自考线性代数第一章行列式习题
第一章 行列式 习题及答案
第一章 行列式习题1. n 阶行列式D 的值为c ,若将D 的第一列移到最后一列,其余各列依次保持原来的次序向左移动,则得到的行列式值为 。
(1(1)n c --)2. n 阶行列式D 的值为c ,若将D 的所有元素改变符号,得到的行列式值为 。
((1)n c -)3. 2(1)(2,1,21,2,,1,)(21)0(23)0122k k N k k k k k k k k --+=-++-+++=+?。
4. 由行列式的定义计算行列式413331233626xx x x xx展开式中4x 和3x 的系数。
(3412, 12x x -)(分析:4x 的系数:四个元素中必须全都包含x 。
第一行只能取11a ,第三行只能取33a ,这样第二、四行只能取22a 和44a ,则此项为(1234)411223344(1)4312N a a a a x x x x x -=⋅⋅⋅=。
3x 的系数:(2134)(4231)3331221334441223314(1)(1)3912N N a a a a a a a a x x x -+-=--=-。
)5. 已知1703,3159,975,10959能被13整除,不直接计算行列式17033159097510959的值,证明他是13的倍数。
证明:12341701703170170341000131531593153159410021309709750979754103109510959109510959l c c l c c l c c l +⋅+⋅=⋅+⋅,能被13整除。
注意,以下两个行列式:170317037033159315915909759759751095910959959≠,所以一定要加到最后一列上。
6. 设行列式311252342011133--=--D ,求11213141243A A A A +--及2123242-++M M M 。
(0和-5)解:112131412112423424301011333A A A A -+--==----。
线性代数第1章行列式试卷及答案
第一章 行列式一、单项选择题1.行列式D 非零的充分条件是( D )(A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例(D)以D 为系数矩阵的非齐次线性方程组有唯一解 2.二阶行列式1221--k k ≠0的充分必要条件是( C )A .k ≠-1B .k ≠3C .k ≠-1且k ≠3D .k ≠-1或≠3 3.已知2阶行列式2211b a b a =m ,2211c b c b =n ,则222111c a b c a b ++=( B )+n (m+n )4.设行列式==1111034222,1111304z y x zy x 则行列式( A ) A.32D.38 5.下列行列式等于零的是(D )A .100123123- B. 031010300- C . 100003010- D . 261422613-6.行列式111101111011110------第二行第一列元素的代数余子式21A =( B )A .-2B .-1C .1D .28.如果方程组⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则 k =( B )9.(考研题)行列式0000000a b abc d c d=( B ) A.()2ad bc -B.()2ad bc --C.2222a d b c -D.2222b c a d -二、填空题1.四阶行列式中带负号且含有因子12a 和21a 的项为 44332112a a a a 。
2. 行列式1112344916中(3,2)元素的代数余子式A 32=___-2___.3. 设7343690211118751----=D ,则5A 14+A24+A 44=_______。
解答:5A 14+A 24+A 44=1501343090211115751-=---4.已知行列式011103212=-a ,则数a =____3______.5.若a ,b 是实数,则当a =___且b =___时,有=---10100a b b a 0。
线性代数章节练习题
b b2 ac
c
a
c2 a2
ab abc
b b2 abc
c c2 abc
abc
111
(a b c) a2 b2 c2 (a b c) a b c
111
a2 b2 c2
(a b c)(b a)(c a)(c b)
246 427 327 1000 427 327 1000 100 327 (2) 1014 543 443 2000 543 443 2000 100 443
D 2 0
2 7
2 0
2 0
5 3 2 2
求第四行各元素的余子式之和的值。
8 计算 n 阶行列式
x y 00 0 0 x y0 0 Dn 0 0 0x y y 0 00 x
3 1 1 9 计算行列式 D 1 5 1 。
1 1 3
3 2 2 10 计算三阶行列式 D k 1 k 。
(C) C PT AP
(D) C PAPT
13 计算
0 1 0 2007 1 2 3 0 1 0 2006 1 0 0 4 5 61 0 0 0 0 1 7 8 9 0 0 1
14 设 A 为 n 阶可逆阵,交换 A 的第 i 行与第 j 行后得到 B。 (1)证明 B 可逆;(2)求 AB-1
(C)当 n m 时,必有 AB 0
(D)当 n m 时,必有 AB 0 18 证明 R( A B) R( A) R(B)
4 1 41 则
R(BA 2A)
19 A 为 m p 矩阵,B 为 p n 矩阵,若 AB=0 证明: R( A) R(B) P
20 设 A 为 n 阶矩阵,且 A2=A,若 R( A) . 证明 R( A E) n r ,其中 E 为 n 阶单位阵
(完整版)行列式习题1附答案.doc
⋯⋯_ ⋯_ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯:⋯号⋯学⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ 线_ 订_ _ 装_ _ ⋯_ _ ⋯_ _ ⋯_ ⋯:⋯名⋯姓⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯:⋯⋯⋯班⋯⋯⋯《线性代数》第一章练习题⋯⋯一、填空⋯⋯⋯1、(631254) _____________ 8⋯⋯⋯2、要使排列(3729m14n5)偶排列, m =___8____, n =____6_____⋯⋯x 1 13 , x 2 的系数分是⋯3、关于x的多式x x x中含 x -2,4⋯1 2 2x⋯⋯4、 A 3方, A 2, 3A* ____________ 108⋯⋯⋯5、四行列式det( a ij)的次角元素之(即a14a23a32a41)一的符号+⋯⋯1 2 1线1234 2346、求行列式的 (1) =__1000 ;(2)2 4 2 =_0___;封2469 469密10 14 13⋯⋯1 2000 2001 2002⋯0 1 0 2003⋯⋯(3)0 1=___2005____;⋯0 20040 0 0 2005⋯⋯1 2 3⋯中元素 0 的代数余子式的___2____⋯(4) 行列式2 1 0⋯3 4 2⋯⋯1 1 1 1⋯1 5 25⋯ 4 2 3 57、 1 7 49 = 6 ;= 1680⋯16 4 9 25⋯1 8 64⋯64 8 27 125⋯⋯矩方,且,,, A 1 1 。
⋯A 4⋯8、|A|=5 | A*| =__125 | 2A| =__80___ | |=50 1 10 1 2 22 2 2 09、 1 0 1 = 2 。
;3 0121 1 01 01 0 0 0bx ay010、若方程cx az b 有唯一解,abc≠0 cy bz a11、把行列式的某一列的元素乘以同一数后加到另一列的元素上,行列式12、行列式a11a12a13a14a21a22a23a24 的共有4! 24, 在a11a23 a14a42, a34a12a31a32a33a34a41a42a43a44a34a12a43 a21 是行列式的,符号是 + 。
线性代数自考(经管类)
3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开.
4.行列式中各行元素之和为一个常数的类型.
5.范德蒙行列式的计算公式
例6求4阶行列式的值.
测试点 行列式的计算
解
测试点 个维向量线性无关相应的行列式;
解
所以 且.
答案 且.
2. 关于线性相关的几个定理
1) 如果向量组线性无关,而线性相关,则可由线性表示,且表示法唯一.
矩阵的加、减、乘有意义的充分必要条件
例1设矩阵,, ,则下列矩阵运算中有意义的是( )
A. B.
C. D.
测试点: 矩阵相乘有意义的充分必要条件
答案: B
例2设矩阵, ,则 =_____________.
测试点: 矩阵运算的定义
解 .
例3设矩阵, ,则____________.
3.转置 对称阵和反对称阵
1)转置的性质
2)若,则称为对称(反对称)阵
例4矩阵为同阶方阵,则=( )
A. B.
C. D.
答案: B
例5设令,试求.
测试点 矩阵乘法的一个常用技巧
解 因为,所以
答案
例6为任意阶矩阵,下列矩阵中为反对称矩阵的是( )
1.向量组的线性相关性的定义和充分必要条件:
1)定义: 设是一组维向量.如果存在个不全为零的数,使得
,
则称向量组线性相关,否则,即如果,必有
,则称向量组线性无关.
2) 个维向量线性相关的充分必要条件是至少存在某个是其余向量的线性组合.即线性无关的充分必要条件是其中任意一个向量都不能表示为其余向量的线性组合.
线性代数课后习题1-4作业答案(高等教育出版社)
= 1 2 −2 ====== 0 0 − 2 =0.
10
3
14
c1
+
1 2
c3
17
17
14
2 1 41
(2)
3 1
−1 2
2 3
1 2
;
5 0 62
解
2 3 1
1 −1 2
4 2 3
1 1 2
c4 − c2 =====
2 3 1
1 −1 2
4 2 3
0 2 0
r4 − r2 =====
2 3 1
2 2
52⎟⎠⎞⎜⎝⎛00
12 ⎟⎠⎞ = ⎜⎝⎛ 00
96⎟⎠⎞ ,
而
A2
−
B2
=
⎜⎝⎛
3 4
181⎟⎠⎞ − ⎜⎝⎛13
40⎟⎠⎞ = ⎜⎝⎛ 12
78⎟⎠⎞ ,
故(A+B)(A−B)≠A2−B2.
5. 举反列说明下列命题是错误的:
(1)若 A2=0, 则 A=0;
解 取 A=⎜⎝⎛00 01⎟⎠⎞ , 则 A2=0, 但 A≠0. (2)若 A2=A, 则 A=0 或 A=E;
4. 计算下列各行列式:
4 124
(1)1 10Fra bibliotek2 5
0 2
2 0
;
0 117
解
4 1 10 0
1 2 5 1
2 0 2 1
4 2 0 7
=cc=42=−−=7c=c33=10140
−1 2 3 0
2 0 2 1
−10 2
−14 0
4 =1
10
−1 2 3
−10 2 ×(−1)4+3
自考线性代数第一章行列式习题
第一章 行列式一、单项选择题1.线性方程组⎪⎩⎪⎨⎧=++=--=++4284103520z y x z y x z y x 的解为()A .x =2,y =0,z =-2B .x =-2,y =2,z =0C .x =0,y =2,z =-2D .x =1,y =0,z =-12.3阶行列式j i a =11101110---中元素21a 的代数余了式21A =( ) A .-2 B .-1 C .1 D .23.已知333231232221131211a a a a a a a a a =3,那么333231232221131211222222a a a a a a a a a ---=( )A.-24B.-12C.-6D.124.行列式0111101111011110------第二行第一列元素的代数余子式21A =( ) A .-2 B .-1 C .1D .25.设行列式==1111034222,1111304z y x zy x 则行列式( )A.32B.1C.2D.386.已知2阶行列式2211b a b a =m ,2211c b c b =n ,则222111c a b c a b ++=( )A.m-nB.n-mC.m+nD.-(m+n )7.计算行列式32 3 20 2 0 0 0 5 10 2 0 2 0 3 ----=( )A.-180B.-120C.120D.180二、填空题 1.3阶行列式313522001=_________.2.已知3阶行列式33323123222113121196364232a a a a a a a a a =6,则333231232221131211a a a a a a a a a =_______________.3.设3阶行列式D 3的第2列元素分别为1,-2,3,对应的代数余子式分别为-3,2,1,则D 3=__________________.4. 若==k k 则,012131012_____________。
线性代数练习册练习题—第1章 行列式
第1章 行列式及其应用一、填空题1.行列式1221--k k 0≠的充分必要条件是 .2.排列36715284的逆序数是 。
3.已知排列397461t s r 为奇排列,则r = , s = ,t = . 4.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为 . 5.若54435231a a a a a j i 为五阶行列式带正号的一项,则 i = , j = .6.设行列式275620513--=D ,则第三行各余子式之和的值为 . 7.行列式=30092280923621534215 .8.行列式=1110110********* .9.多项式0211111)(321321321321=+++++=x a a a a x a a a a x a a a a x f 的所有根是 .10.若方程225143214343314321x x -- = 0 ,则 .11.行列式 ==2100121001210012D12. 行列式122305403-- 中元素3的代数余子式是 . 13. 设行列式4321630*********=D ,设j j A M 44,分布是元素j a 4的余子式和代数余子式,则44434241A A A A +++ = ,44434241M M M M +++= . 14.已知四阶行列D 中第三列元素依次为1-,2,0,1,它们的余子式依次分布为5,3,,7-4,则D = .15. 若方程组⎪⎩⎪⎨⎧=+-=++=+02020z y kx z ky x z kx仅有零解,则k .二.选择题1.若行列式x52231521- = 0,则=x ( ).(A )2 (B )2- (C )3 (D )3-2.线性方程组⎩⎨⎧=+=+473322121x x x x ,则方程组的解),(21x x = ( ).(A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)3.方程093142112=x x 根的个数是( ).(A )0 (B )1 (C )2 (D )3 4.下列构成六阶行列式展开式的各项中,取“+”的有 ( ). (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为( ).(A )3,2==l k ,符号为正 (B )3,2==l k ,符号为负 (C )2,3==l k ,符号为正 (D )2,3==l k ,符号为负6.下列n (n >2)阶行列式的值必为零的是( ).(A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于等于n 个7.如果133********21131211==a a a a a a a a a D ,3332313123222121131211111232423242324a a a a a a a a a a a a D ---= ,则=1D ( ). (A )8 (B )12- (C )24- (D )24 8.如果3333231232221131211==a a a a a a a a a D ,2323331322223212212131111352352352a a a a a a a a a a a a D ---=,则=1D ( ). (A )18 (B )18- (C )9- (D )27-9. 2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c cb b b b a a a a =( ). (A )8 (B )2 (C )0 (D )6- 10.若111111111111101-------=x A ,则A 中x 的一次项系数是 ( ).(A )1 (B )1- (C )4 (D )4-11.4阶行列式443322110000000a b a b b a b a 的值等于 ( ).(A )43214321b b b b a a a a - (B )))((43432121b b a a b b a a --(C )43214321b b b b a a a a + (D )))((41413232b b a a b b a a -- 12.如果122211211=a a a a ,则方程组 ⎩⎨⎧=+-=+-022221211212111b x a x a b x a x a 的解是( ).(A )2221211a b a b x =,2211112b a b a x = (B )2221211a b a b x -=,2211112b a b a x = (C )2221211a b a b x ----=,2211112b a b a x ----= (D )2221211a b a b x ----=,2211112b a b a x -----=13. 方程0881441221111132=--x x x的根为 ( ). (A )3,2,1 (B )2,2,1- (C )2,1,0 (D )2,1,1-14. 已知a a a a a a a a a a =333231232221131211,那么=+++323133312221232112111311222a a a a a a a a a a a a ( ). (A )a (B )a - (C)a 2 (D )a 2-15. 已知齐次线性方程组⎪⎩⎪⎨⎧=+-=-+=++0030z y z y x z y x λλλ仅有零解,则 ( ).(A )0≠λ且1≠λ (B )0=λ或1=λ (C )0=λ (D )1=λ三、判断题。
(完整版)行列式习题答案
线性代数练习题 第一章 行 列 式系 专业 班 姓名 学号第一节 n 阶 行 列 式一.选择题1.若行列式 = 0,则[ C ]x52231521-=x (A )2 (B )(C )3(D )2-3-2.线性方程组,则方程组的解=[ C ]⎩⎨⎧=+=+473322121x x x x ),(21x x (A )(13,5)(B )(,5)(C )(13,)(D )()13-5-5,13--3.方程根的个数是[ C ]093142112=x x (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A ](A ) (B ) 665144322315a a a a a a 655344322611a a a a a a (C ) (D )346542165321a a a a a a 266544133251a a a a a a 5.若是五阶行列式的一项,则的值及该项的符号为[ B ]55443211)541()1(a a a a a l k l k N -ij a l k ,(A ),符号为正; (B ),符号为负;3,2==l k 3,2==l k (C ),符号为正;(D ),符号为负2,3==l k 2,3==l k 6.下列n (n >2)阶行列式的值必为零的是 [ BD ](A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个二、填空题1.行列式的充分必要条件是1221--k k 0≠3,1k k ≠≠-2.排列36715284的逆序数是133.已知排列为奇排列,则r =2,8,5s = 5,2,8,t = 8,5,2397461t s r4.在六阶行列式中,应取的符号为 负 。
ij a 623551461423a a a a a a 三、计算下列行列式:1.=181322133212.=55984131113.yxyx x y x yyx y x +++332()x y =-+4.=100011000001001005.000100002000010n n -1(1)!n n -=-6.0011,22111,111 n n nn a a a a a a --(1)212,11(1)n n n n n a a a --=-线性代数练习题 第一章 行 列 式系专业 班 姓名 学号第二节 行列式的性质一、选择题:1.如果, ,则 [ C ]1333231232221131211==a a a a a a a a a D 3332313123222121131211111232423242324a a a a a a a a a a a a D ---==1D (A )8(B )(C )(D )2412-24-2.如果,,则 [ B ]3333231232221131211==a a a a a a a a a D 2323331322223212212131111352352352a a a a a a a a a a a a D ---==1D (A )18(B ) (C )(D )18-9-27-3. = [ C ]2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (A )8 (B )2(C )0(D )6-二、选择题:1.行列式 12246000 2. 行列式-3=30092280923621534215=11101101101101112.多项式的所有根是0211111)(321321321321=+++++=x a a a a x a a a a x a a a a x f 0,1,2--3.若方程= 0 ,则225143214343314321x x --1,x x =±=4.行列式 5==2100121001210012D 三、计算下列行列式:1.2605232112131412-21214150620.12325062r r +=2.xa a a x a a a x 1[(1)]().n x n a x a -=+--线性代数练习题 第一章 行 列 式系专业 班 姓名 学号第三节 行列式按行(列)展开一、选择题:1.若,则中x 的一次项系数是[D]111111111111101-------=x A A (A )1(B )(C )(D )1-44-2.4阶行列式的值等于 [D ]443322110000000a b a b b a b a (A ) (B )43214321b b b b a a a a -))((43432121b b a a b b a a --(C )(D )43214321b b b b a a a a +))((41413232b b a a b b a a --3.如果,则方程组 的解是 [B]122211211=a a a a ⎩⎨⎧=+-=+-0022221211212111b x a x a b x a x a (A ), (B ),2221211a b a b x =2211112b a b a x =2221211a b a b x -=2211112b a b a x =(C ), (D ),2221211a b a b x ----=2211112b a b a x ----=2221211a b a b x ----=2211112b a b a x -----=二、填空题:1.行列式 中元素3的代数余子式是 -6122305403--2.设行列式,设分布是元素的余子式和代数余子式,4321630211118751=D j j A M 44,j a 4则 =,=-6644434241A A A A +++44434241M M M M +++3.已知四阶行列D 中第三列元素依次为,2,0,1,它们的余子式依次分布为1-5,3,4,则D = -15,7-三、计算行列式:1.321421431432432112341234134101131010141201311123031111310131160.311-==---=-=-2.12111111111na a a +++ ==121111011101110111n a a a+++121111100100100na a a---211112111110010010n c c a a a a a+--+111223211111100001000na a cc a a a a++-+11121101111000000ni ni iia a a c a c a=+++∑1211()(1)nn i i a a a a =+∑或121123113111111000000nn a r r a r r a r r a a a a+------211211212311111000000na a aa a a c c a a a a+++--11122313311111100000ni in nnaa a c c a a a c c a a a a=++++∑1122()(1)nn i ia a a a a =++∑或11221121121110111110111111111(1).n n n n nn i ia a a a a a D a a a a a a a --=++++=+=+=+∑线性代数练习题 第一章 行 列 式系专业 班 姓名学号综 合 练 习一、选择题:1.如果,则 = [ C ]0333231232221131211≠==M a a a a a a a a a D 3332312322211312111222222222a a a a a a a a a D =(A )2 M(B )-2 M(C )8 M(D )-8 M2.若,则项的系数是[ A ]xxx x x x f 171341073221)(----=2x (A )34 (B )25 (C )74 (D )6二、选择题:1.若为五阶行列式带正号的一项,则 i = 2 j = 154435231a a a a a j i 2. 设行列式,则第三行各元素余子式之和的值为 8。
线代一二章习题及答案
第一讲 行列式例1、下三角行列式nnnn n nnnn n n n n n n a a a a a a a a a a a a a a a a22112211)12(121111211222111)1(000000000=-=-----τ对角行列式,上(下)三角行列式的值就等于对角线上的元素的乘积例2、 求xx b x a x 1221102085413+----的4x 和3x 的系数.解析:4x 的系数是1;3x 的系数是-10例3、 求3阶行列式 754102643--=(-3)A 11+4A 12+6A 13=(-3)M 11-4M 12+6m 3=(-3)⨯(-5)-4⨯(-18)+6⨯(-10)=27.例4、1010001001tt tt解析: 原式=1 A 11+t A 1n =1+11)1(-+-⋅n ntt=1+ nnt +-1)1(例5、 求行列式 2235007022220403--的第四行各元素的余子式的和. 解析: 所求为4443424144434241A A A A M M M M +-+-=+++原式=444342412235A A A A +-+将原行列式换为1111007022220403---即他的值就是原题的余子式之和答案为-28(对第三行展开 323277M A =-)例6、27718497518100549754102643=--==--08题aaa aa aa a a A 2012001200012000122222=. 证明|A |=(n+1)a n .分析: 证明:初等变换nan nan a a a n an a a a aaa aa a a a aa aa a a a )1()1(34232)1(010000340000023000012201200034000002300001220012001200002300001222222+=+⋅⋅=+→→→例7、 ?=cA 答A c n; 例 8、设4阶矩阵BA B A B A +====求,3,2),,,,(),,,,(321321γγγβγγγα解:40,,,8,,,8,,,82,2,2,),2,2,2,(321321321321321=+=+=+=++=+γγγβγγγαγγγβαγγγβαγγγβαB A B A例9、 已知行列式3123111++++-+--z x y y x z z y xd c b a 的代数余子式A 11=-9,A 12=3,A 13=-1,A 14=3,求x,y,z.解析:思路:利用性质8⎪⎩⎪⎨⎧===⇒⎪⎩⎪⎨⎧=+++--→z y x z y x 0)1(339(二)、典型例题 例1①22222aaaaa a a a a a a a a a a aa a a a ②xx x x ++++1111111111111111③aa a a ++++4444333322221111④ 对角线上的元素都为0,其它元素都为1的n 阶行列式. ②分析:解:4)x 00000001114111411141114111411111111111111113+=+→+++++++→++++(所以值x xx x x xxx x x x x xx x x①分析:与②同理 ④分析:类型一致③分析:把下面三行分别加到第一行例24321532154215431543254321解:100510501500115111111411411411115111411411411411115111401141014110411105432154321153215152154151543155432154321532154215431543254321-------→-------→----→----→→所以值=15×125=1875例343211111111111111111x x x x ++++解:+=+++++==+++++++=++++4321431432432143214324321401010********01001001000100000000011101110111011111111111111111111111111111111111x x x x x x x x x x x x x x x x x x x x x x x x x例4 证明时)当b a ba bab aba ab b a b b a a b b a n n ni iin ≠--==++++++=-∑(00000000011分析:证明:归纳法:展开递推21n )(---+=→n n abD D b a D 递推公式 再用归纳法证明之 也可以:nn n n abD ab a b ab a bD ba ab b a b ab a bD ba ab b a b b a b b b a a b b a b b a a b a +=+==+++=+++++++---111000000000000000000000000000000000000000000时)当另b a ba baD baD b a b a D D D D n n n n n n nn nn ≠--=→-=-→⨯〉〈-⨯〉〈〉〈+=〉〈+=++++--()(212b a 1a b 111111-n 11-n na n aaa a a a a a ab a )1(2020000020002+=其值为时另当第二讲 矩阵例、⎪⎪⎪⎭⎫ ⎝⎛---=101111010A ,⎪⎪⎪⎭⎫⎝⎛--=301521B .求 B AX =的解⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎭⎫⎝⎛-----=313315210010101301521101111010)(B A⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---→211213100010001413415200010101⎪⎪⎪⎭⎫⎝⎛---=211213X2007年的一个题中,求3阶矩阵 B , 满足⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-222111B ,⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛011011B ,⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛110110B .解:建立矩阵方程⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-102112012101111011B⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---21311001112011001111011222110011111⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛-→011101110100010001033110011300110011⎪⎪⎪⎭⎫ ⎝⎛--=011101110TB⎪⎪⎪⎭⎫⎝⎛--=011101110B2008年考题: 03=A ,时 证明: A E -可逆.证 E A E A A E A E =-=++-32))((.所以A E -可逆例1、设C B A ,,都是n 阶矩阵,满足CA A C AB E B +=+=,,则C B -为(A)E .(B) E -. (C)A . (D)A -. )(A (2005年数学四)AB E B +=化为E B A E =-)( 即 B 与 )(A E - 互为逆矩阵CA A C += 化为 A A E C =-)(, 用 B 右乘得 AB C = 例2、 设A 是3阶矩阵,将A 的第2行加到第1行上得B ,将B 的第1列的-1倍加到第2列上得 *C .记⎪⎪⎪⎭⎫⎝⎛=100011001PAP P C A 1)(-= 1)(-=PAP C B AP P C C T =)( TPAPD =)(A B ⎪⎪⎪⎭⎫ ⎝⎛=100010011⎪⎪⎪⎭⎫⎝⎛-=100010011B C110010011100010011-=⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛=PAP A C例3、 设A 是3阶可逆矩阵,交换A 的1,2行得B ,则(A) 交换*A 的1,2行得到*B . (B) 交换*A 的1,2列得到*B . (C) 交换*A 的1,2行得到*-B . (D) 交换*A 的1,2列得到*-B . 2009题设A 和B 都是2阶矩阵,2=A , 3=B .则 ()=⎪⎪⎭⎫⎝⎛*O BA O⎪⎪⎭⎫⎝⎛**O A B O A 23)(⎪⎪⎭⎫⎝⎛**O A B OB 32)( ⎪⎪⎭⎫⎝⎛**O B A O C 23)(⎪⎪⎭⎫⎝⎛**O B A O D 32)(( 2009年的考题)解:1-*=CC C先求1-C()⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛=00100011000010010010*********A O O B O B A OE C⎪⎪⎭⎫ ⎝⎛→--O ABO E O O E11⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=----*O ABOO A BO O BA O C 1111⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=**----O A B B A O OA AB B B A O O ABOB A 1111例4、 设A 是n 阶非零实矩阵,满足 TA A =*. 证明:)1(>A)2(如果2>n 则1=A解:条件TA A =*,即,)()(Tij T ij a A =即ji ij ij a A ,,∀=(1)inin i i i i A a A a A a A ++=2211022221≥+++=ini i a a a又因为 0≠A , 即A 有非零元素, 则2221>+++=in ke k a a a A(2)EA AAAAT==*nAA=2得12=-n A因为>A2-n 是正整数,得1=A例5、 3阶矩阵B A ,满足E BA ABA +=**2,其中⎪⎪⎪⎭⎫⎝⎛=100021012A ,求B .(04一) 解:E BA ABA+=**2E BA E A =-*)2(AB E A A =-)2(AB E A A =-23913112122=⨯=-=AE A B例6 设3阶矩阵,⎪⎪⎪⎭⎫⎝⎛---=201011153A A XA XA A 21+=-,求X .解: 11112)(----+=AAXAAAXA AE X X A 21+=-A AX X 2+=A X A E 2)(=-⎪⎪⎪⎭⎫⎝⎛------=-4020222106101021152)2(A A E ⎪⎪⎪⎭⎫⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛------→010424202210001002142262022120110021⎪⎪⎪⎭⎫⎝⎛---→01042424106100010001得⎪⎪⎪⎭⎫ ⎝⎛---=01042424106X例7 设3阶矩阵,⎪⎪⎪⎭⎫ ⎝⎛---=111111111A X A X A 21+=-*,求X .解: X A X A 21+=-*AXE X A 2+=E X A E =-)24(1)24(--=A E X411110112111111111=--=---=A例8 4阶矩阵B A ,满足E BAABA311+=--,已知⎪⎪⎪⎪⎪⎭⎫⎝⎛-=*8000010030100101A 求B . (00一) 解: E BAABA311+=--A B AB 3+=EA B A B A 3+=*83==*AA得2=AE B A E 6)2(=-*1)2(6-*-=A E B例9 设B A ,是3阶矩阵,A 可逆,它们满足E B B A 421-=-.(1) 证明E A 2-可逆.(2) 设⎪⎪⎪⎭⎫⎝⎛-=200021021B ,求A .(2002)A 可逆解:EB B A 421-=-即A AB B 42-= B A AB 24+= A B E A 4)2(=-由A 可逆得E A 2-可逆例10 设n 阶矩阵B A ,满足bB aA AB +=.其中0≠ab ,证明 (1)bE A -和aE B -都可逆. (2) A 可逆B ⇔可逆. (3)BA AB =解:(1)令aE B D bE A C -=-=,aE D B bE C A +=+=,abE bD abE aC aE D bE C +++=++))(( abE bD aC abE bD aC CD 2++=+++D C abE CD ,⇒=都可逆或者直接把bE A -和aE B -相乘abE bB aA AB +--(2)aA B bE A =-)( (3)abE aE B bE A =--))((E aE B ab bE A =--)()( EabbE A aE B =--)()( abE bE A aE B =--))((O bB aA BA =--AB bB aA BA =+=例11 设B A ,都是n 阶对称矩阵,AB E +可逆,证明A AB E 1)(-+也是对称矩阵. 证:验证A AB E A AB E T11)(])[(--+=+ TTTAB E A A AB E ])[(])[(11--+=+ 111)()(])[(---+=+=+=BA E A A B E A AB E A T T T即要证明)()()()(111BA E A AB E A A AB E BA E A ++=⇔+=+---)()(BA E A A AB E +=+⇔。
线性代数第一单元(行列式)试卷(专升本)
线性代数第一单元(行列式)试卷(专升本)第一篇:线性代数第一单元(行列式)试卷(专升本)第1题标准答案:D 1-3-1 计算行列式,结果=()。
A、60B、70C、80D、90第2题标准答案:C 1-1-1 排列32145的逆序数是()。
A、1B、2C、3D、4第3题标准答案:B 1-2-1 已知3阶行列式计算:的值,结果=()。
A、10B、20C、30D、40第二篇:线性代数教案第一节:低阶行列式《线性代数》教案第一章:行列式本章重点:行列式的计算及其性质的应用本章难点:行列式的几条性质的证明及利用这些性质计算行列式基本要求:1.会用对角线法则计算2阶行列式和3阶行列式2.了解n阶行列式的概念3.了解行列式的性质并掌握4阶行列式的计算,会计算简单的n 阶行列式 4.了解克莱姆法则第三篇:线性代数教案-第三章行列式及其应用第三章行列式及其应用本在线性代数应用于几何、分析等领域时,行列式理论起着重要的作用,线性代数范畴的矩阵理论的进一步深化,也要以行列式作工具.本章研究行列式理论以及它的一些作用.一、教学目标与基本要求(一)知识1n阶行列式的定义及性质现将这些性质作为公理体系来定义n阶行列式.设A=[aij]是任意一个n阶方阵,用Ai记其第i行元素为分量的n元向量,即2,Λ,n, Ai=(ai1,ai2,Λ,ain),i=1,并称其为行向量.有序向量组{A1,Λ,An}所定义的实值函数d(A1,Λ,An)被称为n阶行列式函数,如果它满足下列公理: 公理1 对每行具有齐性,即对任意实数t,有Λ,n.d(Λ,tAk,Λ)=td(Λ,Ak,Λ),k=1,公理2 对每行都具加性.即对任意n元向量B,有d(Λ,Ak+B,Λ)=d(Λ,Ak,Λ)+d(Λ,Ak-1,B,Ak+1,Λ), k=1,Λ,n.公理3若任意相邻两行相等,则行列式为零.即若Ak=Ak+1(k=1,Λ,n-1),则d(A1,Λ,An)=0.公理4 对于R中常用基{e1,Λ,en},有nd(e1,Λ,en)=1.当{A1,Λ,An}取定,则称d(A1,Λ,An)为一个n阶行列式.有时也简称为n阶行列式函数为n阶行列式.n行列式常被记为detA,|A|,或a11a21M an1a12a22MΛa1nΛa2n M.an2Λann公理4意味着,对于n阶单位方阵E,有 detE=|E|=1.前两个公理意味着,行列式函数是它每一行的线性函数,即对任意一行(如第1行)而言,若t1,Λ,tp是任意p个实数,B1,Λ,Bp是任意p个n元向量(p是任意正整数),有d(∑tkBk, A2,Λ,An)=∑tkd(Bk,A2,Λ,An)k=1k=1pp定理3.1.1满足公理1,2,3的行列式函数d(A1,Λ,An)具有以下性质:(1)若行列式某一行为零,则此行列式为零.(2)对调行列式任意两行,则行列式变号.(3)若行列式任意两行相等,则此行列式为零.(4)若向量组{A1,Λ,An}是相关的,则行列式d(A1,Λ,An)=0.(5)把行列式某行乘以数加到另一行去,行列式值不改变.行列式的计算例3.2.2设A是形如下式的n阶对角方阵⎡a11⎢0⎢⎢M⎢⎣00a22M00⎤Λ0⎥⎥(a=0,i≠j)M⎥ij⎥Λann⎦Λ则detA=a11a22Λann.由该例可得到: 例3.2.3设A 是形如下式的n阶上三角方阵⎡a11⎢⎢0⎢⎢M⎢⎢⎣0a12a22M0Λa1n⎤⎥Λa2n⎥⎥(主对角线下方各元素为零)M⎥⎥Λann⎥⎦则detA=a11a22Λann.定理3.2.1 设d是满足行列式公理1~4的n阶行列式函数,f是满足行列式公理1~3的n阶行列式函数,则对任意选定的n元向量A1,Λ,An及R中常用基{e1,Λ,en},有nf(A1,Λ,An)=d(A1,Λ,An)f(e1,Λ,en).(3.2.2)若f还满足行列式公理4,则有f(A1,Λ,An)=d(A1,Λ,An).-1定理3.2.2 若A是一个非奇异方阵(即A存在),则detA≠0,且detA-1=1 detA定理3.2.3 设A1,Λ,An是n个n元向量.该向量独立的充要条件是d(A1,Λ,An)≠0.本节最后,讨论分块对角方阵的行列式的简便算法.定理3.2.3 形如式(3.2.10)的分块对角方阵成立着⎡AO⎤det⎢⎥=detAdetB ⎢⎣OB⎥⎦本定理可以推广到一般情形:若C是一个具有对角子块A1,Λ,An的分块对角方阵,即⎡A1⎢⎢⎢⎢C=⎢⎢⎢⎢⎢⎢⎣OA2O O⎤⎥⎥⎥⎥⎥, ⎥⎥⎥⎥An⎥⎦则detC=(detA1)(detA2)Λ(detAn).行列式的展开公式定义3.3.1给定n阶方阵A=[akj](n≥2).去掉其元素akj所在的第k 行和第j列后,余下元素按原来位置构成的n-1阶方阵,被称为元素akj 的余子阵,记为Akj.而称detAkj为akj的余子式.定理3.3.1对任意n阶方阵A=[akj](n≥2),有'=(-1)k+jdetAkj,k=1,Λ,n.(3.3.2)detAkj从而有nΛ,n.(3.3.3)detA=∑akj(-1)k+jdetAkj,k=1,j=1此式被称为行列式按第k行的展开式.定义3.3.2对行列式detA而言,称(-1)k+jdetAkj为元素akj的代数余子式,记为cofakj.下面将利用数学归纳法来证明n阶行列式函数的存在性,从而在理论上确立了n阶行列式函数的存在唯一性.与此同时,可得到行列式按列展开的公式.定理3.3.2设n-1阶行列式函数存在.对任意n阶方阵A=[akj],定义函数f(A1,Λ,An)=∑(-1)k+1ak1detAk1,(3.3.4)k=1n则它是n阶行列式函数定理3.3.3对任意n阶方阵A=[akj],有∑(-1)j=1nni+j i=k⎧detA,(3.3.6)akjdetAij=⎨0, i≠k⎩i=k⎧detA,i+j(3.3.7)(-1)adetA=⎨∑jkji i≠kj=1⎩ 0,定理3.3.4对任意n阶方阵A=[akj],有detA=detAT.4 伴随阵及方阵的逆定义3.4.1给定n阶方阵A=[aij],称n阶方阵[cofaij]为A的伴随阵,记为TA*.据此定义知: A的伴随阵A*位于第j行第i列的元素,就是A的元素aij的代数余子式cofaij=(-1)i+jdetAij.定理3.4.1对任意n阶方阵A=[aij](n≥2),有AA*=(detA)E.-1又:若detA≠0,则A存在,且有A-1=1A*.detA-1定理3.4.2对任意n阶方阵A而言,A存在得充分必要条件是detA≠0.当detA≠0,就有A-1=11A*,detA-1= detAdetA5矩阵的秩定义3.5.1在一个m⨯n矩阵A中,任取k行k列(k≤min(m,n)),位于这些行列交叉处的元素按原来位置构成的k阶行列式,被称为矩阵A 的k阶子式.A中不为零的子式.A中不为零的子式的最高阶数,被称为矩阵A的秩,记为R(A).若A没有不为零的子式(等价的说法是: A是零矩阵),则认为其秩为零.推论若A有一个r阶子式不为零,而所有r+1阶子式全为零,则R(A)=r.定理3.5.1初等变换不改变矩阵的秩.等价的说法是:若A~B(即A与B等价),则R(A)=R(B).若A是n阶方阵且R(A)=n,则称A为满秩方阵.显然,下列命题等价:(1)A是满秩方阵.(2)detA≠0.(3)A是可逆的(非奇异的).克莱姆法则定理3.6.1对于含有n个未知量x1,Λ,xn的n个线性代数方程构成的方程组⎧a11x1+a12x2+Λ+a1nxn=b1,⎪ax+ax+Λ+ax=b,⎪2112222nn2(3.6.1)⎨⎪M M M M⎪⎩an1x1+an2x2+Λ+annxn=bn,(或写为∑aj=1nijΛ,n.)xj=bi,i=1,如果其系数方阵A=[aij]是非奇异的(即detA≠0),则它是唯一解.这里cofakj是方阵A的元素akj的代数余子式.式(3.6.2)表示的线性代数方程组(3.6.1)的解亦可表示为xj=detCjdetA,j=1,Λ,n.(3.6.3)这里方阵Cj是A中第j列换为列阵b 所成的n阶方阵.读者容易验证(3.6.3)式右端与(3.6.2)式右端相等.二本章重点及难点1、理解用公理定义行列式概念中的数学原理2、利用公理4进行行列式计算3、方阵的行列式及方阵可逆之间的关系4、矩阵的秩5、利用伴随阵求解方阵的逆6、克莱母法则三:本章教学内容的深化和拓宽1.2.若第四个公理改变,行列式的值如何改变当克莱母法则法则的相关条件改变又如何? 四:思考题和习题1(3)(4)3(1)5(2)7(3)10(2)15 16(2)五、教学方式(手段)本章主要采用讲授新课的方式。
线性代数习题册(答案)
线性代数习题册答案第一章 行列式练习 一班级 学号 姓名1.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)τ(3421)= 5 ; (2)τ(135642)= 6 ;(3)τ(13…(2n-1)(2n)…42) = 2+4+6+…+(2 n-2)= n (n-1).2.由数字1到9组成的排列1274i56j9为偶排列,则i= 8 、j= 3 .3.在四阶行列式中,项12233441a a a a 的符号为 负 .4.00342215= -24 .5.计算下列行列式:(1)122212221-----= -1+(-8)+(-8)-(-4)-(-4)―(-4)= -5或(2)111111λλλ---= -3λ+1+1-(-λ)-(-λ)―(-λ) = -3λ+3λ+2=2(2)(1)λλ-+练习 二班级 学号 姓名 1.已知3阶行列式det()ij a =1,则行列式det()ij a -= -1 . 3(1)11-⋅=-2. 1112344916= 2 .3.已知D=1012110311101254--,则41424344A A A A +++= —1 .用1,1,1,1替换第4行4. 计算下列行列式: (1)111ab c a b c abc +++= 13233110110011,0110111111r r r r c c a b c bcabcabc-----+-==++++++(2) xy x y y x y x x yxy+++(3)130602121476----(4)1214012110130131-5.计算下列n 阶行列式:(1)n xa a a x a D aax=(每行都加到第一行,并提公因式。
)(2)131111n +(3) 123123123n n n a ba a a a ab a a a a a a b+++练习 三班级 学号 姓名 1.设线性方程组123123123111x x x x x x x x x λλλ--=⎧⎪++=⎨⎪-++=⎩有惟一解,则λ满足的条件是什么?1,0,1λλλ≠-≠≠2. 求解线性方程组12341234123412345242235232110x x x x x x x x x x x x x x x x +++=⎧⎪+-+=-⎪⎨---=-⎪⎪+++=⎩3.已知齐次线性方程组123123123000x x x x x x x x x λλλ--=⎧⎪-++=⎨⎪--+=⎩有非零解,求λ的值。
行列式习题1附答案
级班命题人或命题小组负责人签名: 教研室(系)主任签名:一、填空题«线性代数》第一章练习题1、 (631254) ____________ 82、 要使排列(3729m14n5为偶排列,则m =___8 __ , n = ____ 6 ____x 11 「入 3 23、关于x 的多项式x x X 中含x 3,x 2项的系数分别是-2,4122x4、 A 为3阶方阵,A 2,则3A* ________________ 1085、 四阶行列式det (a j )的次对角线元素之积(即aga 23a 32a 41) 一项的符号为 +6、 求行列式的值(1)1234 2469 234469=__1000__1 2 1⑵ 24 2 =010 14 131 0 2000 12001⑶0 12002 2003 =20052004 20051 2⑷行列式213 40中元素0的代数余子式的值为 27、 1 5 25 1 7 49 1 8 641 11 1 423 516 4925 64 827 125: ___ 1680 ________8、设矩阵A 为4阶方阵,且|A|=5,则|A*|=__125.1| 2A| =__80__,| A |=0 1 19、 1 0 1 =2;1 1 0bx ay 010、若方程 组 cx az bcy bz a有唯一解,则abcM _______0 1 2 22 2 2 0 121 3 0 01 0 0 0O11、把行列式的某一列的元素乘以同一数后加到另一列的对应元素上行列式^不变 12、行列式a 12a 13 a 22a 23a 32 a 33a 42 a 43a 11 a 21a 31 a 41a 14 a 24 a 34a 44的项共有4! 24 项,在&11&23&14&42a 34 a 12a 43a 21中,X 2 X 3 013、当a 为1 1或2时,方程组x 12x 2 ax 3 0有非零解。
线性代数(经管)第一章 行列式真题
线性代数(经管类)试题1.设行列式==1111034222,1111304z y x zy x则行列式( ) A.32B.1C.2D.38 11.行列式1376954321=_________.21.计算4阶行列式D =8765765465435432.全国2010年4月高等教育自学考试线性代数(经管类)试题1.已知2阶行列式2211b a b a =m ,2211c b c b =n ,则222111c a b c a b ++=( )A.m-nB.n-mC.m+nD.-(m+n )4.已知A=⎪⎪⎪⎭⎫ ⎝⎛333231232221131211a a a a a a a a a ,B =⎪⎪⎪⎭⎫ ⎝⎛333231232221131211333a a a a a a a a a ,P =⎪⎪⎪⎪⎭⎫ ⎝⎛100030001,Q =⎪⎪⎪⎪⎭⎫ ⎝⎛100013001,则B =( ) A.P A B.AP C.QA D.AQ11.行列式2010200820092007的值为_________________________.21.计算行列式D =333222c c b b a a c b a c b a +++的值线性代数(经管类)试题2.计算行列式32 3 20 2 0 0 0 5 10 20 2 0 3 ----=( )A.-180B.-120C.120D.18021.计算5阶行列式D =20 0 0 1 0 0 2 0 0 0 0 0 2 0 1 0 0 0 2全国2010年10月高等教育自学考试线性代数(经管类)试题11.行列式2110的值为_________.12.已知A=⎪⎪⎭⎫⎝⎛3221,则|A|中第一行第二列元素的代数余子式为_________.21.求行列式D=.0120101221010210的值全国2011年1月高等教育自学考试线性代数(经管类)试题1.设行列式333231232221131211a a a a a a a a a =4,则行列式333231232221131211333222a a a a a a a a a =( ) A.12 B.24 C.36 D.4811.行列式1221---k k =0,则k =_________________________.21.计算行列式ba c ccb c a b b a a cb a ------222222线性代数(经管类)试题1.下列等式中,正确的是( ) A .B .3=C .5D .11.行列式__________.12.行列式22351011110403--中第4行各元素的代数余子式之和为__________.全国2011年7月高等教育自学考试线性代数(经管类)试题21.计算4阶行列式D=1234234134124123.全国2011年10月高等教育自学考试线性代数(经管类)试题11.设行列式304222,532D =-其第3行各元素的代数余子式之和为__________.全国2012年1月高等教育自学考试线性代数(经管类)试题1.设行列式111213212223313233a a a a a a a a a =2,则111213313233213122322333333a a a a a a a a a a a a ------=( )A .-6B .-3C .3D .621.计算行列式1112114124611242-----.全国2012年4月高等教育自学考试线性代数(经管类)试题1.设行列式111213212223313233a a a a a a a a a =2,则111213212223313233232323a a a a a a a a a ------=( ) A.-12B.-6C.6D.1211.行列式11124641636=____________.21.计算行列式D =3512453312012034----全国2012年7月高等教育自学考试线性代数(经管类)试题21.计算行列式1112112112112111⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦全国2012年10月高等教育自学考试线性代数(经管类)试题1.设行列式1122a b a b =1,1122a c a c --=-1,则行列式111222a b c a b c --=A.-1B.0C.1D.211.行列式123111321的值为_________.21.计算行列式D=a b a ba ab ba b a b+++的值.全国2013年1月高等教育自学考试线性代数(经管类)试题12.四阶行列式中项21321344αααα的符号为________.21.计算四阶行列式1234 1234 1234 1234------.全国2013年4月高等教育自学考试线性代数(经管类)试题全国2013年7月高等教育自学考试线性代数(经管类)试题1.设行列式111213212223313233a a aa a aa a a=1,则111211132122212331323133342342342a a a aa a a aa a a a---=A.-8B.-6C.6D.811.设行列式12513225a -=0,则a =______. 21.计算行列式123100010001xx x a a a a ---.。
线性代数习题集(带答案)
第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 26.在函数1323211112)(x x xxx f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题1. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是.4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式=100111010100111.6.行列式=-000100002000010n n .7.行列式=--001)1(2211)1(111n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式=--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111.12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .14.已知db c a cc a b b a b c a cb a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .16.已知行列式nn D001030102112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.18.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a d b a dc ad c b dcbad c b a d c b a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x xx ; 4.111111321321221221221----n n n n a a a a x a a a a x a a a a xa a a a x;5. na a a a 111111111111210(n j a j ,,1,0,1 =≠); 6. bn b b ----)1(1111211111311117. n a b b b a a b b a a a b 321222111111111; 8.xa a a a x a a a a x a a a a x n nn321212121;9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++; 10. 21000120000021001210001211.aa a aa a a a aD ---------=1101100011000110001.四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b a d c b a +++------=.4.∏∑≤<≤=----=nj i i jni innn nn nn n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明0111333=c b a c ba 的充要条件是0=++cb a .参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;7.1)1(212)1()1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ; 12.2-;13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-; 2. )(233y x +-; 3. 1,0,2-=x ; 4.∏-=-11)(n k kax5.)111()1(00∑∏==-+-nk k nk k a a ; 6. ))2(()1)(2(b n b b ---+- ;7. ∏=--nk k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;11. )1)(1(42a a a ++-. 四. 证明题 (略)第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。
行列式习题答案
线性代数练习题 第一章 行 列 式系 专业 班 学号 第一节 n 阶 行 列 式一.选择题1.若行列式x52231521- = 0,则=x [ C ] (A )2 (B )2- (C )3 (D )3- 2.线性方程组⎩⎨⎧=+=+473322121x x x x ,则方程组的解),(21x x = [ C ](A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)3.方程093142112=x x根的个数是 [ C ] (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A ] (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a 5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为[ B ](A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负6.下列n (n >2)阶行列式的值必为零的是 [ BD ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1221--k k 0≠的充分必要条件是 3,1k k ≠≠-2.排列36715284的逆序数是 133.已知排列397461t s r 为奇排列,则r = 2,8,5 s = 5,2,8 ,t = 8,5,24.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为 负 。
《线性代数》第一章行列式精选习题及解答
4.利用行列式按某一行(列)展开定理计算行列式;
5.利用数学归纳法计算行列式;
6.利用递推公式计算行列式;
7.利用范德蒙行列式的结论计算特殊的行列式;
8.利用加边法计算行列式;
9.综合运用上述方法计算行列式.
1.3 例题分析
例 1.1 排列 14536287 的逆序数为 ( )
(A) 8 (B) 7
因此
(−1Байду номын сангаасt a1n−1a2n−2 Lan−11ann ,其中
t = (n −1)(n − 2) , 2
( 2007 −1)( 2007 − 2 )
D = (−1) 2 2007!= −2007!.
此题也可以按行(列)展开来计算.
例 1.11 计算 n 阶行列式
2 1 1L1
1 2 1L1
Dn = 1 1 2 L 1
⎪⎪a ⎨
21
x1
⎪
+
a22 x2 MM
+L+ MM
a2n xn M
=
0
⎪⎩an1 x1 + an2 x2 + L + ann xn = 0
的系数行列式 D ≠ 0 ,则方程组只有唯一零解.若齐次线性方程组有非零解,则其系数行
列式 D = 0 .
1.2.5 一些常用的行列式
1.上、下三角形行列式等于主对角线上的元素的积.
⎧D i = j
jk
=
ai1 Aj1
+ ai2 Aj2
+ ... + ain Ajn
=
⎨ ⎩
0
i≠ j
其中 Ast 是 ast 的代数余子式.
1.2.4 克拉默法则 1.如果线性非齐次方程组
线性代数 第一章 行列式
第一章 行列式习题答案二、三阶行列式及n 阶行列式的定义部分习题答案1.计算下列二阶行列式(1)23112=; (2)cos sin 1sin cos θθθθ-=;(3)1111121221212222a b a b a b a b ++++1122112211221122a a a b b a b b =+++ 1221122112211221a a a b b a b b ----(4)1112111221222122a ab b a a b b +1122112212211221a a b b a a b b =+--2.计算下列三阶行列式(1)10312126231-=--; (2)11121322233233a a a a a a a 112233112332a a a a a a =-()1122332332a a a a a =- (3)a c bba c cb a3333a b c abc =++- 3.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)3214; (2)614235.123t =+= 112217t =++++=(3)()()()12322524212n n n n ---4.确定,i j ,使6元排列2316i j 为奇排列.解:4,5i j ==,()()23162431655t i j t ==为奇排列. 5.写出4阶行列式中含有1321a a 的项. 解:13213244a a a a ;13213442a a a a -6.按定义计算下列行列式:(1)0001002003004000(4321)(1)2424t =-= (2)000000000000a c db (1342)(1)abcd abcd t =-= 7. 求1230312()123122x xf x x x x-=的展开式中4x 和3x 的系数.4x 的系数为6-;含3x 的项只有(4231)(1)(3)3t x x x -?创,所以3x 的系数为(4231)(1)3(3)119t -?创= 行列式的性质与展开部分习题答案 1.计算下列行列式:(1)200819861964200919871965201019881966;解:32212008198619641110111r r r r D --==(2)123123123111a a a a a a a a a +++; 解:2312323231(1)1111a a D a a a a a a a =+++++各列加到第一列后提取公因式21312312331(1)0101r r r r a a a a a a --=+++123(1)a a a =+++ (3)41232013201116011601110111031023500r r D +--==-- 213314116116(1)111027350818r r r +++--=-=-20=- (4)211201110111611261112112211100100c c D ---==----314110110(1)26126116221223c c -+=-=--=--.(5)00100101D αβαβαβαβαβαβαβ++=++.()401100101D αβαβαβαβαβαβαβαβαβαβαβ+=++-+++ ()()()32212D D D D D a b a b a b a b a b a b 轾=+-=++--臌432234a a b a b ab b =++++2.证明:(1)011=++++=cb adb a dcd a c b d c b a D 11;证明:将D 的各列都加到最后一列再提出公因式有1111(1)01111a b c d a b b c a d b c D a b c d c d a b c d d a b c d a ++==++++=++1111(2)33()ax byay bzaz bx x y z ay bzaz bx ax by a b yz x az bx ax byay bz z xy ++++++=++++.证明:左式12axayaz bybzbx ay bzaz bx ax by ay bzaz bx ax by D D az bx ax by ay bzaz bx ax by ay bz =+++++++=+++++++311r br xyzx y z D a ay bzaz bx ax by a ay bz az bx ax byaz bx ax byay bzazaxay-=+++=++++++23223r br x y z x y z x y z a ay bz az bx ax by a ay az ax a yz x zxyzxyzxy-=+++== 类似有1323322(1)r r r r yz x x y z D b zx y yz x xyzzx y ←−→←−→==-,所以33()ax byay bz az bx x y z ay bzaz bx ax by a b yz x az bx ax byay bzzxy++++++=++++ 3.计算n 阶行列式(1)n D =ab bbb a b bbb a bb b b a ...........................;各行加到第一行后提取公因式有:[]111...1...(1).....................n ba b b D a n b bba bb b b a=+-[]211111 (10)0...0(1)00 0 0...n r br r br a b a n b a b a b---=+---L[]()1(1)n a n b a b -=+--(2)12121212n na n a n D n a ++=+12(0)n a a a ≠ .211212111212121211210012000n n nr r n r r r n r r a a nna naa a n a a a a a a a a a a -----+++++--==--1112221211n n n n i i a na i a a a a a a a a =⎛⎫⎛⎫=++++=+⎪ ⎪⎝⎭⎝⎭∑ 4.利用范德猛行列式计算:1111123414916182764D =.2222333311111234(21)(31)(41)(32)(42)(43)1212341234==------= 克拉默法则部分习题答案1.用克拉默法则解线性方程组(1)122313223(0)0bx ax ab cx bx bc abc cx ax ì-=-ïïï-+= íïï+=ïïî;解:002350b a D cb abc ca-=-=-,212023500ab a D bc c b a bc a --=-= 2220350b ab D bc b ab c ca -==-,220250baab D c bc abc c --=-=-123,,x a x b x c =-==(2)123412341234123432125323348246642x x x x x x x x x x x x x x x x +-+=⎧⎪+-+=⎪⎨-++-=⎪⎪--+=⎩.解:132125321734826164D --==----,1132135323444822164D --==----211212332034826264D --==---,3131125321734426124D ==---,13212533853*******D --==---12342,0,1,5x x x x =-===2.当λ为何值时,齐次线性方程组⎪⎩⎪⎨⎧=+=+-=++0 00433221321x x x x x x x λλλ(1) 仅有零解;(2) 有非零解. 解:3410(1)(3)01D l ll l l=-=--,(1)1l ¹且3l ¹时0D ¹,该齐次线性方程组只有零解。
(完整版)线性代数行列式第一章练习题答案
(完整版)线性代数行列式第一章练习题答案《线性代数》(工)单元练习题一、填空题1、设矩阵A 为4阶方阵,且|A |=5,则|A*|=__125____,|2A |=__80___,|1-A |= 1/52、若方程组??=+=+=+a bz cy b az cx ay bx 0 有唯一解,则abc ≠ 03、把行列式的某一列的元素乘以同一数后加到另一列的对应元素上,行列式 0 .4、当a 为 1 or 2 时,方程组=++=++=++040203221321321x a x x ax x x x x x 有非零解.5、设=-+----=31211142,410132213A A A D 则 .0二、单项选择题1.设)(则=---===333231312322212113121111333231232221131211324324324,1a a a a a a a a a a a a D a a a a a a a a a D B (A)0 ;(B)―12 ;(C )12 ;(D )12.设齐次线性方程组=+-=++=+02020z y kx z ky x z kx有非零解,则k = ( A )(A )2 (B )0 (C )-1 (D )-23.设A=792513802-,则代数余子式 =12A ( B )(A) 31- (B) 31 (C) 0 (D) 11- 4.已知四阶行列式D 中第三列元素依次为-1,2,0,1,它们的余子式依次分别为5,3,-7,4,则D= ( A ) (A ) -15 (B ) 15 (C ) 0 (D ) 1 三、计算行列式1、111a b c b c a c a b +++ ( 0 ) 2、. 1212301112042411D --=----(-10)3、1111111111111111x x y y+-+- (x 2y 2) 4、 3321322132113211111b a a a a b a a a a b a a a a +++(b 1b 2b 3)5、3222232222322223ΛM M M M M ΛΛΛ=n D (2n+1)三、已知n 阶行列式12312001030100n nD n=LLLM M M O M L ,求第一行各元素的代数余子式之和. 解:A 11+A 12+…+A 1n 11111200111(1)!103023100n nn==----?LLL LM M M O M L。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 行列式
一、单项选择题
1.线性方程组⎪⎩
⎪
⎨⎧=++=--=++4284103520z y x z y x z y x 的解为( )
A .x =2,y =0,z =-2
B .x =-2,y =2,z =0
C .x =0,y =2,z =-2
D .x =1,y =0,z =-1
2.3阶行列式j i a =0
1
1
101
1
10
---中元素21a 的代数余了式21A =( ) A .-2 B .-1 C .1 D .2
3.已知3332
31
232221
131211
a a a a a a a a a =3,那么33
32
31
23222113
12
11222222a a a a a a a a a ---=( ) A.-24 B.-12 C.-6
D.12
4.行列式
1
1
1
101111011110
------第二行第一列元素的代数余子式21A =( )
A .-2
B .-1
C .1
D .2
5.设行列式==1
11103
4
222,1111304z y x z
y x 则行列式( ) A.
3
2
B.1
C.2
D.3
8 6.已知2阶行列式2
21
1b a b a =m ,
2
21
1c b c b =n ,则
2
22
111
c a b c a b ++=( )
A.m-n
B.n-m
C.m+n
D.-(m+n )
7.计算行列式
3
2 3 20 2 0 0 0 5 10 2
0 2 0 3 ----=( )
A.-180
B.-120
C.120
D.180
二、填空题
1.3阶行列式3
135220
01=_________.
2.已知3阶行列式33
32
31
2322
2113
12
11
96364232a a a a a a a a a =6,则33
32
31
23222113
1211a a a a a a a a a =_______________. 3.设3阶行列式D 3的第2列元素分别为1,-2,3,对应的代数余子式分别为-3,2,1,则D 3=__________________.
4. 若==k k 则,01
21310
12_____________。
5.已知行列式42
22
21111-=-+-+b a b a b a b a ,则
=2
21
1b a b a ______. 6.行列式13
769543
21=_________.
7 . 行列式
2010
200820092007的值为_________________________.
三、计算题 1. 计算行列式D =.5333
35333353
3335
2. 已知3阶行列式ij a =4
1502
3
1
-x
x 中元素12a 的代数余子式A 12=8,求元素21a 的代数余子式
A 21的值.
3.求行列式D =22
6
7
22025304043
1---的值。
4.计算行列式1
1
1
1
111111111111
---+-----+=
x x x x D 的值.
5.计算4阶行列式D =
8
765765465435
432.
6. 计算行列式D =3
3
3
222
c c b b a a c b a c
b a +++的值。