数学建模的线性代数基础(第一讲:线性代数的学习框架、行列式)

合集下载

线性代数知识结构框架

线性代数知识结构框架

第一章:行列式考试内容:行列式的概念和基本性质行列式按行(列)展开定理考试要求:1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.第二章:矩阵考试内容:矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵等价分块矩阵及其运算考试要求:1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵的初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.第三章:向量考试内容:向量的概念向量的线性组合和线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间以及相关概念n维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求:1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系5.了解n维向星空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.第四章:线性方程组考试内容:线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.第五章:矩阵的特征值及特征向量考试内容:矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及相似对角矩阵考试要求:1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量. 2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.第六章:二次型考试内容:二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求:1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变化和合同矩阵的概念了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法概率与统计第一章:随机事件和概率考试内容:随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求:1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.第二章:随机变量及其分布考试内容:随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求:1.理解随机变量的概念.理解分布函数的概念及性质.会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为λ(λ>0)的指数分布的概率密度为5.会求随机变量函数的分布.第三章:多维随机变量及其分布考试内容:多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续性随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求:1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质. 理解二维离散型随机变量的概率分布、边缘分布和条件分布;理解二维连续型随机变量的概率密度、边缘密度和条件密度.会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件. 3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布。

线性代数课件第一章 行列式

线性代数课件第一章 行列式

an1 an2
ann
0
0
(1) a a ( j1 j2 jn ) 1 j1 2 j2
j1 j2 jn
ann
(1) (1 j2
a a jn ) 11 2 j2
1 j2 jn
(1) (123 n) a11a22 ann
a11a22 ann
anjn anjn
a11 0
0
计算主对角线行列式 0 a22
a13 a23 a33
a11a22a33 a12a23a31 a13a21a32 a13a22a31 a11a23a32 a12a21a33
说明 (1)三阶行列式共有 6 项,即 3! 项.
(2)每项都是位于不同行不同列的三个元素的 乘积.
23
(3)每项的正负号都取决于位于不同行不同列 的三个元素的下标排列.
= 1 + 4 + 0 + 0 + 1+ 0 = 6 14
τ(314625)=5,314625是奇排列。 τ(314652)=6,314652是偶排列。
逆序数的性质
(12n) 0,
(n(n 1)321) n(n 1)
2
0 (i1i2
in )
n(n 1) 2
15
定义2.3 把一个排列中两个数i , j的位置互换而保持 其余数字的位置不动,则称对这个排列施 行了一个对换,记作(i , j). 两个相邻位置 数字的对换称为相邻对换,否则称为一般 对换。
数的排列称为奇排列。逆序数为偶数的排列称为偶排列。
如:314652中, 31是逆序,65是逆序,32是逆序,42是逆序 62是逆序,52是逆序数。逆序数τ(314652)=6
记τk = 排列j1j2…jn中数字k前面比k大的数的个数。则 τ(314652)= τ1 + τ2 + τ3 + τ4 + τ5 + τ6

线性代数课件_第一章_行列式——4-PPT精选文档20页

线性代数课件_第一章_行列式——4-PPT精选文档20页
9
课件
19
END
D 1 ta p 1 q 1 a p 2 q 2 a p n q n
01.12.2019
课件
16
其中 p 1p 2 p n,q 1 q 2 q n 是两个 n级排列,t为行
标排列逆序数与列标排列逆序数的和.
01.12.2019
课件
17
思考题
证明 在全部 n阶排列中n2,奇偶排列各占
t 4 3 0 1 1 2 2 2 0 1 6 65
所以 a1a 42a 33a 1 4a 2 5a 6 65 是六阶行列式中的项.
01.12.2019
课件
10
a 3a 2 4a 3 1a 4 5a 1 2a 5 66 下标的逆序数为
t4523 816
所以 a 3a 2 4a 3 1a 4 5a 1 2a 5 6不6是六阶行列式中的项.
t 1 0 2 2 1 0 6,
所以 a2a 33a 14a 25a 61a 46前5 边应带正号.
01.12.2019
课件
12
(2 )a 3a 2 4a 1 3a 4 5a 1 6a 6 25 行标排列341562的逆序数为
t 0 0 2 0 0 4 6 列标排列234165的逆序数为
01.12.2019
课件
4
二、对换与排列的奇偶性的关系
定理1 一个排列中的任意两个元素对换,排列 改变奇偶性. 证明 设排列为
a 1 ala abb b 1 b m 对换a与b a 1 albbab a 1 b m
除a,b 外,其它元素的逆序数不改变.
01.12.2019
课件

线性代数第1讲

线性代数第1讲
41
1 -1 1 0 例1.5 设 A 0 0 , B 1 0 , 求AB和BA.

1 -11 0 0 AB 1 0 0 0 0 1 0 1 -1 1 BA 0 0 1 1 0
(1.2)
7
定义1.1 由mn个数aij(i=1, 2, …, m; j=1, 2, …, n)排成m行n列的矩形数表 a11 a12 a1n a a22 a2 n 21 (1.3) a m1 am 2 amn
称为mn矩阵. 这mn个数称为矩阵(1.3)的 元素. 位于第i行, 第j列的元素aij称为矩阵 (1.3)的(i, j)元.
10
当A=(aij)是n阶方阵时, 从左上角到右下 角的直线就称为对角线. 对角线左下侧所 有元素都为零的方阵称为上三角阵; 对角 线右上侧所有元素都为零的方阵称为下 三角阵.
11
例如矩阵
1 2 0 0 0 3 与 A 0 0 4
1 0 0 2 4 0 B 3 0 5
39
(2)
1 4 5 6 2 (4,5,6) 8 10 12 AB 3 12 15 18 1 2 32 BA (4,5,6) 3
40
由此例(1)可知, 矩阵A与B可相乘, 但B与 A不能相乘, 这是因为B的列数为3而A的 行数为2; 由(2)可知, 即使乘积矩阵AB与 BA均有意义, 但它们不一定是同型矩阵. 因此, 应注意矩阵乘法是不满足交换律的, 即并非所有的矩阵A与B都有AB=BA. 当矩阵A和B都为n阶方阵时, 乘积AB与 BA都有意义, 且都为n阶方阵, 那么是否 必定有AB=BA呢?

线性代数-行列式PPT课件

线性代数-行列式PPT课件

矩阵的秩和行列式
矩阵的秩和行列式之间也存在关系。矩阵的 秩等于其行向量或列向量生成的子空间的维 数,而行向量或列向量生成的子空间的维数 又等于该矩阵的阶数与非零特征值的个数之 和减去一,而一个矩阵的非零特征值的个数 又等于该矩阵的行列式的值。
05
特殊行列式介绍
二阶行列式
定义
二阶行列式表示为2x2的矩 阵,其计算公式为a11*a22a12*a21。
对于任何n阶方阵A,其行列式|A|和转置行列式|A^T|相等,即|A^T| = |A|。
行列式的乘法规则
总结词
行列式的乘法规则
详细描述
行列式的乘法规则是两个矩阵的行列式相乘等于它们对应元素相乘后的行列式。即,如果矩阵A和B分别是m×n 和n×p矩阵,那么它们的行列式相乘|AB| = |A||B|。
向量和向量的外积
行列式可以用来描述向量的外积,即两个向量的叉积。叉积 的结果是一个向量,其方向垂直于作为叉积运算输入的两个 向量,大小等于这两个向量的模的乘积与它们之间夹角的正 弦的乘积。
在线性方程组中的应用
解线性方程组
行列式可以用来判断线性方程组是否有 解,以及解的个数。如果一个线性方程 组的系数矩阵的行列式不为零,则该线 性方程组有唯一解;如果系数矩阵的行 列式为零,则该线性方程组可能无解、 有唯一解或有无穷多解。
线性代数-行列式ppt课件
• 引言 • 行列式的计算方法 • 行列式的性质 • 行列式的应用 • 特殊行列式介绍 • 行列式的计算技巧
01
引言
主题简介
01
行列式是线性代数中的基本概念 之一,用于描述矩阵的某些性质 和运算规则。
02
行列式在数学、物理、工程等领 域有广泛的应用,是解决实际问 题的重要工具。

线性代数第一章行列式课件

线性代数第一章行列式课件

a11
a12
a1n
a11 a12
a1n a11 a12
a1n
ai1 bi1 ai2 bi2
ain bin ai1 ai2
ain bi1 bi2
bin
an1
an2
ann
an1 an2
ann an1 an2
ann
性质5 将行列式的某一行(列)的所有元素同乘以 一个数 k 加到另外一行(列)上,行列式不变,即
a1,n1 a2,n1
a1n a2n
a11 a21
a12 a22
a1,n1 a2,n1
an1,1 0
an1,2 0
an1,n1 0
an1,n 1
a a n1,1
n1,2
an1,n1
其中等号左端的行列式是一个 n 阶行列式;等号右端
的行列式是左端 n 阶行列式的前 n-1 行前 n-1 列的元
素所组成的 n-1 阶行列式,即左端行列式第 n 行第 n
j 1, 2, , n
ann
a1n
(1)i j aij
ai 1,1 ai1,1
ai1, j1 ai1, j1
ai1, j1 ai1, j1
ai1,n ai1,n
an1
an, j1
an, j1
ann
定理4 设
a11 a12
a1n
D a21 a22
a2n
an1 an2
ann
是一个 n 阶行列式, Aij 为 D 的第 i 行第 j 列元素 aij 的代数余子式,则有
1
2
n ( n 1)
(1) 2 12 n
n
二、行列式的基本性质
定义6 设

线性代数讲义1矩阵与行列式

线性代数讲义1矩阵与行列式

逆矩阵的求法
01
02
03
高斯-约旦消元法
通过行变换将矩阵变为行 阶梯形,然后回代求解。
伴随矩阵法
先求出矩阵的伴随矩阵, 然后利用公式$A^{-1} = frac{1}{|A|} * adj(A)$求出 逆矩阵。
分解法
将矩阵分解为若干个简单 的矩阵的乘积,然后利用 这些简单的矩阵求逆,最 后再求出原矩阵的逆。
CHAPTER
高斯消元法的原理与步骤
高斯消元法的原理是通过一系列行变 换将增广矩阵转换为上三角矩阵,从 而求解线性方程组。
步骤包括:将增广矩阵的系数矩阵进 行初等行变换,将其化为行阶梯形矩 阵,然后继续进行行变换,将其化为 上三角矩阵,最后求解未知数。
高斯消元法的应用场景
解决线性方程组
高斯消元法是解决线性方程组的 一种常用方法,适用于系数矩阵 为方阵且系数矩阵可逆的情况。
数。
01
1. r(A) ≤ min(m, n), 其中m和n分别是矩阵A
的行数和列数。
03
3. r(A) = r(AA^T),即 矩阵的秩等于其与自身 转置相乘后的矩阵的秩。
05
性质:矩阵的秩是唯一 的,且满足以下性质
02
2. r(A) = r(A^T),即矩 阵的秩等于其转置矩阵
的秩。
04
秩的计算方法与性质
高斯消元法的优缺点分析
优点
高斯消元法是一种稳定可靠的方法,能够得到线性方程组的精确解。它具有较高的数值 稳定性,适用于大规模问题。此外,高斯消元法还可以用于求解特征值和特征向量等问
题。
缺点
高斯消元法需要手动操作,对于大规模问题需要消耗大量的计算资源和时间。同时,对 于病态问题或者系数矩阵接近奇异的情况,高斯消元法可能会失去数值稳定性,导致求

线性代数基础讲义

线性代数基础讲义

2015考研数学线性代数基础讲义第一章 行列式一.基本内容1.排列与逆序定义 :由 n 个自然数1, 2,3,..., n 组成的无重复有序实数组 称为一个 n 级排列。

定义 :在一个 n 级排列中,如果一个较大数排在一个较小数前面,我们就称这两个数构成一个逆序。

对于逆序,我们感兴趣的是一个 n 级排列中逆序的总数,称为 n 级排列的逆序数,记作。

2. 行列式的定义个数 ( )排成的行列的方形表称为一个n 阶行列式。

它表示所有取自不同行不同列的个元素乘积的代数和。

3.行列式的性质(1)转置不改变行列式的值(2)行列式某行(列)元素的公因子可以提到行列式之外(3)行列式的分行(列)可加性(4)行列式两行(列)元素成比例,则行列式值为0(5)互换行列式的某两行(列)行列式的值改变符号(6)行列式某行(列)的倍加到另外一行(列),行列式值不变4.行列式的余子式、代数余子式划去元素 所在的行、列,剩下的元素按照原来的顺序排成的n-1阶行列式称为 的余子式,记为 ,称 为 的代数余子式。

5.行列式的展开(1)展开定理(2)行列式某一行(列)每个元素与另一行(列)对应元素的代数余子式乘积的和等于0 。

二.基本结论(1)(2)12,,n i i i 12,,n i i i ()12,,n i i i τ2n ij a ,1,2,,i j n =⋅⋅⋅1212121112121222(,,,)12,,,12(1)n n n n n j j j j j nj j j j n n nn a a a a a a D a a a a a a τ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅==-⋅⋅⋅⋅⋅⋅⋅⋅⋅∑ij a ij a ij M (1)i j ij ij A M +=-ij a 1122i i i i in in D a A a A a A =++1,2,,i n =1122j j j j nj nj a A a A a A =++1,2,,j n =11220k i k i kn in a A a A a A ++=k i≠11220k i k i nk ni a A a A a A ++=k i ≠1122nn a a a =11112222******nn nn a a a a a a ==1112(1)2(1)2(1)111******n n n n n n n n n a a a a a a a a a ---===三. 基本题型与基本方法题型1:行列式的计算:行列式基本方法:利用性质及展开具体方法:方法一 :三角法(利用性质将行列式化为三角型行列式)例方法二:降阶法(利用展开降阶)例第二章 矩阵第一节 矩阵及其运算一. 基本内容1.矩阵概念1)定义2)特殊矩阵:(1)零矩阵:(2)阶方阵:(3)行矩阵(向量)、列矩阵(向量):(4)对角矩阵、单位矩阵、上三角矩阵、下三角矩阵:(5)对称矩阵、反对称矩阵:2.矩阵的运算1)线性运算:加法与数乘2)乘法:(1)乘法法则:(2)运算律:3)方阵的运算(1)方阵的幂及其运算律:(2)方阵的行列式4)转置:性质5)伴随矩阵性质:二、基本结论1.伴随矩阵的相关结论2.分块矩阵的逆 4124120233200112D =0111111n n a a D a +=12344000000a x a a a x x D x x x x +-=--()111212122212n n ij m n m m mn a a a a a a A a a a a ⨯⋅⋅⋅⎛⎫ ⎪⋅⋅⋅ ⎪== ⎪⋅⋅⋅⋅⋅⋅ ⎪⎝⎭第二节 可逆矩阵一、基本内容1.可逆的定义:2.阶矩阵可逆的充要条件:3.性质:二、基本题型与基本方法题型1:逆矩阵的计算与证明(具体矩阵、抽象矩阵)方法一:公式法求逆方法二:初等变换求逆:方法:例方法四:利用定义,求(证明)逆矩(抽象矩阵的情形中常见)例:n 阶矩阵满足 求第三节 矩阵的初等变换与秩一、基本内容1.初等变换的定义:2.初等矩阵(1)定义:由单位矩阵经过一次初等变换得到的矩阵(2)三种初等矩阵:(3)性质:初等矩阵都是可逆的,其逆仍是初等矩阵3.初等变换的本质(初等变换与初等矩阵的关系)4.矩阵等价1)定义:2)性质:5.矩阵的秩(1)定义:(2)性质:初等变换不改变矩阵的秩二、基本题型与基本方法题型:求矩阵的秩基本方法:初等变换法对矩阵作初等行变换,化为阶梯形,阶梯形中非零行的个数即为矩阵的秩。

线性代数课件PPT第一章 行列式 S1_3 行列式定义

线性代数课件PPT第一章 行列式 S1_3 行列式定义
任意一项前面的符号就是
(1) (i1,i2, ,in) ( j1, j2, , jn)
特别的,若我们把各项的列指标按自然顺序排列成
a a k11 k2 2 aknn 时,则有该项前符号应为: (1) (k1,k2 , ,kn ) (1,2, ,n) (1) (k1,k2 , ,kn )
因此n阶行列式的展开式也可以定义为
11 j2 jn
( j2 jn ) 2 j2
anjn

a22 a23
B a32 a33
a2n
a3n
(1) ( j2
a jn ) 2 j2
anjn
j2 jn
an2 an3
ann
故 左端= a11 B =右端.
14
回顾: 在行列式的定义中,为了决定每一项的正负号,我们把 n个元按行标自然顺序排列起来。
6
例1 计算反对角行列式 0 0 0 1
0020
0300
解: (分析)
4000
展开式中项的一般形式是 a1 a p1 2 a p2 3 a p3 4 p4 若 p1 4 a1 p1 0, 所以 p1 只需要取4 ,
同理可得 p2 3, p3 2, p4 1
即行列式中不为零的项为 a a a a 14 23 32 41 .
a a a 1 j1 2 j2 3 j3
j1 j1 j3 是1,2,3 的某个排列。这样的排列共有 P33 3! 6
个,分别对应了展开式中的六项。
2
再来计算各项列指标构成排列的反序数:
a11 a12 a13
a21 a22 a23 a11a22a33 a12a23a31 a13a21a32
a31 a32 a33
a11 a12

线性代数讲义(第一章)

线性代数讲义(第一章)


an1 an2 ann
解 展开式的一般项为 (-1)t( j1 j2jn ) a1 j1 a2 j2 anjn .
不为零的项只有 (-1)t(12n) a11a22 ann.
a11 0
0
a21 a22 0 1 t12na11a22 ann

1
1
a2 a a 1
1
1
b2 b b 1
1
1
c2 c c 1
1
1
d2 d d 1
a
b abcd
c
d
11
1 a2 a
a
1
1 b2
1
1 c2
1
b
b 1
13
c
c
1
1 d2
1 d
d
11 1 a2 a
1
1 b2
1 b
1
1 c2
1 c
1
1 d2
1 d
0.
性质5 把行列式的某一列(行)的各元素乘以 同一数然后加到另一列(行)对应的元素上去,行 列式不变.
当 a11a22 a12a21 0 时, 方程组的解为
x1

b1a22 a11a22
a12b2 , a12a21
x2

a11b2 a11a22
b1a21 . a12a21
(3)
由方程组的四个系数确定.
为便于记忆,引入记号
a D 11
a21
a 12
a a11 22 a a 12 21
三阶行列式的计算: 对角线法则
a11 a12 a13 a21 a22 a23 a31 a32 a33

线性代数行列式的概念和性质

线性代数行列式的概念和性质
det A a11 a12
a11 a21
a21 a22

a12 a22
+
a11 1 11 det S11 a12 1 12 det S12
a11a22 a12a21
当前您浏览的位置是第六页,共三十二页。
1 3


A
2
4
3 7
a11 解 det A
an1
7 3 , 计算 det A 的值. 2
注 行列式的每个元素都分别对应一个余子式和一个代数余子
式.
根据该定义,可重新表达行列式的值
a11
det A
a1n def
n
1 k
a1k 1 det S1k
an1 ann
k 1
n
a1k A1k
k 1
其中 A1k 是元 a1k 对A 或 det A 的代数余子式.
相当于把行列式按第一行展开
cnk bn1
bnn
a1k
b11
, D2 det(bij )
akk
bn1
b1n ,
bnn
当前您浏览的位置是第二十三页,共三十二页。
内容总结
线性代数课件行列式的概念和性质。对 n = 2, 3,。项,每一项都是位于不同行,不同列的 三个元素的乘积, 其中三项为正, 三项为负.。个不同项的代数和,其中的每一项都是处于行 列式不同行又不同列的n 个元之乘积.。说明 行列式中行与列具有同等的地位,因此行列式的 性质凡是对行成立的对列也同样成立.。性质5 把行列式的某一列(行)元素的k倍加到另一列 (行)对应的元素上去,行列式的值不变.
AC
det U
det A det B
OB

经济数学基础线性代数之第1章行列式

经济数学基础线性代数之第1章行列式

第一单元 行列式的定义一、学习目标通过本节课学习,理解行列式的递归定义,掌握代数余子式的计算,知道任何一个行列式就是代表一个数值,是可以经过特定的运算得到其结果的.二、内容讲解行列式 行列式的概念什么叫做行列式呢?譬如,有4个数排列成一个行方块,在左右两边加竖线。

即2153-称为二阶行列式;有几个概念要清楚,即上式中,横向称行,共有两行;竖向称列,共有两列; 一般用ija 表示第i 行第j 列的元素,如上例中的元素311=a ,512=a ,121-=a ,222=a .再看一个算式075423011--称为三阶行列式,其中第三行为5,-7,0;第二列为–1,2,-7;元素423=a ,531=a又如1321403011320---,是一个四阶行列式.而11a 的代数余子式为()07421111111--=-=+M A代数余子式就是在余子式前适当加正负号,正负号的规律是-1的指数是该元素的行数加列数.()43011322332-=-=+M A问题思考:元素ija 的代数余子式ijA 是如何定义的? 代数余子式ijA 由符号因子j i +-)1(与元素ij a 的余子式ij M 构成,即()ijji ijM A +-=1三、例题讲解例题1:计算三阶行列式542303241---=D分析:按照行列式的递归定义,将行列式的第一行展开,使它成为几个二阶行列式之和, 二阶行列式可以利用对角相乘法,计算出结果.解:()()()5233145430112111---⋅-+--⋅=++D ()42031231--⋅++7212294121=⋅+⋅+⋅=四、课堂练习计算行列式hg f ed c b a D 00000004=利用n 阶行列式的定义选择答案.将行列式中的字母作为数字对待,利用递归定义计算.注意在该行列式的第一行中,有两个零元素,因此展开式中对应的两项不用写出来了.4D =⋅-⋅+11)1(a h f ed c 00+41)1(+-⋅b 000g f ed c ⋅五、课后作业1.求下列行列式的第二行第三列元素的代数余子式23A(1)210834021-- (2)3405122010141321---2.计算下列行列式(1)622141531-- (2)612053124200101---3.设00015413010212014=D(1)由定义计算4D ;(2)计算2424232322222121A a A a A a A a +++,即按第二行展开; (3)计算3434333332323131A a A a A a A a +++,即按第三行展开;(4)按第四行展开.1.(1)1021)1(32--+ (2)305120121)1(32---+2.(1)20 (2)243.(1)1 (2)1 (3)1 (4)1第二单元 行列式的性质一、学习目标通过本节课的学习,掌握行列式的性质,并会利用这些性质计算行列式的值.二、内容讲解 行列式的性质用定义计算行列式的值有时是比较麻烦的,利用行列式的性质能够使计算变的比较容易了.行列式的性质有七条,下面讲一讲几条常用的性质.在讲这些性质前,先给出一个概念:把行列式D 中的行与列按原顺序互换以后得到的行列式,称为D 的转置行列式,记为TD .如987654321=D ,963852741T =D1.行列式的行、列交换,其值不变.如264536543-==这条性质说明行列式中,行与列的地位是一样的.2.行列式的两行交换,其值变号.如243656543-=-=3.若行列式的某一行有公因子,则可提出.如d c b a dc ba333=注意:一个行列式与一个数相乘,等于该数与行列式的某行(列)的元素相乘. 4.行列式对行的倍加运算,其值不变.如倍加运算就是把一行的常数倍加到另一行上2113-- 5513-=注意:符号“À+2Á”放在等号上面,表示行变换,放在等号下面表示列变换. 问题1:将n 阶行列式的最后一行轮换到第一行, 这两个行列式的值有什么关系?答案设n 阶行列式nD ,若将nD 的最后一行轮换到第一行,得另一个n 阶行列式nC ,那么这两个行列式的值的关系为: n C =n nD 1)1(--问题2:如果行列式有两行或两行以上的行都有公因子,那么按性质3应如何提取? 答案按顺序将公因子提出.三、例题讲解例1计算行列式dc b a 675081004000--.分析:利用性质6,行列式可以按任一行(列)展开.本题按第一行逐步展开,计算出结果.解:dc b a 675081004000--=dc b a 670800-=d c ab 60=abcdÀ+2Á我们将行列式中由左上角至右下角的对角线, 称为主对角线.如例1中,行列式在主对角线以上的元素全为零,则称为下三角行列式. 由例1的计算过程,可得这样规律:下三角行列式就等于主对角线元素的积. 同理,主对角线以下元素全为零的行列式,则称为上三角行列式,且上三角行列式也等于主对角线元素之积.今后,上、下三角行列式统称为三角行列式.例2 计算行列式4977864267984321----分析:原行列式中第三行的元素是第一行的2倍,因此,利用行列式的倍加运算(性质5),使第三行的元素都变为0,得到行列式的值.解:4977864267984321----497700067984321----= 0例3 计算行列式2211132011342211----分析:利用行列式的倍加运算(性质5),首先将某行(列)的元素尽可能化为0,再利用行列式可以按任一行(列)展开的性质(性质6),逐步将原行列式化为二阶行列式,计算出结果.解:2211132011342211---- 2411142010342011---Â+Ã111142010342011----=111134211)1(433-----⨯+1101312104----⨯=1121)1(412----⨯+12)21(4=---=通过此例可知,行列式两行成比例,则行列式为零.三、课堂练习练习1 若d a a a a a a a a a =333231232221131211,求行列式232221131211313231222333a a a a a a a a a ---利用行列式的性质3,将第一行的公因子3、第二行的公因子(-1)、第三行的公因子2提出.利用行列式的性质3和性质2,将所要计算的行列式化为已知的行列式,再求其值.练习2 计算行列式540554129973219882310391----由性质4,若行列式中某列的元素均为两项之和,则可将其拆写成两个行列式之和.在着手具体计算前,先观察一下此行列式有否特点?有,其第三列的数字较大,但又都分别接近100、200、300和400,故将第三列的元素分别写成两项之和, 再利用行列式的性质4将其写成两个行列式之和.注意,将第三列的元素分别写成两À+Á项之和时,还要考虑到结论“行列式中两列元素相同(或成比例),则该行列式的值为0”的利用.五、课后作业1.计算下列行列式(1)75701510--- (2)253132121-(3) ww w w ww22111 (0≠w ) (4)38790187424321--2.证明(1)0=---------cb b a ac b a a c c b a c c b b a (2)()32211122b a b b a a b ab a -=+1.(1)0 (2) -2 (3) 22)1(--w w (4)02. (1)提示:利用性质5,将第一行化成零行.(2)提示:利用性质5,将第三行的元素化成“0 0 1”,再按第三行展开,并推出等号右边结果.第三单元 行列式的计算一、学习目标通过本节课的学习,掌握行列式的计算方法.二、内容讲解行列式的计算行列式=按任何一行(列)展开 下面用具体例子说明.d c b a =bc ad -1156)1(5232153=+=-⋅-⋅=-一个具体的行列式就是代表具体的一个数.再看一个三阶行列式.75423011--可以按任何一行(列)展开按第一行展开=752300543107421-⨯+⨯+-⨯=02028+-=8 按第三列展开=231107511475230-⨯+--⨯--⨯=0)57(40++-⨯-=8注意:1.行列式计算一般按零元素较多的行(列)展开.2.代数余子式的正负号是有规律的,一正一负相间隔.问题:试证 2222222211110000d c b a d c b a d c b a d c dc b a b a =答案左边=222211122222111100)1(00)1(d c b a b a bc d c b a d c d a ++-+-222211)1(d c b a ad +-=222211)1(d c b a cb +--22222222)(d c b a d c b a d c b a cb ad =-==右边三、例题讲解例 计算行列式214200131000211---分析:由性质6可知,行列式可以按任何一行(列)展开来求值.因为第二、三行,第四列的零元素都较多,所以可选择其一展开,再进一步将其展成二阶行列式,并计算结果.解:按第三行展开214200131000211---=214100211)1(2021315021)1(14313----⨯+----⨯++=1411)1()1(22121)1(33232--⨯-⨯----⨯++==10)41(2)22(3-=+--⨯-四、课堂练习练习1 计算行列式dcb a 100110011001---根据定义,按第一行展开,使其成为两个三阶行列式之和.因为行列式第一行有较多的零元素,所以可采用“降阶法”,即先按第一行展开,使其成为两个三阶行列式之和,然后再计算两个三阶行列式降阶,最后求出结果.dcb a 100110011001--- =dcd cb a 101011101101-----练习2 计算行列式24524288251631220223------为了避免分数运算,先作变换“第一行加上第二行的2倍,即À+Á 2;第三行加上第二行的-2倍,即Â+Á(-2);第四行加上第二行的-2倍,即Ã+Á(-2)”.该行列式没有明显特点,采用哪种方法计算都可以,这里用“化三角行列式”的方法进行计算.注意尽量避免分数运算.21524288251631220223------111042011631212401----五、课后作业1.计算下列行列式:(1)881441221---- (2)4222232222222221À+Á2 Â+Á(-2(3) 4321651065311021 (4)00312007630050131135362432142.计算n阶行列式xaaa x a a a x/media_file/jjsx/4_1/3/khzy/khzy.htm - #1.(1)48 (2)4 (3)-3 (4)-3402. ])1[()(1x a n a x n +---第四单元 克拉默法则一、学习目标克拉默法则是行列式在解线性方程组中的一个应用,通过本节课的学习,要知道克拉默法则求线性方程组解的条件,了解克拉默法则的结论.二、内容讲解克拉默法则设n 个未知数的线性方程组为 ⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 (1)记行列式nnn n n na a a a a a a a a D 212222111211=称为方程组(1)的系数行列式.将D 中第j 列的元素njj j a ,,a ,a 21分别换成常数n b ,,b ,b 21而得到的行列式记作jD .克拉默法则 如果线性方程组(1)的系数行列式0≠D ,那么它有惟一解D D x D Dx D D x n n ===,,,2211 (2)证将(2)式分别代入方程组(1)的第i 个方程的左端的nx x x ,,,21 中,有D D a D Da D D a n in i i +++ 2211(3)将(3)中的jD 按第j 列展开, 再注意到j D中第j 列元素的代数余子式和D 中第j 列元素的代数余子式ij A是相同的, 因此有),,2,1(2211n j A b A b A b D njn j j j =+++= (4)把(4)代入(3),有D D a D Da D D a n in i i +++ 2211(){1121211111n n i i i A b A b A b A b a D+++=()222221212n n i i i A b A b A b A b a ++++…+…()}nn n in i n n in A b A b A b A b a ++++2211把小括弧打开重新组合得(){()()()}i nn in n i n i n in in i i i i i n in i i n in i i b A a A a A a b A a A a A a b A a A a A a b A a A a A a b D=+++++++++++++++++=2211221122222112112211111因由性质6和性质7⎩⎨⎧=≠=+++k i D ki A a A a A a kn in k i k i 02211 故上式等于i b ,即i n in i i b D D a D Da D D a =+++ 2211下面再证明方程组(1)的解是惟一的.设nn c x c x c x ===,,,2211为方程组(1)的任意一组解.于是 ⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++n n nn n n n n n n b c a c a c a b c a c a c a b c a c a c a 22112222212111212111 (5)用j A 1,j A 2,…j n A 分别乘以(5)式的第一、第二、…、第n 个等式,再把n 个等式两边相加,得++++11221111)(c A a A a A a nj n j j +++++j nj nj j j j j c A a A a A a )(2211n nj nn j n j n c A a A a A a )(2211++++ njn j j A b A b A b +++= 2211根据性质6和性质7,上式即为),,2,1(n j D c D j j ==因为0≠D ,所以),,2,1(n j DD c j j ==克拉默法则有以下两个推论:推论1 如果齐次线性方程组的系数行列式0≠D , 那么 它只有零解.推论2 齐次线性方程组有非零解的必要条件是系数行列式0=D . 问题:对任一线性方程组都可用克拉默法则求解吗?答案 不对.当线性方程组中的未知量个数与方程个数不一样;或未知量个数与方程个数相同,但其系数行列式等于零时,不能使用克拉默法则.三、例题讲解例 利用克拉默法则解下列方程组⎩⎨⎧-=-=+-7526432121x x x x分析:这是一个两个变量、两个方程的方程组,它满足了克拉默法则一个条件.克拉默法则的另一个条件是要求系数行列式的值不等于零.因此,先求出方程组的系数行列式的值,若它的值不等于零,说明该方程组有惟一解,然后求常数项替代后的行列式的值,再用克拉默法则给出的公式求出解. 解:因为系数行列式()()24535243⨯--⨯-=--=D 07815≠=-= 且257461-=--=D ,972632=--=D ,所以7211-==D D x ,7922==D D x四、课堂练习k 取什么值时,下列方程组有唯一解?有唯一解时求出解.⎪⎩⎪⎨⎧=+--=++-=++0211321321321x x x x kx x kx x x对行列式作变换“第二行加上第一行的1倍,即Á+À;第三行加上第一行的-1倍,即Â+À(-1)”.这是三个未知量三个方程的线性方程组,由克拉默法则知,当系数行列式D ≠0时,方程组有唯一解.所以,先求系数行列式的值.2111111--=kk Dkk k k --++2211011五、课后作业用克莱姆法则解下列方程组1.⎪⎩⎪⎨⎧=+=++=-12 142 23232121x x x x x x x 2.⎪⎪⎩⎪⎪⎨⎧-=+++-=+-+=---=+++422222837432143214314321x x x x x x x x x x x x x x x 1.31=x ,42=x ,233-=x ,2. 21-=x ,3352=x ,2103=x ,204-=x。

线性代数讲座_1,2章

线性代数讲座_1,2章

IO
P T A* A A 0
Q A T A1 b A 0
Q可逆 Q 0 T A1 b 0 T A1 b
例4. 设
A, B 均为 2 阶矩阵, 若
A
2,
B
3,
O

B
A O
*
=
A
O 2A*
3B*
O
B
O 3A*
2B*
O
C
O 2B*
3A*
a122
a123
3a121 1
a11 3 3
例3. 设 A 为 n 阶可逆矩阵, α 为 n 维列向量, b 为常数, 记
I O A
P
T
A*
A
,
Q
T
b
.
(1) 计算并化简 PQ. (2) 证明矩阵 Q可逆 T A1 b.
分析:
I O A
PQ
T
A*
A
标准方法: 利用行列式性质直接计算:
A 2B 1, 2, 3, 1 23, 1, 2, 2
1 23 , 2 21 , 3 22 , 1 22
A 2B 1 23 , 2 21, 3 22 , 1
1 23 , 2 21 , 3 22 , 22
1 2 0 0
按第一行(列)展开, 直接求得;
(3) 三线型:
按第一行(列)或最后一行(列)展开, 得
递推关系式, 解递推关系式;
(4) “爪”型(箭型) 行列式: 用中间的“爪”消去某条 “爪”;
(5) 计算某行(列)元的(代数)余子式的线性组合:
构造“新行列式”;
知识点2: 行列式计算
(6) 抽象行列式 |A| = |α, β, γ|的计算:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西省南昌市2015-2016学年度第一学期期末试卷(江西师大附中使用)高三理科数学分析一、整体解读试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。

试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。

1.回归教材,注重基础试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。

2.适当设置题目难度与区分度选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。

3.布局合理,考查全面,着重数学方法和数学思想的考察在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。

包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。

这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。

二、亮点试题分析1.【试卷原题】11.已知,,A B C 是单位圆上互不相同的三点,且满足AB AC →→=,则AB AC →→⋅的最小值为( )A .14-B .12-C .34-D .1-【考查方向】本题主要考查了平面向量的线性运算及向量的数量积等知识,是向量与三角的典型综合题。

解法较多,属于较难题,得分率较低。

【易错点】1.不能正确用OA ,OB ,OC 表示其它向量。

2.找不出OB 与OA 的夹角和OB 与OC 的夹角的倍数关系。

【解题思路】1.把向量用OA ,OB ,OC 表示出来。

2.把求最值问题转化为三角函数的最值求解。

【解析】设单位圆的圆心为O ,由AB AC →→=得,22()()OB OA OC OA -=-,因为1OA OB OC ===,所以有,OB OA OC OA ⋅=⋅则()()AB AC OB OA OC OA ⋅=-⋅-2OB OC OB OA OA OC OA =⋅-⋅-⋅+ 21OB OC OB OA =⋅-⋅+设OB 与OA 的夹角为α,则OB 与OC 的夹角为2α所以,cos 22cos 1AB AC αα⋅=-+2112(cos )22α=--即,AB AC ⋅的最小值为12-,故选B 。

【举一反三】【相似较难试题】【2015高考天津,理14】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 .【试题分析】本题主要考查向量的几何运算、向量的数量积与基本不等式.运用向量的几何运算求,AE AF ,体现了数形结合的基本思想,再运用向量数量积的定义计算AE AF ⋅,体现了数学定义的运用,再利用基本不等式求最小值,体现了数学知识的综合应用能力.是思维能力与计算能力的综合体现. 【答案】2918【解析】因为1,9DF DC λ=12DC AB =,119199918CF DF DC DC DC DC AB λλλλλ--=-=-==, AE AB BE AB BC λ=+=+,19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+,()221919191181818AE AF AB BC AB BC AB BC AB BCλλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒2117172992181818λλ=++≥+= 当且仅当2192λλ=即23λ=时AE AF ⋅的最小值为2918. 2.【试卷原题】20. (本小题满分12分)已知抛物线C 的焦点()1,0F ,其准线与x 轴的交点为K ,过点K 的直线l 与C 交于,A B 两点,点A 关于x 轴的对称点为D . (Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设89FA FB →→⋅=,求BDK ∆内切圆M 的方程. 【考查方向】本题主要考查抛物线的标准方程和性质,直线与抛物线的位置关系,圆的标准方程,韦达定理,点到直线距离公式等知识,考查了解析几何设而不求和化归与转化的数学思想方法,是直线与圆锥曲线的综合问题,属于较难题。

【易错点】1.设直线l 的方程为(1)y m x =+,致使解法不严密。

2.不能正确运用韦达定理,设而不求,使得运算繁琐,最后得不到正确答案。

【解题思路】1.设出点的坐标,列出方程。

2.利用韦达定理,设而不求,简化运算过程。

3.根据圆的性质,巧用点到直线的距离公式求解。

【解析】(Ⅰ)由题可知()1,0K -,抛物线的方程为24y x =则可设直线l 的方程为1x my =-,()()()112211,,,,,A x y B x y D x y -,故214x my y x =-⎧⎨=⎩整理得2440y my -+=,故121244y y m y y +=⎧⎨=⎩则直线BD 的方程为()212221y y y y x x x x +-=--即2222144y y y x y y ⎛⎫-=- ⎪-⎝⎭令0y =,得1214y yx ==,所以()1,0F 在直线BD 上.(Ⅱ)由(Ⅰ)可知121244y y m y y +=⎧⎨=⎩,所以()()212121142x x my my m +=-+-=-,()()1211111x x my my =--= 又()111,FA x y →=-,()221,FB x y →=-故()()()21212121211584FA FB x x y y x x x x m →→⋅=--+=-++=-,则28484,93m m -=∴=±,故直线l 的方程为3430x y ++=或3430x y -+=213y y -===±,故直线BD 的方程330x -=或330x -=,又KF 为BKD ∠的平分线,故可设圆心()(),011M t t -<<,(),0M t 到直线l 及BD 的距离分别为3131,54t t +--------------10分 由313154t t +-=得19t =或9t =(舍去).故圆M 的半径为31253t r +== 所以圆M 的方程为221499x y ⎛⎫-+= ⎪⎝⎭【举一反三】【相似较难试题】【2014高考全国,22】 已知抛物线C :y 2=2px(p>0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF|=54|PQ|.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.【试题分析】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理,弦长公式的应用,解法及所涉及的知识和上题基本相同. 【答案】(1)y 2=4x. (2)x -y -1=0或x +y -1=0. 【解析】(1)设Q(x 0,4),代入y 2=2px ,得x 0=8p,所以|PQ|=8p ,|QF|=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p ,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x.(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m≠0). 代入y 2=4x ,得y 2-4my -4=0. 设A(x 1,y 1),B(x 2,y 2), 则y 1+y 2=4m ,y 1y 2=-4.故线段的AB 的中点为D(2m 2+1,2m), |AB|=m 2+1|y 1-y 2|=4(m 2+1).又直线l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M(x 3,y 3),N(x 4,y 4),则y 3+y 4=-4m,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝ ⎛⎭⎪⎫2m2+2m 2+3,-2m ,|MN|=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2.由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE|=|BE|=12|MN|,从而14|AB|2+|DE|2=14|MN|2,即 4(m 2+1)2+⎝ ⎛⎭⎪⎫2m +2m 2+⎝ ⎛⎭⎪⎫2m 2+22=4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m =1或m =-1, 故所求直线l 的方程为x -y -1=0或x +y -1=0.三、考卷比较本试卷新课标全国卷Ⅰ相比较,基本相似,具体表现在以下方面: 1. 对学生的考查要求上完全一致。

即在考查基础知识的同时,注重考查能力的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养,既考查了考生对中学数学的基础知识、基本技能的掌握程度,又考查了对数学思想方法和数学本质的理解水平,符合考试大纲所提倡的“高考应有较高的信度、效度、必要的区分度和适当的难度”的原则. 2. 试题结构形式大体相同,即选择题12个,每题5分,填空题4 个,每题5分,解答题8个(必做题5个),其中第22,23,24题是三选一题。

题型分值完全一样。

选择题、填空题考查了复数、三角函数、简易逻辑、概率、解析几何、向量、框图、二项式定理、线性规划等知识点,大部分属于常规题型,是学生在平时训练中常见的类型.解答题中仍涵盖了数列,三角函数,立体何,解析几何,导数等重点内容。

3. 在考查范围上略有不同,如本试卷第3题,是一个积分题,尽管简单,但全国卷已经不考查了。

四、本考试卷考点分析表(考点/知识点,难易程度、分值、解题方式、易错点、是否区分度题)。

相关文档
最新文档