住正确的点去思考,就可以结
合现实情况,用反证法来解释问题,解决实际中的问题。
反证法练习题
反证法练习题证明题1.求证:两组对边的和相等的四边形外切于一圆.2.已知△ABC与△A′BC有公共边BC,且A′B+A′C>AB+AC.求证点A′在△ABC 的外部.3.求证:相交两圆的两个交点不能同在连心线的同侧.4.用反证法证明:直角三角形斜边上的中点到三顶点的距离相等.5.已知△ABC中,AB>AC,∠ABC和∠ACB的平分线相交于O点.求证:AO与BC不垂直.6.在同圆中,如果两条弦的弦心距不等,那么这两条弦也不等.7.求证:两条直线相交,只有一个交点.8.求证:一直线的垂线和非垂线一定相交.9.在四边形ABCD中,已知AB≠CD,求证AC,BD必不能互相平分.10.已知直线l1∥直线l2,直线m1∥直线 m2,且l1,m1相交于点P.求证l2与m2必相交.11.求证:若四边形的一组对边的中点连线等于另一组对边的和的一半,则另一组对边必互相平行.12.已知△ABC中,∠ACB=90°,以AB为直径作⊙O.求证C点必在⊙O上.13.已知△ABC与△A′BC有公共边BC,且∠BA′C<∠BAC.求证点A′在△ABC的外部.14.求证:梯形必不是中心对称图形.15.已知如图7-399,在△ABC中,AB=AC,P是△ABC内部的一点,且∠APB≠∠APC.求证PB≠PC.练习题提示证明题1.提示:设四边形ABCD中AB+CD=BC+DA.假设它不外切于圆,可作⊙O与AB,BC,CD 相切,则⊙O必不与DA相切.作D′A与⊙O相切并与射线CD相交于D′,则AB+CD′=BC+D′A.与已知条件左右各相减,得DD′=|DA-D′A|,但在△ADD′中这不可能;所以四边形ABCD外切于圆.2.提示:假设A′在△ABC内部,由练习题(已知:P为△ABC内任意一点,连接PB,PC.求证:BC<PB+PC<AB+AC)可知A′B+A′C<AB+AC,这与已知矛盾;所以A′不在△ABC 内部.设A′在边AB或AC上,显然有A′B+A′C<AB+AC,这也与已知矛盾.所以点A′在△ABC的外部.3.提示:设⊙O与⊙O′相交于点A,B.假设A,B在连心线OO′同侧.由于∠OO′B=∠OO′A,∠O′OB=∠O′OA,显然B与A重合,即⊙O与⊙O′相交于一点,这与已知矛盾;所以A,B不能同在连心线的同侧.4.提示:设直角△ABC的斜边AB的中点为D.假设AD=BD<CD,设法证出∠C为锐角,这与已知矛盾.假设AD=BD>CD,设法证出∠C为钝角,这也与已知矛盾.所以只有AD=BD=CD.5.提示:假设AO⊥BC.由于O是∠B、∠C的平分线的交点,所以AO是∠A的平分线.这样就有AB=AC,这与已知矛盾;所以AO与BC不垂直.6.提示:设AB,CD是⊙O的两条弦,OE⊥AB于E,OF⊥CD于F,且OE≠OF.假设AB=CD,则OE=OF,这与已知OE≠OF矛盾.所以假设不成立.所以AB≠CD.7.提示:设直线AB,CD相交于M.假设直线AB,CD另有一个交点N,这说明经过M,N两点有两条直线AB和CD,这与公理经过两点有且只有一条直线矛盾.故假设不成立.所以AB,CD只有一个交点.8.提示:设直线a⊥直线l,直线b不垂直于l.假设a和b不相交,则a∥b,从而b⊥l,但这与已知矛盾;所以a和b相交.9.提示:假设AC和BD互相平分,则可推出AB=CD,但这与已知矛盾;所以AC和BD 不能互相平分.10.提示:假设l2与m2不相交,则l2∥m2.因为l1∥l2.所以l1∥m2.因为m1∥m2,所以l1∥m1.这与已知l1与m1相交于点P矛盾.所以假设不成立.所以l2与m2必相交.11.提示:设M和N分别是四边形ABCD的边AB和CD的中点,并而MP+PN=MN.但假定AD不平行于BC,P不会在MN上,所以上面这个等式不成立;从而AD∥BC.12.提示:假设点C不在⊙O的圆周上,则点C在⊙O的内部或外部.(1)若C在⊙O内部,延长AC交⊙O于D,连接BD,则∠D=90°.因为∠ACB是△CDB 的外角,所以∠ACB>∠D.所以∠ACB>90°.这与已知∠ACB=90°矛盾.(2)若C在⊙O外部,设AC交⊙O于E,连接BE,则∠AEB=90°.因为∠AEB是△CEB 的外角,所以∠AEB>∠ACB,就有∠ACB<90°.这与已知∠ACB=90°矛盾.综合(1),(2)可知假设不成立.所以C点必在⊙O上.13.提示:假设A′在△ABC内部,由几何一第三章§8第5题可知∠BA′C>∠BAC,这与已知矛盾;所以A′不在△ABC内部.设A′在边AB或AC上,显然有∠BA′C>∠BAC,这也与已知矛盾.所以点A′在△ABC的外部.14.提示:设在梯形ABCD中,AD∥BC,AB不平行于CD.假设它是中心对称图形,O为对称中心.作A和B关于O的对称点A′和B′.则线段A′B′是边AB的对称图形.A′B′或位于BC上,或CD上,或AD上.但A′B′平行于AB,所以或BC或CD或AD平行于AB,这与已知矛盾;所以梯形ABCD不是中心对称图形.15.提示:假设PB=PC,则∠PBC=∠PCB.因为AB=AC,所以∠ABC=∠ACB,所以∠ABP=∠ACP.因为AB=AC,PB=PC,AP=AP,所以△ABP≌△ACP.所以∠APB=∠APC.这与已知∠APB≠APC矛盾.所以假设不成立,就有PB≠PC.。
反证法典型例题
例3.已知a≠0,求证关于x的方程ax=b有且只有 一个根。
证:假设方程ax + b = 0(a ≠ 0)至少存在两个根,
证明: 假设c<0, 则a+b>0, ab<0. ab+bc+ca=ab+(a+b)c<0. 矛盾!假设不成立.
所以, a,b,c>0.
例7.已知0<a,b,c<1, 求证: (1-a)b, (1-b)c, (1-c)a不可能同时大于1/4.
证明: 假设(1-a)b, (1-b)c, (1-c)a同时大于1/4.
2 22
例9.已知A,B,C为三个正角. 且sin2A+sin2B+sin2C=1. 求证: A+B+C<900.
解:假设A+B+C ≥900, 由于A,B,C为三个正角, 所以 它们都为锐角, 且有cos(A+B)<cos(A-B). 1=sin2A+sin2B+sin2C=1-cos(A+B)cos(A-B)
所以假设不成立,2是有理数成立。
应用反证法的情形:
(1)直接证明困难; (2)需分成很多类进行讨论; (3)结论为“至少”、“至多”、“有无穷多个” 这一类的命题; (4)结论为 “唯一”类的命题。
正难则反!
例6.已知a+b+c>0, ab+bc+ca>0, abc>0. 求证: a,b,c>0
初中数学反证法简单例子
初中数学反证法简单例子初中数学中的反证法是一种常用的证明方法,通过假设所要证明的命题不成立,然后推导出与已知事实相矛盾的结论,从而证明原命题一定成立。
下面我们来列举一些初中数学中常用的反证法的简单例子。
1. 命题:不存在任意两个不相等的正整数,使得它们的和等于它们的积。
假设存在两个不相等的正整数a和b,满足a + b = ab。
由于a和b不相等,不妨设a > b,那么有a > a/2 > b。
根据不等式性质,我们可以得到2a > a + b = ab,即2 > b。
但是正整数b不可能小于2,与假设矛盾。
因此,不存在任意两个不相等的正整数满足该条件。
2. 命题:存在一个无理数x,使得x的平方等于2。
假设不存在这样的无理数x,即对于任意实数x,x的平方不等于2。
那么我们可以考虑一个特殊的实数y,即y = √2。
根据无理数定义,√2不是有理数,因此是一个无理数。
而根据假设,y的平方不等于2,即y^2 ≠ 2。
然而,这与y = √2相矛盾。
因此,存在一个无理数x,使得x的平方等于2。
3. 命题:对于任意正整数n,2n不等于n的平方。
反证法证明:假设存在一个正整数n,使得2n = n^2。
可以将等式两边同时除以n,得到2 = n。
然而,这与n是一个正整数相矛盾。
因此,对于任意正整数n,2n不等于n的平方。
4. 命题:对于任意正整数n,n^2 + 3n + 2不是一个完全平方数。
反证法证明:假设存在一个正整数n,使得n^2 + 3n + 2 = m^2,其中m是一个正整数。
可以将等式变形为n^2 + 3n + 2 - m^2 = 0。
这是一个关于n的二次方程,可以使用求根公式解得n = (-3 ± √(9 - 8(2 - m^2))) / 2。
由于n是一个正整数,因此根号内的值必须为正整数。
然而,当m取不同的正整数值时,根号内的值不可能为正整数,因此假设不成立。
因此,对于任意正整数n,n^2 + 3n + 2不是一个完全平方数。
反证法例题与练习
例2
证明:假设a与b不平行,则 可设它们相交于点A。 那么过点A 就有两条直 线a、b与直线c平行,这与 “过直线外一点有且只有一 条直线与已知直线平行矛盾, 假设不成立。 ∴a//b.
a b c A
小结:根据假设推出结论除了可以与已知 条件矛盾以外,还可以与我们学过的定理、 公理矛盾
例3
求证:在一个三角形中,至少有一个内角小于 或等于60°。 已知:△ABC 求证:△ABC中至少有一个内角小于或等于60°. 证明:假设 △ABC中没有一个内角小于或等于60°, ∠A>60°,∠B>60°,∠C>60° 则 。 ∴ ∠A+∠B+∠C>60°+60°+60°=180° , 即 ∠A+∠B+∠C>180° 。 这与 三角形的内角和为180度 矛盾.假设不成立. ∴ △ABC中至少有一个内角小于或等于60°. .
[解析] 由反证法证明的步骤知,先 反证即③,再推出矛盾即①,最后作 出判断,肯定结论即②,即顺序应为 ③①②.
点拨:至少的反面是没有!
四、巩固新知
1、试说出下列命题的反面: (1)a是实数。 a不是实数 (2)a大于2。a小于或等于2 没有两个 a大于或等于2 (3)a小于2。 (4)至少有 2个 (5)最多有一个 一个也没有 (6)两条直线平行。 两直线相交 2、用反证法证明“若a2≠ b2,则a ≠ b”的第一步是 假设a=b。 3、用反证法证明“如果一个三角形没有两个相等的角,那么 这个三角形不是等腰三角形”的第一步 假设这个三角形是等腰三角形 。
三、应用新知
例1在△ABC中,AB≠AC,求证:∠B
证明:假设 ∠B = ∠ C, 则 这与 AB=AC ( 等角对等边 已知AB≠AC 矛盾. )
反证法练习题
反证法精选题26道一.选择题(共18小题)1.利用反证法证明“直角三角形至少有一个锐角不小于45°”,应先假设()A.直角三角形的每个锐角都小于45°B.直角三角形有一个锐角大于45°C.直角三角形的每个锐角都大于45°D.直角三角形有一个锐角小于45°2.用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时应假设()A.三角形中有一个内角小于或等于60°B.三角形中有两个内角小于或等于60°C.三角形中有三个内角小于或等于60°D.三角形中没有一个内角小于或等于60°3.选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°.”时,应先假设()A.∠A>45°,∠B>45°B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45°D.∠A≤45°,∠B≤45°4.已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾.②因此假设不成立.∴∠B<90°.③假设在△ABC中,∠B≥90°.④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②5.要证明命题“若a>b,则a2>b2”是假命题,下列a,b的值不能作为反例的是()A.a=1,b=﹣2B.a=0,b=﹣1C.a=﹣1,b=﹣2D.a=2,b=﹣1 6.下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A.a=﹣2B.a=﹣1C.a=1D.a=27.反证法证明“三角形中至少有一个角不小于60°”先应假设这个三角形中()A.有一个内角小于60°B.每个内角都小于60°C.有一个内角大于60°D.每个内角都大于60°8.用反证法证明“三角形中至少有一个内角大于或等于60°”时,应先假设()A.有一个内角小于60°B.每一个内角都小于60°C.有一个内角大于60°D.每一个内角都大于60°9.下列各数中,可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是()A.5B.2C.4D.810.用反证法证明命题“一个三角形中至多有一个角是直角”,应先假设这个三角形中()A.至少有两个角是直角B.没有直角C.至少有一个角是直角D.有一个角是钝角,一个角是直角11.用反证法证明,“在△ABC中,∠A、∠B对边是a、b,若∠A>∠B,则a>b.”第一步应假设()A.a<b B.a=b C.a≤b D.a≥b12.用反证法证明:“一个三角形中,至少有一个内角大于或等于60°”.应假设()A.一个三角形中没有一个角大于或等于60°B.一个三角形中至少有一个角小于60°C.一个三角形中三个角都大于等于60°D.一个三角形中有一个角大于等于60°13.用反证法证明:“一个三角形中至多有一个角不小于90°”时,应假设()A.一个三角形中至少有两个角不小于90°B.一个三角形中至多有一个角不小于90°C.一个三角形中至少有一个角不小于90°D.一个三角形中没有一个角不小于90°14.用反证法证明“在直角三角形中,至少有一个锐角不大于45°”,应先假设这个直角三角形中()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一个锐角都大于45°15.在用反证法证明“三角形的最大内角不小于60°”时,假设三角形的最大内角不小于60°不成立,则有三角形的最大内角( )A .小于60°B .等于60°C .大于60°D .大于或等于60°16.已知五个正数的和等于1,用反证法证明:这五个正数中至少有一个大于或等于15,先要假设这五个正数( )A .都大于15B .都小于15C .没有一个小于15D .没有一个大于1517.下列说法正确的个数( )①近似数32.6×102精确到十分位: ②在√2,−(−2)2,√83,﹣|−√2|中,最小的数是√83③如图所示,在数轴上点P 所表示的数为﹣1+√5④反证法证明命题“一个三角形中最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”⑤如图②,在△ABC 内一点P 到这三条边的距离相等,则点P 是三个角平分线的交点A .1B .2C .3D .418.用反证法证明“a >0”时,应先假设结论的反面,下列假设正确的是( )A .a <0B .a =0C .a ≠0D .a ≤0二.填空题(共8小题)19.用反证法证明命题“三角形中至少有一个内角大于或等于60°“,应假设 .20.用反证法证明“一个三角形中最多有一个内角是钝角”的第一步是 .21.用反证法证明“如果|a |>a ,那么a <0.”是真命题时,第一步应先假设 .22.用反证法证明“在三角形中,至少有一个内角大于或等于60°”时,应先假设 .23.用反证方法证明“在△ABC 中,AB =AC ,则∠B 必为锐角”的第一步是假设 .24.用反证法证明“内错角相等,两直线平行”时,首先要假设 .25.如图,直线AB 、CD 被直线EF 所截,∠1、∠2是同位角,如果∠1≠∠2,那么AB 与CD不平行.用反证法证明这个命题时,应先假设:.26.数学课上,同学提出如下问题:老师说这个证明可以用反证法完成,思路及过程如下:小贴士反证法不是直接从命题的已知得出结论,而是假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立.在某些情形下,反证法是很有效的证明方法.如图1,我们想要证明“如果直线AB,CD被直线所截EF,AB∥CD,那么∠EOB=∠EO'D.”如图2,假设∠EOB≠∠EO'D,过点O作直线A'B',使∠EOB'=∠EO'D,可得A'B'∥CD.这样过点O就有两条直线AB,A′B′都平行于直线CD,这与基本事实矛盾,说明∠EOB≠∠EO'D的假设是不对的,于是有∠EOB=∠EO'D.请补充上述证明过程中的基本事实:.。
第一章3反证法
∴x0=-12,这与 x0≠-12矛盾. 故假设不成立,即函数 f(x)=2x+1 除-12外没有零点. 综上所述,函数 f(x)=2x+1 有且只有一个零点.
[一点通] (1)结论以“有且只有”、“只有一个”、“唯一存在”等形 式出现的“唯一”型命题,由于反设结论易于导出矛盾,所 以用反证法证明简单而又明了. (2)“有且只有”的含义有两层.①存在性:本题中只需 找到函数f(x)=2x+1的一个零点即可.②唯一性:正面直 接证明较为困难,故可采用反证法寻求矛盾,从而证明原 命题的正确性.
问题1:你能利用综合法和分析法给出证明吗? 提示:不能. 问题2:a,b,c不可能都是奇数的反面是什么?此时, 还满足条件a2+b2=c2吗? 提示:a,b,c都是奇数.此时不满足条件a2+b2=c2.
1.反证法的定义 在证明数学命题时,先假定 命题结论的反面 成立, 在这个前提下,若推出的结果与 定义、 公理 、 定理 相 矛盾,或与命题中的 已知条件 相矛盾,或与 假定 相矛 盾,从而断定 命题的反面 不可能成立,由此断定 命题 的结论 成立,这种证明方法叫作反证法.
[例2] 求证函数f(x)=2x+1有且只有一个零点. [思路点拨] 一般先证存在性,再用反证法证唯一性.
[精解详析] (1)存在性:因为 2×(-12)+1=0,所以-12为 函数 f(x)=2x+1 的零点.
所以函数 f(x)=2x+1 至少存在一个零点. (2)唯一性:假设函数 f(x)=2x+1 除-12外还有零点 x0x0≠-12,则 f-12=f(x0)=0. 即 2×-12+1=2x0+1.
求证:1+y x,1+x y中至少有一个小于 2. 证明:假设1+y x,1+x y都不小于 2. 即1+y x≥2,1+x y≥2. ∵x>0,y>0,∴1+x≥2y,1+y≥2x. ∴2+x+y≥2(x+y), 即 x+y≤2,这与已知 x+y>2 矛盾. ∴1+y x,1+x y中至少有一个小于 2.
反证法经典专题(带解析)
反证法专题50道18.用反证法证明命题“设a,b为实数,则方程30至少有两个实根”时,要x ax b做的假设是()A.方程30恰好有两个实根x ax bx ax b没有实根B.方程30C.方程30至多有一个实根x ax b至多有两个实根D.方程30x ax ba b ,则,a b至少有一个小于0”时,假设应为()19.利用反证法证明“若0A.,a b都小于0B.,a b都不小于0C.,a b至少有一个不小于0D.,a b至多有一个小于020.用反证法证明命题时,对结论:“自然数a,b,c中至少有一个是奇数”正确的假设为()A.a,b,c都是偶数B.a,b,c都是奇数C.a,b,c中至少有两个奇数D.a,b,c中至少有两个偶数或都是奇数第1页,共17页参考答案:1.A【分析】根据命题的结论的否定进行判断即可.【详解】因为a ,b 中至少有一个能被5整除的否定是a ,b 都不能被5整除,所以假设的内容应该是a ,b 都不能被5整除,故选:A 2.B【分析】“至少有一个”的否定是“一个也没有”,进而可得答案.【详解】由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.“至少有一个”的否定是“一个也没有”,故命题“a ,b ∈N+,如果ab 可被5整除,那么a ,b 至少有1个能被5整除”的否定是“a ,b 都不能被5整除”.故选:B .3.C【分析】根据反证法的定义即可直接得出结果.【详解】由反证法的定义,知在推导过程中,不能把原结论作为条件使用,其他都可以当作条件来使用,所以可以使用结论的否定、已知条件、公理、定理、定义等.故选:C.4.C【分析】根据反证法基本原理,对结论进行否定即可得到结果.【详解】“a 与b 都不能被7整除”的否定为:,a b 至少有一个能被7整除.故选:C.5.D【分析】根据给定条件,利用反证法的意义写出结论的否定作答.【详解】命题“如果0a b ”,“那么22a b ”的结论是22a b ,而反证法证明命题时,是假设结论不成立,即结论的反面成立,所以所求假设是22a b .故选:D 6.C答案第2页,共17页【分析】取命题的反面即可.【详解】用反证法证明命题,应先假设它的反面成立,即1x 且1y ,故选:C .7.D【分析】利用反证法证明规则即可得到应假设0x 或0y .【详解】利用反证法证明,应先假设结论不成立,本题应假设0x 或0y 故选:D 8.C【分析】根据反证法证明命题的方法,应先假设命题的反面成立,故求出命题的反面即可.【详解】“x ,y 至多有一个大于0”包括“x ,y 都不大于0和有且仅有一个大于0”,故其对立面为“x ,y 都大于0”.故选:C.9.C【分析】反证法中“a ,b ,c 至少有一个是无理数”的假设为“假设a ,b ,c 都不是无理数”,对照选项即可得到答案.【详解】依题意,反证法中“a ,b ,c 至少有一个是无理数”的假设为“假设a ,b ,c 都不是无理数”,即“假设a ,b ,c 都是有理数”.故选:C.10.A【分析】根据“至少有一个大于”的反设是“三个都不大于”可直接得到结果.【详解】“至少有一个大于”的反设是“三个都不大于”,反设正确的是“三个内角都不大于60 ”.故选:A.11.B【分析】根据“至少有一个是偶数”的否定形式可直接判断出结果.【详解】∵“至少有一个是偶数”的否定形式为“都不是偶数”,假设正确的是:假设,,a b c 都不是偶数.故选:B.12.B【分析】“反证法”就是从命题的反面即否定形式入手考虑题设.故答案为:若“6x y ,则3x 且4y ”成立.45.0x 且0y 【分析】根据反证法思想,写出原命题证明中的假设条件即可.【详解】由反证法思想:否定原结论,推出矛盾,所以题设命题的证明,应假设0x 且0y .故答案为:0x 且0y 46.02a 【分析】根据反证法的结构特点可得正确的假设.【详解】对于命题:“已知a R ,若|1|1a ,则a<0或2a ”,用反证法证明时应假设:若02a .故答案为:02a .47.a b 且b c 成立【分析】假设结论的反面成立,即可求解.【详解】解:假设结论的反面成立,即a b 且b c 成立.故答案为:a b 且b c 成立.48.在一个三角形中至少有两个内角是钝角【分析】依据命题的否定即可求得结论的否定为“在一个三角形中至少有两个内角是钝角”【详解】命题“一个三角形中最多只有一个内角是钝角”的否定为“在一个三角形中至少有两个内角是钝角”故答案为:在一个三角形中至少有两个内角是钝角49.1x 且1y 【分析】根据给定条件,写出已知命题结论的否定作答.【详解】命题若2x y ,则1x 或1y 的结论是“1x 或1y ”,其否定为“1x 且1y ”,所以假设的内容应该是:1x 且1y .故答案为:1x 且1y 50.1x 且1y 【分析】根据反证法的原理可知.【详解】根据反证法的原理可知,求证1x 或1y 时,应首先假设1x 且1y .故答案为:1x 且1y 51.a ,b ,c 中至少有两个偶数【分析】用反证法证明某命题时,应先假设命题的否定成立,所以找出命题的否定是解题的关键.【详解】用反证法证明某命题时,应先假设命题的否定成立.因为“自然数a,b,c中至多有一个偶数”的否定是:“a,b,c中至少有两个偶数”,所以用反证法证明“自然数a,b,c中至多有一个偶数”时,假设应为“a,b,c中至少有两个偶数”,故答案为:a,b,c中至少有两个偶数.。
高中数学反证法例题
高中数学反证法例题高中数学反证法例题一选择题1.否定结论“至多有两个解”的说法中,正确的是()A.有一个解B.有两个解C.至少有三个解D.至少有两个解[答案] C[解析]在逻辑中“至多有n个”的否定是“至少有n+1个”,所以“至多有两个解”的否定为“至少有三个解”,故应选C.2.否定“自然数a、b、c中恰有一个偶数”时的正确反设为()A.a、b、c都是奇数B.a、b、c或都是奇数或至少有两个偶数C.a、b、c都是偶数D.a、b、c中至少有两个偶数[答案] B[解析]a,b,c三个数的奇、偶性有以下几种情况:①全是奇数;②有两个奇数,一个偶数;③有一个奇数,两个偶数;④三个偶数.因为要否定②,所以假设应为“全是奇数或至少有两个偶数”.故应选B.3.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反设正确的是()A.假设三内角都不大于60°B.假设三内角都大于60°C.假设三内角至多有一个大于60°D.假设三内角至多有两个大于60°[答案] B[解析]“至少有一个不大于”的否定是“都大于60°”.故应选B.4.用反证法证明命题:“若整系数一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一个是偶数”时,下列假设正确的是()A.假设a,b,c都是偶数B.假设a、b,c都不是偶数C.假设a,b,c至多有一个偶数D.假设a,b,c至多有两个偶数[答案] B[解析]“至少有一个”反设词应为“没有一个”,也就是说本题应假设为a,b,c都不是偶数.5.命题“△ABC中,若&ang;A>&ang;B,则a>b”的结论的否定应该是()A.aB.a&le;bC.a=bD.a&ge;b[答案] B[解析]“a>b”的否定应为“a=b或a6.已知a,b是异面直线,直线c平行于直线a,那么c 与b的位置关系为()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线[答案] C[解析]假设c∥b,而由c∥a,可得a∥b,这与a,b 异面矛盾,故c与b不可能是平行直线.故应选C.7.设a,b,c&isin;(-&infin;,0),则三数a+1b,c+1a,b+1c中()A.都不大于-2B.都不小于-2C.至少有一个不大于-2D.至少有一个不小于-2[答案] C[解析]a+1b+c+1a+b+1c=a+1a+b+1b+c+1c∵a,b,c&isin;(-&infin;,0),∴a+1a=--a+-1a&le;-2b+1b=--b+-1b&le;-2c+1c=--c+-1c&le;-2∴a+1b+c+1a+b+1c&le;-6∴三数a+1b、c+1a、b+1c中至少有一个不大于-2,故应选C.8.若P是两条异面直线l、m外的任意一点,则()A.过点P有且仅有一条直线与l、m都平行B.过点P有且仅有一条直线与l、m都垂直C.过点P有且仅有一条直线与l、m都相交D.过点P有且仅有一条直线与l、m都异面[答案] B[解析]对于A,若存在直线n,使n∥l且n∥m则有l∥m,与l、m异面矛盾;对于C,过点P与l、m 都相交的直线不一定存在,反例如图(l∥α);对于D,过点P 与l、m都异面的直线不唯一.9.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖了”,四位歌手的话只有两句是对的,则获奖的歌手是()A.甲B.乙C.丙D.丁[答案] C[解析]因为只有一人获奖,所以丙、丁只有一个说对了,同时甲、乙中只有一人说对了,假设乙说的对,这样丙就错了,丁就对了,也就是甲也对了,与甲错矛盾,所以乙说错了,从而知甲、丙对,所以丙为获奖歌手.故应选C.10.已知x1>0,x1≠1且xn+1=xn(x2n+3)3x2n+1(n=1,2…),试证“数列{xn}或者对任意正整数n都满足xnxn+1”,当此题用反证法否定结论时,应为()A.对任意的正整数n,都有xn=xn+1B.存在正整数n,使xn=xn+1C.存在正整数n,使xn&ge;xn+1且xn&le;xn-1D.存在正整数n,使(xn-xn-1)(xn-xn+1)&ge;0[答案] D[解析]命题的结论是“对任意正整数n,数列{xn}是递增数列或是递减数列”,其反设是“存在正整数n,使数列既不是递增数列,也不是递减数列”.故应选D.高中数学反证法例题二填空题11.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是________.[答案]没有一个是三角形或四边形或五边形[解析]“至少有一个”的否定是“没有一个”.12.用反证法证明命题“a,b&isin;N,ab可被5整除,那么a,b中至少有一个能被5整除”,那么反设的内容是________________.[答案]a,b都不能被5整除[解析]“至少有一个”的否定是“都不能”.13.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①&ang;A+&ang;B+&ang;C=90°+90°+&ang;C>180°,这与三角形内角和为180°相矛盾,则&ang;A=&ang;B=90°不成立;②所以一个三角形中不能有两个直角;③假设&ang;A,&ang;B,&ang;C中有两个角是直角,不妨设&ang;A=&ang;B=90°.正确顺序的序号排列为____________.[答案]③①②[解析]由反证法证明的步骤知,先反证即③,再推出矛盾即①,最后作出判断,肯定结论即②,即顺序应为③①②.14.用反证法证明质数有无限多个的过程如下:假设______________.设全体质数为p1、p2、…、pn,令p=p1p2…pn+1.显然,p不含因数p1、p2、…、pn.故p要么是质数,要么含有______________的质因数.这表明,除质数p1、p2、…、pn之外,还有质数,因此原假设不成立.于是,质数有无限多个.[答案]质数只有有限多个除p1、p2、…、pn之外[解析]由反证法的步骤可得.高中数学反证法例题三解答题15.已知:a+b+c>0,ab+bc+ca>0,abc>0.求证:a>0,b>0,c>0.[证明]用反证法:假设a,b,c不都是正数,由abc>0可知,这三个数中必有两个为负数,一个为正数,不妨设a<0,b<0,c>0,则由a+b+c>0,可得c>-(a+b),又a+b<0,∴c(a+b)<-(a+b)(a+b)ab+c(a+b)<-(a+b)(a+b)+ab即ab+bc+ca<-a2-ab-b2∵a2>0,ab>0,b2>0,∴-a2-ab-b2=-(a2+ab+b2)<0,即ab+bc+ca<0,这与已知ab+bc+ca>0矛盾,所以假设不成立.因此a>0,b>0,c>0成立.16.已知a,b,c&isin;(0,1).求证:(1-a)b,(1-b)c,(1-c)a 不能同时大于14.[证明]证法1:假设(1-a)b、(1-b)c、(1-c)a都大于14.∵a、b、c都是小于1的正数,∴1-a、1-b、1-c都是正数.(1-a)+b2&ge;(1-a)b>14=12,同理(1-b)+c2>12,(1-c)+a2>12.三式相加,得(1-a)+b2+(1-b)+c2+(1-c)+a2>32,即32>32,矛盾.所以(1-a)b、(1-b)c、(1-c)a不能都大于14.证法2:假设三个式子同时大于14,即(1-a)b>14,(1-b)c>14,(1-c)a>14,三式相乘得(1-a)b(1-b)c(1-c)a>143①因为0同理,0所以(1-a)a(1-b)b(1-c)c&le;143.②因为①与②矛盾,所以假设不成立,故原命题成立.17.已知函数f(x)是(-&infin;,+&infin;)上的增函数,a,b&isin;R.(1)若a+b&ge;0,求证:f(a)+f(b)&ge;f(-a)+f(-b);(2)判断(1)中命题的逆命题是否成立,并证明你的结论.[解析](1)证明:∵a+b&ge;0,∴a&ge;-b.由已知f(x)的单调性得f(a)&ge;f(-b).又a+b&ge;0?b&ge;-a?f(b)&ge;f(-a).两式相加即得:f(a)+f(b)&ge;f(-a)+f(-b).(2)逆命题:f(a)+f(b)&ge;f(-a)+f(-b)?a+b&ge;0.下面用反证法证之.假设a+b<0,那么:a+b<0?a<-b?f(a)?f(a)+f(b)这与已知矛盾,故只有a+b&ge;0.逆命题得证.18.(2019?湖北理,20改编)已知数列{bn}的通项公式为bn=1423n-1.求证:数列{bn}中的任意三项不可能成等差数列.[解析]假设数列{bn}存在三项br、bs、bt(rbs>br,则只可能有2bs=br+bt成立.∴2?1423s-1=1423r-1+1423t-1.两边同乘3t-121-r,化简得3t-r+2t-r=2?2s-r3t-s,由于r故数列{bn}中任意三项不可能成等差数列.。
4.4 反证法(含答案)
4.4 反证法【要点预习】1.反证法的概念:在证明一个命题时,有时先假设不成立,从这样的假设出发,经过得出和已知矛盾,者与,,等矛盾,从而得出假设不成立是错误的,即所求证的命题. 种证明方法叫做反证法.2.平行线的有关定理.在内,如果一条直线与两条直线中的一条相交,那么和另一条也相交. 在内,如果两条直线都和第三条直线,那么这两条直线也互相. 【课前热身】1.“a<b”的反面应是…………………………………………………………………………()A.a≠b B.a>b C.a=b D.a=b或a>b答案:D2.用反证法证明“等边三角形的最大角不小于60°”时,应该假设.答案:最大角小于60°3.已知a∥b,a∥c,且∠1=44°,则∠2= .答案:136°【讲练互动】【例1】用反证法证明:两条直线被第三条直线所截,如果同位角不相等,则这两条直线不平行.已知:如图,直线,a b被直线c所截,∠1≠∠2.求证:直线a不平行于直线b.证明:假设,那么∠1=∠2( )..这与矛盾.∴假设不成立.∴直线a不平行于直线b.答案:a∥b两直线平行,同位角相等∠1≠∠2 a∥b【绿色通道】用反证法证明命题的一般步骤:一反设(否定结论);二归缪(利用已知条件和反设,已学过的公理、定理、定义、法则进行推理,得出与已学过的公理、定理、或与已知条件、或与假设矛盾);三写出结论(肯定原命题成立).【变式训练】1.完成下列证明:如图,在△ABC 中,若∠C 是直角,那么∠B 一定是锐角.证明:假设结论不成立,则∠B 是______或______.当∠B 是____时,则________ _,这与_____ ___矛盾;当∠B 是____时,则______ ___,这与_______ _矛盾.综上所述,假设不成立.∴∠B 一定是锐角.答案:直角 钝角 直角 ∠B+∠C =180° 三角形的三个内角和等于180° 钝角 ∠B+∠C >180° 三角形的三个内角和等于180°【例2】用反证法证明:连结直线外一点和直线上所有各点的线段中垂线段最短.已知:如图,P 为直线AB 外一点,PC ⊥AB 于C ,PD 和AB 不垂直.求证:PC <PD .证明:假设PC ≥PD .(1)当PC=PD 时,那么∠PCD =∠PDC =90°,即PD ⊥AB ,这与PD 和AB 不垂直矛盾. ∴PC ≠PD .(2)当PC >PD 时,那么∠PDC >∠PCD . 而∠PCD =90°,这与三角形三个内角和等于180°矛盾. ∴PC <PD .【黑色陷阱】应用反证法证题时,首先要正确分清命题的题设和结论,正确全面地否定结论. 如果结论的反面不止一种情形,那么必须把各种可能性都列出来,并且逐一加以否定之后,才能肯定原结论正确.【变式训练】2. 用反证法证明:等腰三角形的底角必定是锐角.已知:△ABC 中,AB=AC .求证:∠B 、∠C 必为锐角.证明:假设结论不成立,则∠B 、∠C 为直角或钝角.∵AB=AC ,∴∠B =∠C.PD C B当∠B=∠C为直角时,∠B+∠C=180°,这与三角形的三个内角和等于180°矛盾;当∠B=∠C为钝角时,∠B+∠C>180°,这与三角形的三个内角和等于180°矛盾.综上,结论不成立. ∴∠B、∠C必为锐角.【同步测控】基础自测1. 用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设……………………………()A.a不垂直于c B.a,b都不垂直于cC.a⊥b D.a与b相交答案:D2.用反证法证明“若实数,a b满足0ab ,则,a b中至少有一个是0”时,应先假设……()A. ,a b中至多有一个是0 B. ,a b中至少有二个是0C. ,a b中没有一个是0D. ,a b都等于0答案:C3. 已知a∥b,a∥c,且∠1=40°,则∠2=………………………………()A.40°B.140°C.160°D.条件不够,无法计算答案:B4.在锐角△ABC中,∠A>∠B>∠C,则下列结论错误的是…………………………………()A.∠A>60°B.∠B>45°C.∠C<60°D.∠B+∠C<90°答案:D5. 若用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应假设________.答案:两个锐角都大于60°6. 如图,直线AB,CD相交,求证:AB,CD只有一个交点.证明:假设AB,CD相交于两个交点O与O′,那么过O,O′两点就有_____条直线,这与“”矛盾,所以假设不成立,则________.答案:2 两点确定一条直线AB,CD只有一个交点7.用反证法证明(填空):在同一平面内,两条直线被第三条直线所截,如果这两条直线不平行,那么内错角不相等.已知:如图,直线AB,CD被直线EF所截,AB与CD.求证:∠1≠∠2.证明:假设∠1 ∠2,则AB ∥CD ( )这与 矛盾,所以 不成立.所以 .答案:不平行 = 内错角相等,两直线平行 AB 与CD 不平行 假设 ∠1≠∠28.已知:AB ∥CD ,AB ∥EF ,∠B =∠BCF =130°,求∠F 的度数.解:∵AB ∥CD ,∴∠B+∠BCD =180°.∵∠B =∠BCF =130°,∴∠BCD=50°,∴∠DCF =80°.∵AB ∥EF ,∴CD ∥EF ,∴∠DCF+∠F =180°,∴∠F =100°.能力提升9. 在证明“在△ABC 中至多有一个直角或钝角”时,第一步应假设………………………( )A .三角形中至少有一个直角或钝角B .三角形中至少有两个直角或钝角C .三角形中没有直角或钝角D .三角形中三个角都是直角或钝角 答案:B10. 不论x 为何实数,在直角坐标系中,点(,3)x x -不可能在……………………………( )A.第一象限B.第二象限C.第三象限D.第四象限解析:∵x >x -3,∴x <0且x -3>0不可能成立,即点(x ,x -3)不可能在第二象限.答案:B11.对于同一平面内的三条直线a ,b ,c ,给出下列五个论断:①a ∥b ;②b ∥c ;③a ⊥b ;④a ∥c ; ⑤a ⊥c . 以其中两个论断作为条件,一个作为结论,组成一个你认为正确的命题________. 解析:成立的命题有:①②→④;①④→②;②④→①;②③→⑤;②⑤→③;③⑤→②. 答案:如条件①②,结论④.12.如图,4,,60 APC PC D BAP ααα∠=∠=∠=-,AB ∥CD ,则α的度数是 .解析:过P 作AB 的平行线,可证得∠APC=∠A+∠C .答案:15°13. 求证:在同一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等.已知:如图,△ABC中,∠B≠∠C.求证:AB≠AC.证明:假设AB=AC,则∠B=∠C.这与已知∠B≠∠C矛盾. ∴假设不成立,∴AB≠AC.创新应用14.设a,b,c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab.求证:x,y,z中至少有一个大于零.证明:假设x≤0,y≤0,z≤0,则x+y+z≤0.[(a-b)2+(b-c)2+(c-a)2]>0,即x+y+z>0. 与x+y+z≤0矛盾. 但x+y+z=a2+b2+c2-ab-bc-ca=12∴假设不成立,即x,y,z中至少有一个大于零.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反证法证明题简单
TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】
反证法证明题 例1.已知A ∠,B ∠,C ∠为ABC ∆内角.
求证:A ∠,B ∠,C ∠中至少有一个不小于60o .
证明:假设ABC ∆的三个内角A ∠,B ∠,C ∠都小于60o ,
即A ∠<60o ,B ∠<60o ,C ∠<60o ,
所以O 180A B C ∠+∠+∠<,
与三角形内角和等于180o 矛盾,
所以假设不成立,所求证结论成立.
例2.已知0a ≠,证明x 的方程ax b =有且只有一个根.
证明:由于0a ≠,因此方程ax b =至少有一个根b x a
=
. 假设方程ax b =至少存在两个根,
不妨设两根分别为12,x x 且12x x ≠,
则12,ax b ax b ==,
所以12ax ax =,
所以12()0a x x -=.
因为12x x ≠,所以120x x -≠,
所以0a =,与已知0a ≠矛盾,
所以假设不成立,所求证结论成立.
例3.已知332,a b +=求证2a b +≤.
证明:假设2a b +>,则有2a b >-,
所以33(2)a b >-即3238126a b b b >-+-,
所以323281266(1)2a b b b b >-+-=-+.
因为26(1)22b -+≥
所以332a b +>,与已知332a b +=矛盾.
所以假设不成立,所求证结论成立.
例4.设{}n a 是公比为的等比数列,n S 为它的前n 项和.
求证:{}n S 不是等比数列.
证明:假设是{}n S 等比数列,则2213S S S =⋅,
即222111(1)(1)a q a a q q +=⋅++.
因为等比数列10a ≠,
所以22(1)1q q q +=++即0q =,与等比数列0q ≠矛盾,
所以假设不成立,所求证结论成立.
例5.是无理数.
是有理数,则存在互为质数的整数m ,n m n =.
所以m =即222m n =,
所以2m 为偶数,所以m 为偶数.
所以设*2()m k k N =∈,
从而有2242k n =即222n k =.
所以2n 也为偶数,所以n 为偶数.
与m ,n 互为质数矛盾.
是无理数成立.
例6.已知直线,a b 和平面,如果,a b αα⊄⊂,且//a b ,求证//a α。
证明:因为//a b ,所以经过直线a,b 确定一个平面β。
因为a α⊄,而a β⊂,
所以α与β是两个不同的平面.
因为b α⊂,且b β⊂,
所以b αβ=.
下面用反证法证明直线a 与平面α没有公共点.假
设直线a 与平面α有公共点P ,则P b α
β∈=,
即点P 是直线a 与b 的公共点,
这与//a b 矛盾.所以//a α.
例7.已知0<a ,b ,c <2,求证:(2?a )c ,(2?b )a ,(2?c )b 不可能同时大于1
证明:假设(2?a )c ,(2?b )a ,(2?c )b 都大于1,
即(2?a )c>1,(2?b )a>1,(2?c )b>1,
则(2?a )c (2?b )a (2?c )b >1…①
又因为设0<a ,b ,c <2,(2?a )a 12)2(=+-≤
a a , 同理(2?
b )b≤1,(2?
c )c≤1,
所以(2?a )c (2?b )a (2?c )b ≤1此与①矛盾.
所以假设不成立,所求证结论成立.
例8.若x ,y >0,且x +y >2,则x y +1和y x +1中至少有一个小于2 证明:假设x
y +1≥2,y x +1≥2, 因为x ,y >0,所以12,12y x x y +≥+≥,
可得x +y ≤2与x +y >2矛盾.
所以假设不成立,所求证结论成立.
例9.设0<a ,b ,c <1,求证:(1?a )b ,(1?b )c ,(1?c )a ,不可能同时大于4
1 证明:假设设(1?a )b >41,(1?b )c >41,(1?c )a >4
1, 则三式相乘:ab <(1?a )b ?(1?b )c ?(1?c )a <64
1① 又∵0<a ,b ,c <1∴412)1()1(02=⎥⎦
⎤⎢⎣⎡+-≤-<a a a a 同理:41)1(≤-b b ,4
1)1(≤-c c 以上三式相乘:(1?a )a ?(1?b )b ?(1?c )c ≤
641与①矛盾 所以原式成立
例10.设二次函数q px x x f ++=2)(,求证:)3(,)2(,)1(f f f 中至少有一个不小于2
1. 证明:假设)3(,)2(,)1(f f f 都小于2
1, 则.2)3()2(2)1(<++f f f (1)
另一方面,由绝对值不等式的性质,有
2)39()24(2)1()
3()2(2)1()3()2(2)1(=+++++-++=+-≥++q p q p q p f f f f f f (2)
(1)、(2)两式的结果矛盾,所以假设不成立,原来的结论正确.。